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PREFACE
This Phase B Report documents thoroughly the derivation of a set of
small-signal models for the power stages in the single-winding and the two-
winding current-or-voltage step-up (buck-boost) energy-storage dc-to-dc
converters for operation in both the continuous-mmf mode and the
xdiscontinuous-mmf mode. The derivation of the transfer functions describing
these power stages is shown in detail and the expressions for the coefficients

of these transfer functions are tabulated for ease of application.
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1. INTRODUCTION

A brief survey of existing approaches to the modeling of switching-mode
power systems was presented in Section 1 of the Phase A Report [1] prepared as
part of this contract under NASA Order No. $-71440B. In that report, a set of
small-signal functions is derived to characterize the voltage step-up (boost)
and the current step-up (buck) converters operating under the constant-
frequency control law. The basic modeling approach employed in that report
starts with the approximation of state transition matrices by second-order
Taylor series. From this approximation of the state transition matrices,
difference equations for the state variables are developed. Finally, transfer
functions. are derived .to describe the output variables.

Following the same modeling approach employed in the Phase A Report, this
Phase B Report documents thoroughly the derivation of a set of small-signal
functions for the single-winding and the two-winding current-or-voltage step-
up (buck-boost) converters. The equation numbers in this report are assigned
the same sequence to match as closely as possible those in the Phase A Report
and thereby help the readers to follow the parallel treatment of material
common to the two reports. Equations in these two reports can be divided into
two groups, those associated with the general modeling approach and those
relating to particular converters. Equations relating to the general modeling
approach appear identically in these two reports because the same modeling
approach 1is shared between the two. An equation of this type is labeled as
(n) where n is the equation number. Equations relating to particular con-
verters; however, differ from converter to converter, depending on the par-
ticular converter topology. As a result, an equation relating to a particular
converter is labeled as (n.,#) where n is the equation number and # is an

acronym to identify the particular converter. For example, VU, CU, SCVU, and




TCVU are the acronyms used for the voltage step-up, current step-up, single-
winding current-or-voltage step-up, and the two-winding current-or-voltage
step-up converters, respectively. Also, there are equations which are common
to both the single-winding and the two-winding current-or-voltage step-up con-
verters. Equations of this type are labeled as (n,CVU) where n is the equa-
tion number. The tabulation below illustrates the use of the acronyms and the

numbering of the equations :

vu vol tage step-up converter

cy current step-up converter

SCvU single-winding current-or-voltage step-up converter
TCvu two-winding current-or-vol tage step-up converter
(14) equation 14, applies to all four converters

(30,VU) equation 30, applies to the voltage step-up converter
(30,CU) equation 30, applies to the current step-up converter

(30,CVU) equation 30, applies to both the single-winding and the
two-winding current-or-vol tage step-up converters

The symbols used in this report are listed in Appendix A. As far as
signal or information flow is concerned, a regulated converter can be repre-
sented by the block diagram as shown in Fig. 1. It consists of a dc-to-dc
converter power stage with its load, a feedback network, an error detector,
and a pulse-width modulator. The power stage is symbolized as having three
inputs — the supply voltage vy, the load-disturbance current iy, and the duty
ratio ap — and two outputs — the load voltage vg and the supply current ip.
The feedback network is characterized as a network with the load voltage vg as
its 1input and feedback voltage vf as its output. The error detector compares

the feedback voltage v to the reference voltage vRer and provides an output
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Block diagram representing the signal flow in a converter power stage.




VE ¥ VF - VRgf. The pulse-width modulator has as its input the error voltage
VE and as its output the duty ratio ap. The feedback network, the error
detector, and the pulse-width modulator often are grouped together into a
single functional block called the controller. The signal vRgr is a

reference-vol tage source that establishes the desired dc output voltage Vq.

The first and usually most involved step in characterizing a closed-loop
requlated converter under small-signal perturbation conditions is the deri-
vation of the small-signal open-loop functions that describe the power stage
of the converter. In deriving these open-loop functions, we need to decide
how the various physical devices, such as the energy-storage reactor and the
semiconductor switches, are to be modeled in the analysis. We also need
information on how the state variables, such as reactor exciting current and
output filter-capacitor voltage, vary during one switching period. Determina-
tion of the values of the state variables at the beginning of a switching
period under equilibrium, i.e., steady-state operating conditions, also is an

essential piece of information for deriving these functions.

Section 2 of this report explains how the various physical devices are
modeled 1in this analysis. It also illustrates how the numerical parameters
characterizing these models can be obtained. Differential equations for the
state variables are set up and solved 1in Section 3 to describe how the state
variables vary during one switching period. Finally, in Section 4, the com-
putation of the equilibrium operating point is d{llustrated. The various
small-signal open-loop functions of the power stage are then derived in
Section 5 and expressions for the coefficients of these transfer functions are

tabulated.




[8)]

To completely characterize a closed-loop regulated converter, a model for
the controller must be developed.' Al though there ihas been some efforts to
standardize controller modules [2], the design of a controller is far from
unique. It is possible to design a great number of controllers, each achiev-
ing the goal of regulating the output voltage of the converter, with vastly
different circuitries. These controllers may, or may not, have the same
small-signal transfer function. This report does not cover the modeling of
controllers. It is assumed that the user can obtain the small-signal transfer
function of the controller, either analytically, or experimentally as shown

in [3].

Once the power stage and the controller are characterized by their re-
spective small-signal transfer functions, functions such as input impedance,
output impedance, and audio susceptibility can be derived for the closed-1o00p
regulated converter. The derivations of such functions are elaborated on in
Section 6. The step-by-step procedures to obtain these closed-loop functions

are shown in the form of a flow chart in Fig. 2.
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Fig. 2. Steps in arriving at the small-signal closed-l1oop functions of a
regulated dc-to-dc converter.




2. DEVICE MODELS
In the modeling of the power stage of a dc-to-dc converter, the power
transistor, diode, eﬁergy—storage reactor, and filter capacitor are replaced
with equivalent-circuit models consisting of ideal elements. These equivalent
models must be simple enough to make the analysis tractable, while accurate
enough to capture the essential features of the devices during the operation

of the converter. The device models are presented individually in the follow-

ing subsections.

2.l Transistor Model

The power switching transistor is modeled, as shown in Fig. 3, as a
series combination of an ideal switch Sq, a constant vol tage Vg, and a resis
tor with equivalent resistance rg. The switch Sq is closed when the transis-
tor is switched ON, and it is open when the transistor is switched OFF. The
quantity Vg is equal to the numerical value of the break-point voltage of the
transistor in the ic versus vcg plane for a bipolar junction transistor (BJT),
or in the ip versus vps plane for a field-effect transistor (FET). The value
of rq' is equal to the differential resistance of the transistor dig/dvg when
it 1is turned on. The equivalent resistance ry in the modei, however, is
defined in terms of the equivalent resistance needed to account for all of the
resistive components of transistor loss, including switching l1oss, due to the

effective value of the transistor current Iq yms. Defining

(1 )2 : f 1‘2 dt
Q,rms = T Q
Ts J T

where Tg is the switching period, then rmy is the required value of resistance

such that the product ( IQ rms )2 rq corresponds to the total resistive con-
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Fig. 3. Piecewise-linear equivalent model of a BJT or an FET switch. For the
BJT switch, the base, emitter, and collector terminals are identified
by the letters B, E, and C, respectively. For the FET switch, the
gate, source, and drain terminals are identified by the letters G, S,

and D, respectively.




duction losses, as opposed to the loss due just to the constant component Vq
of the transistor saturation voltage. To find the value of Iy ,ps and even-
tually the value of my, the switching waveforms of the transistor must be

determined either by oscillographic measurement or by calculation.

Over one switching cycle of period Tg, the average power loss in the

transistor switch is
1
PQ == f vQ iQ dt
Ts J 1

This power loss Pq can be viewed as the sum of two components, the loss Py due
to the constant component of the transistor forward drop voltage Vg when it is
conducting, and the remainder of the power loss PR which can be considered as
due to an equivalent resistor rg [3]. . Therefore,

1
Py =-——f Vq ig dt
Ts /75

and

1
PR=Pq-Pv=T-f (vg - VQ) iq dt
s 7/ Ts
Equating PR to (Ig,ms)2 rg, we have

2 1
(Ig,rms) m =T f (vq - Vq) ig dt
s 7 Ts

and the equivalent resistance

f (vq - Vo) ig dt
Ts

r = (1)

[ @ o«
Ts Q
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One possible way of evaluating the dintegrals shown in (1) is to sample
and digitize the actual waveforms of transistor voltage vq (vcg or vps) and
current iq (ic or 1ip). The digitized results are stored in some storage
medium such as the memory registers of a computer or a disk in a computer
system. The integration is then performed through numerical summation of the
sampled values of (vq - Vg) iq and ig2. This process can be accomplished
through the use of a digitizing recorder such as the Biomation 8100 in con-
junction with a minicomputer, or through a digital processing oscilloscope
such as the Tektronix 7854. If such an instrument is not on hand, one can
approximate the switching waveforms with piecewise-linear waveforms. The
value of rg is then obtained according to (1), with the values of vQ and iq

replaced by their piecewise-1inear approximations [3].

Where the switching 1loss is negligible compared to ON-time conduction
loss, as for a converter operating at a relatively low switching frequency, rg
can be approximated by the dynamic resistance rq' of the transistor, where r'Ql

is defined graphically as shown in Fig. 3.

2.2 Diode Model

In a manner similar to that of the transistor, the diode is modeled as a
series combination of an ideal switch Sp, a constant voltage Vp, and a resis-
tor with equivalent resistance rp. The switch Sp is closed when there is for-
ward current flowing in the physical diode, and it is open otherwise. Vp is
equal to the numeriéal value of the break-point voltage of the diode in the 1ip
versus vp plane as shown in Fig. 4. Similar to the definiton of rg, the

equivalent resistance of the diode rp is defined as




Fig. 4.
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Piecewise-1linear equivalent model of the diode switch.




MM = (2)
2
.[. 10 dt
Ts

where vp and ip are the instantaneous voltage across the diode and the instan-

taneous current through the diode, respectively. The methods of evaluating
integrals outlined in Section 2.1 apply equally well in evaluating the

integrals in (2).

In the case where the switching loss is negligibie compared to the regu-
lar conduction 1loss, the resistance rp can be approximated by the dynamic

resistance ru' of the diode, where rD' is defined graphically in Fig. 4.

2.3 Energy-Storage Reactor Model

2.3.1 Energy-Storage Reactor Model for the Single-Winding Current-or-Voltage
Step-Up (SCVU) converter

The energy-storage reactor for the single-winding current-or-voltage
step-up converter (SCVU) is modeled as an ideal inductor L in series with a
resistor rx as shown in Fig. 5(a). Assuming that the reactor core material
has a constant permeabilitiy, L is then the nominal inductance of the induc-
tor. That is, L = uNZA/z, where y is the absolute permeability of the core
material, N is the number of turns, A is the effective cross-sectional area,
and ¢ is the mean magnetic path length. The value of resistance for rx is the
winding resistance of the inductor, and it can be estimated when frequency
effects can be neglected by finding the wire size of the winding, the number

of turns in the winding, and the average length per turn of windings.
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Fig. 5. (a) Model of the energy-storage reactor for the single-winding
current-or-vol tage step-up converter. (b) Model of the energy-storage
reactor for the two-winding current-or-voltage step-up converter with
magnetizing inductance Ls referred to the secondary circuit.
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2.3.2 Energy-Storage Reactor Model for the Two-Winding Current-or-Voltage
Step-Up (TCVU) Converter

The energy-storage reactor for the two-winding current-or-voltage step-up
(TCVU) converter is modeled by a network of linear elements as shown in Fig.
5(b). Neglecting the leakage inductances associated with the primary and
secondary windings, the energy-storage reactor is modeled as an ideal trans-
former with the linear magnetizing inductor LS connected across the secondary
winding. The secondary- to-primary turn ratio of the ideal transformer is
equal to y = Ng/Np, the secondary-to-primary turn ratio of the original two-
winding reactor. Assuming the core material has a constant permeability, Lg
is equal to the nominal inductance of the reactor referred to the secondary
winding. That is, Lg = ustA/z, where u is the absolute permeability of the
core material, Ng is the number of turns in the secondary winding, A is the
effective cross-sectional area and 2 is the mean magnetic path length. The
value of rﬁ‘and rs are'the primary and secondary winding resistances, respec-
tively, and they can be estimated in the same way as the estimation of the
winding resistance ry in the single-winding reactor. It is Jjustified to
neglect the leakage inductances because they usually result in circuit reso-
nances of frequencies much higher than the switching frequency while the
small-signal analysis is valid only in the frequency spectrum below one-half

of the switching frequency.

