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1 Introduction 

CCBlade predicts aerodynamic loading of wind turbine blades using blade element momentum (BEM) theory. CC 
stands for continuity and convergence. CCBlade was developed primarily for use in gradient-based optimization 
applications where C1 continuity and robust convergence are essential. 

Typical BEM implementations use iterative solution methods to converge the induction factors (e.g., fixed-point 
iteration or Newton’s method). Some more complex implementations use numerical optimization to minimize 
the error in the induction factors. These methods can be fairly robust, but all have at least some regions where the 
algorithm fails to converge. A new methodology was developed that is provably convergent in every instance (see 
Theory). This robustness is particularly important for gradient-based optimization. To ensure C1 continuity, lift and 
drag coefficients are computed using a bivariate cubic spline across angle of attack and Reynolds number. 

CCBlade is primarily written in Python, but iteration-heavy sections are written in Fortran in order to improve 
performance. The Fortran code is called from Python as an extension module using f2py. The module AirfoilPrep.py 
is also included with the source. Although not directly used by CCBlade, the airfoil preprocessing capabilities are 
often useful for this application. This is the stand-alone version of CCBlade. A version exists that is packaged with 
NREL_WISDEM and allows for the computation of power-regulated performance (e.g., power curves, annual energy 
production) for any arbitrary aerodynamics code. 

This report is available at no cost from the  
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2 Installation 

Prerequisites 

C compiler, Fortran compiler, NumPy, SciPy 

Download either CCBlade.py-0.3.0.tar.gz or CCBlade.py-0.3.0.zip and uncompress/unpack it. 

Install CCBlade with the following command. 

$ python setup.py install 

To check if installation was successful run the unit tests for the NREL 5-MW model 

$ python test/test_ccblade.py 

An “OK” signifies that all the tests passed. 

To access an HTML version of this documentation that contains further details and links to the source code, open 
docs/index.html. 

Note: The CCBlade installation also installs the module AirfoilPrep.py. Although it is not necessary to use Airfoil­
Prep.py with CCBlade, its inclusion is convenient when working with AeroDyn input files or doing any aerodynamic 
preprocessing of airfoil data. 
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3 Tutorial 

Two examples are shown below. The first is a complete setup for the NREL 5-MW model, and the second shows 
how to model blade precurvature using CCBlade. 

3.1 NREL 5-MW 
One example of a CCBlade application is the simulation of the NREL 5-MW reference model’s aerodynamic perfor­
mance. First, define the geometry and atmospheric properties. 

import numpy as np  
from math import pi  
import matplotlib.pyplot as plt  

from ccblade_sa import CCAirfoil, CCBlade 

# geometry 
Rhub = 1.5  
Rtip = 63.0  

r = np.array([2.8667, 5.6000, 8.3333, 11.7500, 15.8500, 19.9500, 24.0500,  
28.1500, 32.2500, 36.3500, 40.4500, 44.5500, 48.6500, 52.7500,  
56.1667, 58.9000, 61.6333])  

chord = np.array([3.542, 3.854, 4.167, 4.557, 4.652, 4.458, 4.249, 4.007, 3.748, 
3.502, 3.256, 3.010, 2.764, 2.518, 2.313, 2.086, 1.419]) 

theta = np.array([13.308, 13.308, 13.308, 13.308, 11.480, 10.162, 9.011, 7.795, 
6.544, 5.361, 4.188, 3.125, 2.319, 1.526, 0.863, 0.370, 0.106]) 

B = 3 # number of blades 

tilt = 5.0  
precone = 2.5  
yaw = 0.0  

nSector = 8 # azimuthal discretization 

# atmosphere 
rho = 1.225  
mu = 1.81206e-5  

# power-law wind shear profile 
shearExp = 0.2  
hubHt = 90.0  

Airfoil aerodynamic data is specified using the CCAirfoil class. Rather than use the default constructor, this ex­
ample uses the special constructor designed to read AeroDyn files directly CCAirfoil.initFromAerodynFile(). 

