DEPARTMENT OF THE INTERIOR

BULLETIN

OF THE

UNITED STATES

GEOLOGICAL SURVEY

No. 9

A REPORT OF WORK DONE IN THE WASHINGTON LABORATORY DURING THE FISCAL YEAR 1883-'84

WASHINGTON GOVERNMENT PRINTING OFFICE

1884

ADVERTISEMENT.

(Bulletin No. 9.)

The publications of the United States Geological Survey are issued in accordance with the statute, approved March 3, 1879, which declares that—

"The publications of the Geological Survey shall consist of the annual report of operations, geological and economic maps illustrating the resources and classifications of the lands, and reports upon general and economic geology and paleontology. The annual report of operations of the Geological Survey shall accompany the annual report of the Secretary of the Interior. All special memoirs and reports of said Survey shall be issued in uniform quarto series if deemed necessary by the Director, but otherwise in ordinary octavos. Three thousand copies of each shall be published for scientific exchanges and for sale at the price of publication; and all literary and cartographic materials received in exchange shall be the property of the United States and form a part of the library of the organization. And the money resulting from the sale of such publications shall be covered into the Treasury of the United States."

On July 7, 1882, the following joint resolution, referring to all Government publications, was passed by Congress :

"That, whenever any document or report shall be ordered printed by Congress, there shall be printed, in addition to the number in each case stated, the 'usual number' [1,900] of copies for binding and distribution among those entitled to receive them."

Under these general laws it will be seen that none of the Survey publications are furnished to it for gratuitous distribution. The 3,000 copies of the Annual Report are distributed through the document rooms of Congress. The 1,900 copies of each of the publications are distributed to the officers of the logislative and executive Departments and to stated depositories throughout the United States.

Except, therefore, in those cases where an extra number of any publication is supplied to this office by special resolution of Congress, as has been done in the case of the Second, Third, Fourth, and Fifth Annual Reports, or wherea number has been ordered for its use by the Secretary of the Interior, as in the case of Williams's Mineral Resources, the Survey has no copies of any of its publications for gratuitous distribution.

ANNUAL REPORTS.

Of the Annual Reports there have been already published:

I. First Annual Report to the Hon. Carl Schurz, by Clarence King. 1880. 8°. 79 pp. 1 map.—A. preliminary report describing plan of organization and publications.

II. Report of the Director of the United States Geological Survey for 1880-'81, by J. W. Powell. 1882. 8°. lv, 588 pp. 61 pl., 1 map.

III. Third Annual Report of the United States Geological Survey, 1881-'82, by J. W. Powell. 1883. 8°. xviii, 564 pp. 67 pl. and maps.

IV. Fourth Annual Report of the United States Geological Survey, 1882-'83, by J. W. Powell. 1884. 8°. xii, 473 pp. 85 pl. and maps.

The Fifth Annual Report is in press.

MONOGRAPHS.

So far as already determined upon, the list of the Monographs is as follows:

I. The Precious Metals, by Clarence King. In preparation.

II. Tertiary History of the Grand Cañon District, with atlas, by Capt. C. E. Dutton. Published.

III. Geology of the Comstock Lode and Washoe District, with atlas, by George F. Becker. Published.

IV. Comstock Mining and Miners, by Eliot Lord. Published.

V. Copper-bearing Rocks of Lake Superior, by Prof. R. D. Irving. Published.

VI. Older Mesozoic Flora of Virginia, by Prof. William M. Fontaine. Published.

VII. Silver-lead Deposits of Eureka, Nevada, by Joseph S. Curtis. Published.

VIII. Paleontology of the Eureka District, Nevada, by Charles D. Walcott. In press.

IX. Brachiopoda and Lamellibranchiata of the Green Marls and Clays of New Jersey, by R. P. Whitfield.

Geology and Mining Industry of Leadville, with atlas, by S. F. Emmons. In preparation.

Geology of the Eureka Mining District, Nevada, with atlas, by Arnold Hagne. In preparation. Lake Bonneville, by G. K. Gilbert. In preparation.

Dinocerata. A monograph on an extinct order of Ungulates, by Prof. O. C. Marsh. In preparation. Sauropoda, by Prof. O. C. Marsh. In preparation.

Stegosauria, by Prof. O. C. Marsh. In preparation.

Of these Monographs, Nos. II, III, IV, V, VI, and VII are now published, viz:

11. Tertiary History of the Grand Cañon District, with atlas, by C. E. Dutton, Capt. U. S. A. 1882. 4º. 264 pp. 42 pl. and atlas of 26 double sheets folio. Price \$10.12.

III. Geology of the Comstock Lode and Washoe District, with atlas, by G. F. Becker. 1882. 4º. xv, 422 pp. 7 pl. and atlas of 21 sheets folio. Price \$11.

IV. Comstock Mining and Miners, by Eliot Lord. 1883. 4º. xvi, 451 pp. 3 pl. Price \$1.50.

V. Copper-bearing Rocks of Lake Superior, by Prof. R. D. Irving. 1883. 4º. xiv, 464 pp. 29 pl. Price \$-

VI. Contributions to the Knowledge of the Older Mesozoic Flora of Virginia, by William M. Fontaine. 1883. 4º. xi, 144 pp. 54 l. 54 pl. Price \$-.

VII. Silver-lead Deposits of Eureka, Nevada, by Joseph S. Curtis. 1884. 4°. xiii, 200 pp. 15 pl. Price \$-

Nos. VIII and IX are in press and will soon appear. The others, to which numbers are not assigned, are in preparation.

BULLETINS.

The Bulletins of the Survey will contain such papers relating to the general purpose of its work as do not properly come under the heads of Annual Reports or Monographs.

Each of these Bulletins will contain but one paper, and be complete in itself. They will, however, be numbered in a continuous series, and will in time be united into volumes of convenient size. To facilitate this, each Bulletin will have two paginations, one proper to itself and one which belongs tto it as part of the volume.

