ARMY REeseArcH LABORATORY

|Chart: A Graphical Tool to View and Manipulate Force
Management Structure Databases

by Frederick S. Brundick, George W. Hartwig, Jr.,
and Samuel C. Chamberlain

T
ARL-TR-4610 September 2008

Approved for public release; distribution isunlimited.

NOTICES
Disclaimers

The findingsin this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-4610 September 2008

|Chart: A Graphical Tool to View and Manipulate Force
Management Structure Databases

Frederick S. Brundick, George W. Hartwig, Jr.,
and Samuel C. Chamberlain
Computational and Information Sciences Directorate, ARL

Approved for publicrelease; distribution isunlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
September 2008 Final October 2003-October 2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

IChart: A Graphical Tool to View and Manipulate Force Management Structure

Databases 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Frederick S. Brundick, George W. Hartwig, Jr., and Samuel C. Chamberlain 8TVOVC

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: AMSRD-ARL-CI-CT ARL-TR-4610

Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Maintaining a high-resolution force structure that may be shared among various organizations is a difficult task. One approach
isto design databases which store Global Force Management (GFM) datain the form of time-based tree graphs, using
enterprise identifiers (EIDs) as unique surrogate keys. Thisreport isthe manual, users’ guide, and general documentation for
the IChart application, which is intended to be a guide and demonstration of the utility of the GFM Force Structure Construct, to
include EIDs and time-based tree graphs. 1Chart iswritten in Java and communicates with a MySQL database server. A
glossary isincluded to explain common object-oriented programming and database terms and concepts.

15. SUBJECT TERMS
TO&E, Java, SQL, database, GUI

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Frederick S. Brundick
a. REPORT b. ABSTRACT c. THIS PAGE 66 19b. TELEPHONE NUMBER (Include area code)
UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED uL 410-278-8943

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures

List of Tables

Acknowledgments

1.

2.

3.

Introduction
Database Schema

Java Classes
31 General DISCUSSION e
3.2 Classesand Elements Related to Database Tables
321 BascEIDand SmpleEIDClasses o
322 OrgTypeandSimilarClasses i it
323 BasicAssocClassandSubclasses
324 OtherClasses o oot
3.3 DatabaseMethods
3.4 Display and Edit MethodsandClasses.
34.1 PanelsandDidlogs
342 INSPECIOIS o o o e e e e
35 OopDatabaseClass e
351 IDBCandSQL Methods
352 HashTableMethods
353 TreeMethods
354 CacheAccessMethods
355 OtherMethods
3.6 TreeComponent Classes i i i e e e

36.1 Background

Vi

vii

viii

3.6.2 NodeClasses v e e e e e 20

363 TreePanel Class 21
364 NodePanel Class i 22
3.6.5 DisplayingaTree 22
3.6.6 TreePostioning Algorithm 22
3.6.7 NodeDrawingDetails. 24
3.6.8 TreeRenderingDetails, 25

3.7 ApplicationClasses e e 26
371 OVEIVIEW . . . e 26
372 IChartClass 26
3.7.3 DetailPanel and MultiltemClasses 28
374 AssocEditorClass. 29

4. Users’ Guide 30
4.1 Introduction. L e e e e 30
42 Getting Started 32
421 Property Files 32
422 Initid Database 33

4.3 MenuBar 33
431 OVEIVIEW . . . e e e e 33
432 FileMenu 33
433 FIndMenu 35
434 ShowMenu 35
435 HelpMenu e 36

4.4 OrganizationTreePanel e 36
441 OVEIVIEW . . . o o e e e e e e e e e e e e 36
442 Display PopupMenu 36
443 EditPopupMenu 37

45 Association Editor 40
5. Future Development 41

6. Conclusion

7. References

Appendix A. Property Files
Appendix B. IChart Installation
Glossary

Distribution List

42

43

45

47

50

53

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Tablelinks 6
Tableclasshierarchy e 7
Organizationtypedisplaydidlog 13
Organizationtypeeditabledialog 13
Persontypedisplaydialog 14
Persontypeeditablediadlog. 14
Organization type/materiel typeeditabledialog 15
Materiel typeinspector e 16
JDBC propertiesdialog 17
Representativetreediagram 23
Order of positioncalculations 24
Typical nodewith connectinglines 25
Tree with first phase of connectinglines 26
Treewithfinal connectinglines. 27
Applicationclasshierarchy 28
[Chart gpplicationmainwindow 31
Associationeditorwindow L 32
Sampletool tip 33
Findnameselectiondialog 35
Partidly collapsedtree 37
Edit popup menu for an organizationtypenode 38
Subtree containingamultiplier L o 38
Addinganodetothetree 39
Subtree containing duplicatenodes L L L 40
Association editor typeinspectors 41

Vi

List of Tables

Tablel. Organizationtype e 2
Table2. Materiel type 2
Table3. Skilltype 3
Tabled. Persontype 3
Table5. Organizationtypeassociations o v v i i i 4
Table 6. Organization e e 4
Table 7. Organization/orgtypeassociation v v v v v v v i i e e 4
Table 8. Organizationtyperelation. 5
Table 9. Organizationrelation e 5
Table10. Databasetables. 6
Table A-1. Contentsof filedefault.properties 46
Table A-2. Contentsof fileichart.properties 46
TableB-1. Filesinprimary directory 48
Table B-2. Directory Structure e e e 438

Vii

Acknowledgments

The authors would like to thank Luke Johnson, a high school student in the Science and
Engineering Apprentice Program, for beta testing the IChart program by constructing a database
after reading the Users’ Guide section of thisreport. He found logic errorsin the program and
made severa suggestionsfor improvingit, all of which were implemented.

viii

1. Introduction

Thisreport isthe manual, users’ guide, and general documentation for the IChart application. The
program is intended to be a guide and demonstration of the utility of the Global Force
Management (GFM) Force Structure Construct, to include enterprise identifiers (EIDs) and
time-based tree graphs. The tool, while not necessarily a model of a fieldable application, allows
the user to rapidly enter GFM data. The program was written with software reuse in mind, and the
components were kept general and may be used to construct various El D-based applications.

|Chart iswritten in Java 1.4 (1) and communicates with a MySQL 4.0 database server (2) using
Java Database Connectivity (JDBC) for portability. The driver isMySQL Connector/J 3.0 (3). All
three of these (free) packages* are available for all magjor architectures. During the development
and testing phase, the MySQL server ran on a Linux laptop while the Java code was written and
tested on SGI and Sun workstations and was also tested on a Windows 2000 desktop PC. New
releases were put on a Windows 2000 laptop that had its own copy of MySQL and the sample
databases.

The database portions of the code were kept isolated as much as possible to facilitate porting to
other relation database management system (RDBMS) programs. We used no special MySQL
extensions to structured query language (SQL) to further avoid any package-specific
dependencies.

A glossary isincluded in this report to explain common object-oriented programming (4) and
database terms and concepts. Appendix B contains | Chart installation instructions.

2. Database Schema

The database we used is|oosely based on the Command and Control Information Exchange Data
Model (C2IEDM) (5). We ignored some of the intermediate abstraction layers because those
values were constants in our context, although there is no reason why more fields could not be
added to the tables. Below are tables describing each of our database tables, beginning with the
four “basic” typesin tables 1-4.

Notice that every table starts with afield named EID (6). Thisis an implementation of the
fundamental concept of EIDs—every record of every table in every database on every system has
auniqueidentifier in acommon format. This enables applicationsto easily reference each other’s
data by exchanging the EIDs and does not require them to know the details of the foreign schema.
It also provides a surrogate key for the mundane task of associating records in one table of a
database with other tables in the same database (i.e., performing an SQL join operation).

*JDBC is part of the standard Java distribution.

An EID isa64-bit value, which in MySQL corresponds to a bigint or int8. It islogically divided
into two portions, which we may ignore for the purposes of this application. We thus consider an
EID to be asingle value which we display in hexadecimal.

The other fields that appear in every table are the start and terminal date/time groups (s_dtg and
t_dtg). The database contains current, archival, and future data. By defining a date/time interval
for every record, the user may select the information that pertainsto a given date of interest (7).
SQL has date and time fields, but it is very inconvenient to work with a date/time group that is
broken into two parts. MySQL provides a datetime type but it is not a standard type. We chose to
use timestamp for our date/time groups. It uses the standard UNIX epoch of 1 Jan 1970 through
31 Dec 2037. Thisis certainly adequate for the data we will be dealing with. The Java class
Timestamp is supported by JDBC and allows us to easily manipulate SQL timestamps.

Theinitia version of the application always uses a time of 00:00:00. It isimportant to note that
thisis not midnight, but the beginning of the day. A time interval includes the start date/time but
excludes the terminal date/time, or s_dtg < date_time < t_dtg. It ismuch clearer to state that an
interval isfrom 1 Oct 2003 up to (but not including) 1 Jan 2004 and a second interval isfrom

1 Jan 2004 to 1 Apr 2004 than it isto say thefirst interval isfrom 1 Oct 2003 00:00:00 through
31 Dec 2003 23:59:59.

All text fields are the maximum allowable size of 255 characters. Thisis almost certainly too
large, but for our small database we could afford to be extravagant. A few of the tables contain a
multiplier field which is an integer or int (or int4).

Table 1. Organization type.

Field Name Type
EID bigint
Org_Type_Long_Name | char(255)
Org_Type_Short_Name | char(255)
Org_Type_Category char(255)
s dtg timestamp
t_dtg timestamp

Table 2. Materiel type.

Field Name Type
EID bigint
Mat_Type LIN | char(255)
Mat_Type_Name | char(255)
s.dtg timestamp
t_dtg timestamp

The basic type tables are entirely self-contained except for the person type table which contains
bigints (EIDs) that refer to records in the skill type table. Thisisexplained in more detail |ater
with sample data.

Table 3. Skill type.

Field Name Type
EID bigint
Skill_Type_Attribute_Name char(255)
Skill_Type_Attribute_Code char(255)

Skill _Type_Attribute_Text char(255)
Skill_Type_Attribute_Remarks | char(255)
s.dtg timestamp
t_dtg timestamp

Table 4. Person type.

Field Name Type
EID bigint
Person_Type_Rank_EID bigint
Person_Type_Grade_EID bigint

Person_Type_Primary_Occupation_EID bigint
Person_Type_Secondary_Occupation_EID | bigint

Person_Type_Skill_Level _EID bigint
Person_Type_Remarks char(255)
s dtg timestamp
t_dtg timestamp

Each organization type may have various materiel, skill, and person types associated with it.
The restrictions imposed on such associations are beyond the scope of this report and are not
enforced by the program at thistime. The associations al follow the same basic form and contain
apair of EIDs, amultiplier to indicate how many of the associated type are required (e.g., a crew
may need three camouflage nets), and aremarks field as shown in table 5.

The tables described so far have all been type definitions or associations. A type may be thought
of as atemplate or generic description. For example, an organization type may be a platoon, a
tank crew, or acompany commander. A materiel type appears to be more specific sinceit contains
aLIN (lineitem number), but it does not contain the serial number of an actual piece of materiel.
Skill and person types function in a similar manner.

The database we constructed contains one table of concrete items, namely organizations. To
continue with the earlier example, specific organizationscould be 1st Platoon/A Co/1-67
AR BN, Tank 1/A Sec/lst Plt/A Co/1-67 AR BN,andCO/A Co/1-67 AR BN.
We did not implement tables to hold concrete materiel items (e.g., a specific vehicle with a certain
bumper number) or individualsin billets (i.e., areal person with a social security number). Such
details are both beyond the scope of this project and cause the database to become classified.

Every organization has alink to an organization type, which in turn provides links to the materie,
skill, and person types. It is possible that an organization’s type remains constant over a given

Table 5. Organization type associations.

Field Name Type
EID bigint
Org_Type_EID bigint
Org_T_ XXX _T_Multiplier | int
XXX _Type_EID* bigint
Org. T_XXX _T_Remarks* | char(255)
s.dtg timestamp
t_dtg timestamp

*XXX isoneof Mat, Skill, or Person.

date/time interval, but the materiel that is aligned with the organization changes within that
interval. Furthermore, another organization of that type may have a different implementation date.
Our solution was to add a modification date/time group (m_dtg) to the organization to org type*
link. While the m_dtg field isincluded in the database table, it is not implemented in the program.

The organizations and organization to org type associations are stored in the database tables
described intables6 and 7.

Table 6. Organization.

Field Name Type
EID bigint
Org_Long_Name char(255)
Org_Short_Name char(255)
Org_Type_Category | char(255)
s ditg timestamp
t_dtg timestamp

Table 7. Organization/org type association.

Field Name Type
EID bigint
Org_EID bigint
Org_Type_EID | bigint
s dtg timestamp
t_dtg timestamp
m_dtg timestamp

*In this report, we always spell out the word “organization” when we refer to a concrete unit. The template
“organizationtype” is often shortened to “org type.”

