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Abstract—As the level of wind penetration increases, wind 
turbine technology must move from merely generating power 
from wind to taking a role in supporting the bulk power system. 
Wind turbines should have the capability to provide inertial 
response and primary frequency (governor) response. Wind 
turbine generators with this capability can support the frequency 
stability of the grid. To provide governor response, wind turbines 
should be able to generate less power than the available wind 
power and hold the rest in reserves, ready to be accessed as 
needed. In this paper, we explore several ways to control wind 
turbine output to enable reserve-holding capability. The focus of 
this paper is on doubly-fed induction generator (also known as 
Type 3) and full-converter (also known as Type 4) wind turbines. 
 

Index Terms—wind turbine generator, variable speed, 
induction generator, governor response, inertial response, 
renewable energy 

I. INTRODUCTION 
ind power generation may reach 300 GW by 2030, 
achieving a level of penetration of 20% total energy 

production [1]. Recent advances in wind turbine technology 
allow efficient and rapid deployment of wind power plants 
(WPPs). As more WPPs are integrated into the bulk utility 
power system, the adverse effects of wind power uncertainty 
and variability on the power system are expected to become 
more noticeable. The issue of frequent and significant 
frequency excursions from nominal value is of particular 
concern, especially in a synchronous power system with high 
wind power penetration [2]. The material reported in [3–9] 
laid the groundwork for understanding inertia and frequency 
issues related to wind. WPPs with doubly-fed induction 
generator (Type 3) wind turbines as well as full-converter 
(Type 4) wind turbines typically do not contribute to system 
frequency support because each wind turbine generator 
(WTG) is indirectly connected to the power grid. The work 
reported here seeks to develop a control method to improve 
individual wind turbine response to frequency events. 
Individual wind turbine reserve-holding capability scales up to 
provide significant reserve-holding capability at the WPP 
level. Control modifications needed to operate Type 3 and 
Type 4 WTGs with reserves are presented in this paper. 
Detailed simulations in the time domain have been conducted 
to demonstrate the efficacy of the proposed control 
modifications. The unique feature of this proposed controller 

is that the wind turbine is always operated at the optimal 
(rated) value of the tip speed ratio (TSR). 

Different wind turbine types use different energy conversion 
systems (generator, power converter, and control algorithms). 
The strategies used to control the prime mover are generally 
similar. Common elements include mechanical brakes and 
blade pitch control to avoid a runaway condition and reduce 
stresses on the mechanical components of the wind turbine. 
Type 3 and Type 4 turbines have power converters as well to 
allow additional control and conditioning of the output real 
and reactive power. The topologies of the Type 3 and Type 4 
turbines are shown in Figure 1. 

This paper is arranged as follows. Section II presents basic 
characteristics of wind turbines as well as the proposed reserve 
power controls. Section III describes dynamic simulations to 
investigate different scenarios applied to a WPP with the 
implementation of reserve power controls. 

 
 

a) Type 3 WTG 

 
b) Type 4 WTG  

Fig. 1.  Physical diagram of variable-speed WTGs 

II. BASIC WIND TURBINE OPERATION 
A. Type 3 and Type 4 WTGs 

Type 3 and Type 4 wind turbines are converter-based 
turbines that offer maximum power point tracking as well as 
independent real and reactive power control. The generator-
power converter is controlled to operate at maximum 
aerodynamic efficiency (Cpmax). The complete paper will 
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contain a more detailed background of variable-speed 
operation for both Type 3 and Type 4 turbines. Modern wind 
turbines are usually equipped with pitch controllers to limit the 
aerodynamic power driving the generator. With the pitch 
controller, the blade pitch angle is activated in the high-wind-
speed region to limit the stresses imposed on the wind turbine 
mechanical components, limit the output of generation, and 
avoid a runaway condition when the WTG loses connection to 
the grid. The controller design described here uses both power 
converter control as well as pitch control to achieve the 
holding and releasing of reserve power. 

B. Reserve Power for Variable-Speed WTGs 

In variable-speed WTGs, the power versus rotational speed 
characteristic of a WTG is shaped by the power converter. The 
pitch controller adjusts the aerodynamic power. 

