

September 2014

NASA/CR–2014-218518

Photogrammetry Toolbox Reference Manual

Tianshu Liu
Western Michigan University, Kalamazoo, Michigan

Alpheus W. Burner
Jacobs Technology Inc., Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI
Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at
443-757-5802

• Write to:
 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive

 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL06AC15T

September 2014

NASA/CR–2014-218518

Photogrammetry Toolbox Reference Manual

Tianshu Liu
Western Michigan University, Kalamazoo, Michigan

Alpheus W. Burner
Jacobs Technology Inc., Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Abstract

Specialized photogrammetric and image processing MATLAB
functions useful for wind tunnel and other ground-based testing of
aerospace structures are described. These functions include single view
and multi-view photogrammetric solutions, basic image processing to
determine image coordinates, 2D and 3D coordinate transformations
and least squares solutions, spatial and radiometric camera calibration,
epipolar relations, and various supporting utility functions.

Introduction

Photogrammetric techniques have been found to be very useful for specialized measurements of component
deformation of advanced aircraft during ground or in-flight testing as well as deformation of large space
structures during ground testing. The basis of photogrammetry can be summarized as the determination of a
parameter or parameters of interest in 3D object space from 2D image coordinates. These parameters could
be spatial coordinates (1D to 3D), deformation, angle, or changes in angle, etc. With the recent replacement
of film with electronic image sensors, some authors have used expressions other than photogrammetry to
denote this extraction of spatial information from images. Part of the impetus for this name-change is to
emphasize the modern nature of these efforts and to emphasize that digital images, rather than film, make up
the raw data. These various names, which are largely a matter of personal choice of the authors of a given
publication, include digital photogrammetry, geomatics, videogrammetry, videometrics, and computer vision.
It remains to be seen which term will eventually be considered the defining one if the long-standing term
photogrammetry is indeed supplanted by another more meaningful term.

Classic photogrammetry previously consisted of photographs that were read on a monocomparator in order to
extract image coordinates. A computer was then used for data reduction. Currently electronic images are
acquired and reduced with automated image processing, often on the same computer and often with many
images in a time sequence or set of time sequences. Some of the specialized aerospace applications that the
development of the photgrammetry toolbox is directed towards include aeroelastic model deformation, wind
tunnel model attitude, sting bending, the study of model injection rates at blow-down facilities, determination
of model position, deformation of micro air vehicles, deformation of aircraft in-flight, structural deformation
of ultralight and inflatable large space structures, etc. In addition a whole class of advanced imaging flow
diagnostic and visualization techniques either use some form of photogrammetry or could benefit from its use.
These image-based flow diagnostic techniques include pressure and temperature sensitive paints (PSP/TSP),
Doppler global velocimetry (DGV), particle image velocimetry (PIV), projection moiré interferometry (PMI),
planar laser induced fluorescence (PLIF), and laser-induced thermal acoustics (LITA).

The Photogrammetry Toolbox (PT) described here should be viewed as complementing rather than replacing
standard photogrammetric packages that are used quite commonly for spatial measurements where the images
can be acquired in a sequential manner as the camera is moved about the object. Instead the PT was
developed for specialized aerospace applications where traditional photogrammetry techniques are often not
applicable due to various constraints such as limitations on camera location, limitations on size and mass of
the camera, requirement for remote operation, severe limits on setup time due to wind tunnel productivity
requirements, and/or the need for near real-time results. The functions in the PT serve as building blocks to

2

develop custom measurement systems that may utilize non-traditional photogrammetry for near real-time
applications. The functions can be relatively easily customized to further enhance their value in the
development of measurement systems for unique and varied applications. In some cases the functions can be
utilized within the MATLAB environment for the application. In other cases where performance is critical,
the functions can be used to develop the measurement strategy, which can then be implemented in C-code to
maximize efficiency. Although the MATLAB Image Acquistion toolbox was not utilized in the current
version of the PT, it is anticipated that the coupling of the PT with the acquisition toolbox should provide a
powerful developmental platform.

Toolbox Folders

The primary folder containing the PT functions is entitled Photogrammetry Toolbox. There are three
subfolders located within the primary folder. The first subfolder Documentation contains document pages for
each function written in Microsoft Word. The docuument pages for each function cover the purpose, syntax,
arguments, output, additional remarks, example scripts, and equations. The second subfolder Example Scripts
contains scripts that can be run from the MATLAB Command Window to illustrate the usage of the various
functions. The naming convention for the example scripts is the function name with Example appended to
the end of function name. For instance, the example script for the function resection is named
resectionExample. (The files containing the functions and scripts have a .m extension which should be
assumed in any file names for functions or scripts within this document.) The third subfolder Sample Files
contains data and digital image files that are utilized within the example scripts. It is recommended that the
primary folder and its three subfolders be placed in a convenient location within My Documents to facilitate
file backup and to more easily incorporate the PT functions when upgrading to a newer vesion of MATLAB.
The Photogrammetry Toolbox folder and its subfolders should be added to the top of the MATLAB path. By
adding to the top of the path, m-files in the PT will override any conflicting names lower in the path.
However, it is still recommended that conflicting function names be eliminated to avoid confusion. The
folders can be added to the path from within MATLAB by selecting Set Path… under File, select Add
Folder…, select Add with Subfolders…, and then select Save. Typing path at the Command Prompt should
show the Photogrammetry Toolbox and its subfolders at the top ot the path. Once the primary and three
subfolders are added to the path, the functions and example scripts can be invoked from any folder (except for
the special example script camcal_goldenExample which can only be run from the primary PT folder). A
folder contents feature available in MATLAB enables all the function names in a folder to be listed in the
Command Window with one row per m-file. Each row contains the name of the function or script and a brief
1-line description of the purpose of the file. The name of the m-file is an active link to quickly obtain the
more detailed multi-line help information normally provided at the top commented segment of the m-file. A
short script entitled helpPT can be invoked from any folder to quickly and conveniently review the m-files
that are available in the Photogrammetry Toolbox folder and to access more detailed information by selecting
any function in the list. The input to the helpPT function comes from the special script contents consisting
of all comments located in the primary PT folder. The script contents is created (or edited) by running
Contents Report from the Current Directory Browser.

Overview of Toolbox Functions

The toolbox contains functions for elementary analysis of digital images to determine image plane
coordinates, camera calibration suitable for aerospace applications, single-view and multi-view determination
of object space coordinates, determination of camera pointing angles and location, 2D and 3D coordinate

3

transformations along with functions to determine transformation coeficients given 2 sets of object space
coordinates, and assorted utility functions. The functions were developed in MATLAB version 2006a, but
should be applicable for some older versions as well. Most of the image processing functions make use of the
Image Processing Toolbox, which must be present to utilize those functions. Following this overview, each
function, listed in alphabetical order, is described in more detail within its own document page. The
document pages for the functions cover the purpose, syntax, arguments, output, additional remarks, example
scripts, and equations. To ensure continuity from previous work at NASA Langley, some of the functions
utilize the familiar camera input file consisting of a column of input calibration coefficients that must be
entered in a prescribed order. Other functions utilize a structure for input which has the advantage of
automatically documenting any MATLAB scripts that call the functions. Another advantage of the structure
for input arguments is that the order of the entry is irrelevant since the field labels of the structure dictate
which coefficients are intended to be passed to the function. The use of structures also improves the
conciseness of the calling syntax and tolerates more fields than needed for the function arguments (for
instance for documentation of the experiment in a notes field which will be ignored by the function that is
invoked). This use of structures in the calling syntax of the functions is expected to aid in the usability and
applicability in future developments. The functions loadCamStuct and saveCamStruct are utilities to load
and save camera parameter structures in text format for use outside MATLAB.

The simulation functions collinearity and XYZ2xy are used to create ideal image plane data corresponding to
a set of object coordinates given various camera parameters. The function collinearity uses structures for
input and output (typically in mm) whereas XYZ2xy uses a column entry for the camera parameters, including
distortion with output in pixels. The function distortApply can be used to apply distortion to the output from
collinearity. The function mm2pixel can be used to convert the output of collinearity from mm to pixels. A
complementary function pixel2mm is used to convert from pixels to mm. The function xyplot can be used to
compare calculated and measured image plane coordinates.

Digital image analysis functions include several simple, but useful image processing functions that enable
manual selection of targets or locations on a digital image (pixelXYselect) and enable one to establish the
maximum gray scale on the perimeter of a rectangular region of interest for use in background removal
(findBackground). Other image processing functions enable the computation of gray scale centroids
(centroid, centroid_cal_fun, clicking_targ_fun, location_target1_fun) and display of gray scale to the
Command Window (displayGrayScale), given image locations, regions of interest, and possible background
for removal before centroiding or display. The function GrayScaleDisplay displays the image in the top half
of a figure window along with an interactive pixel grayscale display in the lower half. The function has a
single input argument that can be either an image variable currently in the workspace or a character string or
variable that represents a valid image file name. The function opens an image file dialog box for file selection
if invoked without an input argument for convenient examination of digital images. Pixel location and
grayscale are displayed in the figure window as the cursor is moved over the image itself or over the display
of grayscale. A small rectangular box overlay on the image, which indicates the coverage of the grayscale
display area, can be moved about the image to examine in detail the grayscale of any portion of the image.
This function is very convenient and easy to use for examining grayscale of any image and complements the
function that displays grayscale to the Command Window (displayGrayScale). The function roiSelect
enables a single or multiple regions of interest (roi) of an image to be selected by mouse. The single input
argument can be an image variable or file name. The function opens an image file dialog box for file
selection if invoked without an input argument. The rectangular roi is selected by positioning the cursor to
one corner of the desired rectangular area, pressing the left mouse button, and dragging to the other corner of
the rectangle. A single roi or many roi’s can be selected. Optionally the function can output an image which
has the original grayscale of the input image, but with the grayscale in each roi set to zero. In this case the
output image would consist of rectangular patches of black on the grayscale of the original input image. The
newly created output image is displayed in its own figure window. The function should be useful for cases in

4

which the targets of interest are in a limited area of a cluttered image. A similar function uses a single
polygon roi instead of rectangles (roiPolySelect). This function allows for selection of odd-shaped regions
that might be awkward to select with several rectangular roi’s. The polygon roi function also returns an
image that is the same size and class as the input image, but with only the polygon roi containing grayscale
from the original input image. The rest of the output image outside of the polygon roi is set to zero. The
inverse image is also available in which the polygon roi is black (grayscale = 0), but the rest of the input
image is intact. Both of these functions should be useful to eliminate troublesome areas of an image before
further processing in cases where automated image processing over the whole image fails. Several epipolar
functions (epipolarLine_x, epipolarLine_y, epipolarRelation_x, epipolarRelation_y) enable the
matching of a target from one image with the corresponding target from a second image, which can help with
automated analysis of 2-view photogrammetric image data.

The GUI function imagePrelim serves as a preliminary tool for automated target location on digital images.
The GUI utilizes the regionprops (IPT) function from the Image Processing Toolbox that operates on binary
images. (Functions from the Image Processing Toolbox are followed by IPT enclosed in parentheses.) A
pushbutton enables selection of the appropriate digital image file (via a popup file selection window) for
loading and displaying in a figure window within the GUI. The image is displayed in grayscale, but all
preliminary processing is accomplished with a binary version of the image. The initial threshold for the
binarization when the image file is first imported is determined by the graythresh (IPT) function. A label
image is then created from the binary image using bwlabel (IPT). The regionprops (IPT) function is then
used to create a structure containing the binary centroids and bounding boxes of each labeled region within
the label image. The bounding boxes for each potential target (some of which may potentially be false
targets) are overlaid on the image. A larger cross is plotted for very small (and usually false) targets smaller
than 3 pixels to improve their identification. The number of targets found, as well as the relative threshold
(ranging from 0 to 1), are displayed. A slider box (with display) can then be used to interactively adjust the
threshold. The newly found targets based on the just selected threshold are overlaid on the image so that one
can interactively quickly determine a suitable threshold to automatically find all the valid targets. Typically
the highest threshold that finds all the valid targets is selected before possible further processing with the GUI
(if additional false targets are found). Slider bars for minimum and maximum bounding box size can then be
used to interactively limit the targets found. Selection of a new image or threshold for the current image
reinitializes the process. A pushbutton can be used to invert the grayscale before inputting a digital image file
for cases with black targets on a white background. The file name of the inputted digital image is displayed
on the GUI along with the number of targets found. Another pushbutton initiates the selection of a polygon
region of the image (using roiPolySelect) in order to remove regions of the image that might contain false
targets that are especially hard to discriminate with threshold or size limits. Target ID numbers can be
overlaid on the image using overlayCentroidsBox and the preliminary binary centroid data can be saved in
text format (with user selected file name via file dialog box) with point number, x and y centroid data, half-
width, and half-height of each bounding box respectively. This capability is useful in addition when the
binary file is used as input (for start values) for full grayscale centroiding. A toggle button can be used to
show the binary image without processing to aid in preliminary analysis of cluttered images since the
processing can be very time consuming when using regionprops (IPT) at each change of the grayscale
threshold. Thus an appropriate threshold can be determined by examination of the binary image before
initiating the processing via the regionprops (IPT) function. In this mode all processing except for the slider
threshold is disabled until the get image file pushbutton is activated to restart the process. An additional
pushbutton allows for manual selection (via mouse) of target ID numbers and the subsequent saving of that
xpixel and ypixel data along with the corresponding target ID as a text file (with user selected file name via
file dialog box). This additional pushbutton should help in cases where the automatically generated centroid
data does not have the desired numbering system. A button panel allows the selection of a centroid file to be
overlaid on the image. For the overlay it is assumed that the first three columns of the data from the file are in
order target ID, x, and y. The next 2 columns, if they exist, are taken to be the half-height and half-width of

5

the bounding boxes. A text entry box is available to specify a single value for the bounding box width and
height for files of only 3 columns, which is then used in the overlay plot for all targets. Both the bounding
boxes and target IDs are plotted in a color chosen from a popup menu of color selections to aid in
discrimination of multiple plots overlaid on the same image. Another button panel allows 2 centroid files to
be combined into a new file, getting the correct target IDs from 1 file and the correct centroid data from
another. The match tolerance (x, y pixel values must be within this set tolerance to match) is set from within
an edit box. Another button panel allows grayscale centroiding (with automated background removal based
on the max grayscale on the perimeter of the bounding box) and output to a new file. This panel is convenient
for computing grayscale centroids using the binary centroid files created within the GUI itself as start values.
An additional width and height to be added to the binary bounding boxes is entered through an edit box. This
helps to minimize clipping of the target since grayscale below the threshold (set to zero during the
binarization of the image) may be outside the bounding box found from the binary image, but still may be a
valid part of the target. Another button panel gives the option of taking threshold and size restrictions from
the edit boxes corresponding to the sliders. A separate process button within the panel must be pressed to
initiate image processing based on the values in the edit boxes. (The sliders for threshold, min size, and max
size are ignored if the edit boxes radio button is selected. When the process button is selected, the values for
threshold, min size, and max size are then taken from the corresponding edits boxes as entered by the user
instead of from the sliders.) This greatly speeds up preliminary investigations with large format images of
several megapixels compared to slider selection. (Since with the sliders activated computations are made at
intermediate positions as the sliders are moved toward their final destinations.)

The camera calibration functions include several utilizing optimization of a single view of a 3D calibration
block to provide a very useful simplified method to determine the major camera parameters necessary for
photogrammetric measurements. The optimization functions include camcal_fun and camcal_fun_1 and
support functions dlt, dlt0, lleast, lleast3, residual_exterior, residual_interior1, residual_interior2,
resec, resec3, and resecA. The script camcal_goldenExample utilizes the convenience of the MATLAB
environment for input and output while invoking three executables for camera calibration by optimization
using the Golden seach method. The script will normally only run properly from the primary PT folder. The
files calibrator.exe, plot.exe, and simulator.exe must be copied from the primary PT folder to another folder
for proper operation in other than the primary PT folder. Note that single view camera calibration is relatively
quick and convenient, but may not be the best camera calibration available. If the ultimate in camera
calibration is required one of the commercially available photogrammetric packages should be considered.
Note that for some specilized aerospace applications, such as the single view determination of model
deformation, camera calibration is not the primary calibration, but rather a preliminary or partial calibration to
reduce nonlinearities of the final calibration. Thus camera calibration in those cases is not as critical as for
traditional photogrammetry. For instance, the final calibration for single view model deformation consists of
an angle calibration based on an onboard inertial device. The camera calibration primarily reduces the
nonlinearities and the amount of correction that the final angle calibration must accommodate. The use of the
quick single view camera calibration by optimization reduces setup time and increases wind tunnel
productivity compared to traditional photogrammeric camera calibration. Additional camera calibration
functions enable the determination of the camera constant (cameraConstant) and distortion coefficients
(distortSolve). Once the the radial and decentering distortion terms are found, the function distortCorrect
can be used to correct image coordinates in mm. The function to determine the camera constant typically
requires 2 or more images of a calibration fixture (which can be planar and is approximately perpendicular to
the optical axis of the camera) at known displacements from the camera. The values of the photogrammetric
princpal point and distortion coefficients must be known (or entered as zero for initial results). Advantages of
this function is that an estimate of precision is computed for the camera constant from the least squares and
projective coupling between other camera parameters is lessened (see Appendix). The function to solve for
the distortion coefficients can be applied to a single image of a planar target fixture. Precision estimates of
the coefficients from least squares method are also computed. These 2 functions should serve as useful

6

complements to the optimization functions, depending on the application. Radiometric camera calibration is
possible with the two functions RadiomCali_cheby_fun and RadiomCali-poly_fun. These two functions
determine the camera response function given two images taken at different f-numbers so that nonlinearity in
the grayscale versus irradiance can be greatly corrected for situations where a linear response is critical.

Functions were developed to allow for single-view (singleView, xy2XZ) and multi-view (intersection,
xy2XYZ) determination of object coordinates. The function singleView enables single view solutions for
one coordinate (X, Y, or Z) or pairs of coordinate (X-Y, X-Z, Y-Z). The function can handle cases in which
either the image or object coordinate data has target point numbers not found in both, with only the valid
solutions for target numbers common to both image and object outputted. A structure format is used for the
object coordinate data in which the field representing the particular coordinate(s) to be solved are entered as
null array(s) such as XYZ.X = []. The output of the new function is an N 4 array when 2 coordinates are
solved for (which are found from 2 equations in 2 unknowns) containing N target point numbers and X, Y, and
Z coordinates (echoing the input known coordinate in the output array). The output for single coordinate
solutions is an N 5 array, where the 5th column is the estimated standard deviation computed from the least
squares solution of 2 equations in 1 unknown. The redundancy of this solution is weak with only 1 degree of
freedom, but the computed standard deviations can be useful for comparisons and are useful in a global sense
by examining the mean value of the standard deviation for a given data set. Limited numerical tests indicate
that this least squares estimate of the standard deviation of the single coordinate solutions reasonably
represents the object coordinate random error due to image plane error (although it typically underestimates
the error by about 25% on average), but grossly overestimates the error due to random errors in the input
object coordinates. The intersection function determines 3D coordinates given image plane coordinates and
camera parameters from two or more views. A structure array is used for input that allows for compact and
flexible input of camera parameters and image coordinates from multiple cameras or views. The function,
which can handle any number of cameras or views, accommodates for missing or extra image coordinates.
The output of the function is an 8 column numeric array that has the number of rows corresponding to the
number of image points that are seen by at least two views. The first column contains the image target point
number, columns 2 to 4 contain in order X, Y, and Z, columns 5 to 7 contain in order X , Y , and Z , which are
the estimates of the standard deviation of the spatial coordinates from the least squares reduction, and column
8 contains the number of views used in the reduction for each point. As for the single coordinate
computations within singleView, the redundancy is weak (only 1 degree of freedom) for the estimates of the
standard deviations. However, these estimates are still useful, both in a global sense by examining their mean
values, and for identifying possible outliers.

The function resection uses nonlinear least squares to determine camera pointing angles and location. The
camera parameters , , , Xc, Yc, Zc are found, given image coordinates, object coordinates, and camera
interior parameters (c, xp, yp). Since the camera constant is not treated as an unknown, the resection function
works on planar target fields, which can be very useful in aerospace applications. Common target point
numbers are found for the image and object coordinates for the solution, allowing for the image or object
coordinates to be a subset of either. Estimates of the standard deviation of the parameters are returned from
the function, along with the global standard deviation of unit weight. Also returned are the standard
deviations of the differences in the x- and y-image coordinates comparing the input image with the
coordinates computed from the input object and outputted resection parameters using collinearity. Thus a set
of coefficients are passed back to the calling script to help in assessing the quality of the results. The use of a
structure for output allows for echoing of input data that is not solved for, along with the solved for values
and supporting statistics. Since the fields of the output structure include those used in other functions (such as
intersection) the output of the resection function can then be passed directly as input to other functions in the
toolbox for further computations. Any extra fields not required by a particular toolbox function are simply
ignored by that function. Another function (resec_ZW) provides a closed-form solution for resection that

7

does not need initial guesses (developed by Zeng and Wang in 1992). The function needs only object and
image data from 3 target points that are not collinear to determine exterior orientation parameters , , , Xc,
Yc, and Zc. The function, which returns 2 possible sets of exterior parameters, should be called twice to isolate
the correct solution, so that in practice 4-target points are actually required. In the second call to the function,
one of the target points is replaced. The correct solution is then found as the solution common to both sets
within some tolerance. This function should be useful to complement nonlinear least squares resection
functions as well as camera calibration by optimization.

