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Abstract 

 

Specialized photogrammetric and image processing MATLAB 
functions useful for wind tunnel and other ground-based testing of 
aerospace structures are described.  These functions include single view 
and multi-view photogrammetric solutions, basic image processing to 
determine image coordinates, 2D and 3D coordinate transformations 
and least squares solutions, spatial and radiometric camera calibration, 
epipolar relations, and various supporting utility functions. 

Introduction 

Photogrammetric techniques have been found to be very useful for specialized measurements of component 
deformation of advanced aircraft during ground or in-flight testing as well as deformation of large space 
structures during ground testing.  The basis of photogrammetry can be summarized as the determination of a 
parameter or parameters of interest in 3D object space from 2D image coordinates.  These parameters could 
be spatial coordinates (1D to 3D), deformation, angle, or changes in angle, etc.  With the recent replacement 
of film with electronic image sensors, some authors have used expressions other than photogrammetry to 
denote this extraction of spatial information from images.  Part of the impetus for this name-change is to 
emphasize the modern nature of these efforts and to emphasize that digital images, rather than film, make up 
the raw data.  These various names, which are largely a matter of personal choice of the authors of a given 
publication, include digital photogrammetry, geomatics, videogrammetry, videometrics, and computer vision.  
It remains to be seen which term will eventually be considered the defining one if the long-standing term 
photogrammetry is indeed supplanted by another more meaningful term.   
 

Classic photogrammetry previously consisted of photographs that were read on a monocomparator in order to 
extract image coordinates.  A computer was then used for data reduction. Currently electronic images are 
acquired and reduced with automated image processing, often on the same computer and often with many 
images in a time sequence or set of time sequences.  Some of the specialized aerospace applications that the 
development of the photgrammetry toolbox is directed towards include aeroelastic model deformation, wind 
tunnel model attitude, sting bending, the study of model injection rates at blow-down facilities, determination 
of model position, deformation of micro air vehicles, deformation of aircraft in-flight, structural deformation 
of ultralight and inflatable large space structures, etc.  In addition a whole class of advanced imaging flow 
diagnostic and visualization techniques either use some form of photogrammetry or could benefit from its use.  
These image-based flow diagnostic techniques include pressure and temperature sensitive paints (PSP/TSP), 
Doppler global velocimetry (DGV), particle image velocimetry (PIV), projection moiré interferometry (PMI), 
planar laser induced fluorescence (PLIF), and laser-induced thermal acoustics (LITA).   

 

The Photogrammetry Toolbox (PT) described here should be viewed as complementing rather than replacing 
standard photogrammetric packages that are used quite commonly for spatial measurements where the images 
can be acquired in a sequential manner as the camera is moved about the object.  Instead the PT was 
developed for specialized aerospace applications where traditional photogrammetry techniques are often not 
applicable due to various constraints such as limitations on camera location, limitations on size and mass of 
the camera, requirement for remote operation, severe limits on setup time due to wind tunnel productivity 
requirements, and/or the need for near real-time results.  The functions in the PT serve as building blocks to 
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develop custom measurement systems that may utilize non-traditional photogrammetry for near real-time 
applications.  The functions can be relatively easily customized to further enhance their value in the 
development of measurement systems for unique and varied applications.  In some cases the functions can be 
utilized within the MATLAB environment for the application.  In other cases where performance is critical, 
the functions can be used to develop the measurement strategy, which can then be implemented in C-code to 
maximize efficiency.  Although the MATLAB Image Acquistion toolbox was not utilized in the current 
version of the PT, it is anticipated that the coupling of the PT with the acquisition toolbox should provide a 
powerful developmental platform.   

 
Toolbox Folders 

The primary folder containing the PT functions is entitled Photogrammetry Toolbox.  There are three 
subfolders located within the primary folder.  The first subfolder Documentation contains document pages for 
each function written in Microsoft Word.  The docuument pages for each function cover the purpose, syntax, 
arguments, output, additional remarks, example scripts, and equations.  The second subfolder Example Scripts 
contains scripts that can be run from the MATLAB Command Window to illustrate the usage of the various 
functions.  The naming convention for the example scripts is the function name with Example appended to 
the end of function name.  For instance, the example script for the function resection is named 
resectionExample.  (The files containing the functions and scripts have a .m extension which should be 
assumed in any file names for functions or scripts within this document.)  The third subfolder Sample Files 
contains data and digital image files that are utilized within the example scripts.  It is recommended that the 
primary folder and its three subfolders be placed in a convenient location within My Documents to facilitate 
file backup and to more easily incorporate the PT functions when upgrading to a newer vesion of MATLAB.  
The Photogrammetry Toolbox folder and its subfolders should be added to the top of the MATLAB path.  By 
adding to the top of the path, m-files in the PT will override any conflicting names lower in the path.  
However, it is still recommended that conflicting function names be eliminated to avoid confusion.  The 
folders can be added to the path from within MATLAB by selecting Set Path… under File, select Add 
Folder…, select Add with Subfolders…, and then select Save.  Typing path at the Command Prompt should 
show the Photogrammetry Toolbox and its subfolders at the top ot the path.  Once the primary and three 
subfolders are added to the path, the functions and example scripts can be invoked from any folder (except for 
the special example script camcal_goldenExample which can only be run from the primary PT folder).  A 
folder contents feature available in MATLAB enables all the function names in a folder to be listed in the 
Command Window with one row per m-file.  Each row contains the name of the function or script and a brief 
1-line description of the purpose of the file.  The name of the m-file is an active link to quickly obtain the 
more detailed multi-line help information normally provided at the top commented segment of the m-file.  A 
short script entitled helpPT can be invoked from any folder to quickly and conveniently review the m-files 
that are available in the Photogrammetry Toolbox folder and to access more detailed information by selecting 
any function in the list.  The input to the helpPT function comes from the special script contents consisting 
of all comments located in the primary PT folder.  The script contents is created (or edited) by running 
Contents Report from the Current Directory Browser. 

 

 
Overview of Toolbox Functions 

The toolbox contains functions for elementary analysis of digital images to determine image plane 
coordinates, camera calibration suitable for aerospace applications, single-view and multi-view determination 
of object space coordinates, determination of camera pointing angles and location, 2D and 3D coordinate 
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transformations along with functions to determine transformation coeficients given 2 sets of object space 
coordinates, and assorted utility functions.  The functions were developed in MATLAB version 2006a, but 
should be applicable for some older versions as well.  Most of the image processing functions make use of the 
Image Processing Toolbox, which must be present to utilize those functions.  Following this overview, each 
function, listed in alphabetical order, is described in more detail within its own document page.  The 
document pages for the functions cover the purpose, syntax, arguments, output, additional remarks, example 
scripts, and equations.  To ensure continuity from previous work at NASA Langley, some of the functions 
utilize the familiar camera input file consisting of a column of input calibration coefficients that must be 
entered in a prescribed order.  Other functions utilize a structure for input which has the advantage of 
automatically documenting any MATLAB scripts that call the functions.  Another advantage of the structure 
for input arguments is that the order of the entry is irrelevant since the field labels of the structure dictate 
which coefficients are intended to be passed to the function.  The use of structures also improves the 
conciseness of the calling syntax and tolerates more fields than needed for the function arguments (for 
instance for documentation of the experiment in a notes field which will be ignored by the function that is 
invoked).  This use of structures in the calling syntax of the functions is expected to aid in the usability and 
applicability in future developments.  The functions loadCamStuct and saveCamStruct are utilities to load 
and save camera parameter structures in text format for use outside MATLAB. 
 
The simulation functions collinearity and XYZ2xy are used to create ideal image plane data corresponding to 
a set of object coordinates given various camera parameters.  The function collinearity uses structures for 
input and output (typically in mm) whereas XYZ2xy uses a column entry for the camera parameters, including 
distortion with output in pixels.  The function distortApply can be used to apply distortion to the output from 
collinearity.  The function mm2pixel can be used to convert the output of collinearity from mm to pixels.  A 
complementary function pixel2mm is used to convert from pixels to mm.  The function xyplot can be used to 
compare calculated and measured image plane coordinates. 
 
Digital image analysis functions include several simple, but useful image processing functions that enable 
manual selection of targets or locations on a digital image (pixelXYselect) and enable one to establish the 
maximum gray scale on the perimeter of a rectangular region of interest for use in background removal 
(findBackground).  Other image processing functions enable the computation of gray scale centroids 
(centroid, centroid_cal_fun, clicking_targ_fun, location_target1_fun) and display of gray scale to the 
Command Window (displayGrayScale), given image locations, regions of interest, and possible background 
for removal before centroiding or display.  The function GrayScaleDisplay displays the image in the top half 
of a figure window along with an interactive pixel grayscale display in the lower half.  The function has a 
single input argument that can be either an image variable currently in the workspace or a character string or 
variable that represents a valid image file name.  The function opens an image file dialog box for file selection 
if invoked without an input argument for convenient examination of digital images.  Pixel location and 
grayscale are displayed in the figure window as the cursor is moved over the image itself or over the display 
of grayscale.  A small rectangular box overlay on the image, which indicates the coverage of the grayscale 
display area, can be moved about the image to examine in detail the grayscale of any portion of the image.  
This function is very convenient and easy to use for examining grayscale of any image and complements the 
function that displays grayscale to the Command Window (displayGrayScale).  The function roiSelect 
enables a single or multiple regions of interest (roi) of an image to be selected by mouse.  The single input 
argument can be an image variable or file name.  The function opens an image file dialog box for file 
selection if invoked without an input argument.  The rectangular roi is selected by positioning the cursor to 
one corner of the desired rectangular area, pressing the left mouse button, and dragging to the other corner of 
the rectangle.  A single roi or many roi’s can be selected.  Optionally the function can output an image which 
has the original grayscale of the input image, but with the grayscale in each roi set to zero.  In this case the 
output image would consist of rectangular patches of black on the grayscale of the original input image.  The 
newly created output image is displayed in its own figure window.  The function should be useful for cases in 
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which the targets of interest are in a limited area of a cluttered image.  A similar function uses a single 
polygon roi instead of rectangles (roiPolySelect).  This function allows for selection of odd-shaped regions 
that might be awkward to select with several rectangular roi’s.  The polygon roi function also returns an 
image that is the same size and class as the input image, but with only the polygon roi containing grayscale 
from the original input image.  The rest of the output image outside of the polygon roi is set to zero.  The 
inverse image is also available in which the polygon roi is black (grayscale = 0), but the rest of the input 
image is intact.  Both of these functions should be useful to eliminate troublesome areas of an image before 
further processing in cases where automated image processing over the whole image fails.  Several epipolar 
functions (epipolarLine_x, epipolarLine_y, epipolarRelation_x, epipolarRelation_y ) enable the 
matching of a target from one image with the corresponding target from a second image, which can help with 
automated analysis of 2-view photogrammetric image data. 
 
The GUI function imagePrelim serves as a preliminary tool for automated target location on digital images.  
The GUI utilizes the regionprops (IPT) function from the Image Processing Toolbox that operates on binary 
images.  (Functions from the Image Processing Toolbox are followed by IPT enclosed in parentheses.)  A 
pushbutton enables selection of the appropriate digital image file (via a popup file selection window) for 
loading and displaying in a figure window within the GUI.  The image is displayed in grayscale, but all 
preliminary processing is accomplished with a binary version of the image.  The initial threshold for the 
binarization when the image file is first imported is determined by the graythresh (IPT) function.  A label 
image is then created from the binary image using bwlabel (IPT).  The regionprops (IPT) function is then 
used to create a structure containing the binary centroids and bounding boxes of each labeled region within 
the label image.  The bounding boxes for each potential target (some of which may potentially be false 
targets) are overlaid on the image.  A larger cross is plotted for very small (and usually false) targets smaller 
than 3 pixels to improve their identification.  The number of targets found, as well as the relative threshold 
(ranging from 0 to 1), are displayed.  A slider box (with display) can then be used to interactively adjust the 
threshold.  The newly found targets based on the just selected threshold are overlaid on the image so that one 
can interactively quickly determine a suitable threshold to automatically find all the valid targets.  Typically 
the highest threshold that finds all the valid targets is selected before possible further processing with the GUI 
(if additional false targets are found).  Slider bars for minimum and maximum bounding box size can then be 
used to interactively limit the targets found.  Selection of a new image or threshold for the current image 
reinitializes the process.  A pushbutton can be used to invert the grayscale before inputting a digital image file 
for cases with black targets on a white background.  The file name of the inputted digital image is displayed 
on the GUI along with the number of targets found.  Another pushbutton initiates the selection of a polygon 
region of the image (using roiPolySelect) in order to remove regions of the image that might contain false 
targets that are especially hard to discriminate with threshold or size limits.  Target ID numbers can be 
overlaid on the image using overlayCentroidsBox and the preliminary binary centroid data can be saved in 
text format (with user selected file name via file dialog box) with point number, x and y centroid data, half-
width, and half-height of each bounding box respectively.  This capability is useful in addition when the 
binary file is used as input (for start values) for full grayscale centroiding.  A toggle button can be used to 
show the binary image without processing to aid in preliminary analysis of cluttered images since the 
processing can be very time consuming when using regionprops (IPT) at each change of the grayscale 
threshold.  Thus an appropriate threshold can be determined by examination of the binary image before 
initiating the processing via the regionprops (IPT) function.  In this mode all processing except for the slider 
threshold is disabled until the get image file pushbutton is activated to restart the process.  An additional 
pushbutton allows for manual selection (via mouse) of target ID numbers and the subsequent saving of that 
xpixel and ypixel data along with the corresponding target ID as a text file (with user selected file name via 
file dialog box).  This additional pushbutton should help in cases where the automatically generated centroid 
data does not have the desired numbering system.  A button panel allows the selection of a centroid file to be 
overlaid on the image.  For the overlay it is assumed that the first three columns of the data from the file are in 
order target ID, x, and y.  The next 2 columns, if they exist, are taken to be the half-height and half-width of 
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the bounding boxes.  A text entry box is available to specify a single value for the bounding box width and 
height for files of only 3 columns, which is then used in the overlay plot for all targets.  Both the bounding 
boxes and target IDs are plotted in a color chosen from a popup menu of color selections to aid in 
discrimination of multiple plots overlaid on the same image.  Another button panel allows 2 centroid files to 
be combined into a new file, getting the correct target IDs from 1 file and the correct centroid data from 
another.  The match tolerance (x, y pixel values must be within this set tolerance to match) is set from within 
an edit box.  Another button panel allows grayscale centroiding (with automated background removal based 
on the max grayscale on the perimeter of the bounding box) and output to a new file.  This panel is convenient 
for computing grayscale centroids using the binary centroid files created within the GUI itself as start values.  
An additional width and height to be added to the binary bounding boxes is entered through an edit box.  This 
helps to minimize clipping of the target since grayscale below the threshold (set to zero during the 
binarization of the image) may be outside the bounding box found from the binary image, but still may be a 
valid part of the target.  Another button panel gives the option of taking threshold and size restrictions from 
the edit boxes corresponding to the sliders.  A separate process button within the panel must be pressed to 
initiate image processing based on the values in the edit boxes.  (The sliders for threshold, min size, and max 
size are ignored if the edit boxes radio button is selected.  When the process button is selected, the values for 
threshold, min size, and max size are then taken from the corresponding edits boxes as entered by the user 
instead of from the sliders.)  This greatly speeds up preliminary investigations with large format images of 
several megapixels compared to slider selection.  (Since with the sliders activated computations are made at 
intermediate positions as the sliders are moved toward their final destinations.)   
 
The camera calibration functions include several utilizing optimization of a single view of a 3D calibration 
block to provide a very useful simplified method to determine the major camera parameters necessary for 
photogrammetric measurements.  The optimization functions include camcal_fun and camcal_fun_1 and 
support functions dlt, dlt0, lleast, lleast3, residual_exterior, residual_interior1, residual_interior2, 
resec, resec3, and resecA.  The script camcal_goldenExample utilizes the convenience of the MATLAB 
environment for input and output while invoking three executables for camera calibration by optimization 
using the Golden seach method.  The script will normally only run properly from the primary PT folder.  The 
files calibrator.exe, plot.exe, and simulator.exe must be copied from the primary PT folder to another folder 
for proper operation in other than the primary PT folder.  Note that single view camera calibration is relatively 
quick and convenient, but may not be the best camera calibration available.  If the ultimate in camera 
calibration is required one of the commercially available photogrammetric packages should be considered.  
Note that for some specilized aerospace applications, such as the single view determination of model 
deformation, camera calibration is not the primary calibration, but rather a preliminary or partial calibration to 
reduce nonlinearities of the final calibration.  Thus camera calibration in those cases is not as critical as for 
traditional photogrammetry.  For instance, the final calibration for single view model deformation consists of 
an angle calibration based on an onboard inertial device.  The camera calibration primarily reduces the 
nonlinearities and the amount of correction that the final angle calibration must accommodate.  The use of the 
quick single view camera calibration by optimization reduces setup time and increases wind tunnel 
productivity compared to traditional photogrammeric camera calibration.  Additional camera calibration 
functions enable the determination of the camera constant (cameraConstant) and distortion coefficients 
(distortSolve).  Once the the radial and decentering distortion terms are found, the function distortCorrect 
can be used to correct image coordinates in mm.  The function to determine the camera constant typically 
requires 2 or more images of a calibration fixture (which can be planar and is approximately perpendicular to 
the optical axis of the camera) at known displacements from the camera.  The values of the photogrammetric 
princpal point and distortion coefficients must be known (or entered as zero for initial results).  Advantages of 
this function is that an estimate of precision is computed for the camera constant from the least squares and 
projective coupling between other camera parameters is lessened (see Appendix).  The function to solve for 
the distortion coefficients can be applied to a single image of a planar target fixture.  Precision estimates of 
the coefficients from least squares method are also computed.  These 2 functions should serve as useful 
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complements to the optimization functions, depending on the application.  Radiometric camera calibration is 
possible with the two functions RadiomCali_cheby_fun and RadiomCali-poly_fun.  These two functions 
determine the camera response function given two images taken at different f-numbers so that nonlinearity in 
the grayscale versus irradiance can be greatly corrected for situations where a linear response is critical. 

 
Functions were developed to allow for single-view (singleView, xy2XZ) and multi-view (intersection, 
xy2XYZ) determination of object coordinates.  The function singleView enables single view solutions for 
one coordinate (X, Y, or Z) or pairs of coordinate (X-Y, X-Z, Y-Z).  The function can handle cases in which 
either the image or object coordinate data has target point numbers not found in both, with only the valid 
solutions for target numbers common to both image and object outputted.  A structure format is used for the 
object coordinate data in which the field representing the particular coordinate(s) to be solved are entered as 
null array(s) such as XYZ.X = [ ].  The output of the new function is an N  4 array when 2 coordinates are 
solved for (which are found from 2 equations in 2 unknowns) containing N target point numbers and X, Y, and 
Z coordinates (echoing the input known coordinate in the output array).  The output for single coordinate 
solutions is an N  5 array, where the 5th column is the estimated standard deviation computed from the least 
squares solution of 2 equations in 1 unknown.  The redundancy of this solution is weak with only 1 degree of 
freedom, but the computed standard deviations can be useful for comparisons and are useful in a global sense 
by examining the mean value of the standard deviation for a given data set.  Limited numerical tests indicate 
that this least squares estimate of the standard deviation of the single coordinate solutions reasonably 
represents the object coordinate random error due to image plane error (although it typically underestimates 
the error by about 25% on average), but grossly overestimates the error due to random errors in the input 
object coordinates.  The intersection function determines 3D coordinates given image plane coordinates and 
camera parameters from two or more views.  A structure array is used for input that allows for compact and 
flexible input of camera parameters and image coordinates from multiple cameras or views.  The function, 
which can handle any number of cameras or views, accommodates for missing or extra image coordinates.   
The output of the function is an 8 column numeric array that has the number of rows corresponding to the 
number of image points that are seen by at least two views.  The first column contains the image target point 
number, columns 2 to 4 contain in order X, Y, and Z, columns 5 to 7 contain in order X , Y , and Z , which are 
the estimates of the standard deviation of the spatial coordinates from the least squares reduction, and column 
8 contains the number of views used in the reduction for each point.  As for the single coordinate 
computations within singleView, the redundancy is weak (only 1 degree of freedom) for the estimates of the 
standard deviations.  However, these estimates are still useful, both in a global sense by examining their mean 
values, and for identifying possible outliers. 
 
The function resection uses nonlinear least squares to determine camera pointing angles and location.  The 
camera parameters , , , Xc, Yc, Zc are found, given image coordinates, object coordinates, and camera 
interior parameters (c, xp, yp).  Since the camera constant is not treated as an unknown, the resection function 
works on planar target fields, which can be very useful in aerospace applications.  Common target point 
numbers are found for the image and object coordinates for the solution, allowing for the image or object 
coordinates to be a subset of either.  Estimates of the standard deviation of the parameters are returned from 
the function, along with the global standard deviation of unit weight.  Also returned are the standard 
deviations of the differences in the x- and y-image coordinates comparing the input image with the 
coordinates computed from the input object and outputted resection parameters using collinearity.  Thus a set 
of coefficients are passed back to the calling script to help in assessing the quality of the results.  The use of a 
structure for output allows for echoing of input data that is not solved for, along with the solved for values 
and supporting statistics.  Since the fields of the output structure include those used in other functions (such as 
intersection) the output of the resection function can then be passed directly as input to other functions in the 
toolbox for further computations.  Any extra fields not required by a particular toolbox function are simply 
ignored by that function.  Another function (resec_ZW) provides a closed-form solution for resection that 
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does not need initial guesses (developed by Zeng and Wang in 1992).  The function needs only object and 
image data from 3 target points that are not collinear to determine exterior orientation parameters , , , Xc, 
Yc, and Zc.  The function, which returns 2 possible sets of exterior parameters, should be called twice to isolate 
the correct solution, so that in practice 4-target points are actually required.  In the second call to the function, 
one of the target points is replaced.  The correct solution is then found as the solution common to both sets 
within some tolerance.  This function should be useful to complement nonlinear least squares resection 
functions as well as camera calibration by optimization. 
 
