General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-175/50

```
(NASA-CR-175150) EARTH SIKAIN MEASUKEMLNTS N84-17725
|ITH THE TRANSPURTABLE LASER EANGING SYSTEM:
FIELD TECHNI,UES AND PLANNING FindL REFCLt,
Lec. 1979 - Nov. 198L (Texas Unlv.) 42 F Unclas
HC AOJ/MF AO1 C CSCL O8G G3/46 12212
```


THE UNIVERSITY OF TEXAS AT AUSTIN

- Institute For Geophysics

EARTH STRAIN MEASUREMENTS
WITH THE TRANSPORTABLE LASER RANGING SYSTEM: FIELD TECHNIQUES AND PLANNING

```
Yosio Nakamura
H. James Dorman
Thomas Cahill
The University of Texas at Austin
Institute for Geophysics
Galveston Marine Geophysics Laboratory
700 The Strand
Galveston, Texas 77550-2768
```

November 1982
Final Report for Period December 1979 - November 1982 NASA Contract NAS5-25897

Prepared for
GODDARD SRACE FLIGHT CENTER
Greenbelt, Maryland 20771
Technical Officer: Christopher C. Stephanides, Code 942

The University of Texas Institute for Geophysics Contribution No. 532

We have conducted a feasibility study to examine the potential of the Transportable Laser Ranging System (TLRS) for monitoring the ground deformation around sateliite ranging stations and other geodetic control points. Emphasis has been placed on testing the usefulness of the relative lateration technique. The temporal variation of the ratio of the length of each survey line to the mean length of all survey lines in a given area is directly related to the mean shar strain rate for the area. The data from a series of experimental measurements taken over the Los Angeles basin from a TLRS station at. Mt. Wilson show that such ratios can be determined to an accuracy of one part in 10^{7} with a measurement program lasting for three days and without using any corrections for variations in atmospheric conditions. A numerical experiment using a set of hypothetical data indicates that reasonable estimates of the present shear strain rate and che direction of the principal axes in southern California can be deduced from such measurements over an interval of one to two years. Thus, the relative lateration from the TLRS appears to be a very economical way to monitor ground deformations, although there has been no opporunity yet to measure the actual ground strain by reoccupying the Mt. Wilison site.

Mable of Contents

I. Introduction 1
II. TLRS Ground-to-Ground Ranging 3
Advantages and Problems 3
Relative Lateration 4
Relationship between Relative Lateration and Strain. 4
III. Mt. Wilson Experiment 9
Field Experiment 9
The Data 12
Range Ratios to a Single Reference Line 12
Time-of-Flight Ratios to the Mean 14
An Alternative Atmospheric Correction 14
A Test for Systematic Error Due to Atmospheric Conditions. 17
Results 19
IV. Shear Strain Determination using Hypothetical Data 21
V. Conclusions and Recommendations 22
Conclusions 23
Recommendations 23
Acknowledgements 24
References 25
Appendix 26

I. INTRODUCTION

With the recent development in ground-to-satellite laser ranging and Very Long Baseline Interferometry (VLBI) techniques, it is now possible to measure precisely distances between locations separated by several hundreds to thousands of kilometers. This makes it possible to monitor relative movements of globally distributed points on the earth for geodynamic studies. However, one question that must be answered is how representative each of these positions thus occupied is for the region in which it is located. If some of these locations are experiencing localized movements which are not representative of the region, the global measurement would give erroneous results. An answer to this questions can be found by measuring regional deformations around each location.

A conventional method for determining regional deformations is to perform repeated survey using an electro-optical distance measuring (EDM) device (e.g. Savage et al. [1981]). However, such surveys are expensive, and are rather limited in range. We, therefore, have looked for a better alternative. The development of the Transportable Laser Ranging System (TLRS) for ground-to-LAGEOS (Laser Geodynamics Earth Orbiting Satellite) ranging [Silverberg and Byrd, 1981] has given us an opportunity to test such an aiternative. Because of its high sensitivity, being capable of detecting single photon returns, the TLRS can measure distances to small targets (retro-reflectors) at any visible points much beyond the normal ranges of other EDM devices. Thus, this system may provide economical measurements of strain fields in areas more than 200 km in diameter. If successful, such measurements will be valuable not only in the immediate neighborhood of satellite ranging stations, but also in understanding the dynamic behavior of both plate boundaries and areas internal to plates.

We have conducted a limited feasibility study to examine this potential. Although the TLRS is a powerful system, it also has certain limitations when used for a ground-to-ground ranging. The most important is the uncertainty of measurement results due to variability in atmospheric conditions. To .ypass this problem and avoid the expense of flying an aircraft to monitor the atmospheric conditions along the path of the laser beam, we have examined the use of the relative lateration, or the ratio method, which was used earlier by Carter and Vincenty [1978] in an experimental survery around the McDonald Observatory.

We originally planned repeated field experiments at several sites in the western United States. However, because of many scheduling conflicts and delays associated with the overall TLRS-LAGEOS ranging experiments, the only field experiment we could perform during tine current contract was a four-day measurement at Mt. Wilson over the Los hingeles basin in January, 1981. We have been unable to reoccupy this site for an actual strain measurement.

The present study, however, has given us some very encouraging results. Even with no atmospheric correction at all, the range ratios could be determined to an accuracy of one part in $10{ }^{7}$. This is sufficient for an order-of-magnitude estimate of incremental shear strain in the southern California region if two measurements separated by one to two years are available. Higher accuracies would be attainable with repeated measurements.

In this report, we first describe the advantages and problems of ground-to-ground ranging by a TLRS, leading to the use of relative lateration, or range-ratio method, and its relationship to the regional strain (Section II). Then, we present the data and analysis of the Mt. Wilson experiment (Section III). This is followed by a short treatment of regional strain determination using hypothetical data (Section IV). Finally, we present the conclusions from this feasibility study and offer some recommendations. Some pertinent data are presented in the Appendix.

