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SAE INTERNATIONAL 

• Several factors influence fuel economy, including: 
o Drive cycle (speed, acceleration, idle time) 
o Road grade 
o Vehicle thermal state (hot start vs. cold start) 
o Ambient conditions 
o Cabin HVAC loads 

• This effort seeks to improve understanding of real-world fuel economy 
by combining large datasets of operating conditions with high fidelity 
vehicle models supported by comprehensive test data to: 
o Improve public understanding of fuel economy variation 
o Inform industry testing procedures 
o Identify avenues for OEMs to improve real-world MPG (and earn credit!) 

Your MPG Will Vary… 
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HVAC = heating, ventilation, and air conditioning 
OEM = original equipment manufacturer 
MPG = miles per gallon 



SAE INTERNATIONAL 

• Present dynamometer data from 2011 Ford Fusion tested at Argonne 
National Laboratory’s (ANL’s) Advanced Powertrain Research Facility 
(APRF) 
 

• Propose system of equations to describe internal combustion engine 
(ICE) efficiency relative to thermal state and document goodness of fit 
 

• Describe interface between ICE models and NREL’s High Performance 
Computing Environment for drive cycle simulation 
 

• Discuss simulated fuel economy sensitivity to drive cycle, thermal state, 
and ambient conditions 
 

• Identify potential for insulated engine oil and coolant to reduce warm-up 
times, prolong cool-down times, and improve real-world fuel economy 

Outline 
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SAE INTERNATIONAL 

ANL APRF & Vehicle Instrumentation 
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• 2011 Ford Fusion Thermal Evaluation Vehicle  
o Four-cylinder, six-speed transmission representative of a modern mid-size vehicle    
o More than 27 thermal channels of data (engine oil, transmission oil, engine coolant, 

cabin temperatures) 
 

 
 
 
 
 Catalyst Temperatures Exhaust Runner Temp  

Coolant Temperatures  

Post-cat. Exhaust Temp  

Cabin Temperatures Coolant Flows  

Photos Credit: Forrest Jehlik 



SAE INTERNATIONAL 

Fusion Test Matrix 
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Variable Values 

Drive Cycle UDDSx2, US06x2 

Start Condition Hot Start, Cold Start 

Test Cell Temperature 0°F, 20°F, 72°F, 95°F 

16 tests 
in total 

Test matrix designed to cover 
representative range of drive-
cycle conditions, ICE thermal 
states, and ambient 
temperatures 
 
Expect wide range of test 
conditions to provide best and 
worst case ICE viscosity and 
enrichment responses 
 
*Enrichment used here to denote incremental fuel 
rate increase to accelerate catalyst heating in the 
exhaust line on startup 

Credit: Forrest Jehlik 



SAE INTERNATIONAL 

• Thermal response of engine coolant and engine oil is presented 
for cold-start Urban Dynamometer Driving Schedule (UDDS) 
cycles over a sweep of ambient conditions 

• Oil response lags coolant with both fluids reaching steady-state 
temperatures that are dependent on ambient conditions 

Fusion Test Data 
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SAE INTERNATIONAL 

• Powertrain thermal state significantly impacts fuel consumption 
with both hot- and cold-start cycles experiencing penalties 
relative to hot ambient conditions 

• The real-world impact of cold starts and cold operating 
conditions is highly drive-cycle and climate dependent 

Fusion Test Data 
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6.6% 21.7% 



SAE INTERNATIONAL 
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SAE INTERNATIONAL 

ICE Thermal Model: System of Equations 

10 

Sub-Model Governing Equation Supporting 
Equations 

Engine Efficiency 

Catalyst  
Temperature 

Oil Temperature 

Coolant 
Temperature 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓1 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑓𝑓2(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑓𝑓2(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) = max (0, 𝑎𝑎1 ∗ (𝑒𝑒𝑎𝑎2∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−𝑎𝑎3 −1)) 

𝑓𝑓1 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎0 + 
𝑎𝑎1,1𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜3 + 𝑎𝑎1,2𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝑎𝑎1,3𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 
𝑎𝑎2,1𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

3 + 𝑎𝑎2,2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
2 + 𝑎𝑎2,3𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 