2.4 Capacitor Model

The output filter capacitor of the power stage is modeled as an ideal
capacitor C with a voltage of vg in series with a resistor rg to represent the
equivalent series resistance (ESR) as shown in Fig. 6. The equivalent series

inductance (ESL) of the capacitor is ignored because the filter capacitor
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Fig. 6. Model of the output-filter capacitor.

O <
+
LOAD VOLTAGE vo é 2 C/biw
O -

Fig. 7. Model of the power stage load.
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employed in a dc-to-dc converter wususally is chosen so that its resonant
frequency is much higher than the switching frequency fg, while the small-
signal analysis is valid only in the frequency spectrum below one-half of the
switching frequency. The value of C is the nominal capacitance of the filter
capacitor and r¢ can be found by measuring the small-signal impedance of the
capacitor at its resonant frequency or from the step jump in capacitor ter-

minal voltage due to an injected step of current through the capacitor.

2.5 Load Model

The converter power-stage load is modeled as an ideal load resistor R_ in
parallel with a current source iy as shown in Fig. 7. The principal purpose
of the source iy is to permit the injection of a disturbance signal at the
output port of the converter. Such a siénal permits the measurement of the
output impedance of the converter and, in such cases, usually is a low
ampl itude alternating current. It may, however, also be used to represent the
dc equilibrium value of a constant-current component of the total 1load

current.
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3. SOLUTIONS OF STATE VARIABLES IN ONE SWITCHING CYCLE

Before going into the description of state variables for the two con-
verter power stages, it is appropriate to explain the convention for the
symbols used in this report. For any dynamic variable, such as voltage,
current, transistor conduction time, diode conduction time, and duty ratio,

the total instantaneous signals are represented by lower-case characters with

upper-case subscripts. For example,

Instantaneous values :

Supply voltage Vi
Duty ratio ap
Transistor conduction time toN

Each instantaneous signal is assumed to be composed of a dc or equilibrium
term and a small-signal variational term. Equilibrium terms are represented

by upper-case characters with upper-case subscripts. For example,

Equilibrium values :

Supply voltage Vi
Duty ratio Ap
Transistor conduction time ToN

The small-signal variational terms are represented by lower-case characters

with lower-case subscripts. For example,

Variational values:
Supply voltage Vi
duty ratio ad

transistor conduction time ton
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Combining these terms, we have

vi = V1 + vj
ap = Ap * ad

toN = Ton + ton

The frequency-domain transformed variables of the small-signal variational

terms are represented by upper-case characters with Jlower-case subscripts.

For example,

Frequency-domain variables:

V(8 = L[ vyl ]
Adls) = L[ ag(t) ]
Ton( s) = L[ ton( t) 1]

where s represents the Laplace transform variable and L[ ] represents the

Laplace transformation of the enclosed time function.

Also let us define a set of constants, (3,CVU) to (8,CVU), which facili-

tate the derivations in the following subsections.

RL
= 3,Cvu
P ey ( )
L
wa = (4 ,CVU)
Clrg + RY)
NS
Yy = - (5,CvU)
Np
p TC
we S —— {6 ,CVU)
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2
e {rp+ )
wg = - ik (7,0v0)
S
r‘s + + p r
wh = i ¢ (8,CvU)
Ls

3.1 Description of State Variables in General

Replacing the energy-storage reactor, the capacitor, and the 1load with
the models derived in Section 2, the power stage of a single-winding current-
or-voltage step-up converter shown in Fig. 8(a) can be replaced by an equiva-
lent model in Fig. 8(b) . Replacing the transistor and the diode switches with
their corresponding models, the circuit shown in Fig. 8(b) is reduced to an
equivalent circuit shown in Fig. 8(c). The switch Sq and Sp in the device
models have been combined into one single controllable switch S in Fig. 8(c).
Similarly, the power stage of a two-winding current-or-voltage step-up con-
verter shown in Fig. 9(a) is replaced step by step by its equivalent circuits
shown in Figs. 9(b) and 9(c). Reflecting the primary circuit of Fig. 9(c)
through the ideal transformer to the secondary circuit, the final equivalent
circuit shown in Fig. 9(d) is obtained. 1In Figs. 8(c), 9(c), and 9(d), the
switch S assumes position 1 when the transistor is conducting and position 2
when the diode is conducting. If the converter operates in the discontinuous-
mmf mode, switch S assumes position 3 for part of the switching cycle when

neither the transistor nor the diode conducts.

In general, the converter power stage models in Figs. 8(c) and 9(d) have
three controllable input variables — the supply voltage vi, the 1load-
disturbance current iy, and the duty ratio ap, which is defined as the ratio

of the time that the transistor is in conduction in one switching cycle tQN to




20
vQ
+ -
it iQ Y0 . ip
. <9
D +
L
Vi L ; Sl 0
A
W X AN ic 5

[~
1
[ S

(a)

Fig. 8(a) Circuit diagram of the power stage of the single-winding current-
or-vol tage step-up converter.
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(b)

Fig. 8(b) Equivalent model of the power stage shown in Fig. 8(a).
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(c)

Fig. 8(c) Equivalent model of the power stage of the single-winding current-
or-vol tage step-up converter as obtained from the equivalent
circuit shown in Fig. 8(b).
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voltage step-up converter.
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Fig. 9(a) Circuit diagram of the power stage of the two-winding current-or-
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rp - i
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(b)
Fig. 9(b) Equivalent model of the power stage shown in Fig. 9(a).
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Ls vy

Y= Ng/Np rs
(c)
Fig. 9(c) Equivalent model of the power stage of the two-winding current-or-

voltage step-up converter as obtained from the equivalent
circuit shown in Fig. 9(b).

(d)

Fig. 9(d) Equivalent model of the power stage of the two-winding current-or-
voltage step-up converter after the primary circuit has been
reflected to the secondary circuit.
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the switching period Tg. There are two state variables — the inductor
current ix and the ideal capacitor voltage vg. As far as signal flow is
concerned, the 1load voltage vp and the supply current i1 are looked upon as

the response, or the output variables, of the power stage.

The operation of a converter power stage can be classified into two cate-
gories: the continuous-mmf mode and the discontinuous-mmf mode. In the
continuous-mmf mode, the exciting current ix of the ideal inductance 1in the
equivalent circuit, L in Fig. 8(c) or Ls in Fig. 9(d), is never equal to zero.
As a result, at any time in a switching cycle, either the transistor or the
diode is conducting. In the discontinuous-mmf mode, however, the exciting
current drops to zero during a certain portion of the switching cycle. Hence,
there %s an interval during the switching cycle when neither the transistor
nor the diode is conducting. Define tgy as the duration of time the transis-
tor conducts in one switching cycle, toFFp1 as the duration of time the diode
conducts, and toFr2 as the duration of time when neither the transistor nor

the diode is conducting. Then, in the continuous-mmf mode,

toN + toFFL = Ts (9)
where Tg is the switching period. In the discontinuous-mmf mode,
toN + toFFL + ToFF2 = TS (10)

Section 3.2 is devoted to setting up the power-stage differential equa-
tions in terms of the state variables. The differential equations are then
solved, giving a picture of how the state variables vary in one switching

cycle.
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Whether the converter operates in the continuous-mmf mode or in the
discontinuous-mmf mode, in any one of the time intervals tgy, toFF1, and
toFF? , the power stage state variables satisfy the piecewise-linear differen-
tial equations for that interval. This may be expressed for any time interval
in compact matrix notation as

d
- X5 = AXS+ B u
dt—s A XS+ b Ul

where xg is the state vector, ur is the input vector, and A and B are matrices
whose elements are topology dependent. Since the circuit topology of the
equivalent model of the power stage is altered according to the position of
switch S, the matrices A and B during the time the transistor 1is conducting
usually are different from the A and B for the case when the diode is con-
ducting. Using the device models established in Section 2, [ v¢ iy 17 is
chosen as the state vector, where T stands for the transpose of matrices and
vectors. Likewise, [ vi iy Vq Vp 1T is a meaningful choice for the input

vector. In terms of these choices, we have

xs=1[ vg ix 17 (11)
ur=[ vy iy Vg vp 1T (12)

To identify and distinguish relationships that are applicable during the
time interval when the transistor is conducting, we attach the subscript ON to
the corresponding A and B matrices. Therefore, during the ON-time in the kth

switching cycle for (kTg) < t < (kTg + toy), where k is an integer,

d

s Aon xs + Bon up (13)

With xs(kTg) as the initial solution for the vector x5, the general solution

to (13) is
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xslt) = e e Bon uplt) dr

Aon( = kTg) t  Aon( t-1)
xs(kTg) + j
kTs

Assuming uj does not change in one switching cycle, then

Aon( t-kTs) t  Agn(t-t)
xs(t) = e xs(kTg) + j e de | Bon ui

kTs
AoN( t-kTs) Aon(t-t) 1 ¢t
= e xs(kTs) - Aon‘l [e ] Bon u1
kTs
AoN( t-kTs) AoN( t-kTs)
= ¢ xs(kTs) + Agn~L ( € - 1) Bon u (14)

where L\QN-I is the inverse of Agy. The assumption that ujy does not vary in
the switching period is seen to have a far reaching consequence in later
sections. This assumption is necessitated by the need to keeb the analysis

tractable, otherwise the modeling becomes excessively complicated.

During the time interval (kTs + toN) < t < (kTg+ tgN + toFFl), the diode

is conducting. Similar to (13), the differential equation in this interval is

d

T XS = AoFF1 Xs *+ BoFFl U (15)

where AgrFl1 and Borry are matrices whose elements are dependent on the
topology and elements in the circuit. Assuming the input vector up does not
change in one switching cycle, then, similar to (14), the solution for the

state variables in this interval is

AoFr1( t-kTs-ton) '
xs(t) = € xs( kTst toy)

AorF1( t-KkTs-ton)
+ Aorr17l (@ - 1) BoFF1 U1 (16)

where XS(kTs+tQN) is the initial condition for this time interval.

|
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If the converter operates in the discontinuous-mmf mode, there will be a
third time interval during which neither the transistor nor the diode con-
ducts. Similar to (13) and (15), the differential equation for this interval
is

d
Ti X5 = AoFr2 Xs * Borrz U1 (17)

where AgFr2 and BoFF2 are matrices whose elements are dependent on the

topology and elements in the circuit. Similar to (14) and (16), the solution

for the state variables in this interval is

AgFr2( t-kTs- ton- toFFl)
xs(t) = ¢ xsl kTs+ ton+ toFr1)
1 Aorr2( t-kTs- ton- toFFi)
+ Aorr2™t (€ - 1) Borrz u (18)

3.2 Description of State Variables for both SCVU and TCVU

An inspection of the equivalent circuits shown in Figs. 8(c) and 9(d)
shows that the equivalent circuits of SCVU and TCVU are very similar. In
fact, ify=1,Ls=L, rp=rx, and rg= ry, the equivalent circuit of TCVU
shown in Fig. 9(d) is reduced to the equivalent circuit of SCVU shown in Fig.
8(c). Therefore, as far as the description in terms of the state variables is
concerned, SCVU is only a special case of TCVU wherey =1, Lg= L, rp = ry,
and rg = ry. Starting from this section, equations that are applicable to
both SCVU and TCVU are labeled with (n,CVU) where n is the equation number,
with the understanding that y = 1, Ls= L, rp = r, and rg = ry for the case
of SCVU.

In the time interval in which the transistor is conducting, the equiva-

lent model shown in Fig. 9(d) can be reduced further to the circuit shown in
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Fig. 10(a). The power-stage differential equations written in terms of the

the capacitor voltage vg and the inductor current iy are :

_ d ve RL 1y
1C=C_VC=- -

dt rc + R rc + R

' ) |
vx 2 Ls=—=dix=-yc(rp+ ) ix +y vi-vy Vg

dt

Dividing by C throughout the first equation, and by Lg throughout the second
one, and substituting symbols defined in (4,CVU) (5,CVU), and (7 ,CVU)

d

3 Ve T Cwa Ve - Riwa iy

d | _+YVI Y ¥q
-— oy = = i — - c—
at * U X TS T T

These two differential equations can be combined to form a single matrix dif-

ferential equation

d -wg O 0 - Rwa O 0
= Xs= Xxs + Ml

0 ~ug X 0 =Y O
Ls Ls
Comparing the above equation with (13) gives
. ros 0
_‘}ON = (19,Cvy)
| O “w
and i I
0 -RLwa 0 0
Bon = (20 ,CvU)
i 0 ot 0
L Lg Ls

When the initial condition _)55( kTs) 1is known, the solution for the state
variables during this time interval can be obtained by substituting (19 ,CVU)

and (20,CVU) into (14).
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YZ Lg¢] L re
RL
Y vl -
+ ve Vo iy
c +
Ls vY
- ic -
W ———
YZ rp
(a) kTg < t < kTs + toy
VD ]
|
"
i +
X rc
Ry
YvVv : - vQ
‘ + : @
c +
- fc -
WA
rs
(b) kTs + toN < t < KkTs + toN + tOFF1
i r +
X c R,
T ' ;c Y0 iy
LS vy c +
- ic -
(c) kTs + ton + toFFl < t < (k1) Ts
Fig. 10. Equivalent circuit of the two-winding current-or-voltage step-up
power stage for the three subintervals toN, toFFl, and toFF2.
SERSRESES S
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When switch S in Fig. 9(d) is in position 2, corresponding to conduction
of the diode, the equivalent model is reduced to the one shown in Fig. 10(b).