II. TLRS GROUND-TO-GROUND RANGING

Advantanges and Problems

The TLRS is a highly mobile satellite laser ranging system designed t:o perform ground-to-LAGEOS range measurements. It is also highly sensitive, being capable of determining the range to a LAGEOS satellite with return signals as low as one photelectron every 20 to 50 laser shots [Silverberg et al. 1982]. Used as a grounduto-ground ranging device, it can measure the distance to any single 1 i:ch (25 mm) corner reflector within sight at very low laser power level. The measureable range is limited only by the curvature of the earth. The required power level is so low that, unlike some systems used for similar measurements, the laser beam can be maintained many orders of magnitude below the eye-damage threshold.

The practical precision of the TLRS range measurements is limited to about 1.5 cm for a one minute average, which is somewhat worse than those of conventional EDM devices using modulated laser beans. However, the long range capability of the TLRS reduces the relative error to well within the limits of interest in conventional surveys. The TLRS has an automatic pointing system, an automatic calibration system and other features which lend themselves to providing many horizontal fground-toground) line measurements on an operational basis. Thus it will be a good device to use if the data it provides is sufficient to determine the regional deformation at a high-enough accuracy.

The most serious problem in using the TLRS for ground-to-ground ranging is the atmospheric effect. The temperature, pressure, and to a lesser degree water vapor influence the index of refraction of air, and thus the speed of a laser beam through the atmosphere. To obtain the absolute distance between two points from a time of flight measurement through air, one must make corrections for these atmospheric variables.

Estimates of these atmospheric veriables along the beam path may be made based on measurements at the two end points. This, however, is unsatisfactory for long lines. A more precise way is to measure directly the atmospheric condition along the beam path by flying an aircraft during the ranging. This, though done in practice, is a costly operation. A third alternative is to use more than one wavelength for ranging. Using the dispersive characteristics of light in air, one can correct for the atmospheric effects [Huggett, et al. 1977].

The present TLRS operates in a single color. Flying an aircraft, we judged, is too costly for repeated measurements in many directions. Thus we had to look for another alternative.

Relative Lateration

One way to improve the accuracy of range measurements without relying on expensive in-flight measurement of atmospheric conditions is to use a relative lateration technique, or the "ratio method" (Robertson, 1972). Instead of attempting to measure the absolute length of each survey line to high accuracy, this technique determines only the ratios of distances. This method is based on a supposition that the temporal changes of atmospheric conditions along several survey lines within a given region are similar to each other. Therefore, even when the time of flight of a laser beam in each line fluctuates with changing atmospheric conditions, the ratios of the times of flight along different survey lines tend to vary little with time.

Carter and Vincenty [19\%8] used this method in an experimental EDM survey around the McDonald Observatory in 1977. They obtained sets of measurements, one month apart, consistent to one to two parts in 10^{7}. They have just repeated this experiment and the data is now being analyzed. Since the results of Carter and Vincenty appear to be quite promising, we have decided to try the same for our TLRS measurements.

Relationship Between Relative Lateration and Strain

Unlike absolute measurements of distances, the relative distance measurements repeated after a certain time period will not give all of the components of deformation, or incremental strain, for the time period unless at least one survey line is measured absolutely. However, a clear relationship exists between the changes of relative distances and incremental shear strain.

Let us consider n survey lines radiating from a central station. In the present case, the TLRS is located at the central station and a retroreflector is located at the end of each radiating line. Assume that all lines lie in a horizontal plane, neglecting both the curvature of the earth's surface and topographic height differences. Choosing a coordinate system with the origin at the central station, positive x towards east and positive y towards north, the original length of line i to the reflector at coordinates (x_{i}, y_{i}) at the time of the initial survey is given by

$$
\begin{equation*}
s_{i}=\left(x_{i}^{2}+y_{i}^{2}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

Now assume that between the initial survey and a subsequent survey the entire area of the survey undergoes a uniform deformation represented by incremental strain components $\varepsilon_{x x^{\prime}} \varepsilon_{x y}$ and $\varepsilon_{y y}$. Then, the line length becomes

$$
\begin{align*}
s_{i}^{\prime} & =\left[\left(x_{i}+\varepsilon_{x x} x_{i}+\varepsilon_{x y} y_{i}\right)^{2}+\left(y_{i}+\varepsilon_{x y} x_{i}+\varepsilon_{y y^{\prime}} y_{i}\right)^{2}\right]^{\frac{1}{2}} \\
& =\left[x_{i}{ }^{2}+y_{i}{ }^{2}+2 \varepsilon_{x x} x_{i}^{2}+4 \varepsilon_{x y} x_{i} y_{i}+2 \varepsilon_{y y^{\prime}} y_{i}^{2}\right]^{\frac{1}{2}} \\
& =s_{i}\left[1+2 \varepsilon_{x x} \sin ^{2} \alpha_{i}+4 \varepsilon_{x y} \sin \alpha_{i} \cos \alpha_{i}+2 \varepsilon_{y y} \cos ^{2} \alpha_{i}\right]^{\frac{1 / 2}{2}} \\
& =s_{i}\left[1+\varepsilon_{x x} \sin ^{2} \alpha_{i}+\varepsilon_{x y} \sin 2 \alpha_{i}+\varepsilon_{y y} \cos ^{2} \alpha_{i}\right] \tag{2}
\end{align*}
$$

where $\alpha_{i}=\tan ^{-1}\left(x_{i} / y_{i}\right)$ is the azimuth of the line i measured clockwise from north, and the higher order terms in strain have been neglected. Then, the range increment δ_{i} is given by

$$
\begin{equation*}
\delta_{i}=s_{i}^{\prime}-s_{i}=s_{i}\left[\varepsilon_{x x} \sin ^{2} \alpha_{i}+\varepsilon_{x y} \sin 2 \alpha_{i}+\varepsilon_{y Y} \cos ^{2} \alpha_{i}\right] \tag{3}
\end{equation*}
$$

Next define original mean range and range ratios to the mean, respective, as

$$
\begin{equation*}
\bar{s}=\sum_{i=1}^{n} s_{i} / n \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i}=s_{i} / \bar{s} \tag{5}
\end{equation*}
$$

