
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

CCBlade Documentation
Release 0.1.0
S.A. Ning

Technical Report
NREL/TP-5000-58819
September 2013

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

CCBlade Documentation
Release 0.1.0
S.A. Ning

Prepared under Task No. WE11.0341

Technical Report
NREL/TP-5000-58819
September 2013

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL
16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721.

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

http://www.osti.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx

Table of Contents

1 Introduction . 1

2 Installation . 2

3 Tutorial . 3
3.1 NREL 5-MW . 3
3.2 Precurve . 6

4 Module Documentation . 8
4.1 Airfoil Interface . 8
4.2 CCAirfoil Class . 8
4.3 CCBlade Class . 10

5 Theory . 14

Coordinate System . 16

Bibliography . 23

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

iii

List of Figures

Figure 1. Flapwise and lead-lag aerodynamic loads along blade. 5

Figure 2. Power coefficient as a function of tip-speed ratio. 6

Figure 3. Profile of an example (highly) precurved blade. 7

Figure 4. Parameters specifying inflow conditions of a rotating blade section. 14

Figure 5. Residual function of BEM equations using new methodology. Solution point is where f (f) = 0. . 15

Figure 6. Inertial and Wind-aligned axes. 16

Figure 7. Wind-aligned and yaw-aligned axes. Y is the rotor yaw angle. 17

Figure 8. Yaw-aligned and hub-aligned axes. Q is the rotor tilt angle. 18

Figure 9. Hub-aligned and azimuth-aligned axes. L is the (local) blade azimuth angle. 19

Figure 10. Azimuth-aligned and blade-aligned axes. F is the (local) blade precone angle. 20

Figure 11. Blade-aligned and airfoil-aligned coordinate systems. q is the airfoil twist + pitch angle. For
convenience the local wind vector and angle of attack is shown. 21

Figure 12. Airfoil-aligned and profile coordinate systems. 21

List of Tables

Table 1. Degree of spline across Reynolds number. 9

Table 2. Inertial-Wind conversion methods . 17

Table 3. Wind-Yaw conversion methods . 18

Table 4. Yaw-Hub conversion methods . 18

Table 5. Hub-Azimuth conversion methods . 19

Table 6. Azimuth-Blade conversion methods . 20

Table 7. Blade-Airfoil conversion methods . 21

Table 8. Airfoil-Profile conversion methods . 22

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

iv

1 Introduction

CCBlade predicts aerodynamic loading of wind turbine blades using blade element momentum (BEM) theory. CC
stands for continuity and convergence. CCBlade was developed primarily for use in gradient-based optimization
applications where C1 continuity and robust convergence are essential.

Typical BEM implementations use iterative solution methods to converge the induction factors (e.g., fixed-point
iteration or Newton’s method). Some more complex implementations use numerical optimization to minimize
the error in the induction factors. These methods can be fairly robust, but all have at least some regions where the
algorithm fails to converge. A new methodology was developed that is provably convergent in every instance (see
Theory). This robustness is particularly important for gradient-based optimization. To ensure C1 continuity, lift and
drag coefficients are computed using a bivariate cubic spline across angle of attack and Reynolds number.

CCBlade is primarily written in Python, but iteration-heavy sections are written in Fortran in order to improve
performance. The Fortran code is called from Python as an extension module using f2py. The module AirfoilPrep.py
is also included with the source. Although not directly used by CCBlade, the airfoil preprocessing capabilities are
often useful for this application. This is the stand-alone version of CCBlade. A version exists that is packaged with
NREL_WISDEM and allows for the computation of power-regulated performance (e.g., power curves, annual energy
production) for any arbitrary aerodynamics code.

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

1

http://www.scipy.org/F2py/
http:AirfoilPrep.py

2 Installation

Prerequisites

C compiler, Fortran compiler, NumPy, SciPy

Download either CCBlade.py-0.3.0.tar.gz or CCBlade.py-0.3.0.zip and uncompress/unpack it.

Install CCBlade with the following command.

$ python setup.py install

To check if installation was successful run the unit tests for the NREL 5-MW model

$ python test/test_ccblade.py

An “OK” signifies that all the tests passed.

To access an HTML version of this documentation that contains further details and links to the source code, open
docs/index.html.