From Fig. 10(b), the differential equations are :

, ve Ry ix RL iy
ic=C=—vc=-~- + -
dt rct RL rg+ R rg+ R
, Ld. RL ve (e +rcRL), V+Y‘CRLW
— —‘l = - - r‘ 1 -
X S dt X rc+ Ry ST rc + Ry X D rc + R

Dividing the first equation by C, and the second one by Lg, and using the

constants defined in (3,CVU), (4,CVU), (6,CVU), and (8,CVU),

d
— V0= - wa VC+ Rwa 1Xx - Ruga iy
dt
iy = 2 v i 0 + i
at X Lg C - wh 1X s we 1Y
which can then be combined into
~W3a RLo.)a 0 - RLwa 0 0
= Xs = Xs ¥ ur
dt 2 -y 0 W, 0 =ZL
Ls Lg

Comparing the above equation with (15) gives

-wa Rlwa
AQFF1 = (21,CvU)
=B -w
L h
and S
0 -RLma 0 0
BoFF1 =
0 ® 0 -1 (22 ,CVU)
e
Lg

When the initial condition xs(kTstton) is known, the solution for the state
variables in this time interval can be obtained by substituting (21,CVU) and

(22 ,CVvU) into (16).
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When switch S in Fig. 9(d) is in position 3, representing the condition
that both the transistor and the diode are not conducting, the equivalent
model is reduced to the one shown in Fig. 10(c). From Fig. 10(c), the dif-

ferential equations are :

] cd Ve RL 1y
1= —v = - -
CT PR TR o r R
L d 0
v - —1 =
X S ¢ X

Dividing by C throughout the first equation, and using the constant defined

d -wy O . 0 -Rwg O O
— XS = Xxs * Y
dt 0 0 0 0 0 O

Comparing the above equation with (17),

in (4,CVU),

-wa 0
AoFr2 = ] (23,CVU)
0 0
and )
0 -Rwa O O
BoFF2 = {24 ,CVY)
| 0 0 0 0

When the initial condition is known, the solution for the state variables
during this time interval can then be obtained by substituting (23,CVU) and

(24 ,CVU) into (18).
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4. EQUILIBRIUM OPERATING POINT

4.1 Equilibrium Operating Point in the Continuous-Mmf Mode

In the continuous-mmf mode, the switching period Tg is equal to the sum
of the transistor conduction time tgy and the diode conduction time tgpFp. At
the end of the kth switching cycle, the time is t = (ktl)Tg = kTg+ +tgy +

toFF1. At this time, according to (16),

AOFF1 tOFF1 AoFF1 toFF1
xsl{k1)Ts] = € xs(kTstton) + AoFr1~t ( € - 1) BoFrl ur

Substituting for xg(kTsttgy) the value given by (14) evaluated at t = kTgrtgy,

AoFF1 toFF Aonton Aonton
xs[ (k1) Tl = € T xs(kTs) + AgyL (€ -1) Bonurl

.1, DOFFLYOFF
+ AoFr1™t (€ - 1) Borml U1

M
Analogous to the scalar exponential series, the matrix exponential e can be

expressed in the series form

M M M M

e =1+ TT + + + oo e

w

21
for a square matrix M. Using the series expansion for the state transition

Aonton AoFF1 toFF1 .
matrices e and e » and retaining terms only up to second order

in Ts, the equation for xs{(k+*1)Ts] reduces to

AonZton? + Agrr12 torr12
2

xsL{k+1)Tsl = ( I+ Aonton + AoFFLtoFFL +
+ Aorr1AONtOFFLtoN ) xs(kTs)

AonBonton? + AgFF1BoFF1 toFF12
2

+ ( Bonton + BorF1toFFl +

+ AoFr1BoNtoFFLton ) I (25).
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The relationship between the transistor conduction time tgy and the duty
ratio ap is tgy = apTs, where Tg is the switching period. Combining tgy =
apTg with (9) gives topFy = (l-ap)Tg. Now substituting the respective matri-
ces Agn, AoFrls Bon, and Borry from (19,CVU) to (22,CVU) into (25), and carry-
ing out the multiplication, the matrix equation can be decomposed into two

scalar equations.

W azTSZ o] RLw a( l-a D) ZTSZ

vel(kr1)Tgl = ve(kTs) (1 - wals + — - P

(watwp) (1-ap)2Ts?
+ ix(KTs)Riga ( (1-ap)Ts - ug(l-aplapTs? - —— : -

v(v1-VQ)Rwall-aplapTs?  VpRiwa(l-ap)2Ts?

Ls 2Ls
. w aTSZ w e( lea D) ZTSZ
— Rwaiu ( Ts - —— - - ) (26 ,CVU)
and
ovcl kTs) wall-ap?) T whl(l-ap)2Ts2
ix[(k+1)Tg] = = ——— ( (1l-qp)Tg - - -
Ls 2 2
(w mwh(l-ao))szz
+ xX(KTS) (1 - lugaptup(l-ap)) Ts + ——
oRwal1-ap) 2752
) 2Lg
y(vi-Vq) " wqaplTs
t T L (apTs - = - whfl-aplapTs? )

pRwall-ap?) Ts?  wewpll-ap)2Ts?
2Lg ) 2

+ iy ( well-ap)Ts +

Vo . mh(l-uD)szz
'-—S ( {(1-ap)Ts - > ) (27 ,cVvU)
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In steady state or equilibrium, all state variables are the same at the end of
an arbitrary switching cycle as at the beginning. As a result, using an
upper-case character with an upper-case subscript as discussed in the intro-
duction to Section 3 to indicate an equilibriun value, we have v¢(kTg) =
vel (k1) Tgl = Ve(kTs), ix(kTg) = ix[(kr1)Tg]l = Ix(kTs), vi = Vi, iy= Iy, and
ap = Ap. In equilibrium, (26 ,CVU) and (27 ,CVU) reduce to

wals . oRL(1-Ap)2Ts

0= =~ wa Vel kT 1 -
wa Vel kTs) ( 5 Pis

(watwp) (1-Ap) Ts
2

+ Ix(kTs) Rwa (1-Ap) ( 1 - wgApTs -

y{V1-VQ) Rl a( 1-Ap) ApTs VpRLw a{ 1-Ap)2Tg

Lg 2Lg

waTs well-Ap)2Ts

— Iy Ruwa(1- > > (28 ,CVU)
and
i oVl kTs) wal1+AD)Ts  wp(1-Ap)Ts
0-—‘——1-—3——(1-AD)(1- 3 - >
(wgAptuh(1-Ap))2Ts o Riwa(1-Ap)2Ts
— Ix(kTs) ( wghp *+ wn{1-Ap) - > + 7Ls
(V1-Vg) Ap ApTs
Y—-—Q—- ( l-mg - wh(l-Ap)Ts )
Ls
+ 1y (1-A0) pRLua(1+AD) TS  weaup(l-Ap)Tg
- + -
W (1-Ap) ( we 2Ls 5
Vp(1l-Ap) wp{1-Ap) Ts
_—— (] —— ) (29,CVU)

Ls 2
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Since the converters are designed to provide a constant voltage for the load,
the ripple on the ideal capacitor voltage v and the load voltage vq are
usually very small with respect to their corresponding average values. There-
fore, the ideal capacitor equilibrium voltage Vc(kTg) 1is very close to the
value of the specified load voltage Vg. Hence, Vc(kTs) can be approximated by
the value of Vg without much loss of accuracy. Once Vi, Iy, Vg, Vq, and Vp
are specified, the two remaining unknowns Ix(kTg) and Ap can be computed from
(28 ,CVU) and (29,CVU). The terms Tgy and TopFy are then calculated from the
values of Ap and Tg. Equations (28,CVU) and (29 ,CVU) are linear in Ix(kTg),
but quadratic in Ap. As a result, a closed form solution is not dirgctly
accessible. On the other hand, if an approximate solution to Ag and Ix(kTs)
can be found initially, then iteration on (28,CVU) and (29,CVU) can be carried
out to obtain more accurate solutions. As a first approximation, all para-
sitic dissipative elements ry, rp, rp, rs, and rc are neglected by assuming
they are equal to zero. As a result, wa is equal to 1/CR_, while we, ug, and
wh are equal to zero, and p is equal to one. Equation (29,CVU) 1is then

approximated as

-Vo(1-Ap) wall+Ap) Tg " Ix(kTg) (1-Apg)2Tg y(V1-Vq) Ap
T L (1-— - 2L5C i Ls
I 1-Ap2) Ts Vp (1-Ap)
+ - —
2LsC Ls

To maintain a low ripple voltage across the load, the values of Lg and C are
usually chosen so that wyTg << 1, and T52/L3C << 1. Hence, the above equation

can be reduced further to
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-Voll-Ag)  y(Vi-Vq)Ap  Vp(1l-Ap)
+ -
Ls Ls Ls

Ap ( y(Vi-Vg) + Vo+ Vp ) - (Vg + Vp)

which gives

Vo + Vp

y(V1-vg) + Yo + VD

(30,CvV)

With we, wg, wh set equal to zero and p set equal to one, (28 ,CVU) can be

approximated as

wals  Ry(1-Ap)2Ts wall-Ap) Ts
0==wgVo(1- + ) + Ix(kTs)Ruwa(l-Ag) (1 -
2 2Lg
v(V1-VQ) Riwal1-Ap) ApTs  Vp Rpwal 1-Ap)2Tg
+ -
Lg 2Lg
wals
= Rwa (1 - —)
Dividing by wa and utilizing waTg << 1,
R_(1-Ap)2Tg
0==— Vo ( 1+ ) + Ix(kTs) R_(1-Ap)
2Lg
y(V1-VQ)RL(1-Ap) ApTs Vp R (1-Ap)2Tg -
Ls - 2Lg TOWR
Dividing by R_(1-Ap), the above equation becomes
1 Vo (VgrVp) (1-Ap) Ts Y(VI-Vq)ADTs
= Iy )= + Ix(kTg) +

-— c——— -—
(1-Ap) Ri 2Lg

From (30), (VgtVp)(1-Ap) = y(Vi-VgQ)Ap, so that

Ls
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1 Vo v(V1-Vq) ApTs
Z e — — T
0 gy ( ) + Iy ) + Ix(kTg) + 7Ls
1 Vo Y(VI'VQ)ADTS

Most dc-to-dc converters operate with very high efficiency, and the actual
values of g, D, rX, and r¢ are so small that the equilibrium duty ratio Ap
given by (30,CVU) and the equilibrium inductor current Ix(kTg) given by
(31,CVvU) are within one to two percent of the values obtained from experimen-
tal measurements. If these dissipative elements are large enough to affect
significantly the values of Ap and Iy{kTg), the operating point can be located

by using iterative methods. Equation (29,CVU) can be rewritten as a quadratic

in Ap @

ploprwa)Vo Ix(kTs) pRuwga
0 = AnlT - - 2
Ap S{ s > T (wgup)© )
I pRwa v(Vi-VQ)l(wg-2uh)  Vpwh
- = + wewh ) - +
2 Ls 2Ls 2Lg

pVorVp+y(V1-VQ)
Ls

+ AD{ (1-whTs) ( - welw + (wrrug) IX(KTs) )

+

IX(kTS)pRLwaTs
Ls

- wplx(kTs) + wely )

{ (2-wnTs) VoreVo
— (-

(32 ,CvU)

owaTs( Vg - RLIx(kTs) + Ryly)
+
2Lg

First, substitute the specified constants Vi, Vg, Vo, Vp, and Iy, and the con-

stants o, wa, we, wg, and wh into (32,CVU) and (28,CVU). Then substitute the
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approximation for Iyx(kTg) from (31,CVU) into (32,CVU) and solve for a new
solution for Ap. Substituting the new Ap into (28,CVU), a better approxima-
tion for Ix(kTg) can be computed. The new value for Ix(kTg) can then be
substituted into (32,CVU) to obtain a more accurate value for Ap. Working
back and forth between (32,CVU) and (28,CVU) once or twice will give highly
accurate solutions for the equilibrium duty ratio Ap and the equilibrium

inductor current Ix(kTs).

