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INTRODUCTION

The source of and processes resulting in natural gas generation remain a
controversial issue in petroleum geochemistry (Price, 1997). Various investigations have
used different pyrolysis methods and organic sources to develop models to predict timing
and quantities of natural gas generation in sedimentary basins (e.g., Table 1). The results
and implications of these different models on predicting natural gas generation have not
previously been compared in the literature. The objective of this study is to compare six
different published gas-generation kinetic models (Table 1) with respect to their
predictions of timing and quantities of deep-gas generation. As discussed by Dyman and
others (1997), the potential for deep gas at depths greater than 4,572 meters (15,000£t)
remains an uncertain domestic exploration frontier for natural gas. Two geological
settings for the occurrence of deep gas emerge from this definition. The first geological
setting envisages gas being initially generated and accumulating in traps at shallow
depths (< 4,572 m/15,000 ft). As sedimentation and basin subsidence continue with
geologic time, these shallow traps remain coherent and are eventually buried to depths
greater than 4,572 m (15,000 ft). Deep-gas accumulations resulting from this setting are
dependent on the competence of trap closures and seals with burial to depths greater than
4,572 m/15,000 ft. The second geological setting envisages gas generation and
accumulation in traps at deeper depths (>4,572 m/15,000 ft). Deep-gas accumulations
resulting from this setting are dependent on a source of gas at burial depths greater than
4,572 m/15,000 ft. It is this dependence on sources of deep gas generation that this study
examines.

Various kinetic models for the generation of natural gas in sedimentary basins
have been published over the last several years. These gas-generation kinetic models are
primarily based on different types of laboratory pyrolysis methods, which include open-
system anhydrous pyrolysis (e.g., Rock-Eval; Behar and others, 1997), closed-system
anhydrous pyrolsis (e.g., microscale sealed (MSSV) pyrolysis; Horsfield and others,
1992), and closed-system hydrous pyrolsis (e.g., flexible gold-bag autoclaves; Knauss
and others, 1997). In addition to employing different pyrolysis methods, different
starting materials are considered as the source of natural gas. Some kinetic models
consider crude oil in deeply buried reservoirs (e.g., Tsuzuki and others, 1997), and others
consider unexpelled oil retained in mature source rocks (Pepper and Corvi, 1995).

These kinetic models are examined in two hypothetical basin scenarios that
represent end-member heating rates of 1° and 10 °C/m.y. This study makes no attempt to
Judge the validity of the six kinetic models used, but only intends to present and compare
their results and the implications they have on deep-gas generation. Kinetic models for
the thermal stability of crude oil that are based on model hydrocarbons were not included
in this study. Although these studies provide useful information on the influence of
pressure, oil matrices, and cracking mechanisms (Domine, 1991; Behar and
Vandenbroucke, 1996; Burnham and others, 1997), they are either based on the loss of
the model compound rather than generated gas or the generated gases have peculiar gas
compositions significantly different from natural gases.



METHODS
Basin Scenarios _

Gretener and Curtis (1982) have estimated common heating rates for sedimentar:
basins to be between 1° and 10 °C/m.y. In keeping with these limits, the kinetic models
used in this study are compared in two end-member basin scenarios. One basin scenario
uses a thermal gradient of 30°C/km and burial rate of 33.3 m/m.y., which results in a
heating rate of 1°C/m.y. The other scenario uses a thermal gradient of 45°C/km and
burial rate of 222.2 m/m.y., which results in a heating rate of 10°C/m.y. The heating
rates were assumed to be linear in both basin scenarios.

Kinetic Models

Attributes of the six kinetic models considered in this study are given in Table 1.
Three of the models consider gas generation from kerogen (Behar and others; 1997,
Pepper and Corvi; 1995; and Knauss and others; 1997). Behar and others (1997) used
kerogen samples including a type-I kerogen from the Eocene Green River Fm., type-IL
kerogen from a Toarcian shale of the Paris basin, type-IIS kerogen from the Miocen=
Monterey Fm., and two type-III kerogens from a Miocene coal in the Mahakam delta and
a Dogger coal from the North Sea. Pepper and Corvi (1995) organized their kerogen
samples into organofacies A, B, C, D/E, and F. According to their definitions of
organofacies, organofacies A kerogen is similar to type-IIS kerogen, organofacies B
kerogen is similar to type-II kerogen, organofacies C kerogen is similar to type-I kerogen,
organofacies D/E is similar to type III kerogen, and organofacies F is similar to type-
II/IV kerogens. Knauss and others (1997) used New Albany Shale (Devonian-
Mississippian), which contains type-II kerogen.

The other three models consider gas generation from the cracking of oil (Horsfield
and others, 1992; Pepper and Dodd, 1995; and Tsuzuki and others, 1997). Horsfield and
others (1992) used of a medium gravity crude oil from a middle Jurassic reservoir in the
Central Graben of the Norwegian North Sea (NOCS 33/9-14). Pepper and Dodd (1995)
focused on the in-source cracking of oil as opposed to the cracking of reservoir oils; the
authors used sixteen samples of source rocks classified as members of their five
organofacies. Tsuzuki and others (1997) used a Sarukawa crude oil with an API gravity
of 33.6°.