Several functions are included for application and solving of 2D and 3D coordinate transformations. Included
are forward and inverse conformal (conformal2D, conformal2Dinv, conformal3D, conformal3Dinv) and
2D affine transformations (affine2D) as well as linear and nonlinear least squares functions to find the 2D
and 3D conformal (conformal2DLLS, conformal2NLLS, conformal3DNLLS) and 2D affine parameters
(affine2DLLS), along with estimates of their standard deviation, given two sets of coordinates. All functions
utilize target point numbers in column 1 for the input data sets to enable the selection of common target point
numbers for computation. Thus each data set can have either missing or extra target point numbers without
negatively impacting the solution. Nonlinear least squares (NLLS) functions are included for the 2D and 3D
conformal transformations which are able to selectively solve for or treat as constant any or all of the
unknown parameters. Tolerances can also be placed on any of the unknowns to restrict the range of variation
within the NLLS computations. The tolerancing should be used with care since its implementation within the
function may not yield correct estimates of the standard deviations of the various parameters. It is
recommended that if tolerancing leads to a parameter being driven to 1 edge of the hard-clip limits (and that is
the desired result) that the function be called again with the particular parameter entered as a constant (with
the tolerance set to 0) at the value of the hard-clip limit. Additional coordinate transfermation functions can
solve for the 3 Euler angles which will yield a rotation matrix that is the transpose of the rotation matrix of the
3 input angles (TransposeAngles), which is useful for alternative forms of the conformal transformation.
Another function finds an alternate set of parameters (conformalAltSol) consisting of Euler angles,
translation terms, and scale , , , Tx, Ty, Tz, and s that applies when the inverse form of the 3D conformal
transformation utilizes the transpose of the rotation matrix and differencing of the translation terms before,
instead of after, matrix multiplication.

Several functions are included in the PT for computing the 3 3 rotation matrix that is necessary for 3D
coordinate transformations and most photogrammetry computations. The rotation matrix can be computed
using the Euler convention of omega-phi-kappa (rotationMatrix), azimuth-elevation-roll
(rotationMatrixAzElevRoll), and azimuth-tilt-swing (rotationMatrixAzTiltSwing). The functions
Australis2PM and PM2Australis compute either omega-phi-kappa or azimuth-elevation-roll angle sets (as
used by the program Australis developed at the University of Melbourne) given either set of angles as input.
The function rotatationMatrixDuality determines an alternate set (duality) of Euler angles (, ,) that
produces the exact same rotation matrix (to within computer round-off error) as the input angles. This
function is useful in reducing confusion when comparing resection or calibration results which might yield
either set of equivalent angles. It is important to note that the alternate set of angles is not due to the cyclic
nature of the angles (which repeat every 2) since additions of ± 2 actually produce the same angular camera
location at each rotation about the axes. Rather the 3 alternate angles rotate the camera to different angles
about X, Y, and Z while establishing the same final orientation of a camera as the input angles. The output
alternate angles from the function are restricted to ± to reduce confusion due to the cyclic nature of the
angles. The output angles are either degrees or radians, depending on the specified units of the input angles.
Further discussion of this duality property of the rotation matrix can be found in a PE&RS paper entitled "On
the Duality of Relative Orientation" by Tian-Yuan Shih, vol. 56 No.9, Sept. 1990, pp. 1281-1283.

A graphic user interface (GUI) function entitled imageObject makes use of the Gaussian object-image
relationship between focal length, object distance, and image distance to allow any one of the 3 variables to

8

be calculated, given values for the other 2. Note that ideally the camera constant will be equal to the image
distance if the lens is focused at the value of the object distance. The GUI has edit boxes for each of the 3
variables for entry or for the display of its value after calculation. The desired single variable of interest is
determined by selecting its corresponding solve for variable button. The units of the individual variables can
be mixed between mm or inch by selection of their corresponding units radio button. Thus the focal length
can be in mm while the object distance is in inches before calculating the image distance in either mm or inch
depending on which units radio button is selected for image distance. Another pushbutton optionally
produces a plot of image distance versus object distance. Mixed units are also allowed for the plot, with the
units indicated in the plot axes labels. A matching non-GUI function is also included (imageObject2). This
function uses structures for input and output with fields corresponding to focal length, object distance, and
image distance. The variable to be solved for is entered in the proper field as [], while setting the other two
fields to their input value. The returned output structure contains the variable solved for in addition to the two
input known values. Note that unlike the GUI, the units for the matching non-GUI function must be
consistent and not mixed.

The function MatchIDs matches to within a user-set tolerance correct centroids from one array with correct
target IDs of another array (with only approximate centroids). The function is useful for applying the correct
target IDs to automatically generated centroid data, given the correct IDs at approximately the same image
locations (possibly found manually). This is necessary since the automatically generated data may not have
the correct target labels (IDs) needed for further automated image analyses. The two input argument arrays
do not need to be the same size and are not limited to 3 column arrays, but the first 3 columns should be
correctly ordered (pntID, xpix, ypix). Any target IDs found in one file, but not in the other do not appear in
the output matched file. Note that if the absolute difference between centroid doublets is less than the match
tolerance then a match is not made. If that occurs for all rows of the input array for a particular target ID, then
that target ID does not appear in the output array. It is useful to compare the size (number of rows) of input
and output arrays to determine if any target IDs are missing from the output array (for instance, with
size(array,1)). The output array contains all the columns of the input centroid array, but with possibly
corrected target IDs in column 1. Thus any additional data from the file with the correct centroid locations
(such as bounding box data) is echoed through to the output file.

The function centroidMerge provides for the merging of 2 centroid files with the same number of columns.
Multiple centroid files can be merged by invoking the merge function with one of the input files being the
output of a previous run of the function. The merge function is useful for cases in which the contrast varies
significantly across the image so that it may be necessary to determine centroids in segments of the image.
Thus one may have several sets of centroid files with possibly overlapping targets with a mixture of target
IDs. The function echos all data from the first input centroid array. Only those targets of the second centroid
array that do not overlap those in the first (within the tolerance of the merge function) are passed to the output
array. The final output file will then have unique target IDs, but the IDs associated with targets may be as
desired.

The function resectionLocalMin determines 3 alternate sets of exterior orientation (which are possible local
minima instead of the desired global minimum) for resection on nearly planar objects. For this function, the
calibration plate primary lateral dimensions are assumed to be in the X-Y plane with Z constant
(representing uniform depth). One of the concerns of nonlinear least squares solutions such as used in space
resection is that a local rather than a global minimum may be found (see Appendix). Whether or not a local
minimum rather than the global minimum is found is heavily dependent on the initial estimates of the camera
coefficients. For cases with very good initial estimates of the exterior orientation of a camera, the global
minimum is readily found. However, for cases where it may be necessary to set all the initial estimates to
zero (except possibly Zc) it is then found that sometimes a local minimum is found for which the residuals
may be comparable or quite a bit larger than the global minimum. For these local minima the exterior

9

orientation of the camera is incorrect. This effect is especially relevant to wind tunnel and solar sail
applications since quite often targets on the object of interest are found to lie almost in a plane. With the
alternate sets of exterior orientation found with this function, the local minimum can be transformed to the
global minimum, or vice versa (which is useful for testing). Note that the approximations for the locations of
the local minima become worse as the optical axis of the camera moves away from being normal to the
calibration plate.

List of Functions by Category

CALIBRATION
 camcal_fun
 camcal_fun_1
 cameraConstant
 dlt
 dlt0
 distortSolve
 lleast
 lleast3
 RadiomCali_cheby_fun
 RadiomCali_poly_fun
 residual_exterior
 residual_interior1
 residual_interior2

 CENTROID PROCESSING
 centroidMerge
 EpipolarLine_x
 EpipolarLine_y
 EpipolarRelation_x
 EpipolarRelation_y
 matchIDs
 mm2pixel
 pixel2mm

 2D COORDINATE TRANSFORMATION
 affine2D
 affine2DLLS
 conformal2D
 conformal2Dinv
 conformal2DLLS
 conformal2DNLLS

 3D COORDINATE TRANSFORMATION
 conformal3D
 conformal3Dinv
 conformalAltSol
 conformal3DNLLS

 IMAGE PROCESSING

10

 centroid
 centroid_cal_fun
 clicking_target_fun
 displayGrayScale
 findBackground
 grayScaleDisplay
 imagePrelim
 location_target1_fun
 overlayCentroidsBox
 pixelXYselect
 roiPolySelect
 roiSelect

 IMAGING
 collinearity
 distortApply
 distortCorrect
 imageObject
 imageObject2
 XYZ2xy
 xyplot

 PHOTOGRAMMETRY
 intersection
 resection
 resec
 resec3
 resecA
 resec_ZW
 resectionLocalMin
 singleView
 xy2XYZ
 xy2XZ

 ROTATION MATRIX
 Australis2PM
 rotationMatrix
 rotationMatrixAzElevRoll
 rotationMatrixAzTiltSwing
 rotationMatrixDuality
 TransposeAngles
 PM2Australis

 UTILITY
 helpPT
 loadCamStruct
 saveCamStruct

11

Function Document Pages

12

affine2D

Purpose Affine transformation of 2D coordinates

Syntax xtrans = affine2D(xin, Thetaxy, Txy, Sxy)

Arguments xin

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Thetaxy
2-element row or column vector of rotation angles of the x- and y-axis in degrees, + for
clockwise rotations

Txy
translation terms, a row or column vector in Tx, Ty order (2 1 or 1 2) of the form: Txy =
[Tx; Ty] or Txy = [Tx Ty]; The individual translation terms Tx, Ty are inserted into a column
vector for the matrix calculation within the function.

Sxy
2-element row or column vector of the x- and y-axis scale factors, Sx and Sy

Output xtrans

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Remarks The affine transformation does not preserve the shape of a 2D object after transformation.

Different scales for each axis as well as non-perpendicularity of the axes are allowed.

Example script affine2DExample.m

Equations The function affine2D represents the following matrix equation for column vector entry of x,

y:

 where the pseudo rotation matrix mP is given by

y

x
P

t

t

T
T

y
x

Sm
y
x

13

and the zero-padded 2 2 scale matrix is given by

or carrying out the matrix multiplication of mp and S

Note that the non-perpendicularity of the axes is given by

yx

yx
P cossin

sincos
m

y

x

S0
0S

S

y

x

yyxx

yyxx

t

t

T
T

y
x

cosSsinS
sinScosS

y
x

xy

14

affine2DLLS

Purpose linear least squares to determine affine transformation coefficients and estimates of their

standard deviation for 2D coordinates

Syntax [Thetaxy, Txy, Sxy, So] = affine2DLLS(xin, xtrans)

Arguments xin

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

xtrans
N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Output Thetaxy

2 2 array in which the 1st column contains the rotation angles of the x- and y-axis in
degrees, + for CW and the 2nd column contains the least squares estimate of their standard
deviations in x, y order

Txy
2 2 array in which the 1st column contains the x, y translations Tx, Ty and the 2nd column
contains the least squares estimate of their standard deviations, in x, y order

Sxy
2 2 array in which the 1st column contains the x- and y-axis scale factors and the 2nd
column contains the least squares estimate of their standard deviations, in x, y order

Remarks The affine transformation does not preserve the shape of a 2D object after transformation.
Different scales for each axis as well as non-perpendicularity of the axes are allowed.

Example script affine2DLLSExample.m

Equations The function affine2DLLS represents the following matrix equation for column vector entry

of x, y:

 y

x
P

t

t

T
T

y
x

Sm
y
x

15

 where the pseudo rotation matrix mP is given by

and the zero-padded 2 2 scale matrix is given by

or carrying out the matrix multiplication of mp and S

Note that the non-perpendicularity of the axes is given by

With the following substitution

the affine transformation can be written as the following linear equation

With this linear form of equations, linear least squares can be used to determine the a, b, Tx,
and Ty coefficients resulting in 6 unknowns and 2 equations for each coordinate pair. N-
coordinate pairs result in 2N equations in 6 unknowns. The scale and angular terms can then
be found from the a and b coefficients as

yx

yx
P cossin

sincos
m

y

x

S0
0S

S

y

x

yyxx

yyxx

t

t

T
T

y
x

cosSsinS
sinScosS

y
x

xy

yy2

xx1

yy2

xx1

cosSb
sinSb

sinSa
cosSa

y

x

21

21

t

t

T
T

y
x

bb
aa

y
x

2

21
y

1

11
x

2
2

2
2y

2
1

2
1x

b
atan

a
btan

baS

baS

16

The least squares estimates of the standard deviation of the a and b coefficients can be
converted to the scale and angular terms through error propagation of the above 4 equations to
yield the next set of 4 equations (after some algebraic manipulations). Note that the angular
terms, which are in radians, are converted within the function for output in degrees. Also note
that the standard deviations for the translation terms, Tx, Ty are found directly, without
conversion, from the least squares reduction.

2
2

2
2

2
2a

2
2

2
2b

2
2

y

2
1

2
1

2
1a

2
1

2
1b

2
1

x

2
2

2
2

2
2b

2
2

2
2a

2
2

yS

2
1

2
1

2
1b

2
1

2
1a

2
1

xS

ba
ba

ba
ba

ba
ba

ba
ba

17

Australis2PM

Purpose Convert from Australis camera orientation angles to PhotoModeler camera orientation angles

, ,

Syntax OmegaPhiKappa = Australis2PM(Azimuth, Elevation, Roll)

Arguments Azimuth
 angle about Z-axis, taken as + for CW rotation; in degrees

Elevation
 angle about new Y--axis formed after the azimuth rotation, taken as + for CCW; in degrees

Roll
 angle about the new X-axis formed after the azimuth and Elevation rotations, taken as + for

CCW rotation; in degrees

Output OmegaPhiKappa

output is a 1 × 3 array of angles in the order , ,

Remarks Order of application of angles on input is Azimuth, Elevation, Roll. On output order is , ,

.

Example script Australis2PMExample.m

Equations

where = azimuth, = elevation, and = roll.

sinm
coscosm

cossinm
coscosm

sinsincossincosm
sincoscossinsinm

sincosm
cossinsinsincosm

coscossinsinsinm

33

32

31

23

22

21

13

12

11

11

211

31
1

33

321

m
mtan

msin

m
mtan

18

 where , , equal the Euler angles omega, phi, kappa. Note that

the 4-quadrant inverse tangent function atan2(y, x) is used instead of the 2-quandrant
atan(y/x) (which would have limited computed angles to 90 instead of 180) for the
arctangent computations within the function.

19

camcal_fun

Purpose Determination of camera orientation parameters based on the interactive use of least squares

estimation for the exterior orientation parameters and optimization search scheme for some
major interior parameters

Syntax [orien]=camcal_fun(camformat,approrien,xyimag,xyzobj,corr_no)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

approrien
1-column array of the approximate camera orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc in inches

corr_no
The iteration number for lens distortion correction, for example, corr_no = 1 for small lens
distortion

Output orien

1-column array of the improved camera orientation parameters by the optimization method
)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

Remarks This function alternatively uses non-linear least squares estimation for the exterior orientation

parameters and the Matlab function ‘fminsearch’ for the major interior orientation parameters
)K,S/S,y,x(c, 1vhpp . The weaker parameters),P,P,(K 212 are set at zero in

minimization process since the Matlab function ‘fminsearch’ does not give a converged
solution when they are included in global minimization along with other parameters.

Example script camcalExample.m

Equations The detailed description of the optimization method for camera calibration/orientation is

given in the following reference.

Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971

20

camcal_fun_1

Purpose Determination of camera orientation parameters using multiple-step optimization

Syntax [orien]=

camcal_fun_1(xyimag,xyzobj,camformat,ex_orien_0,in_orien1_0,in_orien2_0)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

ex_orien_0
1-column array of the approximate exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

in_orien1_0
1-column array of the first subset of the approximate interior orientation parameters,

)K,S/S,y,x(c, 1vhpp

in_orien2_0
1-column array of the second subset of the approximate interior orientation parameters,

)P,P,(K 212

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc in inches

Output orien

1-column array of the improved camera orientation parameters by the optimization method
)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

Remarks This function uses the multiple-step optimization method that alternatively calls the Matlab

function ‘fminsearch.m’ for optimization of the exterior orientation parameters
)Z,Y,Xκ,φ,ω,(ccc and some major interior orientation parameters)S/S,y,x(c, vhpp .

After these parameters are given, the weaker parameters),P,P,(K 212 are determined by
calling the Matlab function ‘fminsearch.m’ once for additional optimization. This function
does not need non-linear least squares estimation in ‘camcal_fun.m’ that may fails in certain
case. However, its accuracy is not high.

Example script camcal_1Example.m, camcal_1 Example OV10

21

Equations The detailed description of the optimization method for camera calibration/orientation is
given in the following reference.

Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971

22

cameraConstant

Purpose Finds camera constant (photogrammetric principal distance) given image data at 2 or more

known Z-displacements of a calibration plate (which can be planar) given camera parameters,
image data, and X, Y, Z object space data

Syntax c = cameraConstant(cam, XYZ)

Arguments cam
 structure array corresponding to N views of the (known) displaced calibration plate with at

least the following fields:

cam(N).c
start value for principal distance c (or camera constant), usually mm

 cam(N).xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

cam(N).yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

cam(N).omega
start angle in degrees about X-axis, taken as + for CCW rotation when viewing down the
axis toward the origin
.
cam(N).phi
start angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the
axis toward the origin

cam(N).kappa
start angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the
axis toward the origin

cam(N).Xc
start X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam(N).Yc
start Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam(N).Zc
start Z-coordinate of camera perspective center, always same units as XYZ object coordinates;
must accurately reflect the differential displacement in Z.

cam(N).xymm
M X 3 numeric array containing [pntNum xmm ymm] for M image coordinates seen by the
camera for each view N of the displaced calibration plate

XYZ
M × 4 numeric array of the form below (with units same as perspective center location, Xc, Yc,
Zc):

23

pt1 X1 Y1 Z1
pt2 X2 Y2 Z2
.
.
.
ptM XM YM ZM

Output c
 structure with fields as follows:

c.c
principal distance c (or camera constant), usually mm as found by the function

 c.cstd
standard deviation of c computed from least squares

Reference An improved and less restrictive version of a technique presented in the following reference:

Burner, A. W.; Radeztsky, R. H.; Liu, Tianshu: Videometric Applications in Wind Tunnels,
SPIE International Symposium on Optical Science, Engineering, and Instrumentation,
Videometrics V, 30-31 July 1997, SPIE vol. 3174 pp. 234-247,
http://hdl.handle.net/2002/11930

Remarks The function cameraConstant should be a useful complement to optimization for camera

calibration. A calibration plate is oriented approximately with its Z-axis pointing toward the
camera. The plate (or equivalently the camera) is then translated known distances in Z.
Resections are made at each known displacement with an assumed value of the camera
constant (also called photogrammetric principal point). The correct camera constant is
approximated by the product of the assumed camera constant and the slope of Zc from
resection versus the known Z-displacements. For more than two Z-displacements, least
squares can be used to determine c and an estimate of its standard deviation. The Z-axis of
the calibration plate should be aligned approximately with the translation axis. However,
resection from within the function determines and partially accounts for any slight angle
changes or displacement in X and Y while the plate is being translated. The special case of a
single image of a 3-step 54-target calibration plate is also allowed. For this special case all 54
targets must be seen. For this special case a step height of 2 inches is hard-coded into the
function. The precision for this special case is much worse than for instance, 3 displacements
of a cal plate. This special case option is mainly offered for situations in which it is the only
data available. Also note there is only one degree of freedom for the 3-step plate single image
case so that the estimate of the standard deviation from least squares is not as reliable as for
instance, the case with 5 Z-displacements.

Example script cameraConstantExample.m with input files ‘Sample Files\XYZ3.txt’ and ‘Sample Files\

XYZ4txt’

Equations The camera constant is found from the following expression

where c0 is the current value of the camera constant and slope is determined by least squares
from the following linear relationship

where Zc are the input values of the Z-locations of the camera’s perspective center at each Z-
displacement of the calibration plate. These values are passed to the function within the input
argument cam(N).Zc. The actual values of Zc passed are not critical (other than serving as

slopecc 0

bslopeZZ rc

24

start values for resection). However the difference between the values of Zc is critical as they
partially determine the value of slope. The term Zr represents the computed values of Zc
returned from the resection function that is called internally within the function. The term b is
the y-intercept and is ignored within the function. The function iterates to determine the best
estimate of c since the results for the resection function, which is called from within the
cameraConstant function, are dependent on the value of c that is passed to it as an input
argument.

An estimate of the standard deviation of c is found within the least squares reduction as

where V is a column vector of residuals, df is the degrees of freedom, S0 is the standard
deviation of unit weight, cov is the covariance matrix, covdiag represents the diagonal elements
of the covariance matrix, and slope and c are the estimates of the standard deviation of
slope and c.

slopecc

covSslope

AAcov

1
1
1Z

A

df
VVS

ZbslopeZ
V

0

diago

1T

r

T

o

cr

25

centroid

Purpose computes gray scale centroid for a region of interest (roi) of a digital image

Syntax xy = centroid(img, x, y, delx, dely)
 xy = centroid(img, x, y, delx, dely, Gback)

In the first syntax above the gray scale centroid is computed for a region of interest (roi) of
the digital image img, which would normally 1st be loaded from a file with imread, such as
img = imread(fileName) where fileName is a string variable containing the path (if
necessary) and file name where the image resides

The second syntax adds the optional input argument Gback

Arguments img
 an array containing an image

 x

x-value of centered location in pixels to use for computation of centroid of gray scale

y
y-value of centered location in pixels to use for computation of centroid of gray scale

delx
half-width of area of pixels to be displayed; full-width = 2 delx; delx = 8 yields a full-
width of 16

dely
half-height of area of pixels to be displayed; full-height = 2 dely; dely = 8 yields a full-
height of 16

Gback
optional input argument to be subtracted from every pixel in the roi before computing the gray
scale centroid; usually found with function findBackground

Output xy
1 2 vector containing x- and y-value of gray scale centroid. example:

 xy =

 131.4752 310.6409

Example script centroidExample.m with input files ‘Sample Files\image1.tif’, ‘Sample

Files\centroids1.txt’, ‘Sample Files\image2.tif’, and ‘Sample Files\centroids2.txt’.