Then, the subsequent mean range and range ratios are

$$
\begin{equation*}
\bar{s}^{\prime}=\sum_{i=1}^{n} s_{i}^{\prime} / n=\bar{s}+\sum_{i=1}^{n} \delta_{i} / n \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
r_{i}^{\prime} & =s_{i} \prime / \bar{s}=\left(s_{i}+\delta_{i}\right) /\left(\bar{s}+\sum_{i=1}^{n} \delta_{i} / n\right) \\
& =r_{i}\left(1+\delta_{i} / s_{i}-\sum_{i=1}^{n} \delta_{i} / n \bar{s}\right) \tag{7}
\end{align*}
$$

where the higher order terms are again neglected. The increment of the range ratio is, therefore,

$$
\begin{equation*}
r_{i}^{\prime}-r_{i}=r_{i}\left(\delta_{i} / s i-\sum_{i=1}^{n} \delta_{i} / n \bar{s}\right) \tag{8}
\end{equation*}
$$

Then, range ratio increment normalized by the original range ratio is given by

$$
\begin{equation*}
\gamma_{i}=\left(x_{i}^{\prime}-r_{i}\right) / r_{i}=\delta_{i} / s_{i}-\sum_{i=1}^{n} \delta_{i} / n \bar{s} \tag{9}
\end{equation*}
$$

Substituting eq. (3) into eq. (9), and using (5), we obtain

$$
\begin{align*}
\gamma_{i}= & {\left[\sin ^{2} \alpha_{i}-\sum_{i=1}^{n}\left(x_{i} \sin ^{2} \alpha_{i}\right) / n\right] \varepsilon_{Y y} } \\
& +\left[\sin 2 \alpha_{i}-\sum_{i=1}^{n}\left(x_{i} \sin 2 \alpha_{i}\right) / n\right] \varepsilon_{X Y} \\
& +\left[\cos ^{2} \alpha_{i}-\sum_{i=1}^{n}\left(x_{i} \cos ^{2} \alpha_{i}\right) / n\right] \varepsilon_{Y Y} \tag{10}
\end{align*}
$$

Equation (10) may give one an impression that a set of measurements of the normalized range ratio increments γ_{i} would give the incremental strain components $\varepsilon_{x x}, \varepsilon_{x y}$ and $\varepsilon_{y y}$. However, this impression is incorrect because the coefficients of $\varepsilon_{x X}$ and $\varepsilon_{y y}$ are not independent of each other, as their sum vanishes, and therefore $\varepsilon_{X x}$ and $\varepsilon_{Y Y}$ cannot be determined uniquely.

Now let

$$
\begin{equation*}
\theta=\varepsilon_{X X}+\varepsilon_{Y Y} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi=\varepsilon_{X X}-\varepsilon_{Y Y} \tag{12}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\varepsilon_{x X}=\frac{1}{2}(\theta+\Psi) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{Y Y}=3_{2}(\theta-\Psi) \tag{14}
\end{equation*}
$$

Substituting (13) and (14) into (10), we obtain

$$
\begin{align*}
\gamma_{i}= & {\left[\sin 2 \alpha_{i}-\sum_{i=1}^{n}\left(r_{i} \sin 2 \alpha_{i}\right) / n\right] \varepsilon_{x y} } \\
& -1 / 2\left[\cos 2 \alpha_{i}-\sum_{i=1}^{n}\left(r_{i} \cos 2 \alpha_{i}\right) / n\right] \Psi \tag{15}
\end{align*}
$$

The coefficients of $\varepsilon_{x y}$ and Ψ are known quantities for the initial setup of the survey lines. Thus, for a set of measurements of the normalized range ratio increments γ_{i}, the incremental shear strain components $\varepsilon_{x y}$ and Ψ can be determined by a least-square inversion of eq. (15).

Finally, the maximum incremental shear strain s and the direction of the principal strain axes β are given by

$$
\begin{equation*}
s=\left[\left(2 \varepsilon_{x y}\right)^{2}+\Psi^{2}\right]^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\frac{1}{2} \tan ^{-1}\left(2 \varepsilon_{x y} / \Psi\right) \tag{17}
\end{equation*}
$$

The dilation 0 of eq. (11) disappears from eq. (15), and thus canmot be determined. This is expected because any uniform compraskion or expansion of the entire area causes no change in range ratios.

The treatment above assumes uniform deformation of the entire region. If for some reason, such as the existence of active faults within the area, the regional deformation is not uniform, large residuals will show up in the least-square inversion of eq. (15). Thus, any residuals significantly larger than the measurement errors will indicate heterogeneous strain.

The remaining question is how accurately we can estimate the normalized range ratio increments γ_{i}. Since the measurements are done in terms of time of flight of light beams, the uncertainty in speed of light is the determining factor. The average speed $\mathbf{a} f$ light, c_{i}, between the central station and a reflector i may be expressed as the sum of four components:

$$
\begin{equation*}
c_{i}=c_{o}+\ell_{i}+w_{c}+w_{i} \tag{18}
\end{equation*}
$$

where c_{0} is the speed of light in scandard air, which is constant for all survey lines at all times; l_{i} is the gorection attributable to the reflector locacion; which is time invariant for a given reflector; w_{C} is a component of correction attributable to weather common to all reflectors at a given time; and w_{i} is the residual weather correction. The line length s_{i} is given in terms of round-trip time of flight, t_{i}, as

$$
\begin{equation*}
s_{i}=\frac{1}{2}\left(c_{0}+\ell_{i}+w_{c}+w_{i}\right) t_{i} \tag{19}
\end{equation*}
$$

the mean range as

$$
\begin{equation*}
\bar{s}=\frac{1}{2}\left(c_{0} \bar{t}+\sum_{i=1}^{n} \ell_{i} t_{i} / n+w_{c} \bar{t}+\sum_{i=1}^{n} w_{i} t_{i} / n\right) \tag{20}
\end{equation*}
$$

$\begin{aligned} & \text { where } \\ & \text { as }\end{aligned}=\sum_{i=1}^{n} t_{i} / n$ is the mean time of flight, and the range ratio to the mean

$$
\begin{equation*}
r_{i}=u_{i}\left[1+\left(\ell_{i}-\sum_{i=1}^{n} \ell_{i} t_{i} / n \bar{t}+w_{i}-\sum_{i=1}^{n} w_{i} t_{i} / n \bar{t}\right) / c_{o}\right] \tag{21}
\end{equation*}
$$

where $u_{i}=t_{i} / \bar{t}$ is the time-of-flight ratio to the mean, and the higher-order terms have been neglected. Finally, the normalized range ratio increment is given as

$$
\begin{equation*}
\gamma_{i}=n_{i}+\left[\left(w_{i}^{\prime}-w_{i}\right)-\sum_{i=1}^{n}\left(w_{i}^{\prime}-w_{i}\right) t_{i} / n \bar{t}\right] / c_{o} \tag{22}
\end{equation*}
$$

where $\eta_{i}=\left(u_{i},-u_{i}\right) / u_{i}$ is the normalized time-of-flight ratio increment and quantities with primes designate those at subsequent measurement as before. The higher-order terms are again seglected. Note that the common weather component, w_{c}, is eliminated by taking the range ratio (21), and the location specific components, l_{i} 's, are eliminated by normalization (22), leaving only the residual weather components w_{i} 's.