Model/Pyrolysis Terminology

There are four types of models in this study that are based on different pyrolysis
methods. The open pyrolysis model uses Rock-Eval pyrolysis to determine kinetic
parameters (Behar and others, 1997). The composite pyrolysis model refers to Pepper
and Corvi’s (1995) mixed data set from many different references, natural data sets, and
open- and closed-system pyrolysis methods. The anhydrous pyrolysis model refers tc
closed-system pyrolysis of kerogen or oil without liquid water and is used by Pepper anc
Dodd (1995) and Horsfield and others (1992). The hydrous pyrolysis model refers tc
pyrolysis of kerogen or oil in the presence of liquid water and is used by Knauss anc
others (1997) and Tsuzuki and others (1997).



Extent of Reaction with Single Activation Energy and Frequency Factor
As demonstrated by Wood (1988), the extent of a reaction (i.e., k = rate constant)
that follows the Arrhenius equation,

k = A exp(-E/RT),

can be reasonably estimated over a linear heating rate by the approximate analytical
integral solution derived by Gorbachev (1975):

TTIARR= {(A(tn+1-tn))/(Tn+1-Tn)} * {[(RT%n+1/(E+2R Tnt1))*exp(-E/RTn+1)] - (1)
[(RT?%/(B+2RTn))*exp(-E/RTn)]}

where TTIArr is the extent of reaction function or time-temperature index, A is the
frequency factor in m.y.”, E is the activation energy in cal/mol, R is the ideal gas constant
in cal/mol-K, tn is the beginning of the time interval in m.y., tn+1 is the end of the time
interval in m.y., Tn is the temperature in K at the start of the time interval, and Tn+1 is the
temperature in K at the end of the time interval. TTIarr can be equated to the integratec
first order rate equation, '

In(1/[1-X]) = kt, )

TTIarr = In(1/[1-X]) (3)

where X represents the extent of reaction as a decimal fraction, which is referred to ars
fraction of reaction. TTIARR values can be calculated for various intervals in the burial
history of a potential source rock using equation 1.  The TTIarr calculated for eack
burial interval is additive and the sum values can be converted to fraction of reaction by
solving equation 3 for X:

X = 1- (1/exp[ TTIArR]). 4)

Tsuzuki and others (1997) derived single E and A values for the generation of C,-
Cs hydrocarbon gas from the cracking of light (C,-C,, saturates) and heavy (C,s.
saturates) components of crude oil. The activation energy and frequency factor for the
cracking of the light component are respectively 86 kcal/mol and 6.4868 x 10*° m.y.". The
activation energy and frequency factor for the cracking of the heavy component are
respectively 76 kcal/mol, 3.4187 x 10 m.y.". These kinetic parameters and the two end-
member heating rates were used in equation 1 to determine the extent of gas generatior
from the cracking of oil in the two basin scenarios.



Extent of Reaction using Multiple Activation Energies or Frequency Factors

In order to reflect a first order reaction with more than one frequency factor or
activation energy, X of equation 4 must also represent the fractional extent of reaction for
each activation energy and frequency factor. Multiple activation energies or frequency
factors are derived by curve-fitting methods that assume first-order parallel reactions. Th=
multiple kinetic parameters are described as discrete or Gaussian distributions, with each
of the multiple parameters being assigned a fractional part of the overall reaction
(Ungerer and others, 1986; Braum and Burnham, 1987).

The discrete distribution is used by Behar and others (1997) and Horsfield and
others (1992). Both groups optimized their experimental kinetic data in such a way to
give a variety of activation energies with associated fractions of reaction and a’single
frequency factor. Behar and others (1997) present discrete activation-energy distribution~
for the generation of methane (C,) and C,-C; hydrocarbon gas from five kerogens (Tabl=

-2). Horsfield and others (1992) also use a discrete activation-energy distribution between
50 and 73 kcal/mol with a frequency factor of 3.47 x 10% m.y." for oil cracking to C,-C,
hydrocarbon gas (Table 3). Equation 1 is used for each discrete activation energy for the
fractional part of the reaction it is assigned and then summed with results from the other
discrete activation energies to give a cumulative generation curve for the extent of
reaction.

The Gaussian distribution of activation energies is employed by Pepper and Dodd
(1995), Pepper and Corvi (1995), and Knauss and others (1997). The distribution is
presented by a mean activation energy, Emean, and a standard deviation, ok, as shown in
Table 4. A Gaussian distribution is expressed by the equation

1 -'l-(X—y)z/az

O'\/2_7—r_ez )

where o is the standard deviation at the 68% confidence level (oE), p is the mean
activation energy (Emean), and Y is the height of the curve above a given X (discrete

Y =

- : : 1
activation energy). The function reaches a maximum value of when X = p.
o2m

Using equation 5 and the parameters given by the cited authors, the Gaussian distribution
was divided into discrete 1.0-kcal/mol activation energies. Since the area under the
normal curve is one and each rectangle of discrete activation energy is one unit wide, the
area of the rectangle becomes the fractional part of the reaction for a given discrete
activation energy. When summed, the values at each discrete energy will equal one.
Equation 1 is used for each discrete activation energy to determine the fractional part of
the reaction it is assigned and then summed with results from the other discrete activatior
energies to give a cumulative generation curve for the extent of reaction. Pepper and
Corvi (1995) and Knauss and others (1997) used a different single frequency factor with
each distribution, but Pepper and Dodd (1995) used the same single frequency factor for
all of their activation energy distributions (Table 4).