Remarks Use img = imread(fileName) where fileName is a string variable containing the path (if

necessary) and file name where the image of interest resides. imshow(img) can be used to
put the image for the file in a figure before calling function pixelXYselect if it is necessary to
interactively select the target locations for use in a loop to compute centroids. Note that
centroid only computes 1 centroid at a time and must be invoked from within a loop for gray
scale centroids of multiple locations (see centroidExample.m for example of this). Note that

26

the standard designation of horizontal pixel location as x and vertical pixel location as y in the
usual (x, y) order can lead to confusion when dealing with matrices which are in (row,
column) order since the x-value of the pixel location actually corresponds to columns of the
matrix representing the digital image, whereas the y-value corresponds to rows. Thus the
matrix in terms of x, y has the order (y, x). To reduce the confusion associated with this
ordering, for the functions where it is natural to input arguments in x, y order, the code is
written to convert internally to rows and columns for working with the matrices before
converting back to (x, y) order for output if necessary.

Equations

i j
ij

i j
ij

i j
ij

i j
ij

G

Gj
y

G

Gi
x

where and are the location of the centroid in pixels, Gij is the grey scale at each (i, j) pixel
location, i and j are the locations in pixels in the x and y directions respectively over some
region of interest that is typically very much smaller than the image format. The denominator
is simply the sum of the grey scale in the region of interest.

x y

27

centroid_cal_fun

Purpose Centroid calculation of a selected image area

Syntax [xc,yc]=centroid_cal_fun(A)

Arguments A

local image area selected

Output xc, yc
two-column array (xc, yc) of target centroids in pixels

Remarks It is assumed in this function that targets in image have higher intensity than background. For

dark targets on lighter background, image should be inverted before the use of this function.

Called by locating_target1_fun.m

Equations The target centroid)y,x(cc is defined as

)y,x(I/)y,x(Iyy

)y,x(I/)y,x(Ixx

iiiiic

iiiiic
,

where)y,x(I ii is the gray level on an image. When a target contains only a few pixels and
the target contrast is not high, the centroid calculation using the above definition may not be
accurate.

28

centroidMerge

Purpose merges 2 centroid arrays with the same number of columns into a single centroid array

Syntax centMerge = centroidMerge(centA, centB, tol)

Arguments centA

at least an N 3 array ([pnt xpix ypix …] per row). May have been manually created via
mouse or with GUI imagePrelim. All rows of centA are echoed in output array centMerge.
(centA and centB must have same number of columns)

pt1 x1 y2 …
pt2 x2 y2 …
.
.
.
ptN xN yN …

centB
at least N 3 array ([pnt xpix ypix …] per row). Target centroid data from centB within
location tolerance tol are not appended to the output array centMerge. Target centroid data
from centB that is outside tolerance tol are appended to centA, but with new target IDs that
start from the maximum target ID of centA + 1. (centA and centB must have same number
of columns)

 tol
tolerance in pixels used for match criteria between centroid doublets in arrays centA and
centB.

Output centMerge
N 3 array ([pnt xpix ypix …] per row) with all targets (rows) of centA and targets (rows) of
centB that are not approximately located at the same locations as centA.

Remarks The function centroidMerge is useful for cases in which the contrast varies significantly

across the image so that it may be necessary to determine centroids in segments of the image.
Thus one may have several sets of centroid files with possibly overlapping targets. The
function centroidMerge echos all data from the 1st input centroid array centA. Only those
targets of the 2nd centroid array centB that do not overlap those in centA (within the tolerance
tol) are passed to the output array. For multiple centroid arrays one can invoke the function
again using the output of a previous run of centroidMerge (with partially merged array
output).

Example script centroidMergeExample.m with input files ‘Sample Files\centa.txt’, ‘Sample

Files\centb.txt’, ‘Sample Files\centc.txt’, and ‘Sample Files\cal1.bmp’

29

clicking_target_fun

Purpose Determination of target centroids by clicking high-contrast targets

Syntax [xc,yc]=clicking_target_fun(imag,No_targets,bk_size_0)

Arguments imag

Image name after loading an image file (gray or rgb image)

No_targets
total number of targets to be selected

bk_size_0
block size for initial searching a target (such as 10 pixels)

Output xc, yc

two-column array (xc, yc) of target centroids in pixels

Remarks It is assumed in this function that targets in image have higher intensity than background. For

dark targets on lighter background, image should be inverted before the use of this function.

Example script clicking_targetExample.m

Equations The target centroid)y,x(cc is defined as

)y,x(I/)y,x(Iyy

)y,x(I/)y,x(Ixx

iiiiic

iiiiic
,

where)y,x(I ii is the gray level on an image. When a target contains only a few pixels and
the target contrast is not high, the centroid calculation using the above definition may not be
accurate.

30

collinearity

Purpose Creates image coordinates given camera parameters and object coordinates

Syntax xymm = collinearity(cam, XYZ)

Arguments cam
 structure with fields as follows:

cam.c
principal distance c (or camera constant), usually mm

 cam.xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

cam.yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

cam.m
3 3 rotation matrix, usually from function rotationMatrix

cam.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

XYZ
filename string for a file (like 'fileName') containing N × 4 array or the N X 4 array itself.
The XYZ array (or text in file) is of the form below (with units same as perspective center
location, Xc, Yc, Zc):

pt1 X1 Y2 Z3
pt2 X2 Y2 Z2
.
.
.
ptN XN YN ZN

Output xymm
output is an N × 3 array with point numbers taken from XYZ array. The output array xymm
is of the form:

pt1 x1 y2
pt2 x2 y2
.
.
ptN xN yN

31

Remarks The collinearity equations are the most fundamental and important equations in

photogrammetry. The collinearity function is very useful for modeling and to create image
coordinates for test cases. Note that it is sometimes common to use different units for the
photogrammetric principal distance (c) and point (xp, yp) such as mm, than are used for the
location of the camera perspective point (Xc, Yc, Zc) and object coordinates (X, Y, Z), which
may be in units of inches for example. The units of the image coordinates are always in the
same units as c and xp, yp and are independent of the units used for the location of the
perspective center and object coordinates. This mixing of disparate units is permissible due to
the ratio of the numerator and denominator of the collinearity equations (see Equations
below) since the units of the perspective center location and object coordinates appear in both
and cancel each other out. The units of the output image coordinates are then determined
entirely from c (along with xp, yp), which multiplies the ratio of the numerator and
denominator.

Example script collinearityExample.m with input files ‘Sample Files\XYZ1.txt’ and ‘Sample

Files\cam1.txt’

Equations
c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx

c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy

32

conformal2D

Purpose Conformal transformation of 2D coordinates

Syntax xtrans = conformal2D(xin, theta, Txy, s)

Arguments xin

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

theta
rotation angle in degrees, positive if clockwise

Txy
translation terms, a row or column vector in Tx, Ty order (2 1 or 1 2) of the form: Txy =
[Tx; Ty] or Txy = [Tx Ty]; The individual translation terms Tx and Ty are inserted into a
column vector for the matrix calculation within the function.

s
scalar scale

Output xtrans

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Remarks The conformal transformation preserves the shape of a 2D object after transformation. This

form of the transformation represents the first matrix form in Equations below. By passing
the negative of the angle theta () to the function an alternate form of the transform can be
invoked (see 2nd form of m below).

Example script conformal2DExample.m

Equations The function conformal2D represents the following matrix equation for column vector entry

of x, y:

 where
y

x

t

t

T
T

y
x

ms
y
x

33

passing negative theta, , to the function is equivalent to applying the transpose of m in the
transformation (equal to the inverse since m is orthogonal), in which case an alternative form
of the conformal transformation is then invoked with rotation matrix m as follows:

cossin
sincos

m

cossin
sincos

m

34

conformal2Dinv

Purpose Conformal transformation of 2D coordinates

Syntax xtrans = conformal2Dinv(xin, theta, Txy, s)

Arguments xin

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

theta
rotation angle in degrees, positive if clockwise

Txy
translation terms, a row or column vector in Tx, Ty order (2 1 or 1 2) of the form: Txy =
[Tx; Ty] or Txy = [Tx Ty]; The individual translation terms Tx and Ty are inserted into a
column vector for the matrix calculation within the function.

s
scalar scale

Output xtrans

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Remarks The conformal transformation preserves the shape of a 2D object after transformation. This

form of the transformation represents the first matrix form in Equations below. By passing
the negative of the angle theta () to the function an alternate form of the transform can be
invoked (see 2nd form of m below).

Example script conformal2DinvExample.m

Equations The function conformal2Dinv represents the following matrix equation for column vector

entry of x, y:

 where

Tyy
Txx

ms
y
x T1

t

t

35

passing negative theta, , to the function is equivalent to applying the transpose of m in the
transformation above (note that the transpose of m is equal to the inverse since m is
orthogonal), in which case an alternative form of the conformal transformation is then
invoked with rotation matrix m as follows:

cossin
sincos

m

cossin
sincos

m

36

conformal2DLLS

Purpose linear least squares to determine conformal transformation coefficients and estimates of their

standard deviation for 2D coordinates

Syntax [theta, Txy, s, So] = conformal2DLLS(xin, xtrans)

Arguments xin

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

xtrans
N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Output theta

1 2 array in which the 1st column contains the rotation angle in degrees, + for CW and the
2nd column contains the least squares estimate of the standard deviation

Txy
2 2 array in which the 1st column contains the x, y translations Tx, Ty and the 2nd column
contains the least squares estimate of their standard deviations, in x, y order

s
1 2 array in which the 1st column contains the scale factor and the 2nd column contains the
least squares estimate of the standard deviation

Remarks The conformal transformation preserves the shape of a 2D object after transformation.

Example script conformal2DLLSExample.m

Equations The function conformal2DLLS represents the following matrix equation for column vector

entry of x, y:

where the rotation matrix m is given by

y

x

t

t

T
T

y
x

ms
y
x

37

entering the terms of the rotation matrix m, the equations become

With the following substitution

The conformal transformation can be written as the following linear equation

With this linear form of equations, linear least squares can be used to determine the a, b, Tx,
and Ty coefficients resulting in 4 unknowns and 2 equations for each coordinate pair. N-
coordinate pairs results in 2N equations in 4 unknowns. The scale and angular term can then
be found from the a and b coefficients as

The least squares estimates of the standard deviation of the a and b coefficients can be
converted to the scale and angular terms through error propagation of the above 2 equations to
yield (after some algebraic manipulations) the next set of 2 equations. Note that the angular
term, which is in radians, is converted within the function for output in degrees. Also note
that the standard deviations for the translation terms, Tx, Ty are found directly, without
conversion, from the least squares reduction.

cossin
sincos

m

y

x

t

t

T
T

y
x

cosssins
sinscoss

y
x

sinsb
cossa

y

x

t

t

T
T

y
x

ab
ba

y
x

a
btan

bas

1

22

22

2
a

22
b

2

22

2
b

22
a

2

s

ba
ba

ba
ba

38

conformal2DNLLS

Purpose non-linear least squares (NLLS) to determine conformal transformation coefficients and

estimates of their standard deviation for 2D coordinates

Syntax Parameter = conformal2DNLLS(xin, xtrans,Start)

Arguments xin

N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

xtrans
N × 3 array of the form below:

pt1 x1 y1
pt2 x2 y2
.
.
.
ptN xN yN

Start
input start-value structure with the following fields
Start.theta - start value for theta (degrees)
Start.thetaTol - tolerance for theta within NLLS; for all tolerances [] indicates no tolerance
or free to vary, 0 indicates treat the parameter as a constant (do not solve for parameter), and a
finite value sets a hard clip range of parameter ± tolerance within the non-linear least squares
function
Start.Tx; Start.TxTol translation in x-direction; tolerance
Start.Ty; Start.TyTol translation in y-direction; tolerance
Start.s; Start.sTol scale; tolerance

Output Parameter

structure with the following fields:
Parameter.theta - rotation angle in degrees, + for CW
Parameter.Tx – x-translation of transformation Tx
Parameter.Ty – y-translation of transformation Ty
Parameter.s- scale s
Parameter.thetastd - estimated standard deviation from NLLS
Parameter.Txstd - estimated standard deviation from NLLS
Parameter.Tystd - estimated standard deviation from NLLS
Parameter.sstd - estimated standard deviation from NLLS

So
scalar which contains the least squares standard deviation of unit weight

39

Remarks The conformal transformation preserves the shape of a 2D object after transformation. The

non-linear version requires start values for the iterations necessary for the solution. Note that
unlike the linear least squares reduction form of the conformal transformation equations found
in conformal2DLLS, the estimated standard deviations from conformal2DNLLS do not
require error propagation from the linear a, b coefficients. Also note that this function can
selectively solve for any or all of the parameters, theta, Tx, Ty, s, or can use tolerances to
limit the variation of those parameters within the non-linear least squares reduction. Note that
the hard-clip nature of the tolerances must be used with care since the outputted standard
deviations can be misleading. If the outputted parameter is driven to either hard-clip edge, to
find out the actual statistics at that value of the parameter the function should be invoked
again with the clipped value of the parameter passed as a constant (Start.parameterTol = 0).

Example script conformal2DNLLSExample.m

Equations The function conformal2DNLLS represents the following matrix equation for column vector

entry of x, y:

where the rotation matrix m is given by

entering the terms of the rotation matrix m, the equations become

y

x

t

t

T
T

y
x

ms
y
x

cossin
sincos

m

y

x

t

t

T
T

y
x

cosssins
sinscoss

y
x

40

Conformal3D

Purpose Conformal 3D transformation of coordinates

Syntax X2 = conformal3D(X1, m, Txyz, s)

Arguments X1

N × 4 array of the form below:

pt1 X1 Y2 Z3
pt2 X2 Y2 Z2
.
.
.
ptN XN YN ZN

m
3 3 rotation matrix, usually from function rotationMatrix

Txyz
translation terms, a row or column vector in X, Y, Z order (3 1 or 1 3) of the form: Txyz =
[Tx; Ty; Tz] or Txyz = [Tx Ty Tz]; The individual translation terms Tx, Ty, and Tz are
inserted into a column vector for the matrix calculation within the function.

s
scalar scale

Output X2

N × 4 array of the form below:

pt1 X1 Y2 Z3
pt2 X2 Y2 Z2
.
.
ptN XN YN ZN

Remarks The conformal transformation preserves the shape of a 3D object after transformation. This

form of the transformation represents the first matrix form in Equations below. By passing
the transpose of m to the function an alternate form of the transform can be invoked (see 2nd
matrix equation below). The functions conformal3D and conformal3Dinv make up a
transform pair.

Example script conformal3DExample.m

Equations

The function conformal3D represents the following matrix equation for column vector entry
of X, Y, Z:

 z

y

x

t

t

t

T
T
T

Z
Y
X

ms
Z
Y
X

41

passing the transpose of m (denoted by m’ in MATLAB) to the function is equivalent to:

 z

y

x
T

t

t

t

T
T
T

Z
Y
X

ms
Z
Y
X

42

conformal3Dinv

Purpose Inverse conformal 3D transformation of coordinates

Syntax Xout = conformal3Dinv(Xin, m, Txyz, s)

Arguments XIN

N × 4 array of the form below:

pt1 X1 Y1 Z1
pt2 X2 Y2 Z2
.
.
.
ptN XN YN ZN

m
3 3 rotation matrix, usually from function rotationMatrix

Txyz
translation terms, a row or column vector in X, Y, Z order (3 1 or 1 3) of the form: Txyz =
[Tx; Ty; Tz] or Txyz = [Tx Ty Tz]; The individual translation terms Tx, Ty, and Tz are
inserted into a column vector for the matrix calculation within the function.

s
scalar scale

Output Xout

N × 4 array of the form below:

pt1 X1 Y1 Z1
pt2 X2 Y2 Z2
.
.
ptN XN YN ZN

Remarks The inverse conformal transformation preserves the shape of a 3D object after transformation.

The functions conformal3D and conformal3Dinv make up a transform pair. This form of
the transformation represents the first matrix form in Equations below. By passing the
transpose of m to the function an alternate form of the inverse transform can be invoked (see
2nd matrix equation below).

Example script conformal3DinvExample.m

Equations The function conformal3Dinv represents the following matrix equation for column vector

entry of X, Y, Z:

 z

y

x
T1

t

t

t

TZ
TY
TX

ms
Z
Y
X

43

passing the transpose of m (denoted by m’ in MATLAB) to the function is equivalent to:

z

y

x
1

t

t

t

TZ
TY
TX

ms
Z
Y
X

44

conformal3DNLLS

Purpose non-linear least squares (NLLS) to determine conformal transformation coefficients and

estimates of their standard deviation for 3D coordinates

Syntax Parameter = conformal3DNLLS(XYZ1, XYZ2, Start)

Arguments XYZ1

N × 4 array of the form below:

pt1 X1 Y1 Z1
pt2 X2 Y2 Z1
.
.
.
ptN XN YN Z1

XYZ2
N × 4 array of the form below:

pt1 X1 Y1 Z1
pt2 X2 Y2 Z1
.
.
.
ptN XN YN Z1

Start
input start-value structure with the following fields

Start.omega
start angle about X, + CCW, degrees

Start.omegaTol
tolerance for omega within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Start.phi
start angle about Y, + CCW, degrees

Start.phiTol
tolerance for within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Start.kappa
start angle about Z, + CCW, degrees

Start.kappaTol

45

tolerance for within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Start.Tx
start value for translation in X-direction, same units as XYZ1 and XYZ2

Start.TxTol
tolerance for Tx within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Start.Ty
start value for translation in Y-direction, same units as XYZ1 and XYZ2

Start.TyTol
tolerance for Ty within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Start.Tz
start value for translation in Z-direction, same units as XYZ1 and XYZ2

Start.TzyTol
tolerance for Tz within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Start.s
start value for scale s

Start.sTol
tolerance for s within NLLS; for all tolerances [] indicates no tolerance or free to vary, 0
indicates treat the parameter as a constant (do not solve for parameter), and a finite value sets
a hard clip range of parameter ± tolerance within the non-linear least squares function

Output Parameter

structure with the following fields:

Parameter.omega
angle about X, + CCW, degrees

Parameter.phi
angle about Y, + CCW, degrees

Parameter.kappa
angle about Z, + CCW, degrees

Parameter.Tx
value for translation in X-direction, same units as XYZ1 and XYZ2

Parameter.Ty
value for translation in Y-direction, same units as XYZ1 and XYZ2

Parameter.Tz

46

value for translation in Z-direction, same units as XYZ1 and XYZ2

Parameter.s
scale s

Parameter.omegastd
estimated standard deviation from NLLS

Parameter.phistd
estimated standard deviation from NLLS

Parameter.kappastd
estimated standard deviation from NLLS

Parameter.Txstd
estimated standard deviation of Tx from NLLS

Parameter.Tystd
estimated standard deviation of Ty from NLLS

Parameter.Tzstd
estimated standard deviation of Tz from NLLS

Parameter.sstd
estimated standard deviation of s from NLLS

Parameter.So
least squares standard deviation of unit weight

Reference Elements of Photogrammetry, Paul R. Wolf, 2nd edition, McGraw-Hill, p. 593-596, but
modified for the non-transpose form of the 3D conformal transformation

Remarks The conformal transformation preserves the shape of a 3D object after transformation. The
function can be used to selectively solve for any or all of the parameters, omega, phi,
kappa, Tx, Ty, Tz, or s, or can use tolerances to limit the variation of those parameters
within the non-linear least squares reduction. Note that the hard-clip nature of the tolerances
must be used with care since the outputted standard deviations can be misleading. If the
outputted parameter is driven to either hard-clip edge, to find out the actual statistics at that
value of the parameter the function should be invoked again with the clipped value of the
parameter passed as a constant (Start.parameterTol = 0).