Of this series of Bulletins, Nos. 1, 2, 3, 4, 5, 6, 7, 8, and 9 are already published, viz:

1. On Hypersthene-Andesite and on Triclinic Pyroxene in Augitic Rocks, by Whitman Cross, with 2 Geological Sketch of Buffalo Peaks, Colorado, by S. F. Emmons. 1883. 8º. 42 pp. 2 pl. Price 10 cents.

2. Gold and Silver Conversion Tables, giving the coining value of Troy ounces of fine metal, &c., by Albert Williams, jr. 1883. 8°. ii, 8 pp. Price 5 cents.

3. On the Fossil Faunas of the Upper Devonian along the meridian of 76° 30', from Tompkins County, New York, to Bradford County, Pennsylvania, by Henry S. Williams. 1884. 8°. 36 pp. Price 5 cents.

4. On Mesozoic Fossils, by Charles A. White. 1884. 8°. 36 pp. 9 pl. Price 5 cents.

5. A Dictionary of Altitudes in the United States, compiled by Henry Gannett. 1884. 8º. 325 pp. Price 20 cents.

.6. Elevations in the Dominion of Canada, by J. W. Spencer. 1884. 8º. 43 pp. Price 5 cents.

7. Mapoteca Geologica Americana. A Catalogue of Geological Maps of America (North and South), 2752-1881, by Jules Marcou and John Belknap Marcou. 1884. 8º. 84 pp. Price 10 cents.

8. On Secondary Enlargement of Mineral Fragments in Certain Rocks, by R. D. Irving and C. R. Wanhise. 1884. 8°. 56 pp. Price 10 cents.

9. A Report of Work done in the Washington Laboratory during the fiscal year 1883-'84. F. W. Clarke, chief chemist; T. M Chatard, assistant. 1884. 8º. 40 pp. Price 5 cents.

STATISTICAL PAPERS.

A fourth series of publications having special reference to the mineral resources of the United States is contemplated; of that series the first has been published, viz: Mineral Resources of the United States, by Albert Williams, jr. 1883. 8°. xvii, 813 pp. Price 50 cents.

Correspondence relating to the publications of the Survey, and all remittances, which must be by mostal note or money order, should be addressed to the

DIRECTOR OF THE UNITED STATES GEOLOGICAL SURVEY,

Washington, D. O.

WASHINGTON, D. C., August 30, 1884.

DEPARTMENT OF THE INTERIOR

BULLETIN

OF THE

UNITED STATES

GEOLOGICAL SURVEY

No. 9

WASHINGTON GOVERNMENT PRINTING OFFICE 1884

UNITED STATES GEOLOGICAL SURVEY

J. W. POWELL DIRECTOR

A REPORT OF WORK DONE

IN THE

WASHINGTON LABORATORY

DURING THE

FISCAL YEAR 1883-'84

F. W. CLARKE CHIEF CHEMIST T. M. CHATARD ASSISTANT CHEMIST

WASHINGTON GOVERNMENT PRINTING OFFICE 1884

CONTENTS.

	Page.
Introductory	7
Mineral, rock, and ore analyses	9
Gahnite, from Montgomery County, Maryland	9
Jade and pectolite, from Alaska	9
· Saussurite, from Shasta County, California	10
Allanite, from Topsham, Maine	10
Beryl, from Greene County, Tennessee	11
Damourite, from Stoneham, Maine	11
Margarite	11
Cimolite, from Norway, Maine	12
Halloysite, from California	12
Prochlorite	13
Alum rock, from Grant County, New Mexico	13
Scoriaceous Obsidian, from Mono Valley, California	14
Powder, from Truckee River, Nevada	14
Marl, from Pyramid Lake, Nevada	14
Clays, from Mill City, Nevada	15
Basalt from Mount Thielson, Oregon	15
Basalt, from Pit River, California	16
Dacites, from Lassen's Peak, California	16
Limestones, from Moundsville, West Virginia	17
Magnetite, from near Bozeman, Montana	17
Limonite, from Canaan Mountain, West Virginia.	18
	18
Coal, from Cranston, Rhode Island	10
Water analyses	19
Pyramid Lake, Nevada	21
Winnemucca Lake, Nevada	21
Walker Lake, Nevada	
Walker River, Nevada	23
Humboldt River, Nevada	23
Hot Spring, foot of Granite Mountain, Nevada	24
Hot Spring, Hot Spring Station, Nevada	24
Larger Soda Lake, Ragtown, Nevada	25
Mono Lake, California	26
Spring on Tufa Crag in Mono Lake, California	27
Warm Spring, Mono Basin, California	27
Boiling Spring, Honey Lake Valley, California.	28
Lake Tahoe, California	28
Abert Lake, Oregon	28
Utah Lake, Utah	29
City Creek, Utah	29
Bear River, Utah	
Utah Hot Springs	30
Livingston Warm Springs, Montana	31
Warm Springs, Emigrant Gulch, Montana	31
Helena Hot Springs, Montana	32
Mill Creek Cold Spring, Montana	32
Virginia Hot Springs, Bath County, Virginia	33
The estimation of alkalies in silicates, by T. M. Chatard	36
Index	39

INTRODUCTORY.

The present bulletin contains the more important results obtained in the chemical laboratory of the United States Geological Survey at Washington, between December 12, 1883, and June 30, 1884. The work here reported was almost wholly done by Dr. T. M. Chatard and myself, and represents the first fiscal year of our laboratory organization. Other work, carried forward in this laboratory by Dr. F. A. Gooch, and relating mainly to the rocks and waters of the Yellowstone National Park, is reserved for a future bulletin.