Several functions are included for application and solving of 2D and 3D coordinate transformations.  Included 
are forward and inverse conformal (conformal2D, conformal2Dinv, conformal3D, conformal3Dinv) and 
2D affine transformations (affine2D) as well as linear and nonlinear least squares functions to find the 2D 
and 3D conformal (conformal2DLLS, conformal2NLLS, conformal3DNLLS) and 2D affine parameters 
(affine2DLLS), along with estimates of their standard deviation, given two sets of coordinates.  All functions 
utilize target point numbers in column 1 for the input data sets to enable the selection of common target point 
numbers for computation.  Thus each data set can have either missing or extra target point numbers without 
negatively impacting the solution.  Nonlinear least squares (NLLS) functions are included for the 2D and 3D 
conformal transformations which are able to selectively solve for or treat as constant any or all of the 
unknown parameters.  Tolerances can also be placed on any of the unknowns to restrict the range of variation 
within the NLLS computations.  The tolerancing should be used with care since its implementation within the 
function may not yield correct estimates of the standard deviations of the various parameters.  It is 
recommended that if tolerancing leads to a parameter being driven to 1 edge of the hard-clip limits (and that is 
the desired result) that the function be called again with the particular parameter entered as a constant (with 
the tolerance set to 0) at the value of the hard-clip limit.  Additional coordinate transfermation functions can 
solve for the 3 Euler angles which will yield a rotation matrix that is the transpose of the rotation matrix of the 
3 input angles (TransposeAngles), which is useful for alternative forms of the conformal transformation.  
Another function finds an alternate set of parameters (conformalAltSol) consisting of Euler angles, 
translation terms, and scale , , , Tx, Ty, Tz, and s that applies when the inverse form of the 3D conformal 
transformation utilizes the transpose of the rotation matrix and differencing of the translation terms before, 
instead of after, matrix multiplication. 
 
Several functions are included in the PT for computing the 3  3 rotation matrix that is necessary for 3D 
coordinate transformations and most photogrammetry computations.  The rotation matrix can be computed 
using the Euler convention of omega-phi-kappa (rotationMatrix), azimuth-elevation-roll 
(rotationMatrixAzElevRoll), and azimuth-tilt-swing (rotationMatrixAzTiltSwing).  The functions 
Australis2PM and PM2Australis compute either omega-phi-kappa or azimuth-elevation-roll angle sets (as 
used by the program Australis developed at the University of Melbourne) given either set of angles as input.  
The function rotatationMatrixDuality determines an alternate set (duality) of Euler angles ( , , ) that 
produces the exact same rotation matrix (to within computer round-off error) as the input angles.  This 
function is useful in reducing confusion when comparing resection or calibration results which might yield 
either set of equivalent angles.  It is important to note that the alternate set of angles is not due to the cyclic 
nature of the angles (which repeat every 2 ) since additions of ± 2  actually produce the same angular camera 
location at each rotation about the axes.  Rather the 3 alternate angles rotate the camera to different angles 
about X, Y, and Z while establishing the same final orientation of a camera as the input angles.  The output 
alternate angles from the function are restricted to ±  to reduce confusion due to the cyclic nature of the 
angles.  The output angles are either degrees or radians, depending on the specified units of the input angles.  
Further discussion of this duality property of the rotation matrix can be found in a PE&RS paper entitled "On 
the Duality of Relative Orientation" by Tian-Yuan Shih, vol. 56 No.9, Sept. 1990, pp. 1281-1283.     
 
A graphic user interface (GUI) function entitled imageObject makes use of the Gaussian object-image 
relationship between focal length, object distance, and image distance to allow any one of the 3 variables to 
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be calculated, given values for the other 2.  Note that ideally the camera constant will be equal to the image 
distance if the lens is focused at the value of the object distance.  The GUI has edit boxes for each of the 3 
variables for entry or for the display of its value after calculation.  The desired single variable of interest is 
determined by selecting its corresponding solve for variable button.  The units of the individual variables can 
be mixed between mm or inch by selection of their corresponding units radio button.  Thus the focal length 
can be in mm while the object distance is in inches before calculating the image distance in either mm or inch 
depending on which units radio button is selected for image distance.  Another pushbutton optionally 
produces a plot of image distance versus object distance.  Mixed units are also allowed for the plot, with the 
units indicated in the plot axes labels.  A matching non-GUI function is also included (imageObject2).  This 
function uses structures for input and output with fields corresponding to focal length, object distance, and 
image distance.  The variable to be solved for is entered in the proper field as [ ], while setting the other two 
fields to their input value.  The returned output structure contains the variable solved for in addition to the two 
input known values.  Note that unlike the GUI, the units for the matching non-GUI function must be 
consistent and not mixed. 
 
The function MatchIDs matches to within a user-set tolerance correct centroids from one array with correct 
target IDs of another array (with only approximate centroids).  The function is useful for applying the correct 
target IDs to automatically generated centroid data, given the correct IDs at approximately the same image 
locations (possibly found manually).  This is necessary since the automatically generated data may not have 
the correct target labels (IDs) needed for further automated image analyses.  The two input argument arrays 
do not need to be the same size and are not limited to 3 column arrays, but the first 3 columns should be 
correctly ordered (pntID, xpix, ypix).  Any target IDs found in one file, but not in the other do not appear in 
the output matched file.  Note that if the absolute difference between centroid doublets is less than the match 
tolerance then a match is not made.  If that occurs for all rows of the input array for a particular target ID, then 
that target ID does not appear in the output array.  It is useful to compare the size (number of rows) of input 
and output arrays to determine if any target IDs are missing from the output array (for instance, with 
size(array,1)).  The output array contains all the columns of the input centroid array, but with possibly 
corrected target IDs in column 1.  Thus any additional data from the file with the correct centroid locations 
(such as bounding box data) is echoed through to the output file. 
 
The function centroidMerge provides for the merging of 2 centroid files with the same number of columns.  
Multiple centroid files can be merged by invoking the merge function with one of the input files being the 
output of a previous run of the function.  The merge function is useful for cases in which the contrast varies 
significantly across the image so that it may be necessary to determine centroids in segments of the image.  
Thus one may have several sets of centroid files with possibly overlapping targets with a mixture of target 
IDs.  The function echos all data from the first input centroid array.  Only those targets of the second centroid 
array that do not overlap those in the first (within the tolerance of the merge function) are passed to the output 
array.  The final output file will then have unique target IDs, but the IDs associated with targets may be as 
desired.  
 
The function resectionLocalMin determines 3 alternate sets of exterior orientation (which are possible local 
minima instead of the desired global minimum) for resection on nearly planar objects.  For this function, the 
calibration plate primary lateral dimensions are assumed to be in the X-Y plane with Z  constant 
(representing uniform depth).  One of the concerns of nonlinear least squares solutions such as used in space 
resection is that a local rather than a global minimum may be found (see Appendix).  Whether or not a local 
minimum rather than the global minimum is found is heavily dependent on the initial estimates of the camera 
coefficients.  For cases with very good initial estimates of the exterior orientation of a camera, the global 
minimum is readily found.  However, for cases where it may be necessary to set all the initial estimates to 
zero (except possibly Zc) it is then found that sometimes a local minimum is found for which the residuals 
may be comparable or quite a bit larger than the global minimum.  For these local minima the exterior 
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orientation of the camera is incorrect.  This effect is especially relevant to wind tunnel and solar sail 
applications since quite often targets on the object of interest are found to lie almost in a plane.  With the 
alternate sets of exterior orientation found with this function, the local minimum can be transformed to the 
global minimum, or vice versa (which is useful for testing).  Note that the approximations for the locations of 
the local minima become worse as the optical axis of the camera moves away from being normal to the 
calibration plate.   

 
List of Functions by Category 

CALIBRATION 
    camcal_fun  
    camcal_fun_1                           
    cameraConstant   
    dlt 
    dlt0           
    distortSolve 
    lleast 
    lleast3               
    RadiomCali_cheby_fun              
    RadiomCali_poly_fun 
    residual_exterior 
    residual_interior1 
    residual_interior2 
 
  CENTROID PROCESSING 
    centroidMerge              
    EpipolarLine_x            
    EpipolarLine_y 
    EpipolarRelation_x            
    EpipolarRelation_y           
    matchIDs                   
    mm2pixel                   
    pixel2mm                   
 
  2D COORDINATE TRANSFORMATION 
    affine2D                   
    affine2DLLS                
    conformal2D                
    conformal2Dinv             
    conformal2DLLS             
    conformal2DNLLS            
 
  3D COORDINATE TRANSFORMATION 
    conformal3D                
    conformal3Dinv             
    conformalAltSol            
    conformal3DNLLS            
 
  IMAGE PROCESSING 
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    centroid                   
    centroid_cal_fun     
    clicking_target_fun        
    displayGrayScale           
    findBackground             
    grayScaleDisplay           
    imagePrelim 
    location_target1_fun                
    overlayCentroidsBox        
    pixelXYselect              
    roiPolySelect  
    roiSelect                                 
 
  IMAGING 
    collinearity               
    distortApply               
    distortCorrect             
    imageObject                
    imageObject2               
    XYZ2xy       
    xyplot                     
 
  PHOTOGRAMMETRY 
    intersection               
    resection 
    resec 
    resec3 
    resecA 
    resec_ZW 
    resectionLocalMin                  
    singleView                 
    xy2XYZ                      
    xy2XZ                     
 
  ROTATION MATRIX 
    Australis2PM               
    rotationMatrix             
    rotationMatrixAzElevRoll   
    rotationMatrixAzTiltSwing  
    rotationMatrixDuality      
    TransposeAngles            
    PM2Australis               
 
  UTILITY 
    helpPT                      
    loadCamStruct              
    saveCamStruct              
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affine2D 
 
 
 
Purpose  Affine transformation of 2D coordinates 
 
Syntax   xtrans = affine2D(xin, Thetaxy, Txy, Sxy) 
 
Arguments xin 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
Thetaxy 
2-element row or column vector of rotation angles of the x- and y-axis in degrees, + for 
clockwise rotations  
   
Txy 
translation terms, a row or column vector in Tx, Ty order (2  1 or 1  2) of the form: Txy = 
[Tx; Ty] or Txy = [Tx Ty]; The individual translation terms Tx, Ty are inserted into a column 
vector for the matrix calculation within the function. 
 
Sxy 
2-element row or column vector of the x- and y-axis scale factors, Sx and Sy   

 
Output xtrans 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN  

 
Remarks The affine transformation does not preserve the shape of a 2D object after transformation.  

Different scales for each axis as well as non-perpendicularity of the axes are allowed.     
 
Example script affine2DExample.m  
 
Equations The function affine2D represents the following matrix equation for column vector entry of x, 

y: 
 
 
 

 
 

   where the pseudo rotation matrix mP is given by 
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and the zero-padded 2  2 scale matrix is given by 
 

 
 
 
 
or carrying out the matrix multiplication of mp and S 
 
 
 
 
 
 
Note that the non-perpendicularity of the axes  is given by 
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affine2DLLS 
 
 
 
Purpose linear least squares to determine affine transformation coefficients and estimates of their 

standard deviation for 2D coordinates 
 
Syntax   [Thetaxy, Txy, Sxy, So] = affine2DLLS(xin, xtrans) 
 
Arguments xin 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
xtrans 
N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN  

 
Output   Thetaxy 

2  2 array in which the 1st column contains the rotation angles of the x- and y-axis in 
degrees, + for CW and the 2nd column contains the least squares estimate of their standard 
deviations in x, y order 
   
Txy 
2  2 array in which the 1st column contains the x, y translations Tx, Ty and the 2nd column 
contains the least squares estimate of their standard deviations, in x, y order 
 
Sxy 
2  2 array in which the 1st column contains the x- and y-axis scale factors and the 2nd 
column contains the least squares estimate of their standard deviations, in x, y order   
 

Remarks The affine transformation does not preserve the shape of a 2D object after transformation.  
Different scales for each axis as well as non-perpendicularity of the axes are allowed.     

 
Example script affine2DLLSExample.m  
 
Equations The function affine2DLLS represents the following matrix equation for column vector entry 

of x, y: 
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   where the pseudo rotation matrix mP is given by 
 

 
 
 
 
and the zero-padded 2  2 scale matrix is given by 
 

 
 
 
 
or carrying out the matrix multiplication of mp and S 
 
 
 
 
 
 
Note that the non-perpendicularity of the axes  is given by 
 
 
 
 
With the following substitution  
 
 
 
 
 
 
 
 
the affine transformation can be written as the following linear equation 
 
 
 
 
 
With this linear form of equations, linear least squares can be used to determine the a, b, Tx, 
and Ty coefficients resulting in 6 unknowns and 2 equations for each coordinate pair.  N-
coordinate pairs result in 2N equations in 6 unknowns.  The scale and angular terms can then 
be found from the a and b coefficients as 
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The least squares estimates of the standard deviation of the a and b coefficients can be 
converted to the scale and angular terms through error propagation of the above 4 equations to 
yield the next set of 4 equations (after some algebraic manipulations).  Note that the angular 
terms, which are in radians, are converted within the function for output in degrees.  Also note 
that the standard deviations for the translation terms, Tx, Ty are found directly, without 
conversion, from the least squares reduction. 
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Australis2PM 
 
 
 
Purpose Convert from Australis camera orientation angles to PhotoModeler camera orientation angles 

, ,  
 
Syntax   OmegaPhiKappa = Australis2PM(Azimuth, Elevation, Roll) 
 
Arguments Azimuth 
 angle about Z-axis, taken as + for CW rotation; in degrees 
 

Elevation 
 angle about new Y--axis formed after the azimuth rotation, taken as + for CCW; in degrees 
 

Roll 
 angle about the new X-axis formed after the azimuth and Elevation rotations, taken as + for 

CCW rotation; in degrees 
 
Output   OmegaPhiKappa 

output is a 1 × 3 array of angles in the order , ,  
 
Remarks Order of application of angles on input is Azimuth, Elevation, Roll.  On output order is , , 

. 
 
Example script Australis2PMExample.m 
 
Equations 
 
  
 
   
 
 
 
 
 
 
 
 
 
    
 

where  = azimuth,  = elevation, and  = roll. 
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   where , ,  equal the Euler angles omega, phi, kappa.  Note that  

the 4-quadrant inverse tangent function atan2(y, x) is used instead of the 2-quandrant 
atan(y/x) (which would have limited computed angles to  90  instead of  180 ) for the 
arctangent computations within the function. 
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camcal_fun 
 
 
 
Purpose Determination of camera orientation parameters based on the interactive use of least squares 

estimation for the exterior orientation parameters and optimization search scheme for some 
major interior parameters 

 
Syntax   [orien]=camcal_fun(camformat,approrien,xyimag,xyzobj,corr_no) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
approrien 
1-column array of the approximate camera orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  in inches 
 
corr_no 
The iteration number for lens distortion correction, for example, corr_no = 1 for small lens 
distortion 

 
Output orien 

1-column array of the improved camera orientation parameters by the optimization method 
)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  

 
Remarks This function alternatively uses non-linear least squares estimation for the exterior orientation 

parameters and the Matlab function ‘fminsearch’ for the major interior orientation parameters 
)K,S/S,y,x(c, 1vhpp .  The weaker parameters ),P,P,(K 212  are set at zero in 

minimization process since the Matlab function ‘fminsearch’ does not give a converged 
solution when they are included in global minimization along with other parameters. 

 
Example script camcalExample.m  
 
Equations The detailed description of the optimization method for camera calibration/orientation is 

given in the following reference. 
 
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind 
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971 
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camcal_fun_1 
 
 
 
Purpose Determination of camera orientation parameters using multiple-step optimization 
 
Syntax [orien]= 

camcal_fun_1(xyimag,xyzobj,camformat,ex_orien_0,in_orien1_0,in_orien2_0) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
ex_orien_0 
1-column array of the approximate exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
in_orien1_0 
1-column array of the first subset of the approximate interior orientation parameters, 

)K,S/S,y,x(c, 1vhpp  
 
in_orien2_0 
1-column array of the second subset of the approximate interior orientation parameters, 

)P,P,(K 212  
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  in inches 

 
Output orien 

1-column array of the improved camera orientation parameters by the optimization method 
)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  

 
Remarks This function uses the multiple-step optimization method that alternatively calls the Matlab 

function ‘fminsearch.m’ for optimization of the exterior orientation parameters 
)Z,Y,Xκ,φ,ω,( ccc  and some major interior orientation parameters )S/S,y,x(c, vhpp .  

After these parameters are given, the weaker parameters ),P,P,(K 212  are determined by 
calling the Matlab function ‘fminsearch.m’ once for additional optimization.  This function 
does not need non-linear least squares estimation in ‘camcal_fun.m’ that may fails in certain 
case.  However, its accuracy is not high.   

 
Example script camcal_1Example.m, camcal_1 Example OV10 
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Equations The detailed description of the optimization method for camera calibration/orientation is 
given in the following reference. 
 
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind 
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971 
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cameraConstant 
 
 
 
Purpose Finds camera constant (photogrammetric principal distance) given image data at 2 or more 

known Z-displacements of a calibration plate (which can be planar) given camera parameters, 
image data, and X, Y, Z object space data 

 
Syntax   c = cameraConstant(cam, XYZ) 
 
Arguments cam 
 structure array corresponding to N views of the (known) displaced calibration plate with at 

least the following fields: 
    

cam(N).c 
start value for principal distance c (or camera constant), usually mm 
    

   cam(N).xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
cam(N).yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
cam(N).omega 
start angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the 
axis toward the origin 
. 
cam(N).phi 
start angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the 
axis toward the origin 
 
cam(N).kappa 
start angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the 
axis toward the origin 
 
cam(N).Xc 
start X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam(N).Yc 
start Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam(N).Zc 
start Z-coordinate of camera perspective center, always same units as XYZ object coordinates; 
must accurately reflect the differential displacement in Z. 
 
cam(N).xymm 
M X 3 numeric array containing [pntNum  xmm  ymm] for M image coordinates seen by the 
camera for each view N of the displaced calibration plate 
 
XYZ 
M × 4 numeric array of the form below (with units same as perspective center location, Xc, Yc, 
Zc): 
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pt1  X1  Y1  Z1 
pt2  X2  Y2  Z2 
. 
. 
. 
ptM  XM  YM  ZM  
 

Output c 
 structure with fields as follows: 
    

c.c 
principal distance c (or camera constant), usually mm as found by the function 
    

   c.cstd 
standard deviation of c computed from least squares 

 
Reference An improved and less restrictive version of a technique presented in the following reference: 

Burner, A. W.; Radeztsky, R. H.; Liu, Tianshu: Videometric Applications in Wind Tunnels, 
SPIE International Symposium on Optical Science, Engineering, and Instrumentation, 
Videometrics V, 30-31 July 1997, SPIE vol. 3174 pp. 234-247, 
http://hdl.handle.net/2002/11930 

 
Remarks The function cameraConstant should be a useful complement to optimization for camera 

calibration.  A calibration plate is oriented approximately with its Z-axis pointing toward the 
camera.  The plate (or equivalently the camera) is then translated known distances in Z.  
Resections are made at each known displacement with an assumed value of the camera 
constant (also called photogrammetric principal point).  The correct camera constant is 
approximated by the product of the assumed camera constant and the slope of Zc from 
resection versus the known Z-displacements.  For more than two Z-displacements, least 
squares can be used to determine c and an estimate of its standard deviation.  The Z-axis of 
the calibration plate should be aligned approximately with the translation axis.  However, 
resection from within the function determines and partially accounts for any slight angle 
changes or displacement in X and Y while the plate is being translated.  The special case of a 
single image of a 3-step 54-target calibration plate is also allowed.  For this special case all 54 
targets must be seen.  For this special case a step height of 2 inches is hard-coded into the 
function.  The precision for this special case is much worse than for instance, 3 displacements 
of a cal plate.  This special case option is mainly offered for situations in which it is the only 
data available.  Also note there is only one degree of freedom for the 3-step plate single image 
case so that the estimate of the standard deviation from least squares is not as reliable as for 
instance, the case with 5 Z-displacements.  

 
Example script cameraConstantExample.m with input files ‘Sample Files\XYZ3.txt’ and ‘Sample Files\ 

XYZ4txt’ 
 
Equations  The camera constant is found from the following expression 
 

 
where c0 is the current value of the camera constant and slope is determined by least squares 
from the following linear relationship 

   
 
 
where Zc are the input values of the Z-locations of the camera’s perspective center at each Z-
displacement of the calibration plate.  These values are passed to the function within the input 
argument cam(N).Zc.  The actual values of Zc passed are not critical (other than serving as 

slopecc 0

bslopeZZ rc



 

 
 
 
 
 
 

24 

start values for resection).  However the difference between the values of Zc is critical as they 
partially determine the value of slope.  The term Zr represents the computed values of Zc 
returned from the resection function that is called internally within the function.  The term b is 
the y-intercept and is ignored within the function.  The function iterates to determine the best 
estimate of c since the results for the resection function, which is called from within the 
cameraConstant function, are dependent on the value of c that is passed to it as an input 
argument. 
 
An estimate of the standard deviation of c is found within the least squares reduction as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where V is a column vector of residuals, df is the degrees of freedom, S0 is the standard 
deviation of unit weight, cov is the covariance matrix, covdiag represents the diagonal elements 
of the covariance matrix, and slope  and c   are the estimates of the standard deviation of 
slope and c. 
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centroid 
 
 
 
Purpose computes gray scale centroid for a region of interest (roi) of a digital image  
 
Syntax   xy = centroid(img, x, y, delx, dely) 
   xy = centroid(img, x, y, delx, dely, Gback) 

 
In the first syntax above the gray scale centroid is computed for a region of interest (roi) of 
the digital image img, which would normally 1st be loaded from a file with imread, such as 
img = imread(fileName) where fileName is a string variable containing the path (if 
necessary) and file name where the image resides 
 
The second syntax adds the optional input argument Gback 
  

Arguments img 
 an array containing an image 
 
 x 

x-value of centered location in pixels to use for computation of centroid of gray scale 
 

y 
y-value of centered location in pixels to use for computation of centroid of gray scale 

 
delx 
half-width of area of pixels to be displayed; full-width = 2  delx; delx = 8 yields a full-
width of 16 

    
dely 
half-height of area of pixels to be displayed; full-height = 2  dely;  dely = 8 yields a full-
height of 16 

    
Gback 
optional input argument to be subtracted from every pixel in the roi before computing the gray 
scale centroid; usually found with function findBackground 
 

Output   xy 
1  2 vector containing x- and y-value of gray scale centroid. example: 

    
   xy = 
 

  131.4752  310.6409 
  
Example script centroidExample.m with input files ‘Sample Files\image1.tif’, ‘Sample 

Files\centroids1.txt’, ‘Sample Files\image2.tif’, and ‘Sample Files\centroids2.txt’.   
 
Remarks Use img = imread(fileName) where fileName is a string variable containing the path (if 

necessary) and file name where the image of interest resides.  imshow(img) can be used to 
put the image for the file in a figure before calling function pixelXYselect if it is necessary to 
interactively select the target locations for use in a loop to compute centroids.  Note that 
centroid only computes 1 centroid at a time and must be invoked from within a loop for gray 
scale centroids of multiple locations (see centroidExample.m for example of this).  Note that 
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the standard designation of horizontal pixel location as x and vertical pixel location as y in the 
usual (x, y) order can lead to confusion when dealing with matrices which are in (row, 
column) order since the x-value of the pixel location actually corresponds to columns of the 
matrix representing the digital image, whereas the y-value corresponds to rows.  Thus the 
matrix in terms of x, y has the order (y, x).  To reduce the confusion associated with this 
ordering, for the functions where it is natural to input arguments in x, y order, the code is 
written to convert internally to rows and columns for working with the matrices before 
converting back to (x, y) order for output if necessary. 