The normalized time-of-flight ratio increment, η_{i}, thus approximates the range ratio increments, γ_{i}, with a small error due to residual weather term. The latter is not location specific, and is not conmon to all lines at a given time. If this term is sufficiently small, then we can substitute η_{i} for γ_{i} in calculating the shear strain increment using (15).
III. MT. WILSON EXPERIMENT

Field Experiment

At the request of the NASA Crustal Dynamics Project, the TLRS team from the McDonald Observatory of the University of Texas, led by Dr. Eric Silverberg, deployed the TLRS at Mt. Wilson, California, in January of 1981. At the same time, two of us (H.S.D. and T.C.) scouted the surrounding area for suitable target sites and selected the reflector locations. Then, a field party from the National Geodetic Survey (NGS), which was dispatched at the request of NASA to help us, deployed retroreflectors at the chosen sites. The survey lines selected for the site are shown in Figure 1. Table 1 lists the nominal coordinates of the base station (TLRS (: ${ }^{\text {) }}$) at Mt. Wilson and of the end points of the lines, where the retroreflectors were installed. Also listed in Table 1 are the approximate look angles from Mt. Wilson and ranges as computed from the indicated coordinates using the IAG standard ellipsoid Geodetic Reference System 1967.

Each reflector except the one at Cahuenga was a metal box containing an array of three $1 \frac{1}{2}$ inch (38 mm) corner cubes, supplied by the NGS. The box was mounted on a tripod and placed directly over the station mark using an optical blumb bob. This elaborate configuration made it necessary to guard the reflector continuously for the entire duration of the expeximent. The reflector used at Cahuenga was designed by one of us ($\mathrm{T} . \mathrm{Q}_{8}$) for unmanned operation. It contained a single 1 inch (25 mm) corrar chly end was fastened to an outcrop with anchor bolts at a site of the ctation mark, thus concealed from public view.

The reference point of the TLRS, from which the raw time-of-flight measurements were made, was slightly offset from the Mt. Wilson station mark given in Table 1. The measured coordinates of the station mark relative to the TLRS were:

$$
\begin{aligned}
& x=-1.4873 \mathrm{~m} \text { (west) } \\
& y=0.5093 \mathrm{~m} \text { (north) } \\
& z=-3.3709 \mathrm{~m} \text { (below) }
\end{aligned}
$$

The resulting corrections, to be applied to the observed quantities to reduce them to the reference mark, are listed in Table 2. The corrections can be applied at any stage of data reduction.

After the initial setup, which began on January 9, 1981, the horizontal ranging data were collected over the four-day interval January 23 through 26, 1981, in cooperation with the NOAA National Geodetic Survey. Each of the reflector sites except Cahuenga was manned continuously during the entire experiment to record the temperature, pressure and relative humidity at the site at about 30 minute intervals. The details of the data acquisition are given in Silverberg et al. [1982].

ORIGINAL PAGE M OF POOR QUALITY

Table 1. Stations Used in Mt. Wilson Line Survey

Station	Longitude	Latitude	Elevation m	Look Azimuth	Anglo Altitude	Range m	Note
Mt. litison	$241^{\circ} 56^{\prime} 17.85^{\prime \prime}$	$34^{\circ} 13^{\prime} 21.58^{\prime \prime}$	1722.0				1
Casiro	$241^{\circ} 12^{\prime \prime} 55.40^{\prime \prime}$	$34^{\circ} \mathrm{9} 5^{\prime} 08.57^{\prime \prime}$	858.9	257.36E	-1.030	68393	2
Cahuenga	$241^{\circ} 40^{\circ} 29.81{ }^{\prime \prime}$	$34^{\circ} 08^{\circ} 13.00^{\prime \prime}$	554.1	248.687	-2.681	26104	3
San Pedro	$241^{\circ} 39^{\prime 5} 5.73{ }^{\prime \prime}$	$33^{\circ} 44^{\prime \prime} 40.88^{\prime \prime}$	447.1	205.506	-1.508	58729	4
Niguel	$242^{\circ} 16^{\prime}$ 昒.18"	$33^{\circ} 30^{\prime} 44.83^{\prime \prime}$	288.0	158.814	-1.353	84459	
Santiago	242'28*00.10"	$33^{\circ} 42^{\prime} 37.89^{\prime \prime}$	1733.0	139.168	-0.329	74933	
Sar Juan	242* 15'45.99"	$33^{\circ} 54^{\prime \prime} 49.47^{\prime \prime}$	543.0	138.751	-1.688	45536	

1 New marker 9.408 m from Mt. Wilson EIOA @345 ${ }^{\circ} \mathrm{Tr}^{\circ}$
2 Solitice Canyon B2 Aux. L. which is 14.107 m FNE of Castro 1898
3 Reference mark ti3 of Cahuenga ti2, $13.329 \mathrm{~m} @ 257^{\circ} 47^{*}$ from Cahuenga *2
4 LT Ecc. San Pedro Hills, which is $12.576 m$ a $313^{\circ} 57^{\prime \prime}$ from San Pedro $\ddagger 3$

Table 2. Corrections to be Applied to Observations to Reduce to Mi. Wllson Gound Marker

Station	Round-Trip Time of Flight ns	Range	$\begin{aligned} & \text { Rang } \\ & \text { (1) } \end{aligned}$	Ratio* (2)
Castro	-9.344	-1.400.3	-25.08	-26.78
Cahuenga	-9.054	-1.3568	-23.35	-23.51
San Pedro	-1.798	-0.2694	-5.91	-7.93
Niguel	6.222	0.9325	13.61	9.93
Santiago	8.931	1.3385	20.64	17.07
San Juan	8.432	1.2636	20.09	17.64

* (1) Ratio to mean range
(2) Same but excluding Cahuenga and Niguel

The Data

The raw field data were initially processed at the University of Texas at Austin by the McDonald Observatory group. As described in detail by Silverberg et al. [1982], the processing of the raw data involved accumulation of individual photon returns into 200 psec bins, smoothing of the coadded returns by three-bin (600 psec) running averages, cross-corretation with a reference standard to eliminate longterm drift in the calibration constants, adjustments to account for certain measurement irregularities, ar\& removal of a 86.8 nsec constant calibration correction.