In addition to the analyses here published, a considerable number of assays, mineral determinations, and qualitative examinations have been made. Several researches have also been begun, but are not yet advanced enough to warrant any announcement. Other bulletins will be issued from time to time, as fast as material accumulates.

F. W. CLARKE.

7

(247)

WORK DONE IN THE WASHINGTON LABORATORY DURING THE FISCAL YEAR 1883--'84.

MINERAL, ROCK, AND ORE ANALYSES.

The mineralogical work of the division of chemistry has been done in close co-operation with the mineral department of the National Museum. Some of the material studied has been received through the latter institution; some has been brought in by field parties of the Survey; some represents our own summer collecting. The rocks, clays, etc., analyzed, have been submitted by other divisions of the survey, and will not be specially discussed in this bulletin. The only novelty in the methods of analysis has been in the use of the bismuth oxide process for the estimation of the alkalies in silicates. This process, as modified by Dr. Chatard, is described later.

GAHNITE FROM GILMORE'S MICA MINE, MOUNTGOMERY COUNTY, MARYLAND.

The locality at which this mineral was found is 12 miles north of Washington, near Colesville, Maryland. The mine has yielded a considerable quantity of merchantable mica, which occurs in the usual granite vein, associated with quartz, albite, garnet, black tourmaline, and beryl. The last-named mineral is abundant in large but ill-formed crystals. But one specimen of the gahnite was obtained; a dark-green massive specimen, filling a cavity in altered feldspar. Specific gravity 4.59. Analysis by T. M. Chatard:

Ignition	
SiO ₂	57
Al ₂ O ₃	55.46
Fe ₂ O ₃	2.77
ZnO	40.07
MgO	59
CuO	
	99.76

JADE AND PECTOLITE FROM ALASKA.

Among the Eskimo implements collected by the U.S. Signal Service at Point Barrow, Alaska, were a considerable number of a material which appeared to be jade. Of these there were two varieties; one pale apple-green, the other dark-green; both were highly polished, and exceedingly compact and tough. The specific gravity of the pale-green

(249)

9

variety was 2.873, that of the dark material was 3.012. Analyses (Clarke) gave results as follows:

	Pale-green.	Dark-green.
H ₂ O	4.09	1.41
SiO2	53.94	57.01
FeO	trace.	6.95
CaO	32. 21	12.75
Mg0	1.43	21. 36
Al ₂ O ₃	0.58	0.42
Na ₂ O	8. 57	
	100. 82	99.90

The dark-green material is plainly jade, or nephrite, quite analogous in composition to that from the Swiss lake dwellings. The light-green mineral, on the other hand, agrees in composition with pectolite. It is easily fusible, and has, in short, all the essential properties of pectolite. It is, therefore, a new and interesting variety of that well-known species.

The Eskimo of Point Barrow say that the jade and jade-like minerals used by them come from some point to the eastward. The locality itself, we believe, has not yet been visited by civilized men. Whether both minerals are found at the same place or not cannot be stated; but we hope that before long more definite information may be secured.

SAUSSURITE FROM CALIFORNIA.

Found in a gabbro collected by Mr. J. S. Diller, thirty-seven miles north of Pit River Ferry, Shasta County. The mineral is nearly white, with a greenish-gray cast, and has a specific gravity of 3.148. Associated with green diallage. Analysis by F. W. Clarke:

0		0	v	•/		
Ignition						2.42
SiO ₂			· · · · · · · ·			42.79
Al ₂ O ₃						29.43
CaO						18.13
FeO						3.65
MgO	••••••••••					1.40
0						
•					-	
						100.33

ALLANITE FROM TOPSHAM, MAINE.

Abundant in slender black prisms at Sprague's granite quarry. The crystals are usually much rusted upon the surface, and are known to the local quarrymen as "nails." Analysis by F. W. Clarke:¹

H ₂ O	4.13
SiO ₂	34.97
Al_2O_3	12.83
FeO	18.11
MnO	2.82
Ce_2O_3 , La_2O_3 , Di_2O_3	17.26
CaO	7.21
MgO	1.40
-	98.73
	90.73

Compare analysis by F. C. Robinson, Amer. Jour. Sci., May, 1884.

[BULL. 9.

CLARKE AND CHATARD.] MINERAL, ROCK, AND ORE ANALYSES.

The ferrous oxide carries with it some ferric oxide. As the analysis was made merely for the complete identification of the species, the troublesome separation of the cerium group oxides was not considered necessary. The mineral appears to vary considerably in different parts of the quarry.

BERYL FROM GREENE COUNTY, TENNESSEE.

A typical, bluish-green translucent beryl. Analysis by F. W. Clarke:

SiO ₂	65.39
Gl0	13.35
Al_2O_3 (tr. FeO)	19.10
Ignition	
	99.60

DAMOURITE FROM STONEHAM, ME.

Two specimens of a micaceous mineral from the topaz locality at Stoneham, collected by Mr. N. H. Perry, of South Paris, and sent by him to the National Museum, have been examined and prove to be different forms of damourite.

A. Subfibrous compact, light grayish green in color, greasy luster, associated with albite and topaz.

B. Broadly foliated micaceous, light grayish green, strong mother-ofpearl luster, also associated with topaz. Analyses (Chatard) as follows:

	А.	В.
Ignition	4.48	4.78
SiO ₂	45.19	45. 34
Al ₂ O ₃	33. 32	33. 96
FeO	4. 25	3.96
MnO	0.58	0.51
CaO	trace.	0.22
Mg0	0. 36	0. 10
Na ₂ O	1.57	1.49
K ₂ O	11.06	10.73
-	100. 81	101. 09

MARGARITE.