Note: The CCBlade installation also installs the module AirfoilPrep.py. Although it is not necessary to use Airfoil­
Prep.py with CCBlade, its inclusion is convenient when working with AeroDyn input files or doing any aerodynamic
preprocessing of airfoil data.

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

2

http:AirfoilPrep.py
http:test/test_ccblade.py
http:setup.py
http:CCBlade.py-0.3.0.tar.gz

3 Tutorial

Two examples are shown below. The first is a complete setup for the NREL 5-MW model, and the second shows
how to model blade precurvature using CCBlade.

3.1 NREL 5-MW
One example of a CCBlade application is the simulation of the NREL 5-MW reference model’s aerodynamic perfor­
mance. First, define the geometry and atmospheric properties.

import numpy as np
from math import pi
import matplotlib.pyplot as plt

from ccblade_sa import CCAirfoil, CCBlade

geometry
Rhub = 1.5
Rtip = 63.0

r = np.array([2.8667, 5.6000, 8.3333, 11.7500, 15.8500, 19.9500, 24.0500,
28.1500, 32.2500, 36.3500, 40.4500, 44.5500, 48.6500, 52.7500,
56.1667, 58.9000, 61.6333])

chord = np.array([3.542, 3.854, 4.167, 4.557, 4.652, 4.458, 4.249, 4.007, 3.748,
3.502, 3.256, 3.010, 2.764, 2.518, 2.313, 2.086, 1.419])

theta = np.array([13.308, 13.308, 13.308, 13.308, 11.480, 10.162, 9.011, 7.795,
6.544, 5.361, 4.188, 3.125, 2.319, 1.526, 0.863, 0.370, 0.106])

B = 3 # number of blades

tilt = 5.0
precone = 2.5
yaw = 0.0

nSector = 8 # azimuthal discretization

atmosphere
rho = 1.225
mu = 1.81206e-5

power-law wind shear profile
shearExp = 0.2
hubHt = 90.0

Airfoil aerodynamic data is specified using the CCAirfoil class. Rather than use the default constructor, this ex­
ample uses the special constructor designed to read AeroDyn files directly CCAirfoil.initFromAerodynFile().

afinit = CCAirfoil.initFromAerodynFile # just for shorthand

load all airfoils
airfoil_types = [0]*8
airfoil_types[0] = afinit(’Cylinder1.dat’)
airfoil_types[1] = afinit(’Cylinder2.dat’)
airfoil_types[2] = afinit(’DU40_A17.dat’)

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

3

airfoil_types[3] = afinit(’DU35_A17.dat’)
airfoil_types[4] = afinit(’DU30_A17.dat’)
airfoil_types[5] = afinit(’DU25_A17.dat’)
airfoil_types[6] = afinit(’DU21_A17.dat’)
airfoil_types[7] = afinit(’NACA64_A17.dat’)

place at appropriate radial stations
af_idx = [0, 0, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7]

af = [0]*len(r)
for i in range(len(r)):

af[i] = airfoil_types[af_idx[i]]

Next, construct the CCBlade object.

create CCBlade object
rotor = CCBlade(r, chord, theta, af, Rhub, Rtip, B, rho, mu,

precone, tilt, yaw, shearExp, hubHt, nSector)

Evaluate the distributed loads at a chosen set of operating conditions.

set conditions
Uinf = 10.0
tsr = 7.55
pitch = 0.0
Omega = Uinf*tsr/Rtip 30.0/pi # convert to RPM *
azimuth = 0.0

evaluate distributed loads
r, Tp, Np, theta, precone = rotor.distributedAeroLoads(Uinf, Omega, pitch, azimuth)

Plot the flapwise and lead-lag aerodynamic loading

plot
rstar = (r - Rhub) / (Rtip - Rhub)
plt.plot(rstar, Tp/1e3, label=’lead-lag’)
plt.plot(rstar, Np/1e3, label=’flapwise’)
plt.xlabel(’blade fraction’)
plt.ylabel(’distributed aerodynamic loads (kN)’)
plt.legend(loc=’upper left’)
plt.grid()
plt.show()

as shown in Figure 1.

To get the power, thrust, and torque at the same conditions (in both absolute and coefficient form), use the evaluate
method. This is generally used for generating power curves so it expects array_like input. For this example a list
of size one is used.

