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TECHNICAL MEMORANDUM

LASER ABLATION CLEANING OF SELF-REACTING FRICTION STIR WELD SEAM 
SURFACES: A PRELIMINARY EVALUATION

1.  INTRODUCTION

 This Technical Memorandum is based upon a student research project carried out by the 
Metals Joining and Processes Branch of the Materials and Processes Laboratory of Marshall Space 
Flight Center (MSFC) during the summer of 2012 by Q. Parry, a junior in the Materials Science 
and Engineering Department at the University of Utah. C.K. Russell, S.A. Brooke, and N.M.  
Lowrey assisted the study entitled, “An Evaluation of Current Laser Ablation Technologies for 
Weld Surface Cleaning for Self-Reacting Friction Stir Welding.”

 Oxides and any solid contaminants residing on a weld seam and not destroyed by the fric-
tion stir welding (FSW) process are embedded in the trace of the seam within the weld ‘nugget,’ 
where they disturb subsequent deformation processes and may reduce the strength of the weld 
substantially. This condition is called residual oxide defect (ROD). Although the FSW process is 
not regarded as especially sensitive to seam surface contamination, heavy surface contamination 
can reduce weld strength substantially. Hence, seam surfaces to be welded by the FSW process are 
customarily manually cleaned during weld preparation. 

 Conventional manual cleaning processes dissolve and flush away greasy contaminants and 
abrade or scrape away insoluble contaminants and surface oxides. Lasers can deliver a power pulse 
to contaminants that can break them up through transient thermal stresses and explode them off 
with sudden vaporization. This study was undertaken to see if  laser cleaning of weld seam surfaces 
prior to FSW could clean as well or better than conventional manual processes and might be a can-
didate for mechanization of the cleaning process.

1.1  Laser Terminology

 As the name (an acronym for ‘light amplification by stimulated emission of radiation’) 
implies, lasers produce intense beams of light by stimulating excited electrons in a ‘gain medium’ 
to emit additional light that adds (in phase) to and intensifies the stimulating light beam. In the 
present case, the gain medium is Nd:YAG, i.e., yttrium aluminum garnet (Y3Al5O12) doped with 
a small amount of neodymium. Ionized neodymium centers (Nd3+) bind electrons (the bonding 
energy is reduced by the surrounding medium), and energy level gap transitions produce light in 
the infrared range. Nd:YAG lasers generally operate at a wavelength of 1,064 nm, although other 
energy level gaps (940, 1,120, 1,320, 1,440 nm) exist. The electrons are ‘pumped’ to higher energy 
levels by a flash lamp or laser diode light source.
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 The amplified beam is passed back and forth through the gain medium by bounding mir-
rors. Conceived as an oscillator, the laser is assigned a ‘Q’ factor, defined as the energy stored in the 
oscillation divided by the energy loss per cycle. Strong reflectors at boundaries retain oscillations 
within the lasing medium with little loss and the Q factor is high. A partial transmission through 
one mirror results in emission of a continuous wave laser beam. When one mirror is suddenly 
switched off, with a fully pumped beam an extremely high-energy pulse of light leaves the laser; 
under this high power loss condition, the lasing medium has a low Q factor. Switching the mirror 
on and off  is called ‘Q-switching.’ In the present study, three Q-switched Nd:YAG lasers producing 
a succession of high power pulses of infrared light were used: a 300 W laser at Adapt Laser Systems 
in Kansas City, MO; a 240 W laser at General Lasertronics Corporation in San Jose, CA; and  
a 20 W Adapt Laser System at MSFC.  

1.2  Laser Cleaning 

 The free electrons circulating in metallic bodies reflect electromagnetic radiation strongly 
at visible and infrared frequencies; metals are not greatly affected by visible and infrared light 
unless it is very intense, say on the order of 103 W/mm2. For power densities having this or greater 
magnitude melting and evaporation occur at the metal surface, a vapor cavity forms, and the laser 
welding process begins.

 Electric charge in insulators is relatively tightly bound together so that the forces exerted 
by the oscillating electromagnetic field of a light beam excites strong oscillations of heavy ions 
and produces large heating effects. Because of this difference in power absorption, and because 
most surface contaminants are nonmetallic, infrared radiation is a good candidate for removing 
surface contaminants. But the power must be delivered rapidly, so that it is carried away in contam-
inant vapor and particulates and does not merely heat the contaminants and allow appreciable heat 
conduction to the metal substrate.

1.3  Friction Stir Welding

 FSW is a solid-state process in which a rotating pin is inserted into the weld seam and trans-
lated along the seam. A plug of metal sticks to and rotates with the pin. The shearing metal sepa-
rating the rotating plug and stationary weld panel is concentrated within a narrow ‘adiabatic shear 
band,’ effectively a shear surface.