1) Two Types of Reserve Power 
If we want to set aside some reserve power, the portion of 

aerodynamic power that will be reserved should be included as 
a constant proportion of the rated power (constant reserve – 
P) or a constant proportion of the available aerodynamic 
power (proportional reserve). This spinning reserve capability 
can be used to implement “governor control” to help the grid 
by decreasing or increasing the reserve power held from or 
delivered to the grid. In Figure 2a, the amount of reserve 
power is a constant output power as a percentage of rated 
power, and in Figure 2b, the amount of reserve power is a 
fraction of the target power (Cpmax operation). 
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b) Proportional reserve 

Fig. 2.  The reserve power for a variable-speed WTG using two different 
methods 

2) Combining Control and Power Converter Control 
Figure 3 illustrates how the control strategy works. The 

WTG is operated at variable speed. The electrical output 
power is commanded to follow the thick red line in normal 
operation without the reserve requirement. With the reserve 
requirement enabled, the dashed green line (indicating the 
proportional reserve) is the path followed. This is done via 
converter control. The thin red line represents the aerodynamic 
power of the WTG at 8 m/s without pitch action, and the 
operating point of the WTG is at Point A for optimal 
operation. To fulfill the reserve requirement, the pitch is 
controlled to ensure that the aerodynamic operation of the 
WTG will be maintained at optimal tip speed ratio (TSR), and 
the aerodynamic power moves from the thin red line to the 
dashed green line after the pitch angle is adjusted. The new 
operating point is Point B. Moving the operating point from 
Point A to Point B requires both the aerodynamic adjustment 
via pitch angle control and power converter control. The 
purpose of keeping the TSR at the optimal value is to optimize 
the response of the turbine when the pitch is returned to 
normal (pitch angle =0o); thus, the turbine will return to 
operating at optimum Cp right away. The operating point 
moves back from Point B to Point A when the reserve power 
of a WPP is recalled (i.e., reserve requirement is disabled) and 
it will return performance coefficient to Cpmax operation. 

3) Control Block Diagram 
The control block diagram for the proposed controller is 

presented in Figure 4. There are several groups of control 
blocks performing different functions: 

 Block 1 ensures that the operation of the WTG is 
maintained at constant TSR. The input to this block 
is the wind speed. The average (filtered) value of 
the wind speed is used to compute the 
corresponding rotor speed to keep the TSR 
constant at the optimal target value (TSRtgt). The 
reason we want to keep the TSR at TSRtgt is to 
ensure that the WTG will respond instantaneously 
and return to its original operating point quickly 
when the pitch angle is returned to normal. 

 Block 2 controls the pitch angle so that the rotor 
speed follows the target rotor speed (m-tgt) and the 
TSR is kept at TSRtgt. Another function of this 
block is to ensure that the rotor speed will never 
exceed the rated (upper limit) rotor speed (m < 
m-limit). Thus, it will prevent the runaway problem 
when the turbine gets disconnected from the grid. 
The output of this block will be limited (0o << 
30o).   

 In Block 3, the target power is computed to guide the 
pitch controller in adjusting the output of the WTG. 
The input to Block 3 is the rotational speed that will 
be translated to the calculated power (Pcalc) 
deliverable at maximum Cp operation. From this 
calculated power, the reserve power must be 
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subtracted to obtain the electrical power, including 
the reserve power – Ptgt_rsv. Another input is Paux, to 
include the governor droop control capability if it is 
implemented (discussed in the next section). Finally, 
the output of the block is the target power. Note that 
the target power at lower-than-rated rotor speed must 
be checked to ensure the operating torque of the 
generator will not exceed the designed maximum 
torque (corresponding to output power at maximum 
rated torque PratedT ). This precaution will allow the 
mechanical torque limit to be observed to preserve 
the gearbox, the shaft, and other mechanical 
components of the WTG. Finally, the target power 
Ptgt will be used to command the power converter so 
that the total output of the generator will be equal to 
Ptgt. 