The sample application maintains organization charts, which we implemented as trees that
describe the organization hierarchy. We use the general term link for both relations, which refer
to parent/child links, and associations, which are the horizontal links described earlier. The
organization type and organization relation tables are identical except for one additional field in
the org type relation table—a multiplier which indicates how many instances of the child type
should be instantiated. In the sample database, the organization type Tank Company iSthe
parent of one Company HQ and three P1latoons. The corresponding organization tree defines
three distinct platoons, namely 1st, 2nd, and 3rd Platoon/A Co/1-67 AR BN.The
organization type and organization relation tables are shown in tables 8 and 9.

Table 8. Organization type relation.

Field Name Type
EID bigint
Org_Type_Parent_EID bigint
Org_Type_Relat_Multiplier | int
Org_Type_Child_EID bigint
Org_Type_Relat_Role char(255)
s.dtg timestamp
t.dtg timestamp

Table 9. Organization relation.

Field Name Type
EID bigint
Org_Parent_EID | bigint
Org_Child_EID | bigint
Org_Relat_Role | char(255)
s.dtg timestamp
t_dtg timestamp

Thefinal table, Seq_Table (sequence table), contains only a single record, which is the highest
EID that has been used. A more sophisticated application may use an EID server (8) to obtain
EIDs when new records are created, but this approach is sufficient for our purposes. The
construction of new EIDsis explained later. The complete list of tablesis shown in table 10 along
with the MySQL comment that describes each one.

The relationships between the tables are shown in figure 1. The EIDs that are the endpoints of
each link are actually stored in the various association and relation tables except for the
PersonType— Skill Type links. With the exception of link 7, all links originate at the top or left
and proceed down or to the right. Links 1 and 3 are the organization and organization type
relations (stored in tables OrgRelat and OrgTypeRelat), while link 2 is the organization to org
type association (OrgOrgTAssoc). The three organization type associations are represented by

Table 10. Database tables.

Database Name Description
OrgType organization type
MatType materiel type
Skill Type skill type
PersonType person type

OrgTMatTAssoc org_type/mat _type association
OrgTSkillTAssoc | org_type/skill type association
OrgTPersonTAssoC | org_type/person_type association

Org organization
OrgOrgTAssoc org/org_type association
OrgTypeRelat org type relation (tree)
OrgRelat organization relation (tree)
Seg_Table EID sequence number

OrgType @ MatType

Org
@ ®| SkillType
@ @l ® PersonType

Figure 1. Tablelinks.

links 4-6 (OrgTMatTAssoc, OrgTSkillTAssoc, and OrgTPersonTAssoc). The set of links
denoted by | 7 |isa special case because a person type contains five skill types.

3. Java Classes

3.1 General Discussion

Every SQL table (except Seg_Table) has a corresponding Java class with the same name. Unlike
the tables, which contain only data, the classes also contain methods to manipul ate the data.
Because of the fields and concepts common to the various tables, the classes are not smply copies
of the tables. An abstract class named BasicEID was defined to hold an item’s EID and date/time

group interval, act as the superclass of al the classes, and provide common functionality. The
database tables described in table 5 are so similar that an abstract class, BasicAssoc, was defined
to serve as the superclass of the corresponding classes. Likewise, the abstract class BasicRelat is
the parent of the OrgTypeRelat and OrgRelat classes. The OrgType and Org classes have the
abstract parent BasicOrg to make it easier to manipulate them in the organization type and
organization trees. The special class SimpleEID does not correspond to a database table and is
discussed in section 3.2.1. The class hierarchy is shown in figure 2 with the abstract classesin
bold.

— BasicOrg OrgType
— MatType Org
— Skill Type
— PersonType
OrgTMatTAssoc
BasicEID —+ BasicAssoc { OrgTSkill TAssoc
OrgTPersonTAssoc
— OrgOrgTAssoc
— BasicRelat OrgTypeRelat
—E OrgRelat

- SimpleElD

Figure 2. Table class hierarchy.

The mapping between MySQL data types and Java variables is very straightforward. Every time a
bigint (EID) appearsas afield in atable, it is declared to be a BasicEID in the matching class. A
char(255) (text) field becomes a String, atimestamp (date/time group) field isa Timestamp,
and an int (integer) isanint.

When arecord is read from atable, an object of the appropriate typeisinstantiated. Storing EIDs
as bigints in the database tablesis fine for performing SQL join operations, but it is very
inefficient when the Java objects are manipulated. Therefore, any EIDs that are found are initially
stored as SimpleElIDs. After al of the data has been loaded into memory, the BasicEIDs (except
for the first field) are replaced by references to the object that has that EID.*

Every class has the same general members:

e aprotected instance variable for each table field,
e congtructors,

*Object-oriented programming allows a variable to contain an instance of the declared class or any subclass of it.
For example, a BasicEID variable may contain an OrgType, MatType, OrgTSkillTAssoc, or any of the classes in
figure 2.

a no-argument constructor that uses default values

a“normal” constructor that takes a value for each field

a constructor that takes a vector of field values

a constructor that copies the values from an existing object of the same type

e an accessor and mutator method to get/set each instance variable's value,

e atoBigString method that returns a string with the EID, date interval, and at |east one field
value for debug purposes, and

e methodsto:

— load/store/update the database
— display/edit an object
— manipulate atable of these objects.

The basic type classes and organization class also define a toDescString method that returns a
string with the value that best describes the object. It isused as alabel with EID buttons to
identify links.

Extensive use has been made of inheritance, overloading, overriding, and polymorphism.
Inheritance is the simplest of the concepts; it means a subclass builds on the members (variables
and methods) of its superclass. The subclass absorbs the attributes and behaviors of the superclass
and adds new capabilities. Overloading is when a class has multiple methods with the same name
but different argument lists or signatures. An example of thisisthe four different constructors that
are defined in each class. In contrast to this, overriding occurs when two methods with identical
signatures are defined in a superclass and a subclass. Suppose that instances of a superclass and
subclass are both instantiated and the same method name is invoked. The superclass object of
course uses the superclass's definition of the method, while the subclass object overrides that
definition and usesits own definition of the method. The superclass method may be thought of as
the default action to be performed unless the subclass overridesit. Polymorphism isthe process
by which Java allows a subclass object to be stored in a superclass variable and automatically
overrides methods in away that is transparent to the programmer. Our classes are highly modular
and reuse existing methods—in both the current class and in its superclass—whenever possible.

3.2 Classes and Elements Related to Database Tables

Variables and methods in the various classes fall into three categories. members that mirror the
table fields and manipulate the data, members that interface with the database and user, and
members that were defined for the needs of the application. We will explain the former members
first as defined in the classes listed in figure 2.

3.2.1 BasicEID and SimpleEID Classes

The BasicEID abstract classis the general template for EID objectsin our application. It has
three instance variables that map to table fields—EID isalong or 64 bit integer while s_dtg and

t_dtg are Timestamps or date/time groups. The no-argument constructor sets the EID to zero,
another constructor uses the EID value passed as an argument, and the third accepts the EID, start
date/time group, and terminal date/time group. The methods getEID, getSDtg, and getTDtg
fetch the appropriate value and setEID, setSDtg, and setTDtg assign anew value.

Every Java class should define atoString method that returns a string that describes the object.
BasicEID’stoString returns the EID as a string of hexadecimal characters and it is used
extensively in our application. Every time an object is displayed, its EID is shown using this
method. We also wanted a method that would return a descriptive string for debug purposes.
Since toString was already being used, we chose to declare an abstract toBigString method. The
method getIntervalString returns the date portion of the object’sinterval as a string for debug
purposes.

We required the ability to compare two EIDs and see if they are equal. The method equals accepts
an object and comparesit to the current object. If the argument is an instance of BasicEID (or one
of its subclasses), then the EIDs of the two objects are compared. A method named isIninterval
determinesif the supplied date/time group falls within theinterval defined for this object. Another
utility method is hashCode. It uses the same algorithm as Long.hashCode to return an integer
that represents the current object. The valueis not unique (integers contain only 32 bits compared
to the 64 bitsin along variable) but is adequate for use in our application’s hash table.

Because BasicEID declares several abstract methods, it is an abstract class and therefore may not
be instantiated. We needed to instantiate aminimal EID object for the primary key of every
record and as atemporary placeholder in other EID fields. The class SimpleEID is our solution to
the problem. It defines two constructors that invoke the corresponding BasicEID constructors. We
must provide definitions for all of the abstract methods, but at the same time we wanted to make
sure that they are never invoked (which would indicate alogic error). The definition for each
method therefore throws an exception with a description to indicate which method was invoked. *

3.2.2 OrgType and Similar Classes

The OrgType classis described as being representative of the MatType, SkillType, PersonType,
and Org classes. We adopted a naming convention for these five tables and classes:

¢ field names have the table name as a prefix,
e wordsin field names are separated by underscores,
¢ the corresponding Java variable has the same name, except variables use “camel casing,”
e get/set methods drop the table name prefix, and
¢ the argument to a set method may be abbreviated.
For example, the table OrgType is mirrored by the class OrgType, itsfield

Org_Type_Long_Name becomes the variable orgTypeL.ongName, and the class methods are
getLongName() and setLongName(longName). Likewise, table Skill Type becomes class

*We use this technique in other classes where an abstract method must be given a definition but the method should
never be invoked.

SkillType, field Skill_Type_Attribute_Name is the variable skill TypeAttributeName, and the
methods are getAttributeName() and setAttributeName(attrName).

The OrgType class has three string variables that mirror the fields in the OrgType table. Each has
agetXXX and set XXX method to retrieve or store the value in the current object, respectively.
The methods are declared as abstract in the parent class BasicOrg so that our application may
access the variablesin a general manner.

The no-argument constructor sets the EID to zero by indirectly invoking BasicEID’s no-argument
constructor via BasicOrg's ho-argument constructor and stores empty strings in the remaining
variables. A constructor which accepts values in the argument list also invokes BasicEID’s
constructor (via BasicOrg) to store the EID and date/time groups, then stores the rest of the
arguments locally. The third constructor takes a vector of values that we assume are in the correct
order, while the last constructor extracts the values from a supplied OrgType object. Both of these
constructors pass the extracted values to the second constructor to minimize redundant code.

The toBigString method returns the EID in hexadecimal (by invoking BasicEID’s toString
method) concatenated with the organization type's long name and the date/time group interval,
while toDescString returns the short name.

All linking EID fields, such asthe ones in PersonType, are handled in a special way as explained
in the next section.

3.2.3 BasicAssoc Class and Subclasses

The abstract BasicAssoc classis both representative of the classes that contain EIDs that are used
as links and is the superclass of the three organization type association classes. The integer
multiplier islike the variables described earlier and has getMultiplier and setMultiplier
methods. Likewise, the remarks string variable is accessed via getRemarks and setRemarks.

EIDs are handled differently because they are of type BasicEID. The no-argument constructor
setsthe EID of the new object to zero by explicitly invoking BasicEID’s no-argument constructor,
sets the multiplier to one, and stores an empty string in the remarks variable. The default values
for orgTypeEID and assocTypeEID are assigned by instantiating new SimpleElD objects with
that class's no-argument constructor.

The next two constructors act the same way except the new values are obtained as separate
arguments or in a vector of values. The two EIDs are passed in as longs and new SimpleEIDs are
instantiated by invoking SimpleElD’s one-argument constructor.

The last two constructors are similar to the others except they access BasicEID objects and not
long variables. One receives BasicEID references and the other extracts them from the given
BasicAssoc object. Thus, no new SimpleElID objects are instantiated. The references to the two
existing objects are stored in the new object.

To get an EID with the method getOrgTypeEID, aBasicEID is returned because the application
probably wants the reference to the actual OrgType object. If only the numerical EID isrequired,

10

the object’s getEID method may be invoked.* The setOrgTypeEID method is overloaded with
two different versions. Thefirst accepts along and instantiates a SimpleEID with it, while the
other one takes an existing BasicEID. Their respective arguments are named orgTypeEID and
orgTypeEIDRef to emphasize their different types.

Asin other classes, the toBigString method returns a string that starts with the object’'sEID in
hexadecimal. If the multiplier is greater than one, it is appended between square brackets. Next is
the OrgType EID in hexadecimal, an arrow, the associated EID, and the date interval. The string
ends with the association’s remarks.

The three subclasses of BasicAssoc—OrgTMatTAssoc, OrgTSkillTAssoc, and
OrgTPersonTAssoc—are almost identical. Each has five one-line constructors that invoke
BasicAssoc's constructors with the proper arguments. In order to make it clearer what sort of
association they contain, one-line access methods were written to invoke the generic
get/setAssocElID methods in BasicAssoc. For example, OrgTMatTAssoc has methods
getMatTypeEID and two versions of setMatTypeEID.

3.2.4 Other Classes

The OrgOrgTAssoc classisasimplified version of BasicAssoc. It does not have a multiplier
instance variable because there is a one to one relationship between each organization and its
organization type.

The class requires three constructors (no-argument, multiple arguments, and vector). Logicaly, it
could have been a subclass of BasicAssoc, but we chose to create a separate class because the
organization typeisthe “child” end of the link, not the “parent.” In fact, ageneral “link”
superclass could have been defined for all associations and relations. However, the remaining
class methods do not have much in common, and most of each class would have ended up being
unigue. We felt it was sufficient to use BasicEID as the parent class.