afinit = CCAirfoil.initFromAerodynFile # just for shorthand 

# load all airfoils 
airfoil_types = [0]*8  
airfoil_types[0] = afinit(’Cylinder1.dat’)  
airfoil_types[1] = afinit(’Cylinder2.dat’)  
airfoil_types[2] = afinit(’DU40_A17.dat’)  
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airfoil_types[3] = afinit(’DU35_A17.dat’)  
airfoil_types[4] = afinit(’DU30_A17.dat’)  
airfoil_types[5] = afinit(’DU25_A17.dat’)  
airfoil_types[6] = afinit(’DU21_A17.dat’)  
airfoil_types[7] = afinit(’NACA64_A17.dat’)  

# place at appropriate radial stations 
af_idx = [0, 0, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7] 

af = [0]*len(r)  
for i in range(len(r)):  

af[i] = airfoil_types[af_idx[i]]  

Next, construct the CCBlade object. 

# create CCBlade object 
rotor = CCBlade(r, chord, theta, af, Rhub, Rtip, B, rho, mu,  

precone, tilt, yaw, shearExp, hubHt, nSector)  

Evaluate the distributed loads at a chosen set of operating conditions. 

# set conditions 
Uinf = 10.0  
tsr = 7.55  
pitch = 0.0  
Omega = Uinf*tsr/Rtip 30.0/pi # convert to RPM * 
azimuth = 0.0 

# evaluate distributed loads 
r, Tp, Np, theta, precone = rotor.distributedAeroLoads(Uinf, Omega, pitch, azimuth) 

Plot the flapwise and lead-lag aerodynamic loading 

# plot 
rstar = (r - Rhub) / (Rtip - Rhub)  
plt.plot(rstar, Tp/1e3, label=’lead-lag’)  
plt.plot(rstar, Np/1e3, label=’flapwise’)  
plt.xlabel(’blade fraction’)  
plt.ylabel(’distributed aerodynamic loads (kN)’)  
plt.legend(loc=’upper left’)  
plt.grid()  
plt.show()  

as shown in Figure 1. 

To get the power, thrust, and torque at the same conditions (in both absolute and coefficient form), use the evaluate 
method. This is generally used for generating power curves so it expects array_like input. For this example a list 
of size one is used. 

P, T, Q = rotor.evaluate([Uinf], [Omega], [pitch]) 

CP, CT, CQ = rotor.evaluate([Uinf], [Omega], [pitch], coefficient=True) 

print CP, CT, CQ 

The result is 

This report is available at no cost from the  
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Figure 1. Flapwise and lead-lag aerodynamic loads along blade. 

>>> CP = [ 0.48329808]  
>>> CT = [ 0.7772276]  
>>> CQ = [ 0.06401299]  

Note that the outputs are numpy arrays (of length 1 for this example). To generate a nondimensional power curve (l 
vs cp): 

# velocity has a small amount of Reynolds number dependence 
tsr = np.linspace(2, 14, 50)  
Omega = 10.0 * np.ones_like(tsr)  
Uinf = Omega*pi/30.0 * Rtip/tsr  
pitch = np.zeros_like(tsr)  

CP, CT, CQ = rotor.evaluate(Uinf, Omega, pitch, coefficient=True) 

plt.figure()  
plt.plot(tsr, CP)  
plt.xlabel(’$\lambda$’)  
plt.ylabel(’$c_p$’)  
plt.show()  

Figure 2 shows the resulting plot. 

CCBlade provides a few additional options in its constructor. The other options are shown in the following example 
with their default values. 