Example script conformal3DNLLSExample.m

Equations The function conformal3DNLLS represents the following matrix equation for column vector

entry of X, Y, Z:

The function TransposeAngles can be used to establish a new set of T, T, T if the form of
the conformal transformation is desired which utilizes the transpose of the rotation matrix.

z

y

x

t

t

t

T
T
T

Z
Y
X

ms
Z
Y
X

47

The function conformal3dNLLS uses the linearization method (sometimes called the Gauss,
Gauss-Newton, or Taylor series method) to solve the non-linear least squares problem. For
this method, the 3D conformal equations above are linearized using Taylor’s theorem. This
linearization yields 3 equations (1 each for X, Y, and Z in the 2 coordinate systems) for each
3D point containing initial approximations and products of the partial derivatives and the
corrections to be solved for by linear least squares and applied iteratively to the initial
approximations. Using the notation of Wolf’s 2nd edition of Elements of Photogrammetry, but
without using the transpose of the rotation matrix m to define the 3D conformal
transformation, the following matrix equation applies for a single point. The final estimates
of the parameters are found from the over-determined set of equations representing all the 3D
locations with common target point numbers in both XYZ data sets (3 equations for each 3D
location). Note that the correction terms ds, d , d , d , dTx, dTy, dTz are solved for, not the
parameters s, , , , Tx, Ty, Tz themselves. During each iteration of the non-linear least
squares the correction terms found by linear least squares are added to the initial start values
of each parameter. After several iterations the corrections approach zero and the final iterated
solutions for the parameters are determined. To avoid the possibility of an endless loop, the
function uses a fixed number of 20 iterations for exit from the function instead of testing for
corrections that approach negligibly small values.

where the a-terms are given by:

z

y

x37363534333231

27262524232221

17161514131211

z333231t

y232221t

x131211t

dT
dT
dT
d
d
d
ds

aaaaaaa
aaaaaaa
aaaaaaa

TZmYmXmsZ
TZmYmXmsY
TZmYmXmsX

sincosZsinsinYcosXsa
ZmYmsa

ZmYmXma
ZmYmXmsa

sincoscosZsincossinYsinsinXsa
ZmYmsa

ZmYmXma
aaaaaaa

1aaa
ZmYmXmsa

coscoscosZcoscossinYcossinXsa
ZmYmsa

ZmYmXma

33

323332

33323131

13121124

23

222322

23222121

36353427251716

372615

23221214

13

121312

13121111

48

the estimated standard deviations of the correction terms (and hence the parameters
themselves) are given by

where V is a column vector of residuals, S0 is the standard deviation of unit weight, df is the
degrees of freedom, cov is the covariance matrix, covdiag represents the diagonal elements of
the covariance matrix, A is the matrix of a coefficients, and s , , , , Tx , Ty , Tz are the
estimates of the standard deviation of s, , , , Tx, Ty, Tz from least squares.

diago

z

y

x

1T

T

o

z333231t

y232221t

x131211t

covS

T
T
T

s
AAcov

df
VVS

TZmYmXmsZ
TZmYmXmsY
TZmYmXmsX

V

49

ConformalAltSol

Purpose returns parameters A, A, A, TxA, TyA, TzA, sA for use in the alternate form of the 3D conformal

transformation

Syntax Alternate = ConformalAltSol(Parameter)

Arguments Parameter
 structure with at least the following fields:

 Parameter.omega
 angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis

toward the origin

Parameter.phi
 angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis

toward the origin

Parameter.kappa
 angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis

toward the origin

Parameter.Tx
X-translation of transformation Tx

Parameter.Ty
Y-translation of transformation Ty

Parameter.Tz
Z-translation of transformation Tz

Parameter.s
scale s

Output Alternate

structure with the following fields:

Alternate.omega

 angle in degrees about X-axis, A taken as + for CCW rotation when viewing down the axis
toward the origin

Alternate.phi

 angle in degrees about Y-axis, A taken as + for CCW rotation when viewing down the axis
toward the origin

Alternate.kappa

 angle in degrees about Z-axis, A taken as + for CCW rotation when viewing down the axis
toward the origin

Alternate.Tx
X-translation of transformation TxA

50

Alternate.Ty
Y-translation of transformation TyA

Alternate.Tz
Z-translation of transformation TzA

Alternate.s
scale sA

Remarks This function can be useful for cases where the solution is desired in terms of the transpose of

the rotation matrix (see second matrix equation below), but the solution in hand is in terms of
the rotation matrix without transpose as in the first matrix equation below (for example when
using the function conformal3DNLLS). The function TransposeAngles is used by the
function to find the angles A, A, A.

Example script ConformalAltSolExample.m

Equations The input structure Parameter contains the parameters , , , Tx, Ty, Tz, and s that are used

in the following form of the 3D conformal coordinate transformation, with m being the
rotation matrix formed from the angles , ,

the function conformalAltSol can be used to find an alternate set of parameters A, A, A,
TxA, TyA, TzA, sA that yield the same output coordinate transformation of X, Y, Z to Xt, Yt, Zt, but
with the following inverse form, with mA

T being the transpose of the rotation matrix formed
from the angles A, A, A

The relationships between the 2 sets of parameters are

z

y

x

t

t

t

T
T
T

Z
Y
X

ms
Z
Y
X

zA

yA

xA
T
A

1
A

t

t

t

TZ
TY
TX

ms
Z
Y
X

z

y

x
T

zA

yA

xA

T
A

A

T
T
T

m
s
1

T
T
T

mm
s
1s

51

the output angles A, A, A are found with the function TransposeAngles that uses the
following equations, where the m-terms are from the rotation matrix formed from the input
angles , ,

11

121
A

33

231
A

13
1

A

m
mtan

m
mtan

msin

52

displayGrayScale

Purpose displays the gray scale of the selected target location of an image on the MATLAB Command

Window

Syntax displayGrayScale(img, x, y)

displayGrayScale(img, x, y, delx, dely)
 displayGrayScale(img, x, y, delx, dely, Gback)

In the 1st simplest calling syntax above the gray scale is displayed for target location
selections on the image img, which would normally 1st be loaded from a file with imread,
such as img = imread(fileName) where fileName is a string variable containing the path (if
necessary) and file name where the image of interest resides. For this 1st syntax delx = dely
= 8 ; Gback = 0 by default. This syntax requires 3 input arguments.

The 2nd syntax has the arguments delx and dely as inputs for a total of 5 input arguments.

The 3rd syntax adds the optional input argument Gback

Arguments img
 an array containing an image

 x

x-value of centered location in pixels to use for display of gray scale

y
y-value of centered location in pixels to use for display of gray scale

delx
half-width of area of pixels to be displayed; full-width = 2 delx; delx = 8 yields a full-
width of 16

dely
half-height of area of pixels to be displayed; full-height = 2 dely; dely = 8 yields a full-
height of 16

Gback
gray scale to be subtracted from every pixel in the display area before displaying on the
screen

Output display of gray scale to MATLAB Command Window

Example script displayGrayScaleExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample

Files\image2.tif’.

Remarks Use img = imread(fileName) where fileName is a string variable containing the path (if

necessary) and file name where the image of interest resides. imshow(img) can be used to
put the image for the file in a figure before calling function pixelXYselect if it is necessary to
interactively select the target locations for display before invoking displayGrayScale. Note
that displayGrayScale only displays one area at a time and must be invoked from within a
loop for gray scale displays of multiple locations (see displayGrayScaleExample.m for

53

example of this). Note that the standard designation of horizontal pixel location as x and
vertical pixel location as y in the usual (x, y) order can lead to confusion when dealing with
matrices which are in (row, column) order since the x-value of the pixel location actually
corresponds to columns of the matrix representing the digital image, whereas the y-value
corresponds to rows. Thus the matrix in terms of x, y has the order (y, x). To reduce the
confusion associated with this ordering, for the functions where it is natural to input
arguments in x, y order, the code is written to convert internally to rows and columns for
working with the matrices before converting back to (x, y) order for output if necessary.

54

distortApply

Purpose Applies distortion to image coordinates (in mm)

Syntax xymmDist = distortApply(xymm, camDistort)

Arguments xymm

an N × 2 (without target numbers) or N × 3 array with target numbers. If N × 2, target
numbers are taken as sequential from 1:Nrows. If xymm is a character variable representing
the name and path to a file, than the array xymm is loaded from that text file assuming a 2 or
3 column array. The N × 3 version of the array xymm is of the form:

pt1 x1 y2
pt2 x2 y2
.
.
ptN xN yN

camDistort

 structure with fields as follows:

camDistort.x0
x-value of point of symmetry for distortion (xs in Equations section below), usually mm

 camDistort.y0
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm

camDistort.K1
3rd order radial distortion coefficient (mm-2)

camDistort.K2
5th order radial distortion coefficient (mm-4)

camDistort.K3
7th order radial distortion coefficient (mm-6)

camDistort.P1
decentering distortion term, mm-1

camDistort.P2
decentering distortion term, mm-1

Output xymmDistort
output is an N × 3 array with point numbers taken from xymm array or sequential from
1:Nrows. The output array xymmDistort is of the form:

pt1 x1 y2
pt2 x2 y2
.
.
ptN xN yN

55

Remarks Distortion coefficients K2, K3, P1, P2 generally have a much smaller effect on the image than

K1 and are often determined with large relative errors. Thus in some cases it may be prudent
to set these coefficients to 0. If the point of symmetry for distortion can not be found
separately from the photogrammetric principal point xp, yp than, as a first estimate, it is
recommended that the point of symmetry be set to xp, yp. The sign convention for the
distortion coefficients is considered to be a standard (although by no means universal) where
a positive K1 indicated pinchusion (+ distortion) and a negative K1 indicates barrel (-
distortion). This function should be useful in modeling or for creating numerical test cases.

Example script distortApplyExample.m with input file ‘Sample Files\mm2.txt’

Equations In the equations below, xs, ys locates the point of symmetry for distortion (if unknown use the

photogrammetric principal point xp, yp), x and xd represent the undistorted and distorted image
coordinates respectively, r is the magnitude of the radius vector from the point of symmetry to
the undistorted image point (x, y), r is the radial distortion error, and x and y are the
orthogonal components of the radial distortion.

yyyyyy
xxxxxx

ryyKy
rxxKx

rKrKrKr
yyxxr

dd

dd

2
s1

2
s1

7
3

5
2

3
1

2
s

2
s

2

xyP2y2rPy

xyP2x2rPx

1
22

2

2
22

1

56

distortCorrect

Purpose Corrects distorted image coordinates (in mm)

Syntax xymmCorr = distortCorrect(xymmDist, camDistort)

Arguments xymmDist

an N × 2 (without target numbers) or N × 3 array with target numbers. If N × 2, target
numbers are taken as sequential from 1:Nrows. If xymmDist is a character variable
representing the name and path to a file (or the file name and path itself), than the array
xymmDist is loaded from that text file accommodating either a 2 or 3 column array. The N ×
3 version of the array xymmDist is of the form (the N × 2 version drops the 1st column of
target numbers):

pt1 x1 y2
pt2 x2 y2
.
.
.
ptN xN yN

camDistort

 structure with fields as follows:

camDistort.x0
x-value of point of symmetry for distortion (xs in Equations section below), usually mm

 camDistort.y0
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm

camDistort.K1
3rd order radial distortion coefficient (mm-2)

camDistort.K2
5th order radial distortion coefficient (mm-4)

camDistort.K3
7th order radial distortion coefficient (mm-6)

camDistort.P1
decentering distortion term (mm-1)

camDistort.P2
decentering distortion term (mm-1)

Output xymmCorr
output is an N × 3 array with point numbers taken from xymmDist array or sequential from
1:Nrows of xymmDist. The output array xymmCorr is of the form:

pt1 x1 y2
pt2 x2 y2

57

.

.

.
ptN xN yN

Remarks Distortion coefficients K2, K3, P1, P2 generally have a much smaller effect on the image

than K1 and are sometimes determined with large relative errors. Thus in some cases it may
be prudent to set these coefficients to 0. If the point of symmetry for distortion can not be
found separately from the photogrammetric principal point xp, yp, then, as a first estimate, it is
recommended that the point of symmetry be set to xp, yp. The sign convention for the
distortion coefficients is considered to be a standard one (although by no means universal)
where a positive K1 indicates pinchusion (+ distortion) and a negative K1 indicates barrel (-
distortion). Note that the corrected image coordinates are found by subtracting the x- and y-
components of the distortion from the distorted coordinates (which serve as input to the
function). However to correctly compute the components of distortion requires that the
undistorted image locations be known. Thus it is necessary to iterate, starting with the
assumption that the corrected image coordinates are the same as the input distorted
coordinates. At each iteration the estimate of the corrected image coordinates is improved.
For the usual range of distortion values, several iterations are typically sufficient. For very
large values of distortion and large image areas, many iterations may be needed for very
accurate results. The function uses 30 iterations (which still executes nearly instantaneously)
to mainly help with large distortion, large image area numerical test cases. This function is
the primary function to remove distortion from image coordinates when the distortion
coefficients are known.

Example script distortCorrectExample.m with input file ‘Sample Files\mmDist1.txt’

Equations In the equations below, xs, ys locates the point of symmetry for distortion (if unknown use the

photogrammetric principal point xp, yp), x and xd represent the undistorted and distorted image
coordinates respectively, r is the magnitude of the radius vector from the point of symmetry to
the undistorted image point (x, y), r is the radial distortion error, and x and y are the
orthogonal components of the radial distortion.

yyyyyy
xxxxxx

ryyKy
rxxKx

rKrKrKr
yyxxr

dd

dd

2
s1

2
s1

7
3

5
2

3
1

2
s

2
s

2

xyP2y2rPy

xyP2x2rPx

1
22

2

2
22

1

58

distortSolve

Purpose solves for any or all of the distortion coefficients K1, K2, K3, P1, P2

Syntax camDistort = distortSolve(cam, camDistortStart, XYZ, Niterations, solve4,

useLastResults)

Arguments cam
 structure with at least the following fields:

cam.c
principal distance c (or camera constant), usually mm

 cam.xp
x-value of the photogrammetric principal point, xp, usually mm, but always same units as c.

cam.yp
y-value of the photogrammetric principal point, yp, usually mm, but always same units as c.

cam.omega
angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis
toward the origin
.
cam.phi
angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

cam.kappa
angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

cam.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.xymm
distorted image coordinates as an N X 3 numeric array containing [pntNum xmm ymm] for
each target point seen by the camera

camDistortStart

 structure used for start values of the distortion coefficients and final value of the point of
symmetry (represented in the equations section with xs, ys) with at least the following fields
(all input values of camDistortStart except fields x0 and y0 are ignored if useLastResults
= 1 and file temp4distortSolve.mat exists in current directory):

camDistortStart.x0

59

x-value of point of symmetry for distortion (xs in Equations section below), usually mm, final
value that is echoed in output structure camDistort

 camDistortStart.y0
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm,
final value that is echoed in output structure camDistort

camDistortStart.K1
3rd order radial distortion coefficient (mm-2)

camDistortStart.K2
5th order radial distortion coefficient (mm-4)

camDistortStart.K3
7th order radial distortion coefficient (mm-6)

camDistortStart.P1
decentering distortion term, mm-1

camDistortStart.P2
decentering distortion term, mm-1

XYZ
N × 4 numeric array of the form below (with units same as perspective center location, Xc, Yc,
Zc):

pt1 X1 Y1 Z1
pt2 X2 Y2 Z2
.
.
ptN XN YN ZN

Niterations
number of iterations for solution

solve4
input structure with at least the following fields, where field = 1 for solve or = 0 for no solve
(coefficient fixed to 0)

solve4.K1

solve4.K2

solve4.K3

solve4.P1

solve4.P2

useLastResults
= 1 to use previous output results from file temp4distortSolve.mat in current folder or = 0 to
ignore file

Output camDistort
 structure with at least the following fields:

60

camDistort.x0
x-value of point of symmetry for distortion (xs in Equations section below), usually mm
(echoed from camDistortStart.x0)

 camDistort.y0
y-value of point of symmetry for distortion, (ys in Equations section below), usually mm
(echoed from camDistortStart.x0)

camDistort.K1
3rd order radial distortion coefficient (mm-2)

camDistort.K2
5th order radial distortion coefficient (mm-4)

camDistort.K3
7th order radial distortion coefficient (mm-6)

camDistort.P1
decentering distortion term, mm-1

camDistort.P2
decentering distortion term, mm-1

camDistort.K1std
standard deviation of 3rd order radial distortion coefficient (mm-2) from least squares

camDistort.K2std
standard deviation of 5th order radial distortion coefficient (mm-4)
from least squares

camDistort.K3std
standard deviation of 7th order radial distortion coefficient (mm-6)
from least squares

camDistort.P1std
standard deviation of decentering distortion term, mm-1
from least squares

camDistort.P2std
standard deviation of decentering distortion term, mm-1

from least squares

camDistort.So
standard deviation of unit weight from least squares

output structure camDistort is written to file temp4distortSolve.mat; use
camDistortSolution = load('temp4distortSolve') to access from MATLAB

Remarks Distortion coefficients K2, K3, P1, P2 generally have a much smaller effect on the image than

K1 and are often determined with large relative errors. Thus in some cases it may be prudent
to set these coefficients to 0 and solve only for K1 (all solve4 fields = 0 except for solve4.K1
which should be set to 1). If the point of symmetry for distortion can not be found separately
from the photogrammetric principal point xp, yp, then as a first estimate it is recommended that
the point of symmetry be set to xp, yp. More reliable solutions are generally obtained with the

61

camera image plane approximately parallel to the object field, which can be planar. The sign
convention for the distortion coefficients is considered to be a standard (although by no means
universal) where a positive K1 indicated pinchusion (+ distortion) and a negative K1 indicates
barrel (- distortion). The designated distortion coefficients in the structure solve4 are found
iteratively by invoking the resection function to determine improved estimates of the exterior
orientation parameters , , , Xc, Yc, and Zc which are then used in the function collinearity
to generate ideal undistorted image coordinates based on the updated exterior orientation and
the input object coordinates XYZ. The original inputted distorted image coordinates are then
compared to the newly updated estimates of the undistorted image coordinates. The
designated distortion coefficients are found by linear least squares. The improved estimates
of the distortion coefficients are then used to correct the original distorted image coordinates
to create a new set of undistorted image coordinates. The process is repeated for Niterations
iterations. It is sometimes necessary to utilize several hundred iterations to converge. Only
target point numbers common to both XYZ and cam.xymm are used in the solution.

Example script distortSolveExample.m with input file ‘Sample Files\ XYZ3.txt’

Equations In the equations below, xs, ys locates the point of symmetry for distortion (if unknown use the

photogrammetric principal point xp, yp), x and xd represent the undistorted and distorted image
coordinates respectively, r is the magnitude of the radius vector from the point of symmetry to
the undistorted image point (x, y), r is the radial distortion error, and x and y are the
orthogonal components of the radial distortion.

yyyyyy
xxxxxx

ryyKy
rxxKx

rKrKrKr
yyxxr

dd

dd

2
s1

2
s1

7
3

5
2

3
1

2
s

2
s

2

xyP2y2rPy

xyP2x2rPx

1
22

2

2
22

1

The matrices L and A below are built up for each common set of image and object
coordinates. The variables xd and yd are taken from the input argument field cam.xymm.
The variables x and y are the iterated values of the estimates of the undistorted image
coordinates. The ellipsis symbols … in the matrices below indicate that the matrices L and A
are populated with 2 rows for each target point and may each have many rows. For instance,
54 target points would lead to L and A matrices with 108 rows each. The number of columns
of matrix A is dictated by the number of unknown distortion coefficients carried in the
solution. The 5 columns of matrix A below represent in order K1, K2, K3, P1, P2. A column
would be missing from matrix A for each coefficient not solved for.

62

The solution vector Solution is then found by the MATLAB least squares operator ‘\’, where
like the matrix A, the number of rows of the solution vector are dictated by the number of
unknown distortion coefficients solved for as indicated in the structure solve4.

The estimates of the standard deviation of the coefficients is then found from the following
relationships

where V is a column vector of residuals, S0 is the standard deviation of unit weight, df is the
degrees of freedom which equals 2 times the number of target points minus the number of
coefficients solved for, cov is the covariance matrix, covdiag represents the diagonal elements
of the covariance matrix, and K1 , K2 , K3 , P1 , and P2 are the estimates of the standard
deviations of K1, K2, K3, P1, and P2 from least squares.

2
s

2
sss

6
s

4
s

2
ss

2
s

2
s

6
s

4
s

2

d

d

)yy(2r)yy)(xx(2)yy(r)yy(r)yy(r
)yy)(xx(2)xx(2r)xx(r)xx(r)xx(r

A

yy
xx

L

L\A

P
P
K
K
K

Solution

2

1

3

2

1

diago

2

1

3

2

1

1T

T

o

covS

P
P
K
K
K

AAcov

df
VVS

LSolutionAV

63

dlt0

Purpose Approximate estimation of the exterior orientation parameters and principal distance by the

raw DLT

Syntax [L,orien]=dlt0(camformat,xyimag,xyzobj)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc in inches

Output L

The DLT parameters

orien
1-column array of the estimated camera orientation parameters)Z,Y,Xκ,φ,ω,(ccc and

0),S/S0,0,(c, vh

Remarks Unlike ‘dlt.m’, the function ‘dlt0.m’ is the raw DLT where the Euler rotational angles are not

converted to the ranges , 2/2/ , and . The principal
point location)y,(x pp and the first radial lens distortion parameter 1K are set at zero since
these parameters given by the DLT are not accurate and very sensitive to lens distortion. The
results given by ‘dlt0.m’ are as good as those given by ‘dlt.m’ since the selection of the Euler
angles are not refined.

There is a pitfall:
When the image plane is almost parallel to the)Z,Y(plane and the object-space coordinate
system and the image coordinate system are transformed through either roughly 90-deg
rotation or no rotation, it is found that is about 90 deg such that tan is almost infinite.
Therefore, the DLT often has a numerical error in inverting tan and cannot automatically
provide a correct initial approximation for refinement by the optimization method.

Example script camcal_funExample.m

Equations

The Direct Linear Transformation (DLT) can be very useful to determine approximate values
of the camera parameters. Rearranging the terms in the collinearity equations leads to the
DLT equations

64

0)1ZLYLXL)(ydy(LZLYLXL
0)1ZLYLXL)(xdx(LZLYLXL

111098765

111094321 . (1)

The DLT parameters 111 L,L are related to the camera exterior and interior orientation
parameters)Z,Y,X,,,(ccc and)y,x(c, pp (McGlone 1989). Unlike the standard
collinearity equations, Eq. (1) is linear for the DLT parameters when the lens distortion terms
dx and dy are neglected. In fact, the DLT is a linear treatment of what is essentially a non-
linear problem at the cost of introducing two additional parameters. The matrix form of the
linear DLT equations for M targets is CLB , where T

111)L,L(L ,
T

MM11)y,x,y,x(C , and B is the 2M 11 configuration matrix that can be directly

obtained from Eq. (1). A least-squares solution for L is formally given by CBB)(B=L T1T
without using an initial guess. The camera parameters can be extracted from the DLT
parameters from the following expressions

2
11310291p L)LLLLLL(x ,

2
11710695p L)LLLLLL(y ,

2
p

22
3

2
2

2
1 xL)LLL(c ,

)LL(sin 9
1 ,

)L/L(tan 1110
1 ,

))cos(/m(cos 11
1 ,

c/)LLx(Lm 19p11 ,

2/12
11

2
10

2
9)LLL(L ,

1
L
L

LLL
LLL
LLL

Z
Y
X

8

4

11109

765

321

c

c

c

.

Because of its simplicity, the DLT is widely used in both non-topographic photogrammetry
and computer vision. When dx and dy cannot be ignored, however, iterative solution methods
are still needed and the DLT loses its simplicity. In general, the DLT can be used to obtain
fairly good values of the exterior orientation parameter and the principal distance, although it
gives a poor estimate for the principal-point location)y,(x pp . Therefore, the DLT is
valuable since it can provide initial approximations for more accurate methods like the
optimization method discussed below for comprehensive camera calibration.

Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971

Mikhail, E. M., Bethel, J. S., and McGlone, J. C., “Introduction to modern photogrammetry,”
John Wiley & Sons, Inc., New York, 2001

65

dlt

Purpose Approximate estimation of the exterior orientation parameters and principal distance

Syntax [orien]=dlt(camformat,xyimag,xyzobj)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc in inches

Output orien

1-column array of the estimated camera orientation parameters)Z,Y,Xκ,φ,ω,(ccc and
0),S/S0,0,(c, vh

Remarks In this function, the principal point location)y,(x pp and the first radial lens distortion

parameter 1K are set at zero since these parameters given by the DLT are not accurate and
very sensitive to lens distortion. The results given by the DLT are good enough as the initial
approximation for a more accurate method like the optimization method.

There is a pitfall:
When the image plane is almost parallel to the)Z,Y(plane and the object-space coordinate
system and the image coordinate system are transformed through either roughly 90-deg
rotation or no rotation, it is found that is about 90 deg such that tan is almost infinite.
Therefore, the DLT often has a numerical error in inverting tan and cannot automatically
provide a correct initial approximation for refinement by the optimization method.

Example script camcalExample.m

Equations

The Direct Linear Transformation (DLT) can be very useful to determine approximate values
of the camera parameters. Rearranging the terms in the collinearity equations leads to the
DLT equations

0)1ZLYLXL)(ydy(LZLYLXL
0)1ZLYLXL)(xdx(LZLYLXL

111098765

111094321 . (1)

66

The DLT parameters 111 L,L are related to the camera exterior and interior orientation
parameters)Z,Y,X,,,(ccc and)y,x(c, pp (McGlone 1989). Unlike the standard
collinearity equations, Eq. (1) is linear for the DLT parameters when the lens distortion terms
dx and dy are neglected. In fact, the DLT is a linear treatment of what is essentially a non-
linear problem at the cost of introducing two additional parameters. The matrix form of the
linear DLT equations for M targets is CLB , where T

111)L,L(L ,
T

MM11)y,x,y,x(C , and B is the 2M 11 configuration matrix that can be directly

obtained from Eq. (1). A least-squares solution for L is formally given by CBB)(B=L T1T
without using an initial guess. The camera parameters can be extracted from the DLT
parameters from the following expressions

2
11310291p L)LLLLLL(x ,

2
11710695p L)LLLLLL(y ,

2
p

22
3

2
2

2
1 xL)LLL(c ,

)LL(sin 9
1 ,

)L/L(tan 1110
1 ,

))cos(/m(cos 11
1 ,

c/)LLx(Lm 19p11 ,

2/12
11

2
10

2
9)LLL(L ,

1
L
L

LLL
LLL
LLL

Z
Y
X

8

4

11109

765

321

c

c

c

.

Because of its simplicity, the DLT is widely used in both non-topographic photogrammetry
and computer vision. When dx and dy cannot be ignored, however, iterative solution methods
are still needed and the DLT loses its simplicity. In general, the DLT can be used to obtain
fairly good values of the exterior orientation parameter and the principal distance, although it
gives a poor estimate for the principal-point location)y,(x pp . Therefore, the DLT is
valuable since it can provide initial approximations for more accurate methods like the
optimization method discussed below for comprehensive camera calibration.

Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971

Mikhail, E. M., Bethel, J. S., and McGlone, J. C., “Introduction to modern photogrammetry,”
John Wiley & Sons, Inc., New York, 2001

67

EpipolarLine_x

Purpose Determination of the epipolar line in image 1 for a given point in image 2 based on

minimization along the x-axis

Syntax [x_epipo1,y_epipo1,normG_x]=
 EpipolarLine_x(ximag2,yimag2,orientation1,orientation2,camformat1,camformat2,x_bound0,x_bound1)

Arguments camformat1

1-column array containing the camera format data for camera 1:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Camformat2
1-column array containing the camera format data for camera 2:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Orientation1
1-column array of the camera orientation parameters for camera 1

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

orientation2
1-column array of the camera orientation parameters for camera 2

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

(ximag2,yimag2)
image coordinates (x,y) in pixels in image 2

Output (x_epipo1,y_epipo1)

the coordinates of the epipolar line in image 1

normG
norm of G, where norm(G) = 0 on the epipolar line

Remarks This function uses’EpipolarRelation_x.m’ for minimization along the x-axis in image 1. This

function is feasible for an epipolar line that is not vertical in the (x,y) image plane.

Example script EpipolarExample.m

Equations The detailed description of determining an epipolar line is given in the following reference.

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004)

68

EpipolarLine_y

Purpose Determination of the epipolar line in image 1 for a given point in image 2 based on

minimization along the y-axis

Syntax [x_epipo1,y_epipo1,normG_y]=
 EpipolarLine_y(ximag2,yimag2,orientation1,orientation2,camformat1,camformat2,y_bound0,y_bound1)

Arguments camformat1

1-column array containing the camera format data for camera 1:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Camformat2
1-column array containing the camera format data for camera 2:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Orientation1
1-column array of the camera orientation parameters for camera 1

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

orientation2
1-column array of the camera orientation parameters for camera 2

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

(ximag2,yimag2)
image coordinates (x,y) in pixels in image 2

Output (x_epipo1,y_epipo1)

the coordinates of the epipolar line in image 1

normG
norm of G, where norm(G) = 0 on the epipolar line

Remarks This function uses’EpipolarRelation_y.m’ for minimization along the y-axis in image 1. This

function is particularly feasible for an epipolar line that is almost vertical in the (x,y) image
plane.

Example script EpipolarExample.m

Equations The detailed description of determining an epipolar line is given in the following reference.

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004)

69

EpipolarRelation_x

Purpose Calculation of difference norm of the epipolar relation as a function of the x-coordinate in

image A for minimization

Syntax normG=
 EpipolarRelation_x(xPixA,yPixA,xPixB,yPixB,oriA,oriB,camformatA,camformatB)

Arguments camformatA

1-column array containing the camera format data for camera A:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

camformatB
1-column array containing the camera format data for camera B:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

oriA
1-column array of the camera orientation parameters for camera A

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

oriB
1-column array of the camera orientation parameters for camera B

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

(xPixA,yPixA)
image coordinates (x,y) in pixels in image A

(xPixB,yPixB)
image coordinates (x,y) in pixels in image B

Output normG

norm of G, where norm(G) = 0 on an epipolar line

Remarks This function is used in’EpipolarLine_x.m’ for minimization along the x-axis in image 1.

This function is feasible for an epipolar line that is not vertical in the (x,y) image plane. In
most cases, ’EpipolarLine_x.m’ and ’EpipolarLine_y.m’ will give the same results.

Example script EpipolarExample.m

Equations The detailed description of determining an epipolar line is given in the following reference.

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004)

70

EpipolarRelation_y

Purpose Calculation of difference norm of the epipolar relation as a function of the y-coordinate in

image A for minimization

Syntax normG=

EpipolarRelation_y(xPixA,yPixA,xPixB,yPixB,oriA,oriB,camformatA,camformatB)

Arguments camformatA

1-column array containing the camera format data for camera A:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

camformatB
1-column array containing the camera format data for camera B:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

oriA
1-column array of the camera orientation parameters for camera A

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

oriB
1-column array of the camera orientation parameters for camera B

)Z,Y,Xκ,φ,ω,(ccc and),P,P,K,K,S/S,y,x(c, 2121vhpp

(xPixA,yPixA)
image coordinates (x,y) in pixels in image A

(xPixB,yPixB)
image coordinates (x,y) in pixels in image B

Output normG

norm of G, where norm(G) = 0 on an epipolar line

Remarks This function is used in’EpipolarLine_y.m’ for minimization along the x-axis in image 1.

This function is useful for an epipolar line that is almost vertical in the (x,y) image plane. In
that case, ’EpipolarLine_x.m’ does not work well. In most cases, ’EpipolarLine_x.m’ and
’EpipolarLine_y.m’ will give the same results.

Example script EpipolarExample.m

Equations The detailed description of determining an epipolar line is given in the following reference.

71

T. Liu, “Geometric and kinematic aspects of image-based measurements of deformable
bodies”, AIAA Journal, Vol. 42, No. 9, pp. 1910-1920, (2004)

72

findBackground

Purpose finds the perimeter max background for a given region of interest (roi) of a digital image

Syntax Gback = findBackground(img, x, y, delx, dely)

The digital image img would normally first be loaded from a file with imread, such as img =
imread(fileName) where fileName is a string variable containing the path (if necessary) and
file name where the image resides

Arguments img
 an array containing an image

 x

x-value of centered location in pixels to use for roi

y
y-value of centered location in pixels to use for roi

delx
half-width of area of pixels of roi; full-width = 2 delx; delx = 8 yields a full-width of 16

dely
half-height of area of pixels of roi; full-height = 2 dely; dely = 8 yields a full-height of 16

Output Gback
perimeter max background of the region of interest (roi) of a digital image

Example script findBackgroundExample.m with input file ‘Sample Files\image3.tif’.

Remarks Use img = imread(fileName) where fileName is a string variable containing the path (if

necessary) and file name where the image of interest resides. imshow(img) can be used to
put the image for the file in a figure before then calling function pixelXYselect if it is
necessary to interactively select the target locations. Note that findBackground only finds
the perimeter background for one roi at a time and must be invoked from within a loop for
gray scale displays of multiple locations (see findBackgroundExample.m for example of
this). Typically the returned value for Gback is subtracted from a given roi before
centroiding to remove the bias error in centroiding that can be caused by background gray
scale. It would be prudent to test for the magnitude of Gback to determine if too large a value
is being returned for subtraction (possibly indicating that the perimeter of the roi is too close
to the target blob). In such a case the roi may need to be enlarged slightly and possibly
recentered to improve results. Note that the standard designation of horizontal pixel location
as x and vertical pixel location as y in the usual (x, y) order can lead to confusion when
dealing with matrices which are in (row, column) order since the x-value of the pixel location
actually corresponds to columns of the matrix representing the digital image, whereas the y-
value corresponds to rows. Thus the matrix in terms of x, y has the order (y, x). To reduce
the confusion associated with this ordering, for the functions where it is natural to input
arguments in x, y order, the code is written to convert internally to rows and columns for
working with the matrices before converting back to (x, y) order for output if necessary.

73

grayScaleDisplay

Purpose grayscale display (interactive) with image in a figure window

Syntax grayScaleDisplay(img)

Arguments img

image variable in the workspace or a valid image file name (either a character string or
character variable); Note that if the function is called without an input argument, an image
file dialog box opens from which the user can select the proper image file.

Output figure window with the image in upper half and the interactive Pixel Region tool in the lower

half; X, Y pixel and intensity are shown as the cursor is moved either in the image or in the
Pixel Region tool area; slider bars on the Pixel Region tool allow for movement about the
image to examine grayscale; a small rectangular box overlay that represents the coverage of
the Pixel Region tool can also be moved around the image to change the area of the image
that the Pixel Region tool covers.

Example script grayScaleDisplayExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample

Files\image2.tif’

Remarks every time the function grayScaleDisplay is invoked a new figure window is created. To

remove the currently selected figure window, enter ‘close’ at the command line, or ‘close all’
to close all MATLAB figures.

74

imageObject2

Purpose Solves for focal length, object distance, or image distance, given any 2 of the 3 parameters

(simplified non-GUI version of imageObject)

Syntax camOut = imageObject2(camIn)

Arguments camIn structure with the following fields:
 camIn.f - focal length f

camIn.obj - object distance obj
camIn.img - image distance img
The variable to be solved for should be set to [].

Output camOut structure with the following fields, where one of the variables is calculated and 2 of

the variables are echoed from the input argument structure camIn:
 camOut.f - focal length f

camOut.obj - object distance obj
camOut.img - image distance img

Remarks The function imageObject2 uses the Gaussian object-image relationship to determine any 1

of the 3 variables focal length f, object distance obj, or image distance img given at least 2 of
the other variables. Unlike the matching GUI function imageObject, the units of the 3
variables must be consistent. Note that the image distance img is equivalent to the principal
distance (or camera constant) c.

Example script imageObject2Example (This script also calls the GUI imageObject function. The

examples of this script can be used to experiment with the GUI)

Equations The Gaussian object-image relationship is given by

where f is the focal length, obj is the object distance, and img is the image distance (which is
equivalent to the camera constant c).
From the Gaussian object-image relationship any one of the 3 variables can be determined if
two of the other variables are known

img
1

obj
1

f
1

1

1

1

obj
1

f
1img

img
1

f
1obj

img
1

obj
1f

75

imageObject

Purpose GUI to solve for focal length, object distance, or image distance, given any 2 of the 3

parameters. Also has plotting option for image distance versus object distance.
(imageObject2 is a simplified non-GUI version of this function)

Syntax imageObject

Arguments none

Output output to edit boxes for focal length, object distance, or image distance; plot of image distance

versus object distance

Remarks The function imageObject uses the Gaussian object-image relationship to determine any 1 of
the 3 variables focal length f, object distance obj, or image distance img given at least 2 of the
other variables. The units of the 3 variables can be mixed by selecting the appropriate radio
button for either mm or inch. The calculation of any of the 3 variables is in the units specified
by its units radio button. The plot of image distance versus object distance can also
accommodate mixed units as determined by the unit radio buttons for obj and img. The focal
length f is displayed in the title of the plot in whichever units is was last calculated (or
entered). Note that the image distance img is equivalent to the principal distance (or camera
constant) c.

Example script imageObject2Example (Same example script as for the non-GUI imageObject2 function.

The examples of this script can be used to experiment with the GUI)

Required files imageObject.fig (GUI figure)

Equations The Gaussian object-image relationship is given by

where f is the focal length, obj is the object distance, and img is the image distance (which is
equivalent to the camera constant c).
From the Gaussian object-image relationship any one of the 3 variables can be determined if
two of the other variables are known

img
1

obj
1

f
1

1

1

1

obj
1

f
1img

img
1

f
1obj

img
1

obj
1f

76

imagePrelim

Purpose GUI for preliminary target locations on digital images

Syntax imagePrelim

Arguments none

Output Digital image output to figure with bounding boxes as determined by the regionprops

function (image processing toolbox). Automatically generated target IDs (from regionprops)
can be overlaid. Binary and grayscale centroid files, as well as manually selected targets, can
be saved as text files. Centroid files can be overlaid on the image. An output file consisting
of target IDs from one file and centroids from another (within a user specified match
tolerance) can be saved.

Remarks The function imagePrelim is useful for preliminary target locations and analysis of digital
images. The GUI should be useful for investigating various strategies for automated target
location as well as useful for finding target locations in situations where automation fails.
The GUI should be especially useful for images used in camera calibration. The GUI utilizes
the regionprops function that operates on binary images. A pushbutton enables selection of
the appropriate digital image file (via a popup file selection window) for loading and
displaying in a figure window within the GUI. The image is displayed in grayscale, but all
preliminary processing is accomplished with a binary version of the image. The initial
threshold for the binarization when the image file is first imported is determined by the
graythresh function (utilizing Otsu’s method) from the image processing toolbox. A label
image is then created from the binary image using bwlabel. The regionprops function is
then used to create a structure containing the binary centroids and bounding boxes of each
labeled region within the label image. The bounding boxes for each potential target (some of
which may potentially be false targets) are overlaid on the image. A larger cross is plotted for
very small (and usually false) targets smaller than 3 pixels to improve their identification.
The number of targets found, as well as the relative threshold (ranging from 0 to 1), are
displayed in text boxes. A slider box (with display) can then be used to interactively adjust
the threshold. The newly found targets based on the just selected threshold are overlaid on the
image so that one can interactively quickly determine a suitable threshold to automatically
find all the valid targets. Typically the highest threshold that finds all the valid targets is
selected before possible further processing with the GUI (if additional false targets are found).
Slider bars for minimum and maximum bounding box size can then be used to interactively
limit the targets found. Selection of a new image or threshold for the current image
reinitializes the process. A pushbutton can be used to invert the grayscale before inputting a
digital image file (via a popup file selection panel) for cases with black targets on a white
background instead of the default white on black. The file name of the inputted digital image
is displayed on the GUI along with the number of targets found. The global threshold found
from the graythresh function is very appropriate for high contrast targets, but may not work
for relatively low contrast targets with a cluttered background. For those cases a pushbutton
is available to view the binary image (without further processing) instead of the grayscale
image as the threshold is changed via a slider bar. The user can then pick a threshold that best
discriminates the targets of interest. Once a suitable threshold has been automatically
generated or selected, the user can examine an overlay of bounding boxes around each target
to determine minimum and maximum bounding box limits for target selection. The target ID
numbers and preliminary binary centroid data can be saved in text format (with user selected
file name via file dialog box) with point number, x and y centroid data, half-width, and half-

77

height of each bounding box respectively. This capability is useful in addition when the
binary file is used as input (start values) for full grayscale centroiding. A toggle button to
show the binary image without processing aids in preliminary analysis of cluttered images
which can be very time consuming when the regionprops processing is undertaken at each
change of the grayscale threshold. Thus an appropriate threshold can be determined by
examination of the binary image before initiating the processing via the regionprops
function. In this mode all processing except for the slider threshold is disabled until the get
image file pushbutton is activated to restart the process. An additional pushbutton allows for
manual selection (via mouse) of target ID numbers and the subsequent saving of that xpixel
and ypixel data along with the corresponding target ID as a text file (with user selected file
name via file dialog box). This additional pushbutton should help in cases where the
automatically generated centroid data does not have the desired numbering system. A panel
allows the selection of a centroid file to be overlaid on the image. For this overlay panel it is
assumed that the first three columns of the data from the file are in order target ID, x, and y.
The next 2 columns, if they exist, are taken to be the half-height and half-width of the
bounding boxes. A text entry box is available to specify a single value for the bounding box
width and height (full width) for files of only 3 columns, which is then used in the overlay
plot for all targets. Both the bounding boxes and target IDs are plotted in a color chosen from
a popup menu of color selections to aid in discrimination of multiple plots overlaid on the
same image. Another panel allows 2 centroid files to be combined into a new file, getting the
correct target IDs from 1 file and the correct centroid data from another using the matchIDs
function. The match tolerance (x, y pixel values must be within this set tolerance to match) is
set from within an edit box. Another panel added to the image processing GUI allows
grayscale centroiding (with automated perimeter background removal) and output to a new
file. This panel is convenient for computing grayscale centroids using the binary centroid
files created within the GUI itself as start values. The additional width and height to be added
to the binary bounding boxes is entered through an edit box. This helps to minimize clipping
of the target since grayscale below the threshold (set to zero during the binarization of the
image) may be outside the bounding box found from the binary image, but still may be a valid
part of the target. Another panel offers the option of taking threshold and size restrictions
from the edit boxes corresponding to the sliders. A separate process button within the panel
must be pressed to initiate image processing based on the values in the edit boxes. (The
sliders for threshold, min size, and max size are ignored if the edit boxes radio button is
selected. When the process button is selected, the values for threshold, min size, and max size
are then taken from the corresponding edits boxes as entered by the user instead of from the
sliders.) This greatly speeds up preliminary investigations with large format images of
several megapixel or more compared to slider selection since with the sliders computations
are made at intermediate positions as the sliders are moved toward their final destinations. A
pushbutton can be used to select a polynomial region of the image (using the roiPolySelect
function) in order to remove regions of the image that might contain false targets that are
especially hard to discriminate with threshold or size limits.

Example script none

Required files imagePrelim.fig (GUI figure)

IMAGE PROCESSING TOOLBOX:
 bwlabel

getimage
graythresh
imcomplement
imshow
im2bw
regionprops

PHOTOGRAMMETRY TOOLBOX:
 centroid

78

findBackground
matchIDs
overlayCentroidsBox
pixelXYselect
roiPolySelect

79

intersection

Purpose multi-camera photogrammetric spatial intersection to determine 3D

coordinates given camera parameters and image coordinates from 2 or more cameras (or
views)

Syntax [XYZ] = intersection(cam)

Arguments cam
 structure array with at least the fields as follows, with N being the camera number:

cam(N).c
principal distance c (or camera constant), usually mm

 cam(N).xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

cam(N).yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

cam(N).m
3 3 rotation matrix, usually from function rotationMatrix

cam(N).Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam(N).Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam(N).Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

cam(N).xymm
M X 3 numeric array containing [pntNum xmm ymm] for each
image coordinate for each camera (or view) where M is the number of image coordinates for a
particular camera. M and the actual point numbers used can vary from camera to camera.
Results are returned for any point number that is seen by at least 2 cameras.

Output XYZ
P × 8 numeric array, where P is the number of points that are seen by at least 2 cameras, of
the form below (with units same as perspective center location, Xc, Yc, Zc):

pt1 X1 Y1 Z1 X1std Y1std Z1std CamNum1
pt2 X2 Y2 Z2 X2std Y2std Z2std CamNum2

.
.
ptP XP YP ZP XPstd YPstd ZPstd CamPumN

80

where XNstd, YNstd, ZNstd are the standard deviations of the 3 coordinates from the least squares
reduction and CamNumN is the number of cameras used for each point in the reduction.

Remarks The function intersection is a multi-camera photogrammetric spatial intersection to

determine 3D coordinates, given camera parameters and image coordinates from 2 or more
cameras (or views). Missing or extra target point numbers for any camera are accommodated.
There is no practical limit on the number of cameras that can be passed to the function by
means of the structure array cam.

Example script intersectionExample.m with input files ‘Sample Files\ plate11.txt’, ‘Sample Files\

camdata1.txt’ and ‘Sample Files\ camdata2.txt’

Equations the collinearity equations are given by:

c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx

c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy

the collinearity equations above can be recast in the following form

a1X a2Y a3Z a1X c a2Yc a3Zc

a4 X a5Y a6Z a4 Xc a5Yc a6Zc

where

2333p6

2232p5

2131p4

1333p3

1232p2

1131p1

mcmyya

mcmyya
mcmyya

mcmxxa
mcmxxa

mcmxxa

X, Y, Z is found by linear least squares, where there is 1 pair of ‘a’ equations above
(associated with the x and y image coordinates) for each camera for each point. A matrix A is
formed that is 2 CamNum rows by 3 columns and a B matrix is formed that is 2 CamNum
rows by 1 column. For instance the A and B matrices would be 4 3 and 4 1 respectively
when 2 cameras view a single point and 8 3 and 8 1 for 4 cameras.