𝑎𝑎3,1𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜3𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
3 + 𝑎𝑎3,2𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

2 + 𝑎𝑎3,3𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇0 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 

𝑇̇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =
ℎ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐
 

ℎ = 𝑎𝑎ℎ1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎ℎ2 

𝛼𝛼 = 𝑎𝑎𝛼𝛼1𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑎𝑎𝛼𝛼2 

𝑇̇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 =
ℎ1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + ℎ2 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜
 

ℎ1 = 𝑎𝑎1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎2 

𝑇̇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
ℎ1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ℎ2 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

𝑖𝑖𝑖𝑖 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠: 
ℎ1 = 𝑎𝑎1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎2 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 
ℎ1 = 𝑎𝑎3𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎4 

System of equations 
developed to capture 

primary system dynamics 



SAE INTERNATIONAL 

ICE Thermal Model: System of Equations 
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Sub-Model Governing Equation Supporting 
Equations 

Engine Efficiency 

Catalyst 
Temperature 

Oil Temperature 

Coolant 
Temperature 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓1 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑓𝑓2(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑓𝑓2(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) = max (0, 𝑎𝑎1 ∗ (𝑒𝑒𝑎𝑎2∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−𝑎𝑎3 −1)) 

𝑓𝑓1 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎0 + 
𝑎𝑎1,1𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜3 + 𝑎𝑎1,2𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝑎𝑎1,3𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 
𝑎𝑎2,1𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

3 + 𝑎𝑎2,2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
2 + 𝑎𝑎2,3𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 

𝑎𝑎3,1𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜3𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
3 + 𝑎𝑎3,2𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

2 + 𝑎𝑎3,3𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇0 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 

𝑇̇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =
ℎ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐
 

ℎ = 𝑎𝑎ℎ1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎ℎ2 

𝛼𝛼 = 𝑎𝑎𝛼𝛼1𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑎𝑎𝛼𝛼2 

𝑇̇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 =
ℎ1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + ℎ2 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜
 

ℎ1 = 𝑎𝑎1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎2 

𝑇̇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
ℎ1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ℎ2 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

𝑖𝑖𝑖𝑖 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠: 
ℎ1 = 𝑎𝑎1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎2 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 
ℎ1 = 𝑎𝑎3𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎4 

Coefficients fit using 
unconstrained non-linear 

optimization method 
(Nelder-Mead) in MATLAB 
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Engine Efficiency Model 

12 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓1 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑓𝑓2(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑓𝑓2(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) = max (0, 𝑎𝑎1 ∗ (𝑒𝑒𝑎𝑎2∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−𝑎𝑎3 −1)) 

𝑓𝑓1 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎0 + 
𝑎𝑎1,1𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜3 + 𝑎𝑎1,2𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝑎𝑎1,3𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 
𝑎𝑎2,1𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

3 + 𝑎𝑎2,2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
2 + 𝑎𝑎2,3𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 

𝑎𝑎3,1𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜3𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
3 + 𝑎𝑎3,2𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜2𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

2 + 𝑎𝑎3,3𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 

𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇0 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 

Cumulative Fuel Error 
UDDS US06 

Ambient Temp Cold Start Hot Start Cold Start Hot Start 
0F -3.9% 1.5% -5.0% 2.5% 
20F 0.5% 1.9% 2.5% 5.2% 
72F -1.7% -1.3% -0.5% -0.9% 
95F -4.1% -2.0% -0.5% -2.8% 

Goodness of fit statistics 
(predictive accuracy of model to be evaluated relative to 

5 cycle test data by end of FY14) 

Measured vs 
modeled fueling rate 

Model Structure 
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Catalyst Thermal Model 
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Warm-up phase 
(engine on) 

Cool-down phase 
(engine off) 

Instantaneous RMS Error (deg C) 
UDDS US06 

Ambient Temp Cold Start Hot Start Cold Start Hot Start 
0F 69.5 26.9 70.3 24.4 
20F 54.5 24.8 53.5 23.6 
72F 37.5 19.8 50.1 24.6 
95F 34.6 20.0 38.4 24.6 

𝑇̇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =
ℎ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐
 

