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Abstract—As renewable energy constitutes a greater 
portion of the generation fleet, so does the importance of 
modeling uncertainty as part of integration studies. In 
pursuit of optimal system operations, it is important to 
capture not only the definitive behavior of power plants 
but also the risks associated with systemwide interactions. 
Load forecasting is an area of renewable energy 
integration studies that is often neglected, chiefly because 
of a lack of available data. In this research, the 
dependence of load forecast errors on external predictor 
variables such as temperature, day type, and time of day 
was examined. The analysis was utilized to create 
statistically relevant instances of sequential load forecasts 
with only a time series of historic, measured load 
available. The creation of such load forecasts relies on 
Bayesian techniques for informing and updating the 
model, thus providing a basis for networked and adaptive 
load forecast models in future operational applications. 

Keywords-load forecasting; power demand; renewable integration; 
Bayesian probability 

I. INTRODUCTION 
Increasing amounts of variable and uncertain renewable 

generation are currently being introduced into the electric grid, 
resulting in more uncertainty in system operations with larger 
penetrations. Renewable integration studies examine the 
availability of electric power from scenario-based perspectives 
so that supply is best utilized to meet demand. Ensuring these 
studies rely on realistic and statistically relevant data and 
assumptions is of upmost concern and fundamental to the 
results gleaned from outcomes. As such, uncertainty must be 
incorporated into modeling tasks and is the first step toward 
dynamic models for informing system operations at high 
levels of renewable penetration. 

Load forecasting plays an important role in integration 
studies [1, 2]. It consists of making predictions about future 
demand for electricity to optimize generation schedules, and 
with the acquisition of additional data these beliefs can be 
updated. Ongoing studies related to the Western Wind and 
Solar Integration Study [2], which simulated various scenarios 
of the unit commitment and dispatch problem, utilize load 
forecasts to better understand sensitivities and interactions 
between load and renewable generation. The commitment 

(scheduling) process involves determining which generating 
units will be turned on during future time periods and 
adjusting their output levels closer to the operating hour 
during dispatch. Because many thermal units require long 
start-up and shutdown times, planning is often performed on a 
day-ahead basis, whereas fluctuations in solar photovoltaic 
power plants can require planning updates on the order of 
seconds or less. With forecasting performed on a range of 
different timescales, providing different levels of insight about 
future load through uncertainty modeling can enhance existing 
operations. 

The most commonly used forecasting methods include 
Similar Day, Time Series, Regression, Fuzzy Logic methods, 
Expert Systems, and Support Vector Machines [3]. Bayesian 
probability as applied to power systems has been researched to 
a lesser extent, with the most frequent approaches dominating 
the literature. Douglas et al. [4] proposed using Bayesian 
estimation in conjunction with a dynamic linear model to 
predict peak forecasts by using average temperature as a 
predictor variable. As expected, because of air-conditioning 
and gas-combustion heating trade-offs, it was shown that the 
load was most sensitive to temperature during the summer and 
least sensitive to it during the winter. 

As a starting point for detailed uncertainty modeling, a 
question of interest in this research is whether external 
variables, such as temperature, influence the accuracy of load 
forecasting. Therefore, a characterization of error between 
day-ahead forecast and actual load data from the New York 
Independent Service Operator (NYISO) was established—
specifically, its dependence on external predictor variables 
such as temperature, day type, and time of day. Examining 
such load forecast error distributions aids the understanding of 
overall performance obtained from state-of-the-art load 
forecast systems without the need to consider their 
mathematical details. Resulting observations can be utilized to 
improve existing forecast systems or train new approaches. To 
the best of the authors’ knowledge, the proposed approach of 
directly characterizing load forecast errors is unique to the 
literature. 