 The seam enters the rotating plug as the shear surface advances. The segment of seam strad-
dling the shear surface moves faster inside the rotating plug than outside in the stationary weld 
metal. Hence, the seam is stretched out, and a great deal of fresh, uncontaminated metal surface 
is exposed within the seam. The acting pressure forces the clean metal into complete contact and 
under the circumstances, the metallic bond extends across the seam so that the metal is welded. 
The stretched seam is recompressed as the rotating plug abandons it, but the seam remains welded; 
however, oxides and dirt from the original seam surface are embedded in the metal along the trace 
of the seam.
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 Accompanying the rapid, concentrated shearing at the shear surface is a relatively slow 
(creeping?) distributed shear process, which typically takes the form of a ring vortex or ring vortices 
surrounding the pin as shoulder scrolls and/or pin threads drive the flow radially inwards along the 
shoulder and axially down the pin, respectively. Two distinct kinds of FSW process are in common 
use: (1) The conventional friction stir welding (C-FSW) process, where the pin and shoulder press 
into the workpiece against a stationary anvil, and (2) the self-reacting friction stir welding (SR-
FSW) process, where two shoulders rotating with the tool squeeze the workpiece and confine the 
weld metal at the tool.

 The radial inflow at the shoulder(s) holds the seam on the rotating plug longer, where it is 
shifted toward the advancing side of the tool as it emerges. The radial outflow toward the anvil 
(C-FSW) or at the center of the pin (SR-FSW) expels the seam earlier from the rotating plug, 
where it is shifted toward the retreating side of the tool. Hence, in the longitudinal section, the 
seam trace is no longer a straight line parallel to the axis of the tool, but a curve, which may be 
easy to see in section, particularly if  it is decorated with surface oxide particles. The series of curves 
seen in longitudinal section becomes the ‘onion ring’ pattern seen in transverse section.

1.4  The Effect of Contamination on Weld Strength

 Weld tensile test coupons tend to deform by shear on 45º planes, where the shear stress is at 
a maximum. But not all 45º planes exhibit slip. Slip is limited to the softest, easiest slipping planes. 
As the planes work harden and match harder neighboring planes, the slip zone broadens. As slip 
deformation continues, the surface contours of the coupon indent. If  nothing interrupts this pro-
cess, it proceeds until the cross section of the coupon reduces to zero.

 Long before this happens, the load supported by the coupon reaches its maximum when the 
work hardening rate is no longer able to keep up with the rate of area reduction. In a constant load 
(flexible) testing machine, the coupon fractures at this point of plastic instability, i.e., at the maxi-
mum load. In a constant deformation rate (stiff) testing machine, the load is allowed to decline and 
the coupon fractures at zero load and zero area. In a real testing machine, a perfectly ductile test 
coupon would fracture somewhere between these two extremes. The fracture surface would, how-
ever, neck down to zero.

 Normally, the deformation process is interrupted before the coupon can neck to the zero 
area. Real metals are full of defects. Aside from linear dislocation defects responsible for work 
hardening, metals contain a distribution of microvoids. Over a slip plane, microvoids expand and 
coalesce, reducing the area in a kind of internal necking process, which becomes unstable and leads 
to fracture along a slip plane. The residues of the distorted microvoids can be seen on the fracture 
surface as ‘shear dimples.’

 In hot (high tool rpm and low weld speed) friction stir welds, the heat-affected zone (HAZ) 
tends to soften and broaden while the mechanically deformed nugget regions tend to retain higher 
strength. Such welds tend to exhibit necking located in the HAZ and 45º fracture surfaces.
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 Defects large enough to stand out above microvoids can cause larger internal instabilities 
and reduce strength still further. The classic model for larger defects is the Griffith theory of crack-
induced brittle fracture modified by E. Orowan to apply to a ductile metal. In this model a penny-
shaped crack of diameter c is taken to release elastic energy σ 2 / 2E 4 / 3π c / 2( )3⎡

⎣
⎤
⎦  contained 

in the sphere circumscribing the crack, where the stress is σ, and the elastic modulus is E. If  the 
released elastic energy increment is enough to supply the new surface energy  µ[2(p cdc)], where µ  
is the surface energy, then it is assumed that the crack propagates unstably through the medium. 
The stress at which fracture occurs is estimated at:

 
σ = 8Eµ

c
.  (1)

 For a brittle medium like glass, µ is the energy of the broken bonds on the fracture surface, 
but for a ductile medium like a metal, µ is half  the much larger energy dissipation by the plastic 
flow process that takes place at the crack edge during a unit increment of movement. The plastic 
flow energy dissipation is orders of magnitude larger than the broken-bond surface energy. Hence, 
metals are much more difficult to fracture than glass or similarly hard, but brittle, materials.
 