Amount of Gas Generated

All of the kinetic models considered in this study employ first-order reaction
rates, which give the extent of reaction, X, as a decimal fraction of the completed reaction
at unity (i.e., X equals amount of gas generated at a particular thermal stress divided by
the maximum amount of gas that can be generated from a particular source material). The
obvious question that remains is how much gas per mass of starting material does unity
equal? Behar and others (1997) explicitly state the maximum amounts (i.e., X = 1) of C,
and C,-C; generated from kerogen as given in Table 5. These values were combined to
give maximum yields for C,-C; in milligrams per gram of total organic carbon (mg/g C).
Pepper and Corvi (1995) give maximum C,-C; gas generation for each of their five
organofacies: A =105 mg/g C; B =101 mg/g C; C =78 mg/g C; D/E =77 mg/g C; and F
= 70 mg/g C.

The maximum gas concentrations reported as mmolal for the hydrous pyrolysis
experiments by Knauss and others (1997) are converted to mg/g C by the equation

w
MW x Gmmolal X —
M

1000 x TO0C ’

Gas (mg/g C) = @

where MW is the formula weight of the gas component (i.e., C, = 16.04 g/mol, C, =
30.07 g/mol, C, = 44.10 g/mol, and C, = 58.12 g/mol), G, 1S the maximum gas yield

in mmolal (Knauss and others, 1997; Table 2, p.482-483), % is the water:shale ratio ¢t

time zero for the experiments (i.e., 4.06 g/g), and TOC is the total organic carbon of th=
rock expressed as a fraction (i.e., 0.114). Equation 8 gives maximum gas yields cf
26.5 mg/g C for methane (C,), 24.9 mg/g C for ethane (C,), 22.0 mg/g C for propane (C.)
and 19.4 mg/g C for butane (C,). The total of these values (i.e., 92.8 mg/g C) gives th=
maximum C,-C, gas generated from the New Albany Shale (Table 5).

According to Pepper and Dodd (1995), the maximum amount of C,-C; ga-«
generated from the cracking of oil in a source rock is equivalent to the amount of oil
remaining in the kerogen after expulsion. Therefore, the maximum amount of gas for all
sixteen kerogen samples is 100 mg/g C, which they consider the threshold for oil retained
by sorption in the kerogen (Pepper, 1998, pers. comm.).

Horsfield and others (1992) experimentally determined that the maximum amount
of C,-C, gas generated from the cracking of reservoired oil by closed-system anhydrou-
pyrolysis is 460 mg/g oil. Tsuzuki and others (1997) considered gas generation from th=
cracking of reservoired Sarukawa oil by closed-system hydrous pyrolysis. The generation
of C,-C; gas is described by two reactions. One reaction (ki1) involves the conversion of
C,s. heavy saturates (C,;,Sat) to C,,, heavy condensed aromatics (C,;,Aro), C,-C, gas (C,-
C,), and C4-C,, light saturates (C4-C, Sat):

C,s. Sat — 0.36(C,5,Ar0) + 0.27(C,-Cy) + 0.37(C,-C,,Sat.) . (6)

The other reaction (k2) involves the conversion of the generated C,-C,, light saturates
(C4-C,,Sat) generated in reaction 6 to C,-C, gas (C,-C;) and insoluble coke (C,):



Ce-C,, sat. —2— 0.60(C,-C;) + 0.40(C,). (7)

Jamil and others (1991) report that C,,, heavy saturates (C,;,Sat) comprise 64.9 wt. % of
Sarukawa oils. Therefore, one gram of oil will initially generate 175 mg of C,-C; gar
through the cracking of C,s, heavy saturates (C,s,Sat; equation 6) and an additional 144
mg of C,-C, gas through the cracking of C,-C,, light saturates (C,-C,,Sat; equation 7).
These two values are combined to give 319 mg/g oil as the maximum amount of gar
generated from the cracking of oil.