A. From Soapstone Hill, near Gainesville, Georgia. Bright pistachio green, subfibrous aggregate of extremely minute scales surrounding and radiating from a core of bright rose pink corundum which is in places interlaminated by the margarite. A very handsome specimen on account of the contrast of color. From Mr. Theodore Moreno, of Gainesville, Georgia. G. = 3.00; H. = 3.5. Analysis (T. M. Chatard):

H ₂ O	4.88
SiO ₂	31.72
Al ₂ O ₃	50.03
FeO	trace.
CaO	11.57
MgO	0.12
Na ₂ O	2, 26
• •	
	100.58

(251)

[BULL. 9.

B. An altered crystal of corundum from Iredell County, North Carolina, showing a core of corundum surrounded by a yellowish-white, semimicaceous, compact mineral more or less intermixed with small needles of black tourmaline. Analysis (Chatard) shows the micaceous mineral to be a margarite similar to that described by Dr. F. A. Genth as occurring at Hendrick's farm in the same county.

H ₂ O	5.68
SiO ₂	31.15
Al ₂ O ₃	49.51
CaO	11.13
MgO	0.45
Na ₂ O	2.74
	100.66
· · · · ·	100.00

CIMOLITE FROM NORWAY, MAINE.

Among a collection of Maine minerals received from N. H. Perry, of South Paris, were several specimens of tournaline and albite encrusted with a pink to rose-purple, earthy, alteration product. The color was found to be due to a little manganese, which was not, however, separately estimated. The analysis (Clarke) gave results approaching to those required by the rational formula $AlH_3(SiO_3)_3$, as the subjoined figures show:

	Found.	Theory.
H ₂ O	9, 53	10.4
SiO ₂	70.06	69.8
Al ₂ O ₃ (with MnO)	17.19	19.8
Na ₂ O	2.28	
МдО	0.80	· · · · · · · · · · · · · · · · · · ·
-	99.86	100. 0

It will be observed at once that these results do not agree exactly with those commonly obtained for cimolite. They are too high in silica, and too low in water, and the formula deduced from them is somewhat novel. We are inclined to place the mineral, however, under cimolite, as being nearer to that species than to any other. Possibly the new formula represents the final outcome of an alteration process which ordinary cimolite has only partially undergone. Somewhat similar pink alteration products are not uncommon in the albitic granite veins of Maine and New Hampshire, and some, without analysis, have been supposed to be montmorillonite, like that of Branchville, Connecticut. A more thorough examination of such products is much to be desired.

HALLOYSITE FROM CALIFORNIA.

Collected by Ensign J. B. Bernadou, at the Detroit Copper Mine, near Mono Lake. The specimens consisted of irregular lumps, covered and seamed with a black coating of the oxides of copper and manganese. The color of the pure mineral was white, with a very faint tinge of blue. Analysis by F. W. Clarke.

H ₀	
SiO ₈	42, 91
··· •	
	· · · · ·
	99, 99

PROCHLORITE.

A dark-green chlorite, collected by Mr. G. P. Merrill on Foundry Run, Georgetown, D. C., may be assigned to the above-named species. The mineral is very dark in color, scaly-crystalline, and occurs in quite fine specimens. Analysis by F. W. Olarke.

H ₀ O	
MgO	
	24.98
Na ₂ O	0.67
	98,45

The iron is all reckoned as ferrous iron, although part of it is undoubtedly ferric.

SO-CALLED "ALUM ROCK" FROM GRANT COUNTY, NEW MEXICO.

Six samples were received from Hon. W. S. Rosecrans. The material is found at the headwaters of the Gila River, about 40 miles north of Silver City, and is said to cover about 2,000 acres. The specimens may be described as follows:

A. Pinkish crusts.

B. Yellowish crusts.

C. Drab crusts.

D. White crusts.

E. Fibrous mineral of silky luster.

F. "Gray alum rock."

Analyses by F. W. Clarke.

Al ₂ O ₃	15.52
SO ₃	34.43
H ₂ O	42.56
Insoluble residue	7.62

۸

100.13

This substance is alunogen. So, also, but impure, containing iron, are B, C, and D. Of these only rough analyses were made.

	В.	C.	D.
Ignition Al ₂ O ₃ +Fe ₂ O ₃ Insoluble residue	16. 20 4. 95 78. 95	71. 28 15. 81 12. 27	55. 41 9. 19 33. 19
	100. 10	99.36	97. 79

(253)

13

[BULL. 9.

The analysis of E shows it to be halotrichite. Only a trace of ferric iron is present. Color nearly white, slightly grayish. Asbestiform.

E.

F, which was not analyzed, is merely an impure mixture of alunogen and halotrichite.

SCORIACEOUS OBSIDÍAN, SOUTHEAST SIDE OF MONO VALLEY, CALIFORNIA.

A grayish-white rock which forms a large portion of the Mono craters. Collected by I. C. Russell. Analysis by T. M. Chatard.

Ignition	2.20
SiO ₂	
Al_2O_3 (trace Fe_2O_3).	
CaO	
MgO	0.07
K ₂ 0	4.31
Na ₂ O	4.60
ал 	
	99.98

WHITE POWDER FROM LAHONTAN LAKE-BEDS, TRUCKEE RIVER.

A volcanic dust which fell in the quaternary Lake Lahontan. Supposed to have been erupted from the Mono craters. Collected by I. C. Russell. Analysis by T. M. Chatard.

H ₂ O	3.91
SiO ₂	71,15
$Al_2O_3 (+Fe_2O_3)$	15,95
CaO	0.85
MgO	0.41
Mn0	trace.
K ₂ O	3.36
Na ₂ O	4.94
:	100.57

MARL FROM "WHITE TERRACE," 3 MILES WEST OF MULLEN'S SPRINGS, WEST SHORE OF PYRA-MID LAKE, NEVADA.

Mostly deposited from the waters of the prehistoric Lake Lahontan. Collected by I. C. Russell. Analysis by T. M. Chatard.