BasicRelat is another variation of BasicAssoc, having aBasicEID for the parent, another for the
child, amultiplier, and arole. It does not follow the naming convention of converting the database
table field names to Java variables because of its generic nature. Its subclasses are OrgTypeRelat
and OrgRelat. OrgRelat has additional constructors because it does not use amultiplier and
therefore always passes a multiplier value of 1 to BasicRelat’s constructors.

The class SQLUtility has one static method and nothing else. This method, makeAllTables,
contains the SQL code to create all of the tablesin a new database. The current definition has
detailsthat are specific to MySQL, for example, the keyword used to denote a 64-bit integer. By
isolating the code in this class, it should be easy to modify it to support other RDBM Ses.

*Experienced Java programmers are familiar with the concept of chaining method calls together. The operation
may be performed with someAssoc.getOrgTypeEID () .getEID().

11

3.3 Database Methods

Following the tenets of object-oriented programming, we defined the same set of methods for each
of our nine classes that has a database table as a counterpart. Whenever possible, the application
invokes the desired method by name and polymorphism determines which version of the method
should be run. In order to implement this, we had to declare the methods in BasicEID. We made
them abstract to further emphasize the fact that each subclass must define its own version of the
methods. We also tried to keep SQL code out of the data classes as much as possible.

The method buildCommaDelimString returns a comma delimited string containing the values of
al the fields that make up one row of atable. Valuesthat are text strings or timestamps are
surrounded by single quotes. The class that invokes this method is required to add the
SQL-specific codeto turnit into avalid SQL insert command.* The method is also used to save
the datain normal text files for off-line manipulation or archiving.

A MySQL update command requires that the field names be supplied along with the values.t We
patterned the buildUpdateString method after the buildCommaDelimString method. In both
cases the table name is supplied by the OopDatabase methods that perform the actual database
updates.

Thefina database method isloadRecords. Unlike al of the methods mentioned thusfar, itisa
static method. It loops through every record in a ResultSet, extracts the field values, and invokes
the class's constructor to instantiate a new instance of the class with the given values. It returns a
vector containing all the new objects that have been instantiated. As before, some of the details
have been hidden from the class. A method in OopDatabase extracts the desired records from a
table (in our initial version, we fetch all of the records in each table) and passes the result set to
loadRecords for processing.

3.4 Display and Edit Methods and Classes

The user must be able to view and edit objectsin the database, both one at atimeandin a
scrollable table. We implemented a layered approach to provide the former abilities, and defined a
new class Inspector to construct and manipulate tables.

A note about color: we use color in our application to highlight and identify different items such
as materiel types versus skill types. Because this report is not in color, we disabled the graphical
user interface (GUI) parameter colors as defined in table A-1 of appendix A. The same colors
would normally be used in the title of an inspector, the button bar of a dialog, and tabs. We | eft
the colorsintact for nodes and some buttons.

*The command for MySQL is INSERT tableName VALUES (value, value, ..., value).
fWe did not need the field namesin the insert command because we were supplying a value for every field.

12

3.4.1 Panels and Dialogs

The method makePanel constructs a Java JPanel with agrid of abbreviated field names and their
values. It accepts aboolean (true/false) argument to specify whether or not the object’sfields
should be editable. By having a method that returns a JPanel, we may embed panels in various
GUI components. The simplest of theseisadialog as shown in figure 3 and its editable version in
figure 4. The makeDialog method in BasicEID creates a JDialog, inserts a panel into it, and
creates buttons to close the dialog.

& OrgType: HQ Tank Section/Company H)/Tank Company, Ta il

EID 100000003

Long Hame HQ Tank Section/Company HouTank Company, Tank Bn G2
Short Hame HQ

Category Doc

Close

Figure 3. Organization type display dialog.

& OrgTy¥pe: HQ Tank Section/Company H);/Tank Company, Ta x|

EID 100000003

Long Hame |HQ Tank Section/Company HQTank Company, Tank Bn (24KD
Short Hame [H

Category Doc -

Doc
Crew % Keep Changes Cancel

Position

Figure 4. Organization type editable dialog.

The standard Java conventions are used in the panels. Thefield labels are written in abold font. A
box with a grey outline may not be changed, while a white box contains text that may be edited.
The text scrolls within the box and the user is not limited to the area shown on the screen. There
are alimited number of categoriesthat may be assigned to an organization type, so a drop-down
list (or combo box in Javaterms) is constructed instead of asimpletext field. The editable
organization typeis shown with the user selecting a value from the drop-down list.

One of our criteriawas that the user should never deal with EIDs directly; in fact, he should never
see them. This application displays EIDs for debug and explanation purposes. However, for
future applications and to aid in clarity, adescription is also displayed next to all EIDs (except the

13

primary EID in each object, which would be redundant). Figures 5 and 6 show how the skill type
EIDs areidentified in noneditable and editable person type panels.

EID links are always displayed as buttons (which is why the text is emboldened). Clicking on the
button will cause a display dialog to be opened for the linked object; in the case of a person type,
al of the links are to skill type objects. The descriptive text next to each button is provided by the
linked object’s toDescString method. The editable version of the panel is similar, except the EID
and description pairs are shown in drop-down lists.

& PersonType Skill EIDs x|

EID 100000084

Rank EID 10000005f | PFLC:
Grade EID 100000067 | EZ
Prime Occup EID |10000006k | 19K
Second Occup EID | 10000006e | |0
Skill Level EID 100000078 | |1

Remarks
Close
Figure 5. Person type display dialog.
& PersonType Skill EIDs |
EID 100000084
Rank EID 10000005Ff PFC ~
Gracde EID 100000067 E3 ™
Prime Occup EID | 10000006h 19K
Second Occup EID | 10000006 O -
Skill Level EID 10000006h 19K ~
Remarks
Keep Changes Cancel

Figure 6. Person type editable dialog.

In keeping with the graphical nature of the relationships between objects, the application provides
ways for the user to define links. These are discussed in more detail later. The user also needsto
be able to enter descriptive text about the links, so we use editable dialogs such as the one shown
infigure 7. We chose to initially allow the user to supply the multiplier by simply typing it in.
Those are the only two editablefields.

14

x

EID 1000002838

0Org Type EID 100000006 | Gunner

Multiplier 1 |

Materiel Type EID (100000024 | |FISTOL SWk AUTOMATIC: MY
Remarks

Keep Changes Cancel

Figure 7. Organization type/materiel type editable dialog.

The remaining classes—OrgTypeRelat, OrgRelat, and OrgOrgTAssoc—use variations of the
OrgTMatTAssoc panel and are not shown in thisreport. The first two have afield for the
relation’s role, and only the first has amultiplier.*

When the user accepts the changes he has made to an object in a showDialog editing panel, the
object’s fireEditingStopped method is invoked with the panel as its argument. This method
extracts the values from all of the editable fieldsin the panel. If avalue has been changed, the old
value in the object isreplaced and aflag is set to indicate that the object has been modified. The
BasicEID method wasEdited returns true if the flag is set.

3.4.2 Inspectors

The class Inspector was given a generic name to emphasi ze the general nature of theclass. Itisa
subclass of AbstractTableModel and combines a custom table model with a JTable and the
Vector of datarowsthat are displayed in thetable. It is used to display the items associated with a
given organization type and to display rollups of theitemsin an org type subtree.

Inspector’s constructor takes an array of column names and uses the private method
addButtonSymbol to add an unlabeled, fixed width column at the beginning. As shownin
figure 8, the contents of this column are“0”, “N”, or “m” to indicate an unchanged, new, or
modified record, respectively. We chose to make the cells of the table noneditable and for all
editing to be performed with a panel as described in the previous section. If the user clicks on the
first cell of any row, the record is displayed in a noneditable dialog. Thisfirst column isthe only
part of an Inspector that references the BasicEID class.

We incorporated the TableMap and TableSorter classes from Sun Microsystems (9) and
modified the related classes SortHeaderRenderer and SortArrowlcon published in Java Pro
magazine (10). These classes allow the user to sort a table by clicking on any column’s header
cell, while a second click reverses the direction of the sort. A triangle is drawn to indicate the sort
order, with the triangle pointing from high to low values. The materiel type inspector shown has
been sorted on the LIN column.

*OrgRelat inherits amultiplier which isignored.

15

Materiel Type

| EID | oy | uNs | MNarre |
0 100000025 1|B49272 |BAYONET-KNIFE: WISCABBARD F .
M 100000026 1|B6T7EE |[BINOCULAR: MODULAR CONSTR...
o 100000021 1M18526 |MASK CHEMICAL BIOLOGICAL CO...
rn 100000024 1/P9g152 |PISTOL GMM AUTOMATIC: M3

Figure 8. Materiel type inspector.

The Inspector class has several methods for manipulating the data that is stored in the Inspector.
Method addRow adds arow of data, updateRow finds the row that has the same primary EID as
the supplied row and replaces it with the new values, and deleteAlIRows clears the Inspector.*
Every class that corresponds to a database table defines a makeRow method to construct a row of
valuesto beinserted (or updated) in an Inspector’s JTable. The application may get the JTable
associated with an Inspector by invoking getTable. In addition, the standard methods as required
by AbstractTableModel are defined. The inner class EIDCellEditor extends DefaultCellEditor
and provides the mechanism to display a dialog when the user clicks on the first cell of any row.

Each table class also contains two or three versions of a static method named makelnspector.
The primary version may accept aboolean argument which denotes whether or not the Inspector
should have a“ Qty” (quantity) column.® It instantiates and returns a new Inspector using the
column names that are appropriate for this class. Associations and relations have amultiplier field
that states how many instances of an object are required (e.g., acompany may have three platoons
and a crew may need two sets of night vision goggles), and the “Qty” column is not necessary.
However, when abasic type is displayed in an Inspector, the quantity must be obtained from the
link or computed by rolling up the child objects.

The other makel nspector instantiates an Inspector by invoking the single argument version, then
loads the table with a vector of data. The three OrgT XXX TAssoc classes use the static
loadInspector method in BasicAssoc, while the other classes must each duplicate the same
enumeration loop to load the data. Other arguments denote the table’s width in pixels and the
maximum number of rowsto display. We assume that the table will be displayed in a scrollable
pane.

3.5 OopDatabase Class

The class OopDatabase servestwo primary roles: it containsal of the methods that connect to a
database server and it holds the cache of data that has been loaded from the database into memory.
The only methods that involve SQL in the classes we have described are buildCommaDelimString
and buildUpdateString, which return strings that conform to the standard SQL insert and update
commands. The static method |oadRecords must know the name of every field and processes a
ResultSet of records. However, none of those methods communicates directly with a database.

*BasicEID invokes the first two methods with its convenience methods addRowTo and updateRowln.
fIf no-argument version exists, it invokes the other method with the value false.

16

3.5.1 JDBC and SQL Methods

The constructor for OopDatabase processes the application’s property list with processProperties
to determine the name of the JDBC driver, the URL and host name for the MySQL server,* and
the user name and password needed to connect to the database. If any JDBC property is not given,
aJDBC dialog isdisplayed (with showJDBCDialog) as shown in figure 9. If the user name is not
given, the current login name is used, while a missing password causes the user to be presented
with alogin dialog (with showLoginDialog). The JDBC driver isloaded and alogin timeout is
set so the application terminates cleanly if the server is not functioning.

& DE Server Information ﬂ

JDBC Driver (org.gjt.mm.mysgl. Driver
JDBC URL jdbemysgllr
Server Hame host_namef

| Keep Changes || Cancel

Figure 9. JDBC properties dialog.

The method connect is given the name of the desired database and attempts to open a connection
to it with the stored user name and password. If the database nameisnull, a simple connection
is made to the server, but no database is opened. If the connection attempt is successful, the value
true isreturned and the connection is stored in an instance variable. The close method closes
the connection, while reconnect may be used to open a new connection to the current database.

Invoking load Table with the name of atable causes an SQL query statement' to be executed,
returning a ResultSet of all of the recordsin thetable. It isinvoked several times by
loadAllTables, each time passing the result set to the appropriate |oadRecords class method. This
isolates the instantiation of the new objects from the query that is used to fetch their records from
the database. The method also gets the current EID from the Seq_Table table and indirectly builds
the internal links as described in the next section.

To store data in the database, method saveVector is given avector of BasicEIDs that are all of the
same type (OrgType, OrgTMatTAssoc, etc.). The class name of the first object is determined* and
used as the table name. Each object in the vector isinserted into the table by invoking the
insertTable method which constructs an SQL insert command with the object’s
buildCommaDelimString. The object’s status flag is then cleared to indicate that the object is
identical to the record in the database.

Modified objects are updated in a similar manner. Method updateVector is given a vector of
BasicEIDs, where each object may be in one of three states. Unchanged objects are ignored,
while newly created objects are passed to insertTable. An SQL update command is constructed

*Switching to adifferent RDBM S may be as simple as changing the value of the driver and URL.
TSELECT * FROM tableName.
tsomeVector.get (0) .getClass () .getName (), then remove the package prefix.

17

by giving amodified object to updateTable which in turn invokes buildUpdateString. The
object’s status flag is then cleared.

The methods saveVector and updateVector are invoked from the saveAll and saveChanges
methods, respectively, for each of the database class vectors. The current EID is also stored in the
Seg_Table table, and a cache status flag is cleared because the cache and database are now
identical.