The necessary framework to characterize forecast errors 
and provide model insight for creating load forecast errors is 
provided by Bayesian probability, thereby allowing 
historically realistic load forecasts to be produced. Bayesian 
inference estimates the “after data” posterior probability 
distribution based on the “before data” prior probability 
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distribution combined with likelihoods associated with the 
selected predictor variables [5]. Beliefs can be updated as new 
observations are made and the process recursively moves 
through time. By building a bottom-up model and 
conditionally assessing situations or hypotheses of interest, the 
accuracy of load forecasts can be significantly improved. This 
paper describes the methods and data used in the analysis, 
presents the results of analyzing the distributions of forecast 
errors, and suggests a modeling technique for creating 
historically accurate load forecasts. Finally, conclusions are 
drawn and implications for future studies and for power 
systems operations are outlined. 

II. DATA AND METHODS 

A. Data Utilized 
The data utilized was in the form of load forecasts, load 

actuals, and daily maximum temperatures for the NYISO 
operating region for the years 2009 through 2011. The data 
was obtained from the NYISO Market & Operations Data 
website [6]. The actual load data was provided on five-minute 
intervals, and the forecast load data was on hourly intervals. 
The five-minute data was averaged over each hour to create 
hourly data that aligned with the forecasts. All forecasts were 
performed by the operator on a day-ahead timescale. The load 
forecast error was equal to the hourly forecast minus the 
actual load data. For NYISO, the data was provided for all 11 
operating regions individually. The regional loads were 
aggregated so that the electric demand of the entire NYISO 
could be analyzed. For the NYISO temperature data, the 
historical percentage of total load contributed by each region 
was taken as a weight value and was used to create a 
temperature data set representative of the entire NYISO 
operating region. 

B. Methodology 

1. Characterization of Forecast Errors 
One of the objectives of this research was to evaluate how 

variables such as the type of day, time of day, and outside 
temperature correspond to the scale and frequency of load 
forecast errors in power systems. As shown in Fig. 1, three 
variables were selected as predictors for load forecast errors: 
business or nonbusiness day, time of day, and daily maximum 
temperature, which were represented by X1, X2, and X3, 
respectively. All random continuous variables were discretized 
through binning in the development of Bayesian uncertainty 
modeling. The variables were classified into bins 
corresponding to ranges of values that the variables may 
assume during any hour. Forecast errors as a percentage of 
actual loads were classified into 0.05% increment bins across 
the entire range for any given year. The day type class referred 
to any hour falling on a weekday or non-holiday as a business 
day. A nonbusiness day is one that falls on a weekend or 
holiday. The time bins shown in Fig. 2 were chosen in blocks 
that are commonly used by independent system operators [7]. 
Last, the daily max temperature variable was binned such that 
each bin represented a different section of the total range of 
the temperature variable. The number of bins for the 

temperature was chosen to be five to ensure that an adequate 
and practical number of data points were classified into each 
bin. The bounds for each bin were optimized so that 
significance between error distributions for differing bins was 
maximized, as described in Section III-A. 

A number of statistical tools were used for determining 
when forecast error distributions differed. All 
characterizations were done using the R statistical computing 
environment [8]. To compare distributions, the Kolmogorov-
Smirnov (KS) test was used. For comparing against normal 
and hyperbolic distributions, the Shapiro-Wilk and 
HyperCvMTest tests were used, respectively [9]. Metrics such 
as mean absolute error were used for analyzing the differences 
between distributions of load forecast errors. Multiple visual 
aids were also utilized, such as histograms, kernel density 
plots, and time-series plots. The autocorrelation of the forecast 
errors was analyzed by using the acf function in R [8]. 

With the methods described above, the predictive ability of 
the three variables can be inferred. The way in which the 
forecast errors are distributed with varying combinations of 
predictor bins reveals correlation between the predictors and 
the predicted random variable. 

2. Development of a Bayesian Probabilitic Model 
The characterization results lay the foundation for the 

construction of a Bayesian probabilistic model. The 
relationships among the model’s variables can be formally 
expressed through Bayes’s Theorem of Eq. (1). This 
representation is a joint probability distribution of a set of n 
variables, {X1, . . . ,Xn}, as a directed acyclic graph and a set of 
conditional probability distributions (CPDs). Each node 
corresponds to a variable with an associated CPD that gives 
the probability of each state of the variable given every 
possible combination of states of its parents [10]. 