RESULTS
Kerogen to Gas

Figure 1 shows the gas-generation curves for Type-I kerogens in basins with 1°
and 10 °C/m.y. heating rates as predicted by the open- and composite-pyrolysis models.
At the top of the deep gas depth (4,572 m/15,000 ft), 91 and 64% of gas generation from
Type-I kerogen is completed at 1°C/m.y. according to the open- and composite-pyrolysis
models, respectively. Therefore, 7.9 and 27.9 mg/g C of deep gas is generated
according to the open- and composite-pyrolysis models, respectively (Figure la and
Table 6). Both models predict that the deep gas generation is finished (i.e., X = 0.99) at
depths of 6,800 and 5,600 meters (Table 6). At the top of the deep-gas depth (4,57
m/15,000 ft), the open- and composite-pyrolysis models respectively predict 99 anc
100% of gas generation from Type-I kerogen is completed at 10°C/m.y. According tc
these models, essentially no deep gas is generated from Type-I kerogen at this heating
rate.

Figure 2 shows the gas-generation curves for Type-II kerogens in basins with 1°
and 10 °C/m.y. heating rates as predicted by the open- and composite-pyrolysis models.
At the top of the deep-gas depth (4,572 m/15,000 ft), 75, 67, and 35% of gas generatior
from Type-II kerogen is completed at 1°C/m.y. according to the hydrous-, open-, anc
composite-pyrolysis models, respectively. These percentages indicate that 23.0, 22.¢
and 65.0 mg/g C of deep gas is generated according to the hydrous-, open-, anc
composite-pyrolysis models, respectively (Figure 2a and Table 6). Deep-gas generation
is finished (i.e., X = 0.99) according to these three models at depths of 5,800, 6800, anc
7,200 meters (Table 6). At the top of the deep-gas depth (4,572 m/15,000 ft), the open-
and composite-pyrolysis models predict 92, 97, 95 and 100% of gas generation from
Type-1I kerogen is completed at 10°C/m.y., respectively. Therefore, according to these
models essentially no significant amounts of deep gas are generated from Type-II
kerogen at this heating rate.

Figure 3 shows the gas-generation curves for Type-IIS kerogens in basins with 1°
and 10 °C/m.y. heating rates as predicted by the open- and composite-pyrolysis models.
At the top of the deep-gas depth (4,572 m/15,000 ft), 74 and 93 % of gas generation fromr
Type-1IS kerogen is completed at 1°C/m.y. according to the open- and composite-
pyrolysis models, respectively.  Therefore, 17.9 and 7.0 mg/g C of deep gas ic
generated according to the open- and composite-pyrolysis models, respectively (Figure 3¢
and Table 6). These models predict that the deep gas generation is finished (i.e., X =



0.99) at depths of 6,400 and 5,000 meters (Table 6). At the top of the deep-gas depth
(4,572 m/15,000 ft), the open- and composite-pyrolysis models predict 99 and 100% of
gas generation from Type-IIS kerogen is completed at 10°C/m.y., respectively.
Therefore, essentially no deep gas is generated from Type-IIS kerogen at this heating rate.

Figure 4 shows the gas-generation curves for Type-III kerogens in basins with 1°
and 10 °C/m.y. heating rates as predicted by the open- and composite-pyrolysis models.
At the top of the deep-gas depth (4,572 m/15,000 ft), 26 and 3 % of gas generation from
Type-lII kerogen is completed at 1°C/m.y. according to the open- and composite-
pyrolysis models, respectively. Therefore, 39.7 and 73.8 mg/g C of deep gas is
generated according to the open- and composite-pyrolysis models, respectively (Figure 4a
and Table 6). These models predict that the deep gas generation is finished (i.e., X =
0.99) at depths of 6,400 and 7,000 meters (Table 6). At the top of the deep-gas depth
(4,572 m/15,000 ft), the open- and composite-pyrolysis models predict 85 and 92 % of
gas generation from Type-III kerogen is completed at 10°C/m.y., respectivel:.
According to these models 7.9 and 6.0 mg/g C of deep gas is generated from Type-I']
kerogen at this heating rate.

Figure 5 shows the gas-generation curves for more paraffinic Type-III kerogers
(Type-III') in basins with 1° and 10 °C/m.y. heating rates as predicted by the open- and
composite-pyrolysis models. At the top of the deep-gas depth (4,572 m/15,000 ft), 11
and 3 % of gas generation from Type-III' kerogen is completed at 1°C/m.y. according to
the open- and composite-pyrolysis models, respectively. Therefore, 50.6 and 67.7 mg/g
C of deep gas is generated according to the open- and composite-pyrolysis models,
respectively (Figure 5a and Table 6). These models predict that the deep gas generation
is finished (i.e., X = 0.99) at depths of 7,800 and 7,000 meters (Table 6). At the top cf
the deep-gas depth (4,572 m/15,000 ft), the open- and composite-pyrolysis models
predict 74 and 91 % of gas generation from Type-III kerogen is completed at 10°C/m.y.,
respectively. According to these models 14.9 and 6.0 mg/g C of deep gas is generate-
from Type-III' kerogen at this heating rate.