P, T, Q = rotor.evaluate([Uinf], [Omega], [pitch])

CP, CT, CQ = rotor.evaluate([Uinf], [Omega], [pitch], coefficient=True)

print CP, CT, CQ

The result is

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

4

Figure 1. Flapwise and lead-lag aerodynamic loads along blade.

>>> CP = [0.48329808]
>>> CT = [0.7772276]
>>> CQ = [0.06401299]

Note that the outputs are numpy arrays (of length 1 for this example). To generate a nondimensional power curve (l
vs cp):

velocity has a small amount of Reynolds number dependence
tsr = np.linspace(2, 14, 50)
Omega = 10.0 * np.ones_like(tsr)
Uinf = Omega*pi/30.0 * Rtip/tsr
pitch = np.zeros_like(tsr)

CP, CT, CQ = rotor.evaluate(Uinf, Omega, pitch, coefficient=True)

plt.figure()
plt.plot(tsr, CP)
plt.xlabel(’λ’)
plt.ylabel(’c_p’)
plt.show()

Figure 2 shows the resulting plot.

CCBlade provides a few additional options in its constructor. The other options are shown in the following example
with their default values.

create CCBlade object
rotor = CCBlade(r, chord, theta, af, Rhub, Rtip, B, rho, mu,

precone, tilt, yaw, shearExp, hubHt, nSector
tiploss=True, hubloss=True, wakerotation=True, usecd=True, iterRe=1)

The parameters tiploss and hubloss toggle Prandtl tip and hub losses repsectively. The parameter wakerotation
toggles wake swirl (i.e., a0 = 0). The parameter usecd can be used to disable the inclusion of drag in the calculation
of the induction factors (it is always used in calculations of the distributed loads). However, doing so may cause
potential failure in the solution methodology (see (Ning, 2013)). In practice, it should work fine, but special care

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

5

Figure 2. Power coefficient as a function of tip-speed ratio.

for that particular case has not yet been examined, and the default implementation allows for the possibility of con­
vergence failure. All four of these parameters are True by default. The parameter iterRe is for advanced usage.
Referring to (Ning, 2013), this parameter controls the number of internal iterations on the Reynolds number. One
iteration is almost always sufficient, but for high accuracy in the Reynolds number iterRe could be set at 2. Any­
thing larger than that is unnecessary.

3.2 Precurve
CCBlade can also simulate blades with precurve. This is done by using the precone parameter and passing in
an array rather than just a float. The values in the array correspond to the angle of precurve along the blade using
the same sign conventions as for precone For example, a downwind machine (negative precurve) with significant
curvature could be simulated using:

precone = np.linspace(0, -40, len(r))

create CCBlade object
rotor = CCBlade(r, chord, theta, af, Rhub, Rtip, B, rho, mu,

precone, tilt, yaw, shearExp, hubHt, nSector)

The shape of the blade is seen in Figure 3. Note that the radius of the blade is not 63 m (it is now 58.16 m), but the
blade length is preserved at 63 m. The precurve angles are treated as (local) rotations in the same manner as the
precone angle is.

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

6

Figure 3. Profile of an example (highly) precurved blade.

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

7

4 Module Documentation

The main methodology is contained in CCBlade. Airfoil data is provided by any object that implements AirfoilInter­
face. The helper class CCAirfoil is provided as a useful default implementation for AirfoilInterface. If CCAirfoil is
not used, the user must provide an implementation that produces C1 continuous output (or else accept non-smooth
aerodynamic calculations from CCBlade). Some of the underlying implementation for CCBlade is written in Fortran
for computational efficiency.

An HTML version of this documentaion is available that is better formatted for reading the code documentation and
contains hyperlinks to the source code.

4.1 Airfoil Interface
The airfoil objects used in CCBlade need only implement the following evaluate() method. Although using CCAir­
foil for the implementation is recommended, any custom class can be used.

Class Summary:

interface ccblade_sa.AirfoilInterface
Interface for airfoil aerodynamic analysis.

evaluate(alpha, Re)
Get lift/drag coefficient at the specified angle of attack and Reynolds number

Parameters
alpha : float (rad)

angle of attack

Re : float

Reynolds number

Returns
cl : float

lift coefficient

cd : float

drag coefficient

Notes

Any implementation can be used, but to keep the smooth properties of CCBlade, the implementation
should be C1 continuous.