4.2 Equilibrium Operating Point in the Discontinuous-Mmf Mode

In the discontinuous-mmf mode, the inductor current is always equal to
zero at the beginning of each switching cycle, that is, ix(kTs) = ix[(k+1)Ts]
= 0. Also, torf2 = Ts - toN - toFF1- Evaluating (18) at t= (ktl)Ts,

Aorr2( Ts- ton- toFF1)
xsl(krl)Ts] = € xs{ kTs+ ton* toFF1)

Aorr2( Ts- ton- toFF1)
+ AgFF2~L (@ - 1) BorF2 uI

Evaluating (14) at t = kTsttgy and (16) at t = kTsrton* toFFl s

Aonton Aonton
xs(kTstton) = € xs(kTs) + ANt ( & -1) Bonur
and
AQFF1 toFF1
xs(kTsFton*r toerL) = € xs( kTt ton)
’ .1, DoFFLtoFFL
+ AoFr1™" (€ - 1) BoFF1 u1

Combining the three equations above gives
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xsL(ktl)Tg]l = e xs( kTg)

Aorr2( Ts- ton- toFr1) { eAOFFltorFl [ e_éontou

Aonton
e

+ ANt ( - 1) Eou_ux]

+ hoFr17L (€ - 1) BoFFl Y

AoFF1 toFFl }

) Aorr2( Ts- toN- toFF1)
+ AoFF2™" (e - 1) BoFF2 uI

) o , Aonton AoFF1 toFFl
Expanding the state transition matrices e s ©

Aorra2( Ts- ton- torr1)
e

to second order in Ts,

xsl(kt1)Tg] = { 1+ Aonton *+ AorritorFl + Aorra(Ts- ton- torr1)

, Aon2ton® + Aorr12torFi? + Aorr2?( Ts-ton- torF)?2
2

+ AOFF1AONtoFF1ton + AoFr2Aon( Ts- ton- toFFl) ton
+ Aorr2AoFF1( Ts- ton- toFF1) toFFL } Xs( kTs)

+ { Bonton + BorFltorrl + Borr2( Ts-ton- toFrl)

?

and

into a set of power series, and retaining terms only up

. AoNBonton® + AorF1BoFF1torFF1® + AoFF2Borra( Ts- ton- torF1)2

2

+ Aorr1BoNtoFFLton + AorrFzBon( Ts- ton- toFFl) toN

+ AorrF2BorFF1( Ts- ton- toFF1) toFFl } u1

(33)
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Substituting the respective matrices AgN, Aorrl, AoFrzs Bons BoFFl, and Bopre
from (19,CVU) to (24 ,CVU) into (33) and carrying out the multiplication, the

matrix equation can be decomposed into two scalar equations.

212 R 2
wa®Ts®  pRwatorrl
vel(k#1)Tg]l = ve(kTg) (1 - walg + -

2 2Lg
v (v1 - Vo) Rwa torF1ton VD Rlwa toFF1
Lg 2Lg
_ wals?  wetorm?
- Rwaiw( Ts- > " 3 ) (34 ,CVU)
and
5 - pvclKTS) ontoFF1?  watoFFl ( 2]
== g ( wn 5 >— (toFF1¥2ton) )
+ v(vi-Yo) wgton® Vp wntorF12
——is—-( toN > whtoFF1toN ) — '-s( toFF1 >
1 PRLwa p RLw 3 toFF1 toN
+ i ( wetoFFl - zluewh - ——) toFFR1® + " ) (35,CVU)

The identity 1ix(kTg) = ix[(k+*1)Tgl = 0 has been used in deriving these two
equations. For (35,CVU), terms in powers of tgpp) can be grouped to obtain
owal Vel KTS)+RLiY)  whlevelkTs)+Vp)  wewpiy
+

0= 2 -
toFF14( PLs 2ls 5

‘ pwatoN( vl KTs)+RLIW  v(vi-Volwpton ~ evclkTg)+Vp
+ torr1 ( s - s *ueld - ——— )
v(v1-Vq) ton(2-wg toN) )
( 2Ls

(36 ,CVU)
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Equations (34,CVU) to (36,CVU) are equations based on the piecewise-linear
description of the instantaneous values of the state variables over one com-
plete steady-state cycle. In steady state or equilibrium, all state variables
are the same at the end of an arbitrary switching cycle as at the beginning.
As a result, using an upper-case character with an upper-case subscript as
discussed in the introduction to Section 3 to indicate an equilibrium value,
we have vg(kTg) = vel(k+l)Tg] = Ve(kTg), vi= Vi, and iy= 1Iy. Since a
stringent restriction on the ripple of the load voltage is usually placed on a
dc- to-dc converter, the ideal capacitor equilibrium voltage Vc(kTs) 1is very
close to the load voltage Vg. Hence, Vc(kTg) can be approximated by the value
of Vo without much degradation of accuracy. Thus, under steady-state or

equilibrium, (34 ,CVU) and (36 ,CVU) reduce to

wals?  oRLToFR12 yRuw 3l V1-Vq) TorF1 Ton
2 2Lg Ls
wals?  weToFF12 Rwa Vp Torr1?
- Rlwa Iy ( Tg - - - 37,0VU
wa Iy ( Ts > > ) e { )
and
2 owalVorRLIW  whnleVotVp) wesplw
0 = Torr1¢ ( + -
2Ls 2Lg 2
pwaToN(VorRLIW)  v(Vi-VQlunTon eVotVD
+ Torr1 ( - - + wely )

Ls Ls Ls

v(V1-Vq) Ton(2-wgToN)
2Lg

(38 ,CVU)
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For specified supply voltage, load voltage, and load, the two unknowns in
the steady-state analysis of a converter operating in the continuous-mmf mode
are the duty ratio Ap and the inductor current Ix{kTs). The diode conduction
time Tgppy 1S simply defined by Tgrrp = Ts{l - Ag). On the other hand, for
specified supply voltage, load voltage, and load, the two unknowns in the
steady-state analysis of a converter operating in the discontinuous-mmf mode
are the duty ratio Ap and the diode conduction time.Toppl. The value of
Ix( kTs) , however, is always equal to zero in the case of thé discontinuous-mmf
mode. The values of the two unknowns Ap and Tgffi can be obtained from the
two simul taneous equations (37 ,CVU) and (38 ,CVU). First, approximations to Ap
and TgrFy are found by neglecting the parasitic dissipative elements ry, rp,
rp, rs, and rc. As a consequence, with wa equal to 1/CRy, we, wg, and wp
equal to zero, and p equal to one, (38,CVU) is reduced to

VgrRL Iy Ton(VgrRLIW)  VotVp v(V1-Vq) Ton
0 = TorF18 + T - +

Since TgpFy is of the order Tg, and Tgy is also of the order Tg, the use of
the inequalities waTg << 1 and TSZ/LC << 1 reduces the above equation to
TorFr1(VgtVp) Y(VI'VQ)TON

Ls ! Ls

or
v(VI-VQ) Ton  v{(V1-Vq)ApTg

Vo + Vp V0+VD

Although (39,CVU) gives Tgfr1 as a function of Ap, Vi, Vg, Vg, and Vp, the
equilibrium duty ratio Ap is still unknown at this moment. With we, wg, and

wh equal to zero and p equal to one, (37,CVU) reduces to
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wals RLToFF12 ) yRw aTs(V1-Vq) TorF1AD

0= —waTsVg (1 -

2 2L5T5 Ls
Tl (1 waTs ) RLwaTsVpToFF1®
twaTsly ( 5 FLeTs

Dividing the above equation by waTg, and noting that waTs is negligible when

compared to unity,

RLToFF12 yRLVI-VQ) ToFF1AD RLVDToFF12
0= - Vo ( 1+ o ) + - RIY = —————
2LgTg Ls ZLsTS
y(VI-VQ)RLTorF1Ap  (Vg*Vp) R ToFR12
= =Vp— R Iy+ -

Ls 25LTg

which then leads to

y(VI-VQ)RLTorF1Ap  (Vg*Vp) Ry Topr1?
Ls 2LgTg

Vo + RLly =

Substituting the expression for Tgrry from (39,CVU) into the above equation,

v2(VI-VQ)2RLAP2Ts  y2(V1-VQ)2ZR Ap2Ts

Vo + R Iy =
07 LM Ls(VgtVp) 2Ls(VgrVp)
y2(V1-VQ) 2R AY2 TS
2Lg(VgtVp)
giving

(40,CVU)

2Lg(VgrRLIw (Vg+Vp)
AD=

y2R Ts(V-Vq)2

If the solutions for Ap and TgrFy given by (40,CVU) and (39,CVU) are not
accurate enough, more accurate solutions can be obtained through iterative

procedures. Dividing (37 ,CVU) by waTs, and rewriting it,
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v(V1-VQ) R_ToFF1 wals o RLToFF12
0= fp ( —— )+ -vo(1-=+
Lg 2 2L5T5
VoR TorF12 waTs  weToFF12
- —— - R Iy(1- - ) (41,CvV)
2L5TS 2Tg

/

Now substitute the specified Vi, Vg, Vg, Vp, and Iy, and the constants o, wa,
we, wg, and wh into (38,CVU) and (41,CVU). Substitute Toy = ApTs, where Ap is
obtained from (40,CVU) into (38,CVU) and solve for a new value for TQFFl.
Then substitute the new Tgpry into (41,CVU) and obtain a more accurate approx-
imation on Ap. Working back and forth between (38,CVU) and (41,CVU) once or

twice will give highly accurate solutions for the equilibrium point.
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5.  SMALL-SIGNAL TRANSFER FUNCTIONS CHARACfERIZING THE POWER STAGE

5.1 Small-Signal Transfer Functions in the Continuous-Mmf Mode

As outlined in Section 3.1, the signal flow of the power stage of a dc-
to-dc converter may be modeled as a network with three controllable input
variables, the duty ratio ap, the supply voltage vy, and the load-disturbance
current iy; two state variables, the capacitor voltage vc and the inductor
current ix; and two output variables, the load voltage vg and the supply cur-
rent i;. In order to model the perr stage, including its load, in the small-
signal frequency domain, transfer functions relating the input variables, the
state variables, and the output variables have to be derived. Figure 11 shows
a block diagram representing the power stage and the twelve transfer functions
relating these variables. Six of these transfer functions involve the state
variables and the input variables while the remaining six involve the output

variables with the input variables and the state variables.

Equation (25) in Section 4.1 describes the state vector xs[(k+tl)Tg] at
the end of the switching cycle as a function of the state vector .5s(kT5) at
the beginning of the switching cycle, the duty ratio ap, and the input vector

ur. Rewriting (25) in the form of a difference equation, we have

Aon?ton? + Aorr12torri2
2

xsL(kr1) TSl - xs(KkTs) = [ AonNtoN + AOFF1toFFl +

+ AoFFLAONtOFFLtoN | Xxs(KTs)

AgnBonton?

+ [ Bonton + BorritoFrl + >

AoFF1BoFF1 torF12
+ > + AoFr1BontorFiton | ul
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| ;lGIX/Iw(S)'
. Li(s)
)‘GIX/Ad( 9
Iw(s) :GVC/IW( S):’
Vol 's)
Vi(s) | °
ils | :GVC/Vi( s) Gyg/Vcls) >
bGVC/h( S)

Fig. 11 Interconnection of functional blocks to characterize a converter
power stage in the continuous-mmf mode.
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df .
The derivative e of any function f(t) is defined as

df - ip fleat) - f(H)
dt  a®0 at

Similarly, for changes that occur very slowly from one switching cycle to the
.. d e
next cycle, the derivative 32_55 can be approximated with { xg{(kt1)Ts] -

xs(kTs) } / Tg by letting t = kTs and At = Ts because the period of the low

frequency perturbation signals is much larger than the switching period Ts.