# create CCBlade object 
rotor = CCBlade(r, chord, theta, af, Rhub, Rtip, B, rho, mu, 

precone, tilt, yaw, shearExp, hubHt, nSector 
tiploss=True, hubloss=True, wakerotation=True, usecd=True, iterRe=1) 

The parameters tiploss and hubloss toggle Prandtl tip and hub losses repsectively. The parameter wakerotation 
toggles wake swirl (i.e., a0 = 0). The parameter usecd can be used to disable the inclusion of drag in the calculation 
of the induction factors (it is always used in calculations of the distributed loads). However, doing so may cause 
potential failure in the solution methodology (see (Ning, 2013)). In practice, it should work fine, but special care 

This report is available at no cost from the  
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Figure 2. Power coefficient as a function of tip-speed ratio. 

for that particular case has not yet been examined, and the default implementation allows for the possibility of con­
vergence failure. All four of these parameters are True by default. The parameter iterRe is for advanced usage. 
Referring to (Ning, 2013), this parameter controls the number of internal iterations on the Reynolds number. One 
iteration is almost always sufficient, but for high accuracy in the Reynolds number iterRe could be set at 2. Any­
thing larger than that is unnecessary. 

3.2 Precurve 
CCBlade can also simulate blades with precurve. This is done by using the precone parameter and passing in 
an array rather than just a float. The values in the array correspond to the angle of precurve along the blade using 
the same sign conventions as for precone For example, a downwind machine (negative precurve) with significant 
curvature could be simulated using: 

precone = np.linspace(0, -40, len(r)) 

# create CCBlade object 
rotor = CCBlade(r, chord, theta, af, Rhub, Rtip, B, rho, mu,  

precone, tilt, yaw, shearExp, hubHt, nSector)  

The shape of the blade is seen in Figure 3. Note that the radius of the blade is not 63 m (it is now 58.16 m), but the 
blade length is preserved at 63 m. The precurve angles are treated as (local) rotations in the same manner as the 
precone angle is. 

This report is available at no cost from the  
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications.

6 



Figure 3. Profile of an example (highly) precurved blade. 
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4 Module Documentation 

The main methodology is contained in CCBlade. Airfoil data is provided by any object that implements AirfoilInter­
face. The helper class CCAirfoil is provided as a useful default implementation for AirfoilInterface. If CCAirfoil is 
not used, the user must provide an implementation that produces C1 continuous output (or else accept non-smooth 
aerodynamic calculations from CCBlade). Some of the underlying implementation for CCBlade is written in Fortran 
for computational efficiency. 

An HTML version of this documentaion is available that is better formatted for reading the code documentation and 
contains hyperlinks to the source code. 

4.1 Airfoil Interface 
The airfoil objects used in CCBlade need only implement the following evaluate() method. Although using CCAir­
foil for the implementation is recommended, any custom class can be used. 

Class Summary: 

interface ccblade_sa.AirfoilInterface 
Interface for airfoil aerodynamic analysis. 

evaluate(alpha, Re) 
Get lift/drag coefficient at the specified angle of attack and Reynolds number 

Parameters 
alpha : float (rad) 

angle of attack 

Re : float 

Reynolds number 

Returns 
cl : float  

lift coefficient  

cd : float  

drag coefficient  

Notes 

Any implementation can be used, but to keep the smooth properties of CCBlade, the implementation 
should be C1 continuous. 

4.2 CCAirfoil Class 
CCAirfoil is a helper class used to evaluate airfoil data with a continuously differentiable bivariate spline across 
the angle of attack and Reynolds number. The degree of the spline polynomials across the Reynolds number is 
summarized in the following table (the same applies to the angle of attack although generally, the number of points 
for the angle of attack is much larger). 

This report is available at no cost from the  
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Table 1. Degree of spline across Reynolds number. 

len(Re) degree of spline 

1 constant 

2 linear 

3 quadratic 

4+ cubic 

Class Summary: 

class ccblade_sa.CCAirfoil(alpha, Re, cl, cd) 
Setup CCAirfoil from raw airfoil data on a grid. 