4.2 CCAirfoil Class
CCAirfoil is a helper class used to evaluate airfoil data with a continuously differentiable bivariate spline across
the angle of attack and Reynolds number. The degree of the spline polynomials across the Reynolds number is
summarized in the following table (the same applies to the angle of attack although generally, the number of points
for the angle of attack is much larger).

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

8

Table 1. Degree of spline across Reynolds number.

len(Re) degree of spline

1 constant

2 linear

3 quadratic

4+ cubic

Class Summary:

class ccblade_sa.CCAirfoil(alpha, Re, cl, cd)
Setup CCAirfoil from raw airfoil data on a grid.

Parameters
alpha : array_like (deg)

angles of attack where airfoil data are defined (should be defined from -180 to +180
degrees)

Re : array_like

Reynolds numbers where airfoil data are defined (can be empty or of length one if not
Reynolds number dependent)

cl : array_like

lift coefficient 2-D array with shape (alpha.size, Re.size) cl[i, j] is the lift coefficient at
alpha[i] and Re[j]

cd : array_like

drag coefficient 2-D array with shape (alpha.size, Re.size) cd[i, j] is the drag coeffi­
cient at alpha[i] and Re[j]

evaluate(alpha, Re)
Get lift/drag coefficient at the specified angle of attack and Reynolds number.

Parameters
alpha : float (rad)

angle of attack

Re : float

Reynolds number

Returns
cl : float

lift coefficient

cd : float

drag coefficient

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

9

Notes

This method uses a spline so that the output is continuously differentiable, and also uses a small amount
of smoothing to help remove spurious multiple solutions.

classmethod initFromAerodynFile(aerodynFile)
convenience method for initializing with AeroDyn formatted files

Parameters
aerodynFile : str

location of AeroDyn style airfoiil file

Returns
af : CCAirfoil

a constructed CCAirfoil object

4.3 CCBlade Class
This class provides aerodynamic analysis of wind turbine rotor blades using BEM theory. It can compute distributed
aerodynamic loads and integrated quantities such as power, thrust, and torque. An emphasis is placed on conver­
gence robustness and differentiable output so that it can be used with gradient-based optimization.

Class Summary:

class ccblade_sa.CCBlade(r, chord, theta, af, Rhub, Rtip, B=3, rho=1.225, mu=1.81206e-05, pre­
cone=0.0, tilt=0.0, yaw=0.0, shearExp=0.2, hubHt=80.0, nSector=8,
tiploss=True, hubloss=True, wakerotation=True, usecd=True, iterRe=1)

Constructor for aerodynamic rotor analysis

Parameters
r : array_like (m)

locations defining the blade along a reference axis that follows the blade path (values
should be increasing).

chord : array_like (m)

corresponding chord length at each section

theta : array_like (deg)

corresponding twist angle at each section— positive twist decreases angle of attack.

af : list(AirfoilInterface)

list of AirfoilInterface objects at each section

Rhub : float (m)

location of hub

Rtip : float (m)

location of tip

B : int, optional

number of blades

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

10

rho : float, optional (kg/m^3)

freestream fluid density

mu : float, optional (kg/m/s)

dynamic viscosity of fluid

precone : float or array_like, optional (deg)

hub precone angle can be used for precurve in addition to precone by using an array
input (blade length is preserved).

tilt : float, optional (deg)

nacelle tilt angle

yaw : float, optional (deg)

nacelle yaw angle

shearExp : float, optional

shear exponent for a power-law wind profile across hub

hubHt : float, optional

hub height used for power-law wind profile. U = Uref*(z/hubHt)**shearExp

nSector : int, optional

number of azimuthal sectors to descretize aerodynamic calculation. automatically set
to 1 if tilt, yaw, and shearExp are all 0.0. Otherwise set to a minimum of 4.

tiploss : boolean, optional

if True, include Prandtl tip loss model

hubloss : boolean, optional

if True, include Prandtl hub loss model

wakerotation : boolean, optional

if True, include effect of wake rotation (i.e., tangential induction factor is nonzero)

usecd : boolean, optional

If True, use drag coefficient in computing induction factors (always used in evaluating
distributed loads from the induction factors). Note that the default implementation
may fail at certain points if drag is not included (see Section 4.2 in (Ning, 2013)). This
can be worked around, but has not been implemented.

iterRe : int, optional

The number of iterations to use to converge Reynolds number. Generally iterRe=1 is
sufficient, but for high accuracy in Reynolds number, iterRe=2 iterations can be used.
More than that should not be necessary.

distributedAeroLoads(Uinf, Omega, pitch, azimuth)
Compute distributed aerodynamic loads along blade.