мg0 H _s 0	
MgO	1 00
CaO	
Fe ₂ O ₃	2.04
Al ₂ O ₃	5.14
SiO ₂	22.00
CaCO ₃	64.82
-	

(254)

100.14

TWO CLAYS FROM HUMBOLDT RIVER BRIDGE, MILL CITY, NEVADA.

A. From Upper Lahontan Lake beds. B. From Lower Lahontan Lake beds. Collected by I. C. Russell. Analyzed by T. M. Chatard. Color in both cases grayish.

	А.	В.
Ignition	9. 78	13.03
SiO2	56.30	50.70
Al2O3	16.52	*19.01
Fe2O3	5.08	
CaO	5.45	10.26
Mg0	2.64	3.19
K20	2.17	2.16
Na2O	2.60	1.91
	100. 54	100.26

* With a little Fe₂O₃.

BASALT FROM MOUNT THIELSON, OREGON.

Material collected by J. S. Diller; by whom also the lithological separations were made. Analyses of rock and component parts as follows:

A. Basalt. F. W. Clarke.

B. Groundmass. T. M. Chatard.

C. Hypersthene. T. M. Chatard.

D. Feldspar, specific gravity, 2.637-2.714. T. M. Chatard.

E. Feldspar, specific gravity, 2.714-2.877. T. M. Chatard.

	А.	В.	C.	D.	E.
Ignition	. 60	. 52		. 40	. 66
SiO ₂	55.68	53.85	53. 31	• 51.95	55.48
TiO2	undet.			trace.	. 39
Al ₂ O ₃	18.93	22.95	5. 99	28.84	26. 91
F02O3	₹ 8.73	4.59	(2.24	2. 32
Fe0	} 0.15	4.00	{ 13.43		
CaO	7.99	8.41	3.69	11.42	8.11
Mg0	4.86	3.08	21.69	1.34	2.27
Na ₂ O	2.12	2.16		3. 22	3.14
K ₂ O	. 48	2.67		. 59	. 72
	99.39	100.23	98.11	100.00	100.00

In B a trace of P_2O_5 was found, and in C a trace of manganese. D and E are near labradorite, and are evidently mixtures. C, D, and E were received in very small quantities; not sufficient for full analysis. D and E therefore were treated with hydrofluoric acid, in order to render possible the estimation of the alkalies, and silica was taken by difference. Less than half a gramme of a fulgurite, formed by the fusion of this basalt by lightning, was also partially analyzed. The results (Clarke) are as follows:

Ignition	1.11
SiO ₂	
Al_2O_3 Fe_2O_3	
Fe ₂ O ₃	,
CaO	
MgO	5.85
Alkalies	undet.
•	

BASALT FROM PIT RIVER, NORTH OF BURNEY VALLEY, CALIFORNIA.

Collected by J. S. Diller. Analysis by F. W. Clarke.

Ignition SiO ₂	51.92 19.76 11.21 9.30 3.38 2.16
K ₂ O	

99.87

DACITES FROM LASSEN'S PEAK, CALIFORNIA.

Collected by J. S. Diller. Analyses by T. M. Chatard. A. Gray dacite.

- B. Reddish dacite.
- C. Inclusion in dacite.

	А.	В.	C.
Ignition	0. 56	0. 44	1. 35
SiO ₂	69. 51	68.20	58.97
Al2O3	15.75	. 16.98	18.60
Fe2O3	3.34	3.75	5.94
CaO	1.71	4. 33	2.84
Mg0	2.09	2.07	6.89
Na2O	3.89	2.98	3.05
K ₂ O	3.34	1.52	2. 24
P ₂ O ₅	trace	.`	undet.
	100.19	100.27	99. 88

(256)

[BULL. 9.

TWO SAMPLES OF LIMESTONE FROM MOUNDSVILLE NARROWS, TWELVE MILES BELOW WHEEL-ING, W. VA.

A. Upper ledge. B. Lower ledge. Analyses by T. M. Chatard.

·	А.	В.
Moisture	0. 05	0. 10
Insoluble	10.33	1. 53
CO ₂	39.18	43.16
CaO	48.02	53.26
MgO	1.08	0.93
Fe ₂ O ₃	0.90	0.96
MnO and P2O5	traces	traces
'	99. 56	99. 94

EQUIVALENT TO-

Moisture	0.05	0. 10
CaCO3	85.75	95.10
MgCO3	2.26	1.95
FeCO3	0. 73	0. 79
Sand, clay, and Fe2O3	10. 77	2.00
. j	99.56	9 9. 94

MAGNETIC IBON ORE FROM NEAR BOZEMAN, MONTANA.

Found in the Gallatin Range, between Middle and Bozeman Creeks, southwest of Bozeman.

Beceived from A. C. Peale. Analysis by T. M. Chatard.

Insoluble (SiO ₂)	0.165
Fe ₃ O ₄	96.49
$FeS_2 (S=0.171) \dots$	0.321
Al_2O_3	0.04
MnO	0.93
CaO	trace
MgO	0.072
TiO ₂	2.71
P_2O_5	0.012
-	100 840
-	100.740

The titanium was determined in a separate portion, and is probably high from presence of iron.

(257)

Bull. 9-2

LIMONITE FRON CANAAN MT., TUCKER COUNTY, W. VA.

Analysis by T. M. Chatard.

Fe ₂ O ₃	80.53
Moisture	13.20
SiO ₂	
P ₂ O ₅	1.98
S	
CaO	2.34
MnO	none.
· · ·	
	100 00

COAL FROM CRANSTON, R. I.

Volatile matter	
Fixed carbon	82.20
Ash	
Sulphur	100.00
Sulphur	0.34
-	

(258)

WATER ANALYSES.