ℎ = 𝑎𝑎ℎ1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎ℎ2 𝛼𝛼 = 𝑎𝑎𝛼𝛼1𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑎𝑎𝛼𝛼2 

Goodness of fit statistics 
(predictive accuracy of model to be evaluated relative to 

5 cycle test data by end of FY14) 
Model Structure 
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Oil Thermal Model 

14 

Warm-up phase 
(engine on) 

Cool-down phase 
(engine off) 

𝑇̇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 =
ℎ1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + ℎ2 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜
 

ℎ1 = 𝑎𝑎1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎2 

Instantaneous RMS Error (deg C) 
UDDS US06 

Ambient Temp Cold Start Hot Start Cold Start Hot Start 
0F 5.2 7.2 5.4 2.0 
20F 4.9 4.1 5.5 1.9 
72F 5.7 6.1 8.5 2.5 
95F 6.3 8.1 6.7 4.6 

Goodness of fit statistics 
(predictive accuracy of model to be evaluated relative to 

5 cycle test data by end of FY14) 
Model Structure 
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Coolant Thermal Model 
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Warm-up phase 
(engine on) Cool-down phase 

(engine off) 

Instantaneous RMS Error (deg C) 
UDDS US06 

Ambient Temp Cold Start Hot Start Cold Start Hot Start 
0F 7.0 9.2 7.4 3.9 
20F 5.1 5.4 6.9 3.3 
72F 6.8 4.3 12.5 5.9 
95F 6.5 6.0 10.9 9.1 

𝑇̇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
ℎ1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ℎ2 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝛼𝛼(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖)

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

𝑖𝑖𝑖𝑖 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠: 
ℎ1 = 𝑎𝑎1𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎2 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 
ℎ1 = 𝑎𝑎3𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑎𝑎4 

Goodness of fit statistics 
(predictive accuracy of model to be evaluated relative to 

5 cycle test data by end of FY14) 
Model Structure 
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Model Error for All 16 Test Cycles 
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Assume perpetually 
“hot” component maps 

Model oil/coolant/cat 
nodes as lumped 

parameters 
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Model Error for All 16 Test Cycles 
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Isothermal model does not capture sensitivity to thermal state 
at key-on or impact of ambient temperature 
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Model Error for All 16 Test Cycles 
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Model error is significantly reduced (especially under cold start 
conditions) by incorporating simple lumped capacitance thermal models 



SAE INTERNATIONAL 

• Present dynamometer data from 2011 Ford Fusion tested at Argonne 
National Laboratory’s (ANL’s) Advanced Powertrain Research Facility 
(APRF) 
 

• Propose system of equations to describe internal combustion engine 
(ICE) efficiency relative to thermal state and document goodness of fit 
 

• Describe interface between ICE models and NREL’s High Performance 
Computing Environment for drive cycle simulation 
 

• Discuss simulated fuel economy sensitivity to drive cycle, thermal state, 
and ambient conditions 
 

• Identify potential for insulated engine oil and coolant to reduce warm-up 
times, prolong cool-down times, and improve real-world fuel economy 

Outline 
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Modeling Environment 
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. 

Exercise calibrated models over a large sweep of usage conditions to 
evaluate the interplay between travel time, driving behavior, ambient 

temperature, road grade, and ICE thermal response 

Data Element Source Notes 

Drive Cycles/  
Trip Distributions 

NREL Transportation 
Secure Data Center 

The TSDC houses hundreds of thousands of real-world 
drive cycles from vehicles across the country. 

Climate Data NREL National Solar 
Radiation Database  

Home to TMYs from hundreds of U.S. locations, each 
containing hourly climate data. 

Elevation/  
Road Grade 

USGS National 
Elevation Dataset 

Raw USGS elevations are filtered to remove anomalous 
data and produce smooth road grade curves. 