81

where A \ B is the MATLAB operator for linear least squares. Estimates of the standard
deviation of X, Y, and Z are found within the least squares reduction as

where V is a column vector of residuals, S0 is the standard deviation of unit weight, cov is the
covariance matrix, covdiag represents the diagonal elements of the covariance matrix, and X ,
Y , Z are the estimates of the standard deviation of X, Y, Z from least squares.

B\A
Z
Y
X

ZaYaXa
ZaYaXa

B

aaa
aaa

A

c6c5c4

c3c2c1

654

321

diago

1T

T
o

covS
Z
Y
X

AAcov

VVS

B
Z
Y
X

AV

82

lleast3

Purpose Linear least squares estimation of Euler rotational angles)κ,φ,ω,(given other parameters

Syntax [dx,xxp]=lleast3(angles,XYZc,interior,format,xyimagd,xyimagu,xyzobj)

Arguments angle

1-column array of estimated)κ,φ,ω,(

XYZc
1-column array of the estimated camera position:

)Z,Y,X(ccc

interior
1-column array of the given interior orientation parameter:

),P,P,K,K,S/S,y,x(c, 2121vhpp

format
1-column array containing the camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimagd
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels

xyimagu
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dx
residual of least squares estimation for all the targets in the image plane

xxp
estimated distorted px

Remarks This function is used in ‘dlt.m’.

Called by resec3.m

83

lleast

Purpose Linear least squares estimation of the camera exterior orientation parameters

Syntax [dx,xxp]=lleast(exterior,interior,format,xyimagd,xyimagu,xyzobj)

Arguments

exterior
1-column array of the estimated exterior orientation parameter:

)Z,Y,Xκ,φ,ω,(ccc

interior
1-column array of the given interior orientation parameter:

),P,P,K,K,S/S,y,x(c, 2121vhpp

format
1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimagd
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels

xyimagu
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dx
residual of least squares estimation for all the targets in the image plane

xxp
estimated distorted px

Remarks This function is used for Newton-Raphson iteration in ‘resec.m’.

Called by resec.m, resecA.m

Equations The description of this step in the optimization method for camera calibration/orientation is

given in the following reference.
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971

84

loadCamStruct

Purpose Loads camera parameter structure from a text file usually created with the matching function

saveCamStruct

Syntax cam = loadCamStruct(fileName)

Arguments fileName
 fileName of file (with path if necessary) from which to load camera parameter structure (such

as the string 'fileName' or the string variable filename)

input text file should be in the form of:
 c = 25.00000

xp = 0.50000
yp = -0.50000
m = 0.4924038765061041
m = -0.5868240888334652
m = 0.6427876096865393
m = 0.8700019037522058
m = 0.3104684609733676
m = -0.3830222215594890
m = 0.0252013862574872
m = 0.7478280708194912
m = 0.6634139481689384
Xc = 10.00000
Yc = 20.00000
Zc = 30.00000

Output cam
 camera parameter structure with fields as follows:

cam.c
principal distance c (or camera constant), usually mm

 cam.xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

cam.yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

cam.m
3 3 rotation matrix, usually from function rotationMatrix

cam.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

85

Remarks loadCamStruct is a simple function to load the basic camera parameter structure from a text

file, usually created with the matching function saveCamStruct. The function
loadCamStruct can be used to load the camera parameter structure into a structure variable
within a script or function for further application. The rotation matrix m is assumed saved in
row order (default for MATLAB) in the order m11, m21, m31, m21, m22, m23, m31, m32, m33. Note
that this simple function is only designed to work with the fields of the camera parameter
structure identified above. The current version of this simple function has minimal error
handling.

Example script loadCamStructExample.m with input file ‘Sample Files\cam1.txt’

86

locating_target1_fun

Purpose Determination of centroid of a single target at the selected row and column in image

Syntax [xc1_shifted,yc1_shifted]=

locating_target1_fun(I,row_p,col_p,bk_size_0)

Arguments I

Image intensity field

(row_p,col_p)
row and column picked for locating a target

bk_size_0
block size for initial searching a target (such as 10 pixels)

Output xc1_shifted, yc1_shifted

final target centroid in pixels

Remarks It is assumed in this function that targets in image have higher intensity than background. For

dark targets on lighter background, image should be inverted before the use of this function.

Called by clicking_target_fun.m

Equations The target centroid)y,x(cc is defined as

)y,x(I/)y,x(Iyy

)y,x(I/)y,x(Ixx

iiiiic

iiiiic
,

where)y,x(I ii is the gray level on an image. When a target contains only a few pixels and
the target contrast is not high, the centroid calculation using the above definition may not be
accurate.

87

matchIDs

Purpose matches correct centroids from one array with correct target IDs of another array (with only

approximate centroids). Useful for applying the correct target IDs to automatically generated
centroid data, given the correct IDs at approximately the same image locations.

Syntax centMatch = matchIDs(centID, centCentroid, tol)

Arguments centID

N 3 array ([pnt xpix ypix] per row) with correct IDs, but only approximate xpix, ypix image
locations. Usually manually created via mouse.

pt1 x1 y2
pt2 x2 y2
.
.
.
ptN xN yN

centCentroid
N 3 array ([pnt xpix ypix] per row) with (possibly) incorrect IDs, but with correct xpix, ypix
image location. Usually automatically generated by way of image processing.

 tol
tolerance in pixels used for match criteria between centroid doublets in arrays centID and
centCentroid.

Output centMatch
N 3 array ([pnt xpix ypix] per row) with correct IDs matched to correct xpix, ypix image
locations.

Remarks The function matchIDs is useful for cases in which correct target labels (or IDs) are available

at approximately the same locations as automatically generated (and typically more accurate)
centroid data. The automatically generated data will typically not have the correct target
labels (IDs) needed for further automated image analyses. The two input argument arrays do
not need to be the same size and are not limited to 3 column arrays. However the order of the
first three columns must be target ID, x, and then y pixel location. If that is not the case, the
proper 3 ordered columns should be selected from the appropriate array for use as input
argument array. Note that if the match tolerance is less than the absolute difference between
centroid doublets then that match is not made. If that occurs for all rows of the input array
centCentroid for a particular target ID, then that target ID does not appear in the output array
centMatch. It is useful to compare the size (number of rows) of input array centID and
output array centMatch to determine if any target IDs are missing from the output array.
(For instance, with [size(centID,1) size(centCentMatch,1)].)

Example script matchIDsExample.m with input files ‘Sample Files\cent.txt’ and ‘Sample Files\cent2.txt’

88

mm2pixel

Purpose Convert image coordinates from mm to pixels

Syntax xypix = mm2pixel(xymm, Sh, Sv, x0, y0)

Arguments xymm
 array of image coordinates (mm) with point numbers (N × 3) or without point numbers (N ×

2), where N = number of image points

xymm with point numbers (3 × 3 array):
 1.0000 -2.8587 0.5174
 2.0000 -0.2548 1.1635
 4.0000 -1.5548 -0.7878

 xymm without point numbers (3 × 2 array):

 -2.8587 0.5174
 -0.2548 1.1635
 -1.5548 -0.7878

note that for the 2nd example without point numbers the 3rd doublet of x, y values (-1.5548 -
0.7878) would be taken as point number 3 instead of point number 4 as in the 1st example
where point numbers are explicitly entered (see output examples below)

Sh
horizontal pixel spacing in mm. ex: 0.013

Sv
vertical pixel spacing in mm. ex: 0.013

x0, y0
location of image reference center, pixels. For example, a 640 × 480 (Horz × Vert) image
would normally be referenced to x0, y0 = 320, 240. x0, y0 locates the center (0, 0) of the
image coordinates in mm

Output xypix

output is an N × 3 array with either explicitly entered point numbers or sequential point
numbers from 1:N

output for 1st example of xymm input and Sh, Sv, x0, y0 above:
 1.0000 100.1000 200.2000
 2.0000 300.4000 150.5000
 4.0000 200.4000 300.6000

 output for 2nd example of xymm input above:
 1.0000 100.1000 200.2000
 2.0000 300.4000 150.5000

 3.0000 200.4000 300.6000

Remarks In the function mm2pixel it is assumed that the origin of the outputted image coordinates in

pixels is located at the usual upper left of the image with the x-coordinate (horizontal) positive

89

to the right and the y-coordinate (vertical) positive downward. The origin of the inputted
image coordinates in mm is centered at x0, y0 with the x-coordinate positive to the right and
the y-coordinate positive upward. It is common to simply take ½ of the horizontal and
vertical pixel image dimensions as the values to be used for x0, y0 even though the half way
point would actually be ½ the pixel count + 0.5 pixel. Thus for the 640 × 480 (Horz × Vert)
image example used above, the actual center of the image in pixels is 320.5, 240.5 rather than
320, 240. However, x0, y0 is simply a common reference point on the image. For instance if
the values of 320, 240 are used instead of 320.5, 240.5 for x0, y0, then the locations of the
photogrammetric principal point or point of symmetry for distortion would adjust to
accommodate the 0.5 pixel apparent discrepancy yielding the same photogrammetric results
in either case.

Example script mm2pixelExample.m with input files ‘Sample Image Coordinates\mm2.txt’ and

‘Sample Images\image2.tif’

Equations

v

mm
opix

h

mm
opix

S
yyy

S
xxx

90

overlayCentroidsBox

Purpose Overlays box on current image centered on centroids

Syntax overlayCentroidsBox(fileName, delx, dely, plotColor)

Arguments fileName
 text file name of N 2 (without target numbers, x-value and y-value in 1st and 2nd columns

respectively) or N 3 (with target numbers in 1st column, x-value and y-value in 2nd and 3rd
columns respectively) saved array of pixel x, y values; or the array variable itself (N 2 or
N 3); N is number of centroid x-y pairs; examples of xypix with N = 3 follow:

xypix with point numbers (3 × 3 array):

 1 100.1 200.2
 2 300.4 150.5
 4 200.4 300.6

 xypix without point numbers (3 × 2 array):
 100.1 200.2
 300.4 150.5
 200.4 300.6

note that for the 2nd example without point numbers the 3rd doublet of x, y values
(200.4 300.6) would be taken as point number 3 instead of point number 4 as in the
1st example where point numbers are explicitly entered

delx
half-width of box centered on each centroid; same for all targets if scalar; unique value for
each target if entered as a vector with the same number of elements as targets.

dely
half-height of box centered on each centroid; same for all targets if scalar; unique value for
each target if entered as a vector with the same number of elements as targets.

plotColor
optional 4th input string argument to specify the color of the overlay plots. Valid entries are
‘r’ (default), ‘b’, ’g’, ‘c’, ‘m’, ‘y’, or ‘k’ which indicate respectively red, blue, green, cyan,
magenta, yellow, or black.

Output overlay of boxes of half-width delx and half-height dely on current image centered on
centroids

Remarks In the function overlayCentroidsBox it is assumed that the origin of the image coordinates in
pixels is located at the usual upper left of the image with the x-coordinate (horizontal) positive
to the right and the y-coordinate (vertical) positive downward. The upper left pixel has
coordinates of (1, 1).

Example script overlayCentroidsBoxExample.m with input files ‘Sample Files\centroids2.txt’ and

‘Sample Files\image2.tif’

91

pixel2mm

Purpose Convert image coordinates from pixels to mm

Syntax xymm = pixel2mm(xypix, Sh, Sv, x0, y0)

Arguments xypix
 array of centroids (pixels) with point numbers (N × 3) or without point numbers (N × 2),

where N = number of image points

xypix with point numbers (3 × 3 array):
 1 100.1 200.2
 2 300.4 150.5
 4 200.4 300.6

 xypix without point numbers (3 × 2 array):
 100.1 200.2
 300.4 150.5
 200.4 300.6

note that for the 2nd example without point numbers the 3rd doublet of x, y values (200.4
300.6) would be taken as point number 3 instead of point number 4 as in the 1st example
where point numbers are explicitly entered (see output examples below)

Sh
horizontal pixel spacing in mm. ex: 0.013

Sv
vertical pixel spacing in mm. ex: 0.013

x0, y0
location of image reference center, pixels. For example, a 640 × 480 (Horz × Vert) image
would normally be referenced to x0, y0 = 320, 240. x0, y0 locates the center (0, 0) of the
image coordinates in mm

Output xymm

output is an N × 3 array with either explicitly entered point numbers or sequential point
numbers from 1:N

if Sh = Sv = 0.013; x0 = 320; y0 = 240 then

output for 1st example of xypix input above:
 1.0000 -2.8587 0.5174
 2.0000 -0.2548 1.1635
 4.0000 -1.5548 -0.7878

 output for 2nd example of xypix input above:
 1.0000 -2.8587 0.5174
 2.0000 -0.2548 1.1635
 3.0000 -1.5548 -0.7878

92

Remarks In the function pixel2mm it is assumed that the origin of the image coordinates in pixels is
located at the usual upper left of the image with the x-coordinate (horizontal) positive to the
right and the y-coordinate (vertical) positive downward. The origin of the outputted image
coordinates in mm is centered at x0, y0 with the x-coordinate positive to the right and the y-
coordinate positive upward. It is common to simply take ½ of the horizontal and vertical
pixel image dimensions as the values to be used for x0, y0 even though the half way point
would actually be ½ the pixel count + 0.5 pixel. Thus for the 640 × 480 (Horz × Vert) image
example used above, the actual geometrical center of the image in pixels is 320.5, 240.5 rather
than 320, 240. However, x0, y0 is simply a common reference point on the image. For
instance, if the values of 320, 240 are used instead of 320.5, 240.5 for x0, y0, then the
locations of the photogrammetric principal point or point of symmetry for distortion would
adjust to accommodate the 0.5 pixel discrepancy in reference point, yielding the same
photogrammetric results in either case.

Example script pixel2mmExample.m with input files ‘Sample Image Coordinates\centroids2.txt’ and

‘Sample Images\image2.tif’

Equations

vopixmm

hopixmm

S)yy(y
S)xx(x

93

pixelXYselect

Purpose manual selection of image coordinates with mouse and storage to file

Syntax pixelXYselect

XY = pixelXYselect
 XY = pixelXYselect(i)

XY = pixelXYselect(‘FileName’, ‘ffff’, ‘Nstart’, i, ‘FileMode’, ‘m’, ‘fig’, g,
‘PrintOut’, p)

In the 1st simplest calling syntax above the target location selections are made on the current,
or active figure (by invoking gcf). Selected locations [target #, x, y] in pixel output are
appended to the default file ‘centTemp.txt’ in the current directory with a starting number of
1.

The 2nd syntax, in addition, puts the [targ#, x, y] locations in variable XY.

The 3rd syntax, perhaps the most friendly syntax due to its simplicity and usefulness, is used
to set the starting target number. With the 3rd syntax large missing sections of target numbers
can be handled by recalling the function with the next target number in the sequence taken to
be the new starting number. Once all the targets have been selected, the default file
centTemp.txt can be renamed and edited. It is suggested that for missing targets that do not
span a wide range, that the cursor be placed to the left of the image to yield negative x-values,
which can be readily picked out and removed during editing (or a script can be written to
throw out negative values automatically).

The 4th syntax is the most general and must be used for changing default values other than
starting target number. The new values must be entered as argument pairs where the 1st string
of the pair specifies the argument label and the 2nd entry (a character string for file name and
mode, a numeric value for starting number and figure number) specifies the value of the
argument used in the function. Argument labels specified this way are file name ‘FileName’,
file mode ‘FileMode’, figure number ‘fig’, and when other arguments are specified, the
starting target number ‘Nstart’ must then be also specified in an argument pair. The argument
labels must match exactly the above entries including case. In the 4th syntax, ‘ffff’ represents
the character string (or string variable) for the file name, i represents the starting numerical
value (or numeric variable) of starting target number, ‘m’ represents the file mode which can
be generally either ‘a’ for append or ‘w’ for write (without appending), ‘g’ represents the
numerical value of the figure number to be used, and ‘p’ represents either 0 (no printout to the
command window) or 1 (printout).

Arguments i
 starting target number, which can be a single numerical value (or variable) argument. Default

is 1

 ‘Nstart’, i
 if other arguments in addition to starting target number are entered, then the starting target

number must also be entered paired with its argument label ‘Nstart’

‘FileName’, ‘ffff’
‘FileName’ is the argument label which must be paired with the file name character string (or
string variable) ‘ffff’. Default is ‘centTemp.txt’

94

‘FileMode’, ‘m’
‘FileMode’ is the argument label which must be paired with the file name character string (or
string variable) ‘m’, which normally would either be ‘a’ for append or ‘w’ for write (without
appending). Default is ‘a’

‘fig’, g
‘fig’ is the argument label which must be paired with the numerical value (or numeric
variable) g. Default is current figure (by means of gcf)

‘PrintOut’, p
‘Printout’ is the argument label which must be paired with off (0) or on (1) for printout to the
command window. Default is 1.

Output XY
output is an N × 3 array with sequential target numbers from Nstart:[Nstart + Ntargs – 1]
where Ntargs represents the number of selected target locations

example output
 1 405 404
 2 459 373
 3 466 308

Example script pixelXYselectExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample

Files\image2.tif’. Output is written to centTemp.txt and centTemp2.txt in the current
MATLAB directory.

Remarks Use img = imshow(‘imageFileName’) to put the image for the file ‘imageFileName’ in a

figure before calling function pixelXYselect. Either select the figure containing the image or
use the MATLAB figure(n) to select the desired figure n (or optionally by an input argument
to the function). A useful aid is to invoke iptsetpref('ImshowAxesVisible', 'on') in order to
show the pixel axes on the figure when using imshow. Invoke
iptsetpref('ImshowAxesVisible', 'off') to reset the imshow option to not show the axes.

95

PM2Australis

Purpose Convert from PhotoModeler camera orientation angles , ,

to Australis camera orientation angles, Azimuth, Elevation, Roll

Syntax AzimuthElevationRoll = PM2Australis(Omega, Phi, Kappa)

Arguments Omega
 angle about X-axis, taken as + for CCW rotation; in degrees

Phi
angle about Y--axis taken as + for CCW rotation; in degrees

Kappa
angle about Z-axis taken as + for CCW rotation; in degrees

Output AzimuthElevationRol

output is a 1 × 3 array of angles in the order Azimuth, Elevation, Roll

Remarks Order of application of angles on input is , , . On output order is Azimuth, Elevation,

Roll.

Example script PM2AustralisExample

Equations

m11 cos cos
m12 sin sin cos cos sin
m13 cos sin cos sin sin
m21 cos sin
m22 sin sin sin cos cos
m23 cos sin sin sin cos
m31 sin
m32 sin cos
m33 cos cos

96

where = azimuth, = elevation, and = roll and , , equal the Euler angles omega, phi,
kappa. Note that the 4-quadrant inverse tangent function atan2(y, x) is used instead of the 2-
quandrant atan(y/x) (which would have limited computed angles to 90 instead of 180)
for the arctangent computations within the function.

23

131

33
1

32

311

m
mtan

msin

m
mtan

97

RadiomCali_cheby_fun

Purpose Determination of the camera responsive function based on the Chebysev functions

Syntax [coef,residual]=RadiomCali_cheby_fun(R12,zeta1,zeta2,NoTerm)

Arguments R12

approximate value of 12R is given by (see Remarks)

2
2

INT

1
2

INT

1max

2max
12)F/t(

)F/t(
)I(m
)I(mR .

zeta1
zeta1 is the normalized image intensity of image 1, where)I(m/)](I[m)(maxxx is
the non-dimensional measurement of)(I x normalized by the maximum value and maxI
corresponds to the maximum radiance in the scene.

zeta2
zeta2 is the normalized image intensity of image 2, where)I(m/)](I[m)(maxxx is
the non-dimensional measurement of)(I x normalized by the maximum value and maxI
corresponds to the maximum radiance in the scene.

NoTerm
The number of the Chebysev functions for the camera responsive function

Output coef

the coefficients of a set of the Chebysev functions
)x5x20x16,1x8x8,x3x4,1x2,x,1(352432

residual
residual of least squares estimation

Example script RadiomCali_chebyExample.m

Equations Radiometric measurements using a CCD camera require a good linear response of the electrical output

to the scene radiance. However, there are many stages of image acquisition that may introduce non-
linearity; for example, video cameras often include some form of ‘gamma’ mapping. When the
radiometric response function of a camera is known, the non-linearity can be corrected. Here, a simple
algorithm is described to determine the radiometric response function of a camera from a scene image
taken in different exposures. First, we define)(I x as a linear radiometric response to the scene
radiance and)](I[m x as the measurement of)(I x by camera electronic circuitry that may
produce a non-linear electrical output. Actually, the measurement)](I[m x is the brightness or gray
level of an image, where x is the image coordinates. The non-dimensional response function relating

)(I x to)](I[m x is defined by

)]([fI/)(I max xx , (1)

98

where)I(m/)](I[m)(maxxx is the non-dimensional measurement of)(I x normalized by the
maximum value and maxI corresponds to the maximum radiance in the scene. Recovery of f is
the task of the radiometric calibration of a camera.

