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1 Introduction 

This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insola
tion absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasifica
tion processes and similar processes. The algorithm is based on the the “Photon Monte Carlo” approach described 
by Wang and Modest [6] and implemented in a library that can be interfaced with a variety of CFD codes to analyze 
radiative heat transfer in particle-laden flows. The implementation is in a library where MPI-based parallelism is 
used for performance on modern HPC resources. The implementation is tailored to particle-laden flows where the 
particles are distributed between parallel processes according to a Cartesian decomposition of the physical domain. It 
is initially coupled to the S3D code [2]. S3D solves the compressible Navier-Stokes equations coupled with detailed 
transport and chemical reaction mechanisms and is typically used for research on turbulent combustion. The empha
sis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add 
Photon Monte Carlo capabilities to their own codes. 
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2 Implementation and Algorithmic Details 

2.1 Formulation 

The radiative transfer equation is a spatiotemporal integro-differential equation depending on space, time, wavenum
ber and direction [5]:  dIη	 σsη 

= kη Ibη − kη Iη −σsη Iη + Iη(ŝi)Φη(ŝi, ŝ)dΩ,	 (2.1)
ds	 4π 4π 

where the terms represent, respectively, the change of spectral radiative intensity along a light of sight in the direc
tion ŝ due to: emission, absorption, scattering away from ŝ and scattering into direction ŝ from other directions. The 
subscript η is the wavenumber; in the most general case the emission/absorption (κη ) coefficient is frequency de
pendent, and the scattering coefficient (σsη ) is both direction and frequency dependent. The function Φη(ŝi, ŝ) is the 
scattering phase function, supplying the probability that a ray coming from ŝi is scattered into the direction ŝ. Wang 
and Modest [6] solve this equation with the aid of a discrete particle method where the medium (not necessarily 
comprised of physical particles) is represented by a collection of virtual particles. With a slight modification of the 
emissions function, we use a similar formulation to solve the radiative transfer problem for a physical particle field. 
Given the physical nature of the particles that have volume, we treat the photon bundles using line rays for intersec
tion tests. Where the intra-particle medium is non-participating, the radiative transfer equation between the particles 
reduces to: 

dIη 
= 0 ⇒ Iη(ŝ) = constant.	 (2.2)

ds 
In the geometric limit with opaque particles, the method consists of emitting Nr,i rays from the ith particle and then 
finding the intersection of these rays with the nearest particle that the ray intersects to compute an interaction (ab
sorption or reflection), and continuing until all rays have exited the domain or the domain reaches thermal equi
librium. In the current version, IHT neglects all Lorenz-Mie scattering, including neglecting scattering in the 
Rayleigh limit, although the framework provides a solid foundation to implement such capability. 

Photon bundles are characterized in IHT by an origin O0 i, direction d0i, total energy Qi and, optionally, spectral char
acteristics. Each particle emits photon bundles with energy based on its local temperature: 

Qi = εiσTi 
4Ai.	 (2.3) 

As suggested by Modest [5], if the energy Qi emitted from a single particle significantly exceeds the average Qavgit is 
divided equally amongst Nr,i rays, where:   

QiNr,i = floor + 0.5 , (2.4)
Qavg 

and, with total number of rays NR emitted from Np particles, the average is: 

Np 

Qavg =	 
1 

∑ Qi (2.5)
NR i=1 

and then the energy for the kth ray from the ith particle is: 

QiQi,k = . (2.6)
Nr,i 

In the default mode, all of the particles are considered gray, and the spectral emissions/absorption functions are 
uniform. However, the spectral dependencies can be accounted for by assigning the ray wavelength by rejection 
sampling against the black body distribution, that is:  

λ1
ξλ = ελ Ebλ dλ ,	 (2.7)

εσT 4 0 
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where ξλ is a uniformly distributed (pseudo-)random number and: 

2πhc2
0Ebλ (T,λ ) =   (2.8)

n2λ 5 ehc0/(nλkT ) − 1

is the blackbody emissive power spectrum [5]. 