Parameters
Uinf : float or array_like (m/s)

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

11

hub height wind speed (float). If desired, an array can be input which specifies the
velocity at each radial location along the blade (useful for analyzing loads behind
tower shadow for example). In either case shear corrections will be applied.

Omega : float (RPM)

rotor rotation speed

pitch : float (deg)

blade pitch in same direction as twist (positive decreases angle of attack)

azimuth : float (deg)

the azimuth angle where aerodynamic loads should be computed at

Returns
r : ndarray (m)

radial stations along blade where force is specified (all the way from hub to tip)

Tp : ndarray (N/m)

force per unit length tangential to the section in the direction of rotation

Np : ndarray (N/m)

force per unit length normal to the section on downwind side

theta : ndarray (deg)

corresponding geometric twist angle (not including pitch)— positive twists nose into
the wind

precone : ndarray (deg)

corresponding precone/precurve angles (these later two outputs are provided to facili­
tate coordinate transformations)

evaluate(Uinf, Omega, pitch, coefficient=False)
Run the aerodynamic analysis at the specified conditions.

Parameters
Uinf : array_like (m/s)

hub height wind speed

Omega : array_like (RPM)

rotor rotation speed

pitch : array_like (deg)

blade pitch setting

coefficient : bool, optional

if True, results are returned in nondimensional form

Returns
P or CP : ndarray (W)

power or power coefficient

T or CT : ndarray (N)

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

12

thrust or thrust coefficient (magnitude)

Q or CQ : ndarray (N*m)

torque or torque coefficient (magnitude)

Notes

CP = P / (q * Uinf * A)

CT = T / (q * A)

CQ = Q / (q * A * R)

note: that the rotor radius R, may not actually be Rtip in the case
of precone/precurve

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

13

5 Theory

Note: Only an overview of the theory is included here; details can be found in Ning (2013).

The rotor aerodynamic analysis is based on blade element momentum (BEM) theory. Using BEM theory in a
gradient-based rotor optimization problem can be challenging because of occasional convergence difficulties of
the BEM equations. The standard approach to solving the BEM equations is to arrange the equations as functions of
the axial and tangential induction factors and solve the fixed-point problem:

(a,a0) = f f p(a,a0)

using either fixed-point iteration, Newton’s method, or a related fixed-point algorithm. An alternative approach is to
use nonlinear optimization to minimize the sum of the squares of the residuals of the induction factors (or normal
and tangential loads). Although these approaches are generally successful, they suffer from instabilities and failure
to converge in some regions of the design space. Thus, they require increased complexity and/or heuristics (but may
still not converge).

The new BEM methodology transforms the two-variable, fixed-point problem into an equivalent one-dimensional
root-finding problem. This is enormously beneficial as methods exist for one-dimensional root-finding problems that
are guaranteed to converge as long as an appropriate bracket can be found. The key insight to this reduction is to use
the local inflow angle f and the magnitude of the inflow velocity W as the two unknowns in specifying the inflow
conditions, rather than the traditional axial and tangential induction factors (see Figure 4).

plane of rotation

�r(1 + a �)

W

Uo(1 - a)

Figure 4. Parameters specifying inflow conditions of a rotating blade section.

This approach allows the BEM equations to be reduced to a one-dimensional residual function as a function of f :

sin f cosf
f (f) = = 0

1 a(f) lr(1 + a0(f))

Figure 5 shows the typical behavior of f (f) over the range f 2 (0,p/2]. Almost all solutions for wind turbines fall
within this range (for the provable convergence properties to be true, solutions outside of this range must also be
considered). The referenced paper (Ning, 2013) demonstrates through mathematical proof that the methodology will
always find a bracket to a zero of f (f) without any singularities in the interior. This proof, along with existing proofs
for root-finding methods like Brent’s method (Brent, 1971), implies that a solution is guaranteed. Furthermore, not
only is the solution guaranteed, but it can be found efficiently and in a continuous manner. This behavior allows the
use of gradient-based algorithms to solve rotor optimization problems much more effectively than with traditional
BEM solution approaches.