The related methods saveAll ToFiles and writeVectorToFile should be self-explanatory. The
former calls the latter to store datain text files so they may be archived or carefully edited and
reloaded with loadFiles. (The private method parselLine extracts the elementsfrom a
StreamTokenizer and returns a vector of String and Long objects.) This technique could also be
used to copy the data to another system. The data strings are created with
buildCommaDelimString and written to files with the same names as the classes (or tables).

The general database methods are makeNewDB, which creates a new database and indirectly
creates its tables, and emptyDBTables, which deletes all data from the tables of an existing
database. The application allows the user to load data from an existing database. Thelist of
database names ending with “chart” is generated with getDatabaseNames. The method
getErrorCode returnsthe integer error code of the last SQL statement that was executed and is
primarily used to detect when a new database could not be created because it already exists.

3.5.2 Hash Table Methods

One component of the cache is a hash table that maps BasicEIDs to database table objects. Given
an EID, we need to be able to quickly and easily find the object with that value. Mappings are
created with addToHash, which takes any child of BasicEID and insertsit into the hash table.
EID values are supposed to be unique, but to be safe we check for duplicates here and throw an
EIDEXxception if we find one. Method updateHash takes a vector of objects and adds them all
with addToHash. We also need to perform the reverse operation, i.e., find an object in the hash
table given its EID. The overloaded method getBasicEIDFromHash does thiswith either along
EID or aBasicEID value.

The private method makeL.inks performs a very important operation. It replaces the smple
BasicElIDsthat are links with references to the objects that have those EIDs as mentioned in
section 3.1. It steps through every vector in the cache, gets the EID from alink field, usesit to get
the appropriate object from the hash table, and stores the object reference in thelink field.* This
method is invoked after data has been loaded from a database or set of datafiles. It also buildsa
vector of al of the BasicEID vectors for easy manipulation.

*Given the OrgTMatTAssoc object otmt, the organization typelink is updated with
otmt.setOrgTypeEID (getBasicEIDFromHash (otmt.getOrgTypeEID())).

18

3.5.3 Tree Methods

We assume that a database contains exactly one organization type tree and one organization tree
for agiven date of interest.* The root (top-most node) of any tree by definition must appear
exactly once. The method getRootNode searches the list of OrgTypeRelat links and finds the
OrgType which is a parent but never a child. The method buildOrgTypeTree starts building the
org type tree with the root object, then recursively invokes the private method
addOrgTypeSubTree to construct subtrees from the OrgTypeRelat data and add them to the tree.
Since we also want to know how many times an org type appears in the tree when the user editsit,
the method countOrgTypeNodes traverses the org type tree and invokes the add ToNodeCount
method of each OrgNode object. (As a side effect, countOrgTypeNodes returns the total number
of nodesin thetree.)

The organization tree is constructed in a similar manner. The root organization is located with
getRootNode, then recursion is used by addOrgSubTree to construct the tree from the OrgRelat
links. Every organization is unique, so there is no reason to compute node counts.

3.5.4 Cache Access Methods

A large number of methods provide access to the values stored in the cache. Simple methods like
getOrgTypes and getOrgTSkillITAssocs return the vector of desired objects, while similar
methods (such as addOrgType and addOrgTSkillTAssoc) add a new object to a vector and also
insert it in the hash table.

Objects containing links require more complicated methods. For example, the method
getOrgTMatTFromOrgT searches the vector of OrgTMatTAssoc objects for objects that have
the desired OrgType object as one end of alink (by invoking getOrgTypeEID) and returns a
vector of all of thelinks found." The English equivalent is, “Give me all of the alignments of
materiel type objects with this organization type object.” Association creation methods like
makeOrgTypeAssocs use the getOrgT XXX TFromOrgT methods to get vectors of associations,
then instantiate new OrgT XXX TAssoc objects and perform the necessary bookkeeping to
properly update the cache. Relations are manipulated in asimilar fashion. Method
getOrgTypeLink finds the OrgType object with the desired parent and child EIDs, and
makeOrgTypeLink performs the reverse operation by creating a new OrgTypeRelat object with
the given parent, child, and (optional) role.

3.5.5 Other Methods

In order to properly instantiate new objects for eventual insertion into the database, the
application must obtain new EIDs. The method getNextEID increments the EID counter in the
cache, then returns the new value. A nonincrementing version named getLastEID simply returns

*The ability to store incomplete subtrees may be added in the future.
tBecause the reference to the actual materiel type object has been stored in the OrgTMatTAssoc object, the hash
tableis not required.

19

the current value, although the application does not invoke it at this time because only the
OopDatabase class needs the value. Eventually an EID server will be required to ensure that the
ElIDs are unique throughout the enterprise.

The debug method printVectors printsthe first 10 elements of every vector to verify that the data
is being loaded properly. It aso prints the number of objects of each type and the current EID
value.

3.6 Tree Component Classes
3.6.1 Background

The application allows the user to build or modify MTOES, or Modification Tables of
Organization and Equipment, in the form of atree. We chose to use the standard Java class
DefaultMutableTreeNode which defines general-purpose nodes in a tree data structure.
However, we could not use the JTree class because it displays hierarchical nodesin an outline
form and we wanted to use a horizontal display layout.*

To display the organization datain a conventional, top to bottom, tree representation, we adapted
an algorithm from the OrgChart program (11). The algorithm was converted from the original C
code into Java methods that accept atree constructed from DefaultM utableTreeNodes as input.

3.6.2 Node Classes

Before we may build atree, we need to define our own node classes. The class OrgNode isa
small “wrapper” class that contains a BasicOrg and a BasicRelat as instance variables. The
BasicOrg is areference to an OrgType or Org, while the BasicRelat, an OrgTypeRelat or
OrgRelat, isthe link to the parent node. By storing the link in this node, we may obtain the value
of the multiplier and also determine which links are new.

In addition to a constructor that accepts a BasicOrg and a BasicRelat, along with access methods
to get and set those variables, there is a constructor which instantiates a new OrgNode from an
existing one. A set of generic convenience methods allow the programmer to access the
BasicOrg's components (EID, long name, short name, category, and node count) directly by
relaying the request to the appropriate BasicOrg method.

Two OrgNodes may be compared with the equals method which returns true if the nodes
contain the same BasicOrg. Method findInName invokes the BasicOrg’'s method of the same
name to determine if the given string is part of the object’s long or short name.

Class DisplayNode is a child of OrgNode and adds the variables and methods needed to draw a
node. It has many instance variables to keep track of the geometric aspects of the node, such as
the coordinates of the upper left and lower right corners of the node, the symbol’s center, and the

*We did use JTree during the early development phase of the project.
tThe programmer may write node. getLongName () instead of node.getBasicOrg () .getLongName ().

20

attachment points of the parent and child nodes. The method processProperties invokes the
getColorFromProperty method of class MyProperties to get the colors to be used when
drawing the nodes.

The variable nodelsVisible indicates whether or not the node should be drawn, nodelsExpanded
does the same for its children, and nodelsSelected is true if this node has been selected by the
user. Most of the variables are private, but the ones that are heavily used by the tree-drawing class
are public. There are also public constants that define sizes and other parameters. The method
drawNode draws and labels the node. It uses the inner class ParseSymbol which will eventually
generate the labels from a MIL-STD-2525B (12) descriptive string.

3.6.3 TreePanel Class

The class TreePanel is a subclass of JPanel. It draws an organization or organization type tree,
displays popup menus when the user clicks on a node, processes the menu choice, and provides
other tree-related methods. The constructor accepts a reference to the parent application class and
the root of a DefaultM utableTreeNode tree. It determinesif the tree contains organization or org
type nodes because different operations may be performed on the trees. It creates menus for both
the left and right buttons, assigns context help or “tool tips’ to them, registers listeners for mouse
events, instantiates a NodePanel, and indirectly builds the tree of DisplayNodes. Other operations
are application-specific and are explained | ater.

Method makeTree starts by getting the reference to the cache (OopDatabase object) from the
main application object. We did not do thisin the constructor because the cache and tree used by
a TreePanel may change while the application is running. The treeis built by the private method
buildDisplayTree, which copies the tree (with copyTree) into a new structure and replaces all of
the OrgNodes with DisplayNodes. The cloneTree method is similar to copyTree, except it
instantiates new DisplayNode objects instead of copying references to existing objects.

The standard Swing method paintComponent is overridden to draw the tree. It traverses the tree,
draws all nodes that are visible, and records the bounding box (area enclosing the tree) of the
visible tree. It then traverses a second time to draw the horizontal connecting lines. If the
bounding box has changed size since the last time the tree was drawn, the panel isresized and the
tree is redrawn within it. One version of the overloaded method findInTree searches the entire
tree for anode with the desired EID. The other version builds a vector of nodes whose long or
short name contains a given substring. When the user clicks the mouse in a TreePanel,
mouseClicked marks the node that the mouse cursor isin and opens a popup menu.

There are several private utility methods. The methods positionTreeNodes and position compute
the bounding box of a subtree and the attachment points to the parent and child nodes,
respectively. Another method is hideTree, which recursively collapses a subtree so that all of its
nodes are invisible. The method findNode determinesif the mouse was clicked within a node,
and if so it returns the DefaultM utableTreeNode.

21

3.6.4 NodePanel Class

Class NodePanel issimilar to TreePanel, but it displays a vector of nodesin arow rather thanina
tree. It isused as aworking area for new nodes that are to be added to atree. Each TreePanel
instantiates its own NodePanel object. The constructor initializes the instance variables and
registers a mouse listener. Method addNode adds a node to the vector and removeNode removes
one. Each resizes the panel to match the necessary display area. The getNode method returns the
i'" node in the vector, while getSelectedNode returns the currently selected node.

Like TreePanel, paintComponent draws all of the nodes. No connecting lines are drawn because
the nodes have no relation to each other. The mouseClicked method uses a version of findNode
to seeif the user clicked on anode. If so, the node is marked as selected.

3.6.5 Displaying a Tree

The tree-drawing algorithm uses a simplistic approach in that no effort is made to optimally pack
the positions of children under their parent. Instead, a simple nonoverlapping techniqueis used.

A representative tree diagram is shown in figure 10. In this example the root nodeis A, B-D are
internal nodes, and E-G are leaf nodes. Since tree data structures are generally displayed with the
root, or starting point, at the top of the page and the widest part of the structure somewhere lower,
the display algorithm is necessarily built on a depth first, recursive algorithm. This agorithm
calculates the position of each node, starting at the bottom left and finishing at the root node.
Once these positions are known, the rendering algorithm calls the drawNode method of each
DisplayNode to draw the nodes and the necessary lines to interconnect all of the displayed nodes.
The following sections describe node positioning, node drawing, and node connecting in detail.

3.6.6 Tree Positioning Algorithm

In thisimplementation of the rendering algorithm, the calculation of node positionsis divided
between two methods, both of which are found in the TreePanel class. The process begins with
the method positionTreeNodes being invoked with the the root node of the tree to be drawn and
initial values of 0 for maxX and -3 for y. The -3 value isrequired to make spacing work correctly
as the recursion occurs. In positionTreeNodesthe vertical spacing is set and for each child
positionTreeNodesis recursively called. It should be noted that the coordinate system we are
using has (0,0) in the upper left corner with x increasing to the right and y increasing as we go
down on the screen. The following is a pseudocode description of positionTreeNodes:

initial arguments are maxX = 0, y = -3, treeNode = root
Yy += 2 * YSPACE
firstX = maxX
for each of the child nodes:
maxX = positionTreeNodes (maxX, y, childNode)
maxX = position(treeNode, maxX, firstX, vy)
return maxX

NoasrwdhR

22

/ Tree Root
A

Figure 10. Representative tree diagram.

2 Y Spaces
B C
Multiplier
\(@
D E F G
X Space~
Leaf Nodes

The method position computes the x positions for each tree node. The pseudocode for this
process is shown. Method positionTreeNodes recurses until aleaf nodeisreached. Once alesf is
reached, steps 26—29 are executed, with the variable maxX being used to keep track of the x
spacing of the nodes and the y position having been set in positionTreeNodes.

After dl the children of a particular node have been positioned, we back up the recursion tree and
position the parent node over the average of the leftmost and rightmost child nodes. Thisis done

in steps 5-24.
1. arguments are treeNode, maxX, firstX, vy
2: subUnitsFlag = true
3 rightX = leftX = -XSPACE
4. if treeNode has children
5: leftflag = true
6: for each child node:
7. subUnitsFlag = false
8: if leftSubFlag
9 if parentConnect.x == -1
10: leftX = firstX
11: else
12 leftX = parentConnect.x
13: leftSubFlag = false
14: if parentConnect.x == -1

23

15: rightX = leftX

16: else

17: rightX = parentConnect.x

18: if subUnitsFlag

19: maxX = 3 * XSPACE

20: rightX = firstX + 3 x XSPACE

21 leftX = rightX

22: treeNode.setParentConnect (leftX+rightX) /2, v)
23 treeNode.rightChildX = rightX

24: treeNode.leftChildX = leftX

25. else (no children)

26: treeNode.setParentConnect (firstX + 3 % XSPACE, Vy)
27 treeNode.rightChildX = 0

28: treeNode.leftChildX = 0

29: maxX += 3 * XSPACE

30: return maxX

Figure 11 shows the order in which the node positions are calculated. Node D is positioned first;
and since it isthe only child of node B and its children are not being displayed, node B isdrawn
next. NodesE, F, and G are next to have their positions calculated, then node C is positioned.
Finally, node A can be centered over B and C.