 Hard and brittle particles embedded in metals facilitate local fractures in two ways: (1) The 
particles themselves may fracture to produce a particle-sized crack wide enough to initiate fracture 
at a low stress, or (2) the presence of the particle in the vicinity of a crack may reduce the energy 
dissipation required to propagate the crack at least until the crack enlarges to the size of the  
particle.
 
 A shear stress (t) acting on the surface of a cylinder of radius (r) and length (L) exerts 
a maximum tensile force t (2p r L/2) on the cross section, which resists with force σfracture p r 2.  
If the acting tensile stress (σ) is approximately 2t (maximum shear criterion), then particles fracture 
if

 σ ≥ 2r
L
σ fracture .  (2)

 Other situations, for example, bending moments due to shearing gradients around the FSW 
pin, require their own particle fracture criteria.
 
 Presumably a crack lying along a rigid, slippery surface would require only about half  the 
plastic energy dissipation that a fully immersed crack would need to propagate. Hence the stress 
for a slippery, rigid particle to decohere would lower by a factor of 1/ 2  = 0.707 than for propa-
gating a crack in the medium away from the particle.

 Where particles fracture or decohere, it may be expected that the resultant particle-sized 
cracks lower the fracture strength of the medium in accord with the Griffith-Orowan criterion. 
Hence, the bigger the particle, the lower the strength. Other things being equal, doubling the par-
ticle size should reduce the strength by a factor of 0.707.
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 Large particles in the seam trace of a weld can reduce the strength of the weld appreciably. 
The fracture surface may be expected to lie along the seam trace, where the big particles are, at least 
for the fracture initiation site, and large symmetrical ‘tension dimples’ should be visible on the site.

 Hence, the need to clean the weld seam surfaces before friction stir welding.
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2.  TEST PROCEDURE

2.1 Test Objectives

 The primary objective of this test program was to compare the effects of laser cleaning to 
the baseline manual cleaning method on the strength of aluminum panels welded by SR-FSW. 
Three Nd:YAG pulsed laser cleaning systems from two vendors were evaluated as well as the base-
line cleaning method and uncleaned panels as a control.

 A secondary objective was to evaluate the effects of cleaning various surfaces of the weld 
panel to determine the criticality of complete cleaning of the faying surfaces as well as the abutting 
crown and root surfaces. To use a laser cleaning system on a robotic production weld tool, a com-
plex laser configuration or multiple laser heads would be required to clean all of these surfaces 
simultaneously.

 The test procedure steps were:

 (1)  Procure and machine three sets of two weld test panels for each cleaning method to be 
evaluated plus one set of panels to be welded as a control. The cleaning methods to be evaluated 
were three laser systems with different power levels plus the current manual cleaning method for 
a total of 24 panels to be cleaned, plus two panels to be welded in the contaminated condition.

 (2)  Contaminate the test panel surfaces to create a standard contaminant challenge.

 (3)  Ship or hand deliver the test panels to each cleaning entity, with instructions for the 
surfaces to be cleaned, standard clean packaging materials, and instructions for packaging and 
handling of the cleaned panels for return to the MSFC weld lab.  Panels cleaned in-house were 
packaged using the same materials and instructions as those cleaned remotely, and held for a speci-
fied period of time to minimize differences in potential recontamination and oxidization from 
cleaning to welding for the various cleaning methods.

 (4)  Inspect by scanning electron microscopy (SEM) with energy dispersive x-ray spectros-
copy (EDS) a surface cleaned by each method to document initial cleaned condition.

 (5)  Weld each set of panels, minimizing specimen handling and exposure to an unclean 
environment before welding.

 (6)  Section the welded panels perpendicular to the weld and examine the surfaces 
by metallography.

 (7)  Machine tensile test specimens from each welded panel and perform tensile tests 
to assess ultimate yield strength.
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2.2  Test Panel Configuration

 Standard aluminum test specimens used at MSFC to develop weld schedules and design 
properties for SR-FSW were used for this experiment. Each weld test specimen consisted of two 
panels of 2219-T87 aluminum with dimensions of 24 in × 6 in × 0.327 in. For developmental weld 
tests these panels are abutted and welded along the 24 in length of the 0.327 in surfaces. These  
panels have a pilot hole drilled centered on the joint near one end to accommodate the SR-FSW 
tool. The weld panel configuration is shown in figure 1.

6 in

6 in

24 in

Direction of Weld

Pilot Hole for
SR-FSW Tool

F1

Figure 1.  Self-reacting friction stir weld test panel configuration.

