

Mødelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies

Marissa Hummon

3rd International Solar Power Integration Workshop

October 20-22, 2013 London, UK

NREL/PR-6A20-60629

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Executive Summary

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology.

Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant.

We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M., Jorgenson, J., Denholm, P., Mehos, M., "Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies", 3rd International Solar Power Integration Workshop, London, UK, October 20-22, 2013. (NREL CP-6A20-60365).

Motivation

EIA 2012, Energy Information Administration Electric Power Monthly, EIA, 2012

SEGS Solar Power Plant Photo via Shutterstock

PV currently has lower installation costs.

CSP with thermal energy storage offers services to the grid that increase its value. Modeling CSP in grid operations helps us estimate the value of CSP.

Outline

- Production Cost Modeling An Integration Study Tool
- Concentrating Solar Power (CSP)
 - Components: solar field, thermal energy storage (TES), and power block
 - \circ Operation of CSP-TES

• CSP-TES modelling framework

- Fixed dispatch
- Optimize storage and dispatch
- $_{\odot}\,$ Allow CSP-TES to provide ancillary services

Results

- PV and Wind Generation are variable and uncertain (similar to Load)
- Generation from Hydro is often constrained by other competing uses, for example recreational use of reservoirs or fish habitat

 Storage and CSP-TES are low marginal cost generation and are dispatched during peak prices

 Coal generation is the next least cost source of generation. Coal generation is committed for multiple days at a time.

 Natural-gas fired power plants have the least constraint on on/off decisions; higher marginal operating cost that can recover startup costs within 2-8 hours

Wide variety of electricity generation systems

The costs and benefits of integrating a new technology will change between systems; being able to model new technologies reduces the barriers to integration.

Concentrating Solar Power Plant

Concentrating Solar Power

Concentrating Solar Power with Thermal

Another Optimization Problem:

Solar Energy (Electrical Equivalent)

NATIONAL RENEWABLE ENERGY LABORATORY

Dispatch of CSP-TES

Dispatch of CSP-TES

NATIONAL RENEWABLE ENERGY LABORATORY

Concentrating Solar Power

SAM: Electrical equivalent for solar field

Colorado Test System

Scenarios

CSP-TES

Max Cap: 300 MW Solar multiple (SM) = 2.2 Storage = 6 hours

High Flex

Operation Property	High Flex
Minimum Generation Point	45 MW
Ramp Rate	30 MW/min
Minimum up/down time	1 hour
Number of starts per day	Unconstrained
Start-up energy	60 MWh
Start-up cost	\$3,000
Variable O&M	\$1.1/MWh

Low Flex

Operation Property	Low Flex	
Minimum Generation Point	75 MW	
Ramp Rate	12 MW/min	
Minimum up/down time	6 hours	
Number of starts per day	1	
Start-up energy	180 MWh	
Start-up cost	\$30,000	
Variable O&M	\$3/MWh	

Pre-scheduled

Solar Field energy is scheduled for storage/dispatch (outside of PLEXOS)

Optimal

Solar Field energy is optimally scheduled by PLEXOS

Co-optimized

Solar Field energy and power block capacity is cooptimized for energy and reserves

Performance of CSP-TES

overnight operation and evening peak.

CSP-TES Schedule Effects Displaced Generation

Displaced Generation and Fuel

		CSP-TES with High Flexibility Operation		
	Base Case	Pre-scheduled Dispatch	Optimal Dispatch	Co-optimized Dispatch and Reserve Provision
Generator Class	[GWh]	Increase from Base Case [GWh / %]		
Coal	46089	-65 / -0.1	-31/-0.1	125 / 0.3
Combined Cycle (CC)	14791	-802 / -5.4	-760 / -5.1	-960 / -6.5
Gas Turbine/Gas Steam	1035	-146 / -14	-232 / -22.2	-225 / -21.6
Other	95	-1/-0.9	-1 / -0.9	-6 / -6.2
Hydro	3792	0/0	0/0	0/0
Pumped Hydro Storage	1040	11 / 1.1	-2 / -0.2	-103 / -9.9
Wind	10705	0/0	0/0	0/0
PV	1834	0/0	0/0	0/0
CSP	0	1017/-	1021/-	1018/-

Fuel Class	[MMBTU]	Increase from Base Case [MMBTU/ %]		
Coal Offtake	487589	-772 / -0.2	-390 / -0.1	1310 / 0.3
Gas Offtake	126771	-7871 / -6.2	-8749 / -6.9	-10659 / -8.4

- CSP-TES displaces gas-fired generation (higher marginal cost than coal without emission penalties)
- Optimal CSP dispatch increases displacement of gas-fired CTs
- Co-optimized CSP-TES has a complex affect on system operation

Change in Production Costs

		CSP-TES with High Flexibility Operation		
	Base Case	Pre-scheduled Dispatch	Optimal Dispatch	Co-optimized Dispatch and Reserve Provision
	[M\$]	change from base case [M\$ / %]		
Fuel Cost	1210	-34 / -2.8	-37 / -3.1	-43 / -3.5
VO&M Cost	152	0/0	-1 / -0.7	-1/-0.6
Start & Shutdown Cost	59	0/0.3	-2 / -4.2	-1/-1.3
Regulation Bid Cost	5	0/-0.1	0 / 1.2	-1/-15.4
Total Generation Cost	1426	-34 / -2.4	-41 / -2.9	-45 / -3.2

- Most of the production cost savings is displaced fuel.
- Optimal dispatch of CSP-TES results in fewer starts.
- Co-optimized CSP-TES avoids regulation bid costs by displacing slightly higher bid cost of combined cycle units, \$6/MWh, with the CSP-TES bid cost of \$4/MWh.

Co-optimized CSP-TES provides Reserves

CSP-TES provides 17% (10%) of the annual reserve requirement in the high (low) flexibility scenario, split equally between regulation and contingency reserves.

Regulation is energy neutral over 25 minutes; Contingencies are estimated to be drawn once every 2-3 days for 10-20 minutes.

CSP-TES is ramp rate constrained is responding to ancillary service requests.

Co-optimized CSP-TES

Reserve Prices

CSP-TES reduces the marginal price of regulation and contingency reserves.

Production Cost Savings

Production cost savings ranges from 2-3% of the total production cost. It is attributed to:

~75% due to energy from CSP-TES

~15% due to optimally dispatching the CSP-TES energy

~10% due to provisioning reserves from CSP-TES spinning capacity

- Most of the value of CSP is in displacing highcost fuels; which is captured in fixed-dispatch modeling.
- Further 25% increase in system value when CSP is modeled with separate storage & generation components and co-optimized for energy and operating reserves.
- Co-optimization yields complicated results; the effect and value of CSP-TES on new systems can be be captured more accurately with more detailed modeling.

Thank You

Questions?

Team: Marissa Hummon Jennie Jorgenson Paul Denholm Mark Mehos

Contact: <u>marissa.hummon@nrel.gov</u>