7

D E F G

Figure 11. Order of position calculations.

3.6.7 Node Drawing Details

Figure 12 shows atypical node as used in this application. What is drawn for the node isentirely a
function of the drawNode method of the DisplayNode class. Each node consists of three parts. an

24

echelon symbol area, a unit type area, and a unit name area. The dotted lines do not appear on the
display, but represent areas reserved for the appropriate information. Of these display areas, name
isfilled out appropriately. The unit typefield isaso filled in for an organization type tree, but not
an organization tree. It is expected that eventually all the information needed to properly fill ina
node image could be obtained from parsing MIL-STD-2525B data strings, assuming that such
datais stored in the database. In the future, it is also hoped that unit names could be derived from
the path used to access the node. There are currently three types of OrgType nodes. These are
doctrinal, crew, and position. Position type nodes are associated with individuals, whereas a crew
node would consist of one or more position nodes and be associated with a particular piece of
hardware. Doctrinal nodes are those nodes internal to the tree and are composed of other nodes.

Ascender

Multiplier

Parent Attachment Point

~ «—— Echelon Symbol Area
«—— Unit Type Display Area
«—— Unit Name Display Area
Q)

Ti Child Attachment Point
Descender

Figure 12. Typical node with connecting lines.

3.6.8 Tree Rendering Details

Were it not for the fact that we allow multipliersfor certain nodes in the organization type trees,
the ascenders and descenders for each node could be drawn by the node drawing routines.
However, we do allow multipliers; and since multipliers are afunction of the tree structure, not a
particular node, the ascenders and descenders are drawn by the rendering algorithm. Aswe
traverse the tree data structure and call the drawNode method to draw each node in the
appropriate place, we also draw an ascender for each node that has a parent node and a descender
for each node that has children. If thelink is new, the ascender is drawn in the color specified by
the node.new.color property (the default isred). Even if the children are not displayed, the
descender serves as areminder that there are more nodes down this branch. Figure 12 shows the
ascenders and descenders and includes a multiplier construct. If the multiplier is one, then the
construct is not shown and a straight line is drawn in place of the circle and number. Figure 13
shows the exampl e tree after this phase of the rendering algorithm has completed.

25

B C
® \
D E F G

Figure 13. Tree with first phase of connecting lines.

Finally, the horizontal lines that connect the displayed child nodes of a single parent are drawn.
Thisis shownin figure 14, which represents the tree as it would be displayed, except in areal case
the multiplier would be a specific number and not M.

3.7 Application Classes
3.7.1 Overview

Many of the classes used by the application have already been presented. The complete hierarchy
of application classesis shown in figure 15. Standard Java classes are shown in sans serif and
the standard abstract classisin bold sans serif. Intermediate classes, such as between Object
and JPanel, are not named and are indicated with a dotted line. The remaining application
classes are discussed in this section.

3.7.2 IChart Class

The IChart classisthe primary control for the application. It provides the GUI consisting of a
menu bar, tree panels, node panels, and inspectors to display detail and rollup information. This
section discusses the general structure of the class, while the operational details are in the users
guide section.

26

B C
¢
D E F G

Figure 14. Tree with final connecting lines.

The constructor begins by reading a property file and processing the properties (with
processProperties) that are required by this class. The application’s argument list is scanned, and
values that are found override the defaults from the property list.* The method loadDatabase is
given the name of the database. It in turn instantiates an OopDatabase object, passing its
constructor the property list so that it may extract server information such as the name of the
MySQL server. OopDatabase methods are invoked to open a connection, load al of the data into
the cache, and close the connection. For test purposes, the debug method printVectorsisinvoked
to verify that the data has been successfully read into the cache.

After the main method has instantiated an IChart object, it invokes |Chart’s createGUI method.
This method creates the menu bar with all of itsitems and the panel to display detail information
in inspectors (an object of type DetailPanel). The two trees are built with OopDatabase's
buildOrgTypeTree and buildOrgTree methods, then they are passed to TreePanel’s constructor
when the two tree panels are instantiated. The node panels are instantiated by TreePanel and
retrieved by createGUI with TreePanel’s getSandbox™ method. The last component is a status
areato display messages to the user.

Now that the user interface has been built, the program becomes asynchronous. It enters an
implicit loop and waits for the user to access a menu item or interact with the trees. The
actionPerformed method determines which menu item was chosen and either processes the
request directly or invokes another method to do the work.

*Currently only the name of the database and the date of interest may be supplied in thisway.
fWe use the term “sandbox” because it is a holding area for new objects.

27

— IChart
— OopDatabase

TreePanel
- JPanel —E NodePanel
DisplayPanel

— TreePandl.MultHandler
— TreePanel.Namelnt

— Multiltem
Object —— OrgNode —— DisplayNode
— DisplayNode.ParseSymbol
- JFrame AssocEditor
— AbstractTableModel Inspector
— SQL Utility T TableMap — TableSorter
- DefaultCellEditor — Inspector.EIDCellEditor
- Properties MyProperties
- RuntimeException —— EIDEXxception

--- DefaultTableCellRenderer — SortHeaderRenderer
— SortArrowlcon

Figure 15. Application class hierarchy.

Access methods are provided to allow other objectsto get the private instance variables that must
be shared. The objects returned by the methods should be apparent from their names:
getOrgTree, getDetailPanel, getOopDatabase, and getProperties. Other smple methods are
showStatus, which displaysaline of text in the status area, and makeTitle, which changes the
window’stitle.

3.7.3 DetailPanel and Multiltem Classes

DetailPanel is another subclass of JPanel. It contains scrollable inspectors for BasicOrg
(OrgType or Org), MatType, Skill Type, and PersonType objects.” The inspectors are stored in
nested JSplitPanes to allow the user to independently resize them as needed.

The constructor is given the reference to the OopDatabase object, the width of the entire panel in
pixels, and the number of rowsto display in each inspector. If the number of rows of the BasicOrg
inspector is zero, the inspector is not instantiated. A color-coded label is placed above each

*The materiel type inspector shown in figure 8 is taken from a Detail Panel.

28

inspector to serve asitstitle. A component listener is registered to detect when the DetailPanel is
resized so that the inspectors may be resized, otherwise they would be centered horizontally with
blank space on the sides.

Access methods exist to get each inspector. Their names are of the form get XXX Inspector
where XXX isOrg, Mat, Skill, or Person. The setOopDB method reinitializes everything by
storing a new OopDatabase reference and emptying al of the inspector tables.

The remaining methods popul ate the inspector tables. Before explaining them, we must discuss
the Multiltem “wrapper” class. This class combines a BasicEID with an integer quantity. Itis
very similar to the OrgNode class, but was kept separate for clarity. The no-argument constructor
is never used and was included for completeness. The other constructor accepts areference to a
BasicEID object and the initial quantity. The access methods are self-explanatory: getltem,
setltem, getQuantity, setQuantity, and addToQuantity. The toString method returns a string
consisting of the quantity in square brackets followed by the EID in hexadecimal. The method
equals returns true if the BasicEID instance variableis equal to the given BasicEID reference.

The Detail Panel method showDetails extracts the organization type or organization from an
OrgNode. If the node contains an organization, its associated org type is obtained with
OopDatabase’s getOrgTFromOrg method. The objects aligned with the org type are collected
with the various get XXX TFromOrgT methods. The results are displayed in the appropriate
inspectors. The showRollup method is very similar, except it invokes the recursive private
method doOrgRollup to combine the details for an organization or org type subtree. The latter
method does essentially the same thing as showDetails. Instead of immediately adding the
materiel type, skill type, or person type and its multiplier to the appropriate inspector, it
instantiates a M ultiltem object or adds the quantity to an existing object which has been found
with the private getMultiltem method. After the entire subtree has been processed, the
Multiltems are displayed in the inspectors.

3.7.4 AssocEditor Class

The AssocEditor class provides the user with away to create and edit materiel, skill, and person
types and to align them with a given organization type. It extends JFrame so that it may be
displayed as an independent window. It consists of several components:

1. the org type displayed in a non-editable panel,
2. aDetailPanel containing inspectors for the aligned types,
3. aninspector for each type showing all items in the cache, and

4. two sets of buttons to perform the desired operations.

The materiel, skill, and person type inspectorsin item 3 contain many records, so they aretabsin
aJTabbedPane. The user may display atable by clicking on the desired tab.

29

The constructor creates the GUI components and loads all of the data. It receives references to the
application’s OopDatabase object and the OrgType object that the user isinterested in. The
organization type creates its panel by invoking makePanel with the edit flag set to false. After
the Detail Panel has been instantiated, datais put into the inspectors by simply invoking its
showDetails method with the organization type. The materiel type inspector is made and filled
with data by passing the vector of all materiel typesto MatType.makel nspector, converted into a
scrollable pane, and added to the JTabbedPane as a new tab. The processis repeated for the

Skill Type and PersonType inspectors. The buttons are instantiated in two simple Boxes with a
horizontal layout.

The standard method actionPerformed receives all button clicks. It processes the commands
from the right hand box directly and invokes the private method editLink for the left hand box.
The private method scrollToLastRow redisplays an inspector so that the last row of datais
visible. Thisis necessary because new records are always appended to the end of the table, and
we want to show the user the new materiel (or skill or person) type object that he just created.

4. Users’ Guide

4.1 Introduction

Before we explain how to use the | Chart application, we must present our implementation
philosophy, assumptions, and limitations. Figure 1 shows the relationships between the tables.
The emphasisis on types or templates, which may be thought of astypical versions of an
organization, materiel, or other object. In order to build an organization chart, the user first
creates one or more organization types and the materiel, skill, and person types to be aligned with
those org types. The main IChart window, shown in figure 16, isa GUI that is used to assign
parent/child relationships to the org type nodes and to construct the force structure.

The main window is divided into several major areas. The frame’stitle contains the name of the
current database and the date of interest. The menu bar islocated directly under thetitle bar and is
described in section 4.3. A status line to provide feedback to the user appears along the bottom of
the window. The central areaisdivided into two sections. On the left is the organization type or
organization tree panel (section 4.4), with the working area below it. The right portion has several
inspectors to display the details about a unit or the rollup of the unitsin a subtree.

The organization tree, which consists of notional units, is built using the organization type tree as
atemplate. Our application does not contain actual materiel or person items, athough they would
be needed in an application that tracks information about fielded units. The database tables (and
corresponding Java classes) would have more fields added to augment the minimal sample data
that we defined.

The association editor iswork in progress and is explained in detail in section 4.5. The
association editor, shown in figure 17, is the component that enables the user to create, edit, and
manipul ate the materiel, skill, and person types and align them with the org types. It is a separate

30

& Organization Chart Demo: tankchart @ 2004-06-21 - | [m] 5[

File Find Show Help
Org Type Tree r Organization Tree :§ Org Type: HQ Tank i HQTank C; Tan...
A Eo [ety [longMa. [ShotMa [Category o
#|o |100000004 1 Crew HQ ... HQ Crew
0 [100000009 1 Crew HG . Wil Crew
z 0 100000003 1|HQ Tank ... HQ Dot
0 (100000005 1/ Comman... Co Cdr Position
n 0 (100000006 2 Gunner-A.. Gunner Fasition

Materiel Type

| ED oy | um [Mame |
o 100000023 4 ROT7234 RIFLE 5 56 Ml...
| o 100000028 4ND5482 MIGHTVISIO.. [
o [10000002h 2 R45543 RADIOGET-A. |
Z Z o [10000002c 2890434 BORESIGHTI... [&
| crew | o [10000002d 6 C:E9070 CAMOUFLAG...
o [10000002e 6/CB9145 CAMOUFLAG...
T o 100000030 2078545 DATA TRANS
o 100000031 2/L44580 LAUNCHER ... [+]
Skill Type
| | | | | | | | [B0 oy [Mame [co. | Tew [Remar. |
o 100000070 ZUsarmy.. (30 M1AZAb.
Z Z L = L Z Z L o 100000071 GlLUS Army . (k4 [W1AZ Ta.

| Fosition | | Position | | Position | Position

Position | | Position | | Position | |Pus'rti0m |

Co Cdr Gunner Loader Criver| Status b | Loader Driver Co X0
4] Expand]
Collapse A_TEo Joty [Ra.. [Gra.. [Pri. [sec. [ski. [Re.. |
Make Top |0 [1000 11000... (1000, [1000.. [1000.. 1000
‘| o [1000... 2/1000... (1000... [1000... [1000... 1000...
Show Parent :
L ke this unit the top of the displayed tree. | o [1000..| 2(1000.. [1000.. [1000.. [1000.. [1000..
Ao |1000 2/1000... [1000... [1000... [1000... 1000
‘| o [1000... 1/1000... (1000... [1000... [1000... 1000...

Tank Crewman is the selected node.