 After welding, test panels may be examined using nondestructive evaluation methods and 
then tensile test coupons are machined perpendicular to the weld path and tested to evaluate weld 
strength.

2.3  Contamination of Test Panels

 To assure a consistent contamination challenge, all test panels were anodized to form a sur-
face oxide layer. Surface oxides are known to result in ROD when aluminum is welded by SR-FSW. 
Anodizing was selected as the contamination method because of the reproducibility of the result-
ing oxide layer. This is a more severe contamination condition than is typically encountered in pro-
duction. Usually, weld zones are masked prior to anodizing to prevent the buildup of a hard oxide 
layer that is difficult to remove prior to welding. 

 All panels to be cleaned were initially given a 40-minute type II Mil Spec 8625F anod-
izing treatment and subsequent hot water sealing treatment, which produced an anodized layer 
thickness of about 7 µ. The type II anodizing treatment is a sulfuric acid treatment (in contrast 
to type I, a chromic acid treatment, and type III, ‘hard anodizing,’ a lower temperature sulfuric 
acid treatment). Type II anodizing leaves a porous surface, but exposure to boiling deionized water 
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transforms some of the surface coating to an aluminum monohydroxide (boehmite), which reduces 
surface porosity and seals the surface.

 To determine an appropriate anodization time, test samples were anodized for 20, 40, and 
60 minutes and sealed. These samples were sectioned and polished, and the anodic coating thick-
nesses were measured by a microscope at several locations on the surface where the sectioning and 
polishing had not damaged the anodized surface layer. The results are shown in table 1.

Table 1.  Anodized layer thickness for different anodizing times.

Anodizing Time
(min)

Anodized Layer 
Thickness 

(µ)
Standard Deviation

(µ)
20 3.11 0.23
40 7.2 0.33
60 10.48 0.29

 The 40-minute anodizing time, resulting in a 7 µ anodized layer thickness, was chosen for 
preparation of the samples to be cleaned. It was later demonstrated (cleaning set 2) that the 7 µ 
layer was quite adequate to produce massive residual oxide defect that reduced the strength of the 
weld coupons to a value too low to be measured unless it was removed from the faying surfaces 
of the weld seam (cleaning sets 1 and 3). 

2.4  Cleaning, Packaging, and Handling of Test Panels

 Six anodized test panels were shipped or hand delivered to each cleaning lab to be cleaned 
by the following equipment:

 (1)  Lasersystem CL 300Q 300 Watt Nd:YAG, Q-switched, diode pumped laser cleaning 
unit, Adapt Laser Systems LLC, 1218 Guinotte Ave., Kansas City, MO  64108.

 (2)  Lasertronics 240 Watt Nd:YAG, Q-switched, diode pumped laser cleaning unit,  
General Lasertronics Corporation, 830 Jury Court, Suite 5, San Jose, CA  95112.

 (3)  Backpack Laser CL 20QF-BP, 20 Watt Nd:YAG, adjustable pulsed laser, Adapt Laser 
Systems LLC, owned and operated by the MSFC Structural Strength Test Branch.

 (4)  Manual cleaning apparatus of the MSFC Welding and Manufacturing Team.

 The three laser teams and the MSFC Welding and Manufacturing team cleaned three sets 
of two panels. Surfaces on these sets of panels were cleaned as shown in figure 2.  On set one, 
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Cleaned for Sets 2 and 3

Cleaned for Sets 1 and 3

24 in

2 in

6 in

0.327 in

Anodized          

Cleaned
Set 1 Set 2 Set 3

F2
Figure 2.  Test panel with surfaces to be cleaned.

only the faying surfaces were cleaned. On set two, only the abutting crown and root surfaces were 
cleaned. On set three, all of the faying surfaces and abutting crown and root surfaces were cleaned. 
No surfaces were cleaned on the control panel.

 For the panels cleaned manually at MSFC, a draw file was used to clean the faying surfaces 
in sets 1 and 3 until no oxide was visible. A pneumatic sander with a 3-in-diameter Scotch-Brite™ 
pad was used to clean the adjacent surfaces for sets 2 and 3. 

 The laser cleaning labs were instructed to clean the surfaces using laser settings (raster 
speed, pulse spacing, etc.) of their choosing to provide optimum removal of contaminants and 
oxides without bulk material damage.  

 The anodized panels were shipped to the cleaning sites in padded bags. Included were addi-
tional bags intended to prevent recontamination and to minimize reoxidation during shipping of 
the laser cleaned panels back to MSFC. For return shipping, the following packaging procedure 
was used:

 (1)  The cleaned panel was placed in Allied Signal (Honeywell) bags of 2-mm-thick  
Capran® heat-stabilized, nylon-6 film, clean processed.