Two images of a scene are taken in two different exposures. According to the camera formula,)(I x
is proportional to the integration time INTt and inversely proportional to the square of the f-number F.
Thus, we have the following functional equation for f ,

1221 R)(f/f , (2)
where the subscripts 1 and 2 denote the image 1 and image 2, and the factor 12R is defined as

2
2

INT

1
2

INT

1max

2max
12)F/t(

)F/t(
I
IR . (3)

Since)I(m max corresponds to maxI , the boundary condition for f is 11f . We assume
that f can be expanded as

)(cf n

N

0n
n , (4)

where the base functions)(n are the Chebyshev functions although other orthogonal functions and
non-orthogonal functions like polynomials can also be used. Substitution of Eq. (4) to Eq. (2) leads to
the following equations for the coefficients nc

0)](R)([c 2n121n

N

0n
n , (5)

1)1(c n

N

0n
n . (6)

For selected M pixels in a scene image, Eq. (5) constitutes a system of M+1 equations for the N+1
unknowns nc (NM). For a given 12R , a least-squares solution for nc can be found. In practice,

since the factor 12R is not exactly known a priori, we use an approximate value of 12R

2
2

INT

1
2

INT

1max

2max
12)F/t(

)F/t(
)I(m
)I(mR . (7)

An iteration scheme can be used to give an improved value of 12R .

Liu, T. and Sullivan, J. P, “Pressure and Temperature Sensitive Paints,” Springer, Berlin 2004

99

RadiomCali_poly_fun

Purpose Determination of the camera responsive function based on the power functions

Syntax [coef,residual]=RadiomCali_poly_fun(R12,zeta1,zeta2,NoTerm)

Arguments R12

approximate value of 12R is given by (see Remarks)

2
2

INT

1
2

INT

1max

2max
12)F/t(

)F/t(
)I(m
)I(mR .

zeta1
zeta1 is the normalized image intensity of image 1, where)I(m/)](I[m)(maxxx is
the non-dimensional measurement of)(I x normalized by the maximum value and maxI
corresponds to the maximum radiance in the scene.

zeta2
zeta2 is the normalized image intensity of image 2, where)I(m/)](I[m)(maxxx is
the non-dimensional measurement of)(I x normalized by the maximum value and maxI
corresponds to the maximum radiance in the scene.

NoTerm
The number of the power functions for the camera responsive function

Output coef

the coefficients of a set of the power functions
)x,x,x,x,x,1(5432

residual
residual of least squares estimation

Example script RadiomCali_polyExample.m

Equations Radiometric measurements using a CCD camera require a good linear response of the electrical output

to the scene radiance. However, there are many stages of image acquisition that may introduce non-
linearity; for example, video cameras often include some form of ‘gamma’ mapping. When the
radiometric response function of a camera is known, the non-linearity can be corrected. Here, a simple
algorithm is described to determine the radiometric response function of a camera from a scene image
taken in different exposures. First, we define)(I x as a linear radiometric response to the scene
radiance and)](I[m x as the measurement of)(I x by camera electronic circuitry that may
produce a non-linear electrical output. Actually, the measurement)](I[m x is the brightness or gray
level of an image, where x is the image coordinates. The non-dimensional response function relating

)(I x to)](I[m x is defined by

)]([fI/)(I max xx , (1)

100

where)I(m/)](I[m)(maxxx is the non-dimensional measurement of)(I x normalized by the
maximum value and maxI corresponds to the maximum radiance in the scene. Recovery of f is
the task of the radiometric calibration of a camera.

Two images of a scene are taken in two different exposures. According to the camera formula,)(I x
is proportional to the integration time INTt and inversely proportional to the square of the f-number F.
Thus, we have the following functional equation for f ,

1221 R)(f/f , (2)
where the subscripts 1 and 2 denote the image 1 and image 2, and the factor 12R is defined as

2
2

INT

1
2

INT

1max

2max
12)F/t(

)F/t(
I
IR . (3)

Since)I(m max corresponds to maxI , the boundary condition for f is 11f . We assume
that f can be expanded as

)(cf n

N

0n
n , (4)

where the base functions)(n are the Chebyshev functions although other orthogonal functions and
non-orthogonal functions like polynomials can also be used. Substitution of Eq. (4) to Eq. (2) leads to
the following equations for the coefficients nc

0)](R)([c 2n121n

N

0n
n , (5)

1)1(c n

N

0n
n . (6)

For selected M pixels in a scene image, Eq. (5) constitutes a system of M+1 equations for the N+1
unknowns nc (NM). For a given 12R , a least-squares solution for nc can be found. In practice,
since the factor 12R is not exactly known a priori, we use an approximate value of 12R

2
2

INT

1
2

INT

1max

2max
12)F/t(

)F/t(
)I(m
)I(mR . (7)

An iteration scheme can be used to give an improved value of 12R .

Liu, T. and Sullivan, J. P, “Pressure and Temperature Sensitive Paints,” Springer, Berlin 2004

101

resec3

Purpose Determination of Euler rotational angles when other parameters are given

Syntax

[dxp,exterior]=resec3(epsilon,interior,exterior,format,xyimagd,xyimagu,xyzobj)

Arguments

epsilon
small number for controlling iteration

interior
1-column array of the interior orientation parameters,

),P,P,K,K,S/S,y,x(c, 2121vhpp

exterior
1-column array of the estimated exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

format
1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimagd
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels

xyimagu
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dxp

standard deviation of calculated px over all the targets

exterior
1-column array of the refined exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

Called by dlt.m

102

resec

Purpose Determination of the exterior orientation parameters (resection) using Newton-Raphson

method

Syntax [dxp]=resec(interior,exterior,format,xyimagd,xyimagu,xyzobj,corrindex)

Arguments

interior
1-column array of the interior orientation parameters,

),P,P,K,K,S/S,y,x(c, 2121vhpp

exterior
1-column array of the exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

format
1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimagd
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels

xyimagu
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

corrindex
The iteration number for lens distortion correction

Output dxp

standard deviation of calculated px over all the targets

Remarks This function provides an objective function ‘dxp’ for minimization to determine the correct

interior orientation parameters.

Called by camcal_fun.m

Equations The detailed description of the optimization method for camera calibration/orientation is

given in the following reference.
Liu, T., Cattafesta, L., Radezsky, R., and Burner, A. W., “Photogrammetry applied to wind
tunnel testing”, AIAA J. Vol. 38, No. 6, 2000, pp. 964-971

103

resec_ZW

Purpose Determination of the exterior orientation parameters using the closed-form resection method

developed by Zeng and Wang
based on three known targets

Syntax [exterior]=resec_ZW(xyimag,xyzobj,camformat,c)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimag
2-column array of the image coordinates (x, y) of three targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of three targets, and the units are
consistent with)Z,Y,X(ccc in inches

c
the principal distance in mm (approximately focal length)

Output exterior

two sets of the exterior orientation parameters)Z,Y,Xκ,φ,ω,(ccc

Remarks This closed-form resection function typically gives two sets (two solutions) of the exterior

orientation parameters. To determine the correct set, additional information is needed. For
example, when an additional known target is given, we have two groups of three known
targets. Then, we run 'resec_ZW.m' for the two groups and obtain four sets of the exterior
orientation parameters. If one set of the exterior orientation parameters is repeated in two
runs, it is the correct one that should remain invariant for different groups of targets.
Another important point in the use of this function is that three targets should be numbered in
a counterclockwise fashion in both the image plane and object space. This facilitates the
selection of the appropriate sets of)Z,Y,X(ccc .

Example script resec_ZWExample.m

Equations The detailed description of the closed-form resection method for the exterior orientation

parameters is given in the following reference.

Zeng, Z. Q. and Wang, X., “A General Solution of a Closed-Form Space Resection”,
Photogrammetric Engineering and Remote Sensing,” Vol. 58, No. 3, 1992, pp. 327-338

104

resecA

Purpose Determination of Euler rotational angles when other parameters are given

Syntax

[dxp,exterior]=resecA(interior,exterior,format,xyimagd,xyimagu,xyzobj)

Arguments

interior
1-column array of the interior orientation parameters,

),P,P,K,K,S/S,y,x(c, 2121vhpp

exterior
1-column array of the estimated exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

format
1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimagd
2-column array of the distorted image coordinates (x, y) of a set of targets in pixels

xyimagu
2-column array of the undistorted image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dxp

standard deviation of calculated px over all the targets

exterior
1-column array of the refined exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

Remarks This function is used in ‘camcal_fun.m’.

Example script camcal_fun.m

105

resection

Purpose nonlinear least squares (NLLS) to determine , , , Xc, Yc, and Zc and estimates of the

standard deviations of these parameters given camera interior parameters (c, xp, yp), image
data, and X, Y, Z object space data

Syntax camOut = resection(camIn, XYZ)

Arguments camIn
 structure with at least the following fields:

camIn.c
principal distance c (or camera constant), usually mm

 camIn.xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

camIn.yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

camIn.omega
angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis
toward the origin
.
camIn.phi
angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

camIn.kappa
angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

camIn.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

camIn.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

camIn.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

camIn.xymm
N X 3 numeric array containing [pntNum xmm ymm] for each
image coordinate seen by the camera

XYZ
N × 4 numeric array of the form below (with units same as perspective center location, Xc, Yc,
Zc):

pt1 X1 Y1 Z1
pt2 X2 Y2 Z2

106

.

.

.
ptN XN YN ZN

Output camOut
 structure with fields as follows:

camOut.c
principal distance c (or camera constant), usually mm, echoed from input structure camIn

 camOut.xp
x-value of the photogrammetric principal point, usually mm, but always same units as c,
echoed from input structure camIn

camOut.yp
y-value of the photogrammetric principal point, usually mm, but always same units as c,
echoed from input structure camIn

camOut.omega
angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis
toward the origin
.
camOut.phi
angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

camOut.kappa
angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

camOut.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

camOut.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

camOut.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

camOut.omegastd
estimated standard deviation of from NLLS, in degrees

camOut.phistd
estimated standard deviation of from NLLS, in degrees

camOut.kappastd
estimated standard deviation of from NLLS, in degrees

camOut.Xcstd
estimated standard deviation of Xc from NLLS, in degrees

camOut.Ycstd
estimated standard deviation of Yc from NLLS, in degrees

107

camOut.Zcstd
estimated standard deviation of Zc from NLLS, in degrees

camOut.So
standard deviation of unit weight from NLLS

camOut.xstd
standard deviation of the x-coordinates of the differences between the input image coordinates
and the computed coordinates based on resection output parameters

camOut.ystd
standard deviation of the y-coordinates of the differences between the input image coordinates
and the computed coordinates based on resection output parameters

camOut.xymm
N X 3 numeric array containing [pntNum xmm ymm] for each
image coordinate seen by the camera, echoed from input structure camIn.xymm

Reference Elements of Photogrammetry, Paul R. Wolf, 2nd edition, McGraw-Hill, p. 606-609, but with
the opposite sign for coefficients b11 - b13 and b21 - b23, and replacing the symbol for the
camera constant f with c.

Remarks Nonlinear least squares (NLLS) is used to determine the exterior orientation parameters , ,

, Xc, Yc, and Zc and estimates of the standard deviations of these parameters given camera
interior parameters (c, xp, yp), image data, and X, Y, Z object space data. The function
resection uses the linearization method (sometimes called the Gauss, Gauss-Newton, or
Taylor series method) to solve the nonlinear least squares problem. For this method, the
collinearity equations are linearized using Taylor’s theorem. This linearization yields 2
equations (1 each for x- and y-image coordinate) for each 3D point. These equations contain
initial approximations and products of the partial derivatives. Corrections are solved for by
linear least squares and applied iteratively to the initial approximations to determine the final
values of the parameters. The notation follows Wolf’s 2nd edition of Elements of
Photogrammetry, pp. 606-609, but with the opposite sign for coefficients b11 - b13 and b21 - b23
and the symbol f replaced with c. The final estimates of the parameters are found from the
over-determined set of equations representing all the 3D locations with common target point
numbers in both the XYZ object and xymm image set (2 equations for each 3D location). Note
that the correction terms d , d , d , dXc, dYc, dZc are solved for at each iteration, and that the
parameters , , , Xc, Yc, Zc themselves are found by interatively adding the correction terms
to the parameter values foun after the previous iteration. After several iterations the
corrections approach zero and the final iterated solutions for the parameters are determined.
To avoid the possibility of an endless loop, the function resection uses a fixed number of 20
iterations before exit from the function (instead of testing for corrections that approach
negligibly small values as an exit criterion).

Example script resectionExample.m with input files ‘Sample Files\XYZ1.txt’ and ‘Sample

Files\centroids3.txt’

Equations
c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx

c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy

108

where A\ L is the MATLAB operator for linear least squares and the A and L matrices are as
follows, with x, y being the image coordinates, xp, yp being the location of the
photogrammetric principal point, and c is the camera constant (principal distance)

where with

we have

and

L\A

dZ
dY
dX
d
d
d

c

c

c

q
scyy

q
rcxx

L

bbbbbb
bbbbbb

A

p

p

262524232221

161514131211

ZmYmXms
ZmYmXmr
ZmYmXmq

232221

131211

333231

c

c

c

ZZZ
YYY
XXX

109

after each iteration the corrections are added to the latest value of the parameters found from
the previous iteration

233326

223225

213124

23

22

2223323321

133316

123215

113114

13

12

1213323311

m
q
cm

q
yb

m
q
cm

q
yb

m
q
cm

q
yb

r
q
cb

sincoscosZsincossinYsinsinX
q
c

sincosZsinsinYcosX
q
yb

ZmYm
q
cZmYm

q
yb

m
q
cm

q
xb

m
q
cm

q
xb

m
q
cm

q
xb

s
q
cb

coscoscosZcoscossinYcossinX
q
c

sincosZsinsinYcosX
q
xb

ZmYm
q
cZmYm

q
xb

ccc

ccc

ccc

dZZZ
dYYY

dXXX
d
d
d

110

Estimates of the standard deviation of , , , Xc, Yc, and Zc are found within the least squares
reduction as

where V is a column vector of residuals, S0 is the standard deviation of unit weight, df is the
degrees of freedom, cov is the covariance matrix, covdiag represents the diagonal elements of
the covariance matrix, and , , , Xc , Yc , and Zc are the estimates of the standard
deviations of , , , Xc, Yc, and Zc from least squares.

diago

c

c

c

1T

T

o

covS

Z
Y
X

AAcov

df
VVS

LV

111

resectionLocalMin

Purpose Determines 3 alternate sets of exterior orientation (which are possible local minima) for

resection on nearly planar objects. The cal-plate primary lateral dimensions are assumed to be
X, Y with Z constant (representing uniform depth).

Syntax camLocalMin = resectionLocalMin(cam, Zmean)

Arguments cam
 structure with at least the following fields:

cam.omega
angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

cam.phi
angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

cam.kappa
angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

cam.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

Zmean
optional input argument specifying mean of cal-plate Z-values if mean 0.

Output camLocalMin
 structure with fields as follows:

camLocalMin.omega
angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis
toward the origin
.
camLocalMin.phi
angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

camLocalMin.kappa
angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis
toward the origin

camLocalMin.Xc

112

X-coordinate of camera perspective center, always same units as XYZ object coordinates

camLocalMin.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

camLocalMin.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

Reference Photogrammetry Toolbox Reference manual

Remarks All angles must be in degrees. The input angles are redefined within the function to
 be 180º. The input angles (possibly redefined within 180º) are echoed in the first
 elements of the fields of output structure camLocalMin. Elements 2 through 4 are the
 possible local minima that can occur for resection on nearly planar calibration target
 fields. The location of local and global minima in the nonlinear least squares solution
 for resection and the location of alternate solutions for nearly planar target fields is
 especially relevant to wind tunnel and solar sail applications since quite often targets
 on the object of interest are found to lie almost in a plane. One of the concerns of
 nonlinear least squares solutions such as used in space resection is that a local rather
 than a global minimum may have been reached. Whether or not a local minimum
 rather than the global minimum is reached is heavily dependent on the initial
 estimates of the coefficients. For cases where we have very good initial estimates of
 the exterior orientation of a camera, we arrive at the global minimum quite readily.
 However, for cases where it may be necessary to set all the initial estimates to zero
 (except possibly Z) it is then found that sometimes the solution converges to a local
 minimum for which the residuals are quite a bit larger than the global minimum. In
 other cases, especially for planar objects, the local minimum may have residuals that
 are within the range of the global mimum. For these local minimum the exterior
 orientation of the camera is incorrect. The function resectionLocalMin determines
 estimates of 3 such local minima so that one can then transform the possibly incorrect
 exterior orientaion to improve the start values for a rerun the resection function.

Example script resectionLocalMinExample.m

Equations

the smallest absolute value is taken for the choice in the expressions (180), which
restricts the output value of to 180º.

cccc

cccc

cccc

ZZ2ZZZ2Z
YYYY

XXXX
180180

113

residual_exterior

Purpose Estimation of residual of calculated image coordinates from measured ones for optimization

of exterior orientation parameters

Syntax [dd] = residual_exterior(ex_orien,in_orien1,in_orien2,camformat,xyimag,xyzobj)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

ex_orien
1-column array of the approximate exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

in_orien1
1-column array of the first subset of the approximate interior orientation parameters,

)K,S/S,y,x(c, 1vhpp

in_orien2
1-column array of the second subset of the approximate interior orientation parameters,

)P,P,(K 212

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dd

residual of the calculated image coordinates from the measured image coordinates of targets

Remarks This function provides an objective function ‘dd’ for optimization for the exterior orientation

parameters.

Called by camcal_fun_1.m

114

residual_interior1

Purpose Estimation of residual of calculated image coordinates from measured ones for optimization

of the first subset of interior orientation parameters

Syntax [dd] = residual_interior1(in_orien1,ex_orien,in_orien2,camformat,xyimag,xyzobj)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

ex_orien
1-column array of the approximate exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

in_orien1
1-column array of the first subset of the approximate interior orientation parameters,

)K,S/S,y,x(c, 1vhpp

in_orien2
1-column array of the second subset of the approximate interior orientation parameters,

)P,P,(K 212

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dd

residual of the calculated image coordinates from the measured image coordinates of targets

Remarks This function provides an objective function ‘dd’ for optimization for the first subset of the

interior orientation parameters.

Called by camcal_fun_1.m

115

residual_interior2

Purpose Estimation of residual of calculated image coordinates from measured ones for optimization

of the second subset of interior orientation parameters

Syntax [dd] = residual_interior2(in_orien2,ex_orien,in_orien1,camformat,xyimag,xyzobj)

Arguments camformat

1-column array containing the following camera format data:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

ex_orien
1-column array of the approximate exterior orientation parameters,

)Z,Y,Xκ,φ,ω,(ccc

in_orien1
1-column array of the first subset of the approximate interior orientation parameters,

)K,S/S,y,x(c, 1vhpp

in_orien2
1-column array of the second subset of the approximate interior orientation parameters,

)P,P,(K 212

xyimag
2-column array of the image coordinates (x, y) of a set of targets in pixels

xyzobj
3-column array of the object space coordinates (X, Y, Z) of a set of targets, and the units are
consistent with)Z,Y,X(ccc (typically in inches)

Output dd

residual of the calculated image coordinates from the measured image coordinates of targets

Remarks This function provides an objective function ‘dd’ for optimization for the second subset of the

interior orientation parameters.

Called by camcal_fun_1.m

116

roiPolyselect

Purpose create an image that only contains the polygon region of interest (roi) selected or, optionally,

has that regions removed (set to 0 grayscale)

Syntax imgOut = roiPolyselect(img, rejectFlag);

Arguments img

image variable in the workspace or a valid image file name (either a character string or
character variable). The 1st input argument img must be passed to the function in order to
utilize the optional 2nd input argument rejectFlag.

rejectFlag
optional input argument entered as a character string (or character variable) set to 'reject' to
create an output image with the polygon roi set to 0 and the rest of the image to remain as is;
any string other than 'reject' will be ignored

Output imgOut

image (same size and class as input image) with polygon roi data from img superimposed on a
background of 0 (or if rejectFlag set to 'reject' imgOut will be original image with polygon
roi set to 0)

Example script roiPolyselectExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample

Files\image2.tif’

Remarks The polygon roi is selected by positioning the cursor and clicking the left mouse button at

each vertex of the polygon. Press ‘Enter’ to exit the function. The polygon is automatically
closed to the 1st point selected. Note that every time the function roiPolyselect is invoked a
new figure window is created. To remove the currently selected figure window, enter ‘close’
at the command line, or ‘close all’ to close all MATLAB figures. The function should always
be followed by a semicolon ‘;’ to suppress printout of the output image imgOut to the
Command Window. The 1st input argument must be passed to the function in order to utilize
the optional 2nd input argument rejectFlag.

117

roiSelect

Purpose create an image that only contains the regions of interest (roi) selected or, optionally, has

those regions removed (set to 0 grayscale)

Syntax [imgOut roi] = roiSelect(img, rejectFlag);

Arguments img

image variable in the workspace or a valid image file name (either a character string or
character variable); Note that if the function is called without input arguments, an image file
dialog box opens from which the user can select the proper image file. The 1st input argument
img must be passed to the function in order to utilize the optional 2nd input argument
rejectFlag.

rejectFlag
optional input argument entered as a character string (or character variable) set to 'reject' to
create an output image with the roi's set to 0 and the rest of the image to remain as is; any
string other than 'reject' will be ignored

Output imgOut

image (same size and class as input image) with roi data from img superimposed on a
background of 0 (or if rejectFlag set to 'reject' img Out will be original image with roi's set to
0)

roi
numeric N 4 array containing [xmin ymin width height] for N roi's, one roi per row; the
corners of the roi are given by (xmin, ymin) and (xmin+width, ymin+height)

Example script roiSelectExample.m with input files ‘Sample Files\image1.tif’ and ‘Sample

Files\image2.tif’

Remarks The rectangular roi is selected by positioning the cursor to one corner of the desired

rectangular area and then pressing the left mouse button and dragging to the other corner of
the rectangle. A single roi or many roi’s can be selected. Press the left mouse button outside
the image to exit the function. Note that every time the function roiSelect is invoked a new
figure window is created. To remove the currently selected figure window, enter ‘close’ at
the command line, or ‘close all’ to close all MATLAB figures. The function should always
be followed by a semicolon ‘;’ to suppress printout of the output image imgOut to the
Command Window. The 1st input argument must be passed to the function in order to utilize
the optional 2nd input argument rejectFlag.