Parameters  
alpha : array_like (deg)  

angles of attack where airfoil data are defined (should be defined from -180 to +180 
degrees) 

Re : array_like 

Reynolds numbers where airfoil data are defined (can be empty or of length one if not 
Reynolds number dependent) 

cl : array_like 

lift coefficient 2-D array with shape (alpha.size, Re.size) cl[i, j] is the lift coefficient at 
alpha[i] and Re[j] 

cd : array_like 

drag coefficient 2-D array with shape (alpha.size, Re.size) cd[i, j] is the drag coeffi­
cient at alpha[i] and Re[j] 

evaluate(alpha, Re) 
Get lift/drag coefficient at the specified angle of attack and Reynolds number. 

Parameters  
alpha : float (rad)  

angle of attack  

Re : float  

Reynolds number  

Returns 
cl : float  

lift coefficient  

cd : float  

drag coefficient  

This report is available at no cost from the  
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications.

9 



Notes 

This method uses a spline so that the output is continuously differentiable, and also uses a small amount 
of smoothing to help remove spurious multiple solutions. 

classmethod initFromAerodynFile(aerodynFile) 
convenience method for initializing with AeroDyn formatted files 

Parameters  
aerodynFile : str  

location of AeroDyn style airfoiil file 

Returns  
af : CCAirfoil  

a constructed CCAirfoil object 

4.3 CCBlade Class 
This class provides aerodynamic analysis of wind turbine rotor blades using BEM theory. It can compute distributed 
aerodynamic loads and integrated quantities such as power, thrust, and torque. An emphasis is placed on conver­
gence robustness and differentiable output so that it can be used with gradient-based optimization. 

Class Summary: 

class ccblade_sa.CCBlade(r, chord, theta, af, Rhub, Rtip, B=3, rho=1.225, mu=1.81206e-05, pre­
cone=0.0, tilt=0.0, yaw=0.0, shearExp=0.2, hubHt=80.0, nSector=8, 
tiploss=True, hubloss=True, wakerotation=True, usecd=True, iterRe=1)

Constructor for aerodynamic rotor analysis 

Parameters 
r : array_like (m) 

locations defining the blade along a reference axis that follows the blade path (values 
should be increasing). 

chord : array_like (m) 

corresponding chord length at each section 

theta : array_like (deg) 

corresponding twist angle at each section— positive twist decreases angle of attack. 

af : list(AirfoilInterface) 

list of AirfoilInterface objects at each section 

Rhub : float (m) 

location of hub 

Rtip : float (m)  

location of tip  

B : int, optional  

number of blades  

This report is available at no cost from the  
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rho : float, optional (kg/m^3) 

freestream fluid density 

mu : float, optional (kg/m/s) 

dynamic viscosity of fluid 

precone : float or array_like, optional (deg) 

hub precone angle can be used for precurve in addition to precone by using an array 
input (blade length is preserved). 

tilt : float, optional (deg)  

nacelle tilt angle  

yaw : float, optional (deg)  

nacelle yaw angle 

shearExp : float, optional 

shear exponent for a power-law wind profile across hub 

hubHt : float, optional 

hub height used for power-law wind profile. U = Uref*(z/hubHt)**shearExp 

nSector : int, optional 

number of azimuthal sectors to descretize aerodynamic calculation. automatically set 
to 1 if tilt, yaw, and shearExp are all 0.0. Otherwise set to a minimum of 4. 

tiploss : boolean, optional 

if True, include Prandtl tip loss model 

hubloss : boolean, optional 

if True, include Prandtl hub loss model 

wakerotation : boolean, optional 

if True, include effect of wake rotation (i.e., tangential induction factor is nonzero) 

usecd : boolean, optional 

If True, use drag coefficient in computing induction factors (always used in evaluating 
distributed loads from the induction factors). Note that the default implementation 
may fail at certain points if drag is not included (see Section 4.2 in (Ning, 2013)). This 
can be worked around, but has not been implemented. 

iterRe : int, optional 

The number of iterations to use to converge Reynolds number. Generally iterRe=1 is 
sufficient, but for high accuracy in Reynolds number, iterRe=2 iterations can be used. 
More than that should not be necessary. 

distributedAeroLoads(Uinf, Omega, pitch, azimuth) 
Compute distributed aerodynamic loads along blade. 