The calibrated round-trip time-of-flight data, shown in Figure 2 and listed in Table A1 in the Appendix, have not been corrected for the offset of the TLLRS from the ground marker (Table 2). The data for Cahuenga were not used for the analysis because of certain processing difficulties encountered for the data for this station.

The data gap during the second day of observation was due to an interruption in data acquisition caused by rain which accompanied the passage of a cold fxont. The meteorological data taken at Mt. Wilson site and other stations are shown in Figures Al through A3, and are listed in Table A2 in the Appendix.

As expected, the raw time-of-flight data show large fluctuations, which are only partially correlated with the meteorological data. The relative RMS deviations of the time-of-flight data (Table 3, colume 3) range from 1.53 ppm for Niguel, which was surveyed only after the passage of the cold front, to 3.78 ppm for San Juan, which was the shortest line. The weighted average for all lines is 2.84 ppm .

Range Ratios to a Single Reference Line

Silverberg et al. [1982] calculated the time-of-flight ratios and atmosphere-corrected range ratios to a reference line following the procedure used by Carter and Vincenty [1978]. The reference line they chose was a smoothed curve (a cubic spline) through the Santiago data. Their results (Table 3, column 5) show relative RMS deviations of time-of-flight ratios ranging from 0.4 ppm for Niguel to 1.6 ppm for San Juan. The weighted average for all lines is 1.0 ppm , which is about a factor of tirree improvement from the fluctuation of the time-of-flight data.

Their results for the range ratios with atmospheric corrections based on endmpoint meteorological data did not fare as well. In fact the relarive RMS deviations increased typically about 00% from those of uncorrected time-of-flight ratios [Silverberg et al. 1982].

Fig. 2. Round-trip time of flight from Mt. Wilson. The data are not corrected for the marker offset.

The main reason for the poor performance of atmosphere-corrected values i_{s} the difficulty of making proper atmospheric corrections. A comparison of tine variations of the group index of refraction calculated from the temperature and pressure at end points (Figure 3; also listed in Table A3 in the Appendix) with the time-of-flignt variations (Figure 2) clearly shows that long-term variations are fairly well matched but shorter diurnal fluctuations are larger for the index of refractions than for the times-of-flight. Thus the index-of-refraction correction per Carter and Vincenty [1978] over-compensates for diurnal variations.

Time-of-Flight Ratios to the Mean

In order to be consistent with the range-ratio/strain relationship of the precedinc section, we calculated the time-of-flight ratios to the mean. Since the time-of-flight measurements to all targets were not made exactly simultaneously, the data were linearly interpolated before the mean time-of-flight for a given time was calculated. (Higher order interpolations or a spline approximation might be better, but we judged the difference would be small.) Also, since we had data for Niguel only during the last half of the experiment, this station was excluded from the mean time-of-flight calculation.

The resulting time-of-flight ratios to the mean (Figure 4; also listed in Table A4 in the Appendix) show a further improvement in the fluctuations of the results. The relative RMS deviations (Table 3, column 5) now range from 0.36 ppm for Niguel to 1.24 ppm for San Juan, with the weighted average of 0.71 ppm for all lines, a factor of four improvement from the raw time-of-flight data.

An Alternative Atmospheric Correction

As stated earlier, the short-term, diurnal fluctuations in the index of refraction at end points exceed the observed fluctuations in the time-of-flight values. This is probably due to the larger fluctuation of the atmospheric temperature near the ground than those in most of the intervening air mass; a result of the base station and most of the target seations being located well above the intervening terrain. In this situation, a standard correction procedure like that of Carter and Vincenty [1978] is not really applicable, and some alternate procedures are needed.

An experimental procedure we tried was to estimate the average temperature of the air mass by low-pass filtering the mean of the temperatures measured at the end points. The filter we used was a simple one of adding all previous temperature readings each weighted by a factor proportional to a negative exponential of the elapsed time. After

Fgi. 3. Group index of refraction computed from atmospheric data at end points.

Fig. 4. Time-of-flight ratios to the mean.
trials with such filters of several different time constants, a time constant of 12 hours was found to give the best result. The resulting relative RMS deviations of the ranges thus corrected for atmospheric conditions (Table 3, column 4) range from 0.96 ppm for Castro to 2.05 ppm for San Juan with the weighted average of 1.38 ppm for all lines. This is about a factor of two improvement from the raw time-of-flight data. However, the range ratios calculated from these corrected ranges du not show any significant improvement over those of the uncorrected ratios. The relative RMS deviations of the corrected range ratios (Table 3, last column) range from 0.52 ppm for Niguel and Santiago to 1.21 ppm for San Juan, with the weighted average of 0.72 kpm for all lines.

A comparison of the relative RMS deviations of various quantities in Table 3 reveals that the best result is obtained for the uncorrected time-of-flight ratios to the mean. The atmospheric corrections did not improve the RMS deviations at all when ratios were taken.

A Test for Systematic Error Due to Atmospheric Conditions

The reliability of the relative lateration depends on the validity of the assumption that the temporal changes of atmospheric conditions are similar for all survey lines in the area so that their effects cancel out when ratios are taken. If this assumption is incorrect, a systematic error due to varying atmospheric conditions is introduced into the measured time-of-flight ratios. The greatly different atmospheric conditions before and after the passage of a cold front during the experiment gave us an opportunity to test this assumption.