  
Equations   

i j
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i j
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where       and       are the location of the centroid in pixels, Gij is the grey scale at each (i, j) pixel 
location, i and j are the locations in pixels in the x and y directions respectively over some 
region of interest that is typically very much smaller than the image format.  The denominator 
is simply the sum of the grey scale in the region of interest.   

x y
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centroid_cal_fun 
 
 
 
Purpose  Centroid calculation of a selected image area 
 
Syntax   [xc,yc]=centroid_cal_fun(A) 
 
Arguments A 

local image area selected 
 

Output xc, yc 
two-column array (xc, yc) of target centroids in pixels 

 
Remarks It is assumed in this function that targets in image have higher intensity than background.  For 

dark targets on lighter background, image should be inverted before the use of this function.   
 
 
Called by locating_target1_fun.m  
 
Equations The target centroid )y,x( cc  is defined as  
 

)y,x(I/)y,x(Iyy

)y,x(I/)y,x(Ixx

iiiiic

iiiiic
, 

 
where )y,x(I ii  is the gray level on an image.  When a target contains only a few pixels and 
the target contrast is not high, the centroid calculation using the above definition may not be 
accurate.   
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centroidMerge 
 
 
 
Purpose merges 2 centroid arrays with the same number of columns into a single centroid array 
 
Syntax   centMerge = centroidMerge(centA, centB, tol) 
 
Arguments centA 

at least an N  3 array ([pnt xpix ypix …] per row).  May have been manually created via 
mouse or with GUI imagePrelim.  All rows of centA are echoed in output array centMerge.  
(centA and centB must have same number of columns) 
 
pt1  x1  y2 … 
pt2  x2  y2 … 
. 
. 
. 
ptN  xN  yN … 

   
centB 
at least N  3 array ([pnt xpix ypix …] per row).  Target centroid data from centB within 
location tolerance tol are not appended to the output array centMerge.  Target centroid data 
from centB that is outside tolerance tol are appended to centA, but with new target IDs that 
start from the maximum target ID of centA + 1.  (centA and centB must have same number 
of columns) 
    

   tol 
tolerance in pixels used for match criteria between centroid doublets in arrays centA and 
centB. 
 

Output   centMerge 
N  3 array ([pnt xpix ypix …] per row) with all targets (rows) of centA and targets (rows) of 
centB that are not approximately located at the same locations as centA. 

 
Remarks The function centroidMerge is useful for cases in which the contrast varies significantly 

across the image so that it may be necessary to determine centroids in segments of the image.  
Thus one may have several sets of centroid files with possibly overlapping targets.  The 
function centroidMerge echos all data from the 1st input centroid array centA.  Only those 
targets of the 2nd centroid array centB that do not overlap those in centA (within the tolerance 
tol) are passed to the output array.  For multiple centroid arrays one can invoke the function 
again using the output of a previous run of centroidMerge (with partially merged array 
output).    

 
Example script centroidMergeExample.m with input files ‘Sample Files\centa.txt’, ‘Sample 

Files\centb.txt’, ‘Sample Files\centc.txt’, and ‘Sample Files\cal1.bmp’ 
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clicking_target_fun 
 
 
 
Purpose  Determination of target centroids by clicking high-contrast targets 
 
Syntax   [xc,yc]=clicking_target_fun(imag,No_targets,bk_size_0) 
 
Arguments imag 

Image name after loading an image file (gray or rgb image) 
 
No_targets 
total number of targets to be selected 
 
bk_size_0 
block size for initial searching a target (such as 10 pixels) 

 
Output xc, yc 

two-column array (xc, yc) of target centroids in pixels 
 
Remarks It is assumed in this function that targets in image have higher intensity than background.  For 

dark targets on lighter background, image should be inverted before the use of this function.   
 
 
Example script clicking_targetExample.m  
 
Equations The target centroid )y,x( cc  is defined as  
 

)y,x(I/)y,x(Iyy

)y,x(I/)y,x(Ixx

iiiiic

iiiiic
, 

 
where )y,x(I ii  is the gray level on an image.  When a target contains only a few pixels and 
the target contrast is not high, the centroid calculation using the above definition may not be 
accurate.   
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collinearity 
 
 
 
Purpose Creates image coordinates given camera parameters and object coordinates 
 
Syntax   xymm = collinearity(cam, XYZ) 
 
Arguments cam 
 structure with fields as follows: 
    

cam.c 
principal distance c (or camera constant), usually mm 
    

   cam.xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
cam.yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
cam.m 
3  3 rotation matrix, usually from function rotationMatrix 
 
cam.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
XYZ 
filename string for a file (like 'fileName') containing N × 4 array or the N X 4 array itself.  
The XYZ array (or text in file) is of the form below (with units same as perspective center 
location, Xc, Yc, Zc): 
 
pt1  X1  Y2  Z3 
pt2  X2  Y2  Z2 
. 
. 
. 
ptN  XN  YN  ZN  
 

Output   xymm 
output is an N × 3 array with point numbers taken from XYZ array.  The output array xymm 
is of the form: 
 
pt1  x1  y2  
pt2  x2  y2 
. 
. 
ptN  xN  yN 



 

 
 
 
 
 
 

31 

 
Remarks The collinearity equations are the most fundamental and important equations in 

photogrammetry.  The collinearity function is very useful for modeling and to create image 
coordinates for test cases.  Note that it is sometimes common to use different units for the 
photogrammetric principal distance (c) and point (xp, yp) such as mm, than are used for the 
location of the camera perspective point (Xc, Yc, Zc) and object coordinates (X, Y, Z), which 
may be in units of inches for example.  The units of the image coordinates are always in the 
same units as c and xp, yp and are independent of the units used for the location of the 
perspective center and object coordinates.  This mixing of disparate units is permissible due to 
the ratio of the numerator and denominator of the collinearity equations (see Equations 
below) since the units of the perspective center location and object coordinates appear in both 
and cancel each other out.  The units of the output image coordinates are then determined 
entirely from c (along with xp, yp), which multiplies the ratio of the numerator and 
denominator.  

 
Example script collinearityExample.m with input files ‘Sample Files\XYZ1.txt’ and ‘Sample 

Files\cam1.txt’ 
 

Equations  
c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx  

 

   
c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy  

 
 



 

 
 
 
 
 
 

32 

conformal2D 
 
 
 
Purpose  Conformal transformation of 2D coordinates 
 
Syntax   xtrans = conformal2D(xin, theta, Txy, s) 
 
Arguments xin 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
theta 
rotation angle in degrees, positive if clockwise 

    
Txy 
translation terms, a row or column vector in Tx, Ty order (2  1 or 1  2) of the form: Txy = 
[Tx; Ty] or Txy = [Tx Ty]; The individual translation terms Tx and Ty are inserted into a 
column vector for the matrix calculation within the function. 
 
s 
scalar scale     

 
Output xtrans 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN  

 
Remarks The conformal transformation preserves the shape of a 2D object after transformation.  This 

form of the transformation represents the first matrix form in Equations below.  By passing 
the negative of the angle theta ( ) to the function an alternate form of the transform can be 
invoked (see 2nd form of m below).   

 
Example script conformal2DExample.m  
 
Equations The function conformal2D represents the following matrix equation for column vector entry 

of x, y: 
 
 

 
 

   where 
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passing negative theta, ,  to the function is equivalent to applying the transpose of m in the 
transformation (equal to the inverse since m is orthogonal), in which case an alternative form 
of the conformal transformation is then invoked with rotation matrix m as follows: 
 
 
 
 

 

cossin
sincos

m

cossin
sincos

m



 

 
 
 
 
 
 

34 

conformal2Dinv 
 
 
 
Purpose  Conformal transformation of 2D coordinates 
 
Syntax   xtrans = conformal2Dinv(xin, theta, Txy, s) 
 
Arguments xin 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
theta 
rotation angle in degrees, positive if clockwise 

    
Txy 
translation terms, a row or column vector in Tx, Ty order (2  1 or 1  2) of the form: Txy = 
[Tx; Ty] or Txy = [Tx Ty]; The individual translation terms Tx and Ty are inserted into a 
column vector for the matrix calculation within the function. 
 
s 
scalar scale     

 
Output xtrans 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN  

 
Remarks The conformal transformation preserves the shape of a 2D object after transformation.  This 

form of the transformation represents the first matrix form in Equations below.  By passing 
the negative of the angle theta ( ) to the function an alternate form of the transform can be 
invoked (see 2nd form of m below).   

 
Example script conformal2DinvExample.m  
 
Equations The function conformal2Dinv represents the following matrix equation for column vector 

entry of x, y: 
 
 

 
 

   where 

Tyy
Txx

ms
y
x T1

t

t



 

 
 
 
 
 
 

35 

 
 

 
 
 
passing negative theta, ,  to the function is equivalent to applying the transpose of m in the 
transformation above (note that the transpose of m is equal to the inverse since m is 
orthogonal), in which case an alternative form of the conformal transformation is then 
invoked with rotation matrix m as follows: 
 
  
 
 

 

cossin
sincos

m

cossin
sincos

m
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conformal2DLLS 
 
 
 
Purpose linear least squares to determine conformal transformation coefficients and estimates of their 

standard deviation for 2D coordinates 
 
Syntax   [theta, Txy, s, So] = conformal2DLLS(xin, xtrans) 
 
Arguments xin 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
xtrans 
N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN  

 
Output   theta 

1  2 array in which the 1st column contains the rotation angle in degrees, + for CW and the 
2nd column contains the least squares estimate of the standard deviation 
   
Txy 
2  2 array in which the 1st column contains the x, y translations Tx, Ty and the 2nd column 
contains the least squares estimate of their standard deviations, in x, y order 
 
s 
1  2 array in which the 1st column contains the scale factor and the 2nd column contains the 
least squares estimate of the standard deviation 
 

Remarks The conformal transformation preserves the shape of a 2D object after transformation.     
 
Example script conformal2DLLSExample.m  
 
Equations The function conformal2DLLS represents the following matrix equation for column vector 

entry of x, y: 
 
 

 
 

    
where the rotation matrix m is given by 
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entering the terms of the rotation matrix m, the equations become 
 
 
 
 
 
With the following substitution  
 
 
 
 
 
The conformal transformation can be written as the following linear equation 
 
 
 
 
 
With this linear form of equations, linear least squares can be used to determine the a, b, Tx, 
and Ty coefficients resulting in 4 unknowns and 2 equations for each coordinate pair.  N-
coordinate pairs results in 2N equations in 4 unknowns.  The scale and angular term can then 
be found from the a and b coefficients as 
 
 
 
 
 
 
The least squares estimates of the standard deviation of the a and b coefficients can be 
converted to the scale and angular terms through error propagation of the above 2 equations to 
yield (after some algebraic manipulations) the next set of 2 equations.  Note that the angular 
term, which is in radians, is converted within the function for output in degrees.  Also note 
that the standard deviations for the translation terms, Tx, Ty are found directly, without 
conversion, from the least squares reduction. 
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conformal2DNLLS 
 
 
 
Purpose non-linear least squares (NLLS) to determine conformal transformation coefficients and 

estimates of their standard deviation for 2D coordinates 
 
Syntax Parameter = conformal2DNLLS(xin, xtrans,Start) 
 
Arguments xin 

N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
xtrans 
N × 3 array of the form below: 
 
pt1  x1  y1 
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN  
 
Start 
input start-value structure with the following fields 
Start.theta - start value for theta (degrees) 
Start.thetaTol - tolerance for theta within NLLS; for all tolerances [] indicates no tolerance 
or free to vary, 0 indicates treat the parameter as a constant (do not solve for parameter), and a 
finite value sets a hard clip range of parameter ± tolerance within the non-linear least squares 
function 
Start.Tx; Start.TxTol translation in x-direction; tolerance 
Start.Ty; Start.TyTol translation in y-direction; tolerance 
Start.s; Start.sTol scale; tolerance 

 
Output   Parameter 

structure with the following fields: 
Parameter.theta - rotation angle in degrees, + for CW 
Parameter.Tx – x-translation of transformation Tx 
Parameter.Ty – y-translation of transformation Ty 
Parameter.s- scale s 
Parameter.thetastd - estimated standard deviation from NLLS 
Parameter.Txstd - estimated standard deviation from NLLS 
Parameter.Tystd - estimated standard deviation from NLLS 
Parameter.sstd - estimated standard deviation from NLLS 
 
So 
scalar which contains the least squares standard deviation of unit weight 
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Remarks The conformal transformation preserves the shape of a 2D object after transformation.  The 

non-linear version requires start values for the iterations necessary for the solution.  Note that 
unlike the linear least squares reduction form of the conformal transformation equations found 
in conformal2DLLS, the estimated standard deviations from conformal2DNLLS do not 
require error propagation from the linear a, b coefficients.  Also note that this function can 
selectively solve for any or all of the parameters, theta, Tx, Ty, s, or can use tolerances to 
limit the variation of those parameters within the non-linear least squares reduction.  Note that 
the hard-clip nature of the tolerances must be used with care since the outputted standard 
deviations can be misleading.  If the outputted parameter is driven to either hard-clip edge, to 
find out the actual statistics at that value of the parameter the function should be invoked 
again with the clipped value of the parameter passed as a constant (Start.parameterTol = 0). 

 
Example script conformal2DNLLSExample.m  
 
Equations The function conformal2DNLLS represents the following matrix equation for column vector 

entry of x, y: 
 
 

 
 

    
where the rotation matrix m is given by 

 
 

 
 
 
entering the terms of the rotation matrix m, the equations become 
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Conformal3D 
 
 
 
Purpose  Conformal 3D transformation of coordinates 
 
Syntax   X2 = conformal3D(X1, m, Txyz, s) 
 
Arguments X1 

N × 4 array of the form below: 
 
pt1  X1  Y2  Z3 
pt2  X2  Y2  Z2 
. 
. 
. 
ptN  XN  YN  ZN  
 
m 
3  3 rotation matrix, usually from function rotationMatrix 

    
Txyz 
translation terms, a row or column vector in X, Y, Z order (3  1 or 1  3) of the form: Txyz = 
[Tx; Ty; Tz] or Txyz = [Tx Ty Tz];  The individual translation terms Tx, Ty, and Tz are 
inserted into a column vector for the matrix calculation within the function. 
 
s 
scalar scale     

 
Output X2 

N × 4 array of the form below: 
 
pt1  X1  Y2  Z3 
pt2  X2  Y2  Z2 
. 
. 
ptN  XN  YN  ZN  

 
Remarks The conformal transformation preserves the shape of a 3D object after transformation.  This 

form of the transformation represents the first matrix form in Equations below.  By passing 
the transpose of m to the function an alternate form of the transform can be invoked (see 2nd 
matrix equation below).  The functions conformal3D and conformal3Dinv make up a 
transform pair.   

 
Example script conformal3DExample.m  
 
Equations 

The function conformal3D represents the following matrix equation for column vector entry 
of X, Y, Z: 
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passing the transpose of m (denoted by m’ in MATLAB) to the function is equivalent to:  
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conformal3Dinv 
 
 
 
Purpose  Inverse conformal 3D transformation of coordinates 
 
Syntax   Xout = conformal3Dinv(Xin, m, Txyz, s) 
 
Arguments XIN 

N × 4 array of the form below: 
 
pt1  X1  Y1  Z1 
pt2  X2  Y2  Z2 
. 
. 
. 
ptN  XN  YN  ZN  
 
m 
3  3 rotation matrix, usually from function rotationMatrix 

    
Txyz 
translation terms, a row or column vector in X, Y, Z order (3  1 or 1  3) of the form: Txyz = 
[Tx; Ty; Tz] or Txyz = [Tx Ty Tz];  The individual translation terms Tx, Ty, and Tz are 
inserted into a column vector for the matrix calculation within the function. 
 
s 
scalar scale     

 
Output Xout 

N × 4 array of the form below: 
 
pt1  X1  Y1  Z1 
pt2  X2  Y2  Z2 
. 
. 
ptN  XN  YN  ZN  

 
Remarks The inverse conformal transformation preserves the shape of a 3D object after transformation.  

The functions conformal3D and conformal3Dinv make up a transform pair.  This form of 
the transformation represents the first matrix form in Equations below.  By passing the 
transpose of m to the function an alternate form of the inverse transform can be invoked (see 
2nd matrix equation below). 

 
Example script conformal3DinvExample.m  
 
Equations The function conformal3Dinv represents the following matrix equation for column vector 

entry of X, Y, Z: 
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passing the transpose of m (denoted by m’ in MATLAB) to the function is equivalent to:  
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conformal3DNLLS 
 
 
 
Purpose non-linear least squares (NLLS) to determine conformal transformation coefficients and 

estimates of their standard deviation for 3D coordinates 
 
Syntax Parameter = conformal3DNLLS(XYZ1, XYZ2, Start) 
 
Arguments XYZ1 

N × 4 array of the form below: 
 
pt1  X1  Y1  Z1 
pt2  X2  Y2  Z1 
. 
. 
. 
ptN  XN  YN  Z1 
 
XYZ2 
N × 4 array of the form below: 
 
pt1  X1  Y1  Z1 
pt2  X2  Y2  Z1 
. 
. 
. 
ptN  XN  YN  Z1 
 
Start 
input start-value structure with the following fields 
 
Start.omega 
start angle  about X, + CCW, degrees 
 
Start.omegaTol 
tolerance for omega within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 
 
Start.phi 
start angle  about Y, + CCW, degrees 
 
Start.phiTol  
tolerance for  within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 
 
Start.kappa 
start angle  about Z, + CCW, degrees 
 
Start.kappaTol 



 

 
 
 
 
 
 

45 

tolerance for  within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 
 
Start.Tx 
start value for translation in X-direction, same units as XYZ1 and XYZ2 
 
Start.TxTol 
tolerance for Tx within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 
 
Start.Ty 
start value for translation in Y-direction, same units as XYZ1 and XYZ2 
 
Start.TyTol 
tolerance for Ty within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 
 
Start.Tz 
start value for translation in Z-direction, same units as XYZ1 and XYZ2 
 
Start.TzyTol 
tolerance for Tz within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 
 
Start.s 
start value for scale s 
 
Start.sTol 
tolerance for s within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0 
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets 
a hard clip range of parameter ± tolerance within the non-linear least squares function 

 
Output   Parameter 

structure with the following fields: 
 
Parameter.omega 
angle  about X, + CCW, degrees 
 
Parameter.phi 
angle  about Y, + CCW, degrees 
 
Parameter.kappa 
angle  about Z, + CCW, degrees 
 
Parameter.Tx 
value for translation in X-direction, same units as XYZ1 and XYZ2 
 
Parameter.Ty 
value for translation in Y-direction, same units as XYZ1 and XYZ2 
 
Parameter.Tz 
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value for translation in Z-direction, same units as XYZ1 and XYZ2 
 
Parameter.s 
scale s 
 
Parameter.omegastd 
estimated standard deviation from NLLS 
 
Parameter.phistd 
estimated standard deviation from NLLS 
 
Parameter.kappastd 
estimated standard deviation from NLLS 
 
Parameter.Txstd 
estimated standard deviation of Tx from NLLS 
 
Parameter.Tystd 
estimated standard deviation of Ty from NLLS 
 
Parameter.Tzstd 
estimated standard deviation of Tz from NLLS 
 
Parameter.sstd 
estimated standard deviation of s from NLLS 
 
Parameter.So 
least squares standard deviation of unit weight 
 

Reference Elements of Photogrammetry, Paul R. Wolf, 2nd edition, McGraw-Hill, p. 593-596, but 
modified for the non-transpose form of the 3D conformal transformation 
 

Remarks The conformal transformation preserves the shape of a 3D object after transformation.  The 
function can be used to selectively solve for any or all of the parameters, omega, phi, 
kappa, Tx, Ty, Tz, or s, or can use tolerances to limit the variation of those parameters 
within the non-linear least squares reduction.  Note that the hard-clip nature of the tolerances 
must be used with care since the outputted standard deviations can be misleading.  If the 
outputted parameter is driven to either hard-clip edge, to find out the actual statistics at that 
value of the parameter the function should be invoked again with the clipped value of the 
parameter passed as a constant (Start.parameterTol = 0). 

 
Example script conformal3DNLLSExample.m  
 
Equations The function conformal3DNLLS represents the following matrix equation for column vector 

entry of X, Y, Z: 
 
 
 
 

 
 

    
The function TransposeAngles can be used to establish a new set of T, T, T if the form of 
the conformal transformation is desired which utilizes the transpose of the rotation matrix. 
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The function conformal3dNLLS uses the linearization method (sometimes called the Gauss, 
Gauss-Newton, or Taylor series method) to solve the non-linear least squares problem.  For 
this method, the 3D conformal equations above are linearized using Taylor’s theorem.  This 
linearization yields 3 equations (1 each for X, Y, and Z in the 2 coordinate systems) for each 
3D point containing initial approximations and products of the partial derivatives and the 
corrections to be solved for by linear least squares and applied iteratively to the initial 
approximations.  Using the notation of Wolf’s 2nd edition of Elements of Photogrammetry, but 
without using the transpose of the rotation matrix m to define the 3D conformal 
transformation, the following matrix equation applies for a single point.  The final estimates 
of the parameters are found from the over-determined set of equations representing all the 3D 
locations with common target point numbers in both XYZ data sets (3 equations for each 3D 
location).  Note that the correction terms ds, d , d , d , dTx, dTy, dTz are solved for, not the 
parameters s, , , , Tx, Ty, Tz themselves.  During each iteration of the non-linear least 
squares the correction terms found by linear least squares are added to the initial start values 
of each parameter.  After several iterations the corrections approach zero and the final iterated 
solutions for the parameters are determined.  To avoid the possibility of an endless loop, the 
function uses a fixed number of 20 iterations for exit from the function instead of testing for 
corrections that approach negligibly small values. 
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the estimated standard deviations of the correction terms (and hence the parameters 
themselves) are given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where V is a column vector of residuals, S0 is the standard deviation of unit weight, df is the 
degrees of freedom, cov is the covariance matrix, covdiag represents the diagonal elements of 
the covariance matrix, A is the matrix of a coefficients,  and s , , , , Tx , Ty , Tz  are the 
estimates of the standard deviation of s, , , , Tx, Ty, Tz from least squares. 
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ConformalAltSol 
 
 
 
Purpose returns parameters A, A, A, TxA, TyA, TzA, sA for use in the alternate form of the 3D conformal 

transformation  
 
Syntax   Alternate = ConformalAltSol(Parameter)
 
Arguments Parameter 
 structure with at least the following fields: 
 
 Parameter.omega 
 angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 

toward the origin 
 

Parameter.phi 
 angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 

toward the origin 
 

Parameter.kappa 
 angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 

toward the origin 
 

Parameter.Tx 
X-translation of transformation Tx 
 
Parameter.Ty 
Y-translation of transformation Ty 
 
Parameter.Tz 
Z-translation of transformation Tz 
 
Parameter.s 
scale s 

 
Output   Alternate 

structure with the following fields: 
 
Alternate.omega 

 angle in degrees  about X-axis, A taken as + for CCW rotation when viewing down the axis 
toward the origin 

 
Alternate.phi 

 angle in degrees about Y-axis, A taken as + for CCW rotation when viewing down the axis 
toward the origin 

 
Alternate.kappa 

 angle in degrees about Z-axis, A taken as + for CCW rotation when viewing down the axis 
toward the origin 

 
Alternate.Tx 
X-translation of transformation TxA 
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Alternate.Ty 
Y-translation of transformation TyA 
 
Alternate.Tz 
Z-translation of transformation TzA 
 
Alternate.s 
scale sA 

 
 
Remarks This function can be useful for cases where the solution is desired in terms of the transpose of 

the rotation matrix (see second matrix equation below), but the solution in hand is in terms of 
the rotation matrix without transpose as in the first matrix equation below (for example when 
using the function conformal3DNLLS).  The function TransposeAngles is used by the 
function to find the angles A, A, A.  