Source-Rock Oil to Gas

The anhydrous pyrolysis model by Pepper and Dodd (1995) considers the kinetics
of gas generation exclusively from the cracking of unexpelled oil retained in a source
rock after the main stages of oil generation and expulsion are completed. Figure 6 shows
their model’s predicted gas-generation curves for oil retained in 16 source rocks in basins
with 1° and 10 °C/m.y. heating rates. These gas-generation curves are similar for all 16
source rocks irrespective of kerogen type or rock mineralogy. As a result, the gas-
generation curve of the St Medard (SM) source rock serves as a representative average for
. this anhydrous pyrolysis model (Table 6). At the top of the deep-gas depth (4,572
m/15,000 ft), 35 % of gas generation from oil retained in a source rock is completed &t
1°C/m.y. Therefore 65 mg/g C of deep gas is generated (Figure 5a and Table 6). This
model predicts that the deep gas generation is finished (i.e., X = 0.99) at a depth of 6,601
meters (Table 6). At the top of the deep-gas depth (4,572 m/15,000 ft), this models
predicts 100 % of gas generation from oil retained in a mature source rock is completed at



10°C/m.y. Therefore, according to this model essentially no deep gas is generated from
oil retained in a source rock at this heating rate.

Reservoir Oil to Gas

Generation of gas from the cracking of oil in reservoirs is considered by the
anhydrous- and hydrous-pyrolysis models by Horsfield and others (1992) and Tsuzuki
and others (1997), respectively. Figure 7 shows the gas-generation curves for reservoir-oil
cracking in basins with 1° and 10 °C/m.y. heating rates as predicted by the anhydrous-
and hydrous-pyrolysis models. At the top of the deep-gas depth (4,572 m/15,000 ft), 2
and zero % of gas generation from reservoir-oil cracking is completed at 1°C/m.y.
according to the anhydrous- and hydrous-pyrolysis models, respectively.  Therefore,
449.5 and 320.2 mg/g oil of deep gas is generated according to the closed anhydrous-
and hydrous-pyrolysis models, respectively (Figure 7a and Table 6). These models
predict that the deep gas generation is finished (i.e., X = 0.99) at depths of 7,600 and
7,400 meters (Table 6). At the top of the deep-gas depth (4,572 m/15,000 ft), the
anhydrous- and hydrous-pyrolysis models predict 80 and 53 % of gas generation from
reservoir-oil cracking is completed at 10°C/m.y., respectively.  According to these
models at 10°C/m.y., 459.6 and 320.2 mg/g oil of deep gas is generated from reservoir oil
cracking when reservoirs reach depths of 4,200 and 5,200 meters, respectively.

DISCUSSION
Kerogen to Gas

Gas generation from kerogen at deep depths is more likely at slow basin heating
rates irrespective of kerogen type or kinetic model (Table 7). At the slow heating rate of
1 °C/m.y., 5 to 75 mg/g C of deep gas can be generated irrespective of kerogen type o
kinetic model. In contrast, at the fast heating rate of 10 °C/my, only 0 to 15 mg/g C of
deep gas is generated irrespective of kerogen type or kinetic model (Table 7). The
implication here is that only a finite amount of gas can be generated from kerogen within
a specific thermal-stress interval. Slow heating rates result in lower temperatures at
greater depths, which allows this thermal-stress interval to be extended to greater depths
within a basin. Therefore, according to these models, deep basins with cooler subsurface
temperatures are more likely to generate deep gas from kerogen than deep basins witl
hotter subsurface temperatures.

For the slow heating rate, the composite-pyrolysis model predicts the greatest
amount of deep gas, with values ranging from 5 to 75 mg/g C (Table 7). The open
pyrolysis model gives lower values for deep-gas generation with a range from 8 to 51
mg/g C (Table 7). However, at the rapid heating rate, the open-pyrolysis model predict-
greater amounts (1 to 15 mg/g C) of deep-gas generation than that predicted by the
composite-pyrolysis model (0-7 mg/g C). The hydrous-pyrolysis model for only Type-II
kerogen yields no deep gas at the high heating rate and 23 mg/g C of deep gas at the slov
heating rate. Obviously, more hydrous-pyrolysis kinetic studies on the other kerogen
types are needed.

It would be valuable to compare all the different kerogen types for the three
pyrolysis models, but a complcte comparison of kerogen types is only possible between



the open- and composite-pyrolysis models. At both heating rates, the open-pyrolysis
model predicts an increase in the amount of deep gas generated from Type-I to Type-II to
Type-1II kerogen. With the exception of Type-IIS kerogen, this trend is also predicted by
the composite-pyrolysis model (i.e., Type-I < Type-Il < Type-Ill kerogen). The
composite-pyrolysis method predicts that Type-1IS kerogen generates the least amount of
deep gas at both heating rates. The-implication of this prediction is that deep basins with
high-sulfur oils and carbonate source rocks are not good prospects for deep ga-.
However, in the open-pyrolysis model, type IIS kerogen generates about the same amount
of deep gas as Type-II kerogen at both heating rates.