Therefore,

d xsL(k+1)Ts]l - xs(kTg)
- x =

dt'-S’SS Ts

. Hoar) s AoN%ap?Ts + AgrF12(1-ap)2Ts
{ Aonep + AQFF1 1-ap >

+ Aorr1AoN(1-ap)apTs ] XS.SS

AoNBonap?Ts + AQFFLBOFFL(1-ap)2Ts
2

+[ BoNeD + BorF1(1-ap) +

+ AorF1Bon(1-ap)apTs ] ur (42)

Since (42) is derived from a difference equation involving the state vectors
at the beginning of successive switching cycles, it 1is able to predict the
stroboscopic variations of the state vector at the beginning of each switching
cycle, while information about the state vector at time durations in between
the beginning of successive switching cycles is lost. To separate the state

vector observed at stroboscopic time intervals from the continuous state
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vector xs(t), the subscript sg has been wused in (42) to denote the strobo-
scopic state vector which is valid only at the beginning of each switching
cycle. Therefore, equation (42) is a matrix differential equation describing
the stroboscopic variation of the state variables at the beginning of each

switching cycle. It can be rewritten in the form

X ,SS

d | vc,ss fy( vg,sss 1X,5Ss aps VI, iy )
4 - (43)
dt f1( vc,ss» X,SS> aDs VI, W)

Equation (43) can be viewed as a differential equation with time-varying
coefficients because the duty ratio «p, which is time-varying from cycle to
cycle under small-signal perturbation, appears as a coefficient associated
with the state vector x5 and the input vector uy. Although ap does not appear
explicitly as an input variable in the input vector up in the equations
derived in Sections 3 and 4, it is an important input variable controlling the
energy flow in the power stage of a converter. Under small-signal perturba-
tion around the equilibrium operating point, (43) can be rewritten as a system
of two linear differential equations with constant coefficients involving the

small-signal variables xs,ss= [ vc,ss ix,ss 17 and ag, Vi, and iy [4] :

3 fv 3 fy Ve,ss afy afy afy ad
d avC,SS  37X,SS da) o4Vl 91y
— Xs,s§ + Vi
dt 3 f 3 f1 . aff afp aff

ave,ss  31x,SS Tx,ss 3aD 3Vl a71W iy

(44)

where the partial derivatives in (44) are evaluated at the equilibrium oper-
ating point. After the partial derivatives have been evaluated, (44) is seen
to be a system of linear differential equations with constant coefficients as

shown in (45).




d
dt

where

Ve,ss

ix,ss

|

ajl
al2
bi1
b12
b13
a1
a2
b21
b22

b23

a1
21

3 fy
3ve,ss

3 fy
3ix,ss

afy

3 fy

aV] *

3 fy
diyl*

3 f1
ave,ss

3 f1
3ix,ss

3 f1
dap|*

o f1

AV fx

3 f1

diywlx
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ad
b1z b3 '
a2 Ve,ss . b11 v
i b1 b2 b3 _
az2 Ix,ss

(45)

(46 a)

(46b)

(46¢)

(46d)

(46¢)

(46 f)

(46g)

(46h)

(461)

(46))
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The * symbols in Eqs. (46) indicate evaluation of the partial derivatives at
the equilibrium operating point [ Vc(kTg) Ix(kT) 1T. Applying the Laplace
transformation to (45), which represents a system of two small-signal linear

differential equations with constant coefficients, gives

Ad( s)
s-al]  -a12 Vels) by1 b1z b13
= Vils)
-az] s-a22 Ix(s) bz1 b2z  b23
Il s)
Thus,
. " . Aq( s)
s-a2 aj2 11 b2 b13
[ ] [ ; b ] Vi(s) (47)
a1 s-a1] b21 22 D23
Vels) I s)
Ix(s) ((s-a1 ) s- a2 ) - a2 ag

For example, the transfer function between the Laplace transformed small-
signal capacitor voltage Vc(s) and the transformation of a small-signal dis-
turbance of the duty ratio Ag4(s) is

Vel's) b1y ( s - a2 ) + a2 by
= (48)

Ad(S) 2 - s ( ap + app )+ ag) a2 - a2 31

Gvc/Ad(S) =

A1l six transfer functions relating the two state variables and the three
input variables are of the form indicated in (48), with one zero and a pair of

complex poles. Table 1l lists the constants for these transfer functions.

The transfer function relating the capacitor voltage and the load voltage
is derived in a straightforward manner from Fig. 9(d). Starting in the time

domain,
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Table 1. Six Small-Signal Transfer Functions for the Two State Variables

Under Continuous-Mmf-Mode Operation.

G(1+ s/7)
FUNCTION FORM 1+ 2¢ (s/wo) + (s/moTZ
NATURAL RESONANT FREQUENCY wo =1\/ a11 a2 - a2 421
DAMPING RATIO z = - (a11 + a22) / 2uwo
FUNCTION GAIN CONSTANT G ZERO Z
a - D a - a D
Gvc/Ad( s) w g 11
ajp b2 - a2 P12 a - a2 b
GVC/V‘i( S) wo 12
R a - b a - a2 b

D11 - a D11 - 311 b
GIx/Ad( s) w«n 1
0
a1 b1z - a1 bz2 a2] D12 - aj] bp2
Gry /vyl s) 22

a1 b13 - a1 bp3 a21 b13 - a11 D23
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dvg
vg = - vg+ rg 0 —
0=-( ve+rrc o]

Transforming to the s domain,

VQ(S) "(Vc(S)"‘SY‘CCVC(S))

- (1+srcC) Vels) (49)

So far, transfer functions have been derived for the stroboscopic vari-
ations of the state variables at the beginning of each switching cycle. How-
ever, the information obtained from these stroboscopic variations alone is not
adequate to characterize the power stage in the small-signal frequency domain.
In the discontinuous-mmf mode, the total instantaneous value of the reactor
exciting current is always equal to zero at the beginning of each sﬁitching
cycle. That is, ix(kTs) is identically equal to zero, thus making ix,ss equal
to zero since ix,gs is equal to the small-signal variational part of ix(kTg).
As a result, using ix,ss to derive the input impedance of a power stage of a
dc- to-dc converter operating in the discontinuous-mmf mode indicates an in-
finite input impedance, which is erroneous. Because of the switching nature
of the power stage and the low-pass characteristics of the output filter, it
is the energy flow over one switching cycle, not the instantaneous power flow,
that is regulated. Therefore, it is more appropriate to use the energy flow
over one switching cycle to derive transfer functions for the two output vari-

ables — the supply current and the load voltage.

Going back to the large-signal instantaneous variables, the energy Wg

delivered to load resistance Ry in one switching cycle is
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J‘(k+1)Ts ( volt) )2
Wg = —— dt
kTs RL

The load voltage can be approximated as

vo(t) = vg k + vor(t)

where vQ g is the average load voltage over the kth switching cycle and
vor(t) 1is the ripple voltage across the load, which has an average value

equal to zero over one switching cycle. Therefore,

(k+1)Ts ( vo,k + vor(t) )2
Wo = f dt
kTg RL

(k+1)Ts ( vo,k )2 (k1)Ts ( vor(t) )2
Jr dt + ‘[' —- dt
KTs R

kTs R

Because of the stringent restriction placed on the ripple voltage across the
1oad of a dc-to-dc converter, the capacitor is usually chosen with sufficient
capacitance and low enough ESR to reduce the ripple voltage across the load to
a level which is very small compared to the nominal load voltage. Therefore,

vor(t) is very small compared to vg g, and

dt

¥o

(kr1)Ts ( vo,k )2
f kTs RL
( vo,k )2 Tg

Ry

since the ripple voltage vor(t) is negligible when compared to the average

load voltage vg,k, the load voltage at the beginning of each switching cycle
vo( kTs) is very close to the average load voltage vo,k- Hence,

( vok 12 Ts ( volkTs) )2 Ts
Wo =

=

RL RL
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Therefore, using the stroboscopic load voltage vqg(kTg) to account for the
energy delivered to the load over one switching cycle is a good approximation.
As a result, the transfer function derived in (49), which is valid for the
stroboscopic load voltage vg gs, 1is also quite accurate in describing the

small-signal value of the average load voltage vg k over one switching cycle.

Unlike the load voltage, the supply current usually has a relatively high
amount of ripple content compared to its average value. The energy drawn from
the power supply over one switching cycle is

(k1)Tg
Wi =[ v i1 dt
kTs

Using v,k and i1 g to represent the average supply voltage and average supply
current over one switching cycle, and vip(t) and ijp(t) to represent the
ripples in the supply voltage and supply current,

(k1) Ts

W1 =I (vi,k+ virR(t) ) ( dr,k+ iIr(t) ) dt
kTs

(kt1)Tg
= Tgvik i1,k + f VIR( t) iIp(t) dt
./ kTg
The ripple vigp(t) in the supply voltage 1is usually negligible compared to
Vi,ks the supply voltage averaged over one switching cycle. Although the
ripple 1iIR(t) .in the supply current is not negligible compared to iy g, the
supply current averaged over one switching cycle, it is finite in magnitude.

Therefore, the contribution to Wy is mainly from the first integral, i.e.

Wp = Tg vi k 11,k
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Since i1,k 1is the supply current averaged over one switching cycle, by

definition

1 (kt1)Tg
il k= =— ix(t) dt
o Ts ) «kTg

Since the ripple vigp(t) in the supply voltage over one switching cycle is
small, the value of vI k is very close to the actual instantaneous voltage
vi(t). Therefore, the power drawn from the power supply on a per cycle basis

is

Pr=MW / Tg

VI,k I,k

VI i1,k

Hence, the modeling of the input port of a power stage should be derived from
the supply current iy g averaged over one switching cycle. To characterize
the small-signal average supply current i g, it is convenient to start by
going back to the 1large-signal instantaneous description of the state vari-
ables. Two matrices Moy and Morr1 are introduced such that when the transis-
tor is conducting,
vel t)
if(t) = Moy xs{t) = MoNn
ix(t)
and when the diode is conducting,
vel t)
if(t) = MorF1 xs(t) = MoFF1 |
ix( t)
For both SCVU and TCVU, the supply current is equal to the reflected reactor
exciting current when the transistor is conducting, and is zero otherwise.

Therefore
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Mon=C(0v] (50 ,CVU)
Morrr =L 00 ] (51 ,Cvu)

Using these definitions, the average supply current in the kth switching cycle

i1,k 1s defined as

1 (k+1)Ts
Mon xs(t) dt + T—Sf MorF1 xs(t) dt

1 I kTstapTs
kTstapTs

iI’k= —
Ts J «Tg

(52)

For ap, vI, and iy constant throughout the kth switching cycle, substituting

the expressions for xs(t) from (14) and (16) into (52) gives

) Mon [ kTstapTs 1 Aon( t-kTs) 1 AoN( t-KTs)
i1,k= 7 [e xs(kTg)+AgN™2( e -1)Bon 1 ] dt
S kTs

Morrl (k1) Ts Aorr1( t-kTs-ton)
— [ ) xs{ kTst ton)
Ts kTstapTs =

AoFF1( t- kTs- ton)

+ Morr1-l (e -1)BoFF1 uI ] dt
Mon AoN( & KTS) AoN( t-kTs) kTstapTs
= —[f_\on‘l e xsl kTs)+A0N'1(AoN‘1 e ‘ -It)BONuI]
Ts - = = == kT
MoFF1 _1 AOFFLKTs- toN)

+ T |LoFRLT" € Xs(kTs+ ton)

1 -1 Aorr1( tkTs- ton) (kt1)Tg

+ AorFL™t(RoFFL™" € -1t) Borrl _tu]

kTstapTs




AonepTs AonapTs
irk==— [ Aoni(é -D)xs(kTs) + Aov" (Aon1(¢€ -l)-laoTs)Eouﬂx]

MoFF1 AorFr1(1-ap) Ts
+_—-TS— [ Aorrile” - I1xs( kTst ton)

Aorri{1-ap) Ts
+ Aorr1"H(AoFF1mi(e -1)-1(1-ap) Ts) BoFF1 uI ]
Since MgrF1l is equal to [ 0 0 ] for both SCVU and TCVU, it is not necessary to
carry any terms premultiplied by Morri in the above equations as there 1is no
contribution to iy k from these terms. The above equations, however, are
derived for all four basic converters. In the case of the voltage step-up
converter, deletion of Mgrr1 and its associated terms is not possible as MorFy
is equal to[ 01 ]. As a result, Mgrr1 and its associated terms are not re-
moved from the above equations so that the reader can trace the parallel paths

of derivation of i1 g between the Phase A Report and this Phase B Report.