Parameters  
Uinf : float or array_like (m/s)  
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hub height wind speed (float). If desired, an array can be input which specifies the 
velocity at each radial location along the blade (useful for analyzing loads behind 
tower shadow for example). In either case shear corrections will be applied. 

Omega : float (RPM) 

rotor rotation speed 

pitch : float (deg) 

blade pitch in same direction as twist (positive decreases angle of attack) 

azimuth : float (deg) 

the azimuth angle where aerodynamic loads should be computed at 

Returns 
r : ndarray (m) 

radial stations along blade where force is specified (all the way from hub to tip) 

Tp : ndarray (N/m) 

force per unit length tangential to the section in the direction of rotation 

Np : ndarray (N/m) 

force per unit length normal to the section on downwind side 

theta : ndarray (deg) 

corresponding geometric twist angle (not including pitch)— positive twists nose into 
the wind 

precone : ndarray (deg) 

corresponding precone/precurve angles (these later two outputs are provided to facili­
tate coordinate transformations) 

evaluate(Uinf, Omega, pitch, coefficient=False) 
Run the aerodynamic analysis at the specified conditions. 

Parameters 
Uinf : array_like (m/s) 

hub height wind speed 

Omega : array_like (RPM) 

rotor rotation speed 

pitch : array_like (deg) 

blade pitch setting 

coefficient : bool, optional 

if True, results are returned in nondimensional form 

Returns  
P or CP : ndarray (W)  

power or power coefficient  

T or CT : ndarray (N)  
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thrust or thrust coefficient (magnitude)  

Q or CQ : ndarray (N*m)  

torque or torque coefficient (magnitude)  

Notes 

CP = P / (q * Uinf * A)  

CT = T / (q * A)  

CQ = Q / (q * A * R)  

note: that the rotor radius R, may not actually be Rtip in the case 
of precone/precurve 
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5 Theory 

Note: Only an overview of the theory is included here; details can be found in Ning (2013). 

The rotor aerodynamic analysis is based on blade element momentum (BEM) theory. Using BEM theory in a 
gradient-based rotor optimization problem can be challenging because of occasional convergence difficulties of 
the BEM equations. The standard approach to solving the BEM equations is to arrange the equations as functions of 
the axial and tangential induction factors and solve the fixed-point problem: 

(a,a0) =  f f p(a,a0) 

using either fixed-point iteration, Newton’s method, or a related fixed-point algorithm. An alternative approach is to 
use nonlinear optimization to minimize the sum of the squares of the residuals of the induction factors (or normal 
and tangential loads). Although these approaches are generally successful, they suffer from instabilities and failure 
to converge in some regions of the design space. Thus, they require increased complexity and/or heuristics (but may 
still not converge). 

The new BEM methodology transforms the two-variable, fixed-point problem into an equivalent one-dimensional 
root-finding problem. This is enormously beneficial as methods exist for one-dimensional root-finding problems that 
are guaranteed to converge as long as an appropriate bracket can be found. The key insight to this reduction is to use 
the local inflow angle f and the magnitude of the inflow velocity W as the two unknowns in specifying the inflow 
conditions, rather than the traditional axial and tangential induction factors (see Figure 4). 

plane of rotation 

�r(1 + a �) 

W

 

Uo(1 - a) 

Figure 4. Parameters specifying inflow conditions of a rotating blade section. 