With the exceptions of the waters from Montana, the Utah Hot Springs, and the Virginia Hot Springs, the following waters were collected by the Division of the Great Basin, under the direction of Messrs. G. K. Gilbert and I. C. Russell. For sufficient reasons, it was necessary to abbreviate the analyses as much as possible, and this was done by avoiding the direct estimation of carbonic acid. Whenever carbonates were proved to be present all the other ingredients of a water were determined and the carbonic acid, reckoned as CO_3 , was taken as the difference between the sum of their weights and the weight of the total solid residue. In computing the probable compounds formed by the union of acids and bases, the chlorides and sulphates were first disposed of, and the bases in excess were then calculated as carbonates. This procedure gave usually a summation a little greater or less than the total solids directly found upon evaporating the water to dryness; and the variation of the result from 100 per cent. afforded a means of estimating the probable accuracy of the analysis. In most cases the samples of water received were insufficient for a search after the less com-These, therefore, were necessarily ignored, except in so mon elements. far as the spectroscope or qualitative tests could reveal their presence. The gaseous contents of the waters received no consideration. In certain respects, therefore, all the analyses are to be regarded as imperfect; although they are fully adequate for the geological purposes which led to their being made.

Each analysis is stated in three columns. First, the actual weight in grammes to the liter of each constituent. Second, the percentage of each relatively to the total solid residue. Third, the probable combination, also in grammes to the liter. The second column gives a means of comparing different waters as to their composition, irrespective of their greater or less salinity. The third column was computed in the simplest terms, and not with reference to complex and doubtful hypotheses.

PYRAMID LAKE, NEVADA.

Four samples of water were analyzed (Clarke), as follows:

A. Water of north end of the lake, near the surface.

B. Water of north end of the lake, depth of 108 meters.

C. Water of south end of the lake, near the surface.

D. Water of south end of the lake, depth of 61 meters.

All four samples contained suspended flakes of silicious and calcareous matter.

19

[Total solids, 3.4987 grammes to liter.]

Found.	Per cent. of total solids.	Probable combination.	
SiO2 0.041	.2 1.17	SiO ₂ 0.0412	
SO4 0.180	3 5.15	KCl 0. 1474	
Cl 1. 429	8 40.87	NaCl 2. 2411	
Ca 0, 017	9 0.51	Na ₂ SO ₄ 0. 2667	
Mg 0.080	0 2.29	Na ₂ CO ₃ 0.4738	
Na 1.178	1 33. 53	CaCO3 0.0447	
K 0.076	6 2.19	MgCO ₃ 0. 2800	
2.998	9	3. 4949	
CO3 0. 499	8 14. 29	99.94 per cent. accounted for.	
3.498	7 100.00		

в.

[Total solids: 3.4837 grammes to liter.].

Foùnd.		Per cent. of total solids.	Probable combination.	
SiO2	0. 0200	0.57	SiO ₂ 0.	0200
SO4	0.1850	5. 31	KCl 0.	1381 /
C1	1.4342	41.17	NaCl 2.	2550
Са	0.0179	0.51	NarSO4 0.	2737
Mg	0.0805	2.31	Na ₂ CO ₃ 0.	4756
Na	1. 1817	33. 92	CaCO3 0.	0447
K	0.0723	2.07	MgCO3 0.	2818
-	2. 9916		3.	4889
CO3	0. 4921	14.14	Total, 100.15 per cent.	
-	3. 4837	100.00		

C.

[Total solids: 3.4725 grammes to liter.]

Per cent. of total solidş.	Probable combination.
1.22	SiO ₂ 0. 0425
5.10	KC1 0. 1374
41.15	NaCl 2. 2466
	Na ₂ SO ₄ 0. 2621
2.17	Na ₂ CO ₃ 0.4940
34.06	CaCO3
2.07	MgCO ₃ 0. 2632
	3. 4458
14. 23	99.23 per cent. accounted for.
100.00	•
	of total solids. 1. 22 5. 10 41. 15 2. 17 . 34. 06 2. 07 14. 23

(260)

]	Э.	

Found.	Percent. of total solids.	Probable combination.
SiQ ₂ 0. 0300	0.86	SiO ₂ 0. 0300
SO4 0. 1864	5.34	KCl 0. 1387
Cl 1. 4271	40.99	NaCl 2. 2428
Са		Na2SO4 0.2757
Mg 0.0832	2.38	Na ₂ CO ₃ 0.4834
Na 1. 1809	33. 84	CaCO3
K 0. 0726	2.13	MgCO3 0. 2912
2. 9802		3. 4618
CO3 0. 5098	. 14.46	99.19 per cent. accounted for.
3. 4900	100.00	

[Total solids: 3.4900 grammes to liter.]

The slight differences between these analyses may be attributed in part to the fact that the lake is fed at its southern end by a large stream of fresh water. The four percentage columns may be conveniently compared in the following table:

	А.	В.	C	D.
Total solids	3. 4987	3. 4837	3. 4725	3. 4900
SiO2	1. 17	0. 57	1.22	0.86
SO4	5.15	5. 31	5.10	5.34
C1	40.87	41.17	41. 15	40. 99
Са	0.51	0.51		.
Mg	2.29	2.31	2.17	2.38
Na	33. 53	33. 92	34.06	33. 84
ĸ	2.19	2:07	2.07	2.13
CO3	14. 29	14.14	14. 23	14.46
	100.00	100.00	100.00	100.00

WINNEMUCCA LAKE, NEVADA.

Specific gravity of water, 1.001, at 17°. Analysis by F. W. Clarke.

[Total solids: 3.6025 grammes to liter.]

Found.	Percent. of total solids.		
SiO ₂ 0.0275	0.76	SiO ₂ 0. 0275	
SO4 0. 1333	3.70	KCl 0. 1310	
Cl 1. 6934	47.01	NaCl 2. 6877	
Ca 0.0196	0.54	Na ₂ SO ₄ 0. 1972	1
Mg 0.0173	0.48	Na ₂ CO ₃ 0. 4065	
Na 1. 2970	36.00	CaCO3 0. 0254	
K 0.0686	1.90	MgCO3 0. 0494	
3. 2567		3. 5247	٦
CO3 0. 3458	9.61	98.44 per cent. accounted for.	-
3. 6025	100.00	•	

(261)

WALKER LAKE, NEVADA.