 (2)  The nylon bag was purged three times with dry nitrogen and sealed with 2-in, clear 
packaging tape.

 (3)  The bagged panel was inserted into a second bag of 6-mm-thick polyethylene, serving 
as a moisture barrier.

 (4)  The polyethylene bag was purged three times with dry nitrogen and sealed with 2-in, 
clear packaging tape.
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 (5)  The packaged panels were placed in padded boxes and shipped overnight so as to arrive 
at their destination within 24 to 48 hours of the cleaning operation.

 Panels that were not shipped but remained at MSFC were bagged just like the shipped pan-
els and held for 24 to 48 hours before processing to minimize differences in handling after cleaning.

2.5  Appearance of Cleaned Surfaces
 
 The objective of this study is to compare the effectiveness of laser cleaning with the effec-
tiveness of manual cleaning.

 A manually cleaned surface is shown in figure 3. Tool marks are apparent, indicating 
the direction of surface abrasion. 

10 µm

F3

Figue 3.  Manually cleaned surface.

 Laser cleaned surfaces are shown in figures 4–6. The laser cleaned surfaces are characterized 
by flow of molten material beam strike craters. Electron Dispersion Spectroscopy, carried out in 
conjunction with SEM used to observe the laser cleaned surfaces, revealed sulfur contamination of 
the surfaces, presumably due to the exposure to sulfuric acid during the anodization process. The 
laser cleaned surfaces all exhibit flow of molten material around beam strike craters and a dark 
contrast material that increases in area as the power of the laser diminishes. 
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20 µm

F4
Figure 4.  Laser cleaned surface (300 W, Adapt Laser Systems).

20 µm

F5

Figure 5.  Laser cleaned surface (240 W, General Lasertronics Corp.).
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50 µm

F6

Figure 6.  Laser cleaned surface (20 W, Adapt Laser at MSFC).

 The strike crater overlap and intensity of laser cleaning can be adjusted by modification of 
the laser wattage, pulse frequency, travel speed, and other factors. The laser strike craters in figure 6 
do not overlap, indicating that the settings on the 20 W laser may have been insufficient to remove 
surface oxide contamination. A more extensive analysis of the effects of laser wattage, pulse fre-
quency, travel speed, pulse crater overlap, and other control settings on oxide removal and weld 
strength would require a large test matrix. Such analysis is beyond the scope of this preliminary 
evaluation. 

 A similar pair of panels was prepared and left uncleaned for a weld control sample. 
An uncleaned control surface is shown in figure 7.
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10 µm

F7

Figure 7.  Uncleaned control surface.

2.6  Welding

 At MSFC, the returned and resident panels having been cleaned according to the prescrip-
tions of sets 1–3 were paired for welding: 3 manually cleaned welds, 9 laser cleaned welds, and 
1 uncleaned control, for a total of 13 welds.

 The weld operators were instructed to handle the precleaned panels with clean gloves and 
to omit standard precleaning procedures. A starting hole for the SR-FSW tool was drilled through 
the center of the weld (no offset) at the beginning of the weld seam. Each weld panel was clamped 
in Horizontal Weld Tool #30A-72251 located in Building 4755 and welded with a Boeing Tri-Flat 
SR-FSW tool shown in figure 8. The panels were welded using nominal weld parameters of spindle 
speed, travel speed, and load, optimized for 0.327-in 2219 weld joints. A typical welded panel is 
shown in figure 9.
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Figure 8.  Horizontal FSW panel setup.

Figure 9.  Self-reacting friction stir welded panel.
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3.  ANALYSIS AND RESULTS

3.1  Analysis Procedures

 Each welded panel was sectioned perpendicular to the weld for metallography and to create 
tensile specimens to test the strength of each weld.  

 Metallography specimens were prepared by cutting, mounting, polishing, and etching 
transverse sections of the welded zones. These specimens were evaluated and photographed under 
magnification for evidence of ROD.

 Five tensile coupons each were machined from 11 of the 13 welded panels. Two of the pan-
els yielded such low bond strength that machining of tensile coupons was not feasible. The tensile 
coupon configuration was a rectangular bar, perpendicular to the weld path, with a nominal cross-
sectional area of 0.33 in2.

 Tensile testing was conducted in accordance with MSFC Mechanical Test Lab standard 
work instructions, on test station 8 in MSFC Building 4602. The environment for this testing was 
ambient laboratory air. The mechanical test frame consisted of a servo-hydraulic actuator and 
reaction frame. A 60,000-lb load cell and 25-in cable extension transducer were installed on the 
frame. An extensometer with a 2-in-gauge length and 50% range was installed on each specimen 
prior to testing. Each specimen was preloaded to 100 lb and then ramped to failure at a rate of 
0.05 in/min. One inch and two inch punch marks were used to indicate elongation around the weld 
zone. Stress-strain curves were plotted for each tensile test and data were recorded for tensile stress 
(ksi), yield stress (ksi), inelastic strain (%), modulus of elasticity (msi), and fracture elongation (%).  