Any corrections to the BEM method can be used with this methodology (e.g., finite number of blades and skewed
wake) as long as the axial induction factor can be expressed as a function of f (either explicitly or through a nu­
merical solution). CCBlade chooses to include both hub and tip losses using Prandtl’s method (Glauert, 1935) and a

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

14

Figure 5. Residual function of BEM equations using new methodology. Solution point is where f (f) = 0.

high-induction factor correction by Buhl (2005). Drag is included in the computation of the induction factors. How-
ever, all of these options can be toggled on or off. For a given wind speed, a spline is fit to the normal and tangential
forces along the radial discretization of the blade before integrating for thrust and torque. This allows for smoother
variation in thrust and torque for improved gradient estimation.

15

inertial, wind-aligned.
inertial can be chosen arbitrarily (as long as consistent), but for convenience should be
chosen in primary wind direction. positive beta is about shared +z axis. wave similar.

though no wave aligned axis

Coordinate System

This module defines coordinate systems for horizontal axis wind turbines and provides convenience methods for
transforming vectors between the various coordinate systems. The supplied transformation methods are for rotation
only and do not account for any offsets that may be necessary depending on the vector quantity (e.g., transfer of
forces between coordinate system does not depend on the location where the force is defined, but position, velocity,
moments, etc. do). In other words the vectors are treated as directions only and are independent of the defined
position. How the vector should transform based on position is not generalizable and depends on the quantity of
interest. All coordinate systems obey the right-hand rule, x ⇥ y = z, and all angles must be input in degrees. The
turbine can be either an upwind or downwind configuration, but in either case it is assumed that that the blades rotate
in the clockwise direction when looking downwind (more specifically the rotor is assumed to rotate about the +xh
axis in Figure 8). The vectors allow for elementary operations (+, -, *, /, +=, -=, *=, /=) between other vectors of the
same type, or with scalars (e.g., force_total = force1 + force2).

class csystem.DirectionVector(x, y, z)
3-Dimensional vector that depends on direction only (not position).

Parameters
x : float or ndarray

x-direction of vector(s)

y : float or ndarray

y-direction of vector(s)

z : float or ndarray

z-direction of vector(s)

Inertial and Wind-aligned

ŷw ŷi

x̂w

�wind
x̂iVwind

Figure 6. Inertial and Wind-aligned axes.

Figure 6 defines the transformation between the inertial and wind-aligned coordinate systems. The two coordinate
systems share a common origin, and a common z-direction. The wind angle b is positive for rotation about the +z
axis. The direction of wave loads are defined similarly to the wind loads, but there is no wave-aligned coordinate
system.

Inertial coordinate system

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

16

wind-aligned, yaw-aligned
shared z axis. origin at center of tower base. psi positive about +z axis. d for

downwind turbines psi should be ~180 deg. Psi is yaw angle

origin: center of the tower base (ground-level or sea-bed level)

x-axis: any direction as long as used consistently, but convenient to be in primary wind direction

y-axis: follows from the right-hand rule

z-axis: up the tower (opposite to gravity vector)

Wind-aligned coordinate system

origin: center of the tower base (ground-level or sea-bed level)

x-axis: in direction of the wind

y-axis: follows from the right-hand rule

z-axis: up the tower (opposite to gravity vector), coincident with inertial z-axis

Table 2. Inertial-Wind conversion methods

inertialToWind(beta) Rotates from inertial to wind-aligned

windToInertial(beta) Rotates from wind-aligned to inertial

Wind-aligned and Yaw-aligned

ŷy ŷw Oy

Figure 7. Wind-aligned and yaw-aligned axes. Y is the rotor yaw angle.

Figure 7 defines the transformation between the wind-aligned and yaw-aligned coordinate systems. The two coordi­
nate systems are offset by the height ht along the common z-axis. The yaw angle Y is positive when rotating about
the +z axis, and should be between -180 and +180 degrees.