The test we performed is the likelihood ratio test. We divided the time-of-flight ratios of Table A4 for each line into two subsets, the first half and the last half, of equal size (the last half was one greater than the first half if the total number was odd). If the systematic error due to atmospheric conditions is significantly large, the mean ratio, μ_{1}, for the first subset will be significantly different from that, μ_{2}, for the second subset. Setting up a null hypothesis $H_{0}: \mu_{1}=\mu_{2}$, if it is true, then the likelihood ratio statistic

$$
\begin{equation*}
t=\left[n_{1} n_{2} /\left(n_{1}+n_{2}\right)\right]^{\frac{1}{2}}\left(\mu_{1}-\mu_{2}\right) /\left[\left(n_{1} \sigma_{1}^{2}+n_{2} \sigma_{2}^{2}\right) /\left(n_{1}+n_{2}-2\right)\right]^{\frac{1}{2}} \tag{23}
\end{equation*}
$$

has a t distribution with $n_{1}+n_{2}-2$ degrees of freedom, where n_{1} and n_{2} are the sample sizes of the two subsets and $\mu_{1}, \mu_{2}, \sigma_{1}{ }^{2}$ and σ_{2}^{2} are used to designate the sample means and the sample variances of the first and the second subsets, respectively, for convenience.

At 90\% significance level, the t distribution has values of 1.69 for 34 degrees of freedom and 1.80 for 11 degrees of freedom, while the t values computed from the data, Table 4, are much smaller. Therefore, the null hypothesis cannot be rejected at this level of significance.

ORIGINAL PAGE IS OF POOR QUALITY

Table 3. Comparison of Relative RMS Deviations in ppm

Stat:ion	Number of Data Points	Uncorrected Time of Filght	Corrected Range (a)	Uncorrected T-o-F Ratio to Santiago(b)	Uncorrected T-o-F Reitio to the inean	Corrected Range Ratio to the mean
Castro	36	2.68	0.96	0.7	0.56	0.54
San Pearo	24	2.91	1.12	0.8	0.52	0.54
Niguel	13	1.53	1.81	0.4	0.36	0.52
Santiago	36	2.45	1.03	(0.2)	0.54	0.52
San Juan	27	3.78	2.05	1.6	1.24	1.21
Al1	136	2.84	1.38	1.0	0.71	0.72

(a) Corrected by using. 12-hour low-pass filtered temperature
(b) From Silverberg ei al. [1982]. The deviation for Santiago is from the smoothed curve, and is not included in calculating the average for all stations.

Table 4. Likelihood Ratio Test for Nori-equality of Means

Station	Subset 1			Subset 2			Degree of Freedom	t
	1	μ_{1}	σ_{1}	n_{2}	μ_{2}	σ_{2}		
Castro	18	1. 104914282	0.000000513	18	1.104914438	0.000000694	34	0.745
San Pedro	12	0.948870911	0.000000356	12	0.948870818	0.000000598	22	0.445
Niguel	6	1.364486713	0.000000572	7	1.364486460	0.000000365	11	0.889
Santiago	18	1.210566249	0.000000774	18	1.210565130	0.000000515	34	0.531
San Juan	13	0.735648159	0.000000838	14	0.735648288	0.000600983	25	0.353

In sther words, no significant difference is found between the mean time-of-flight ratios in the first and second halves of the experiment for any of the lines surveyed.

Results

Since there is no evidence for systematic errors caused by atmospheric conditions, the most likely estimates of the mean time-of-flight ratios and their variances (and standard deviations) can be calculated from the entire data set. The results are shown in Table 5. Also listed in this table are the mean time-of-flight and the mean distances. The latter were calculated using atmospheric corrections based on the low-pass filtered temperatures described earlier and pressures interpolated to the average height of the beam from the end-point measurements (extrapolation in case of Santiago because the average height of the beam was lower than either end point). A group index of refraction of $n_{q}=1.00028975$ at the wavelength of $0.5320 \mu \mathrm{~m}$, calculated from the formula given in American Institute of Physics Handbook [1972, p. 6-111才 for standard dry air with 0.037 carbon dioxide at $15^{\circ} \mathrm{C}$ and 760 mm Hg , is used. No other corrections have been applied to the calculated distances; thus they are subject to minor systematic errors.

The estimated relative standard deviations of the mean time-offlaght ratios are approximately 1×10^{-7} except for San Juan, which is the shortest line. In comparison, Savage and Prescott [1973] estimate that the standard deviation of their Geodolite measurements of distances are 3 and 8 mm for lengths of 1 and 37 km , respectively. Thus, the precision of the present time-of-flight ratios is at least a factor of two better than that of their distance measurements. Furthermore, their distances had to be corrected for temperature and humidity readings made with an aircraft flying along the line of sight, while the present time-si-flight ratios required no atmospheric correction at all.

Multiwavelength measurements of distances are definitely better than the above two in terms of relative accuracy. Huggett and Slater [2975] and Slater and Huggett [1976] show the standard deviation of individual distance measurements to be less than 1×10^{-7} on a 10.1 km line. By taking the mean of many measurements, which is practical in this case, the accuracy can be improved further. The ranges attainable with the multiwavelength system, however, are quite limited compared with the TLRS measurements.

ORIGINAL PAGE II OF POOR QUALITY

Table 5. Mean Time of Filght. Distance and Ratios*

Station	Man Time of Flight ns	Mean Distance m	$\begin{aligned} & \text { Mean } \\ & \text { T-a-F Ratio } \end{aligned}$	S.D, of Mean T-o-F Ratio	$\begin{gathered} \text { Relative } \\ \text { S.D. } \\ \text { ppm } \end{gathered}$
Castro	456358.75	68388.52	1.10488758	9.08000010	0.09
San Pedro	391914.94	59730.98	0.94886293	0.00000010	0.11
Higuel	563587.77	84456.72	1.36449651	0.00000014	ค. 10
Santiago	500014.83	74931.62	1.21058326	0.00000011	0.0 .9
San Juan	303856.63	45535.87	0.75366587	0.00000018	0.24

* These results have been corrected for the TLRS/greund-marker offset.