Figure 16. I Chart application main window.

window that currently allows the user to create new materiel, skill, and person types, align them
with a specific organization type, and edit existing alignments to change the multiplier and
remarks. The left side contains an org type in a noneditable panel with its details in inspectors
below it. A row of edit buttonsis placed at the bottom. The right side has a tabbed panel with an
inspector in a separate tab for each of the three alignable types. All instances of atype are
displayed in an inspector, which could be unwieldy for alarge database. Below the tabbed panel
isaset of buttonswhich are similar in use to the edit popup menu in the tree panel.

When the application is used to view or modify the data in a database, the first thing that occursis
al of the dataisread into a cache. This copy of the datais used until the user chooses to store the
changes into the database. We made the assumption that the database is not huge, and it is
practical to load the entire contents into memory.* Caching the data minimizes database accesses
and avoids network lag times. By having the user edit a copy of the data, changes may be easily
stored in the database or discarded.

Date/time groups have been partially implemented. The values are ignored when the datais
loaded into the cache, to prevent records from being lost when the cache is saved in anew
database or in text files. The tree construction algorithm examines all of the objects and uses only
those whose date/time group interval includes the date of interest. The user may not edit date/time
groups because of the complexity of side effects. Such atask is outside the scope of this project,
and we manually created objects with different date/time groupsto test their use.

*A future version could implement a paging algorithm or constrain the user by using a subset of the data.

31

=lolx|
EID 100000006 Materiel Type Table || Skill Type Table | Person Type Table |
Long Name Gunner-Assistart TC | =) [un] Marme |
A e o _l1DnonnnEn M12418 |MASK CHEMICAL BIOLOGICAL M40 |-
= o 100000021 18526 |MAGK CHEMICAL BIOLOGICAL: COM... |7
Category |Position o 100000022 RBAD3S |RIFLE 5.56 MILLIMETER: M1GAZ
= o 100000023 [R87234 |RIFLE & 56 MILLIMETER: M4
MeAerleliType ‘|0 |1000000Z4 POBTEZ |PISTOL BhiM AUTOMATIC: M3 :
|__ED [Cay [Ln I Harme [0 1ooD0DOZS B48272 |BAYONET-KMIFE WSCABBARD FOR... [
o |100000021 1)M18526 | MASK CHEMICAL BIOLOGICAL: COMBATVEHICLE M42 Al Tononooze BE7TEs TRINOGULAR: MODLLAR GONGTRUE
o 100000024 1|P88152 PISTOL Shil ALUTOMATIC: M9 |lo 100000027 (44585 |LAUNCHER GRENADE 40 MILLIMET.
o |100000025 1649272 |BAYONET-KMIFE: WiISCABBARD FOR M16AT RIFLE e Tooon00z8 TN05482 THIGHT VISION GOGOLE ANFS.TE
_——l e it oD
Skill Type o 1o00000ZE RETIEE |RADIO SET: AMARGC-BTFIC)
[__ED Loty | Hame [code | Text |_memarks | |\, 100000030 |R45543 |RADIO SET: ANVRO-82F(C)
o |100000071 1105 Ay Enlisted A5 |K4 M1AZ Tank Operations and.. || |lo Tioo00002c 590494 |BORESIGHTING EQUIPMENT WEAR
lo_1o0DoDOZH [CBB07D |CAMOUFLAGE SCREEM SUPPORTS..
Person Type i 0100000028 CB9145 |CAMOUFLAGE SCREEM SYSTEM: W.
EID [Caty [RenkEID [GradeEID [Prime Oc.. |Gecond.. [SkilLeve.. |Remarks | [y 1ooonooar 012087 |CARRIER FERGOMMEL FULL TRACK.
o 100000082 110000005¢ [100000065 |[10000006b 100000068 |100000078 o Tio0oDD030 070555 |DATA TRANGFER DEVIGE. ANCYZID =)
| Edgtmathypenssoc | | EdtSkifype Assoc | | Edit PersonTyme Assoc | : | mign | | create || com || e | [Tciose |

Figure 17. Association editor window.

The user interface is adequate, but not optimal. Thisis aworkbench tool and not a prototype of a
production system. We assume that all datais valid and do not impose any military constraints on
the trees that the user creates. Minimum error recovery procedures have been implemented. In the
unlikely event that an SQL error occurs, what should the program do? We catch the exception that
isthrown, print a stack trace, and continue with the program. Every time this occurred during
testing, there was alogic error in the program or we had changed the database schema.

4.2 Getting Started
4.2.1 Property Files

We employ property filesto facilitate customization. When IChart is run, it begins by attempting
toload thefile default.properties. If theapplication isrun from a Java ARchive (JAR)
file, the property file may be stored in the JAR file. If it isnot run from a JAR, or the JAR does not
contain the default file, then the program attempts to load alocal default.propertiesfile. In either
case, it then loadsthe local file named ichart.properties.

The default file should define parameters that are the same throughout an organization. The
important properties are the JDBC driver class and the URL to the SQL server.* The property
filein table A-1in appendix A also contains default colors. Theichart property file may contain
user-specific settings, such as the name of the host running the SQL server, the database to use,
and the SQL user name. The user’s SQL password may aso be stored here, but for security
reasons we recommend that this not be done. Table A-2 in appendix A liststhe remaining
property names.

Any propertiesthat are defined in the ichart file override the corresponding values in the default
file. Thesein turn may be overridden by arguments on the program command line. Any property
may appear in either property file or not at all with a couple of exceptions—the driver and URL
properties must be defined, and the database name must either be defined in a property file or

*These would probably be hardwired in a production application.

32

supplied on the command line. The user will be prompted for the remaining JDBC property
values except for datetime, which defaults to the current date.

4.2.2 Initial Database

At thistime the user must manually create a new database. Our initial database was created from
an existing Microsoft Access database, and our emphasis was on writing atool that would allow
us to modify and extend the data. We are exploring ways to create a minimal database, either by
starting the application in a special mode or by running a second program. The minimum consists
of an organization root, org type root, organization/org type association linking the roots, and the
highest EID used.

4.3 Menu Bar
4.3.1 Overview

The IChart application contains a menu bar along the top of the main window. The menu bar has
four drop-down menus named File, Find, Show, and Help. Every menu item displays help in the
form of aJava“tool tip” when the user pauses with the mouse cursor over the menu item. Thetip
text for the Quit itemis shown in figure 18.

& Organization Chart Demo:

File | Find Show

Login i
Change Server

Change Date of Interest

Open b
Load From Files

Save Changes
Save As...
Save As Files

Quit
| Quitthe prograrm.|

Figure 18. Sampletool tip.

4.3.2 File Menu

The File menu allows the user to change program parameters, load and save databases, and exit
from the program. The Login command displaysadialog to let the user change the user SQL

33

name and password. Thisdialog is displayed at startup if the user name and/or password are not
set in aproperty file. The JDBC driver and URL and the SQL server name may be supplied with
the dialog displayed by the Change Server command, as shown in figure 9. This happens
automatically if any of the three values are not set in a property file.

The date of interest is used to select the active records in the database. It may be changed with the
Change Date of Interest dialog. After the date is changed, the trees are rebuilt and the scratch
pad “sandboxes’ are emptied.

The Open command displays alist of databases on the server. To avoid confusion with other
databases that may be stored there, only the ones whose names end with chart are shown. The
current cache is emptied and the chosen database isloaded in its place. A similar operationis
performed by Load From Files, except the datais loaded from text files. A standard Javafile
chooser is displayed with the names of all the subdirectoriesin the current directory.* The user
may move around in the file system and select the desired directory name. Because IChart is
database-oriented, the user is prompted to save the newly loaded data to a new database. Both
Open and Load remove any objects that are in the sandboxes to prevent them from being used in
the second database.

Like many other applications, the data changes made by the user are lost when the program exits,
unless the user chooses to save them. IChart keeps track of which records have been modified and
which are new. The Save Changes command performs SQL update and insert operations on the
current database, ignoring all records that are unchanged. In contrast to this, Save As. .. prompts
the user for the name of a new database, then savesthe entire cache into it. The suffix chart is
appended to the name if the user did not supply it. The program attempts to create a new database
and all of thetablesthat it requires. If a database with the desired name already exists, we assume
that it isan IChart database and simply empty the contents of the tables before inserting al of the
records. Both commands reset the cache status flag, because the cache and database are now
identical. The two commands that |oad data check for unsaved changes to prevent them from
being accidentally lost; the user is prompted to save them to the current database, discard them, or
cancel the load command.

The user may wish to save all of the data as text files for archive purposes or for installation on
another system. The Save As Files command prompts the user for the name of a directory,
which is analogous to asking for a database name. If the directory does not exist, it is created.
Instead of updating database tables, afileis created in the directory for each of the tables,
replacing any existing files with the same names. The file names are the same as the
corresponding table names (e.g., OrgTypes are stored in the file OrgType), and thefields are
separated by commas. Strings and timestamps are surrounded by single quotes. For this reason,
single quotes may not be used in the database.

Thefinal command in the file menu is Quit. It checks whether the cache has been modified before
terminating the program. If any unsaved changes exist, the user is prompted to save them, discard
them, or continue to run the program. The cache will aso be checked if the user attempts to stop
the program by closing the main window, but not if the processiskilled.

*No restrictions are placed on the directory names, although a special naming convention could be used.
A work-around exists, but was not implemented.

4.3.3 Find Menu

The Find menu permits the user to perform limited searches on the data. The Find Name
command searches the appropriate tree (organization or org type, depending on which is being
displayed) for aunit whose long or short name contains the desired string.* If asingle unitis
found, the tree is redrawn with that unit’s node at the top. Figure 19 showsthe dialog that is
displayed when multiple units contain the string. Notice that the entries directly above the
highlighted item have the same name. Thisis because they are the same organization type (have
the same EID) and appear twice in the tree. We display both of them, so that the user may choose
which node to display in the tree. Name searches are more useful with the unique names found in
organizations. As more fields are added to the tables, it is likely that more Find commands will be
created.

Find Org Type: crew il

Choose a name
i

CO HMY CrewTrainsiCompamy HQ'Tank Compamy, Tank Bn (X1} = |
X0 HMY Crew/Trains/Company HQ'Tank Company, Tank Bn QOX1)|__
Crew (Tank 1) i
Crew (Tank 2,3)
Crew (Tank 2,3)
Crew (Tank 4))
Tank Crewman (Loader)
Tank Crewman

Tank Crewman (Loader)
Tank Crewman

<

| OK || Cancel ‘

Figure 19. Find name selection dialog.

Sometimes we needed to quickly locate a particular object during our testing. The Find EID
command uses the EID hash table (see section 3.5.2) to seeif the user-supplied value isan EID.
The object is shown in adisplay dialog (like the onein figure 3). If it is an organization or org
type, the appropriate tree is a'so drawn with the unit at the top.

4.3.4 Show Menu

The Show menu was used during the development of 1Chart to display information about the
cache that was not available through other means. The only command that is left is Show Link
Tables, which opens awindow with six untitled Inspectors. They contain the objects from the
four association and two relation tables. Chart displays information about objects and nodes, not
links, and this command was used to verify that new links were being created correctly.

*The search is not case sensitive.

35

4.3.5 Help Menu

Eventually, this menu will be expanded to display a detailed help system or at the very least alink
to the text of this report. The About command pops up a standard dialog with a summary of the
| Chart application, its version number, and contact information.

4.4 Organization Tree Panel
44.1 Overview

When the IChart application is started, the root node of the organization type treeis displayed in
the tree panel. Two tabsjust under the menu bar alow the user to view either the org type or
organization tree. Below each tree panel is a“sandbox” which functions as a scratch pad. The
component parts of anode are shown in figure 12. The colors used by the nodes are defined in the
property files. We chose to define different colors for doctrinal, crew, and position (billet) nodes.
A fourth pair of colorsis givento highlight a selected node. Other colors are used to denote links
and nodes that have been newly created and not stored in the database.

The user may click the left mouse button on any node of atree, causing the node to be highlighted
and the display menu to appear as shown in figure 16. Clicking the right mouse button on a node
opens the edit menu. The next two sections explain the operations performed by the popup menu
items.

4.4.2 Display Popup Menu

The Display menu allows the user to control which portions of atree are displayed. The first
menu item, Status, contains two itemsin a submenu. Selecting Show Details causes the org
type object and al of the materiel, skill, and person types that are aligned with it to be displayed
in the tables on the right side of the window. The second item, Show Rollup, examinesthe
subtree beginning with the selected node and constructs summary information of the data. *

Figure 16 contains arollup of the HQ node and its subordinates. The Category column has been
sorted to show that the subtree contains two crew and one doctrinal org type. The Skill Type table
lists two objects of one skill type (officer) and six of another skill type (enlisted); these were
obtained from the eight positions at the bottom of the tree.

The organization tree handles details and rollupsin a dightly different manner. Thetop tablein
the detail pane contains the current organization node or the list of the nodesin the subtree.” The
link isfollowed from each organization to its org type, and the objects aligned with it are used as
before.

The Expand item also has a submenu with two items. Expand Node causes al of theimmediate
children of the selected node to be drawn, while Expand Subtree causes the entire subtreeto be
expanded and drawn.