A special case of the Bayesian network is one in which 
each Xi has C as the sole parent and C has no parents. This 
special case is called a naïve Bayesian model, whose network 
can be analyzed using a simple probabilistic classifier based 
on applying Bayes’ theorem with strong (naive) independence 
assumptions [10]. For a known set of n predictors, the most 
probable value of the parent variable C is found to be the value 
that maximizes the conditional probability shown in Eqs. (1)-
(4) [11, 12]. Similarly, a posterior probability distribution can 
be calculated by finding the probability of all possible values 
of C, in which the most likely value in that distribution is 
found by maximizing Eq. (4). The distribution is found by 
evaluating the equation for all values of C, instead of 
maximizing. The function naiveBayes from the R package 
“e1071” was used to create the necessary naïve Bayes object 
[13]. 

P(c|x) =
P(x|c) ∗ P(c)

P(x)
 (1) 

cNB = argmax P(x1, x2, x3|c)P(c) (2) 

P(x1, x2, x3| c) = P(x1|c) ∗ P(x2|c) ∗ P(x3|c) (3) 

cNB = argmax P(c) ∗ P(x1|y) ∗ P(x2|c) ∗ P(x3|c) (4) 
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Figure 1. A naïve Bayes model. 

Another important characteristic of forecast errors is their 
autocorrelation. The naïve Bayesian model produces a 
posterior distribution that produces samples with no sequential 
dependence. Although it includes a time-of-day predictor, the 
model returns a distribution of error values and expresses no 
temporal relationships between error values from different 
hours. As shown in Fig. 3, the actual forecast errors contained 
a large level of autocorrelation. To build this correlation into 
the synthesis of load forecast errors, the posterior distribution 
was modified based on the synthesized values from past hours. 

The final probability distribution used for random 
sampling was calculated as shown below in Eq. (5). It is a 
multiplicative combination of the posterior distribution from 
the naïve Bayes model and an inverse squared function of d. 
The parameter d is the distance between every possible class 
value in the sorted posterior and the synthesized class from a 
specified time lag of i. A vector results from the inverse 
function, and by multiplying it into the original posterior, 
probability is increased for the class value of the specified lag. 
In this research, the inverse squared modifier was included 
only for i=1, that is the class from the past hour. More lag 
values can also be introduced, but that would make the fitting 
procedure more time consuming because every lag introduced 
would produce its own inverse squared modifier, including a 
new set α and β to direct the influence of d. An optimal lag 
value could be determined for more accurate representation of 
the autocorrelation trends found in the actual errors. The 
values α and β were determined by a fitting procedure that is 
based on mean absolute error and the KS test. 

P(c|x1, x2, x3, ct−i) = P(c|x1, x2, x3) ∗
1

(1 + β ∗ abs(d))α (5) 

d = index(c) − index(ct−i) (6) 

In the work by Lowd and Domingos [10], the predictive 
capability of naïve Bayes models was compared with that of 
Bayesian networks. Experiments on a large number of data 
sets showed that the two models take similar time to learn and 
are similarly accurate, but naive Bayes inference is orders of 
magnitude faster. Additionally, the conditional probabilities 
within the naïve Bayes model are easily updated as new 
observations are made. 

III. RESULTS 

A. Characterization of Forecast Error Distributions 
Characterization of the load forecast error distributions 

first required the determination of external variables 
correlated with the errors. From this analysis, three external 
variables were identified as predictors for hourly load forecast 
error: business day or nonbusiness day, time of day, and daily 
maximum temperature. The selected bin sizes are shown in 
Table I. The bins were chosen as those that minimized the KS 
comparison between errors in the specified bin range and the 
rest of the data set. A comparison between resulting binned 
forecast error probability distributions is shown in Figs. 2-4 in 
the form of kernel density estimates. The load forecast error 
was equal to the forecast ( fL ) minus the actual ( aL ) load. 