 
Example script ConformalAltSolExample.m 
 
Equations The input structure Parameter contains the parameters , , , Tx, Ty, Tz, and s that are used 

in the following form of the 3D conformal coordinate transformation, with m being the 
rotation matrix formed from the angles , ,  

 
 
 
 
 
 
 
 
the function conformalAltSol can be used to find an alternate set of parameters A, A, A, 
TxA, TyA, TzA, sA  that yield the same output coordinate transformation of X, Y, Z to Xt, Yt, Zt, but 
with the following inverse form, with mA

T being the transpose of the rotation matrix formed 
from the angles A, A, A 
 
 
 
 
 
 
 
 
 
The relationships between the 2 sets of parameters are 
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the output angles A, A, A are found with the function TransposeAngles that uses the 
following equations, where the m-terms are from the rotation matrix formed from the input 
angles , ,  
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displayGrayScale 
 
 
 
Purpose displays the gray scale of the selected target location of an image on the MATLAB Command 

Window  
 
Syntax   displayGrayScale(img, x, y) 

displayGrayScale(img, x, y, delx, dely) 
   displayGrayScale(img, x, y, delx, dely, Gback) 

 
In the 1st simplest calling syntax above the gray scale is displayed for target location 
selections on the image img, which would normally 1st be loaded from a file with imread, 
such as img = imread(fileName) where fileName is a string variable containing the path (if 
necessary) and file name where the image of interest resides.  For this 1st syntax delx = dely 
= 8 ; Gback = 0 by default.  This syntax requires 3 input arguments. 
 
The 2nd syntax has the arguments delx and dely as inputs for a total of 5 input arguments.  
 
The 3rd syntax adds the optional input argument Gback 
 

Arguments img 
 an array containing an image 
 
 x 

x-value of centered location in pixels to use for display of gray scale 
 

y 
y-value of centered location in pixels to use for display of gray scale 

 
delx 
half-width of area of pixels to be displayed; full-width = 2  delx; delx = 8 yields a full-
width of 16 

    
dely 
half-height of area of pixels to be displayed; full-height = 2  dely; dely = 8 yields a full-
height of 16 

    
Gback 
gray scale to be subtracted from every pixel in the display area before displaying on the 
screen 
 

Output   display of gray scale to MATLAB Command Window 
 
Example script displayGrayScaleExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample 

Files\image2.tif’.   
 
Remarks Use img = imread(fileName) where fileName is a string variable containing the path (if 

necessary) and file name where the image of interest resides.  imshow(img) can be used to 
put the image for the file in a figure before calling function pixelXYselect if it is necessary to 
interactively select the target locations for display before invoking displayGrayScale.  Note 
that displayGrayScale only displays one area at a time and must be invoked from within a 
loop for gray scale displays of multiple locations (see displayGrayScaleExample.m for 
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example of this).  Note that the standard designation of horizontal pixel location as x and 
vertical pixel location as y in the usual (x, y) order can lead to confusion when dealing with 
matrices which are in (row, column) order since the x-value of the pixel location actually 
corresponds to columns of the matrix representing the digital image, whereas the y-value 
corresponds to rows.  Thus the matrix in terms of x, y has the order (y, x).  To reduce the 
confusion associated with this ordering, for the functions where it is natural to input 
arguments in x, y order, the code is written to convert internally to rows and columns for 
working with the matrices before converting back to (x, y) order for output if necessary. 
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distortApply 
 
 
 
Purpose Applies distortion to image coordinates (in mm) 
 
Syntax   xymmDist = distortApply(xymm, camDistort) 
 
Arguments          xymm 

an N × 2 (without target numbers) or N × 3 array with target numbers.  If N × 2, target 
numbers are taken as sequential from 1:Nrows.  If xymm is a character variable representing 
the name and path to a file, than the array xymm is loaded from that text file assuming a 2 or 
3 column array.  The N × 3 version of the array xymm is of the form: 
 
pt1  x1  y2  
pt2  x2  y2 
. 
. 
ptN  xN  yN 
 
camDistort 

 structure with fields as follows: 
    

camDistort.x0 
x-value of point of symmetry for distortion (xs in Equations section below), usually mm 
    

   camDistort.y0 
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm 
 
camDistort.K1 
3rd order radial distortion coefficient (mm-2) 
 
camDistort.K2 
5th order radial distortion coefficient (mm-4) 
 
camDistort.K3 
7th order radial distortion coefficient (mm-6) 
 
camDistort.P1 
decentering distortion term, mm-1 
 
camDistort.P2 
decentering distortion term, mm-1 
 

Output   xymmDistort 
output is an N × 3 array with point numbers taken from xymm array or sequential from 
1:Nrows.  The output array xymmDistort is of the form: 
 
pt1  x1  y2  
pt2  x2  y2 
. 
. 
ptN  xN  yN 
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Remarks Distortion coefficients K2, K3, P1, P2 generally have a much smaller effect on the image than 

K1 and are often determined with large relative errors.  Thus in some cases it may be prudent 
to set these coefficients to 0.  If the point of symmetry for distortion can not be found 
separately from the photogrammetric principal point xp, yp  than, as a first estimate, it is 
recommended that the point of symmetry be set to xp, yp.  The sign convention for the 
distortion coefficients is considered to be a standard (although by no means universal) where 
a positive K1 indicated pinchusion (+ distortion) and a negative K1 indicates barrel (- 
distortion).  This function should be useful in modeling or for creating numerical test cases. 

 
Example script distortApplyExample.m with input file ‘Sample Files\mm2.txt’ 
 
Equations In the equations below, xs, ys locates the point of symmetry for distortion (if unknown use the 

photogrammetric principal point xp, yp), x and xd represent the undistorted and distorted image 
coordinates respectively, r is the magnitude of the radius vector from the point of symmetry to 
the undistorted image point (x, y), r is the radial distortion error, and x and y are the 
orthogonal components of the radial distortion. 
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distortCorrect 
 
 
 
Purpose Corrects distorted image coordinates (in mm) 
 
Syntax   xymmCorr = distortCorrect(xymmDist, camDistort) 
 
Arguments          xymmDist 

an N × 2 (without target numbers) or N × 3 array with target numbers.  If N × 2, target 
numbers are taken as sequential from 1:Nrows.  If xymmDist is a character variable 
representing the name and path to a file (or the file name and path itself), than the array 
xymmDist is loaded from that text file accommodating either a 2 or 3 column array.  The N × 
3 version of the array xymmDist is of the form (the N × 2 version drops the 1st column of 
target numbers): 
 
pt1  x1  y2  
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
camDistort 

 structure with fields as follows: 
    

camDistort.x0 
x-value of point of symmetry for distortion (xs in Equations section below), usually mm 
    

   camDistort.y0 
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm 
 
camDistort.K1 
3rd order radial distortion coefficient (mm-2) 
 
camDistort.K2 
5th order radial distortion coefficient (mm-4) 
 
camDistort.K3 
7th order radial distortion coefficient (mm-6) 
 
camDistort.P1 
decentering distortion term (mm-1) 
 
camDistort.P2 
decentering distortion term (mm-1) 
 

Output   xymmCorr 
output is an N × 3 array with point numbers taken from xymmDist array or sequential from 
1:Nrows of xymmDist.  The output array xymmCorr is of the form: 
 
pt1  x1  y2  
pt2  x2  y2 
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. 

. 

. 
ptN  xN  yN 

 
Remarks Distortion coefficients K2, K3, P1, P2 generally have a much smaller effect on the image 

than K1 and are sometimes determined with large relative errors.  Thus in some cases it may 
be prudent to set these coefficients to 0.  If the point of symmetry for distortion can not be 
found separately from the photogrammetric principal point xp, yp, then, as a first estimate, it is 
recommended that the point of symmetry be set to xp, yp.  The sign convention for the 
distortion coefficients is considered to be a standard one (although by no means universal) 
where a positive K1 indicates pinchusion (+ distortion) and a negative K1 indicates barrel (- 
distortion).  Note that the corrected image coordinates are found by subtracting the x- and y-
components of the distortion from the distorted coordinates (which serve as input to the 
function).  However to correctly compute the components of distortion requires that the 
undistorted image locations be known.  Thus it is necessary to iterate, starting with the 
assumption that the corrected image coordinates are the same as the input distorted 
coordinates.  At each iteration the estimate of the corrected image coordinates is improved.  
For the usual range of distortion values, several iterations are typically sufficient.  For very 
large values of distortion and large image areas, many iterations may be needed for very 
accurate results.  The function uses 30 iterations (which still executes nearly instantaneously) 
to mainly help with large distortion, large image area numerical test cases.  This function is 
the primary function to remove distortion from image coordinates when the distortion 
coefficients are known. 

 
Example script distortCorrectExample.m with input file ‘Sample Files\mmDist1.txt’ 
 
Equations In the equations below, xs, ys locates the point of symmetry for distortion (if unknown use the 

photogrammetric principal point xp, yp), x and xd represent the undistorted and distorted image 
coordinates respectively, r is the magnitude of the radius vector from the point of symmetry to 
the undistorted image point (x, y), r is the radial distortion error, and x and y are the 
orthogonal components of the radial distortion.   
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distortSolve 
 
 
 
Purpose solves for any or all of the distortion coefficients K1, K2, K3, P1, P2 
 
Syntax camDistort = distortSolve(cam, camDistortStart, XYZ, Niterations, solve4, 

useLastResults) 
 
Arguments cam 
 structure with at least the following fields: 
    

cam.c 
principal distance c (or camera constant), usually mm 
    

   cam.xp 
x-value of the photogrammetric principal point, xp, usually mm, but always same units as c. 

 
cam.yp 
y-value of the photogrammetric principal point, yp, usually mm, but always same units as c. 
 
cam.omega 
angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
. 
cam.phi 
angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
cam.kappa 
angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
cam.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.xymm 
distorted image coordinates as an N X 3 numeric array containing [pntNum  xmm  ymm] for 
each target point seen by the camera  

 
camDistortStart 

 structure used for start values of the distortion coefficients and final value of the point of 
symmetry (represented in the equations section with xs, ys) with at least the following fields 
(all input values of camDistortStart except fields x0 and y0 are ignored if useLastResults 
= 1 and file temp4distortSolve.mat exists in current directory): 

    
camDistortStart.x0 



 

 
 
 
 
 
 

59 

x-value of point of symmetry for distortion (xs in Equations section below), usually mm, final 
value that is echoed in output structure camDistort 
    

   camDistortStart.y0 
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm, 
final value that is echoed in output structure camDistort 
 
camDistortStart.K1 
3rd order radial distortion coefficient (mm-2) 
 
camDistortStart.K2 
5th order radial distortion coefficient (mm-4) 
 
camDistortStart.K3 
7th order radial distortion coefficient (mm-6) 
 
camDistortStart.P1 
decentering distortion term, mm-1 
 
camDistortStart.P2 
decentering distortion term, mm-1 

 

XYZ 
N × 4 numeric array of the form below (with units same as perspective center location, Xc, Yc, 
Zc): 
 
pt1  X1  Y1  Z1 
pt2  X2  Y2  Z2 
. 
. 
ptN  XN  YN  ZN  
 
Niterations 
number of iterations for solution 
 
solve4 
input structure with at least the following fields, where field = 1 for solve or = 0 for no solve 
(coefficient fixed to 0)  
 
solve4.K1 
 
solve4.K2 
 
solve4.K3 
 
solve4.P1 
 
solve4.P2 
 
useLastResults 
= 1 to use previous output results from file temp4distortSolve.mat in current folder or = 0 to 
ignore file 

 
Output   camDistort 
 structure with at least the following fields: 
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camDistort.x0 
x-value of point of symmetry for distortion (xs in Equations section below), usually mm 
(echoed from camDistortStart.x0) 
    

   camDistort.y0 
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm 
(echoed from camDistortStart.x0) 
 
camDistort.K1 
3rd order radial distortion coefficient (mm-2) 
 
camDistort.K2 
5th order radial distortion coefficient (mm-4) 
 
camDistort.K3 
7th order radial distortion coefficient (mm-6) 
 
camDistort.P1 
decentering distortion term, mm-1 
 
camDistort.P2 
decentering distortion term, mm-1 

 
camDistort.K1std 
standard deviation of 3rd order radial distortion coefficient (mm-2) from least squares 
 
camDistort.K2std 
standard deviation of 5th order radial distortion coefficient (mm-4) 
from least squares 
 
camDistort.K3std 
standard deviation of 7th order radial distortion coefficient (mm-6) 
from least squares 
 
camDistort.P1std 
standard deviation of decentering distortion term, mm-1 
from least squares 
 
camDistort.P2std 
standard deviation of decentering distortion term, mm-1 

from least squares 
 
camDistort.So 
standard deviation of unit weight from least squares 
 
output structure camDistort is written to file temp4distortSolve.mat; use 
camDistortSolution = load('temp4distortSolve') to access from MATLAB 

 
Remarks Distortion coefficients K2, K3, P1, P2 generally have a much smaller effect on the image than 

K1 and are often determined with large relative errors.  Thus in some cases it may be prudent 
to set these coefficients to 0 and solve only for K1 (all solve4 fields = 0 except for solve4.K1 
which should be set to 1).  If the point of symmetry for distortion can not be found separately 
from the photogrammetric principal point xp, yp, then as a first estimate it is recommended that 
the point of symmetry be set to xp, yp.  More reliable solutions are generally obtained with the 
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camera image plane approximately parallel to the object field, which can be planar.  The sign 
convention for the distortion coefficients is considered to be a standard (although by no means 
universal) where a positive K1 indicated pinchusion (+ distortion) and a negative K1 indicates 
barrel (- distortion).  The designated distortion coefficients in the structure solve4 are found 
iteratively by invoking the resection function to determine improved estimates of the exterior 
orientation parameters , , , Xc, Yc, and Zc which are then used in the function collinearity 
to generate ideal undistorted image coordinates based on the updated exterior orientation and 
the input object coordinates XYZ.  The original inputted distorted image coordinates are then 
compared to the newly updated estimates of the undistorted image coordinates.  The 
designated distortion coefficients are found by linear least squares.  The improved estimates 
of the distortion coefficients are then used to correct the original distorted image coordinates 
to create a new set of undistorted image coordinates.  The process is repeated for Niterations 
iterations.  It is sometimes necessary to utilize several hundred iterations to converge.  Only 
target point numbers common to both XYZ and cam.xymm are used in the solution.   

 
Example script distortSolveExample.m with input file ‘Sample Files\ XYZ3.txt’ 
 
Equations In the equations below, xs, ys locates the point of symmetry for distortion (if unknown use the 

photogrammetric principal point xp, yp), x and xd represent the undistorted and distorted image 
coordinates respectively, r is the magnitude of the radius vector from the point of symmetry to 
the undistorted image point (x, y), r is the radial distortion error, and x and y are the 
orthogonal components of the radial distortion. 
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The matrices L and A below are built up for each common set of image and object 
coordinates.  The variables xd and yd are taken from the input argument field cam.xymm.  
The variables x and y are the iterated values of the estimates of the undistorted image 
coordinates.  The ellipsis symbols … in the matrices below indicate that the matrices L and A 
are populated with 2 rows for each target point and may each have many rows.  For instance, 
54 target points would lead to L and A matrices with 108 rows each.   The number of columns 
of matrix A is dictated by the number of unknown distortion coefficients carried in the 
solution.  The 5 columns of matrix A below represent in order K1, K2, K3, P1, P2.  A column 
would be missing from matrix A for each coefficient not solved for.   
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The solution vector Solution is then found by the MATLAB least squares operator ‘\’, where 
like the matrix A, the number of rows of the solution vector are dictated by the number of 
unknown distortion coefficients solved for as indicated in the structure solve4. 
 

 
    
 
 
 
 
 

 
The estimates of the standard deviation of the coefficients is then found from the following 
relationships 
 

   
 
 
 
 
 
 
 
 
 
 

 
 
 
 
where V is a column vector of residuals, S0 is the standard deviation of unit weight, df is the 
degrees of freedom which equals 2 times the number of target points minus the number of 
coefficients solved for, cov is the covariance matrix, covdiag represents the diagonal elements 
of the covariance matrix, and K1 , K2 , K3 , P1 , and P2  are the estimates of the standard 
deviations of K1, K2, K3, P1, and P2 from least squares. 
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dlt0 
 
 
 
Purpose Approximate estimation of the exterior orientation parameters and principal distance by the 

raw DLT 
 
Syntax   [L,orien]=dlt0(camformat,xyimag,xyzobj) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  in inches 

 
Output L 

The DLT parameters 
 
orien 
1-column array of the estimated camera orientation parameters )Z,Y,Xκ,φ,ω,( ccc  and 

0),S/S0,0,(c, vh  
 
Remarks Unlike ‘dlt.m’, the function ‘dlt0.m’ is the raw DLT where the Euler rotational angles are not 

converted to the ranges , 2/2/ , and .  The principal 
point location )y,(x pp  and the first radial lens distortion parameter 1K  are set at zero since 
these parameters given by the DLT are not accurate and very sensitive to lens distortion.  The 
results given by ‘dlt0.m’ are as good as those given by ‘dlt.m’ since the selection of the Euler 
angles are not refined.   

 
There is a pitfall: 
When the image plane is almost parallel to the )Z,Y(  plane and the object-space coordinate 
system and the image coordinate system are transformed through either roughly 90-deg 
rotation or no rotation, it is found that  is about 90 deg such that tan  is almost infinite.  
Therefore, the DLT often has a numerical error in inverting tan  and cannot automatically 
provide a correct initial approximation for refinement by the optimization method. 

 
Example script camcal_funExample.m 
 
Equations  

The Direct Linear Transformation (DLT) can be very useful to determine approximate values 
of the camera parameters.  Rearranging the terms in the collinearity equations leads to the 
DLT equations  
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0)1ZLYLXL)(ydy(LZLYLXL
0)1ZLYLXL)(xdx(LZLYLXL

111098765

111094321 .  (1) 

The DLT parameters 111 L,L  are related to the camera exterior and interior orientation 
parameters )Z,Y,X,,,( ccc  and )y,x(c, pp  (McGlone 1989).  Unlike the standard 
collinearity equations, Eq. (1) is linear for the DLT parameters when the lens distortion terms 
dx and dy are neglected.  In fact, the DLT is a linear treatment of what is essentially a non-
linear problem at the cost of introducing two additional parameters.  The matrix form of the 
linear DLT equations for M targets is CLB , where T

111 )L,L(L , 
T

MM11 )y,x,y,x(C , and B is the 2M 11 configuration matrix that can be directly 

obtained from Eq. (1).  A least-squares solution for L is formally given by CBB)(B=L T1T  
without using an initial guess.  The camera parameters can be extracted from the DLT 
parameters from the following expressions  
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Because of its simplicity, the DLT is widely used in both non-topographic photogrammetry 
and computer vision.  When dx and dy cannot be ignored, however, iterative solution methods 
are still needed and the DLT loses its simplicity.  In general, the DLT can be used to obtain 
fairly good values of the exterior orientation parameter and the principal distance, although it 
gives a poor estimate for the principal-point location )y,(x pp .  Therefore, the DLT is 
valuable since it can provide initial approximations for more accurate methods like the 
optimization method discussed below for comprehensive camera calibration.   
 
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind 
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971 
 
Mikhail, E. M., Bethel, J. S., and McGlone, J. C., “Introduction to modern photogrammetry,” 
John Wiley & Sons, Inc., New York, 2001 
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dlt 
 
 
 
Purpose Approximate estimation of the exterior orientation parameters and principal distance  
 
Syntax   [orien]=dlt(camformat,xyimag,xyzobj) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  in inches 
 

 
Output orien 

1-column array of the estimated camera orientation parameters )Z,Y,Xκ,φ,ω,( ccc  and 
0),S/S0,0,(c, vh  

 
Remarks In this function, the principal point location )y,(x pp  and the first radial lens distortion 

parameter 1K  are set at zero since these parameters given by the DLT are not accurate and 
very sensitive to lens distortion.  The results given by the DLT are good enough as the initial 
approximation for a more accurate method like the optimization method.  

 
There is a pitfall: 
When the image plane is almost parallel to the )Z,Y(  plane and the object-space coordinate 
system and the image coordinate system are transformed through either roughly 90-deg 
rotation or no rotation, it is found that  is about 90 deg such that tan  is almost infinite.  
Therefore, the DLT often has a numerical error in inverting tan  and cannot automatically 
provide a correct initial approximation for refinement by the optimization method. 