*The entire subtree is examined, not just the nodes that are being displayed.
fEvery nodein an organization tree is unique.

36

The opposite result may be obtained with the Collapse item. It causes the entire subtree of anode
to be visually erased. Figure 20 shows the same tree as the one in figure 16 after the wM node has
been collapsed. Notice that a stub is drawn to show that the node has one or more children.

Crew Crew

Z Z Z Z

Posttion Position Position Posttion

Co Cdr Gunner Loader Driver

Figure 20. Partially collapsed tree.

After the user haslocated a node or subtree of interest, he may use Make Top to redraw the tree
with the desired node at the top. The tree in figure 16 was drawn by using Expand Subtree on
the root node, then selecting the HQ Doc node and making it the top.

The stub drawn on top of the HQ Doc node indicates that it is not the root of the tree and more
nodes are above it. The user may move up the tree by selecting Show Parent. It redraws the tree
with the expanded parent node at the top.

4.4.3 Edit Popup Menu

There are two versions of the edit menu because certain operations are not applicableto
organizations. The node edit menu for an organization typeis shown in figure 21. The user is
changing the node’s multiplier to “3.”

The Create item appears only on the org type menu. The subitems are Create Org Type and
Create Organization. Both commands instantiate a new object with default values for all of the
fields, then get the next available EID and assign it to the object. An organization is automatically
given the same category as the org type node that was selected.” The new object isdisplayed in an
edit dialog (such asfigure 4) to alow the user to fill in the remaining data fields. If the user clicks
on the dialog’'s Cancel button, the operation is aborted, while accepting the new object causes it
to be added to the cache. The object is placed in the sandbox as explained later. If anew
organization is created, an OrgOrgTAssoc object isinstantiated to link it to the selected org type.

*The org type category Position ischanged to the corresponding organization category Billet.

37

Create »
Copy
Clone

Edit ¥ Edit Multiplier »
Assign Edit Node

Edit AssoCs

Ot & LM e
=

other

Figure 21. Edit popup menu
for an organization type node.

Both menus contain a Copy item. It isbasically the same as the Create command with two
additions: the new object’s data fields are given the values of the selected object and, after a new
org typeis accepted, links are created for all of the objects that are aligned with the selected org
type. If the user does not make any editing changes, the new object will be identical to the old one
except for having adifferent EID.

The Clone command simply places a copy of the current org type node into the sandbox. This
allows the user to assign the same org type subtree to multiple parent nodes. Since organizations
are unique, thisitem is not available in the organization edit menu.

The Edit item appears with both trees, but the submenu is different. The org type menu in

figure 21 should be self-explanatory. Edit Multiplier allows the user to state that a node appears a
certain number of times under a given parent. Thisis demonstrated in figure 22, where the tank
company has one company headquarters and three platoons. The Edit Node item appears in both
menus and opens an edit dialog on the selected org type or organization. The user may edit the
org type's associations with Edit Assocs as explained in section 4.5.

Z

Doc

Tank Co

Doc Doc

Co HQ PLT

Figure 22. Subtree containing a multiplier.

38

Thefinal item is Assign,* and it permitsthe user to construct atree. The user places one or more
objectsinto the sandbox with create, copy, or clone, then clicks on anode in the sandbox to select
it. He then right clicks on the desired parent node in the tree and chooses Assign. A Radioman is
about to be assigned to the HQ Crew in figure 23a; his node has been moved from the sandbox to
the tree in figure 23h.

1
SR Create b Crew
Hoo| Comy HQ
Clone
Edit »
Assign % | | | | | |
7 7 7 7 7 7 7 7
Position Position Position Position Position Fosition Position Position Position
Co Cdr Gunner Loader Driver Co Car Gunner Loader Driver Radioman
Z Z Z Z z
Position Position Position Poztion Pozition
Fadioman Gunner Loader Gunner Loader
(a) Selecting the nodes. (b) After assigning the node.

Figure 23. Adding anode to the tree.

Some special aspects of working with organization types must be kept in mind when constructing
atree. The subtree in figure 24 contains duplicate nodes. The HQ Crew and the WM Crew are
identical except oneisled by the company commander and the other by the company executive
officer. These four nodes are therefore different org types and have four different EIDs. On the
other hand, the remaining crew members are the same in each case. The Gunner assigned to HQ
isthe same EID as the Gunner assigned to WM, the Loader is the same type in both cases, and the
Driversareidentical. It should be apparent that editing any data fieldsin one Loader will be
reflected in the other Loader, because they are in fact the same L oader.

What isless obviousis what happens if a child is added to a node that is repeated—each instance
gets the child. Suppose that an assistant is assigned to the Loader.™ A single OrgTypeRelat object
isinstantiated linking the Loader org type with the Assistant Loader org type. The user is stating
that atypical loader of that type always has an assistant. The result is an assistant |oader node will
appear below every (visible) loader node. Using our sample database, the status field in | Chart
will state, “Tank Crewman (Asst Loader) added to 6 copies of parent Tank Crewman (Loader).”
The same situation applies when anode is cloned and assigned. Not only is the node linked to all
copies of its new parent, but its children go with it.

If some |oaders should get assistants and some should not, then a new loader org type must be
instantiated with anew EID, and once again we are beyond the scope of this project.

*An inactive Remove item appears as a future enhancement.
tHe would actually be assigned to the Crew node, but, since we do not enforce policy, assume that this assignment
isallowed.

39

Doc

HG

Crew Crew

H& Wi

Z Z Z Z Z Z Z Z

Position Position Posttion Position Position Posttion Position Position

o Celr Gunner Loader Criver Gunner Loader Criver Co XD

Figure 24. Subtree containing duplicate nodes.

45 Association Editor

The user opens the association editor window by right-clicking on a node in the organization type
tree and selecting Edit Assocs. The complete window is shown in figure 17, but we will begin
our discussion with the type inspectors which are reproduced in figure 25.

To align an object with the organization type displayed in the left side of the association editor
window, the user selects an object on the right by clicking on the desired row. Clicking on the
Align button opens an edit dialog on an association link such as the one shown in figure 7. If the
user keeps thelink, it is added to both the cache and the small inspector table on the |eft side of
the window.

The next three buttons function in amanner similar to the same menu itemsin the edit popup
menu in the org type tree. The context of each button depends on which type isvisible at the time.
Normally the selected tab is the color that is used for that particular type* and the other two tabs
are dark gray. We chose to use the default Java colors for this report.

The Create button instantiates a new object of the desired type and displays a blank edit dialog
for that type. If the user cancels the dialog, the object is disposed of; otherwise, it is added to the
cache, the inspector is updated, and the table is scrolled to the bottom to show the new object. The
Copy button works the same way, except first the user must click on an object in the inspector to
select it, and itsfields are used as the values for the new object. The Edit button opens an edit
dialog on an existing object which has been selected.

The last button is Close, and it disposes of the association editor window. The program prevents
the user from opening more than one window to avoid confusion when the various types are being
created or edited.

*The type headers on the |eft side of the window use the same colors.
tThe user may safely close the window manually instead of using the button.

40

I ~10 x]
|| Materiel Type Table | Skill Type Table | Person Type Table |

EID [Umn | MName |
100000020 |M12418 |MASK CHEMICAL BIOLOGICAL: M40 |-
100000021 |WM18526 |MASK CHEMICAL BIOLOGICAL: COM,
100000022 |R95035 |RIFLE 5.56 MILLIMETER: M1G6AZ
100000023 |R97234 |RIFLE 5 56 MILLIMETER: hid
100000024 |P9&152 FISTOL 9 ALUTOMATIC: MY i
100000025 |B49272 EAYOMET-KMIFE: WiSCABBARD FOR.. |54
100000026 |BETTRG EINOCULAR: MODULAR CONSTRUCG...
100000027 |L44595 LAUMNCGHER GRERMADE 40 MILLIMET...
100000028 |M05482 |MIGHT VISION GOGGLE: ANIPYS-TE
100000078 |R44888 |RADIO SET. ANAVRC-BAFC)
100000078 |RET296 |RADIO SET. ANVRG-BTFIC)
100000026 |R45543 |RADIO SET: ANAVRC-92ZFIC)
10000002 |B90484 EORESIGHTING EQUIFMENT WEAP..
10000002 |C89070 |CAMOUFLAGE SCREEMN SUPPORT G...
100000028 |C89145 |CAMOUFLAGE SCREEM SYSTEM: W..
10000002F |D12087 |CARRIER PERSOMMNEL FULL TRACK...
100000030 |D75555 |DATA TRANSFER DEVICE. ANICYZ-10

4]

L e e e e e e e e e e o o e

| Align || Create H Comy || Edit H Close |

Figure 25. Association editor type inspectors.

After the user has aligned an object with an organization type, he must be able to edit the link. We
provided three edit buttons on the left for this purpose. The user selects the desired row in the
proper detail table, then clicks on the corresponding edit button, causing the edit dialog to appear.
If he changes the multiplier, the table is updated to show the new value. The user may define the
color that isused for each association as shown in table A-1 in appendix A. The color is used for
each edit button and its corresponding dialog. We chose to use darker shades of the same colors
that we used for the type objects to remind the user of the relationship (e.g., MatType.color is
bright cyan while OrgTMatTAssoc.color is dark cyan).

5. Future Development

Thisistheinitial version of a program to manipulate force management trees that are stored in a
relational database. The application must be made more robust before it may be deployed. We did
not implement policy enforcement because the various services have different policies. While we
used U.S. Army data, the tool isintended for use by all of the services. It may be desirable to
have modes that implement different policies.

The user interface will be refined as more people use the application. Two prototype changesto
TreePanel are away to scale the tree to fit in the current window and code to draw
MIL-STD-2525B symbolsfor each node. Both will be implemented in the next major release.

41

The next phase of the project will include changing the database schema to support the Global
Force Management Information Exchange Data Model (13), which is an augmented subset of the
C2IEDM. Many of the tablesin this model have an hierarchical relationship versus the flat
structure of our current database schema. Many more data fields will be added beyond the
minimal fields required to test the program.

New features will include the ability to attach one organization or org type to another to create
task forces and other temporary force structures. The user will specify the duration of the
attachment by defining date/time intervals. Another feature will be away to generate a new
database instead of the current requirement that the user create one manually.

During our testing, we discovered that users want the ability to delete objects. This goes against
one of our basic tenets, which isthat all datais kept for archival purposes. However, it is easy to
make mistakes when building atree, and the proposed compromiseis to alow the user to undo
his actions until the datais stored in the database. The first step toward implementing this has
been to use a special color to denote new nodes and links in the trees.

6. Conclusion

The IChart application has proven to be an effective tool for building and maintaining force
management structures. It has been successfully tested both within the U.S. Army Research
Laboratory and by other organizations, and it is being used to construct actual GFM data for
another project. 1Chart will serve asamodel for future EID applications and databases.

42

7. References

1. Sun. Java1.4.2. http://java.sun.com/j2se/1.4.2/download.html (accessed February 2003).

2. MySQL AB. MySQL Version 4.0.18. http://www.mysgl.com/downloads/mysgl-4.0.html
(accessed February 2004).

3. MySQL AB. MySQL Connector/J Version 3.0.9.
http://www.mysql.com/downl oads/api-jdbc-stable.html (accessed October 2003).

4. Arnow, D.; Weiss, G. Introduction to Programming Using Java; Addison Wesley Longman,
Inc.: New York, NY, 2000.

5. Multilateral Interoperability Programme Data Modelling Working Group. Overview of the
C2 Information Exchange Data Model (C2IEDM), 6.1 ed.; MIP Data Modelling Working
Group: Greding, Germany, November 2003.

6. Chamberlain, S. Enterprise Identifiers for Global Naming Across the C4l-Simulation
Boundary. Proceedings of the 2001 Spring Simulation Interoperabiltiy Workshop, Orlando,
FL, 25-30 March 2001.

7. Chamberlain, S.; Leeds, C. Time-Based Tree Graphs for Stabilized Force Structure
Representations. Proceedings of the 8" International Command & Control Research &
Technology Symposium, Washington, DC, 17-19 June 2003.

8. Brundick, F.; Hartwig, G., Jr. A Primary Server for Organizational Identifiers,
ARL-TR-2530; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2001.

9. Walrath, K.; Campione, M. The JFC Swing Tutorial. Addison-Wesley: Reading, MA, 1999.

10. Duguay, C. An Easy Way to Sort Things Out. Java Pro, August 2002.

11. Smith, K. The Information Distribution System: Org Chart—An Organization Display
Application Program; BRL-MR-3903; Ballistic Research Laboratory: Aberdeen Proving
Ground, MD, 1991.

12. MIL-STD-2525B. Common Warfighting Symbology 1999.

13. Joint Data Support. Global Force Management Initiative.

http://jds.pae.osd.mil/GFM/GFMTOC.htm (accessed August 2004).

43

INTENTIONALLY LEFT BLANK.

Appendix A. Property Files

When IChart isrun, it attemptsto load program parameters, or properties, from the files
default.properties and ichart.properties. If itisrun from aJava ARchive (JAR)
file and the JAR contains the default property file, the defaults are read from that source. If aJAR
fileis not used, or it does not contain the default property file, the application looks for alocal file
named default.properties. The program then looks for parametersin the local file named
ichart.properties. All valuesin thisfile override the corresponding settings in the default file.