The particles are assumed to fully absorb incident rays and emit rays isotropically. Isotropic emission consists of 
emission that is uniform with regard to the spherical angle Ω; the azimuthal ψ and polar angles φ are sampled 
according to: 

ψ
∗ = 2πξψ θ

∗ = cos−1 (2ξθ − 1) . (2.9) 

This leads to the directional cosines: 

∗ ∗ nz = sin(θ ∗ )cos(ψ∗ ) n = sin(θ ∗ )sin(ψ∗ ) nx = cos(θ ∗ ). (2.10)y 

The pseudo-random numbers necessary for spawning the rays are obtained using the Mersenne Twister algorithm 
[4]; currently the implementation of the MT algorithm that allows splitting the stream into several independents 
streams by Ishikawa [3] is used to facilitate parallelization. 

2.2 Library structure 

The library is divided into two major sections: the core ray tracing utilities (contained in the module part_radht_m), 
and a set of interface routines for interaction with the CFD program (contained in the module part_radht_inter
face_m). Core datastructures to hold the rays are contained in ray_types_m which is referenced by both of the above 
modules as well as the driver module. Additionally, the module kd_tree_m contains utilities for building a kd tree 
from unsorted particle data. 

The library is arranged into the source files listed in Table 2. 

File Contents 

accumulator_m.f90 Datastructures and utilities for round-off corrected accumulators. 
geom_tools_m.f90 Tools for geometric operations (e.g., intersection testing) 
kd_tree_m.f90 Tools and datastructures for kD trees 
mts_m.f90 Wrapper for mt_stream 
part_radht_driver_m.f90 Main driver routine and interface 
part_radht_interface_m.f90 Module for interacting with CFD code 
part_radht_m.f90 Main raytracing routines 
ray_types_m.f90 Datastructures for storing lists of rays 
timer_m.f90 Routines for performance timing 

Table 2. Source file list 

2.3 Data structures 

Two primary data structures are used to store rays as an “array of structures”. The raylist_t described in Datastruc
ture 2 manages a list of rays described by the properties in Datastructure 1. In the version of the code current as of 
this report, these data structures are accessed directly, although the code is structured such that it would be trivial to 
write accessor functions to facilitate changing to a “structure of arrays”. 
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Datastructure 1 TYPE :: rayprop_t 
real*8 origin(3) Ray global origin 
real*8 dir(3) Ray direction origin 
real*8 Tsrc Ray source temperature 
real*8 e Energy carried by ray 
integer incident Flag for incident insolation ray 
real*8 l_start(3) Origin/entry on local rank 
real*8 l_stop(3) Termination/exit on local rank 
integer nextdest Rank of next process ray should be passed to 

Datastructure 2 TYPE :: raylist_t 
rayprop_t prop(:)	 Array of ray property structures 
integer fill	 Index of highest occupied position in prop 
integer alloc_size	 Allocated size of prop 
integer nempty	 Quick reference for number of empty positions in prop 
integer initialized = 0	 Set to 1 if prop is allocated 
integer rstatus(:)	 Array of status for corresponding to rprop 

(ACTIVE, ABSORBED, EMPTY) 

2.4 Parallel ray tracing 

The ray tracing portion of the library identifies the closest interacting particle to the ray origin. The objective is as 
depicted in Figure 1. Given a ray, R j, described by its direction d0 and point of origin O0 , determine which of the np 