The normalized load forecast error Le  is defined as 

aafL LLLe )( −=  (7) 

 
TABLE I. SELECTED BINS FOR PREDICTOR VARIABLES 

(X1) Time Bin (X2) Day Type Bin (X3) Temperature Bin 

(1) 03:00–06:00 (0) FALSE (1) 14ºF to 41ºF 

(2) 07:00–10:00 (1) TRUE (2) 41ºF to 53ºF 

(3) 11:00–14:00  (3) 53ºF to 64ºF 

(4) 15:00–18:00  (4) 64ºF to 81ºF 

(5) 19:00–22:00  (5) 81ºF to 96ºF 

(6) 23:00–02:00   

 
Figure 2. Forecast error distributions by time bin. 

Temperature bins were especially correlated with 
differing error distributions, as shown in Fig. 4. 
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Figure 3. Forecast error distributions by day type bin. 

 

Figure 4. Forecast error distributions by temperature bin. 

With six time bins, five temperature bins, and two day 
type bins, a total of 60 data subsets were generated. Some 
notable trends were observed from the distributions of 
forecast errors in these subsets:  

• All subsets produced an underforecast mean 
(negative forecast error), indicating that the current 
load forecast methodology adopted at NYISO tended 
to underforecast. 

• Almost all 60 data subsets presented a hyperbolic 
distribution, and 40 out of 60 satisfied (P-value > 
0.025) a 0.975 confidence interval. 

• The temperature bins led to the greatest variance 
between the error distributions. 

The autocorrelation coefficients for the three-year data set 
of forecast errors are displayed in Fig. 5 and Table II. 

 
Figure 5. Autocorrelation plot for actual errors from 2011. 

TABLE II. CORRELATION COEFFICIENTS 

Lag (hours) Coefficient 
1 0.941 
2 0.861 
3 0.779 
4 0.702 
5 0.629 
6 0.557 

12 0.289 
24 0.413 

36 0.058 

B. Synthesis of Historic Load Forecasts 
The model described in Section II-B-2 was trained on the 

year 2009 and optimized on 2010. The coefficients α and β, 
which increase the likelihood of the occurrence of the error 
value from the past hour, were selected through a fitting 
procedure. This fitting process minimized the mean absolute 
error and the D-value from the function ks.test, which 
performed a KS test between actual and synthesized data for 
the year 2010. The fitting procedure determined values of α 
and β to be 1.7 and 1.25, respectively. 

Once fully defined, the model was trained on the years 
2009 and 2010 and was then used to synthesize load forecast 
errors for the 2011 data set. The synthesis was performed for 
100 trials so as to yield a better representation of the variation 
in synthesized values. For every trial, an array of metrics 
(e.g., mean, median, standard deviation, autocorrelation 
coefficients with different hour lags, kurtosis, and D-value 
from KS test) were calculated; the average values of those 
metrics are displayed in Table III. The standard deviations 
associated with each metric are listed in Table IV to show the 
variation in these metrics throughout the 100 trials. 

Both Table III and Table IV include a row labeled 
“Original posterior,” which contains the metrics for another 
100 trials in which forecast errors were synthesized using the 
same predictors but without including the inverse squared 
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function. This was done to investigate the effects of the 
inverse squared function on the distribution and time series of 
forecast errors. In the case of synthesis using only the original 
posterior distribution, the lower D-value and lower 
autocorrelation coefficients represented a better synthesized 
forecast error distribution but a decrease in accuracy of the 
point forecasts (time series). 

The second rows of Table III and Table IV describe the 
metrics for the case in which the inverse squared function was 
applied during synthesis. As a result, the distribution became 
less similar to that of the actual errors, although the 
autocorrelation values increased toward those of the actual 
errors. This was observed in the increase in D-value and 

increase in autocorrelation coefficients. It should also be 
noted that the standard deviation and the kurtosis of the 
synthesized errors decreased when the inverse squared 
function was applied. The phenomena described above is 
shown in Figs. 6 and 7, in which histograms of the actual and 
synthesized errors are displayed for a single representative 
trial. The histogram for synthesized errors visually reflects the 
metrics listed above, because the distribution had a narrower 
spread and was more concentrated around the mean. The tails 
of Fig. 6 also extended much farther than those of Fig. 7, 
which, along with the lower average kurtosis value, shows 
that the synthesized distribution was more platykurtic than the 
actual error distribution. 