Since it is much more convenient to run the application from asingle JAR file, an organization
may extract the default.propertiesfile, edit it, and replace it in the JAR file. Settings that are
unigue to specific users or groups could be defined in alocal ichart.property file for each user.

A property file consists of multiple lines, each of which is composed of a keyword, colon or equal
sign separator, and avaue. Whitespace is alowed around the separator for readability and blank
lines are ignored. Lines starting with a sharp sign (#) are comment lines to document the property
file. Table A-1 showsthe contents of atypical default.propertiesfile, and table A-2 shows the
contents of ichart.properties.

The properties for the Java Database Connectivity (JDBC) driver and URL should not be
changed unless an RDBMS other than MySQL isused. If adifferent systemis used, not only will
these lines need to be edited, but the class SQL Utility will also need to be modified.

There are restrictions on the values of some of the properties. The colors are given as 6
hexadecimal digits denoting a 24-bit RGB (red, green, blue) value. The JDBC server should be
the host name or its Internet IP address followed by a slash. If the application is being run on the
same host as the MySQL server (like our |aptop-based demo), the name 1localhost/ may be
used. The database isthe name of the database to be loaded initially, although a different name
may be given on the program command line. Likewise, the date of interest is given viathe
datetime property or on the command line. It is of the form shown, which is the 4-digit year and
2-digit month and day, all separated by dashes. The time has the fields separated by colons.
|Chart currently has no way of alowing the user to manipulate the time, so the file should contain
00:00:00.%

The user property isa user name recognized by the MySQL server. We recommend not storing
the password in the property file for security reasons. If either the user name or password is not
given, the application will display alogin dialog.

*Thetime of zero is appended to a date supplied on the command line.

45

Table A-1. Contents of file default.properties.

IChart default properties

JDBC (MySQL) parameters
jdbc.driver = org.gjt.mm.mysqgl.Driver
jdbc.URL = jdbc:mysqgl://

GUI parameters

OrgType.color = FFC800
MatType.color = OOFFFF
SkillType.color = FFFFO0O
PersonType.color = FFBFBF
OrgTMatTAssoc.color = 00CCCC
OrgTSkillTAssoc.color = DDDDOQO
OrgTPersonTAssoc.color = DD8D8D
Org.color = 00FFO0O
#OrgTypeRelat.color
#0rgOrgTAssoc.color
#OrgRelat.color =

Node and link colors
node.selected. foreground.color 888888
node.selected.background.color = FFAFAF

node.doc.foreground.color = 000000
node.doc.background.color = FFFF0O
node.crew. foreground.color = 000000
node.crew.background.color = OOFFFF

node.position.foreground.color = FF0000
node.position.background.color = FFFFFF
#node.new.color =
#link.new.color =

Table A-2. Contents of file ichart.properties.

IChart local properties

JDBC (MySQL) parameters
jdbc.server = some_ host/
jdbc.database = some database
#jdbc.datetime = yyyy-mm-dd hh:mm:ss
jdbc.user = some user

jdbc.password = some password

46

Appendix B. IChart Installation

B.1 System Requirements

We assume that the person performing the IChart installation has a working knowledge of Java
and MySQL. The current version of the IChart application requires Java 1.4 or newe,

MySQL 4.0, and the Java Database Connectivity (JDBC)/MySQL driver. The Java 2 Platform,
Standard Edition (J2SE) Java Runtime Environment (JRE) is sufficient if the precompiled | Chart
JavaARchive (JAR) fileis used, while the J2SE Software Development Kit (SDK) is needed to
build the application from its source files. These may be obtained from Sun’s Javaweb site.? We
did not use any Java extensions.

The application needs access to aMySQL 4.0 server running on the same machine as | Chart or on
aremote host. It may be downloaded from the MySQL web site? and must be installed and
configured by a system administrator.

We created our own web site to distribute the | Chart application, the MySQL driver, and a sample
MySQL database. Please contact the authorsif you need access to our site.

B.2 Building the Application from Source Files

The IChart application may be obtained as either source files or as precompiled Java classfilesin
asingle JAR file. To install the source version, get thefile ichartsrc. zip and extract all of
the component files into the directory of your choice. This may be done with the command

“Jar xvf ichartsrc.zip” or withyour favorite ZIP program.* The primary directory will
receive thefileslisted in table B-1, and the subdirectory tree starting with src will be created and
the source files stored in it.

The application may be built with either make® or ant.* We originally started with make and
later switched to ant; we recommend that you use ant if you have it. Entering either command
without any arguments will create the build subdirectory and compilethefilesinto it.

Theinstaller should edit thefile default.properties and define organization-wide
properties as explained in appendix A. Invoking make or ant with thetarget dist creates
subdirectory dist and constructs ichart. jar there. Thisnew JAR file may be copied to
other computers and installed as described in the next section.

1sun. Java 1.4.2. http://java.sun.com/j2se/1.4.2/downl oad.html (accessed February 2003).

2MySQL AB. MySQL Connector/J Version 3.0.9. http://www.mysgl.com/downl oads/api-jdbc-stable.ntml (ac-
cessed October 2003).

*Java JAR files use the ZIP format.

3Free Software Foundation, Inc. make v3.8.0. http://www.gnu.org/software/make/make.html (accessed October
2003).

4The Apache Software Foundation. Apache Ant 1.6.1. http://ant.apache.org/bindownload.cgi (accessed June
2004).

47

Table B-1. Filesin primary directory.

File Name Contents
Makefile Makefile for IChart application
build.xml Ant version of Makefile
Readme usage, limitations, to do list

default.properties | default property file for |Chart
ichart.properties | property file for IChart application

runchart shell script to run app

runjar shell script to run app from aJAR file
runchart.bat DOS batch file to run app

runjar.bat DOS batch fileto run app from aJAR file

The target docs generatesthe HTML API filesin the new subdirectory api. To display a
complete list of targets and what they do, run the commands “make help” or “ant -p.”
There are several development and testing targets in both theMakefile andbuild.xml files
in addition to those just mentioned, and they may be ignored.

B.3 Configuring the Application

Simple scripts and batch files were written to run the application. The installer may either build
the environment which matches the one that we used or edit the scripts to match the current
environment. We will explain the former approach, because the latter should be apparent to
anyone who is familiar with writing scripts.

Thefirst step isto create the remaining directories as shown in table B-2. If the application was
built as explained in the previous section, the file ichart.jar isaready inthe dist directory.
If the installer obtained a prebuilt JAR file from us, or built the application himself and copied it
to another machine, he must manually create the dist directory and copy the JAR file into it.
Next, the JIDBC driver must be put in the proper location. Create the 1ib directory and copy the
MySQL driver JAR file* into it.

Table B-2. Directory structure.

Directory Contents

api HTML API javadoc files (optional)

build root of binary (compiled) subtree

dist distribution directory for JAR and ZIP files
lib JAR files needed by this application

src Java source files for the application

The ichart.properties file must define any properties that were not specified in
default.properties. If IChartisbeinginstalled on multiple computers, thisfileis
probably slightly different on each one.

*We used mysqgl -connector-java-3.0.9-stable-bin.jar.

48

B.4 Running the Application

If the application was compiled from the source files, the UNIX or Windows scripts named
runchart may be used, while runjar isthe script to use with the ichart. jar file. The
Windows scripts expect the environment variable JAVA_HOME to be defined; it isaso used by
ant in both operating systems.

Do not double-click on the runchart or runjar iconsin Windows. If an error occurs, the
diagnostic messages will be lost. Open a Command Prompt window and cd to the folder where
you installed IChart.* Manually type runchart or runjar with optional command line
arguments to run the application.

B.5 Common Errors

If you see an error message that says, “Exception in thread "main" ...
getTimeInMillis () J from class ...,” theproblemisyou are attempting to use the
Java 1.3 runtime system. Make sure that JAVA_HOME pointsto the Java 1.4 (or newer) tree.
|Chart will not compile or run under Java 1.3, although we tested it with both 1.4 and 1.5 beta.

ThelChart message, “Error: database name must be defined in a
property file or on the command line.” meansthat IChart was not giventhe
name of the database to use. The quick fix isto include the name of the database on the command
line (e.g., runjar tankchart), whilethe better solution isto edit ichart.properties and define
jdbc.database.

*Or open the window with the folder asits target.

49

Glossary

Object Oriented Programming Terms

abstract an abstract class contains one or more abstract methods, which is a method declaration
without a definition.

camel casing names are constructed by capitalizing the first letter of multiple words and
concatenating them together, e.g., “org type long name” becomes “ orgTypel ongName.”

constructor amethod that isinvoked when an object is created. It initializes the object’s instance
variables.

hash table adata structure which maps key objects to value objects. The Java class that
implements thisis HashTable.

hexadecimal anumber written in base-16. The values 10-15 are represented by the letters A—F.

inheritance atechnique in which a subclass assumes the attributes and behaviors of its
superclass and adds new capabilities. Java uses single inheritance where a subclass may
have only one direct superclass.

instance variable avariablethat is declared within a class but outside of its methods. Each
object that is created has its own unique instance variables.

instantiate to create an instance of an object.
JAR file aJavaARchivefileisacollection of class and datafiles stored with the ZIP format.
member general term for avariable or method contained in a class.

overloading a class has multiple methods with the same name that perform similar operations
but are distinguished by having different argument lists.

overriding the act of reimplementing a method in a subclass with the exact same signature of a
method in its superclass.

polymorphism the exact method to be invoked is determined at run time by the class of the
object.

private amember of aclassthat may not be directly accessed from another class.

property list ahash table of keyword/value pairs of strings stored in an instance of the Java class
Properties.

public the opposite of private, amember that may be accessed from any class.

50

result set the set of records generated by executing a query statement. The Java class that
implements thisis ResultSet.

signature amethod’'s name aong with the number, order, and type of its arguments.

static method amethod that is not associated with any particular object, but with the class itself.
Therefore, it may be invoked without a reference to an object. Also known as aclass
method.

subclass thedirect or indirect child of a superclass.

superclass any class which acts as the direct or indirect parent of another class.

Terms Used in IChart

align associate a materiel, skill, or person type with an org type.

assign define an organization or org type as the organic (habitual) parent of another organization
or org type.

association the “horizontal” link between an org type and its materiel, skill, and person types,
also the link between an organization and its org type. The OrgT XXX TAssoc and
OrgOrgTAssoc tables contain associations.

attach assign an organization or org type to another on atemporary basis, e.g., to create atask
force.

clone put an org type in the sandbox so it may be assigned or attached to another org typein the
tree. A new EID isnot created. Thisallowsthe user to reuse an org type, e.g., assign the
same gunner type to several crews.

copy make anew organization or org type with anew EID and the same field values and
associations as an existing organization or org type. The user may also copy a materiel,
skill, or person type.

create make anew org type with anew EID, default values, and no associations, or make a new
organization with default values and an association with an existing org type. The user may
also create amateriel, skill, or person type.

date/time group a specific date and time in the standard UNIX epoch of 1 Jan 1970 through
31 Dec 2037. It isstored as atimestamp in the database and a Timestamp in Java.

EID an enterprise identifier is a surrogate key that is guaranteed to be unique.
instance aspecific or concrete item, e.g., aparticular M1 tank with a certain bumper number.

org type abbreviation for “organization type.” Thisreport never abbreviates organizations, only
organization types.

51

relation the“vertical” link between an organization or org type and each of its children. The
OrgRelat and OrgTypeRelat tables contain relations.

sandbox the scratch pad area where organizations and org types are placed before being assigned
or attached to anodein atree.

tree adata structure that contains an organization or org type hierarchy.

type atemplate or generic description, e.g., an org type could be a mechanized platoon which
defines the attributes that are common to all mechanized platoons.

52

NO. OF

COPIES ORGANIZATION

1
(PDF

only)

DEFENSE TECHNICAL
INFORMATION CTR

DTIC OCA

8725 JOHN JKINGMAN RD
STE 0944

FORT BELVOIR VA 22060-6218

USARMY RSRCH DEV &
ENGRG CMD

SYSTEMS OF SYSTEMS
INTEGRATION

AMSRD SST

6000 6TH ST STE 100

FORT BELVOIR VA 22060-5608

DIRECTOR

USARMY RESEARCH LAB
IMNE ALCIMS

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

USARMY RESEARCH LAB
AMSRD ARL CI OK TL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

USARMY RESEARCH LAB
AMSRD ARL CI OK T

2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

DIR USARL
AMSRD ARL CI OK TP (BLDG 4600)

53

NO. OF
COPIES ORGANIZATION

1 JOINT STAFF 3-8 MASO
(CD G SPRUNG
ONLY) RM 2C646
JOINT STAFF PENTAGON
WASHINGTON DC 20318-8000

1 DIR USARL
AMSRD ARL CI
JGOWENS
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

6 DIR USARL
AMSRD ARL CI C
B BROOME
AMSRD ARL CI CT
F BRUNDICK
SCHAMBERLAIN
H INGHAM
M MITTRICK
M THOMAS