 
Example script camcalExample.m 
 
Equations  

The Direct Linear Transformation (DLT) can be very useful to determine approximate values 
of the camera parameters.  Rearranging the terms in the collinearity equations leads to the 
DLT equations  

0)1ZLYLXL)(ydy(LZLYLXL
0)1ZLYLXL)(xdx(LZLYLXL

111098765

111094321 .  (1) 
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The DLT parameters 111 L,L  are related to the camera exterior and interior orientation 
parameters )Z,Y,X,,,( ccc  and )y,x(c, pp  (McGlone 1989).  Unlike the standard 
collinearity equations, Eq. (1) is linear for the DLT parameters when the lens distortion terms 
dx and dy are neglected.  In fact, the DLT is a linear treatment of what is essentially a non-
linear problem at the cost of introducing two additional parameters.  The matrix form of the 
linear DLT equations for M targets is CLB , where T

111 )L,L(L , 
T

MM11 )y,x,y,x(C , and B is the 2M 11 configuration matrix that can be directly 

obtained from Eq. (1).  A least-squares solution for L is formally given by CBB)(B=L T1T  
without using an initial guess.  The camera parameters can be extracted from the DLT 
parameters from the following expressions  
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Because of its simplicity, the DLT is widely used in both non-topographic photogrammetry 
and computer vision.  When dx and dy cannot be ignored, however, iterative solution methods 
are still needed and the DLT loses its simplicity.  In general, the DLT can be used to obtain 
fairly good values of the exterior orientation parameter and the principal distance, although it 
gives a poor estimate for the principal-point location )y,(x pp .  Therefore, the DLT is 
valuable since it can provide initial approximations for more accurate methods like the 
optimization method discussed below for comprehensive camera calibration.   
 
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind 
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971 
 
Mikhail, E. M., Bethel, J. S., and McGlone, J. C., “Introduction to modern photogrammetry,” 
John Wiley & Sons, Inc., New York, 2001 
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EpipolarLine_x 
 
 
 
Purpose Determination of the epipolar line in image 1 for a given point in image 2 based on 

minimization along the x-axis 
 
Syntax   [x_epipo1,y_epipo1,normG_x]= 
           EpipolarLine_x(ximag2,yimag2,orientation1,orientation2,camformat1,camformat2,x_bound0,x_bound1) 
 
Arguments camformat1 

1-column array containing the camera format data for camera 1: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
Camformat2 
1-column array containing the camera format data for camera 2: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
Orientation1 
1-column array of the camera orientation parameters for camera 1 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
orientation2 
1-column array of the camera orientation parameters for camera 2 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
(ximag2,yimag2) 
image coordinates (x,y) in pixels in image 2 

 
Output (x_epipo1,y_epipo1) 

the coordinates of the epipolar line in image 1 
 
normG 
norm of G, where norm(G) = 0 on the epipolar line 

 
Remarks This function uses’EpipolarRelation_x.m’ for minimization along the x-axis in image 1.  This 

function is feasible for an epipolar line that is not vertical in the (x,y) image plane.   
 
Example script EpipolarExample.m  
 
Equations The detailed description of determining an epipolar line is given in the following reference. 

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable 
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004) 
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EpipolarLine_y 
 
 
 
Purpose Determination of the epipolar line in image 1 for a given point in image 2 based on 

minimization along the y-axis 
 
Syntax   [x_epipo1,y_epipo1,normG_y]= 
           EpipolarLine_y(ximag2,yimag2,orientation1,orientation2,camformat1,camformat2,y_bound0,y_bound1) 
 
Arguments camformat1 

1-column array containing the camera format data for camera 1: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
Camformat2 
1-column array containing the camera format data for camera 2: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
Orientation1 
1-column array of the camera orientation parameters for camera 1 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
orientation2 
1-column array of the camera orientation parameters for camera 2 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
(ximag2,yimag2) 
image coordinates (x,y) in pixels in image 2 

 
Output (x_epipo1,y_epipo1) 

the coordinates of the epipolar line in image 1 
 
normG 
norm of G, where norm(G) = 0 on the epipolar line 

 
Remarks This function uses’EpipolarRelation_y.m’ for minimization along the y-axis in image 1.  This 

function is particularly feasible for an epipolar line that is almost vertical in the (x,y) image 
plane.   

 
Example script EpipolarExample.m  
 
Equations The detailed description of determining an epipolar line is given in the following reference. 

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable 
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004) 
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EpipolarRelation_x 
 
 
 
Purpose Calculation of difference norm of the epipolar relation as a function of the x-coordinate in 

image A for minimization 
 
Syntax   normG= 
                                EpipolarRelation_x(xPixA,yPixA,xPixB,yPixB,oriA,oriB,camformatA,camformatB) 
 
Arguments camformatA 

1-column array containing the camera format data for camera A: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
camformatB 
1-column array containing the camera format data for camera B: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
oriA 
1-column array of the camera orientation parameters for camera A 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
oriB 
1-column array of the camera orientation parameters for camera B 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
(xPixA,yPixA) 
image coordinates (x,y) in pixels in image A 
 
(xPixB,yPixB) 
image coordinates (x,y) in pixels in image B 

 
Output normG 

norm of G, where norm(G) = 0 on an epipolar line 
 
Remarks This function is used in’EpipolarLine_x.m’ for minimization along the x-axis in image 1.  

This function is feasible for an epipolar line that is not vertical in the (x,y) image plane.  In 
most cases, ’EpipolarLine_x.m’ and ’EpipolarLine_y.m’ will give the same results.   

 
Example script EpipolarExample.m  
 
Equations The detailed description of determining an epipolar line is given in the following reference. 

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable 
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004) 
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EpipolarRelation_y 
 
 
 
Purpose Calculation of difference norm of the epipolar relation as a function of the y-coordinate in 

image A for minimization 
 
Syntax   normG= 

EpipolarRelation_y(xPixA,yPixA,xPixB,yPixB,oriA,oriB,camformatA,camformatB) 
 
Arguments camformatA 

1-column array containing the camera format data for camera A: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
camformatB 
1-column array containing the camera format data for camera B: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
oriA 
1-column array of the camera orientation parameters for camera A 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
oriB 
1-column array of the camera orientation parameters for camera B 

)Z,Y,Xκ,φ,ω,( ccc  and ),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
(xPixA,yPixA) 
image coordinates (x,y) in pixels in image A 
 
(xPixB,yPixB) 
image coordinates (x,y) in pixels in image B 

 
Output normG 

norm of G, where norm(G) = 0 on an epipolar line 
 
Remarks This function is used in’EpipolarLine_y.m’ for minimization along the x-axis in image 1.  

This function is useful for an epipolar line that is almost vertical in the (x,y) image plane.  In 
that case, ’EpipolarLine_x.m’ does not work well.  In most cases, ’EpipolarLine_x.m’ and 
’EpipolarLine_y.m’ will give the same results.   

 
Example script EpipolarExample.m  
 
Equations The detailed description of determining an epipolar line is given in the following reference. 
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T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable 
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004) 
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findBackground 
 
 
 
Purpose finds the perimeter max background for a given region of interest (roi) of a digital image  
 
Syntax   Gback = findBackground(img, x, y, delx, dely) 

 
The digital image img would normally first be loaded from a file with imread, such as img = 
imread(fileName) where fileName is a string variable containing the path (if necessary) and 
file name where the image resides 
  

Arguments img 
 an array containing an image 
 
 x 

x-value of centered location in pixels to use for roi 
 

y 
y-value of centered location in pixels to use for roi 

 
delx 
half-width of area of pixels of roi; full-width = 2  delx; delx = 8 yields a full-width of 16 

    
dely 
half-height of area of pixels of roi; full-height = 2  dely; dely = 8 yields a full-height of 16 
    

Output   Gback  
perimeter max background of the region of interest (roi) of a digital image 

 
Example script findBackgroundExample.m with input file ‘Sample Files\image3.tif’.   
 
Remarks Use img = imread(fileName) where fileName is a string variable containing the path (if 

necessary) and file name where the image of interest resides.  imshow(img) can be used to 
put the image for the file in a figure before then calling function pixelXYselect if it is 
necessary to interactively select the target locations.  Note that findBackground only finds 
the perimeter background for one roi at a time and must be invoked from within a loop for 
gray scale displays of multiple locations (see findBackgroundExample.m for example of 
this).  Typically the returned value for Gback is subtracted from a given roi before 
centroiding to remove the bias error in centroiding that can be caused by background gray 
scale.  It would be prudent to test for the magnitude of Gback to determine if too large a value 
is being returned for subtraction (possibly indicating that the perimeter of the roi is too close 
to the target blob).  In such a case the roi may need to be enlarged slightly and possibly 
recentered to improve results.  Note that the standard designation of horizontal pixel location 
as x and vertical pixel location as y in the usual (x, y) order can lead to confusion when 
dealing with matrices which are in (row, column) order since the x-value of the pixel location 
actually corresponds to columns of the matrix representing the digital image, whereas the y-
value corresponds to rows.  Thus the matrix in terms of x, y has the order (y, x).  To reduce 
the confusion associated with this ordering, for the functions where it is natural to input 
arguments in x, y order, the code is written to convert internally to rows and columns for 
working with the matrices before converting back to (x, y) order for output if necessary. 
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grayScaleDisplay 
 
 
 
Purpose grayscale display (interactive) with image in a figure window 
 
Syntax   grayScaleDisplay(img) 
 
Arguments img 

image variable in the workspace or a valid image file name (either a character string or 
character variable);  Note that if the function is called without an input argument, an image 
file dialog box opens from which the user can select the proper image file. 

 
Output figure window with the image in upper half and the interactive Pixel Region tool in the lower 

half; X, Y pixel and intensity are shown as the cursor is moved either in the image or in the 
Pixel Region tool area; slider bars on the Pixel Region tool allow for movement about the 
image to examine grayscale; a small rectangular box overlay that represents the coverage of 
the Pixel Region tool can also be moved around the image to change the area of the image 
that the Pixel Region tool covers. 

 
Example script grayScaleDisplayExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample 

Files\image2.tif’ 
 
Remarks every time the function grayScaleDisplay is invoked a new figure window is created.  To 

remove the currently selected figure window, enter ‘close’ at the command line, or ‘close all’ 
to close all MATLAB figures. 
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imageObject2 
 
 
 
Purpose Solves for focal length, object distance, or image distance, given any 2 of the 3 parameters 

(simplified non-GUI version of imageObject) 
 
Syntax   camOut = imageObject2(camIn)
 
Arguments camIn structure with the following fields: 
   camIn.f - focal length f 

camIn.obj - object distance obj 
camIn.img - image distance img 
The variable to be solved for should be set to [ ]. 

 
Output camOut structure with the following fields, where one of the variables is calculated and 2 of 

the variables are echoed from the input argument structure camIn: 
   camOut.f - focal length f 

camOut.obj - object distance obj 
camOut.img - image distance img 

     
Remarks The function imageObject2 uses the Gaussian object-image relationship to determine any 1 

of the 3 variables focal length f, object distance obj, or image distance img given at least 2 of 
the other variables.  Unlike the matching GUI function imageObject, the units of the 3 
variables must be consistent.  Note that the image distance img is equivalent to the principal 
distance (or camera constant) c.  

 
Example script imageObject2Example (This script also calls the GUI imageObject function.  The 

examples of this script can be used to experiment with the GUI) 
 
Equations  The Gaussian object-image relationship is given by 
 
 

 
 
 

where f is the focal length, obj is the object distance, and img is the image distance (which is 
equivalent to the camera constant c). 
From the Gaussian object-image relationship any one of the 3 variables can be determined if 
two of the other variables are known 
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imageObject 
 
 
 
Purpose GUI to solve for focal length, object distance, or image distance, given any 2 of the 3 

parameters.  Also has plotting option for image distance versus object distance.  
(imageObject2 is a simplified non-GUI version of this function) 

 
Syntax   imageObject
 
Arguments none 
 
Output output to edit boxes for focal length, object distance, or image distance; plot of image distance 

versus object distance  
     

Remarks The function imageObject uses the Gaussian object-image relationship to determine any 1 of 
the 3 variables focal length f, object distance obj, or image distance img given at least 2 of the 
other variables.  The units of the 3 variables can be mixed by selecting the appropriate radio 
button for either mm or inch.  The calculation of any of the 3 variables is in the units specified 
by its units radio button.  The plot of image distance versus object distance can also 
accommodate mixed units as determined by the unit radio buttons for obj and img.  The focal 
length f is displayed in the title of the plot in whichever units is was last calculated (or 
entered).  Note that the image distance img is equivalent to the principal distance (or camera 
constant) c.  

 
Example script imageObject2Example (Same example script as for the non-GUI imageObject2 function.  

The examples of this script can be used to experiment with the GUI) 
 
Required files imageObject.fig (GUI figure) 
 
Equations  The Gaussian object-image relationship is given by 
 
 

 
 
 

where f is the focal length, obj is the object distance, and img is the image distance (which is 
equivalent to the camera constant c). 
From the Gaussian object-image relationship any one of the 3 variables can be determined if 
two of the other variables are known 
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imagePrelim 
 
 
 
Purpose GUI for preliminary target locations on digital images 
 
Syntax   imagePrelim
 
Arguments none 
 
Output Digital image output to figure with bounding boxes as determined by the regionprops 

function (image processing toolbox).  Automatically generated target IDs (from regionprops) 
can be overlaid.  Binary and grayscale centroid files, as well as manually selected targets, can 
be saved as text files.  Centroid files can be overlaid on the image.  An output file consisting 
of target IDs from one file and centroids from another (within a user specified match 
tolerance) can be saved. 
     

Remarks The function imagePrelim is useful for preliminary target locations and analysis of digital 
images.  The GUI should be useful for investigating various strategies for automated target 
location as well as useful for finding target locations in situations where automation fails.  
The GUI should be especially useful for images used in camera calibration.  The GUI utilizes 
the regionprops function that operates on binary images.  A pushbutton enables selection of 
the appropriate digital image file (via a popup file selection window) for loading and 
displaying in a figure window within the GUI.   The image is displayed in grayscale, but all 
preliminary processing is accomplished with a binary version of the image.  The initial 
threshold for the binarization when the image file is first imported is determined by the 
graythresh function (utilizing Otsu’s method) from the image processing toolbox.  A label 
image is then created from the binary image using bwlabel.  The regionprops function is 
then used to create a structure containing the binary centroids and bounding boxes of each 
labeled region within the label image.  The bounding boxes for each potential target (some of 
which may potentially be false targets) are overlaid on the image.  A larger cross is plotted for 
very small (and usually false) targets smaller than 3 pixels to improve their identification.  
The number of targets found, as well as the relative threshold (ranging from 0 to 1), are 
displayed in text boxes.  A slider box (with display) can then be used to interactively adjust 
the threshold.  The newly found targets based on the just selected threshold are overlaid on the 
image so that one can interactively quickly determine a suitable threshold to automatically 
find all the valid targets.  Typically the highest threshold that finds all the valid targets is 
selected before possible further processing with the GUI (if additional false targets are found).  
Slider bars for minimum and maximum bounding box size can then be used to interactively 
limit the targets found.  Selection of a new image or threshold for the current image 
reinitializes the process.  A pushbutton can be used to invert the grayscale before inputting a 
digital image file (via a popup file selection panel) for cases with black targets on a white 
background instead of the default white on black.  The file name of the inputted digital image 
is displayed on the GUI along with the number of targets found.  The global threshold found 
from the graythresh function is very appropriate for high contrast targets, but may not work 
for relatively low contrast targets with a cluttered background.  For those cases a pushbutton 
is available to view the binary image (without further processing) instead of the grayscale 
image as the threshold is changed via a slider bar.  The user can then pick a threshold that best 
discriminates the targets of interest.  Once a suitable threshold has been automatically 
generated or selected, the user can examine an overlay of bounding boxes around each target 
to determine minimum and maximum bounding box limits for target selection.  The target ID 
numbers and preliminary binary centroid data can be saved in text format (with user selected 
file name via file dialog box) with point number, x and y centroid data, half-width, and half-
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height of each bounding box respectively.   This capability is useful in addition when the 
binary file is used as input (start values) for full grayscale centroiding.  A toggle button to 
show the binary image without processing aids in preliminary analysis of cluttered images 
which can be very time consuming when the regionprops processing is undertaken at each 
change of the grayscale threshold.  Thus an appropriate threshold can be determined by 
examination of the binary image before initiating the processing via the regionprops 
function.  In this mode all processing except for the slider threshold is disabled until the get 
image file pushbutton is activated to restart the process.  An additional pushbutton allows for 
manual selection (via mouse) of target ID numbers and the subsequent saving of that xpixel 
and ypixel data along with the corresponding target ID as a text file (with user selected file 
name via file dialog box).  This additional pushbutton should help in cases where the 
automatically generated centroid data does not have the desired numbering system.  A panel 
allows the selection of a centroid file to be overlaid on the image.  For this overlay panel it is 
assumed that the first three columns of the data from the file are in order target ID, x, and y.  
The next 2 columns, if they exist, are taken to be the half-height and half-width of the 
bounding boxes.  A text entry box is available to specify a single value for the bounding box 
width and height (full width) for files of only 3 columns, which is then used in the overlay 
plot for all targets.  Both the bounding boxes and target IDs are plotted in a color chosen from 
a popup menu of color selections to aid in discrimination of multiple plots overlaid on the 
same image.  Another panel allows 2 centroid files to be combined into a new file, getting the 
correct target IDs from 1 file and the correct centroid data from another using the matchIDs 
function.  The match tolerance (x, y pixel values must be within this set tolerance to match) is 
set from within an edit box.  Another panel added to the image processing GUI allows 
grayscale centroiding (with automated perimeter background removal) and output to a new 
file.  This panel is convenient for computing grayscale centroids using the binary centroid 
files created within the GUI itself as start values.  The additional width and height to be added 
to the binary bounding boxes is entered through an edit box.  This helps to minimize clipping 
of the target since grayscale below the threshold (set to zero during the binarization of the 
image) may be outside the bounding box found from the binary image, but still may be a valid 
part of the target.  Another panel offers the option of taking threshold and size restrictions 
from the edit boxes corresponding to the sliders.  A separate process button within the panel 
must be pressed to initiate image processing based on the values in the edit boxes.  (The 
sliders for threshold, min size, and max size are ignored if the edit boxes radio button is 
selected.  When the process button is selected, the values for threshold, min size, and max size 
are then taken from the corresponding edits boxes as entered by the user instead of from the 
sliders.)  This greatly speeds up preliminary investigations with large format images of 
several megapixel or more compared to slider selection since with the sliders computations 
are made at intermediate positions as the sliders are moved toward their final destinations.  A 
pushbutton can be used to select a polynomial region of the image (using the roiPolySelect 
function) in order to remove regions of the image that might contain false targets that are 
especially hard to discriminate with threshold or size limits.   

 
Example script none 
 
Required files imagePrelim.fig (GUI figure) 

IMAGE PROCESSING TOOLBOX:  
 bwlabel 

getimage 
graythresh 
imcomplement 
imshow 
im2bw 
regionprops 

PHOTOGRAMMETRY TOOLBOX: 
 centroid   
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findBackground 
matchIDs 
overlayCentroidsBox 
pixelXYselect 
roiPolySelect 

 



 

 
 
 
 
 
 

79 

 
intersection 
 
 
 
Purpose multi-camera photogrammetric spatial intersection to determine 3D 

coordinates given camera parameters and image coordinates from 2 or more cameras (or 
views) 

 
Syntax   [XYZ] = intersection(cam) 
 
Arguments cam 
 structure array with at least the fields as follows, with N being the camera number: 
    

cam(N).c 
principal distance c (or camera constant), usually mm 
    

   cam(N).xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
cam(N).yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
cam(N).m 
3  3 rotation matrix, usually from function rotationMatrix 
 
cam(N).Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam(N).Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam(N).Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam(N).xymm 
M X 3 numeric array containing [pntNum  xmm  ymm] for each 
image coordinate for each camera (or view) where M is the number of image coordinates for a 
particular camera.  M and the actual point numbers used can vary from camera to camera. 
Results are returned for any point number that is seen by at least 2 cameras. 
 
 

Output   XYZ 
P × 8 numeric array, where P is the number of points that are seen by at least 2 cameras, of 
the form below (with units same as perspective center location, Xc, Yc, Zc): 
 
pt1  X1  Y1  Z1  X1std  Y1std  Z1std  CamNum1 
pt2  X2  Y2  Z2  X2std  Y2std  Z2std  CamNum2 
 
. 
. 
ptP  XP  YP  ZP  XPstd  YPstd  ZPstd  CamPumN 
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where XNstd, YNstd, ZNstd are the standard deviations of the 3 coordinates from the least squares 
reduction and CamNumN is the number of cameras used for each point in the reduction.   

 
Remarks The function intersection is a multi-camera photogrammetric spatial intersection to 

determine 3D coordinates, given camera parameters and image coordinates from 2 or more 
cameras (or views).  Missing or extra target point numbers for any camera are accommodated.  
There is no practical limit on the number of cameras that can be passed to the function by 
means of the structure array cam.   

 
Example script intersectionExample.m with input files ‘Sample Files\ plate11.txt’, ‘Sample Files\ 

camdata1.txt’ and ‘Sample Files\ camdata2.txt’ 
 
Equations  the collinearity equations are given by: 
 

c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx  

 

c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy  

 
    

the collinearity equations above can be recast in the following form  
 

a1X a2Y a3Z a1X c a2Yc a3Zc

a4 X a5Y a6Z a4 Xc a5Yc a6Zc
 

 
where 
 

2333p6

2232p5

2131p4

1333p3

1232p2

1131p1

mcmyya

mcmyya
mcmyya

mcmxxa
mcmxxa

mcmxxa

 

 
X, Y, Z is found by linear least squares, where there is 1 pair of ‘a’ equations above 
(associated with the x and y image coordinates) for each camera for each point.  A matrix A is 
formed that is 2  CamNum rows by 3 columns and a B matrix is formed that is 2  CamNum 
rows by 1 column.  For instance the A and B matrices would be 4  3 and 4  1 respectively 
when 2 cameras view a single point and 8  3 and 8  1 for 4 cameras.  
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where A \ B is the MATLAB operator for linear least squares.  Estimates of the standard 
deviation of X, Y, and Z are found within the least squares reduction as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where V is a column vector of residuals, S0 is the standard deviation of unit weight, cov is the 
covariance matrix, covdiag represents the diagonal elements of the covariance matrix, and X , 
Y , Z  are the estimates of the standard deviation of X, Y, Z from least squares. 
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lleast3 
 
 
 
Purpose Linear least squares estimation of Euler rotational angles )κ,φ,ω,(  given other parameters 
 
Syntax       [dx,xxp]=lleast3(angles,XYZc,interior,format,xyimagd,xyimagu,xyzobj) 
 
Arguments angle 

1-column array of estimated )κ,φ,ω,(  
 
XYZc 
1-column array of the estimated camera position: 

)Z,Y,X( ccc  
 
interior 
1-column array of the given interior orientation parameter: 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
format 
1-column array containing the camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimagd 
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels 
 
xyimagu 
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 
 

Output dx 
residual of least squares estimation for all the targets in the image plane 
 
xxp 
estimated distorted px  

 
Remarks This function is used in ‘dlt.m’. 
 