Substituting t = kTg + tgy into (14),

AoneDTs ) AoNepTs
xs(kTsrtgy) = € xs(kTg) + AgN~*(e - 1) Bonur

Therefore,

NeDTS

Mon AONaDT
-1)-IapTs) Bonur ]

A S Ao
i1,k = i’y AoNL( € -1)xs(kTs) + Aoy 1(Aon~1(é

Morr1 -1, DoFF1(1-ap) Ts AonepTs
+= [ AoFF1™(e -I)( e xs(kTs)
S

I

AonapTs
+ Ao Y€ -1)Bonug )

* AorF1{l-ap)Ts
+ Agrr1~l(AoFF1-1(é -1)-1(1-ap) Ts) BoFF1 U]

(53)
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: . . AonapTs AoFr1{1-ap) Ts
Expanding the state transition matrices e and e and

retaining only up to second-order terms in Tg,
, Aonep?Ts Bonep?Ts
i1,k = Mon [(aol‘f-—z— ) Xs,s5+ 21]

AoFF1(1-ap)2Ts
+ Morr1 [ ( (l-ap)l + > + AoN(1-aplapTs ) Xs S5

BoFF1(1-ap)2Ts

+ ( > + Bon(1-aplapTs ) ur ] (54)

where xs(kTs) has been replaced by x5 ss to follow the notation used earlier.

Equation (54) can be rewritten as

ir = f( Xs,555 aD> VI, W) (55)
Linearizing (54) and applying the Laplace transformation,

Ii(s) = p11 Vels) + p12 Ix(s) + q1 Agls) + q2 Vi(s) + q3 Iys) (56)

where
of AQNADZTS
Pl = = Moy ((Apl+=———)[101]7
ave,ssh*
AoFF1(1-Ap)2Ts
+ Morr1 ( (1-Ap)l + > + Aon(1-Ap)ApTs ) [ 1 01T
(57 a)
of _A_QNADZTS
Pz = ——| = Mon ( Apl 5 yroi17
3 ix,ss

AoFr1(1-Ap)2Ts
2

+ MorF1 ( (1-Ap)l + + Agn(1-Ap)ApTs ) [0 11T

(57b)
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X
ai = —| = Mon [( 1+ AgNApTs ) Xs(kTs) + BonApTs Ui ]
dap
+ MorFF1 [ ( - I- Aorri(l-Ap)Tg + Agn(1-2Ap)Ts ) Xs(kTs)
+ (- Borr1(1-Ap)Ts + Bon(1-2Ap)Ts ) Up ]
(57¢)
af MonBoNAD® TS Morr1BoFFl(1-Ap)2Ts
Y :
aVI * 2 2
+ Morr1Bon(1-Ap) ApTs ] [10001T (57d)
3 f MonBoNADZTs  MorF1BoFrl(1-Ap)2Ts
Q3 = —| = > + >
diyl*
+ MorF1Bon(1-Ap)ApTs ] [o100]7]T7 (57e)

This analysis demonstrates that the small-signal average supply current
Ii(s) depends on the small-signal variables Vc(s), Ix(s), Ag(s), Vi(s), and
IWs). From Section 5.1, the capacitor voltage vc and the inductor current iy
were found to depend on the duty ratio a4, the supply voltage vi, and the
load-disturbance current iy. Now perturb the power stage with a small-signal
applied to the supply voltage, holding the duty ratio and the load-disturbance
current constant. If the perturbation is performed at a frequency close to
half of the switching frequency, then Vc(s) and Ix(s) will be well attenuated
by the pair of complex poles 1listed in Table 1. As a result, according to
(56) ,

Ii(s) = q2 Vils)
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or
Vi(s) 1

Ii{s) q2
This implies that the input impedance of the power stage is resistive at very
high frequencies because the Gli/vi(S) derived from (57c¢) is just a numerical
constant independent of frequency. This contradicts the observed phenomenon
that a power stage possesses an inductive input impedance when the pertur-
bation frequency is relatively high, Tracing the path of the modeling pro-
cess, this discrepancy can be attributed to the assumption that up is

piecewise-constant over one switching period.

Although it has been deduced that (56), with the constants calculated
from (57a) to (57e), is not accurate enough at high frequencies, a dc analysis
shows that the numerical constants from (57a) through (57e) are the correct
gain constants for the various transfer functions from the state variables and

input variables to the average supply current,

Now examine the dependence of the supply current ij on the three input
variables, duty ratio ag, input voltage vj, and load-disturbance current iy.
Although the duty ratio aq has been treated as a continuous variable for
small-signal perturbation at frequencies below half of the switching fre-
quency, it 1is actually a discrete time variable. In each switching period,
there is only one single value for the duty ratio ap, and hence also a single
value for aq. As a result, the dependence of the average supply current ij on
the duty ratio ad, taking both variables in the same switching period, is fre-
quency independent. Therefore, the transfer function from the duty ratio to

the supply current is just a proportionality constant as defined in (57c).
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To exactly model how iy will vary under a small-signal perturbation at
the supply voltage requires the modeling of up as a time-varying source over
one switching cycle, which then complicates the modeling excessively. Since
the supply current is identical to the inductor current times the turn ratio
during part of the switching cycle, the frequency dependence of the average
supply current on the supply voltage will be similar to the frequency depen-
dence of the inductor current on the supply voltage. As a result, the fre-
quency dependence of Ij(s) on Vj(s) will be well approximated if it is assumed
that the poles and zeros of GIilvi(s) are equal to the poles and zeros of
Glxlvi(S). As crude an assumption as this may seem to be, it provides an
adequate approximation of 311/V1(5) when compared to experimentally measuread
data. Such an assumption may be justified by the following explanation. Had
Gli/vi(S) been approximated with the numerical constant q2 given in (57d),
the input impedance function obtained from such an analysis would still be
quite accurate at dc and very low frequencies. Therefore, using qi2 given in
(57d) as the dc gain of Glilvi(S) and the poles and zeros of Glevi(S) as the
poles and zeros of Glilvi(s) gives a fair approximation of GIilvi(S) from dc
up to half of the switching frequency. Similarly, the transfer function
GIi/Iw(S) is approximated by taking the numerical constant qq3 from (57e) as
its dc gain constant and the poles and zeros of GIX/IW(S) as its poles and
zeros. The six transfer functions describing the load voltage and the supply

current are Tisted in Table 2.

Substituting the matrices Agn, Agrrl» Bon» and Bopry from (19,CVU) to
(22 ,CVU) into (42), and comparing with (43),
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Table 2. Six Transfer Functions Describing the Load Voltage and the Supply

Current for Continuous-Mmf-Mode Operation.

G(1+ s/2)
1+ 2z (s/uy) + (s/mo)T

FUNCTION FORM

NATURAL RESONANT FREQUENCY

wo =7V a1l a2 - a2 a1
DAMPING RATIO z = - (a1 + a2) / 2
FUNCTION GAIN CONSTANT G ZERO z

BRI

v " TR v
' b13 - a1 b

Gry/1,0 S Q3 b23

FUNCTION

Gvo/vc(s) -(1+sr.C) Gr/14(9)

P12

Gri/vels P11 Gr/Agls) a1
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] (1 wals oRU 1-ap)2Ts ., YRwalvi-Vo)(1-aplapTs
Z - v -

{watwp)( l-aD)sz

+ Rwaix,ss ( (l-ap) - wg(l-ao)aDTS -

2
. | wals well-ap) ZTS Riw aVp(l-ap) ZTS
- i - - -
Lwaiy ( 5 > T
and
pVC,SS wall-ap?) TS whll-ap)2Ts

2 2

(mga[)"'u) h{1l=ap)) 215 Riw 3 1-ap) ?'TS
+

- ix,ss ( mgaD‘*'mh(l-aD) - > 2Ls
v(vi-Vg) w DZTS
+ —-?S.i ( ap = wpll-aplapTs - gaz )

pRwall-ap®) Ts  weupll-ap)?Ts

+ iy (well-ap) +

2L 2
VD (Loat) whl1-ap)2Ts

Computing the derivatives according to (46a) through (46j) gives

waTs pRL(1-Ap)2Ts
+

a1 = -wa( 1- > 7ls (46a,CVU)

(watwp) (1-Ap)2Ts

Riwa ( (1-Ap) - wg(1-Ap)ApTg - > ) (46b ,CVU)

aj2




b12

b13

a21

az2

b21

b22
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Rlw g Voll-Ap) Ts
Ls

— Ruwalx(kTs) ( 1+mg(1-2AD)T$-(ma+w h (1-Apg) Tg )

YRLwalV1-Vg) (1-2Ap) T RiwaVp(l-Ap) Tg
+

— Ruwalyell-AplTg +

Ls Ls
(46¢,CVU)
v Rpw a1~ Ap) ApTs
(46d,CVU)
Ls
maTS me(l-AD)ZTS
—Rwa(1- - (46e,CVU)
2 2
0 \ wall-Ap?)Ts  wp(1-Ap)2Ts ot oy
--l-.-é((l-n)- > - — (46f,CVU)
(wgAprunl1-Ap))2Ts o Riw,l1-Ap)2Ts
- ~Aq) - 6q,CV
( wgAptwnll-Ap) > + s (469 ,CVU)
pV0
-T-s( 1 - waApTs - wp(l-Ap)Ts )

o) RLw a( 1- AD) Ts

~ Ix(kTs) ( wg = wh -~ (mg-mh)(mgAmwh( 1-Ap)) Tg - "
RLw aApTs Vp
= Iy wet —_—. wewh(1l-Ap)Ts ) + <= ( 1 - wnll-Ap)Ts )
Ls Ls
y(V1-VQ)
Y mgADZTS .
-L-é( Ap - 5 - wh(1-Ap)ApTs ) (461 ,CVU)
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pRwal1-Ap2) TS weawpll-Ap)2Tg
2Lg i 2

b23 = ( well-Ap) + (463 ,CVU)

After substituting the matrices AgnN, Agrrl» Bon, and Bgppy from (19,CVU) to
(22,CVU) and the matrices Mgy and Mggpy from (50 ,CVU) and (51,CVU) into (57a)

to (57e),
P11 = 0 (57a,CVU)
wgApTs
P12 = YAp (1 - 92 ) (57b,CVU)
y2(V1-Vq) ApTs
Q1 = yIx(KTS)(1-AgugTs) + - (57¢,Cvy)
S

= ATy (57d,CVV)
a2 2Ls ,
q3 =0 (57 e, CVU)

5.2 Small-Signal Transfer Functions in the Discontinuous-Mmf Mode

In the discontinuous-mmf mode, the inductor current at the beginning of
each switching cycle, ix(kTg), is always equal to zero. As a result, ix(kTs)
is no longer a dynamic variable. As far as signal flow is concerned, the

power stage can be modeled by the block diagram shown in Fig. 12.

Following the approximation of the derivatives shown in Section 5.1, and

using (33) derived in Section 4.2,
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d 1

Tt XS.88 * ?s { Aonton * AorritorFl * Aorr2( Ts-ton- toFrl)

. Aon2ton? + AorriltorFi? + AoFF22( Ts- ton- toFr1)2
2

+ AorF1AontoFF1ton * Aorr2AoN( Ts- ton- toFFL) ton

+ Aorr2A0FrF1( Ts- ton- toFF1) toFFL } XS,SS

1
+T§ {Eoutou + BorF1 toFFl + BoFr2( Ts- ton- toFF1)

, AonBonton® + AorF1BorF1 torF1Z + AorrzBorra( Ts- ton- toFF1)2
2

+ Aogrr1BontoFF1ton + AoFrF2Bon( Ts- ton- toFFl) ton

+ Aorr2BorFr1( Ts- ton- toFF1) toFFL } u1 (58)
Rewriting (58),
a [ve,ss| |l ve,sss aps vIs W) ] o
at | ix,ss 0

The derivative for ix ss is zero because ix(kTs), the inductor current at
the beginning of a switching cycle, 1is identically equal to zero for every
switching cycle. Linearizing (59) at the equilibrium operating point, a

small-signal differential equation is obtained.

d 3 fy 3 fy afy afy
T Veuss T T Ve,ss oot = Vi — y (60)
ave 9ap av] Iy

where the partial derivatives in (60) are evaluated at the equilibrium oper-

ating point. Rewriting (60),
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il

>EI" /Ag(S)
_ebli/vc( 5)

Iuls) GVC/IW( S) '

. , Vc( S) VO( S)
Vi(s) —-L—)FV_C/W . 4GV0/VC( s) >
hals) —— >|GV<:/Ad( s) ‘.