118

rotationMatrix

Purpose compute common , , rotation matrix

Syntax m = rotationMatrix(omega, phi, kappa, AngleUnits)

Arguments omega
 angle about X-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

phi
 angle about Y-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

kappa
 angle about Z-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

AngleUnits
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only
3 arguments) or set to anything other than ‘radians’, units of degrees will be assumed; for
example if AngleUnits = ‘radian’ then the exact match is not met and the units of degrees
will be assumed

Output m

output is a 3 × 3 array of the , , rotation matrix

output for m = rotationMatrix(0, 0, 0)
m =

 1 0 0
 0 1 0
 0 0 1

output for m = rotationMatrix(90, 90, 90)
m =

 0.0000 0.0000 1.0000
 -0.0000 -1.0000 0.0000
 1.0000 -0.0000 0.0000

output for m = rotationMatrix(/2, /2, /2, ‘radians’)
m =

 0.0000 0.0000 1.0000
 -0.0000 -1.0000 0.0000
 1.0000 -0.0000 0.0000

Reference Manual of Photogrammetry, 4th edition, American Society of Photogrammetry, Chester C.

Slama, Editor-in-Chief, Falls Church, Virginia, 1980, p. 51.

119

Remarks order of application of angles is omega, phi, and then kappa

Example script rotationMatrixExample.m

Equations

m11 cos cos
m12 sin sin cos cos sin
m13 cos sin cos sin sin
m21 cos sin
m22 sin sin sin cos cos
m23 cos sin sin sin cos
m31 sin
m32 sin cos
m33 cos cos

120

rotationMatrixAzElevRoll

Purpose compute rotation matrix in terms of azimuth, elevation, roll

Syntax m = rotationMatrixAzElevationRoll (Azimuth, Elevation, Roll, AngleUnits)

Arguments Azimuth
 angle about Z-axis, taken as + for CW rotation; in degrees unless AngleUnits = ‘radians’

Elevation
 angle about new Y--axis formed after the azimuth rotation, taken as + for CCW; in degrees

unless AngleUnits = ‘radians’

Roll
 angle about the new X-axis formed after the azimuth and Elevation rotations, taken as + for

CCW rotation; in degrees unless AngleUnits = ‘radians’

AngleUnits
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only
3 arguments) or set to anything other than ‘radians’, units of degrees will be assumed; for
example if AngleUnits = ‘radian’ then the exact match is not met and the units of degrees
will be assumed

Output m

output is a 3 × 3 array of the rotation matrix using Azimuth, Elevation, and Roll

output for m = rotationMatrix AzElevationRoll (0, 0, 0)
m =

 1 0 0
 0 0 1
 0 -1 0

output for m = rotationMatrix AzElevationRoll (90, 90, 90)
m =

 1.0000 0 0.0000
 0 -1.0000 0.0000
 0.0000 -0.0000 -1.0000

output for m = rotationMatrix AzElevationRoll (/2, /2, /2, ‘radians’)
m =

 1.0000 0 0.0000
 0 -1.0000 0.0000
 0.0000 -0.0000 -1.0000

Reference

Remarks order of application of angles is azimuth, Elevation, and then Roll

121

Example script rotationMatrixAzElevationRollExample.m

Equations

em
em

em
rem

rrem
rrem

rem
rrem

rrem

sin
coscos

cossin
coscos

sinsincossincos
sincoscossinsin

sincos
cossinsinsincos

coscossinsinsin

33

32

31

23

22

21

13

12

11

 where = azimuth, e = elevation, r = roll

122

rotationMatrixAzTiltSwing

Purpose compute rotation matrix in terms of azimuth, tilt, swing

Syntax m = rotationMatrixAzTiltSwing (Azimuth, Tilt, Swing, AngleUnits)

Arguments Azimuth
 angle about Z-axis, taken as + for CW rotation; in degrees unless AngleUnits = ‘radians’

Tilt
 angle about new X-axis formed after the azimuth rotation, taken as + for CCW; in degrees

unless AngleUnits = ‘radians’

Swing
 angle about the new Z-axis formed after the azimuth and tilt rotations, taken as + for CCW

rotation; in degrees unless AngleUnits = ‘radians’

AngleUnits
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only
3 arguments) or set to anything other than ‘radians’, units of degrees will be assumed; for
example if AngleUnits = ‘radian’ then the exact match is not met and the units of degrees
will be assumed

Output m

output is a 3 × 3 array of the , , rotation matrix

output for m = rotationMatrix AzTiltSwing (0, 0, 0)
m =

 -1 0 0
 0 -1 0
 0 0 1

output for m = rotationMatrix AzTiltSwing (90, 90, 90)
m =

 -0.0000 0.0000 -1.0000
 0.0000 -1.0000 -0.0000
 -1.0000 -0.0000 0.0000
output for m = rotationMatrix AzTiltSwing (/2, /2, /2, ‘radians’)
m =

 -0.0000 0.0000 -1.0000
 0.0000 -1.0000 -0.0000
 -1.0000 -0.0000 0.0000

Reference Elements of Photogrammetry, 2nd edition, McGraw-Hill, Paul R. Wolf, 1983, p. 610-612.

Remarks order of application of angles is azimuth, tilt, and then swing

Example script rotationMatrixAzTiltSwingExample.m

123

Equations

tm
tm
tm
stm

stsm
stsm

stm
stsm

stsm

cos
sincos
sinsin

cossin
coscoscossinsin

coscossinsincos
sinsin

sincoscoscossin
sincossincoscos

33

32

31

23

22

21

13

12

11

where = azimuth, t = tilt, s = swing

124

rotationMatrixDuality

Purpose outputs alternate set (duality) of , , that has identical rotation matrix as computed with

input , ,

Syntax [omegaDual, phiDual, kappaDual] = rotationMatrixDuality(omega, phi, kappa,

AngleUnits)

Arguments omega
 angle about X-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

phi
 angle about Y-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

kappa
 angle about Z-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

AngleUnits
optional argument to force units to radians with AngleUnits = ‘radians’; if left off (using only
3 arguments) or set to anything other than ‘radians’ (exactly), units of degrees will be
assumed; for example if AngleUnits = ‘radian’ then the exact match is not met and the units
of degrees will be assumed

Output omegaDual
 angle about X-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

phiDual
 angle about Y-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

kappaDual
 angle about Z-axis, taken as + for CCW rotation when viewing down the axis toward the

origin; in degrees unless AngleUnits = ‘radians’

output for [omegaDual, phiDual, kappaDual] = rotationMatrixDuality(0, 0, 0)
[180, 180, 180]

output for [omegaDual, phiDual, kappaDual] = rotationMatrixDuality(0, 0, 0, ‘radians’)
[3.1416, 3.1416, 3.1416]

output for [omegaDual, phiDual, kappaDual] = rotationMatrixDuality(10, -20, 30)
[-170, -160, -150]

Reference PE&RS vol. 56 No.9, Sept. 1990, pp. 1281-1283

Remarks order of application of Euler angles is omega, phi, and then kappa. Note that the duality of

the rotation matrix is not simply due to the cyclical nature of the trigonometric functions with

125

additions of ± 2 . Additions of ± 2 actually produce the same angle, unlike the duality
angles which differ by ± . The set of duality angles is an alternate way to angularly position
a camera to the same final angular orientation as the matching set of angles. This function
should help in interpretation of space resection results in which the computed angles appear
quite different from expected (or from other solutions), but actually produce the exact same
rotation matrix (final position) and are thus fully equivalent.

Example script rotationMatrixDualityExample.m

Equations

The minimum of the absolute values of either of the 2 choices for each of Dual, Dual, or Dual
is selected as the output value for each angle

or
or
or

Dual

Dual

Dual

126

saveCamStruct

Purpose Saves camera parameter structure in a text file for later loading into a script or function with

the matching function loadCamStruct

Syntax saveCamStruct(fileName, camStructure)

Arguments fileName
 fileName of file to save camera parameter structure (such as the string 'fileName' or the string

variable filename)

camStructure
 camera parameter structure with fields as follows:

camStructure.c
principal distance c (or camera constant), usually mm

 camStructure.xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

camStructure.yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

camStructure.m
3 3 rotation matrix, usually from function rotationMatrix

camStructure.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

camStructure.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

camStructure.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

Output text file with name filename (which may contain the path) like:
 c = 25.00000

xp = 0.50000
yp = -0.50000
m = 0.4924038765061041
m = -0.5868240888334652
m = 0.6427876096865393
m = 0.8700019037522058
m = 0.3104684609733676
m = -0.3830222215594890
m = 0.0252013862574872
m = 0.7478280708194912
m = 0.6634139481689384
Xc = 10.00000
Yc = 20.00000

127

Zc = 30.00000

Remarks saveCamStruct is a simple function to save the basic camera parameter structure in a human

readable text file. When saved in this format the matching function loadCamStruct can be
used to load the camera parameter structure into a structure variable within a script or function
for further application. The rotation matrix m is saved in row order (default for MATLAB) in
the order m11, m21, m31, m21, m22, m23, m31, m32, m33. Note that this simple function ignores
other fields of the camera parameter structure other than those identified above. The current
version of this simple function has minimal error handling.

Example script saveCamStructExample.m with output to ‘Sample Files\camStruct.txt’

128

singleView

Purpose Single view photogrammetry determinations of 1 or 2 coordinates with 2 or 1 of the other

coordinates known respectively. Can solve singly for coordinates X, Y, or Z if the other 2
coordinates are known. Also can solve for coordinate pairs X & Y, X & Z, or Y & Z if the
other coordinate of the triplet is known.

Syntax XYZsv = singleView(cam, xymm, XYZ)

Arguments cam
 structure with fields as follows:

cam.c
principal distance c (or camera constant), usually mm

 cam.xp
x-value of the photogrammetric principal point, usually mm, but always same units as c.

cam.yp
y-value of the photogrammetric principal point, usually mm, but always same units as c.

cam.m
3 3 rotation matrix, usually from function rotationMatrix

cam.Xc
X-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Yc
Y-coordinate of camera perspective center, always same units as XYZ object coordinates

cam.Zc
Z-coordinate of camera perspective center, always same units as XYZ object coordinates

xymm
N × 3 array with point numbers in 1st column. The array xymm is of the form:

pt1 x1 y2
pt2 x2 y2
.
.
.
ptN xN yN

XYZ
structure with the following 4 fields:

XYZ.pnt (target number)
XYZ.X (X-value in object space)
XYZ.Y (Y-value in object space)
XYZ.Z (Z-value in object space)

129

the coordinate(s) to be solved for should be set to [] in XYZ structure as, for instance, XYZ.Y
= []; The other coordinates not solved for are echoed in the output array XYZsv along with
the coordinates solved for. Units of ouput array XYZsv same as units of XYZ (and Xc, Yc,
Zc)

Output XYZsv
output is an N × 4 or N × 5 array with point numbers taken from target numbers which are
common to both xymm and XYZ structure. There can be missing target numbers in either the
image or object coordinate input arguments. Only data from targets common to both are
outputted to XYZsv. The output array XYZsv is of the form below (except for single
coordinate solutions of X, Y, or Z only where a 5th column is also outputted containing the
standard deviation as determined by least squares of the single coordinate solved for):

pt1 x1 y1 z1 (1)
pt2 x2 y2 z2 (2)
.
.
.
ptN xN yN zN (N)

Remarks This function can solve for single coordinates if the other 2 coordinates are know, or can solve

for 2 coordinates if only 1 other coordinate is known from a single view. The camera
parameters listed above for the structure cam most all be known along with image
coordinates corresponding to the object coordinates. Cases where 2 coordinates are known
and one is solve for result in 2 equations (collinearity equations, 1 for x-image, 1 for y-image)
in 1 unknown. Thus least squares can be used to determine the single coordinate while also
computing as estimate of the standard deviation of the coordinate (but with only 1 degree of
freedom). For those cases the 5th column of the output array XYZsv contains the estimated
standard deviation from the least squares computation.

Example script singleViewExample.m

Equations

c33c32c31

c13c12c11
p ZZmYYmXXm

ZZmYYmXXmcxx

c33c32c31

c23c22c21
p ZZmYYmXXm

ZZmYYmXXmcyy

the collinearity equations above can be recast in the following form

a1X a2Y a3Z a1X c a2Yc a3Zc

a4 X a5Y a6Z a4 Xc a5Yc a6Zc

where

130

2333p6

2232p5

2131p4

1333p3

1232p2

1131p1

mcmyya
mcmyya
mcmyya
mcmxxa
mcmxxa
mcmxxa

X, Y solution:

where A \ B is the MATLAB operator for Gaussian elimination, or if over-determined, for
linear least squares

X, Z solution:

Y, Z solution:

B\A
Y
X

ZaZaYaXa
ZaZaYaXa

B

aa
aa

A

6c6c5c4

3c3c2c1

54

21

B\A
Y
X

YaZaYaXa
YaZaYaXa

B

aa
aa

A

5c6c5c4

2c3c2c1

64

31

B\A
Y
X

XaZaYaXa
XaZaYaXa

B

aa
aa

A

4c6c5c4

1c3c2c1

65

32

131

X solution:

Y solution:

Z solution:

Computation of standard deviation for X, Y, or Z single coordinate least squares solution (with
X replaced by Y or Z as necessary):

where V is a column vector of residuals, S0 is the standard deviation of unit weight, cov is the
covariance matrix and is the estimate of the standard deviation of either X, Y, or Z from
least squares estimation.

B\AX
ZaYaZaYaXa
ZaYaZaYaXa

B

a
a

A

65c6c5c4

32c3c2c1

4

1

B\AY
ZaXaZaYaXa
ZaXaZaYaXa

B

a
a

A

64c6c5c4

31c3c2c1

5

2

B\AZ
YaYaZaYaXa
YaXaZaYaXa

B

a
a

A

54c6c5c4

21c3c2c1

6

3

covS

AAcov

VVS

BXAV

o

1T

T
o

132

TransposeAngles

Purpose returns T, T, T for a rotation matrix that is the transpose of the rotation matrix formed by

the input arguments , ,

Syntax Angle = TransposeAngles(Parameter)

Arguments Parameter
 structure with the following fields:

 Parameter.omega
 angle in degrees about X-axis, taken as + for CCW rotation when viewing down the axis

toward the origin

Parameter.phi
 angle in degrees about Y-axis, taken as + for CCW rotation when viewing down the axis

toward the origin

Parameter.kappa
 angle in degrees about Z-axis, taken as + for CCW rotation when viewing down the axis

toward the origin

Output Angle

structure with the following fields:

Angle.omega

 angle in degrees about X-axis, T taken as + for CCW rotation when viewing down the axis
toward the origin

Angle.phi

 angle in degrees about Y-axis, T taken as + for CCW rotation when viewing down the axis
toward the origin

Angle.kappa

 angle in degrees about Z-axis, T taken as + for CCW rotation when viewing down the axis
toward the origin

Reference Manual of Photogrammetry, 4th edition, American Society of Photogrammetry, Chester C.

Slama, Editor-in-Chief, Falls Church, Virginia, 1980, p. 51 and Elements of Photogrammetry,
Paul R. Wolf, 2nd edition, McGraw-Hill, p. 613

Remarks order of application of angles is omega, phi, and then kappa. This function can be useful for

cases where the solution is desired in terms of the transpose of the rotation matrix, but the
solution in hand is in terms of the rotation matrix without transpose (for example when using
the function conformal3DNLLS). Note that the angles T and T should not be found from
the diagonal elements of the rotation matrix m33 and m11 since the cosine function returns the
same value for ± angles, thus the signs of and may not be correctly determined using
those elements. Also note that the 4-quadrant inverse tangent atan2 is used in the function to
determine T and T and that the output angle T is limited by the asind function to ± 90º. A
warning error message test (for maximum absolute error > 10-12) is built into the function

133

which compares the rotation matrix generated from the output angles to the transpose of the
rotation matrix generated from the input angles.

Example script TransposeAnglesExample.m

Equations the rotation matrix for the input angles , , is given by

coscos
cossin

sin
cossinsinsincos

coscossinsinsin
sincos

sinsincossincos
sincoscossinsin

coscos

33

32

31

23

22

21

13

12

11

m
m
m
m
m
m
m
m
m

the output angles T, T, T are found from the rotation matrix formed from the input angles

, , using the following equations

the rotation matrix formed from the function output angles T, T, T equals the transpose of
the rotation matrix formed from the input angles , ,

11

121
T

33

231
T

13
1

T

m
mtan

m
mtan

msin

134

xy2XYZ

Purpose Determination of object-space coordinates (X, Y, Z) of a target from the corresponding image

coordinates in two images (A and B) by photogrammetric intersection

Syntax [Xtarg,Ytarg,Ztarg] =

xy2XYZ(xPixA,yPixA,xPixB,yPixB,oriA,oriB,camformatA,camformatB)

Arguments (xPixA, yPixA)

image coordinates in image A in pixels

(xPixB, yPixB)
image coordinates in image B in pixels

oriA
1-column array of the orientation parameters for Camera A)Z,Y,Xκ,φ,ω,(ccc and

),P,P,K,K,S/S,y,x(c, 2121vhpp

oriB
1-column array of the orientation parameters for Camera A)Z,Y,Xκ,φ,ω,(ccc and

),P,P,K,K,S/S,y,x(c, 2121vhpp

camformatA
1-column array containing the following camera format data for Camera A:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

camformatA
1-column array containing the following camera format data for Camera B:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Output [Xtarg,Ytarg,Ztarg]

object-space coordinates of a target

Remarks This function is used for stereo photogrammetric measurements to determine the 3D object-

space coordinates from two images.

Example script xy2XYZExample.m

Equations The detailed description of intersection is given in the following reference.

Mikhail, E. M., Bethel, J. S., and McGlone, J. C., “Introduction to modern photogrammetry,”
John Wiley & Sons, Inc., New York, 2001

135

xy2XZ

Purpose Determination of object-space coordinates (X, Z) of a target from the corresponding image

coordinates in one image for a given Y-coordinate

Syntax [Xtarg, Ztarg] = xy2XZ(xPix,yPix,Ytarg,ori,camformat)

Arguments (xPix, yPix)

image coordinates of a target in image in pixels

Ytarg
Y-coordinates in object space, the unit is consistent with)Z,Y,X(ccc

ori
1-column array of the orientation parameters for camera)Z,Y,Xκ,φ,ω,(ccc and

),P,P,K,K,S/S,y,x(c, 2121vhpp

camformat
1-column array containing the following camera format data for:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Output [Xtarg,Ztarg]

object-space coordinates (X, Z) of a target

Remarks This single-camera method is a constrained intersection, which is particularly useful in wing

deformation measurements.

Example script xy2XZExample.m

Equations The detailed description of this single-camera method is given in the following reference.

Burner, A. W. and Liu, T., “Videogrammetric model deformation measurement technique”,
Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 745-754.

136

xyplot

Purpose Graphical comparison of measured image coordinates with calculated image coordinates from

object-space coordinates of targets through projection (collinearity equations)

Syntax xyplot(camformat,orien,xyimag,xyzobj,plot_No)

Arguments orien

1-column array of the orientation parameters for camera)Z,Y,Xκ,φ,ω,(ccc and
),P,P,K,K,S/S,y,x(c, 2121vhpp

xyzobj
object space coordinates (X, Y, Z) of targets, and the units are consistent with)Z,Y,X(ccc
(typically in inches)

camformat
1-column array containing the following camera format data for:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

xyimag
measured image coordinates (x, y) of targets in pixels

plot_No
plot number

Output comparison plot of image coordinates (in mm) of targets

Remarks This is a plotting function for comparison between measured and calculated images

coordinates.

Called by dlt0.m, dlt.m, camcal_fun.m

Equations The detailed description of the collinearity equations is given in the following reference.

Burner, A. W. and Liu, T., “Videogrammetric model deformation measurement technique”,
Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 745-754.

137

XYZ2xy

Purpose Determination of image coordinates (x, y) from object-space coordinates (X, Y, Z) of a target

through projection (collinearity equations)

Syntax [xyimag]=XYZ2xy(ori,xyzobj,camformat)

Arguments ori

1-column array of the orientation parameters for camera)Z,Y,Xκ,φ,ω,(ccc and
),P,P,K,K,S/S,y,x(c, 2121vhpp

xyzobj
object space coordinates (X, Y, Z) of a target, and the units are consistent with)Z,Y,X(ccc
(typically in inches)

camformat
1-column array containing the following camera format data for:

Number of horizontal pixels
Number of vertical pixels
Horizontal pixel spacing (mm/pixel)
Vertical pixel spacing (mm/pixel)

Output [xyimag]

image coordinates (x, y) of a target in pixels

Remarks This is a projection function for the given camera orientation parameters.

Example script xy2XZExample.m

Equations The detailed description of the collinearity equations is given in the following reference.

Burner, A. W. and Liu, T., “Videogrammetric model deformation measurement technique”,
Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 745-754.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE

Photogrammetry Toolbox Reference Manual

5a. CONTRACT NUMBER

NAS1-02117

 6. AUTHOR(S)

Liu, Tianshu; Burner, Alpheus W.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, Virginia 23681

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Danny A. Barrows

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 35
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Specialized photogrammetric and image processing MATLAB functions useful for wind tunnel and other ground-based testing
of aerospace structures are described. These functions include single view and multi-view photogrammetric solutions, basic
image processing to determine image coordinates, 2D and 3D coordinate transformations and least squares solutions, spatial
and radiometric camera calibration, epipolar relations, and various supporting utility functions.

15. SUBJECT TERMS

Calibration; Deformation; Photogrammetry

18. NUMBER
 OF
 PAGES

142
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

NNL06AC15T
5f. WORK UNIT NUMBER

 380046.02.07.03.03.01

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2014-218518

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
09 - 201401-