 
TABLE III. AVERAGE VALUES OF METRICS THROUGHOUT 100 TRIALS FOR METRICS DESCRIBING TWO SYNTHESIZED DATA SETS 

 Mean Median Std AC Lag 1 AC Lag 2 AC Lag 24 Kurtosis D-value (ks.test)a 

Original posterior -0.0296 -0.03 0.022 0.047 0.044 0.043 2.110 0.071 

Inverse squared -0.0295 -0.03 0.015 0.742 0.558 0.052 1.783 0.136 

Actual 2011 Error distribution -0.0262 -0.03 0.028 0.941 0.861 0.413 2.760  
aD-value compares synthesized set to actual errors 

 

 
Figure 6. Actual forecast errors, 2011. 

 
Figure 7. Single trial 2011, synthesized forecast errors. 

 

TABLE IV. STANDARD DEVIATIONS OF METRICS THROUGHOUT 100 TRIALS FOR METRICS DESCRIBING TWO SYNTHESIZED DATA SETS AND 
COMPARISONS WITH THE ACTUAL DATA 

  Mean Median Std AC Lag 1 AC Lag 2 AC Lag 24 Kurtosis D-value (ks.test) 

Original posterior 0.000215 0.00 0.00017 0.0129 0.0124 0.0104 0.305 0.005 

Inverse squared 0.000462 0.00 0.00050 0.0104 0.0155 0.0215 0.747 0.010 
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Figure 8. Single trial 2011, autocorrelation of synthesized forecast errors. 

Experimenting with the modified naïve Bayesian model’s 
performance in predicting load forecast errors has produced 
certain results. First, temporal applications such as load 
forecasting require modification of the model because it can 
provide only a distribution associated with the random 
variable. This means that sampling directly from the naïve 
Bayes posterior distribution can yield a very accurate 
distribution, but rapidly oscillating point forecasts that may 
not contain the temporal trends found in the target time series. 
Second, point forecasts can be improved through 
modification of the original posterior in the form of a 
multiplicative inverse squared function. In this research, the 
inverse squared method brought the synthesized values closer 
to the autocorrelative and temporal traits of the actual forecast 
errors. 

The nature of the inverse squared modifier allows for 
change in coefficients involved along with the way that the 
modifier is multiplied into the original posterior. In 
combination with the result that the original posterior was 
able to successfully predict the overall distribution of errors, 
it is quite promising that this model may achieve greater 
predictive capability through the introduction of more layers 
of modifiers such as the inverse squared modifier. The 
performance of the model might be improved by optimally 
selecting the time lags and predictor variables, which will be 
investigated in future work. 

IV. CONCLUSIONS 
In this research, load forecast errors from the New York 

Independent Service Operator were characterized by 
investigating how the error distributions vary with exogenous 
predictor variables such as day type, time of day, and 
temperature. This analysis determined that these predictor 
variables are able to partition the forecast errors into 
conditional cases with significantly different distributions, 
which are very likely to follow the hyperbolic distribution. 

Furthermore, the characterization of error distributions 
and identification of predictor variables was a means for 
developing a naïve Bayesian model for prediction of load 
forecast errors. The accuracy of this model was highly 
dependent on the method chosen to introduce autocorrelation 
into the synthesized data. By using the inverse squared 
multiplier, the synthesized data set approached 
autocorrelation values similar to those seen in the actual 
errors, although there was sensitivity in how much 
autocorrelation could be obtained without changing the 
original posterior distribution drastically. 

Future development will involve increasing the 
complexity of the Bayesian network and tracking increases in 
accuracy. New predictors may be characterized and 
introduced alongside the ones used in this study. More levels 
of dependence may be introduced into the method for 
building autocorrelation into the data set. Additionally, the 
authors plan to return to the original posterior distribution and 
study its predictive capability in finer, conditional detail, as 
was done in the characterization of actual load forecast errors. 
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