Two analyses (Clarke) were made; one of a sample taken just below the surface, the other of water from a depth of 65.5 meters. Both were collected by Mr. I. C. Russell.

A.-Surface sample.

[Total solids : 2.5155 grammes to the liter.]

Found.		Per cent. of total solids.	Probable combina	tion.
SiO ₂	0.0075	0. 29	SiO ₂	0.0075
SO4	0.5275	20.96	NaCl	0. 9681
Cl	0.5875	23.36	Na2SO4	0.7803
Са	0.0267	1.06	Na2CO3	0.5157
Mg	0. 0391	1.55	CaCO3	0.0667
Na	0.8577	34.11	MgCO3	0. 1369
ĸ	trace.		-	2.4752
. –	2.0460		98.39 per cent. accour	nted for.
CO₃	0, 4695	18.67	-	
-	2. 5155	100.00		

B.-Lower sample.

Found.		Per cent. of total solids.	1 Probable combination.	
SiO ₂	0.0075	. 30	SiO ₂	0.0075
SO4	0.5125	20.60	NaCl	0.9558
Cl	0.5800	23. 32	Na2SO4	0.7580
Са	0.0176	.71	Na2CO3	0. 5339.
Мg	0.0375	1.51	CaCO3	0.0440 .
Na	0.8530	34. 29	MgCO3	0. 1313
K	trace.		-	2. 4305
-	2.0081		97.66 per cent. accou	nted for.
CO3	0.4794	19.27	-	
-	2. 4875	100.00		-

[Total solids: 2.4875 grammes to the liter.]

Mud taken from the bottom of the Lake, at a depth of 68 meters, was also examined qualitatively by Dr. Chatard. The portion soluble in water contained chlorides of sodium and potassium, with some sulphates and traces of borates. The residue, extracted with hydrochloric acid, was found to contain carbonates of lime and magnesia, with some phosphates, iron, alumina, and alkalies. The insoluble portion was impure silica.

BULL. 9.

CLARKE AND CHATARD.]

WATER ANALYSES.

WALKER RIVER, NEVADA.

The sample of water was collected immediately below the junction or the east and west branches. Analysis by F. W. Clarke.

Found.	Per cent. of total solids.	Probable combination.
SiO ₂	12. 50	SiO ₂ 0. 0225
SO4 0284	15.77	NaCl 0.0216
Cl	7. 28	Na ₂ SO ₄ 0.0421
Ca	12.66	Na ₂ CO ₃ 0.0224
Mg	2.12	CaCO3 0.0570
Na	17.67	MgCO ₃ 0.0133
. 1224		0. 1789
CO3 0576	32.00	99.39 per cent. accounted for.
. 1800	100.00	

[Total solids: 0.1800 grammes to the liter.]

HUMBOLDT RIVER, NEVADA.

Sample collected at Stone House. Analysis by T. M. Chatard.

Found.	Per cent. of total solids.	Probable combination.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.03 0.37 13.12 2.08 13.53 3.46 12.92 2.77 42.72	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
. 3615	100.00	95. 52 per cent. accounted for.

[Total solids: 0.3615 grammes to the liter.]

If the loss in the last column is due to the presence of alkaline bicarbonates, and reckoned in the latter form to make up 100 per cent., we have—

(263)

HOT SPRING, WARD'S RANCH, FOOT OF GRANITE MOUNTAIN, NEVADA.

Analysis by T. M. Chatard.

Found.		Per cent. of total solids.	Probable combina	tion.
SiO ₂	0. 1136	9.60	SiO ₂ , free	0. 0180
SO4	0. 3901	32. 97	· Na2SiO3	0. 1942
Cl	0. 2396	20.25	N82SO4	0.4267
CO3	trace		NaCl	0. 3665
Са	0. 0367	3. 10	KCI.	0.0363
Мд	0.0034	0.29	CaSO ₄	0.1247
Na	0.3554	30.03	MgSO4	0.0179
K	0. 0191	1.61	-	1. 1834
Ľi	trace		. =	1.1004
O for SiO3	0. 0255	2. 15	99.43 per cent. accour	ted for.
-	1.1834	100.00		

[Total solids: 1.1902 grammes to the liter.]

HOT SPRING, AT HOT SPRING STATION, NEVADA, C. P. R. R.

Analysis by T. M. Chatard.

Found.		Per cent. of total solids.	Probable combina	tion.
SiO ₂	0.2788	11.14	SiO ₂ , free	0. 2060
SO4	0. 3555	14. 25	Na2SiO3	0. 1480
Cl	0.9679	38.79	NaCl	1.4946
Са	0. 0305	1.23	Na2SO4	0. 4039
Mg	0. 0010	0.04	ксі	0. 1278
Al	0.0010	0.04	Al2(SO4)3	0.0063
· Na	0. 7743	31.04	MgSO4	0. 0050
K	0.0669	2.69	CaSO4	0. 1037
Li	trace.		-	2. 4953
0 in SiO8	0. 0194	.78	• - =	
•	2. 4953	100.00	100.11 per cent. accou	nted for.

(264)

WATER ANALYSES.

LARGER SODA LAKE, NEAR RAGTOWN, NEVADA.

Specific gravity of water, 1.101. Two analyses (Chatard) were made, one of a sample taken just below the surface, the other of water from a depth of 30.5 meters. •

A .- Surface sample.

[Total solids: 125.1300 grammes to the liter.]