 

Fig. 3.  Operating points for the proposed control 

 

 

Fig. 4.  Pitch controller and real power controller used to set reserve power for 
Type 3 and Type 4 WTGs 

III. DYNAMIC SIMULATION 

1) Constant Reserve Power Implementation 
Type 3 and Type 4 turbines, including the controller 

described above, were developed in MATLAB/Simulink. 
Details of the model are presented in the complete version of 
the paper. Figure 5 shows a test wind speed time series, and 
the corresponding power output, for the cases with and without 
reserve requirement enabled. As shown in Figure 5, the 
requested reserve is 20% of the rated power output (constant 
ΔP). 
2) Proportional Reserve Power Implementation 

Figure 6 illustrates the result of proportional reserve power 
implementation. As shown in Figure 6, the requested reserve is 
10% of the available aerodynamic power (proportional 
reserve). For both operations, the plots show that the reserve 
controller functions as desired. 

 

 

Fig. 5.  Constant reserve power implementation (Preserve = 20%)  
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Fig. 6. Proportional reserve power implementation ( reserve 10%) 
 
3) Inertial response capability 

The inertial response for variable speed WPP has been 
discussed earlier in reference [10].  This topic will not be 
presented in this paper.  More detail discussion on this subject 
is not covered by this paper due to space limitation. 

 
4) Governor response capability 
To implement governor response capability, we will assume 
that the wind power plant is operated in the medium to rated 
wind speeds.  A simple power system is constructed to 
simulate the power system behavior under sudden perturbation 
with a sudden load change. A comparison between system with 
and without governor response capability is compared. 

With spinning reserve implemented in a WPP, non-
symmetric droop characteristics similar to one shown in Figure 
7 can be implemented in wind turbines. 

As in the case of inertial response, the primary response 
parameters (dead bands, droops, reserve margin) can be tuned 
up for optimum system performance. 

 
Fig. 7. Governor control implemented with a frequency droop on a wind 

power plant 

The governor control will take the frequency of the grid as 
the input and the commanded additional power Po as the 
output.  Note, that the WPP can respond to the system over-
frequency by shedding the output power (droop+), and it can 

respond to the system under-frequency by deploying the 
reserve power (droop -).  The Paux shown in Block 3 in Figure 
4 can be used with Paux = Po (output of the governor control) to 
accomplish the governor control. 

 
Fig. 8. Small power system network 

A small power system network is assembled to simulate the 
system with governor control capability as shown in Figure 8. 
The balance of real power generation and the load is perturbed 
by disconnecting one of the generators.  As the frequency of 
the power system drops. 

An example in Figure 9, shows sensitivity to different 
individual wind turbine droop settings (5, 4, 3 and 2 %). In this 
particular example, the difference in frequency trajectories are 
not significant and not affecting neither nadir nor recovery 
times. However, this picture may be different at higher levels 
of the wind penetration. 
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Fig. 91. Sensitivity to wind turbine droop characteristic 

 

Fig. 10. Frequency response for different spinning reserve by wind power 
 

The amount of spinning reserve available from wind 
turbines impacts the amount of power that wind turbine can 
inject into power system during the fault. The example in 
Figure 10 shows some improvements in minimum frequency 
for cases with no spinning reserve, 5% and 10% spinning 
reserves respectively. The higher spinning reserve capacity, 
the higher the frequency nadir and the sooner the frequency 
restoration to normal range. 

The primary frequency control by wind turbines can be 
integrated into the rotor-side active power control loop for 
Type 3 WTG or directly to the full power converter for Type 4 
WTG and demonstrate behavior similar to conventional 
synchronous generators. 

IV. CONCLUSION 
This paper is written to illustrate the capability of WPPs to 

provide auxiliary functions such as spinning reserve. In this 
paper, variable-speed WTGs (Type 3 and Type 4) are 
considered. The control method to implement the reserve 
holding capability is described in detail. A controller is 
developed that controls the pitch angle and the power 
converter simultaneously to allow individual WTGs to hold 

power in reserve. The reserved power may be delivered to the 
grid in the event of a frequency event. The unique feature of 
this controller is that the turbine always remains at the optimal 
TSR, with or without the reserve requirement enabled. 
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