Table 6. Increment in Normalized Ratio Due to Hypothetical Strain Increment and Rourided Values for Testing

Station	Normal ized Ratio Increment ppm	Rounded to 0.1 ppm
Castro	0.052	0.1
San Pearo	-0.158	-0.2
Niguel	-0.030	0.0
Santiago	0.1468	0.1
San Juan	0.070	0.1

IV. SHEAR STRAIN DETERMINATION USING HYPOTHETICAL DATA

We have been unable to reoccupy the Mt. Wilison site for a repeat measurement, which would allow a testing of the ratio method for a shear strain determination in the region. This section, therefore, describes an exercise we have conducted to see how well we can determine the regional shear-strain increment using a set of hypothetical deta.

We assume a hypothetical strain increment described by

$$
\begin{array}{ll}
\varepsilon_{1}=0.1 \times 10^{-6} & : \text { maximum extension } \\
\varepsilon_{2}=-0.2 \times 10^{-6} & : \text { maximum compression } \\
\varepsilon_{1}-\varepsilon_{2}=0.3 \times 10^{-6} & : \text { maximum shear } \\
\beta=110^{\circ} & : \begin{array}{l}
\text { azimuth of maximum positive principal } \\
\\
\end{array} \quad \begin{array}{l}
\text { axis (extension) measured clockwise } \\
\\
\end{array} \quad \begin{array}{l}
\text { from north }
\end{array}
\end{array}
$$

This strain increment is approximately the annual strain increment in southern California observed by Savage et al. [1981]. The resulting increments in normalized range ratios for the five survey lines used in the Mt. Wilson experiment are listed in the center column of Table 6. Since we will not be able to measure these ratio increments at this accuracy, we use the values rounded to 1×10^{-7}, as given in the rightmost column of Table 6.

Substituting these rounded ratio increments into eq. (15), and inverting it in a least-squares sense, we obtain the following results:

$$
\begin{aligned}
& \varepsilon_{1}-\varepsilon_{2}=0.40 \times 10^{-6} \\
& \beta=109.5^{\circ}
\end{aligned}
$$

The result describes the original hypothetical shear-strain increment reasonably well. A trial with a rounding to $1 \times 10^{-8} 8$ results in almost complete duplication of the hypothetical strain increment.

The likelihood ratio test of the preceding section can be used to estimate the required number of measurements to achieve a given level of accuracy at a given confidence level. We use the standard deviation of individual range ratio measurements of 5×10^{-7} as estimated from the present data (Table 3, excluding San Juan). Thus, substituting $\sigma_{1}=\sigma_{2}=10^{-6}$ and $\left|\mu_{1}-\mu_{2}\right|=10^{-7}$ into eq. (18), we find that $n_{1}=$ $n_{2}=200$ will give $t \xlongequal{=} 1.99$, which exceeds the value of t distribution, 1.97, for 198 degrees of freedom at 95% confidence level. Thus a variation in the range ratio of 10^{-7} found by averaging 200 ratio measurements is significant at 95\% level of confidence.

At a rate of one measurement every hour, it will take slightly more than a week to complete this many measurements. Two such series of
measurements one year apart is sufficient to determine the shear strain increment in southern California.

For a given set of t and $\sigma^{\prime} s, n ' s$ are approximately inversely proportional to the square of the difference in μ 's in equation (.18). Thus doubling the measurement interval, thereby doubling the expected ratio variations, approximately quarters the required number of measurements. For example, a pair of 50 -measurement sets two years apart will give the shear strain rate in southern California.

V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Even though the field experiment we performed during this contract was quite limited compared with our original plan, we obtained several interesting and important results. The following is a list of conclusions drawn from these results:

1. The increment of the ratio of the length of a survey line to the average of several survey lines in a region is directly related to the incremental shear strain in the region. Thus, the shear strain rate can be calculated from observations of temporal variathons in such ratios.
2. Using the TLRS, the time-of-flight ratios could be determined to an accuracy (one standard deviation) of 1×10^{-7} by averaging measurements over a four day period. This accuracy was obtained without using any atmospheric corrections at all. No improvement was obtained when atmospheric corrections based on end-point measurements were applied.
3. A calculation usins a hypothetical data simulating the observed strain field in southern California indicates that two sets of TLRS ratio measurements separated by one to two years will be sufficient to determine the direction and rate of shear strain in the region.
4. Thus relative lateration using the TLRS has been demonstrated to be a good method for monitoring the regional shear strain field around satellite ranging stations. The TLRS operates successfully over long distances. The ratio method is extremely economical. It requires no environmental measuremet s and can be performed with small unattended retroreflectors distributed over a wide area. Thus these techniques greatly surpass the capability of conventional EDM techniques.

Recommendations

1. The results of the present sxperiment are thus very encouraging. However, they are based on only one experiment. Before this technique is put to a practical use, further demonstration is needed to confirm the above results. Therefore, it is recommended that this feasibility study be continued at least to include reoccupation of the Mt. Wilson site and two measurements at another properly selected site, preferably with a different meteorological environment.
2. Relative lateration is not limited to the data taken by the TLRS. The data reduction procedure user in the present study can be applied to other data from alstance measurements. Therefore, it is recommended that we reanalyze some of existing ranging data to see if improvements in determination of shear strain rate can be achieved. This can be done without further field measurements.
3. Additional feasibility test measurements similar to the Mt. Wilson experiment may be obtained from fixed satellite ranging stations. It is therefore, recommended that this possibility be examined.
4. Horizontal ranging to distant targets on the ground does not require all the sophistication of the TLRS system. Therefore, when the capability of the present technique is fully demonstrated, a smaller, more portable single-photon ranging unit should be developed for this purpose.
5. Finally, the technology is advancing in other fields also. Such techniques as miniature interferometer terminals [Counselman and Shapiro, 1979] may someday be more useful in surveys of regional extent. Therefore, development in these other techniqu.'s should be reviewed while developing the present technique.

Acknowledgements

The initial data reduction of the Mt. Wilson experiment was done in the Astronomy Department of the University of Texas at Austin. We are grateful to Dr. Eric C. Silverberg for supplying us the processed data on a computer tape. Dr. Cliff Frohlich kindly reviewed a draft of this report, his constructive comments are greatly appreciated.

References

American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York, 1972.

Carter, W. E. and T. Vincenty, Survey of the McDonald Observatory radial line scheme by relative lateration technique, NOAA Technical Repozt. NOS 74 NGS 9, 1978.