This approach allows the BEM equations to be reduced to a one-dimensional residual function as a function of f : 

sin f cosf
f (f) =   = 0

1 a(f) lr(1 + a0(f )) 

Figure 5 shows the typical behavior of f (f) over the range f 2 (0,p/2]. Almost all solutions for wind turbines fall 
within this range (for the provable convergence properties to be true, solutions outside of this range must also be 
considered). The referenced paper (Ning, 2013) demonstrates through mathematical proof that the methodology will 
always find a bracket to a zero of f (f) without any singularities in the interior. This proof, along with existing proofs 
for root-finding methods like Brent’s method (Brent, 1971), implies that a solution is guaranteed. Furthermore, not 
only is the solution guaranteed, but it can be found efficiently and in a continuous manner. This behavior allows the 
use of gradient-based algorithms to solve rotor optimization problems much more effectively than with traditional 
BEM solution approaches. 

Any corrections to the BEM method can be used with this methodology (e.g., finite number of blades and skewed 
wake) as long as the axial induction factor can be expressed as a function of f (either explicitly or through a nu­
merical solution). CCBlade chooses to include both hub and tip losses using Prandtl’s method (Glauert, 1935) and a 
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Figure 5. Residual function of BEM equations using new methodology. Solution point is where f (f) = 0.

high-induction factor correction by Buhl (2005). Drag is included in the computation of the induction factors. How-
ever, all of these options can be toggled on or off. For a given wind speed, a spline is fit to the normal and tangential
forces along the radial discretization of the blade before integrating for thrust and torque. This allows for smoother
variation in thrust and torque for improved gradient estimation.

15



inertial, wind-aligned.
inertial can be chosen arbitrarily (as long as consistent), but for convenience should be 
chosen in primary wind direction. positive beta is about shared +z axis.  wave similar.

though no wave aligned axis
 

Coordinate System 

This module defines coordinate systems for horizontal axis wind turbines and provides convenience methods for 
transforming vectors between the various coordinate systems. The supplied transformation methods are for rotation 
only and do not account for any offsets that may be necessary depending on the vector quantity (e.g., transfer of 
forces between coordinate system does not depend on the location where the force is defined, but position, velocity, 
moments, etc. do). In other words the vectors are treated as directions only and are independent of the defined 
position. How the vector should transform based on position is not generalizable and depends on the quantity of 
interest. All coordinate systems obey the right-hand rule, x ⇥ y = z, and all angles must be input in degrees. The 
turbine can be either an upwind or downwind configuration, but in either case it is assumed that that the blades rotate 
in the clockwise direction when looking downwind (more specifically the rotor is assumed to rotate about the +xh 
axis in Figure 8). The vectors allow for elementary operations (+, -, *, /, +=, -=, *=, /=) between other vectors of the 
same type, or with scalars (e.g., force_total = force1 + force2). 

class csystem.DirectionVector(x, y, z) 
3-Dimensional vector that depends on direction only (not position). 

Parameters 
x : float or ndarray  

x-direction of vector(s)  

y : float or ndarray  

y-direction of vector(s)  

z : float or ndarray  

z-direction of vector(s)  

Inertial and Wind-aligned 

ŷw ŷi 

x̂w 

�wind 
x̂iVwind 

Figure 6. Inertial and Wind-aligned axes. 

Figure 6 defines the transformation between the inertial and wind-aligned coordinate systems. The two coordinate 
systems share a common origin, and a common z-direction. The wind angle b is positive for rotation about the +z 
axis. The direction of wave loads are defined similarly to the wind loads, but there is no wave-aligned coordinate 
system. 

Inertial coordinate system 
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wind-aligned, yaw-aligned
shared z axis.  origin at center of tower base. psi positive about +z axis.  d  for 

downwind turbines psi should be ~180 deg.  Psi is yaw angle

origin: center of the tower base (ground-level or sea-bed level)  

x-axis: any direction as long as used consistently, but convenient to be in primary wind direction  

y-axis: follows from the right-hand rule  

z-axis: up the tower (opposite to gravity vector)  

Wind-aligned coordinate system 

origin: center of the tower base (ground-level or sea-bed level)  

x-axis: in direction of the wind  

y-axis: follows from the right-hand rule  

z-axis: up the tower (opposite to gravity vector), coincident with inertial z-axis  

Table 2. Inertial-Wind conversion methods 

inertialToWind(beta) Rotates from inertial to wind-aligned 

windToInertial(beta) Rotates from wind-aligned to inertial 

Wind-aligned and Yaw-aligned 

ŷy ŷw Oy 

Figure 7. Wind-aligned and yaw-aligned axes. Y is the rotor yaw angle. 