3.2  Visual Results for the Baseline Method—Manual Cleaning

 The transverse sections of the welded manually cleaned surfaces (fig. 10) exhibited tool 
marks but no apparent ROD. The welds exhibited the banding characteristic of friction stir welds 
with the reticulated structure characteristically imposed by flats on the tool and a hint of the 
onion-ring structure characteristic of threaded tools without flats. 

Figure 10.  Transverse section of manually cleaned weld.
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 The fracture surface of the tensile test specimens (fig. 11) is angular, i.e., a ductile fracture. 
Angular fractures result from shear. The plane of maximum shear at 45º to the direction of applied 
tensile stress is favored for shear, although hardness variation within the weld may make shear 
easier on a plane at a somewhat different angle. Fracture occurs when tiny pores elongate with 
strain and combine to a point where the residual fracture surface area supports less and less shear 
stress, or sooner if  defects or dirt within the weld metal promotes local ruptures.

Figure 11.  Fracture surface of manually cleaned weld. Note angular ductile fracture.

3.3  Visual Results for the Worst Case Method—No Cleaning

 The uncleaned anodized surface, shown in figure 7, is covered with a layer of aluminum 
oxide about 7 µ thick. Dark spots, possibly carbon, tending to line up along grain boundaries, are 
present. Sulfur from the anodizing process is also detectable by EDS.  

 The transverse sections of welded uncleaned surfaces, shown in figure 12, exhibited a fine, 
sharp, slightly undulating white line running from root to crown close to the center of the weld. 
This is indicative of ROD, where the oxide particles remain in place along the seam and serve to 
mark its location on the weld transverse section. When a weld seam increment is ‘wiped’ onto the 
rotating plug of metal attached to the friction stir tool, a powerful shearing action expands the 
seam area along the plug surface, cracks the oxide, and presents clean metal surface, which is com-
pressed into contact so that it bonds. The seam is recompressed by a countershear process when the 
tool abandons it in its wake. 
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Figure 12.  Transverse section of uncleaned weld. Note the fine, sharp, slightly undulating 
 white line running from root to crown, close to the center of the weld 
 indicating ROD.

 The perpendicular, slightly undulating fracture surface of the tensile specimen (fig. 13) 
follows the seam trace seen in figure 12, now made susceptible to propagation of fissures perpen-
dicular to the direction of tensile stress by the residual oxide, with the characteristic of a brittle 
fracture. This correlates with extremely low fracture strength of the uncleaned welds.  

Figure 13.  Fracture surface of uncleaned weld. Note perpendicular nonductile fracture 
 with undulations resembling those of the white line shown in figure 12.

 This seam trace is characteristic of a weld tool with flats. The threads (or shoulder scrolls) 
on the tool drive a relatively slow ring vortex circulation around the tool, while tool eccentricity or 
flats induce a more rapid pumping of metal in and out from the tool. The ring vortex circulation 
through an inward radial flow component at the tool shoulders keeps metal inside the rotating plug 
longer and shifts streamlines (and tracers) toward the advancing side of the tool. The correspond-
ing outward radial flow component at the pin center expels streamlines sooner from the rotating 
plug and shifts them toward the retreating side of the tool. By itself  the ring vortex circulation 
transforms the straight vertical trace of the seam entering the rotating plug to a broad loop extend-
ing from the advancing side of the rotating plug at the crown and root surfaces to the retreating 
side of the plug at the weld center.1
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 Flats on a tool appear to reduce the distortion of the seam trace in transverse section, pre-
sumably by reducing the amount of thread driving the ring vortex motion.2 Hence, the seam trace 
with its ROD, while not straight, is more vertical and a closer approximation to a section of the 
original seam than would be the case with a tool without flats.

 Tool eccentricity pumping drives the metal back and forth in the softened regions at the 
shear surface bounding the rotating plug so as to generate textural variations with a periodicity 
of the tool rotation. The texture variations give rise to etching contrast and are responsible for the 
internal banding seen in transverse weld section as onion rings. It is also responsible for the forma-
tion of surface ripples called ‘tool marks.’