Fig. 12 Interconnection of functional blocks to characterize a converter
power stage in the discontinuous-mmf mode.
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d .
3¢ Ve.ss = Al Ve,sst b1l ag + D12 vj + b13 iy (61)
\
where
o fy
a]] = — (62a)
ave,ssi*
o fy
by] = = (62b)
daDi*
3 fy
blZ Fry— (62(:)
avil*
3 fy
bi3 = - (62d)
- 31w*

and the *'s in Eqs. (62) dindicate that the partial derivatives are evaluated

at the equilibrium operating point. Applying the Laplace transformation on

(61) gives
s Ve(s) = ajp Vels) + b1y Adls) + b1z Vil(s) + b13 Is)
Thus
b1 Adls) + by2 Vils) + b1z Is)
Vc( s) = (63)

( s- a1 )

and the three transfer functions relating Vc{s) and the inputs are Tlisted in

Table 3.

As in the case of the continuous-mmf mode operation, the transfer func-

tion relating the load voltage and capacitor voltage is

GVO/VC(S) =-(1l+srcC) (64)




Table 3.
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Three Transfer Functions for the Ideal

Discontinuous-Mmf-Mode Operation

et

Capacitor Voltage

Under

b
Gyo/agls) = 's":J‘Ja‘l—1

b
Gyc/v.i( s) = ’S—T.'l%ﬁ'

b13
Gvo/1,08) = a7
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Similar to the modeling of the supply current in the continuous-mmf mode,
the average supply current will be derived over one switching period as a

function of other circuit variables :

. 1 kTstapTs 1 [ KTstapTst toFF1
i1k = = Mon xs(t) dt+ — MorF1 xslt) dt
Ts J kTg TsJ kTgrapTs

(65)
Since the inductor current is equal to zero in the time 1interval between
kTstapTsttoFFr and (krl)Ts, the contribution to the average supply current
during that time interval is also zero. Hence (65) does not contain the in-
tegral in the time interval from kTstapTsttorry to (kt1)Ts. Similar to (54)

in the continuous-mmf mode,

. AoNe?Ts Bonap?Ts
i1,k = Mon | (apl + ) Xs,s5 * —— u
o toFFLL | AoFF1 torF12 -
MoFF1 [ ( TS 7Ts AoNtoFF1ap ) XS,SS
BoFF1 toFF12 - ()
2Ts BontoFFlap ) ul J

Equation (66) can be rewritten as

ir= f( X5,55, aDs VI, iW ) (67)

Linearizing (66), and then applying the Laplace transformation,
Ii(s) = p1 Vels) + q1 Adls) + q2 Vils) + q3 Is (68)

where
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3 f AoNAp2 TS
P11 = l=ﬂ0N(Aol+—2—)Elo]T
ave,sshi*
TorFll  AorriTorr12
+ Morr1 ( + + AoNTorFiAp ) [ 1017
Ts 2Tg
I Aorr1ToFrl
+ MoFF1 [ ( = + =——— + AoNAp ) Xs(KTs)
Ts Ts
BoFF1ToFF1 3 tOFF1
(e o) ut | (=1 )
Ts aveg  I*
(69a)
s f
Q1= —| = Mon ( ( I+ AgNApTs ) Xs(kTs) + BonApTs Ug )
dap *
+ Morr1 ( AonTorFi Xs(kTs) + BonTorF U1 )
I AorFF1TOFFL
+ MofFF1 [ ( = + =—————— + AggAp ) Xsl(kTs)
- Ts Ts - -
Borr1ToFF1 3 toFF1
(B ) ] (222 )
S dap I*
(69b)

2

af MonBoNADZTs  MoFF1BoFF1TOFFL
qQ2=—| = + + ﬂOFFIEONTOFFlAD].[ 100037

1 AorriTorrl
+ MoFF1 [ (= + ==+ Aonfp ) Xs(KkTs)
s s

3 tOoFF1
IVl

Borr1ToFr1
+(T—S+§_0NAD)EI]<

)

(69¢)
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a f MonBonAD®Ts  Morr1Borr1 ToFF12 ) .
Q3 = —| = [ : + + EOFFIEONTOFFIAD]L 0100]

iyl* 2 2Tg

1 Acrr1ToFrL

+ MoFF1 [( ot + AonAp ) Xs(KTs)
S Ts
Borr1ToFF1 3 TOFF1

)

+ BoNAD ) 21] (

diy
(69d)

c
As in the case of the continuous-mmf mode, the frequency dependence of
the supply current on the supply voltage is approximated by assigning the
poles and zeros of GIX/Vi(S) as the poles and zeros of Glilvi(S). However, in

the case of the discontinuous-mmf mode, GIX/Vi(S) is identically equal to zero

because ix{kTs) is always equal to zero. That is, GIX/Vi(S) is equal to the
numerical constant zero. Hence the transfer function Gli/vi(S) is also model-
ed as a proportionality constant without any poles or zeros. Similarly, the
transfer function Gli/Iw(S) is modeled as a numerical constant. Hence the
constants given by (69a) through (69d) need no further modification in the

modeling of the supply current.

In the case of the continuous-mmf mode, the diode conduction time tgoFpl
is simply torF1 = Ts - togne In the case of the discontinuous-mmf mode, how-
ever, toFFl not only depends on ton, but also depends on vy, vg(kTs), Vg, Vp,
and iy. Hence under small-signal perturbation, tgrry is also a function of
not only a4, but also vj, v¢, and iy. As a result, compared to their counter-
parts in (47), Eqs. (69) have extra terms involving the partial derivatives of
toFF1 with respect to the other dynamical variables. The five transfer func-

tions relating the output variables are also listed in Table 4.
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Table 4. Five Transfer Functions Describing the Load Voltage and the Supply

Current for Discontinuous-Mmf-Mode Operation.

FUNCTION

Gyg/vels) = - ( 1+ srcC)

1]

Gri/vels) P11

Gri/agls) = au

GI‘i/IW( S) = q13
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Substituting the matrices Agy, AorFl, AoFF2, Bons BoFFls and Boppz from
(19,CVU) through (24 ,CVU) into (58), and comparing with (59),

wals  pR_toFR12 v Ryw al v1-VQ) toFF1 ton
fy = —wave,ss (1 - > * +

2L5TS LSTS
wals  wetorF12 RLw aVDtoFF12
— Rwaiy (1 - - - = (70,CVU)
2 2Tg 2L$TS

Unlike operation in the continuous-mmf mode, where tgfF1 = ( 1 - ap )Ts, the
diode conduction time tgpFy in the discontinuous-mmf mode depends not only on
the duty ratio a«p, but also on the supply voltage vy, capacitor voltage
vcl kTs) , and load-disturbance current iy. Although (39,CVU) gives an adequate
approximation on the equilibrium diode conduction time TgrFy as a function of
the other parameters, it 1is not sufficient to characterize the small-signal
toffl because all parasitic dissipative elements have been deleted in the
approximation process. To find out how toffi will vary under small-signal

perturbation, the large-signal equation (36 ,CVU) is re-examined.

2Ls 2Lg 2

) pwalve,SSPRLIW  whlpve,SstVp)  wewniw
0 = toFF14( +

pwatoN(ve,sstRLTW  y(vI-VQlwpton ~ eVv(C,SStYD
+ toFr1 ( T - twely - ———
S Ls Ls

y(v1-Vq) ton(2-wgtoN)
( . )
S

(36 ,CVU)

Applying partial differentiation on (36,CVU) with respect to v(,ss,
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, . lorreloatun) puatorFitoN o OFFL

2Lg Ls Lg
pwalve,sstRLIW  whlpve,sstVp)  wesniw 3 toFFL
+ 2 torr1 ( + -
pwatoN(ve,sstRLIW  y(vi-Volunton _ evC,sstVp | 3 toFFL
- * uwely - )
Ls Ls Ls 3v(,SS
Defining the expression
pwalVorRLIW  wnleVotVp)  wewplw
D = 2Torr1 ( + -
2Lg FARS 2
pwaToN(VorRLIW  y(VI-VolunTon eVgrVp
- - + melw ) (71 ,CVU)
Ls Ls Ls
then solving for the partial derivatives gives
3 tOFF1 o TOFF1 (watwn) ToFF1
= (1-waloN- ) (72a,CVU)
avC,SS s DLS 2

A1l parameters in (71,CVU) and (72a,CVU) are obtained from the algorithms

presented in Section 4. Using similar methods,

3 toFF1 Ts
g ( TorF1 Ly(VI-VQluh - pwalVgrIWRL)] - v(V-Vg) (1-wgApTs) )
dap S
(72b,CVU)
3 tOFF1 YToN wgTON
= ( wnToFrl - (1 - ) ) (72c,CVU)
avy I* OLg 2
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3 toFF1 TorF1 ~ ToOFF1

= - ( ( pRlwg - wesp Ls ) + pRlwahpTs + we Ly )
aiy I DLg 2

(72d,CvU)

With the partial derivatives in (72,CVU) derived and evaluated, the partial
derivatives of the function fy defined in (70,CVU) with respect to the dynamic

variables can be found. Defining

Riwa  v(V1-Vq)Ton - (eVo+Vp) ToFFL

P = + walyT, 73 ,CVU
1° ( o welwToFF1 ) ( )
then
3 fy L uals o RLToFF12 (atom ) (622,640
a] = ———| = - - a,
11 _ave s I* “a 2 ZLSTS ave s b*
3 fy YRw alV1-Vq) ToFF1 3 toFF1
by = —| = + P ( ) (62b,CVU)
dap |* Ls dap |*
afy ¥ RLw a TONTOFFL 3 tOFF1
b2 = == = + P ) (62¢,CVU)
avy | LsTs avy  |*
by = ] Ruwa ( 1 vals _uelorr1’ + P 2 WOFFL ) (62d,CVU)
137 Tl wa 2 275 ) 1( iy |« ’

After substituting the matrices AgN, AgfFl, Bon, and Bgprp from (19,CVU) to
(22,CVU) and the matrices Moy and Mgprp from (50,CVU) and (51,CVU) into (89a)
to (69d) ’




P11

a1

Qa2

a3

YZ(VI—Vq)TON
Ls

Y2ToN?
2LsTg
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(69a,CVV)

(69b,CVU)

(69¢,CVU)

(69d,CVU)
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6. CLOSED-LOOP FUNCTIONS OF A REGULATED DC-TOQ-DC CONVERTER

Al though the continuous-mmf mode and the discontinuous-mmf mode have been
treated separately in the derivation of the small-signal transfer functions,
they can be treated the same now by working with the functions derived in
various subsections of Section 5. Under small-signal perturbation, a closed-
loop regulated dc-to-dc converter can be represented in block-diagram form as
shown in Fig. 13. In the continuous-mmf mode, the functions characterizing
the power stage with its load are obtained from the procedures presented in
section 5.1. In the discontinuous-mmf mode, the functions GIX/AD(S),
GIx/v,-(S), GIx/Iw(S), and Gli/IX(S) are equal to zero, and the remaining °
functions characterizing the power stage with its load are obtained from the
procedures presented in section 5.2. Thus, the block diagram in Fig. 13 can
be used to represent a regulated dc-to-dc converter for both continuous-mmf

mode or discontinuous-mmf mode operation.

Sometimes the two transfer functions GVf/Vo(S) and GAd/Ve(S) are combined
into one transfer function

Gag/vgls) = [ - Gy g/vols) 10 Gag/vels) ] (75)

where GAd/VO(S) is called the transfer function of the controller.

6.1 Loop Gain of a Regulated DC-to-DC Converter
In the block diagram in Fig. 13, there is only one closed loop, which is
drawn in a heavy line. By ‘tracing around that heavy-line path, the loop gain

T(s) of a regulated converter is found to be :

T(s) = [ Hygyy(s) 10 Gy py () 1L Gyo/agls) 10 Gag/v el s) ]
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Gag/vgls)

A4l s}

PULSE-WIDTH
MODULATOR

Fig. 13. Block diagram 'of a regulated dc-to-dc converter operated from a
stiff voltage source.

Gug/Vols)

FEEDBACK NETWORK
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Using (75),

T(s) = [ - GAd/Vo( s) 1L Gy /vl s) 1L GVC/ACI( s) ] (76)

where GVQ/VC(S) and & /A4 S) are obtained following the procedures explained

in Section 5.