Figure 7 defines the transformation between the wind-aligned and yaw-aligned coordinate systems. The two coordi­
nate systems are offset by the height ht along the common z-axis. The yaw angle Y is positive when rotating about 
the +z axis, and should be between -180 and +180 degrees. 

Yaw-aligned coordinate system 

origin: Tower top (center of the yaw bearing system) 

x-axis: along projection of rotor shaft in horizontal plane (aligned with rotor shaft for zero tilt angle). 
The positive direction is defined such that the x-axis points downwind at its design operating orientation 
(i.e., at zero yaw xy is the same direction as xw). Thus, for a downwind machine the xy axis would still 

x̂y 

x̂w 

�Vwind 

Ow 
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yaw-aligned, rotor-aligned
zy is same as zw and zi.  positive rotation about +y.  origin top of tower. Theta is tilt 

angle
  

� 

be downind at zero yaw, but in terms of nacelle orientation it would point from the back of the nacelle 
toward the hub. 

y-axis: follows from the right-hand rule 

z-axis: points up the tower (opposite to gravity vector), coincident with wind-aligned z-axis 

Table 3. Wind-Yaw conversion methods 

windToYaw(Psi) Rotates from wind-aligned to yaw-aligned 

yawToWind(Psi) Rotates from yaw-aligned to wind-aligned 

Yaw-aligned and Hub-aligned 

ẑh 

ẑy 

x̂y 

x̂h 

Figure 8. Yaw-aligned and hub-aligned axes. Q is the rotor tilt angle. 

Figure 8 defines the transformation between the yaw-aligned and hub-aligned coordinate systems. The two coordi­
nate systems share a common y axis. The tilt angle Q is positive when rotating about the +y axis, which tilts the rotor 
up for an upwind machine (tilts the rotor down for a downwind machine). 

Hub-aligned coordinate system 

origin: center of the rotor.  

x-axis: along the rotor shaft toward the nominal downwind direction (aligned with xy for zero tilt)  

y-axis: coincident with yaw-aligned y-axis  

z-axis: right-hand rule (vertical if zero tilt)  

Table 4. Yaw-Hub conversion methods 

yawToHub(Theta) Rotates from yaw-aligned to hub-aligned 

hubToYaw(Theta) Rotates from hub-aligned to yaw-aligned 
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rotor-aligned to azimuth-aligned
Lambda is azimuth angle.  positive rotation about x_r.  zero azimuth is vertical.  azimuth 

coordinate system is in plane of rotor

Hub-aligned and Azimuth-aligned 

ˆ

� x̂z 

ŷz 

ẑz 
zh 

ŷh 

Figure 9. Hub-aligned and azimuth-aligned axes. L is the (local) blade azimuth angle. 

Figure 9 defines the transformation between the hub-aligned and azimuth-aligned coordinate systems. The two 
coordinate systems share a common x-axis. The azimuth angle L is positive when rotating about the +x axis. The 
blade can employ a variable azimuth angle along the blade axis, to allow for swept blades. 