particles at points pi that 0R j interacts with. An interaction is defined by the closest intersection between R j and a 
sphere of radius reff centered at pi. We adopt a combined ray-tracing parallelism approach for the intersection tests. 
Each ray R j is initially assigned to the process where it originates; the ray depicted in the figure is initially assigned 
to Rank 4. This rank checks the ray for the closest intersecting particle within the portion of the domain owned by 
Rank 4, which is an entirely local operation. If no intersection is found, the ray is passed to the next process along 
the ray (Rank 5 here) for testing against that process’s local particles, and so on until either an intersection is found 
or the ray exits the domain (at E in this example). To aid the local queries (i.e., restrict the local particles tested 
for interaction to those in the bounding box defined by the particle entry and exit points for each rank), the particle 
locations are organized into a kD tree. The cost of building this data structure is amortized over the many rays that 
pass through each rank. From a global perspective the particles are organized into a two-tiered data structure, the top 
level being equal sized spatial bins that are distributed and the lower level being a well-balanced kD tree constructed 
from the particles within each top level bin. A further optimization is that the algorithm steps along the ray within 
each process, reducing the particles that need to be tested for intersection further. This is indicated on Rank 5 (the 
same number of subdivisions is used on all ranks in practice, but shown only once for clarity), where the query ‘Q2’ 
is split into ‘Q2a’–‘Q2c’, which encompass a smaller total volume as they follow the ray more closely than ‘Q2’ 
does. 

This approach reduces the complexity of the algorithm significantly from a brute force approach ( that would involve 
nrays × nparticles global intersection tests followed by a depth test for the candidate interacting particles) and also 
enables a scalable parallel solution. 

The loop described in Algorithm 1 is implemented in the module part_radht_driver_m with the aid of the routines in 
part_radht_m to implement the raytracing. The major public routines in the latter module include: 

initialize_part_radht Initialization routine 

finalize_part_radht Cleanup routine 

propagate_rays Loop over local ray tracing and exchange until all rays have been absorbed or left the domain 
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Figure 1. Intersection testing by ray tracing through domain 

locally_absorb Loop over all rays and the portion of the rays between the entry/exit from the portion of the domain 
local to the current rank for intersections and queue for communication if no intersection 

check_local_particles Check local particles for intersection with a specific ray 

check_kd_intersect Check for intersection of a ray with particles inside a supplied bounding box 

reloc_incident_origin Relocate rays marked as incident to the rank where their origin is local. 

2.4.1 kD tree construction 

As an optimization over a brute-force query within the bounding box for each step along the ray, the particles local 
to each MPI rank are organized into a kD-tree [1] at the start of the radiative heat transfer driver routine. While the 
cost of construction is significant, a list of particles within a specified bounding box can be obtained efficiently, 
reducing the number of applications of the intersection test. The cost of construction is amortized over all of the rays 
considered by a given rank so overall gains in performance are realized. 

Utility routines to construct the kD tree from unsorted arrays of particle data from the simulation based on physical 
location are provided in the module contained in the file kd_tree_m.f90. The tree is stored in three data structures: 
an array of structures describing the tree nodes (treelist_t), the node structure (treenode_t) and a structure of arrays 
holding the leaf node data (treedata_t). At the end of the build process, the former two structures contain all of the 
data necessary to query the tree for a list of nodes based on a spatial bounding box, and the latter data structure 
contains the mapping between those nodes and the indices of the particles in the source data used to build the tree. 

The major public routines are as follows: 

kd_tree_init Initialization routine, currently no action other than to cache the local MPI rank id. 

tracer_to_kd Main interface routine, used to convert simulation tracer data 

kd_tree_build Recursive function used by tracer_to_kd to build the tree. 

sort_treedata Utility to sort the treedata_t structure by kD tree node to optimize access based on a node id. 
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Algorithm 1 Ray absorption loop 

1: while active rays > 0 do 
2: for ir ← 1 to rlist% f ill do � Loop over local raylist; in locally_absorb 
3: GET_LOCAL_ORIGIN � Implemented in get_exit_direction_new 
4: GET_LOCAL_EXIT 
5: GET_NEXT_PROCESS(nextdest) 
6: for i← 1 to nsteplocal do 
7: CHECK FOR INTERSECTION ON THIS STEP(mindist_idx) � Uses check_kd_intersect 
8: if mindist_idx > 0 then 
9: rlist%status(ir) ← ABSORBED 