6.2 Input Impedance of a Requlated DC- to-DC Converter

To find the input impedance Zj(s) of a closed-loop regulated dc-to-dc

converter, the input admittance function Yi(s) is derived first.
Yi(s) = — (77)
s

By taking the reciprocal of Yi(s), the input impedance function Zj(s) is
obtained. Using Mason's gain rule on the block diagram shown in Fig. 13, the

input admittance is derived as

Iils) (Ti#Tola + T3 + Ta + Ts

Yi(s) = V(o : (78)
where
T = [ Gryyvy(s) ] (78 a)
Tp = [ Gry/1,(8) 10 G, /vs(s) ] (78b)

T3 = [ Gry/1(s) IO Gr/aq(s) I0 Gagry(s) 10 Gygpy (s) 10 Gyopyils) 1 (78¢)

Tq = [ Gry/agls) 0 Gaypy () 10 Gy v (s) 10 Gy sy () ] (78d)
Tg = [ GIi/VC( s) 1C GVC/V‘i(S) ] (78 e)
Aa=1+ T(s) (78 1)
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and T(s) 1is defined earlier in (76). Taking the reciprocal of Yj(s), the

input impedance function is

1 A

= (79)
Yi(s) (Ty+Tola + T3 + Ty + Tg

Zi(s) =

6.3 Audio Susceptibility of a-Regulated DC- to-DC Converter

The audio susceptibility S(s) is defined as the ratio of per cent change
in the load voltage to the per cent change in the supply voltage under small-
signal perturbation.

Vols) / Vg V1 Vgls)
Vils) 7 V1 Vg Vi(9)

S(s) =
Using Mason's gain rule on the block diagram shown in Fig. 13

Vi [ GVo/Vc( s) 1L Gy./vi(s) ]

S(s) = (80)
Vo &

where A is defined in (78¢f).

6.4 Output Impedance of a Regulated-DC-to-DC Converter

The output impedance is defined as Zg(s) = Vg(s)/Iy(s). Using Mason's

gain rule on the block diagram shown in Fig. 13,

Vols) [ Gygyv(s) I Gy /g (s) ]

" T9 - (81)

where A is defined in (78f).
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7.  CONCLUSIONS

The modeling of the power stage of the four most commonly used energy-
storage dc-to-dc converters -- the voltage step-up, current step-up, single-
winding current-or-voltage step-up, and the two-winding current-or-voltage
step-up converters -- under small-signal low frequency perturbation has been
presented in the Phase A Report and this Phase B Report. Starting from the
time domain, large-signal difference equations relating the state variables at
the beginning of each switching cycle are obtained by approximating state
transition matrices by second-order Taylor series. For low frequency distur-
bances, the derivatives of the state variables can be approximated by the dif-
ference equations. For small-signal perturbation around the equilibrium
operating point, a set of small-signal differential equations with constant
coefficients is obtained from the large-signal differential equations. Apply-
ing the Laplace transformation to the small-signal differential equations then
yields a set of small-signal transfer functions characterizing the power stage
of an energy-storage dc-to-dc converter. Combining these transfer functions
with the small-signal transfer functions of the controller gives valuable
information such as the 1loop gain, input impedance, output impedance, and

audio susceptibility of the closed-loop regulated dc-to-dc converter.

The procedure for obtaining various small-signal functions of a closed-
loop regulated dc-to-dc converter is illustrated, with the current step-up
converter on board the Dynamics Explorer Satellite as an example, in Section 8
of the Phase A Report. Following this illustration and the flow charts shown
in Figs. 2 of these two reports, various small-signal functions of. the voltage
step-up, current step-up, single-winding current-or-voltage step-up, and the

two-winding current-or-voltage step-up converters can be obtained.




(1]

[2]

(3]

(4]
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APPENDIX A
DEFINITION OF SYMBOLS AND ABBREVIATIONS

Duty ratio of the transistor switch (the ratio of the transistor
conduction time tgy to the switching period Tg), dimensionless
Nominal capacitance of the output filter capacitor, farad

Equations applying to the current step-up converter only

Equations applying to both the single-winding and the two-winding
current-or-vol tage step-up converters

Switching frequency, hertz

biode current, ampere

Supply current, ampere

Average supply current over the kth switching cycle, ampere
Transistor current, ampere

Effective value of the transistor current, ampere

Load disturbance current, ampere

Current through the ideal inductance in the model of the energy-
storage reactor, ampere

Nominal inductance of the single-winding reactor, henry
Nominal secondary inductance of the two-winding reactor, henry

Number of turns in the primary winding of the two-winding reactor,
dimensionless

Number of turns in the secondary winding of the two-winding reactor,
dimensionless

Power loss in the transistor switch , watt

Power loss in the transistor switch due to an equivalent resistance,
watt

Power loss in the transistor switch due to the saturation voltage
drop, watt

Equivalent series resistance (ESR) of the filter capacitor, ohm




rD
D
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rs

SCvu
TCvU

Ve
VD

VE
VF
V1
vo
vQ

VREF
vu

XS,SS
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Equivalent diode resistance, ohm

Dynamic resistance of the diode as measured from a curve tracer, ohm
Load resistance, ohm

Equivalent transistor resistance, ohm

Saturation resistance of the transistor as measured from a curve
tra’cer, ohm

Primary winding resistance of the two-winding reactor, ohm
Secondary winding resistance of the two-winding reactor, ohm
Winding resistance of the single-winding reactor, ohm
Single-winding current-or-voltage step-up converter

Two-winding current-or-voltage step-up converter N

input vector, equal to [ vi iy Vq Vp 1T

Voltage across the ideal capacitance of the filter capacitor, volt
VYoltage across the diode switch, volt

Break-point voltage of the diode, volt

Error voltage of the error comparator, volt

Feedback voltage of the feedback network, volt

Supply voltage, volt

Load voltage, voit

Vol tage across the transistor, volt

Saturation voltage of the transistor, volt

Reference voltage for establishing the desired output voltage, volt
Equations applying to the voltage step-up converter only

state vector, equal to [ v¢ ix 1T

Stroboscopic value of the state vector at the beginning of each
switching cycle

Secondary- to-primary turn ratio, equal to Ng/Np, dimensionless
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APPENDIX B
EQUATIONS DEFINING THE CONSTANTS AND THE COEFFICIENTS
IN THE TRANSFER FUNCTIONS

For SCVU, lety =1, Lg=L, rp = ry, and rg = ry.

R
rc + RL
1
wg = ———— (4)
Clrc + R) .
NS
== (5)
Np
pre
_ere (6)
w
e LS
_rtrrm) (7)
(ug = LS
rg+ rptorg
Wh = (8)
Ls
wals pRLI1-Ap)2Tg
0= = wg VelkTg) (1 - +

2 2Lsg

(wgrwn (1-Ap) Ts
+ Ix(kTs) Rwa (1-Ap) (1 - mngTS -

2
yVIRw a(1-Ap) ApTs wals well-Ap) ZTS
- Iy RL“’a ( 1 - -
Lg 2 2
VoRyw 3 1- Ap) ApT VpRLw 4l 1~ Ap) 2T
—YQL& DDS— . > (28 ,CvU)
Ls 2Ls
Vg + V
Ap = 0 (30 ,CvU)

y(v1-Vg) + Yo * Vo
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Vo Y(VI'VQ)ADTS
2 crem— — I -
(KTs) = gy (g W) 2Ls
) [ plouwa)Vg  Ix(kTs) pRw,a 2
0 = Ag2T - -
Ao®Ts 2Lg 2 Ls (wg-wh )
Iy pRw;a Y(VI-VoHwg-2up)  Vpup
S (T wen) - S :
2 Ls 2Lg rARN

0 =

+ A [ (1-uhTs) (

(2-wnTs) Vgt Vg
+ |

pVorVp+y(V1-Vq)
Ls

- wely + (w h-mg) Ix(kTs) )

+

Ix( kTS)p RLwaTs
Ls ]

- I(kTe) + I
> " whIx(kTs) + wely )

pwalsl Vo - RLIx(kTs) + RLIy)
+
2Ls J

pwalVorRLIW  wnlpVo*VD)  wewnlw
+

2 (

:
OFF1 2Ls 2Ls 2

+ Torr1 ( -

pwaToN(VorRLIW)  v(VI-VQlupTon eVotVD

+ I
Ls Ls Ls we w)

v(V1-Vq) Ton(2-wgToN)
2L )
S

v(Vi-Vol Ton  v(Vi-Vol ApTs

ToFF1 = Vg + Vp Vg + Vp

Ap

2Ls(VorR LIy (VorVp)
2R Tg(V I-Vq)z

(31,CvU)

(32,cvV)

(38 ,CvU)

(39 ,Cvu)

(40 ,CvU)




a1l

a12

b11

b12

b13

a21

az2
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y(V1-VQ) R ToFF1 wals o R ToFF12

Ap Q )+ { ~Vg (1 - +
Ls 2 ZLsTs

VoR ToFF12 o Ly ( 1 wals  weloFF12 ]

T T2LsTs L oW 2 2Ts
wals pRL(1-Ap) ZTS

[ R— - +

wa(1- 2Ls

— Rwalwell-Ap)Tg +

(wgtwp) (1-Ap)2Tg
2

Rlwa ( (1-Ap) - wgll-Ap)ApTs -

Ruw g Vol 1~ Ap) Ts
Ls

= Ruwalx(KTs) ( l+ugl(1-2Ap) Ts-(wgtwn) (1-Ap) Ts )

(41 ,CVY)

(46a,CVU)

(46b ,CVU)

YR a(V1-Vq) (1-2Ap) T RiwaVp(1l-Ap) Tg
+

Ls

Y Riw3(1-Ap) ApTs

Ls
R ) W aTS w e( 1- AD) ZTS
- Lwa( - 2 - 2
o wall-Ap?)Ts  wpll-Ap)2Ts
- r.-é ( {(1-Ap) - > - >
(ngD"wh(l-Ao))sz p Riw 3(1-Ap)2Ts
- mgAD"‘mh(l-AD) - 5 + 7Ls

Ls

(46 ¢ ,CVU)

(46d,CVU)

(46 e,CVU)

(46 f,CVU)

(46g,CVU)
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pVo
bpy = = (1- waApTs - wp(l-Ap)Ts )

o] RLUJ a( 1- AD) TS
Ls

- Ix(kTg) ( wg = wh - (mg-mh)(mgAD*'wh(l-AD))Ts -

pRLwaApTs Vp
- Iy wet —— - weup(l-A)Ts) + — ( 1 - up(l-Ap)Ts )
Ls Ls
v(V1-vQ)
M van (1- wp(l-2Ap)Ts - wgApTs ) (46h,CVU)
Y ngDZTS .
boo = E-é ( Ap - - wh(1l-Ap) ApTs ) (461,CVU)

pRLwal1- ADZ) Ts weupl l-AD)ZTs

b3 = 1- + (46§ ,CVU)
23 = ( well-Ap) P > j
pi1 = 0 (57 a,CVU)
wgApTs
P2 =vAp (1- 92 ) (57b,CVU)
YZ(VI-Vq)ADTs
q1 = vIx(kTs)(1-ApugTs) + T (57 ¢,Cvu)
= Zh’Ts (57d,CVU)
Q2 o ]
q3 =0 (57 e, CVU)
2 fy (1 wals oRLToFF1’ Lo p 3 tOFF1 (62a.000)
a = Z - - a,
" Vesshx —v° 2 2LsTs ( ave,ss | )
a fy Y Riw a( V1-VQ) ToFF1 3 toFF1 i
by} = =—}| = + P1< > (62b ,CVU)
dap |* Lg dap |*
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brn = 2N _ YRwalonTorrL . p ( 3 tOFF1 )
12 =5, ToTs v (62¢,CvU)
L. I (1.0 weToFF12 (8t0FF1 ) .
137 5k lwa > 7T )+ P T (62d,CVU)
PI1 =0 (69a,Cvu)
_ ¥2(V1-Vq) Ton
a1 o (69b,CVU)
) Y2 Ton?
q2 2sTs (69¢,CVU)
a3 =0 (69d,CvU)
pwalVorRLIW  wpleVorVp)  weuply
D = 2Tgrr1 ( * -
2Ls 2Lg 2

(owaTON(Vo"RLIw) v(VI-VQlupTon pVg+Vp
+ -

- + I
Ls " " wely ) (71,CvU)
3 toFF1 o TOFF1 (watwn) ToFFL
——— =2 eeme———— ( 1 - waTON\- ) (72&,CVU)
avg,SSlx  DLg 2
3 tOFF1 Ts T
| i ( TorrL Dy(V-Vg)uh - pwalVorIWRL] = y(V1-Vg) (1-ughpTs) )
(72b,CvU)

3 tOFF1 v ToN wgToN

= _.—( thOFFl - (1 = —— ) ) (72C,CVU)




3 TOFF1 TorF1 . ToFrl
- ( ( pRwa - wewh Ls ) + pRwaApTs + we L )
aiy I* DLg 2
(72d,CVU)
Riwa  v(V1-Vo) Ty - (oVo+Vp) TorFy
Pp = T . ) *+ welyTorFl ) (73,CvU)
S S