Yaw-aligned coordinate system

origin: Tower top (center of the yaw bearing system)

x-axis: along projection of rotor shaft in horizontal plane (aligned with rotor shaft for zero tilt angle).
The positive direction is defined such that the x-axis points downwind at its design operating orientation
(i.e., at zero yaw xy is the same direction as xw). Thus, for a downwind machine the xy axis would still

x̂y

x̂w

�Vwind

Ow

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

17

yaw-aligned, rotor-aligned
zy is same as zw and zi. positive rotation about +y. origin top of tower. Theta is tilt

angle

�

be downind at zero yaw, but in terms of nacelle orientation it would point from the back of the nacelle
toward the hub.

y-axis: follows from the right-hand rule

z-axis: points up the tower (opposite to gravity vector), coincident with wind-aligned z-axis

Table 3. Wind-Yaw conversion methods

windToYaw(Psi) Rotates from wind-aligned to yaw-aligned

yawToWind(Psi) Rotates from yaw-aligned to wind-aligned

Yaw-aligned and Hub-aligned

ẑh

ẑy

x̂y

x̂h

Figure 8. Yaw-aligned and hub-aligned axes. Q is the rotor tilt angle.

Figure 8 defines the transformation between the yaw-aligned and hub-aligned coordinate systems. The two coordi­
nate systems share a common y axis. The tilt angle Q is positive when rotating about the +y axis, which tilts the rotor
up for an upwind machine (tilts the rotor down for a downwind machine).

Hub-aligned coordinate system

origin: center of the rotor.

x-axis: along the rotor shaft toward the nominal downwind direction (aligned with xy for zero tilt)

y-axis: coincident with yaw-aligned y-axis

z-axis: right-hand rule (vertical if zero tilt)

Table 4. Yaw-Hub conversion methods

yawToHub(Theta) Rotates from yaw-aligned to hub-aligned

hubToYaw(Theta) Rotates from hub-aligned to yaw-aligned

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

18

rotor-aligned to azimuth-aligned
Lambda is azimuth angle. positive rotation about x_r. zero azimuth is vertical. azimuth

coordinate system is in plane of rotor

Hub-aligned and Azimuth-aligned

ˆ

� x̂z

ŷz

ẑz
zh

ŷh

Figure 9. Hub-aligned and azimuth-aligned axes. L is the (local) blade azimuth angle.

Figure 9 defines the transformation between the hub-aligned and azimuth-aligned coordinate systems. The two
coordinate systems share a common x-axis. The azimuth angle L is positive when rotating about the +x axis. The
blade can employ a variable azimuth angle along the blade axis, to allow for swept blades.

Azimuth-aligned coordinate system

A rotating coordinate system—about the xh axis. The coordinate-system is locally-defined for the case
of a variable-swept blade.

origin: blade pitch axis, local to the blade section

x-axis: aligned with the hub-aligned x-axis

y-axis: right-hand rule

z-axis: along projection of blade from root to tip in the yh - zh plane (aligned with blade only for zero
precone)

Table 5. Hub-Azimuth conversion methods

hubToAzimuth(Lambda) Rotates from hub-aligned to azimuth-aligned

azimuthToHub(Lambda) Rotates from azimuth-aligned to hub-aligned

Azimuth-aligned and Blade-aligned
Figure 10 defines the transformation between the azimuth-aligned and blade-aligned coordinate systems. The yb and
yz axes are in the same direction. The two coordinate systems rotate together such that the xb - zb plane is always
coplanar with the xz - zz plane. The precone angle F is positive when rotating about the -yz axis, and causes the
blades to tilt away from the nacelle/tower for a downwind machine (tilts toward tower for upwind machine). The
blade can employ a variable precone angle along the blade axis. The blade-aligned coordinate system is considered
local to a section of the blade. Blade-aligned coordinate system

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

19

azimuth-aligned to blade-aligned
precone positive about -tz. only RH coord if clockwise rotation. phi is precone angle

�

x̂z

ẑz

x̂b
ŷb

ẑb

Figure 10. Azimuth-aligned and blade-aligned axes. F is the (local) blade precone angle.