Called by resec3.m 
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lleast 
 
 
 
Purpose Linear least squares estimation of the camera exterior orientation parameters 
 
Syntax   [dx,xxp]=lleast(exterior,interior,format,xyimagd,xyimagu,xyzobj) 
 
Arguments  

exterior 
1-column array of the estimated exterior orientation parameter: 

)Z,Y,Xκ,φ,ω,( ccc  
 
interior 
1-column array of the given interior orientation parameter: 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
format 
1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimagd 
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels 
 
xyimagu 
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 
 

Output dx 
residual of least squares estimation for all the targets in the image plane 
 
xxp 
estimated distorted px  

 
Remarks This function is used for Newton-Raphson iteration in ‘resec.m’. 
 
Called by resec.m, resecA.m 
 
Equations The description of this step in the optimization method for camera calibration/orientation is 

given in the following reference. 
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind 
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971 
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loadCamStruct 
 
 
 
Purpose Loads camera parameter structure from a text file usually created with the matching function 

saveCamStruct 
 
Syntax   cam = loadCamStruct(fileName) 
 
Arguments fileName 
 fileName of file (with path if necessary) from which to load camera parameter structure (such 

as the string 'fileName' or the string variable filename) 
 

input text file should be in the form of: 
   c  = 25.00000 

xp =  0.50000 
yp = -0.50000 
m  =   0.4924038765061041 
m  =  -0.5868240888334652 
m  =   0.6427876096865393 
m  =   0.8700019037522058 
m  =   0.3104684609733676 
m  =  -0.3830222215594890 
m  =   0.0252013862574872 
m  =   0.7478280708194912 
m  =   0.6634139481689384 
Xc =        10.00000 
Yc =        20.00000 
Zc =        30.00000  

 
Output   cam 
 camera parameter structure with fields as follows: 
    

cam.c 
principal distance c (or camera constant), usually mm 
    

   cam.xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
cam.yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
cam.m 
3  3 rotation matrix, usually from function rotationMatrix 
 
cam.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
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Remarks loadCamStruct is a simple function to load the basic camera parameter structure from a text 

file, usually created with the matching function saveCamStruct.  The function 
loadCamStruct can be used to load the camera parameter structure into a structure variable 
within a script or function for further application.  The rotation matrix m is assumed saved in 
row order (default for MATLAB) in the order m11, m21, m31, m21, m22, m23, m31, m32, m33.  Note 
that this simple function is only designed to work with the fields of the camera parameter 
structure identified above.  The current version of this simple function has minimal error 
handling. 

 
Example script loadCamStructExample.m with input file ‘Sample Files\cam1.txt’ 
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locating_target1_fun 
 
 
 
Purpose Determination of centroid of a single target at the selected row and column in image 
 
Syntax   [xc1_shifted,yc1_shifted]= 

locating_target1_fun(I,row_p,col_p,bk_size_0) 
 
Arguments I 

Image intensity field 
 
(row_p,col_p) 
row and column picked for locating a target 
 
bk_size_0 
block size for initial searching a target (such as 10 pixels) 

 
Output xc1_shifted, yc1_shifted 

final target centroid in pixels 
 
Remarks It is assumed in this function that targets in image have higher intensity than background.  For 

dark targets on lighter background, image should be inverted before the use of this function.   
 
 
Called by clicking_target_fun.m 
 
Equations The target centroid )y,x( cc  is defined as  

)y,x(I/)y,x(Iyy

)y,x(I/)y,x(Ixx

iiiiic

iiiiic
, 

where )y,x(I ii  is the gray level on an image.  When a target contains only a few pixels and 
the target contrast is not high, the centroid calculation using the above definition may not be 
accurate.   
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matchIDs 
 
 
 
Purpose matches correct centroids from one array with correct target IDs of another array (with only 

approximate centroids).  Useful for applying the correct target IDs to automatically generated 
centroid data, given the correct IDs at approximately the same image locations. 

 
Syntax   centMatch = matchIDs(centID, centCentroid, tol) 
 
Arguments centID 

N  3 array ([pnt xpix ypix] per row) with correct IDs, but only approximate xpix, ypix image 
locations.  Usually manually created via mouse. 
 
pt1  x1  y2  
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 

   
centCentroid 
N  3 array ([pnt xpix ypix] per row) with (possibly) incorrect IDs, but with correct xpix, ypix 
image location.  Usually automatically generated by way of image processing. 
    

   tol 
tolerance in pixels used for match criteria between centroid doublets in arrays centID and 
centCentroid. 
 

Output   centMatch 
N  3 array ([pnt xpix ypix] per row) with correct IDs matched to correct xpix, ypix image 
locations.   

 
Remarks The function matchIDs is useful for cases in which correct target labels (or IDs) are available 

at approximately the same locations as automatically generated (and typically more accurate) 
centroid data.  The automatically generated data will typically not have the correct target 
labels (IDs) needed for further automated image analyses.  The two input argument arrays do 
not need to be the same size and are not limited to 3 column arrays.  However the order of the 
first three columns must be target ID, x, and then y pixel location.  If that is not the case, the 
proper 3 ordered columns should be selected from the appropriate array for use as input 
argument array.   Note that if the match tolerance is less than the absolute difference between 
centroid doublets then that match is not made.  If that occurs for all rows of the input array 
centCentroid for a particular target ID, then that target ID does not appear in the output array 
centMatch.  It is useful to compare the size (number of rows) of input array centID and 
output array centMatch to determine if any target IDs are missing from the output array.  
(For instance, with [size(centID,1) size(centCentMatch,1)].) 

 
Example script matchIDsExample.m with input files ‘Sample Files\cent.txt’ and ‘Sample Files\cent2.txt’ 
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mm2pixel 
 
 
 
Purpose  Convert image coordinates from mm to pixels 
 
Syntax   xypix = mm2pixel(xymm, Sh, Sv, x0, y0)
 
Arguments xymm 
 array of image coordinates (mm) with point numbers (N × 3) or without point numbers (N × 

2), where N = number of image points 
    

xymm with point numbers (3 × 3 array): 
   1.0000   -2.8587    0.5174 
   2.0000   -0.2548    1.1635 
   4.0000   -1.5548   -0.7878 

 
   xymm without point numbers (3 × 2 array): 

   -2.8587    0.5174 
   -0.2548    1.1635 
   -1.5548   -0.7878 

  
note that for the 2nd example without point numbers the 3rd doublet of x, y values (-1.5548   -
0.7878) would be taken as point number 3 instead of point number 4 as in the 1st  example 
where point numbers are explicitly entered (see output examples below) 
 
Sh 
horizontal pixel spacing in mm. ex: 0.013 
 
Sv 
vertical pixel spacing in mm. ex: 0.013 
 
x0, y0 
location of image reference center, pixels.  For example, a 640 × 480 (Horz × Vert) image 
would normally be referenced to x0, y0 = 320, 240.  x0, y0 locates the center (0, 0) of the 
image coordinates in mm  

 
Output   xypix 

output is an N × 3 array with either explicitly entered point numbers or sequential point 
numbers from 1:N 
 
output for 1st example of xymm input and Sh, Sv, x0, y0 above: 
    1.0000  100.1000  200.2000 
    2.0000  300.4000  150.5000 
    4.0000  200.4000  300.6000 
 
 output for 2nd example of xymm input above: 
     1.0000  100.1000  200.2000 
     2.0000  300.4000  150.5000 

           3.0000  200.4000  300.6000 
 
Remarks In the function mm2pixel it is assumed that the origin of the outputted image coordinates in 

pixels is located at the usual upper left of the image with the x-coordinate (horizontal) positive 
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to the right and the y-coordinate (vertical) positive downward.  The origin of the inputted 
image coordinates in mm is centered at x0, y0 with the x-coordinate positive to the right and 
the y-coordinate positive upward.  It is common to simply take ½ of the horizontal and 
vertical pixel image dimensions as the values to be used for x0, y0 even though the half way 
point would actually be ½ the pixel count + 0.5 pixel.  Thus for the 640 × 480 (Horz × Vert) 
image example used above, the actual center of the image in pixels is 320.5, 240.5 rather than 
320, 240.  However, x0, y0 is simply a common reference point on the image.  For instance if 
the values of 320, 240 are used instead of 320.5, 240.5 for x0, y0, then the locations of the 
photogrammetric principal point or point of symmetry for distortion would adjust to 
accommodate the 0.5 pixel apparent discrepancy yielding the same photogrammetric results 
in either case. 

 
Example script mm2pixelExample.m with input files ‘Sample Image Coordinates\mm2.txt’ and 

‘Sample Images\image2.tif’ 
 
Equations 

v

mm
opix

h

mm
opix

S
yyy

S
xxx
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overlayCentroidsBox 
 
 
 
Purpose  Overlays box on current image centered on centroids 
 
Syntax   overlayCentroidsBox(fileName, delx, dely, plotColor) 
 
Arguments fileName 
 text file name of N  2 (without target numbers, x-value and y-value in 1st and 2nd columns 

respectively) or N  3 (with target numbers in 1st column, x-value and y-value in 2nd and 3rd 
columns respectively) saved array of pixel x, y values; or the array variable itself (N  2 or 
N  3); N is number of centroid x-y pairs; examples of xypix with N = 3 follow: 

    
xypix with point numbers (3 × 3 array): 

    1   100.1   200.2 
    2   300.4   150.5 
    4   200.4   300.6 
 
    xypix without point numbers (3 × 2 array): 
    100.1   200.2 
    300.4   150.5 
    200.4   300.6 
    

note that for the 2nd example without point numbers the 3rd doublet of x, y values 
(200.4  300.6) would be taken as point number 3 instead of point number 4 as in the 
1st  example where point numbers are explicitly entered 

 
delx 
half-width of box centered on each centroid; same for all targets if scalar; unique value for 
each target if entered as a vector with the same number of elements as targets. 
 
dely 
half-height of box centered on each centroid; same for all targets if scalar; unique value for 
each target if entered as a vector with the same number of elements as targets. 
 
plotColor 
optional 4th input string argument to specify the color of the overlay plots.  Valid entries are 
‘r’ (default),  ‘b’, ’g’, ‘c’, ‘m’, ‘y’, or ‘k’ which indicate respectively red, blue, green, cyan, 
magenta, yellow, or black. 
 

Output overlay of boxes of half-width delx and half-height dely on current image centered on 
centroids 
 

Remarks In the function overlayCentroidsBox it is assumed that the origin of the image coordinates in 
pixels is located at the usual upper left of the image with the x-coordinate (horizontal) positive 
to the right and the y-coordinate (vertical) positive downward.  The upper left pixel has 
coordinates of (1, 1).   

 
Example script overlayCentroidsBoxExample.m with input files ‘Sample Files\centroids2.txt’ and 

‘Sample Files\image2.tif’ 
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pixel2mm 
 
 
 
Purpose  Convert image coordinates from pixels to mm 
 
Syntax   xymm = pixel2mm(xypix, Sh, Sv, x0, y0)
 
Arguments xypix 
 array of centroids (pixels) with point numbers (N × 3) or without point numbers (N × 2), 

where N = number of image points 
    

xypix with point numbers (3 × 3 array): 
   1   100.1   200.2 
   2   300.4   150.5 
   4   200.4   300.6 
 
   xypix without point numbers (3 × 2 array): 
   100.1   200.2 
   300.4   150.5 
   200.4   300.6 
    

note that for the 2nd example without point numbers the 3rd doublet of x, y values (200.4  
300.6) would be taken as point number 3 instead of point number 4 as in the 1st  example 
where point numbers are explicitly entered (see output examples below) 
 
Sh 
horizontal pixel spacing in mm. ex: 0.013 
 
Sv 
vertical pixel spacing in mm. ex: 0.013 
 
x0, y0 
location of image reference center, pixels.  For example, a 640 × 480 (Horz × Vert) image 
would normally be referenced to x0, y0 = 320, 240.  x0, y0 locates the center (0, 0) of the 
image coordinates in mm  

 
Output  xymm 

output is an N × 3 array with either explicitly entered point numbers or sequential point 
numbers from 1:N 
 
if Sh = Sv = 0.013; x0 = 320; y0 = 240 then 
 
output for 1st example of xypix input above: 
    1.0000   -2.8587    0.5174 
    2.0000   -0.2548    1.1635 
    4.0000   -1.5548   -0.7878 
 
 output for 2nd example of xypix input above: 
    1.0000   -2.8587    0.5174 
    2.0000   -0.2548    1.1635 
    3.0000   -1.5548   -0.7878 
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Remarks In the function pixel2mm it is assumed that the origin of the image coordinates in pixels is 
located at the usual upper left of the image with the x-coordinate (horizontal) positive to the 
right and the y-coordinate (vertical) positive downward.  The origin of the outputted image 
coordinates in mm is centered at x0, y0 with the x-coordinate positive to the right and the y-
coordinate positive upward.  It is common to simply take ½ of the horizontal and vertical 
pixel image dimensions as the values to be used for x0, y0 even though the half way point 
would actually be ½ the pixel count + 0.5 pixel.  Thus for the 640 × 480 (Horz × Vert) image 
example used above, the actual geometrical center of the image in pixels is 320.5, 240.5 rather 
than 320, 240.  However, x0, y0 is simply a common reference point on the image.  For 
instance, if the values of 320, 240 are used instead of 320.5, 240.5 for x0, y0, then the 
locations of the photogrammetric principal point or point of symmetry for distortion would 
adjust to accommodate the 0.5 pixel discrepancy in reference point, yielding the same 
photogrammetric results in either case. 

 
Example script pixel2mmExample.m with input files ‘Sample Image Coordinates\centroids2.txt’ and 

‘Sample Images\image2.tif’ 
 
 
 
Equations 

 
 
 
 
 
 
 

vopixmm

hopixmm

S)yy(y
S)xx(x
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pixelXYselect 
 
 
 
Purpose manual selection of image coordinates with mouse and storage to file 
 
Syntax   pixelXYselect 

XY = pixelXYselect 
   XY = pixelXYselect(i) 

XY = pixelXYselect(‘FileName’, ‘ffff’, ‘Nstart’, i, ‘FileMode’,                   ‘m’, ‘fig’, g, 
‘PrintOut’, p) 
 
In the 1st simplest calling syntax above the target location selections are made on the current, 
or active figure (by invoking gcf).  Selected locations [target #, x, y] in pixel output are 
appended to the default file ‘centTemp.txt’ in the current directory with a starting number of 
1. 
 
The 2nd syntax, in addition, puts the [targ#, x, y] locations in variable XY. 
 
The 3rd syntax, perhaps the most friendly syntax due to its simplicity and usefulness, is used 
to set the starting target number.  With the 3rd syntax large missing sections of target numbers 
can be handled by recalling the function with the next target number in the sequence taken to 
be the new starting number.  Once all the targets have been selected, the default file 
centTemp.txt can be renamed and edited.  It is suggested that for missing targets that do not 
span a wide range, that the cursor be placed to the left of the image to yield negative x-values, 
which can be readily picked out and removed during editing (or a script can be written to 
throw out negative values automatically). 
 
The 4th syntax is the most general and must be used for changing default values other than 
starting target number.  The new values must be entered as argument pairs where the 1st string 
of the pair specifies the argument label and the 2nd entry (a character string for file name and 
mode, a numeric value for starting number and figure number) specifies the value of the 
argument used in the function.  Argument labels specified this way are file name ‘FileName’, 
file mode ‘FileMode’, figure number ‘fig’, and when other arguments are specified, the 
starting target number ‘Nstart’ must then be also specified in an argument pair.  The argument 
labels must match exactly the above entries including case.  In the 4th syntax, ‘ffff’ represents 
the character string (or string variable) for the file name, i represents the starting numerical 
value (or numeric variable) of starting target number, ‘m’ represents the file mode which can 
be generally either ‘a’ for append or ‘w’ for write (without appending), ‘g’ represents the 
numerical value of the figure number to be used, and ‘p’ represents either 0 (no printout to the 
command window) or 1 (printout). 
  

Arguments i 
 starting target number, which can be a single numerical value (or variable) argument.  Default 

is 1 
 
 ‘Nstart’, i 
 if other arguments in addition to starting target number are entered, then the starting target 

number must also be entered paired with its argument label ‘Nstart’ 
    

‘FileName’, ‘ffff’ 
‘FileName’ is the argument label which must be paired with the file name character string (or 
string variable) ‘ffff’.  Default is ‘centTemp.txt’ 
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‘FileMode’, ‘m’ 
‘FileMode’ is the argument label which must be paired with the file name character string (or 
string variable) ‘m’, which normally would either be ‘a’ for append or ‘w’ for write (without 
appending).  Default is ‘a’ 
    
‘fig’, g 
‘fig’ is the argument label which must be paired with the numerical value (or numeric 
variable) g.  Default is current figure (by means of gcf) 
 
‘PrintOut’, p 
‘Printout’ is the argument label which must be paired with off (0) or on (1) for printout to the 
command window.  Default is 1. 
 

Output   XY 
output is an N × 3 array with sequential target numbers from Nstart:[Nstart + Ntargs – 1] 
where Ntargs represents the number of selected target locations 
 
example output 
  1   405   404 
  2   459   373 
  3   466   308 

 
Example script pixelXYselectExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample 

Files\image2.tif’.  Output is written to centTemp.txt and centTemp2.txt in the current 
MATLAB directory. 

 
Remarks Use img = imshow(‘imageFileName’) to put the image for the file ‘imageFileName’ in a 

figure before calling function pixelXYselect.  Either select the figure containing the image or 
use the MATLAB figure(n) to select the desired figure n (or optionally by an input argument 
to the function).  A useful aid is to invoke iptsetpref('ImshowAxesVisible', 'on')  in order to 
show the pixel axes on the figure when using imshow.  Invoke 
iptsetpref('ImshowAxesVisible', 'off') to reset the imshow option to not show the axes.   
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PM2Australis 
 
 
 
Purpose Convert from PhotoModeler camera orientation angles , ,  

to Australis camera orientation angles, Azimuth, Elevation, Roll 
 
Syntax AzimuthElevationRoll  = PM2Australis(Omega, Phi, Kappa) 
 
Arguments Omega 
 angle about X-axis, taken as + for CCW rotation; in degrees 
 

Phi 
angle about Y--axis taken as + for CCW rotation; in degrees 

 
Kappa 
angle about Z-axis taken as + for CCW rotation; in degrees 

 
Output   AzimuthElevationRol 

output is a 1 × 3 array of angles in the order Azimuth, Elevation, Roll 
 
Remarks Order of application of angles on input is , , .  On output order is Azimuth, Elevation, 

Roll. 
 
Example script PM2AustralisExample 
 
Equations 
 

 

    

m11 cos cos
m12 sin sin cos cos sin
m13 cos sin cos sin sin
m21 cos sin
m22 sin sin sin cos cos
m23 cos sin sin sin cos
m31 sin
m32 sin cos
m33 cos cos

 

 
 



 

 
 
 
 
 
 

96 

 
 
 
 
 
 
 
 

 
 
where  = azimuth,  = elevation, and  = roll and , ,  equal the Euler angles omega, phi, 
kappa.  Note that the 4-quadrant inverse tangent function atan2(y, x) is used instead of the 2-
quandrant atan(y/x) (which would have limited computed angles to  90  instead of  180 ) 
for the arctangent computations within the function. 
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m
mtan
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RadiomCali_cheby_fun 
 
 
 
Purpose Determination of the camera responsive function based on the Chebysev functions 
 
Syntax   [coef,residual]=RadiomCali_cheby_fun(R12,zeta1,zeta2,NoTerm) 
 
Arguments R12 

approximate value of 12R  is given by (see Remarks) 

2
2

INT

1
2

INT

1max

2max
12 )F/t(

)F/t(
)I(m
)I(mR . 

 
zeta1 
zeta1 is the normalized image intensity of image 1, where )I(m/)](I[m)( maxxx  is 
the non-dimensional measurement of )(I x  normalized by the maximum value and maxI  
corresponds to the maximum radiance in the scene.  
 
zeta2 
zeta2 is the normalized image intensity of image 2, where )I(m/)](I[m)( maxxx  is 
the non-dimensional measurement of )(I x  normalized by the maximum value and maxI  
corresponds to the maximum radiance in the scene.  
 
NoTerm 
The number of the Chebysev functions for the camera responsive function 

 
Output coef 

the coefficients of a set of the Chebysev functions  
)x5x20x16,1x8x8,x3x4,1x2,x,1( 352432  

 
residual 
residual of least squares estimation 

 
Example script RadiomCali_chebyExample.m 
 
Equations Radiometric measurements using a CCD camera require a good linear response of the electrical output 

to the scene radiance.  However, there are many stages of image acquisition that may introduce non-
linearity; for example, video cameras often include some form of ‘gamma’ mapping.  When the 
radiometric response function of a camera is known, the non-linearity can be corrected.  Here, a simple 
algorithm is described to determine the radiometric response function of a camera from a scene image 
taken in different exposures.  First, we define )(I x  as a linear radiometric response to the scene 
radiance and )](I[m x  as the measurement of )(I x  by camera electronic circuitry that may 
produce a non-linear electrical output.  Actually, the measurement )](I[m x  is the brightness or gray 
level of an image, where x  is the image coordinates.  The non-dimensional response function relating 

)(I x  to )](I[m x  is defined by  

)]([fI/)(I max xx ,  (1) 
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where )I(m/)](I[m)( maxxx  is the non-dimensional measurement of )(I x  normalized by the 
maximum value and maxI  corresponds to the maximum radiance in the scene.  Recovery of f  is 
the task of the radiometric calibration of a camera.   
 
Two images of a scene are taken in two different exposures.  According to the camera formula, )(I x  
is proportional to the integration time INTt  and inversely proportional to the square of the f-number F.  
Thus, we have the following functional equation for f ,  

1221 R)(f/f ,  (2) 
where the subscripts 1 and 2 denote the image 1 and image 2, and the factor 12R  is defined as  

2
2

INT

1
2

INT

1max

2max
12 )F/t(

)F/t(
I
IR .  (3) 

Since )I(m max  corresponds to maxI , the boundary condition for f  is 11f .  We assume 
that f  can be expanded as  

)(cf n

N

0n
n ,  (4) 

where the base functions )(n  are the Chebyshev functions although other orthogonal functions and 
non-orthogonal functions like polynomials can also be used.  Substitution of Eq. (4) to Eq. (2) leads to 
the following equations for the coefficients nc   

0)](R)([c 2n121n

N

0n
n , (5) 

1)1(c n

N

0n
n .  (6) 

For selected M pixels in a scene image, Eq. (5) constitutes a system of M+1 equations for the N+1 
unknowns nc  ( NM ).  For a given 12R , a least-squares solution for nc  can be found.  In practice, 

since the factor 12R  is not exactly known a priori, we use an approximate value of 12R   

2
2

INT

1
2

INT

1max

2max
12 )F/t(

)F/t(
)I(m
)I(mR . (7) 

An iteration scheme can be used to give an improved value of 12R .   
 