Azimuth-aligned coordinate system 

A rotating coordinate system—about the xh axis. The coordinate-system is locally-defined for the case 
of a variable-swept blade. 

origin: blade pitch axis, local to the blade section 

x-axis: aligned with the hub-aligned x-axis 

y-axis: right-hand rule 

z-axis: along projection of blade from root to tip in the yh - zh plane (aligned with blade only for zero 
precone) 

Table 5. Hub-Azimuth conversion methods 

hubToAzimuth(Lambda) Rotates from hub-aligned to azimuth-aligned 

azimuthToHub(Lambda) Rotates from azimuth-aligned to hub-aligned 

Azimuth-aligned and Blade-aligned 
Figure 10 defines the transformation between the azimuth-aligned and blade-aligned coordinate systems. The yb and 
yz axes are in the same direction. The two coordinate systems rotate together such that the xb - zb plane is always 
coplanar with the xz - zz plane. The precone angle F is positive when rotating about the -yz axis, and causes the 
blades to tilt away from the nacelle/tower for a downwind machine (tilts toward tower for upwind machine). The 
blade can employ a variable precone angle along the blade axis. The blade-aligned coordinate system is considered 
local to a section of the blade. Blade-aligned coordinate system 
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azimuth-aligned to blade-aligned
precone positive about -tz.  only RH coord if clockwise rotation.   phi is precone angle

� 

x̂z 

ẑz 

x̂b 
ŷb 

ẑb 

Figure 10. Azimuth-aligned and blade-aligned axes. F is the (local) blade precone angle. 

A rotating coordinate system that rotates with the azimuth-aligned coordinate system. The coordinate-
system is locally-defined along the blade radius. The direction of blade rotation is in the negative y-axis. 
A force in the x-axis would be a flapwise shear, and a force in the y-axis would be a lead-lag shear. 

origin: blade pitch axis, local to the blade section  

x-axis: follows from the right-hand rule (in nominal downwind direction)  

y-axis: opposite to rotation direction, positive from section leading edge to trailing edge (for no twist)  

z-axis: along the blade pitch axis in increasing radius  

Table 6. Azimuth-Blade conversion methods 

azimuthToBlade(Phi) Rotates from azimuth-aligned to blade-aligned 

bladeToAzimuth(Phi) Rotates from blade-aligned to azimuth-aligned 

Blade-aligned and Airfoil-aligned 
Figure 11 defines the transformation between the blade-aligned and airfoil-aligned coordinate systems. The zb and za 
axes are in the same direction. The twist angle q is positive when rotating about the -za axis, and causes the angle of 
attack to decrease. 

Airfoil-aligned coordinate system 

A force in the x-axis would be a flatwise shear, and a force in the y-axis would be an edgewise shear. 
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blade-aligned to airfoil-aligned
twist is positive when it decreases angle of attack.  about rhat if rotating clockwise. theta

is twist + pitch.  xl - flatwise, yl - edgewise, zl - axial

profile

 

x̂a x̂b 

� 
W 

� 

ŷa 

ŷb 
(Uŷ + �r)(1 + a �) 

Ux̂(1 - a) 

Figure 11. Blade-aligned and airfoil-aligned coordinate systems. q is the airfoil twist 
+ pitch angle. For convenience the local wind vector and angle of attack is shown. 

origin: blade pitch axis, local to the blade section 

x-axis: follows from the right-hand rule 

y-axis: along chord line in direction of trailing edge 

z-axis: along the blade pitch axis in increasing radius, same as zb (into the page in above figure) 

Table 7. Blade-Airfoil conversion methods 

bladeToAirfoil(theta) 

airfoilToBlade(theta) 

Rotates from blade-aligned to airfoil-aligned 

Rotates from airfoil-aligned to blade-aligned 

Airfoil-aligned and Profile 

ŷp x̂a 

x̂p, ŷa 

Figure 12. Airfoil-aligned and profile coordinate systems. 

Figure 12 defines the transformation between the airfoil-aligned and profile coordinate systems. The profile coordi­
nate system is generally used only to define airfoil profile data. 

Profile coordinate system 

origin: airfoil noise 
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x-axis: positive from nose to trailing edge along chord line 

y-axis: orthogonal to x-axis, positive from lower to upper surface 

z-axis: n/a (profile is a 2-dimensional coordinate system) 

Table 8. Airfoil-Profile conversion methods 

airfoilToProfile() Rotates from airfoil-aligned to profile 

profileToAirfoil() Rotates from profile to airfoil-aligned 
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