For the slow heating rate, the composite-pyrolysis model predicts more deep ge<
generation than the open-pyrolysis model for all kerogen types except for Type-lIS
kerogen. As an example, three times as much deep-gas generation is predicted by Type-
II kerogen in the composite-pyrolysis model than in the open-pyrolysis model. The
hydrous-pyrolysis model for deep-gas generation from Type-II kerogen predicts an
intermediate value (23 mg/g C) at the low heating rate and the lowest value (0 mg/g C) at
the high heating rate relative to the predictions by the composite- and open-pyrolysis
models. Type-II kerogen is the most common source of oil and the results presente
here (Table 7) suggest that the predicted potential for deep gas from this kerogen type is
highly dependent on the pyrolysis model employed.

Type-1 kerogen, which is typically associated with lacustrine sequences and
source rocks, consistently has low yields of deep-gas generation in both open- and
composite-pyrolysis models and at both heating rates (Table 7).  These predictions
suggest that basins with deeply buried lacustrine source rock sequences are not favorable
for deep-gas generation from kerogen. Conversely, Type III kerogen produces more
deep gas than the other kerogen types in both the open- and composite-pyrolysis models
and for both heating rates. These predictions imply that basins with deeply buried coals
are the most favorable for deep-gas generation from kerogen.

Oil to Gas :

Deep gas from the cracking of oil retained in a source rock does not depend on
kerogen type or lithology according to the anhydrous-pyrolysis model by Pepper and
Dodd (1995). Similar to deep-gas generation from kerogen, deep gas from retained oil in
source rocks 1s most favorable at low heating rates (Table 8). At 1°C/m.y., this mode!
predicts amounts of deep-gas generation that are comparable to those predicted by the
composite-pyrolysis model for deep-gas generation from Type-II and -III kerogens (Table
8). At the high heating rate, no deep-gas generation from the cracking of retained oil in
source rocks is predicted (Table 8). Therefore, at 10°C/m.y., deep-gas generation from
kerogen is more favorable than from the retained oil in a source rock.

Anhydrous- and hydrous-pyrolysis models predict that amounts of deep-ga<
generated from the cracking of reservoir oil are four- to seven-times greater at 1°C/m.y.
and six- to twenty-times greater at 10°C/m.y. than the best deep-gas yields obtained from
kerogen (Table 7). This difference is readily explained by oil having a higher thermal
stability than kcrogen. It has also been shown that the thermal stability of oil increases in
the presence of liquid water (Hesp and Rigby, 1973), which would be ubiquitous in most

1o



subsurface reservoirs. This increase in stability with water is supported in part by the
lower deep-gas yields predicted by the hydrous-pyrolysis model than anhydrous-
pyrolysis model at the high heating rate (Table 6).  Although the deep-gas yields
predicted for the cracking of reservoir oil are considerably higher than those for keroger,
the amount of kerogen in deeply buried source rocks of a sedimentary basin may b=
several orders of magnitude greater than the amounts of deeply buried reservoir oil.

CONCLUSIONS AND FUTURE STUDIES
1. Basins with slow heating rates, where source rocks subside slowly through low thermal
gradients, are more likely to yield deep gas from kerogen than basins with fast heating
rates and rapid subsidence of source rock. Because this is one of the most important
implications of this study, it would be interesting to compare amounts of deep gas and
heating rates from different sedimentary basins. This would involve creating an inventor:*
of heating rates for domestic basins as well as the amount of deep gas recovered to date.
A future study of this type can be used to evaluate the validity of the different models
used in this study and target basins with high potential for deep gas.

2. According to the open- and composite-pyrolysis models, Type-1II kerogen will yield
the most deep gas of the three kerogen types irrespective of heating rate. This implie~
that basins with deeply buried coals are most likely to contain deep gas. A future study
comparing deep-gas yields from basins with differing amounts of deeply buried coal
would be a useful way of testing this model-based prediction and targeting basins with
high potential for deep gas.

3. According to the open- and composite-pyrolysis models, Type-I kerogen has the least
or no potential for deep-gas generation. This implies that basins with deeply buried
lacustrine source rocks are not likely to contain deep gas. A future study comparing
deep-gas yields from basins with differing amounts of deeply-buried lacustrine source
rocks would be a useful way of testing this model-based prediction and exclude basin-
with low potential for deep gas.

4. Cracking of reservoir oil is predicted by the anhydrous- and hydrous-pyrolysis models
to generate the most deep gas irrespective of heating rate. Therefore, basins that currently
have deeply buried overmature source rocks have the potential of previously having
reservoir oil that has since cracked to generate deep gas. The main control for deep-ga-
accumulations in this geological setting is the original oil trap remaining competent with
burial depth. The Gulf Coast offshore and the Anadarko basin may serve as examples of
this geological setting. Future studies of these types of basins can further elucidate the
factors controlling deep-gas accumulations and target other areas with high potential for
deep gas.

5. There are not significant differences between the predicted amount of deep-ga<

generated from kerogen by the different pyrolysis kinetic models. However, the hydrous-
pyrolysis model considers only Type-Il kerogen, and more hydrous-pyrolysis
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experiments with kinetic models for gas generation from Type-I, Type-IIS, and Type-III
kerogens are needed to test this preliminary conclusion.