Counselman III, C.C. and I.I. Shapiro, Miniature interferometer terminals for earth surveying, Bull. Geod. 53, 139-163, 1973.

Huggett, G. R. and L. E. Slater, Precision electromagnetic distancemeasuring instrument for determining secular strain and fault movement, Tectonophysics, 29, 19-27, 1975.

Huggett, G. R., L. E. Slater and J. Langbein, Fault slip episodes near Hollister, California: Initial results using a multiravelength dis-tance-measuring instrument, J. Geophys. Res., 82, 3361-3368, 1977.

Robertson, K. D., The use of line pairs in trilateration and traverse, Survey Rev., 21, 290-306, 1972.

Savage, J. C. and W. H. Prescott, Precision of Geodolite distance measurements for determining fault movements, J. Geophys. Res., 78, 60016008, 1973.

Savage, J. C., W. H. prescott, M. Lisowski and N. E. King, Strain accumulation irn southern California, 1973-1980, J. Geophys. Res., 86, 69917001, 1981.

Silverberg, E. C., and D. L. Byrd, A mobile telescope for measuring continental drift, Sky and Telescope, 61, 405-408, 1981.

Silverberg, E. C., T. Cahill and J. Dorman, Relative lateration across the Los Angeles basin using a satellite laser raning system, Bull. Geod., (in press), 1982.

Slater, L. E. and G. R. Huggett, A multiwavelength distance-measuring instrument for geophysical experiments, J. Geophys. Res., 81, 62996306, 1976.

5俋
为

ORICINAL PAGE IT
 OF POOR QUALITY

Table A1. Calibrated Round-Trip Tima of Flight

Castro			San Pedro			Niguel		Santiago				Son Juan		
dy hr	ma sc	ns		$r \mathrm{mn} \mathrm{sc}$	ns	dy hr mn sc	ns			mn sc	ns		hr min Ec	ns
2210	0429	456364.7		101855	391913.7	24042332	563581.8	22	10	4141	509003.1	22	105117	303845.7
2212	0241	456365.9		122152	391914.8	24061958	563582.6	22	12	4311	500983.8	22	125151	3038.46.?
2214	0543	456365.6		141503	391914.4	24064628	563581.9	22	14	3432	500003.5	22	$1448 \mathrm{E4}$	393646.4
2300	0940	456366.5		$18 \quad 23 \quad 39$	391915.5	24081826	563592.0	22	22	4955	500004.4	22	185503	303847.6
2302	0925	456366.3		842040	391917.4	24101513	563581.9	23	00	4106	500004.8	22	225459	303847.4
2306	0503	456356.5		061619	391918.0	24104016	563582.1	23	04	3314	500804.5	23	054781	30138-47.3
2406	0846	456369.4		065104	391917.8	24141510	563582.0	23	06	3934	500004.4	23	08 AT 14	303647.0
2400	5817	456369.4		080940	391918.0	24144018	563582.2	23	08	3944	500004.0	24	04 4 14	303849. 6
2408	0019	456369.2		$10 \quad 10 \quad 03$	391917.6	$241618 \quad 20$	563581.8	24	04	4008	500007.4	24	$06 \quad 2945$	3013849.1
2409	5954	456369.1		104534	391917.7	$2502 \geq 158$	563581.2	24	06	2543	500007.6	24	Q6G\% 1	303849.6
2410	5503	456359.3		121004	391917.8	25024349	563581.2	24	86	4131	500007. 4	24	082549	3038-4.4
2412	日0 58	456369.4		141130	391917.8	25101605	563579.8	24	08	2217	500007.6	24	122380	303849.?
2414	0134	456369.2		144560	391917.6	25104113	563579.6	24	10	$21 \quad 13$	500807.3	24	143526	303343.8
2414	5505	456369.8		021318	391917.0			24	10	3515	500907.5	24	143594	305349.9
2415	0103	456369.7	25	025327	391917.6			24	12	20.83	500007. 4	24	16285	303849.6
2418	0066	456369.2		040953	391917.0			24	14	2003	500006.8	25	923303	393849.0
2418	5739	456369.0		06 1085	391916.6			24	14	3511	569095.8	25	023656	303849.0
2422	4442	456368.4		064543	391916.4			24	16	2953	50000\%. 0	25	0.725 E0	$303049 . E$
2502	0525	456363.8		081136	391916.5			24	20	18.64	500006.6	25	10632 42	353848.4
2502	58104	456369.2		101016	391916.4			25	EO	2313	500006.0	25	032356	393347.8
2504	0052	456368.6	25	104523	391916.0			25	02	2930	500906.6	25	162511	30880476
2506	0117	456368.6		121030	391916.6			25	02	3951	500006.6	25	103563	333847.8
2506	5521	456368.4		141511	391916.8			25	04	2237	509007.0	25	122503	3638243.0
2508	0449	456367.7	25	144042	391916.8			25	06	2251	500006.4	25	18 E ¢ 5	363547.3
2510	0153	456367.6						25	06	3548	500006.0	25	202559	E.13548.4
2510	55 ต8	456367.8						25	08	2032	500005.6	25	222350	3.3547 .2
2512	0405	456367.5						25	10	2096	500005.4	26	60 32 50	393547.6
2514	5154	456368.4						25	10	3511	500065. 2			
2516	昍 28	456368.2						25	12	2102	500005.2			
2518	0019	456367.9						25	14	2141	500065.8			
2518	5943	456368.0						25	14	35 122	500053.8			
2520	0742	456367.9	,					25	16	20.16	500006.2			
2520	3724	456367.7						25	18	3942	500006.0			
2520	4958	456368.1						25	20	2059	500605.9			
2522	5157	456367.1			,			25	22	3754	500005.4			
2600	0527	456367.2						26	00	2653	500005.4			

 43 ת

$$
a
$$

Table A2. (continued)

ORIGINAL PAGE IG OF POOR QUALITY.

ORIQINAL PAOK IV OF，POOR QURiLTY

䍗 8.

 2

品

 \approx 士

Higuel

001.00024337
San Juan

¢

芭

Table A4. Time-of-Flight Ratios

ORIGINAL PAGE
OF POOR QUALITY

Fig. Al. Observed atmospheric temperature.

Fig. A3. Saturated vapor pressure.