 Study of the effect of flats and tool geometry in general is currently under way.2 At cir-
cumferential locations on the tool where the radius about the center of rotation increases, it is 
anticipated that metal flows out, pumped away from the tool, and at locations where the radius 
decreases, metal is drawn in. Each flat adds a periodic perturbation to the effect of the eccentricity 
of the tool. The perturbation effect is complicated, however, by at least two effects: 

 (1)  As the perturbation circumferential distances shorten with numbers of flats and as the 
metal softens with higher temperatures, it becomes easier for circumferential flow to compete with 
radial flow. It is anticipated that the effect should diminish with increasing numbers of flats and 
higher tool revolutions per minute. 

 (2)  The phase relation between the flats and the tool eccentricity is anticipated to affect the 
details of the structural effect from tool to tool. The reticulated band patterns and the flattening 
and the undulations in the trace of the weld seam associated with flats are thought to be due to this 
perturbation.

3.4  Visual Results for Laser Cleaning

 The transverse sections of the welded panels that were cleaned by laser (figs. 14–16) all 
exhibit the fine, sharp, slightly undulating white line of the ROD running from root to crown, close 
to the center of the weld. These lines are less distinct than seen in the weld of the uncleaned sur-
faces, and at the higher laser powers, seem to disappear intermittently. 
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F14
Figure 14.  Transverse section of laser cleaned weld (300 W, Adapt Laser Systems). 

 Note the fine, sharp, slightly undulating white line running from root 
 to crown toward the center of the weld indicating ROD.

F15
Figure 15.  Transverse section of laser cleaned weld (240 W, General Lasertronics). 

 Note the fine, sharp, slightly undulating white line running from root 
 to crown toward the center of the weld indicating ROD.

F16Figure 16.  Transverse section of laser cleaned weld (20 W, Adapt Laser at MSFC). 
 Note the fine, sharp, slightly undulating white line running from root 
 to crown toward the center of the weld indicating ROD.
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 The tensile specimens from the welded laser cleaned panels all exhibit perpendicular, slightly 
undulating fracture surfaces (figs. 17–19), appearing to follow the seam trace and signifying non-
ductile fractures. 

Figure 17.  Fracture surface of laser cleaned weld (300 W, Adapt Laser Systems). 
 Note perpendicular nonductile fracture.

Figure 18.  Fracture surface of laser cleaned weld (240 W, General Lasertronics).
 Note perpendicular nonductile fracture.
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Figure 19.  Fracture surface of laser cleaned weld (20 W, Adapt Laser at MSFC). 
 Note perpendicular nonductile fracture.

3.5  Tensile Test Results 

 Tensile test results for the welded panels subjected to the various cleaning methods are 
shown in table 2. This table displays average ultimate tensile strength and standard deviation of five 
coupons cut from each of the welds. Excessively low tensile strengths could not be measured for 
two of the five coupons from the uncleaned weld. No tensile data could be obtained for two of the 
three laser cleaned welds where the faying surfaces had not been cleaned. Tensile test coupons 
could not be produced because these welds failed to adequately bond. These results are  
displayed graphically in figure 20.
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Table 2.  Ultimate tensile strength of welds subjected to various cleaning methods.

Cleaning Method Cleaning Coverage

Average Ultimate 
Tensile Strength 

(ksi)
Standard Deviation 

(ksi)
Baseline—Manual cleaning at MSFC Faying surface only 43.16 4.48

Adjacent crown and root surfaces, 
but not faying surface

NA* NA*

Faying surface plus adjacent crown 
and root surfaces

46.84 1.35

300 W laser at Adapt Laser Systems Faying surface only 35.77 4.82
Adjacent crown and root surfaces, 
but not faying surface

NA* NA*

Faying surface plus adjacent crown 
and root surfaces

29.16 5.22

240 W laser at General Lasertronics 
Corporation

Faying surface only 27.10 0.91
Adjacent crown and root surfaces, 
but not faying surface

19.08 1.67

Faying surface plus adjacent crown 
and root surfaces

28.19 0.18

20 W Adapt Laser System at MSFC Faying surface only 27.58 1.98
Adjacent crown and root surfaces, 
but not faying surface

14.21 4.42

Faying surface plus adjacent crown 
and root surfaces

24.81 2.63

Control No surfaces cleaned 2.4** 2.8**

*No tensile data were obtained from these test sets. The welds failed to bond adequately to machine tensile test coupons.
**Average ultimate tensile strength and standard deviation of three tests. In this test set, two of the five tensile tests failed at a level  

too low to measure.
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Figure 20.  Weld strengths as they vary with cleaning method and coverage.

 Average tensile strengths of the laser cleaned welds all measured substantially below that 
of the manually cleaned surface welds and substantially above that of the uncleaned surface weld. 
It was clear from the results for the uncleaned weld that surface oxide contamination is devastating 
to weld strength. Higher laser powers roughly correlated with stronger welds. 