10: ABSORB_RAY(temperature(mindist_idx),rlist%prop(ir)) 
11: if rlist%status(ir) == ACTIVE then 
12: if nextdest > 0 then 
13: QUEUE_RAY_COMM(rlist%prop(ir)) 
14: else 
15: terminate ray 
16: DO_RAY_EXCHANGE() 

Datastructure 3 TYPE :: treedata_t 
real 
integer(kind=8) 
integer(kind=8) 
integer 
integer 

xloc(max_sz, ndim) 
src_id(max_sz) 
nd_id(max_sz) 
fill 
node_range(2,max_sz) 

Particle position 
Index in unsorted source array 
Index of associated node after construction of kD tree 
Index of end of treedata array usage 
Indices for processing node i stored in node_range(2,i) 

Datastructure 4 TYPE :: treenode_t 
integer inuse Status of this entry 
integer parent Index for parent 
integer has_children false if there’s no left/right 
integer left, right Index for left/right child 
real*8 split Split value 
integer splitdim Index of dimension corresponding to split 
integer depth Number of splits from root 

Datastructure 5 TYPE, public :: treelist_t 
treenode_t nodes(max_sz) List of nodes comprising tree 
integer fill Highest node index 
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copy_treedata Utility to duplicate a treedata_t structure 

The second routine (tracer_to_kd) is the interface to the simulation and requires either accessor functions to be 
provided or access to the native particle data structure. The current implementation is based on the expectation that 
the particle data is stored in several arrays where the index into that array is sufficient to identify the particle locally, 
as indicated in Datastructure 6. 

Datastructure 6 Simulation data structure for particles 
integer fill Particle array fill level 
integer state(ARRAY_SIZE) enum list of particle state for each index 

(UNOCCUPIED, HEALTHY, etc . . . ) 
integer, parameter HEALTHY enum value for active occupied state 
real loc(ARRAY_SIZE,3) Particle position 

2.4.2 Intersection testing 

As pointed out by Wang and Modest [6], line rays and point particles can not intersect in practice. The formulation 
used here is that line rays are checked for intersection against spheres of radius reff, where the effective radius is a 
problem-specific parameter. 

2.5 Interface with CFD code 

The intention is that a set of interface routines must be written that can work with both the ray tracing and CFD par
ticle data structures to add incident rays, spawn new rays from particles, compute ray-particle interaction (currently 
absorption) when an intersection is detected, and compute geometry / topology relationships. These routines are 
contained in the module in the file part_radht_interface_m.f90. The key routines that must be defined are specified in 
Routine 1–5 below. 

Routine 1 emit_rays_x0( rlist ) 

Inputs: local raylist (raylist_t)
 
Outputs: local raylist (raylist_t)
 
Effect: Add rays corresponding to incident insolation
 

Routine 2 emit_from_particles( rlist ) 

Inputs: local raylist (raylist_t) 
Outputs: local raylist (raylist_t) augmented with new rays 
Effect: Add rays corresponding to emission from particles 
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Routine 3 emitted_energy(temp,e) 

Inputs: Particle temperature (temp)
 
Outputs: Emitted energy (e)
 
Effect: Physics routine to compute energy emitted by a particle at a given temperature, used in Routine 2.
 

Routine 4 absorb_ray( idx, rprop ) 

Inputs: Ray descriptor (rayprop_t), and simulation index of particle to update (idx) 
Effect: Update particle state based on intersecting ray properties 

Routine 5 get_exit_direction_new( org, dir, strt, stp, nextdest ) 

Inputs: Ray global origin (org), direction (dir) 
Outputs: Ray local origin (strt), termination (stp), rank of next process on trajectory (nextdest) 
Effect: Use routines for ray/plane intersection tests to determine the vector that needs to be checked for intersection 

with local particles, and which rank to pass the ray to next if it is not absorbed on this rank. 