6. There is a significant difference between the predicted amounts of deep-gas generated
from the cracking of reservoir oil by the anhydrous- and hydrous-pyrolysis kinetic
models. The kinetic model derived-from hydrous pyrolysis indicates that reservoir oil is
more thermally stable and that oil cracking to gas requires higher thermal stress leve's
than those predicted by the anhydrous-pyrolysis model. More experimental work on tke
cracking of oil in the presence of water is needed. In addition, these future experiments
need to consider the effects of commonly occurring reservoir minerals and their surface-.
Experiments published to date on the cracking of reservoir oil have neglected the
potential effects of minerals on gas generation.
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Table 1: Summary of six gas-generation kinetic models considered in this study.

MODEL NAME REF*

STARTING MATERIAL

Open Pyrolysis 1

Composite Pyrolysis 2

Hydrous Pyrolysis 3

Anhydrous Pyrolysis 5

~ Kerogen
(Type-L-11, 1IS, III)

Kerogen
(Type-1,-11, TIS, IIT)

Kerogen
(Type-II)

Crude 0il
(light and heavy saturates)

Crude Oil
(36°API gravity)

Immature Source Rock
(Organofacies A, B, C, D/E, F)

KINETIC APPROACH

Optimization of non-isothermal
experiments at different heating rates

Optimization of open and
anhydrous pyrolysis and natural data

Optimization of isothermal pyrolysis
experiments

Optimization of isothermal pyrolysis
experiments

Optimization of non-isothermal

experiments at different heating rates

Optimization of isothermal pyrolysis
experiments at one temperature

KINETIC PARAMETERS

Discrete distribution of activation
energies with single frequency factor

Gaussian distribution of activation
energies with single frequency factor

Gaussian distribution of activation
energies with single frequency factor

Single activation energies and frequency
factors for light and heavy saturates

Discrete distribution of activation

energies with single frequency factor

Gaussian distribution of activation
energies with single frequency factor

* References: 1 = Behar and others (1997); 2 = Pepper and Corvi (1995); 3 = Knauss and others (1997); 4 = Tsuzuki and others (1997)

5 = Horsfield and others (1992); 6 = Pepper and Dodd (1995)
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Table 3: Fractional C{-C,4 gas yields

assigned to discrete activation energies
by Horsfield and others (1992) to model
gas generation from the cracking of oil.

Activation Fractional
Energy (kcal/mol) Gas Yields
73 0.0174
72 0.0087
70 0.0587
69 0.1109
68 . 0.1478
67 0.2870
66 0.3435:
63 0.0043
58 0.0065
55 0.0022
54 0.0022
53 0.0043
51 0.0022
50 4 . 0.0022
Frequency 3.47E+29
Factor (1/m.y.)
- Total gas yield 460 mg/g Oil
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Table 4a: Gaussian distributions and their calculated discrete distributions of activation
energies with fractional C,-Cs gas yields from kerogens as predicted by the composite

pyrolysis model (Pepper and Corvi, 1995).

Organofacies A
Type IS
Gaussian Distribution
of Activation Energies

(kcal/mol)
mean 49.4
std.dev. 2.6

Discrete Distribution

Organofacies B
Type 11
Gaussian Distribution

Organofacies C
Typel
Gaussian Distribution

of Activation Energies

(kcal/mol)
mean 66.6
std.dev. 4.4

Discrete Distribution

of Activation Energies

(kcal/mol)
mean 59.8
std.dev. 2.4

Discrete Distribution

Organofacies F/DE
Type ALY
Gaussian Distribution

of Activation Energies

(kcal/mol)
mean 65.7
std.dev. 2.4

Discrete Distribution

Activation Fractional

Energies Gas Yield
(kcal/mol)
56.4 0.0037
55.4 0.0100
54.4 0.0231
534 0.0460
524 0.0785
51.4 0.1150
50.4 0.1446
49.4 0.1560
48.4 0.1445
474 0.1148
46.4 0.0783
45.4 0.0458
44.4 0.0230
434 0.0099
424 0.0037
41.5 0.0000
40.5 0.0000
395 0.0000
385 0.0000
37.5 0.0000
36.5 0.0000
355 0.0000
345 0.0000
Frequency
Factor 1.24E+26
(I/m.y.)

Activation Fractional

Energies Gas Yield
(kcal/mol) '
77.6 0.0040
76.6 0.0069
75.6 0.0112
74.6 0.0174
73.6 0.0257
72.6 0.0359
71.6 0.0477
70.6 0.0601
69.6 0.0720
68.6 0.0819
67.6 0.0885
66.6 0.0907
65.6 0.0884
64.6 0.0817
63.6 0.0718
62.6 0.0598
61.6 0.0474
60.6 0.0356
59.6 0.0255
58.6 0.0173
57.6 0.0111
56.6 0.0068
55.6 0.0039
6.84E+31