Liu, T. and Sullivan, J. P, “Pressure and Temperature Sensitive Paints,” Springer, Berlin 2004 
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RadiomCali_poly_fun 
 
 
 
Purpose Determination of the camera responsive function based on the power functions 
 
Syntax   [coef,residual]=RadiomCali_poly_fun(R12,zeta1,zeta2,NoTerm) 
 
Arguments R12 

approximate value of 12R  is given by (see Remarks) 

2
2

INT

1
2

INT

1max

2max
12 )F/t(

)F/t(
)I(m
)I(mR . 

 
zeta1 
zeta1 is the normalized image intensity of image 1, where )I(m/)](I[m)( maxxx  is 
the non-dimensional measurement of )(I x  normalized by the maximum value and maxI  
corresponds to the maximum radiance in the scene.  
 
zeta2 
zeta2 is the normalized image intensity of image 2, where )I(m/)](I[m)( maxxx  is 
the non-dimensional measurement of )(I x  normalized by the maximum value and maxI  
corresponds to the maximum radiance in the scene.  
 
NoTerm 
The number of the power functions for the camera responsive function 

 
Output coef 

the coefficients of a set of the power functions  
)x,x,x,x,x,1( 5432  

 
residual 
residual of least squares estimation 

 
Example script RadiomCali_polyExample.m 
 
Equations Radiometric measurements using a CCD camera require a good linear response of the electrical output 

to the scene radiance.  However, there are many stages of image acquisition that may introduce non-
linearity; for example, video cameras often include some form of ‘gamma’ mapping.  When the 
radiometric response function of a camera is known, the non-linearity can be corrected.  Here, a simple 
algorithm is described to determine the radiometric response function of a camera from a scene image 
taken in different exposures.  First, we define )(I x  as a linear radiometric response to the scene 
radiance and )](I[m x  as the measurement of )(I x  by camera electronic circuitry that may 
produce a non-linear electrical output.  Actually, the measurement )](I[m x  is the brightness or gray 
level of an image, where x  is the image coordinates.  The non-dimensional response function relating 

)(I x  to )](I[m x  is defined by  

)]([fI/)(I max xx ,  (1) 
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where )I(m/)](I[m)( maxxx  is the non-dimensional measurement of )(I x  normalized by the 
maximum value and maxI  corresponds to the maximum radiance in the scene.  Recovery of f  is 
the task of the radiometric calibration of a camera.   
 
Two images of a scene are taken in two different exposures.  According to the camera formula, )(I x  
is proportional to the integration time INTt  and inversely proportional to the square of the f-number F.  
Thus, we have the following functional equation for f ,  

1221 R)(f/f ,  (2) 
where the subscripts 1 and 2 denote the image 1 and image 2, and the factor 12R  is defined as  

2
2

INT

1
2

INT

1max

2max
12 )F/t(

)F/t(
I
IR .  (3) 

Since )I(m max  corresponds to maxI , the boundary condition for f  is 11f .  We assume 
that f  can be expanded as  

)(cf n

N

0n
n ,  (4) 

where the base functions )(n  are the Chebyshev functions although other orthogonal functions and 
non-orthogonal functions like polynomials can also be used.  Substitution of Eq. (4) to Eq. (2) leads to 
the following equations for the coefficients nc   

0)](R)([c 2n121n

N

0n
n , (5) 

1)1(c n

N

0n
n .  (6) 

For selected M pixels in a scene image, Eq. (5) constitutes a system of M+1 equations for the N+1 
unknowns nc  ( NM ).  For a given 12R , a least-squares solution for nc  can be found.  In practice, 
since the factor 12R  is not exactly known a priori, we use an approximate value of 12R   

2
2

INT

1
2

INT

1max

2max
12 )F/t(

)F/t(
)I(m
)I(mR . (7) 

An iteration scheme can be used to give an improved value of 12R .   
 
Liu, T. and Sullivan, J. P, “Pressure and Temperature Sensitive Paints,” Springer, Berlin 2004 
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resec3 
 
 
 
Purpose Determination of Euler rotational angles when other parameters are given 
 
Syntax 

[dxp,exterior]=resec3(epsilon,interior,exterior,format,xyimagd,xyimagu,xyzobj) 
 
Arguments  

epsilon 
small number for controlling iteration 
 
interior 
1-column array of the interior orientation parameters, 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
exterior 
1-column array of the estimated exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
format 
1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimagd 
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels 
 
xyimagu 
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 

 
Output dxp 

standard deviation of calculated px  over all the targets 
 
exterior 
1-column array of the refined exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 

Called by dlt.m 
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resec 
 
 
 
Purpose Determination of the exterior orientation parameters (resection) using Newton-Raphson 

method 
 
Syntax       [dxp]=resec(interior,exterior,format,xyimagd,xyimagu,xyzobj,corrindex) 
 
Arguments  

interior 
1-column array of the interior orientation parameters, 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
exterior 
1-column array of the exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
format 
1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimagd 
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels 
 
xyimagu 
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 
 
corrindex 
The iteration number for lens distortion correction 

 
Output dxp 

standard deviation of calculated px  over all the targets 
 
Remarks This function provides an objective function ‘dxp’ for minimization to determine the correct 

interior orientation parameters. 
 
Called by camcal_fun.m 
 
Equations The detailed description of the optimization method for camera calibration/orientation is 

given in the following reference. 
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind 
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971 
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resec_ZW 
 
 
 
Purpose Determination of the exterior orientation parameters using the closed-form resection method 

developed by Zeng and Wang 
based on three known targets 

 
Syntax   [exterior]=resec_ZW(xyimag,xyzobj,camformat,c) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimag 
2-column array of the image coordinates (x, y) of three targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of three targets, and the units are 
consistent with )Z,Y,X( ccc  in inches 
 
c 
the principal distance in mm (approximately focal length) 

 
Output exterior 

two sets of the exterior orientation parameters )Z,Y,Xκ,φ,ω,( ccc  
 
Remarks This closed-form resection function typically gives two sets (two solutions) of the exterior 

orientation parameters.  To determine the correct set, additional information is needed.  For 
example, when an additional known target is given, we have two groups of three known 
targets.  Then, we run 'resec_ZW.m' for the two groups and obtain four sets of the exterior 
orientation parameters.  If one set of the exterior orientation parameters is repeated in two 
runs, it is the correct one that should remain invariant for different groups of targets.   
Another important point in the use of this function is that three targets should be numbered in 
a counterclockwise fashion in both the image plane and object space.  This facilitates the 
selection of the appropriate sets of )Z,Y,X( ccc .   

 
Example script resec_ZWExample.m  
 
Equations The detailed description of the closed-form resection method for the exterior orientation 

parameters is given in the following reference.   
 
Zeng, Z. Q. and Wang, X., “A General Solution of a Closed-Form Space Resection”, 
Photogrammetric Engineering and Remote Sensing,” Vol. 58, No. 3, 1992, pp. 327-338 
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resecA 
 
 
 
Purpose Determination of Euler rotational angles when other parameters are given 
 
Syntax 

[dxp,exterior]=resecA(interior,exterior,format,xyimagd,xyimagu,xyzobj) 
 
Arguments  

interior 
1-column array of the interior orientation parameters, 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
exterior 
1-column array of the estimated exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
format 
1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimagd 
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels 
 
xyimagu 
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 

 
Output dxp 

standard deviation of calculated px  over all the targets 
 
exterior 
1-column array of the refined exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 

 
Remarks This function is used in ‘camcal_fun.m’. 
 
Example script camcal_fun.m 
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resection 
 
 
 
Purpose nonlinear least squares (NLLS) to determine , , , Xc, Yc, and Zc and estimates of the 

standard deviations of these parameters given camera interior parameters (c, xp, yp), image 
data, and X, Y, Z object space data 

 
Syntax   camOut = resection(camIn, XYZ) 
 
Arguments camIn 
 structure with at least the following fields: 
    

camIn.c 
principal distance c (or camera constant), usually mm 
    

   camIn.xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
camIn.yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
camIn.omega 
angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
. 
camIn.phi 
angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
camIn.kappa 
angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
camIn.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camIn.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camIn.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camIn.xymm 
N X 3 numeric array containing [pntNum  xmm  ymm] for each 
image coordinate seen by the camera  
 
XYZ 
N × 4 numeric array of the form below (with units same as perspective center location, Xc, Yc, 
Zc): 
 
pt1  X1  Y1  Z1 
pt2  X2  Y2  Z2 
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. 

. 

. 
ptN  XN  YN  ZN  
 

Output camOut 
 structure with fields as follows: 
    

camOut.c 
principal distance c (or camera constant), usually mm, echoed from input structure camIn 
    

   camOut.xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c, 
echoed from input structure camIn 

 
camOut.yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c, 
echoed from input structure camIn 
 
camOut.omega 
angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
. 
camOut.phi 
angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
camOut.kappa 
angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
camOut.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camOut.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camOut.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camOut.omegastd 
estimated standard deviation of  from NLLS, in degrees 
 
camOut.phistd 
estimated standard deviation of  from NLLS, in degrees 
 
camOut.kappastd 
estimated standard deviation of  from NLLS, in degrees 
 
camOut.Xcstd 
estimated standard deviation of Xc from NLLS, in degrees 
 
camOut.Ycstd 
estimated standard deviation of Yc from NLLS, in degrees 
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camOut.Zcstd 
estimated standard deviation of Zc from NLLS, in degrees 
 
camOut.So 
standard deviation of unit weight from NLLS 
 
camOut.xstd  
standard deviation of the x-coordinates of the differences between the input image coordinates 
and the computed coordinates based on resection output parameters  
 
camOut.ystd 
standard deviation of the y-coordinates of the differences between the input image coordinates 
and the computed coordinates based on resection output parameters  
 
camOut.xymm 
N X 3 numeric array containing [pntNum  xmm  ymm] for each 
image coordinate seen by the camera, echoed from input structure camIn.xymm 
 

Reference Elements of Photogrammetry, Paul R. Wolf, 2nd edition, McGraw-Hill, p. 606-609, but with 
the opposite sign for coefficients b11 - b13 and b21 - b23, and replacing the symbol for the 
camera constant f with c. 

 
Remarks Nonlinear least squares (NLLS) is used to determine the exterior orientation parameters , , 

, Xc, Yc, and Zc and estimates of the standard deviations of these parameters given camera 
interior parameters (c, xp, yp), image data, and X, Y, Z object space data.  The function 
resection uses the linearization method (sometimes called the Gauss, Gauss-Newton, or 
Taylor series method) to solve the nonlinear least squares problem.  For this method, the 
collinearity equations are linearized using Taylor’s theorem.  This linearization yields 2 
equations (1 each for x- and y-image coordinate) for each 3D point.  These equations contain 
initial approximations and products of the partial derivatives.  Corrections are solved for by 
linear least squares and applied iteratively to the initial approximations to determine the final 
values of the parameters.  The notation follows Wolf’s 2nd edition of Elements of 
Photogrammetry, pp. 606-609, but with the opposite sign for coefficients b11 - b13 and b21 - b23 
and the symbol f replaced with c. The final estimates of the parameters are found from the 
over-determined set of equations representing all the 3D locations with common target point 
numbers in both the XYZ object and xymm image set (2 equations for each 3D location).  Note 
that the correction terms d , d , d , dXc, dYc, dZc are solved for at each iteration, and that the 
parameters , , , Xc, Yc, Zc themselves are found by interatively adding the correction terms 
to the parameter values foun after the previous iteration.  After several iterations the 
corrections approach zero and the final iterated solutions for the parameters are determined.  
To avoid the possibility of an endless loop, the function resection uses a fixed number of 20 
iterations before exit from the function (instead of testing for corrections that approach 
negligibly small values as an exit criterion). 

 
Example script resectionExample.m with input files ‘Sample Files\XYZ1.txt’ and ‘Sample 

Files\centroids3.txt’ 
 

Equations  
c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx  

 

   
c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy  

   



 

 
 
 
 
 
 

108 

 
 
 
 
 
 
 
 
 
 

where A\ L is the MATLAB operator for linear least squares and the A and L matrices are as 
follows, with x, y being the image coordinates, xp, yp being the location of the 
photogrammetric principal point, and c is the camera constant (principal distance)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where with 
 
 
 
 
 
we have 
 
 
 
 
 
 
and 
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after each iteration the corrections are added to the latest value of the parameters found from 
the previous iteration 
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Estimates of the standard deviation of , , , Xc, Yc, and Zc are found within the least squares 
reduction as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where V is a column vector of residuals, S0 is the standard deviation of unit weight, df is the 
degrees of freedom, cov is the covariance matrix, covdiag represents the diagonal elements of 
the covariance matrix, and , , , Xc , Yc , and Zc  are the estimates of the standard 
deviations of , , , Xc, Yc, and Zc from least squares. 
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resectionLocalMin 
 
 
 
Purpose Determines 3 alternate sets of exterior orientation (which are possible local minima) for 

resection on nearly planar objects.  The cal-plate primary lateral dimensions are assumed to be 
X, Y with Z  constant (representing uniform depth).   

 
Syntax   camLocalMin = resectionLocalMin(cam, Zmean) 
 
Arguments cam 
 structure with at least the following fields: 

    
cam.omega 
angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
cam.phi 
angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
cam.kappa 
angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
cam.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
Zmean 
optional input argument specifying mean of cal-plate Z-values if mean  0. 
 

Output camLocalMin 
 structure with fields as follows: 
    

camLocalMin.omega 
angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
. 
camLocalMin.phi 
angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
camLocalMin.kappa 
angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 
toward the origin 
 
camLocalMin.Xc 
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X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camLocalMin.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camLocalMin.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 

Reference Photogrammetry Toolbox Reference manual 
 

Remarks  All angles must be in degrees.  The input angles are redefined within the function to 
   be  180º.  The input angles (possibly redefined within  180º) are echoed in the first 
   elements of the fields of output structure camLocalMin.  Elements 2 through 4 are the 
   possible local minima that can occur for resection on nearly planar calibration target 
   fields.  The location of local and global minima in the nonlinear least squares solution 
   for resection and the location of alternate solutions for nearly planar target fields is 
   especially relevant to wind tunnel and solar sail applications since quite often targets 
   on the object of interest are found to lie almost in a plane. One of the concerns of  
   nonlinear least squares solutions such as used in space resection is that a local rather 
   than a global minimum may have been reached. Whether or not a local minimum 
   rather than the global minimum is reached is heavily dependent on the initial  
   estimates of the coefficients.  For cases where we have very good initial estimates of 
   the exterior orientation of a camera, we arrive at the global minimum quite readily.  
   However, for cases where it may be necessary to set all the initial estimates to zero 
   (except possibly Z) it is then found that sometimes the solution converges to a local 
   minimum for which the residuals are quite a bit larger than the global minimum.  In 
   other cases, especially for planar objects, the local minimum may have residuals that 
   are within the range of the global mimum.  For these local minimum the exterior  
   orientation of the camera is incorrect.  The function resectionLocalMin determines 
   estimates of 3 such local minima so that one can then transform the possibly incorrect 
   exterior orientaion to improve the start values for a rerun the resection function. 
 
Example script resectionLocalMinExample.m  
 
Equations   
 
 
 
 
 
 
 
 
 

 
the smallest absolute value is taken for the  choice in the expressions (   180), which 
restricts the output value of   to  180º. 

cccc

cccc

cccc

ZZ2ZZZ2Z
YYYY

XXXX
180180
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residual_exterior 
 
 
 
Purpose Estimation of residual of calculated image coordinates from measured ones for optimization 

of exterior orientation parameters 
 
Syntax   [dd] = residual_exterior(ex_orien,in_orien1,in_orien2,camformat,xyimag,xyzobj) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
ex_orien 
1-column array of the approximate exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
in_orien1 
1-column array of the first subset of the approximate interior orientation parameters, 

)K,S/S,y,x(c, 1vhpp  
 
in_orien2 
1-column array of the second subset of the approximate interior orientation parameters, 

)P,P,(K 212  
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 

 
Output dd 

residual of the calculated image coordinates from the measured image coordinates of targets 
 
Remarks This function provides an objective function ‘dd’ for optimization for the exterior orientation 

parameters. 
 
Called by camcal_fun_1.m 
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residual_interior1 
 
 
 
Purpose Estimation of residual of calculated image coordinates from measured ones for optimization 

of the first subset of interior orientation parameters 
 
Syntax   [dd] = residual_interior1(in_orien1,ex_orien,in_orien2,camformat,xyimag,xyzobj) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
ex_orien 
1-column array of the approximate exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
in_orien1 
1-column array of the first subset of the approximate interior orientation parameters, 

)K,S/S,y,x(c, 1vhpp  
 
in_orien2 
1-column array of the second subset of the approximate interior orientation parameters, 

)P,P,(K 212  
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 

 
Output dd 

residual of the calculated image coordinates from the measured image coordinates of targets 
 
Remarks This function provides an objective function ‘dd’ for optimization for the first subset of the 

interior orientation parameters. 
 
Called by camcal_fun_1.m 
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residual_interior2 
 
 
 
Purpose Estimation of residual of calculated image coordinates from measured ones for optimization 

of the second subset of interior orientation parameters 
 
Syntax   [dd] = residual_interior2(in_orien2,ex_orien,in_orien1,camformat,xyimag,xyzobj) 
 
Arguments camformat 

1-column array containing the following camera format data: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
ex_orien 
1-column array of the approximate exterior orientation parameters, 

)Z,Y,Xκ,φ,ω,( ccc  
 
in_orien1 
1-column array of the first subset of the approximate interior orientation parameters, 

)K,S/S,y,x(c, 1vhpp  
 
in_orien2 
1-column array of the second subset of the approximate interior orientation parameters, 

)P,P,(K 212  
 
xyimag 
2-column array of the image coordinates (x, y) of a set of targets in pixels 
 
xyzobj 
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are 
consistent with )Z,Y,X( ccc  (typically in inches) 

 
Output dd 

residual of the calculated image coordinates from the measured image coordinates of targets 
 
Remarks This function provides an objective function ‘dd’ for optimization for the second subset of the 

interior orientation parameters. 
 
Called by camcal_fun_1.m 
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roiPolyselect 
 
 
 
Purpose create an image that only contains the polygon region of interest (roi) selected or, optionally, 

has that regions removed (set to 0 grayscale) 
 
Syntax   imgOut = roiPolyselect(img, rejectFlag); 
 
Arguments img 

image variable in the workspace or a valid image file name (either a character string or 
character variable).  The 1st input argument img must be passed to the function in order to 
utilize the optional 2nd input argument rejectFlag.   
 
rejectFlag 
optional input argument entered as a character string (or character variable) set to 'reject' to 
create an output image with the polygon roi set to 0 and the rest of the image to remain as is; 
any string other than 'reject' will be ignored 

 
Output imgOut 

image (same size and class as input image) with polygon roi data from img superimposed on a 
background of 0 (or if rejectFlag set to 'reject' imgOut will be original image with polygon 
roi set to 0) 

 
Example script roiPolyselectExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample 

Files\image2.tif’ 
 
Remarks The polygon roi is selected by positioning the cursor and clicking the left mouse button at 

each vertex of the polygon.  Press ‘Enter’ to exit the function.  The polygon is automatically 
closed to the 1st point selected.  Note that every time the function roiPolyselect is invoked a 
new figure window is created.  To remove the currently selected figure window, enter ‘close’ 
at the command line, or ‘close all’ to close all MATLAB figures.  The function should always 
be followed by a semicolon ‘;’ to suppress printout of the output image imgOut to the 
Command Window.  The 1st input argument must be passed to the function in order to utilize 
the optional 2nd input argument rejectFlag.   
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roiSelect 
 
 
 
Purpose create an image that only contains the regions of interest (roi) selected or, optionally, has 

those regions removed (set to 0 grayscale) 
 
Syntax   [imgOut roi] = roiSelect(img, rejectFlag); 
 
Arguments img 

image variable in the workspace or a valid image file name (either a character string or 
character variable);  Note that if the function is called without input arguments, an image file 
dialog box opens from which the user can select the proper image file.  The 1st input argument 
img must be passed to the function in order to utilize the optional 2nd input argument 
rejectFlag.   
 
rejectFlag 
optional input argument entered as a character string (or character variable) set to 'reject' to 
create an output image with the roi's set to 0 and the rest of the image to remain as is; any 
string other than 'reject' will be ignored 

 
Output imgOut 

image (same size and class as input image) with roi data from img superimposed on a 
background of 0 (or if rejectFlag set to 'reject' img Out will be original image with roi's set to 
0) 

 
roi 
numeric N  4 array containing [xmin ymin width height] for N roi's, one roi per row;  the 
corners of the roi are given by (xmin, ymin) and (xmin+width, ymin+height) 

 
Example script roiSelectExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample 

Files\image2.tif’ 
 
Remarks The rectangular roi is selected by positioning the cursor to one corner of the desired 

rectangular area and then pressing the left mouse button and dragging to the other corner of 
the rectangle.  A single roi or many roi’s can be selected.  Press the left mouse button outside 
the image to exit the function.  Note that every time the function roiSelect is invoked a new 
figure window is created.  To remove the currently selected figure window, enter ‘close’ at 
the command line, or ‘close all’ to close all MATLAB figures.  The function should always 
be followed by a semicolon ‘;’ to suppress printout of the output image imgOut to the 
Command Window.  The 1st input argument must be passed to the function in order to utilize 
the optional 2nd input argument rejectFlag.   
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rotationMatrix 
 
 
 
Purpose  compute common , ,  rotation matrix 
 
Syntax   m = rotationMatrix(omega, phi, kappa, AngleUnits)
 
Arguments omega 
 angle about X-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

phi 
 angle about Y-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

kappa 
 angle about Z-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

AngleUnits 
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only 
3 arguments) or set to anything other than ‘radians’, units of degrees will be assumed; for 
example if AngleUnits = ‘radian’ then the exact match is not met and the units of degrees 
will be assumed 

 
Output   m 

output is a 3 × 3 array of the , ,   rotation matrix 
 
output for m = rotationMatrix(0, 0, 0)
m = 
 
     1     0     0 
     0     1     0 
     0     0     1 
 
output for m = rotationMatrix(90, 90, 90)
m = 
 
    0.0000    0.0000    1.0000 
   -0.0000   -1.0000    0.0000 
    1.0000   -0.0000    0.0000 
 
output for m = rotationMatrix( /2, /2, /2, ‘radians’) 
m = 
 
    0.0000    0.0000    1.0000 
   -0.0000   -1.0000    0.0000 
    1.0000   -0.0000    0.0000 

 
Reference Manual of Photogrammetry, 4th edition, American Society of Photogrammetry, Chester C. 