Routine 6 get_rank_coords( pos, rank, ierr ) 

Inputs: Position (pos)
 
Outputs: MPI Rank (rank), Error value (ierr)
 
Effect: Determine the MPI rank where the supplied position is local
 

Routine 7 get_timestep 

Inputs: 
Outputs: Simulation timestep for particle integration 
Effect: Extract the simulation timestep for converting heat transfer rates into energy units and cache it in the module 
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3 Verification and Performance
 

For the purposes of verification we turn to the example problem presented by Modest in Example 21.3. The situation 
is depicted in Figure 2. A semi-infinite slab of 1m height of an isotropically scattering medium is irradiated by 
incident photons from above in a circle of radius R sampled according to:  

∗ r = R ξR φ
∗ = 2πξφ ; (3.1) 

∗ ∗ x = r cos(φ ∗ ) y = r ∗ sin(φ ∗ ). (3.2) 

These rays are then scattered by the medium, and the energy flux falling on to a small region at the bottom of the 
slab extending from (0.2,−0.01) to (0.22,0.01) is computed conditional on the angle of incidence. To perform this 
calculation, particles are distributed so that the interaction length for the scattering medium is matched by the typical 
interaction distance based on the particle density: 

2
σs = πr np, (3.3)p

where rp is the particle effective radius and np is the number density of the particles. Additionally, the particle 
emission functions need to be modified for consistency with the photon Monte Carlo method described by Modest. 
In the PMC method, a ray is initiated and then extended a distance: 

1 1
lσ = ln , (3.4)

σs ξσ 

where ξσ is drawn from a uniform distribution, then extended in a new direction based on isotropic scattering and so 
on until the ray exits the domain. When rays extend until they interact with particles that are randomly distributed in 
space, we need to ensure that the particles have no effective thermal mass. This is done by using the same absorption 
function, i.e.: 

Tnew = T + 
er 

, (3.5)
mCp 

and then modifying the emission function so that: 

eem = mCp(T − T0). (3.6) 

This ensures that each particle emits all of the energy received during the last absorption. For every introduction of 
incident rays, the ray tracing, absorption, particle emission processes are looped over until no active rays remain, 
ensuring that all incident rays are effectively traced until they exit the domain. The simulated flux observations by 
the sensor as a function of acceptance angle are given in Figure 3. 

3.1 Performance Breakdown 

The relative cost of the major operations is given in Table 4 for two scenarios: the benchmark problem described 
above, where the number of incident rays is orders of magnitude larger than the number of particles, and only the 
hot particles emit rays, and, secondly, a problem where the number of incident rays is a small fraction of the number 
of particles and all of the particles emit rays. For the first case, the bulk of the computational effort is in performing 
ray-sphere intersection tests, even with the aid of the kD datastructure (observed to lead to a >50% reduction in the 
time to process the leaves compared checking exhaustively). For the uniform case, with far fewer rays active, the 
relative importance of the overhead for introducing incident rays increases, the overhead for constructing the kD 
tree becomes noticeable, and the imbalance decreases significantly. The high imbalance in the benchmark problem 
is because at the start of the iteration, all of the active rays are introduced on a small number of MPI ranks (those 
associated with the portion of the domain where the inlet is located). Even though the number of incident rays is 
small in the uniform case, the cost of relocating incident rays is significant, but this routine is not optimized and 
makes several passes over every active ray to identify those that are incident and eligible for relocation. 
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Operation Benchmark Case All Particles Emit Case 

Emit incident rays 
Relocating incident rays 
Construct particle kD tree 
Emit rays from particles 
Traverse kD tree 

1% 
3% 
1% 
1% 
5 % 

0% 
29% 
19% 
16% 
4% 

Process tree leaves 50% 5% 
Absorb rays 
Balance of intersection detection 

0% 
39% 

0% 
40% 

Maximum Imbalance1 89% 20% 

Table 4. Division of labor for scattering test case 
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Figure 3. Benchmark problem solution 
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4 Future directions
 

The code described herein, the IHT toolkit, is under active development. The current motivation is to maintain a 
simplified proxy application for the radiative heat transfer in turbulent sooting flames that can be used to study 
performance of these algorithms on future architectures. Questions regarding IHT can be directed to the author at 
ray.grout@nrel.gov. 
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