FASTSim = Future Automotive Systems 
Technology Simulator 
TMY = Typical Meteorological Year 
TSDC = Transportation Secure Data Center 
USGS = United States Geological Survey 

ICE Thermal Model 
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Apply Model to Drive Cycle and Climate Data 
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One week of simulation One week of drive-cycle simulation 

Overlay travel history with 
meteorological data 

Model interplay of drive/park sequence 
with vehicle thermal state 
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Apply Model to Drive Cycle and Climate Data 
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Coolant temp leads oil temp in 
warm-up and cool-down phases 

One week of simulation Three hours of drive-cycle simulation 
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Apply Model to Drive Cycle and Climate Data 
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One week of simulation Twenty minutes of drive-cycle simulation 

Coolant and oil temps are linked; 
both are functions of vehicle speed 
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• Present dynamometer data from 2011 Ford Fusion tested at Argonne 
National Laboratory’s (ANL’s) Advanced Powertrain Research Facility 
(APRF) 
 

• Propose system of equations to describe internal combustion engine 
(ICE) efficiency relative to thermal state and document goodness of fit 
 

• Describe interface between ICE models and NREL’s High Performance 
Computing Environment for drive cycle simulation 
 

• Discuss simulated fuel economy sensitivity to drive cycle, thermal state, 
and ambient conditions 
 

• Identify potential for insulated engine oil and coolant to reduce warm-up 
times, prolong cool-down times, and improve real-world fuel economy 

Outline 
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Simulation Results 
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Simulated fuel economy by climate 
data and week of year 

Simulated fuel economy by drive- 
cycle data and week of year 

Box and whiskers segment results by quartile 
Markers denote statistical outliers 

39M miles of simulated 
driving in each plot 
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• Aggregate fuel consumption rates reported for hundreds of week-long vehicle 
histories simulated over matrix of representative drive cycle sets and climates 

• Engine thermal effects accounted for 4.8% of total simulated fuel consumption 
• Enrichment effects accounted for 2.7% of total simulated fuel consumption 
• Results slightly under-predict fuel consumption relative to simulated and adjusted 

EPA 5-cycle test procedure (additional contributions to be added as future work) 

Simulation Results 
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• Present dynamometer data from 2011 Ford Fusion tested at Argonne 
National Laboratory’s (ANL’s) Advanced Powertrain Research Facility 
(APRF) 
 

• Propose system of equations to describe internal combustion engine 
(ICE) efficiency relative to thermal state and document goodness of fit 
 

• Describe interface between ICE models and NREL’s High Performance 
Computing Environment for drive cycle simulation 
 

• Discuss simulated fuel economy sensitivity to drive cycle, thermal state, 
and ambient conditions 
 

• Identify potential for insulated engine oil and coolant to reduce warm-up 
times, prolong cool-down times, and improve real-world fuel economy 

Outline 
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Insulate Engine Oil + Coolant 
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One week of simulation Thirty hours of drive-cycle simulation 

Adjust thermal model to 
approximately double time 

constant on engine oil cooling 
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• Insulated model compared to baseline under simulated EPA 5-cycle test 
procedure and large sweep of real-world drive cycles and climates 
 

• Simulated 5-cycle test procedure netted 0.7% fuel economy 
improvement 
o Byproduct of reduced warmup time during cold start tests (Federal Test 

Procedure (FTP) and cold FTP) 
 

• Simulated real-world cycles resulted in 2.0% average fuel economy 
improvement 
o 5th percentile vehicle history: 1.3% improvement 
o 95th percentile vehicle history: 6.6% improvement 
o In addition to reduced warm-up times, real-world drive cycles benefit from 

higher temperatures at start of drive cycles (due to prolonged cool-down 
times) 

Insulate Engine Oil + Coolant 
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• Preliminary results suggest that the real-world benefit of certain fuel 
efficiency technologies may differ from that reflected by 5-cycle test 
procedure 
o Merging of large drive cycle and climate datasets with vehicle models 

trained on laboratory test data provides an improved understanding of 
real-world fuel economy 
 

• Future work will consider additional… 
o Real-world effects (drivetrain efficiency at cold temperatures, sensitivity of 

road load to climate, and cabin HVAC energy requirements) 
o Vehicle models (hybrid electric vehicle, sport utility vehicle, full-size truck) 
o Fuel economy improvement strategies (further component insulation, 

exhaust heat recovery) 

Conclusions & Future Work 
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Thanks! Questions? 
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