Slama, Editor-in-Chief, Falls Church, Virginia, 1980, p. 51. 
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Remarks order of application of angles is omega, phi, and then kappa 
 
Example script rotationMatrixExample.m 
 
 
Equations 

    

m11 cos cos
m12 sin sin cos cos sin
m13 cos sin cos sin sin
m21 cos sin
m22 sin sin sin cos cos
m23 cos sin sin sin cos
m31 sin
m32 sin cos
m33 cos cos
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rotationMatrixAzElevRoll 
 
 
 
Purpose  compute rotation matrix in terms of azimuth, elevation, roll 
 
Syntax m = rotationMatrixAzElevationRoll (Azimuth, Elevation, Roll, AngleUnits)
 
Arguments Azimuth 
 angle about Z-axis, taken as + for CW rotation; in degrees unless AngleUnits = ‘radians’ 
 

Elevation 
 angle about new Y--axis formed after the azimuth rotation, taken as + for CCW; in degrees 

unless AngleUnits = ‘radians’ 
 

Roll 
 angle about the new X-axis formed after the azimuth and Elevation rotations, taken as + for 

CCW rotation; in degrees unless AngleUnits = ‘radians’ 
 

AngleUnits 
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only 
3 arguments) or set to anything other than ‘radians’, units of degrees will be assumed; for 
example if AngleUnits = ‘radian’ then the exact match is not met and the units of degrees 
will be assumed 

 
Output   m 

output is a 3 × 3 array of the rotation matrix using Azimuth, Elevation, and Roll 
 
output for m = rotationMatrix AzElevationRoll (0, 0, 0)
m = 
 
     1     0     0 
     0     0     1 
     0    -1     0 
 
output for m = rotationMatrix AzElevationRoll (90, 90, 90)
m = 
 
    
    1.0000         0      0.0000 
     0         -1.0000    0.0000 
    0.0000   -0.0000   -1.0000 
 
output for m = rotationMatrix AzElevationRoll ( /2, /2, /2, ‘radians’) 
m = 
 

         1.0000         0        0.0000 
             0            -1.0000    0.0000 
         0.0000   -0.0000   -1.0000 
 
Reference  
 
Remarks order of application of angles is azimuth, Elevation, and then Roll 
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Example script rotationMatrixAzElevationRollExample.m 
 
Equations 

em
em

em
rem

rrem
rrem

rem
rrem

rrem

sin
coscos

cossin
coscos

sinsincossincos
sincoscossinsin

sincos
cossinsinsincos

coscossinsinsin

33

32

31

23

22

21

13

12

11

 

 
   where  = azimuth, e = elevation, r = roll 
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rotationMatrixAzTiltSwing 
 
 
 
Purpose  compute rotation matrix in terms of azimuth, tilt, swing 
 
Syntax m = rotationMatrixAzTiltSwing (Azimuth, Tilt, Swing, AngleUnits)
 
Arguments Azimuth 
 angle about Z-axis, taken as + for CW rotation; in degrees unless AngleUnits = ‘radians’ 
 

Tilt 
 angle about new X-axis formed after the azimuth rotation, taken as + for CCW; in degrees 

unless AngleUnits = ‘radians’ 
 

Swing 
 angle about the new Z-axis formed after the azimuth and tilt rotations, taken as + for CCW 

rotation; in degrees unless AngleUnits = ‘radians’ 
 

AngleUnits 
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only 
3 arguments) or set to anything other than ‘radians’, units of degrees will be assumed; for 
example if AngleUnits = ‘radian’ then the exact match is not met and the units of degrees 
will be assumed 

 
Output   m 

output is a 3 × 3 array of the , ,   rotation matrix 
 
output for m = rotationMatrix AzTiltSwing (0, 0, 0)
m = 
 
    -1     0     0 
     0    -1     0 
     0     0     1 
 
output for m = rotationMatrix AzTiltSwing (90, 90, 90)
m = 
 
   -0.0000    0.0000   -1.0000 
    0.0000   -1.0000   -0.0000 
   -1.0000   -0.0000    0.0000 
output for m = rotationMatrix AzTiltSwing ( /2, /2, /2, ‘radians’) 
m = 
 

        -0.0000    0.0000   -1.0000 
          0.0000   -1.0000   -0.0000 
        -1.0000   -0.0000    0.0000 
 
Reference Elements of Photogrammetry, 2nd edition, McGraw-Hill, Paul R. Wolf, 1983, p. 610-612. 
 
Remarks order of application of angles is azimuth, tilt, and then swing 
 
Example script rotationMatrixAzTiltSwingExample.m 
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Equations 

tm
tm
tm
stm

stsm
stsm

stm
stsm

stsm

cos
sincos
sinsin

cossin
coscoscossinsin

coscossinsincos
sinsin

sincoscoscossin
sincossincoscos

33

32

31

23

22

21

13

12

11

 

 
where  = azimuth, t = tilt, s = swing 
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rotationMatrixDuality 
 
 
 
Purpose outputs alternate set (duality) of , ,  that has identical rotation matrix as computed with 

input , ,  
 
Syntax [omegaDual, phiDual, kappaDual] = rotationMatrixDuality(omega, phi, kappa, 

AngleUnits)
 
Arguments omega 
 angle about X-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

phi 
 angle about Y-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

kappa 
 angle about Z-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

AngleUnits 
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only 
3 arguments) or set to anything other than ‘radians’ (exactly), units of degrees will be 
assumed; for example if AngleUnits = ‘radian’ then the exact match is not met and the units 
of degrees will be assumed 

 
Output omegaDual 
 angle about X-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

phiDual 
 angle about Y-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 

kappaDual 
 angle about Z-axis, taken as + for CCW rotation when viewing down the axis toward the 

origin; in degrees unless AngleUnits = ‘radians’ 
 
output for [omegaDual, phiDual, kappaDual]  = rotationMatrixDuality(0, 0, 0)
[180, 180, 180] 
 
output for [omegaDual, phiDual, kappaDual]  = rotationMatrixDuality(0, 0, 0, ‘radians’)
[3.1416, 3.1416, 3.1416] 
 
output for [omegaDual, phiDual, kappaDual]  = rotationMatrixDuality(10, -20, 30)
[-170, -160, -150] 
 

Reference  PE&RS vol. 56 No.9, Sept. 1990, pp. 1281-1283 
 
Remarks order of application of Euler angles is omega, phi, and then kappa.  Note that the duality of 

the rotation matrix is not simply due to the cyclical nature of the trigonometric functions with 
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additions of ± 2 .  Additions of ± 2  actually produce the same angle, unlike the duality 
angles which differ by ± .  The set of duality angles is an alternate way to angularly position 
a camera to the same final angular orientation as the matching set of angles.  This function 
should help in interpretation of space resection results in which the computed angles appear 
quite different from expected (or from other solutions), but actually produce the exact same 
rotation matrix (final position) and are thus fully equivalent. 

 
Example script rotationMatrixDualityExample.m 
 
Equations 
 
 
 
 
 

 
The minimum of the absolute values of either of the 2 choices for each of Dual,  Dual, or  Dual 
is selected as the output value for each angle 

    
    

or
or
or

Dual

Dual

Dual
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saveCamStruct 
 
 
 
Purpose Saves camera parameter structure in a text file for later loading into a script or function with 

the matching function loadCamStruct 
 
Syntax   saveCamStruct(fileName, camStructure) 
 
Arguments fileName 
 fileName of file to save camera parameter structure (such as the string 'fileName' or the string 

variable filename ) 
 

camStructure 
 camera parameter structure with fields as follows: 
    

camStructure.c 
principal distance c (or camera constant), usually mm 
    

   camStructure.xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
camStructure.yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
camStructure.m 
3  3 rotation matrix, usually from function rotationMatrix 
 
camStructure.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camStructure.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
camStructure.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
 

Output text file with name filename (which may contain the path) like: 
   c  = 25.00000 

xp =  0.50000 
yp = -0.50000 
m  =   0.4924038765061041 
m  =  -0.5868240888334652 
m  =   0.6427876096865393 
m  =   0.8700019037522058 
m  =   0.3104684609733676 
m  =  -0.3830222215594890 
m  =   0.0252013862574872 
m  =   0.7478280708194912 
m  =   0.6634139481689384 
Xc =        10.00000 
Yc =        20.00000 
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Zc =        30.00000  
 
Remarks saveCamStruct is a simple function to save the basic camera parameter structure in a human 

readable text file.  When saved in this format the matching function loadCamStruct can be 
used to load the camera parameter structure into a structure variable within a script or function 
for further application.  The rotation matrix m is saved in row order (default for MATLAB) in 
the order m11, m21, m31, m21, m22, m23, m31, m32, m33.  Note that this simple function ignores 
other fields of the camera parameter structure other than those identified above.  The current 
version of this simple function has minimal error handling. 

 
Example script saveCamStructExample.m with output to ‘Sample Files\camStruct.txt’ 
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singleView 
 
 
 
Purpose Single view photogrammetry determinations of 1 or 2 coordinates with 2 or 1 of the other 

coordinates known respectively.  Can solve singly for coordinates X, Y, or Z if the other 2 
coordinates are known.  Also can solve for coordinate pairs X & Y, X & Z, or Y & Z if the 
other coordinate of the triplet is known. 

 
Syntax   XYZsv =  singleView(cam, xymm, XYZ) 
 
Arguments cam 
 structure with fields as follows: 
    

cam.c 
principal distance c (or camera constant), usually mm 
    

   cam.xp 
x-value of the photogrammetric principal point, usually mm, but always same units as c. 

 
cam.yp 
y-value of the photogrammetric principal point, usually mm, but always same units as c. 
 
cam.m 
3  3 rotation matrix, usually from function rotationMatrix 
 
cam.Xc 
X-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Yc 
Y-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
cam.Zc 
Z-coordinate of camera perspective center, always same units as XYZ object coordinates 
 
xymm 
N × 3 array with point numbers in 1st column.  The array xymm is of the form: 
 
pt1  x1  y2  
pt2  x2  y2 
. 
. 
. 
ptN  xN  yN 
 
XYZ 
structure with the following 4 fields: 
 
XYZ.pnt (target number) 
XYZ.X   (X-value in object space) 
XYZ.Y   (Y-value in object space) 
XYZ.Z   (Z-value in object space) 
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the coordinate(s) to be solved for should be set to [] in XYZ structure as, for instance, XYZ.Y 
= [];  The other coordinates not solved for are echoed in the output array XYZsv along with 
the coordinates solved for.  Units of ouput array XYZsv same as units of XYZ (and Xc, Yc, 
Zc) 
 

Output   XYZsv 
output is an N × 4 or N × 5 array with point numbers taken from target numbers which are 
common to both xymm and XYZ structure.  There can be missing target numbers in either the 
image or object coordinate input arguments.  Only data from targets common to both are 
outputted to XYZsv.  The output array XYZsv is of the form below (except for single 
coordinate solutions of X, Y, or Z only where a 5th column is also outputted containing the 
standard deviation as determined by least squares of the single coordinate solved for): 
 
pt1  x1  y1  z1   ( 1) 
pt2  x2  y2  z2   ( 2) 
. 
. 
. 
ptN  xN  yN  zN   ( N) 

 
Remarks This function can solve for single coordinates if the other 2 coordinates are know, or can solve 

for 2 coordinates if only 1 other coordinate is known from a single view.  The camera 
parameters listed above for the structure cam most all be known along with image 
coordinates corresponding to the object coordinates.  Cases where 2 coordinates are known 
and one is solve for result in 2 equations (collinearity equations, 1 for x-image, 1 for y-image) 
in 1 unknown.  Thus least squares can be used to determine the single coordinate while also 
computing as estimate of the standard deviation of the coordinate (but with only 1 degree of 
freedom).  For those cases the 5th column of the output array XYZsv contains the estimated 
standard deviation from the least squares computation. 

 
Example script singleViewExample.m  
 
Equations   

c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx  

 

c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy  

 
    

the collinearity equations above can be recast in the following form  
 

a1X a2Y a3Z a1X c a2Yc a3Zc

a4 X a5Y a6Z a4 Xc a5Yc a6Zc
 

 
where 
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2333p6

2232p5

2131p4

1333p3

1232p2

1131p1

mcmyya
mcmyya
mcmyya
mcmxxa
mcmxxa
mcmxxa

 

 
X, Y solution: 
 
 

 
 
 
 
 
 
 
 

 
 
where A \ B is the MATLAB operator for Gaussian elimination, or if over-determined, for 
linear least squares 
 
X, Z solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Y, Z solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 

B\A
Y
X

ZaZaYaXa
ZaZaYaXa

B

aa
aa

A

6c6c5c4

3c3c2c1

54

21

B\A
Y
X

YaZaYaXa
YaZaYaXa

B

aa
aa

A

5c6c5c4

2c3c2c1

64

31

B\A
Y
X

XaZaYaXa
XaZaYaXa

B

aa
aa

A

4c6c5c4

1c3c2c1

65

32
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X solution: 
 
 
 
 
 
 
 
 
 
 
Y solution: 

     
 
 
 
 
 

 
 
 
 
Z solution: 
 
 
 
 
 
 
 
 
 
 
 
Computation of standard deviation for X, Y, or Z single coordinate least squares solution (with 
X replaced by Y or Z as necessary): 
 
 
 
 
 
 
 
 
 
where V is a column vector of residuals, S0 is the standard deviation of unit weight, cov is the 
covariance matrix and  is the estimate of the standard deviation of either X, Y,  or Z from 
least squares estimation. 

B\AX
ZaYaZaYaXa
ZaYaZaYaXa

B

a
a

A

65c6c5c4

32c3c2c1

4

1

B\AY
ZaXaZaYaXa
ZaXaZaYaXa

B

a
a

A

64c6c5c4

31c3c2c1

5

2

B\AZ
YaYaZaYaXa
YaXaZaYaXa

B

a
a

A

54c6c5c4

21c3c2c1

6

3

covS

AAcov

VVS

BXAV

o

1T

T
o
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TransposeAngles 
 
 
 
Purpose returns T, T, T for a rotation matrix that is the transpose of the rotation matrix formed by 

the input arguments , ,  
 
Syntax   Angle = TransposeAngles(Parameter)
 
Arguments Parameter 
 structure with the following fields: 
 
 Parameter.omega 
 angle in degrees  about X-axis,  taken as + for CCW rotation when viewing down the axis 

toward the origin 
 

Parameter.phi 
 angle in degrees about Y-axis,  taken as + for CCW rotation when viewing down the axis 

toward the origin 
 

Parameter.kappa 
 angle in degrees about Z-axis,  taken as + for CCW rotation when viewing down the axis 

toward the origin 
 
Output   Angle 

structure with the following fields: 
 
Angle.omega 

 angle in degrees  about X-axis, T taken as + for CCW rotation when viewing down the axis 
toward the origin 

 
Angle.phi 

 angle in degrees about Y-axis, T taken as + for CCW rotation when viewing down the axis 
toward the origin 

 
Angle.kappa 

 angle in degrees about Z-axis, T taken as + for CCW rotation when viewing down the axis 
toward the origin 

 
Reference Manual of Photogrammetry, 4th edition, American Society of Photogrammetry, Chester C. 

Slama, Editor-in-Chief, Falls Church, Virginia, 1980, p. 51 and Elements of Photogrammetry, 
Paul R. Wolf, 2nd edition, McGraw-Hill, p. 613 

 
Remarks order of application of angles is omega, phi, and then kappa.  This function can be useful for 

cases where the solution is desired in terms of the transpose of the rotation matrix, but the 
solution in hand is in terms of the rotation matrix without transpose (for example when using 
the function conformal3DNLLS).  Note that the angles T and T should not be found from 
the diagonal elements of the rotation matrix m33 and m11 since the cosine function returns the 
same value for ± angles, thus the signs of  and  may not be correctly determined using 
those elements.  Also note that the 4-quadrant inverse tangent atan2 is used in the function to 
determine T and T and that the output angle T is limited by the asind function to ± 90º.  A 
warning error message test (for maximum absolute error > 10-12) is built into the function 
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which compares the rotation matrix generated from the output angles to the transpose of the 
rotation matrix generated from the input angles. 

 
Example script TransposeAnglesExample.m 
 
Equations  the rotation matrix for the input angles , ,  is given by 
 

coscos
cossin

sin
cossinsinsincos

coscossinsinsin
sincos

sinsincossincos
sincoscossinsin

coscos

33

32

31

23

22

21

13

12

11

m
m
m
m
m
m
m
m
m

 

 
the output angles T, T, T are found from the rotation matrix formed from the input angles 

, ,  using the following equations 
 

 
 
 
 
 
 
 
 

 
the rotation matrix formed from the function output angles T, T, T  equals the transpose of 
the rotation matrix formed from the input angles , ,  

    

11

121
T

33

231
T

13
1

T

m
mtan

m
mtan

msin
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xy2XYZ 
 
 
 
Purpose Determination of object-space coordinates (X, Y, Z) of a target from the corresponding image 

coordinates in two images (A and B) by photogrammetric intersection 
 
Syntax [Xtarg,Ytarg,Ztarg] = 

xy2XYZ(xPixA,yPixA,xPixB,yPixB,oriA,oriB,camformatA,camformatB) 
 
Arguments (xPixA, yPixA) 

image coordinates in image A in pixels 
 
(xPixB, yPixB) 
image coordinates in image B in pixels 
 
oriA 
1-column array of the orientation parameters for Camera A )Z,Y,Xκ,φ,ω,( ccc  and 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
oriB 
1-column array of the orientation parameters for Camera A )Z,Y,Xκ,φ,ω,( ccc  and 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
camformatA 
1-column array containing the following camera format data for Camera A: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
camformatA 
1-column array containing the following camera format data for Camera B: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 

 
Output [Xtarg,Ytarg,Ztarg] 

object-space coordinates of a target 
 
Remarks This function is used for stereo photogrammetric measurements to determine the 3D object-

space coordinates from two images. 
 
Example script xy2XYZExample.m  
 
Equations The detailed description of intersection is given in the following reference. 

Mikhail, E. M., Bethel, J. S., and McGlone, J. C., “Introduction to modern photogrammetry,” 
John Wiley & Sons, Inc., New York, 2001 
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xy2XZ 
 
 
 
Purpose Determination of object-space coordinates (X, Z) of a target from the corresponding image 

coordinates in one image for a given Y-coordinate 
 
Syntax   [Xtarg, Ztarg] = xy2XZ(xPix,yPix,Ytarg,ori,camformat) 
 
Arguments (xPix, yPix) 

image coordinates of a target in image in pixels 
 
Ytarg 
Y-coordinates in object space, the unit is consistent with )Z,Y,X( ccc  
 
ori 
1-column array of the orientation parameters for camera )Z,Y,Xκ,φ,ω,( ccc  and 

),P,P,K,K,S/S,y,x(c, 2121vhpp  
 
camformat 
1-column array containing the following camera format data for: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 

 
Output [Xtarg,Ztarg] 

object-space coordinates (X, Z) of a target 
 
Remarks This single-camera method is a constrained intersection, which is particularly useful in wing 

deformation measurements. 
 
Example script xy2XZExample.m 
 
Equations The detailed description of this single-camera method is given in the following reference. 

 
Burner, A. W. and Liu, T., “Videogrammetric model deformation measurement technique”, 
Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 745-754. 
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xyplot 
 
 
 
Purpose Graphical comparison of measured image coordinates with calculated image coordinates from 

object-space coordinates of targets through projection (collinearity equations) 
 
Syntax   xyplot(camformat,orien,xyimag,xyzobj,plot_No) 
 
Arguments orien 

1-column array of the orientation parameters for camera )Z,Y,Xκ,φ,ω,( ccc  and 
),P,P,K,K,S/S,y,x(c, 2121vhpp  

 
xyzobj 
object space coordinates (X, Y, Z) of targets, and the units are consistent with )Z,Y,X( ccc  
(typically in inches) 
 
camformat 
1-column array containing the following camera format data for: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 
 
xyimag 
measured image coordinates (x, y) of targets in pixels 
 
plot_No 
plot number 
 

 
Output comparison plot of image coordinates (in mm) of targets 
 
Remarks This is a plotting function for comparison between measured and calculated images 

coordinates.   
 
Called by dlt0.m, dlt.m, camcal_fun.m 
 
Equations The detailed description of the collinearity equations is given in the following reference. 

 
Burner, A. W. and Liu, T., “Videogrammetric model deformation measurement technique”, 
Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 745-754. 
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XYZ2xy 
 
 
 
Purpose Determination of image coordinates (x, y) from object-space coordinates (X, Y, Z) of a target 

through projection (collinearity equations) 
 
Syntax   [xyimag]=XYZ2xy(ori,xyzobj,camformat) 
 
Arguments ori 

1-column array of the orientation parameters for camera )Z,Y,Xκ,φ,ω,( ccc  and 
),P,P,K,K,S/S,y,x(c, 2121vhpp  

 
xyzobj 
object space coordinates (X, Y, Z) of a target, and the units are consistent with )Z,Y,X( ccc  
(typically in inches) 
 
camformat 
1-column array containing the following camera format data for: 
 
Number of horizontal pixels 
Number of vertical pixels 
Horizontal pixel spacing (mm/pixel) 
Vertical pixel spacing (mm/pixel) 

 
Output [xyimag] 

image coordinates (x, y) of a target in pixels 
 
Remarks This is a projection function for the given camera orientation parameters.   
 
Example script xy2XZExample.m 
 
Equations The detailed description of the collinearity equations is given in the following reference. 

 
Burner, A. W. and Liu, T., “Videogrammetric model deformation measurement technique”, 
Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 745-754. 

 



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2.  REPORT TYPE 
Contractor Report

 4.  TITLE AND SUBTITLE

Photogrammetry Toolbox Reference Manual  

5a. CONTRACT NUMBER

NAS1-02117

 6.  AUTHOR(S)

Liu, Tianshu; Burner, Alpheus W.

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center                     
Hampton, Virginia 23681

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC  20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Danny A. Barrows

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 35
Availability:  NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT

Specialized photogrammetric and image processing MATLAB functions useful for wind tunnel and other ground-based testing 
of aerospace structures are described. These functions include single view and multi-view photogrammetric solutions, basic 
image processing to determine image coordinates, 2D and 3D coordinate transformations and least squares solutions, spatial 
and radiometric camera calibration, epipolar relations, and various supporting utility functions.

15. SUBJECT TERMS

Calibration; Deformation; Photogrammetry

18. NUMBER
      OF 
      PAGES

142
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

NNL06AC15T
5f. WORK UNIT NUMBER

 380046.02.07.03.03.01  

11. SPONSOR/MONITOR'S REPORT
      NUMBER(S)

NASA/CR-2014-218518

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY)
09 - 201401-