A rotating coordinate system that rotates with the azimuth-aligned coordinate system. The coordinate-
system is locally-defined along the blade radius. The direction of blade rotation is in the negative y-axis.
A force in the x-axis would be a flapwise shear, and a force in the y-axis would be a lead-lag shear.

origin: blade pitch axis, local to the blade section

x-axis: follows from the right-hand rule (in nominal downwind direction)

y-axis: opposite to rotation direction, positive from section leading edge to trailing edge (for no twist)

z-axis: along the blade pitch axis in increasing radius

Table 6. Azimuth-Blade conversion methods

azimuthToBlade(Phi) Rotates from azimuth-aligned to blade-aligned

bladeToAzimuth(Phi) Rotates from blade-aligned to azimuth-aligned

Blade-aligned and Airfoil-aligned
Figure 11 defines the transformation between the blade-aligned and airfoil-aligned coordinate systems. The zb and za
axes are in the same direction. The twist angle q is positive when rotating about the -za axis, and causes the angle of
attack to decrease.

Airfoil-aligned coordinate system

A force in the x-axis would be a flatwise shear, and a force in the y-axis would be an edgewise shear.

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

20

blade-aligned to airfoil-aligned
twist is positive when it decreases angle of attack. about rhat if rotating clockwise. theta

is twist + pitch. xl - flatwise, yl - edgewise, zl - axial

profile

x̂a x̂b

�
W

�

ŷa

ŷb
(Uŷ + �r)(1 + a �)

Ux̂(1 - a)

Figure 11. Blade-aligned and airfoil-aligned coordinate systems. q is the airfoil twist
+ pitch angle. For convenience the local wind vector and angle of attack is shown.

origin: blade pitch axis, local to the blade section

x-axis: follows from the right-hand rule

y-axis: along chord line in direction of trailing edge

z-axis: along the blade pitch axis in increasing radius, same as zb (into the page in above figure)

Table 7. Blade-Airfoil conversion methods

bladeToAirfoil(theta)

airfoilToBlade(theta)

Rotates from blade-aligned to airfoil-aligned

Rotates from airfoil-aligned to blade-aligned

Airfoil-aligned and Profile

ŷp x̂a

x̂p, ŷa

Figure 12. Airfoil-aligned and profile coordinate systems.

Figure 12 defines the transformation between the airfoil-aligned and profile coordinate systems. The profile coordi­
nate system is generally used only to define airfoil profile data.

Profile coordinate system

origin: airfoil noise

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

21

x-axis: positive from nose to trailing edge along chord line

y-axis: orthogonal to x-axis, positive from lower to upper surface

z-axis: n/a (profile is a 2-dimensional coordinate system)

Table 8. Airfoil-Profile conversion methods

airfoilToProfile() Rotates from airfoil-aligned to profile

profileToAirfoil() Rotates from profile to airfoil-aligned

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

22

Bibliography

Brent, R.P. (1971). “An Algorithm with Guaranteed Convergence for Finding a Zero of a Function.” The Computer
Journal 14(4); pp. 422–425.

Buhl, M.L. (August 2005). A New Empirical Relationship between Thrust Coefficient and Induction Factor for the
Turbulent Windmill State. NREL/TP-500-36834, National Renewable Energy Laboratory, Golden, CO.

Glauert, H. (1935). Airplane Propellers, Vol. 4. Springer Verlag.

Ning, S.A. (2013). “A Simple Solution Method for the Blade Element Momentum Equations with Guaranteed
Convergence.” Wind Energy (in press).
URL http://onlinelibrary.wiley.com/doi/10.1002/we.1636/abstract

This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

23

http://onlinelibrary.wiley.com/doi/10.1002/we.1636/abstract

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Installation
	3 Tutorial
	3.1 NREL 5-MW
	3.2 Precurve

	4 Module Documentation
	4.1 Airfoil Interface
	4.2 CCAirfoil Class
	4.3 CCBlade Class

	5 Theory
	Coordinate System
	Inertial and Wind-aligned
	Wind-aligned and Yaw-aligned
	Yaw-aligned and Hub-aligned
	Hub-aligned and Azimuth-aligned
	Azimuth-aligned and Blade-aligned
	Blade-aligned and Airfoil-aligned
	Airfoil-aligned and Profile

	Bibliography