Activation Fractional
Energies Gas Yield

(kcal/mol)
65.8 0.0079
64.8 0.0201
63.8 0.0432
62.8 0.0782
61.8 0.1191
60.8 0.1529
59.8 0.1652
58.8 0.1504
57.8 0.1154
56.8 0.0745
55.8 0.0405
54.8 0.0186
53.8 0.0072
52.8 0.0000
51.8 - 0.0000
. 50.8 0.0000
49.8 0.0000
48.8 0.0000
47.8 0.0000
46.8 0.0000
45.8 0.0000
44.8 0.0000
43.8 0.0000
7.22E+29

Activation Fractional

Energies Gas Yield

(kcal/mol)
71.7 0.0070
70.7 0.0185
69.7 0.0412
68.7 0.0766
67.7 0.1191
66.7 0.1549
65.7 0.1686
64.7 0.1535
63.7 0.1168
62.7 0.0744

. 617 0.0396
60.7 0.0177
59.7 0.0066
58.7 0.0000
57.7 0.0000
56.7 0.0000
55.7 0.0000
54.7 0.0000
53.7 0.0000
52.7 0.0000
51.7 0.0000
50.7 0.0000
49.7 0.0000

6.09E+29
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Table 4¢: Gaussian distributions and their calculated discrete distributions of activation
energies with fractional methane (C,), ethane (C,), propane (C3), and butane (C,) yields
from Type-II kerogen in the New Albany Shale (Devonian-Mississippian) as predicted
by the hydrous-pyrolysis model (Knauss and others, 1997).

Methane (C,)
Gaussian Distribution

Ethane (C,)
Gaussian Distribution

Propane (C;)

Gaussian Distribution

Butane (C,)
Gaussian Distribution

E (kcal/mol)
std. dev.(%E)

45.2
1.92

Discrete Distributon

Activation
Energies
(kcal/mol)
65.4
64.4
63.4
62.4
614
60.4
59.4

584 -
574 ¢
56.4
554
54.4
53.4
524
514
50.4
494
484
474
46.4
454
44 .4
434
42.4
Frequency
Factor (1/m.y.)

Fractional

E (kcal/mol)
std. dev.(%E)

56.2
5.0

Discrete Distributon

Activation

Gas Yield - Energies

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
10.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0012
0.0329
0.2370
0.4577
0.2370
0.0329
0.0012

7.88E+23

(kcal/mol)
65.2
64.2
63.2
62.2
61.2
60.2
59.2
58.2
57.2
56.2
55.2
54.2
53.2
52.2
51.2
50.2
49.2
48.2
472
46.2
452
442
43.2
42.2

Fractional
Gas Yield

0.0008
0.0025
0.0064
0.0145
0.0292
0.0515
0.0803
0.1102
0.1333
0.1420
0.1333
0.1102
0.0803
0.0515
0.0292
0.0145
0.0064
0.0025
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000

1.23E+28

E (kcal/mol)
std. dev.(%E)

52.9
6.0

Discrete Distributon

Activation Fractional

Energies
(kcal/mol)

64.9
63.9
62.9
61.9
60.9
59.9
58.9
57.9
56.9
55.9
54.9

539

52.9
51.9
50.9
49.9
48.9
47.9
46.9
45.9
44.9
43.9
429
41.9

Gas Yield

0.0000
0.0000
0.0009
0.0023
0.0052
0.0110
0.0211
0.0363
0.0568
0.0804
0.1031
0.1196
0.1257
0.1196
0.1031
0.0804
0.0568
0.0363
0.0211
0.0110
0.0052
0.0023
0.0009
0.0000

5.68E+26

E (kcal/mol)
std. dev.(%E)

55.0
5.0

Discrete Distributon

Activation
Energies
(kcal/mol)
65.0
64.0
63.0
62.0
61.0
60.0
59.0
58.0
57.0
56.0
55.0

- 540
53.0
52.0
51.0
50.0
49.0
48.0
47.0
46.0
45.0
44.0
43.0
42.0

Fractional
Gas Yield

0.0000
0.0007
0.0021
0.0057
0.0134
0.0278
0.0504
0.0800
0.1114
0.1358
0.1451
0.1358
0.1114
0.0800
0.0504
0.0278
0.0134
0.0057
0.0021
0.0007
0.0000
0.0000
0.0000
0.0000

3.15E+27
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Table 5: Maximum C,-C;s gas yields
for different starting materials used in
six kinetic models.

Starting Material Model . Maximum
Reference* Gas Yield

(mg/g C)

Type-I Kerogen 1 88.5
2 78.0
1 70.0
2 100.6
3 92.8**
1 70.3
2 104.9
1
2
1
2
4
5

Type-II Kerogen

Type-1IS Kerogen

57.1

76.6

54.2

69.5

100.00

541.2

(mg/g Oil)  (460.0)
6 376.2
(ng/g Oil)  (319.8)

Type-III Kerogen
Type-III' Kerogen

Source-Rock Oil
Reservoir Oil

* References: 1 = Behar and others (1997)
2 =Pepper and Corvi (1995)
3 =Knauss and others (1997)
4 = Pepper and Dodd (1995)
5 = Horsfield and others (1992)
6 = Tsuzuki and others (1997)
*+C,-C,y
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