 From the tensile strength results it is clear that the faying surface is the critical surface that 
must be cleaned. Cleaning the adjacent crown and root surfaces of the manually cleaned panels 
in addition to the faying surfaces increased the weld strength by 8.5%. The effect of cleaning the 
adjacent surfaces on the laser cleaned panels was inconsistent, varying from 4% to –18.5%. Surface 
contamination from the adjacent surfaces may be ingested into the body of the weld, swept in by 
the ring vortex circulation. It is possible that surface anodization could interfere with internal flow 
processes by blocking tool mark surface ripples. The reason for the varied strength effect of adja-
cent surface cleaning is unclear. 
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4.  CONCLUSIONS

 Only the current manual cleaning practice appeared to remove oxide well enough to elimi-
nate ROD. All of the attempts to laser clean the anodized 2219 aluminum alloy test samples left 
sufficient residual oxide on the weld seam surface to substantially reduce the strength of a friction 
stir weld. Laser cleaning, where at least the faying surface was cleaned, yielded weld strengths that 
were superior to no cleaning but insufficient to consider the laser cleaning as a potential replace-
ment for manual cleaning at this time. 

 This does not mean that lasers cannot remove ROD from anodized aluminum alloys ade-
quately for welding surface preparation, but it implies that a more sophisticated approach to the 
task than cut-and-try is required. The more sophisticated approach would presumably entail physi-
cal modeling of the process underlying ROD removal and a more extensive test matrix to evaluate 
the effects of specific laser cleaning process variables.

 It may also be questioned whether the test to remove the oxide layer from anodized alumi-
num is more stringent than required for removal of normal surface contamination prior to FSW. 
Typically, aluminum is not anodized prior to welding. When parts are to be anodized prior to weld-
ing, the planned weld zones are masked to prevent oxide build up. Also, it is possible that residual 
sulfur from the anodization process may affect weld quality more than other forms of naturally 
occurring oxide. However, designing a test to remove naturally occurring contamination and oxides 
can be difficult because these may be highly variable. A study would be required to determine what 
constitutes normal surface contamination. ROD is encountered now and then in the real world of 
welding. It may be that some naturally occurring variations of surface contamination are particu-
larly difficult to remove or easy to overlook.

 A secondary conclusion from this study is that it is essential to clean the faying surfaces of 
the weld seam. It is not nearly as critical to clean the adjacent crown and root surfaces, and in the 
case of laser cleaning, could either raise or lower the resulting weld strength.

 In addition, it was observed that residual oxide on the weld seam surface serves as a tracer, 
yielding information about the effect of the flats on the Boeing Tri-Flat tool used to make the weld. 
The flats appear to perturb the looped structure of the seam trace on the weld transverse section 
into a flatter, undulating trace. Weld tensile test fractures appear to follow this trace with corre-
sponding undulations.
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5.  RECOMMENDATIONS FOR FUTURE STUDY

 Although the performance of laser cleaning prior to FSW was inferior to the current 
manual cleaning process in this preliminary study, the potential for savings in time and touch labor 
costs may justify further investigation of laser cleaning processes. Weld specimens cleaned by laser 
methods did show improvements over no cleaning and it is unclear whether improved laser process 
parameters on naturally occurring contaminants and oxides could achieve weld strengths compa-
rable to manual cleaning.  

 The following changes to this test design are recommended for further study of laser  
cleaning as an alternative surface preparation method for friction stir welding:

 (1)  Prepare contaminated test panels by methods other than sulfuric acid anodizing. Con-
taminants could include naturally occurring oxides from random production pieces, contaminants 
on cut panels left to oxidize under controlled conditions, or a less aggressive form of induced oxi-
dation such as conversion coating.  

 (2)  Design a more extensive test matrix to evaluate the effects of laser cleaning process 
variables on weld strength and potentially determine whether these variables could be tailored to 
achieve weld strength comparable to that achieved with manual cleaning. Laser cleaning variables 
may include laser wattage, dwell time, spot overlap (controlled by travel speed and raster spacing), 
or other parameters recommended by the laser manufacturers. 

 (3)  Include cleaning of the panel faying surfaces in all test scenarios. Scenarios may include 
laser cleaning of all test surfaces or laser cleaning of the crown and root surfaces combined with 
manual cleaning of the faying surfaces. 

 Given the resources for a comprehensive study, in order to assess the ultimate capability 
of the laser for removal of various kinds of surface contamination and to assist in determination 
of optimal parameters, it is recommended that a study of the mechanism of laser cleaning be  
carried out.

 Once the ultimate capability of the laser for removal of various kinds of surface contamina-
tion is established, a survey of actual preweld surface contamination would allow an assessment 
of the capability of the laser for surface preparation of friction stir welds.
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