Found.	Per cent. of total solids.	Probable combination.
SiO ₂ 0.304	0.24	SiO ₂ 0.304
SO4 12.960	10.36	KCl 4. 820
Cl 45. 690	36.51	NaCl 71.470
B4O7 0. 314	0.25	Na ₂ SO ₄ 19.170
Mg 0.270	0.22	Na ₂ CO ₃
Na 45. 840	36.63	Na2B4O7 0.404
K 2. 520	2.01	MgCO3 0.940
107.898		123. 518
CO3 17.232	13. 78	98.71 per cent. accounted for.
125.130	100.00	

If the loss in the last column be reckoned as due to the presence of bicarbonates, it gives, to make up 100 per cent.:

 Na₂CO₃
 23.640

 NaHCO₃
 4.382

B.-Lower sample.

Per cent. Found. of total solids. Probable combination. SiO₂ 0.310 0.25 SiO₂ 0.310 SO4 13.150 KC1 10.50 5.110 Cl 44. 270 35, 38 NaCl 68.930 0.26 B4O7 0.327 Na₂SO₄ 19.450 Mg 0.21 Na₂CO₃..... 24.840 0.270 Na 44.270 35.38 Na₂B₄O₇ 0.417 K..... 2.670 2.13 MgCO3 0.940 105.267 119.997 15.89 COs..... 19.883 95.88 per cent. accounted for. 125.150 100.00

[Total solids : 125.1500 grammes to the liter.]

Reckoning the loss in the last column as in the case of the surface sample, we have—

Na ₂ CO ₃	16.040
NaHCO ₃	13. 953

(265)

.

[BULL. 9.

From the waters of this lake sodium carbonate is manufactured upon a commercial scale. Several brines and products obtained in this manufacture were qualitatively examined by Dr. Chatard. A more complete investigation may be undertaken at some future time. A pale pink-colored brine, from which summer soda had been taken, and in which salt had begun to crystallize, was found to contain carbonates, chlorides, and sulphates of sodium and potassium, with some alkaline phosphates and borates. The pink color was probably due to organic matter. A concentrated brine from the Little Soda Lake contained similar ingredients, minus the phosphates. In a crystalline mass from a vat at the same locality the same constituents were found, with phosphates and a trace of lime. From this vat five annual crops of soda were said to have been taken. The sodium carbonate as it goes to market from the smaller Soda Lake, contains as impurities, sand, clay, considerable chloride, some sulphate, a little borate, a trace of phosphate, and some potassium salts.

MONO LAKE, CALIFORNIA.7

A sample of water taken near the surface. Analysis by T. M. Chatard. Specific gravity, 1.045 at 15°.5.

Found.	Per cent. of total solids.	Probable combination.
SiO ₂ 0. 2800	0. 54	'SiO 0. 2800
SO4 6. 8100	13.11	KC1 2. 2300
Cl 12. 1300	23. 39	NaCl 18. 2200
B4O7 0.1600	0. 34	Na ₂ SO ₄ 10. 0700
Св 0. 2900	0.55	Na ₂ B ₄ O ₇ 0. 2000
Mg 0.1300	9. 28	Na ₂ CO ₃ 19.4900
Na 18.9100	36.46	CavCO3 0. 6800
K 1.1600	2. 23	MgCO ₃ 0.3600
39.8700		51. 5300
CO3 11. 9800	23.10	99.60 per cent. accounted for.
51.8500	100.00	

[Total solids : 51.8500 grammes to the liter.]⁷

Mud from the bottom of the lake, taken at a depth of over 30 meters, was also examined qualitatively. The portion soluble in water contained chlorides of potassium and sodium, *no* sulphates, some carbonates, and traces of sulphides. The portion soluble in hydrochloric acid contained iron, alumina, lime, and alkalies, with a little boric acid. The insoluble residue consisted of sand and silica.

⁷A second sample of Mono Lake water, taken from a depth of 30 meters, contained **52**.8560 grammes to the liter.

WATER ANALYSES.

SPRING ON TUFA CRAG, IN MONO LAKE.

Analysis by T. M. Chatard.

Found.	Per cent. of total solids.	Probable combination.
SiO ₂	6. 10	SiO ₂
SO4 0546	18. 71	KCl
Cl 0144	4. 93	NaCl
Ca	14.19	Na ₂ SO ₄
Mg	1.51	Na ₂ CO ₃
Na	17.58	CaCO3
K	3. 02	MgCO30154
. 1927	• •	. 2945
CO3	33. 96	Total, 100.91 per cent.
. 2918	100.00	

The water of the "Petroleum Spring," on an island in Mono Lake, yielded a solid residue of 0.8775 gramme to the liter. It contains carbonates, chlorides, and silicates; the bases being sodium, potassium,

WARM SPRING, AT WARM SPRING STATION, MONO BASIN.

Analysis by T. M. Chatard.

calcium, magnesium, and aluminum.

[Total solids: 2.0850 grammes to the liter.]

Found.	Per cent. of total solids.	Probable combination.
SiO ₃ 0. 1545	7.46	Al2O3 0. 0018
SO4 0. 3131	15.13	KCl 0. 1203
Cl 0. 2272	_ 10.98	NaCl 0.2799
Са 0. 0589	2.84	Na2SO4 0. 4631
Mg 0.0604	2. 92	Na2SiO3 0.2480
Na 0. 6116	29.56	Na ₂ CO ₃ 0. 5972
K 0.0630	3.05	CaCO ₃ 0. 1475
Li trace.		MgCO3 0.2114
Al ₂ O ₃ 0.0018	0.09	2. 0692
1. 4905		99.24 per cent. accounted for.
CO3 0. 5945	27.97	
2.0850	100.00	

[Total solids: 0.2918 gramme to the liter.]

(267)

BOILING SPRING, FOUR MILES S. E. OF SHAFFER'S RANCH, HONEY LAKE VALLEY, CALIFORNIA.

Analysis by T. M. Chatard.

Found.		Per cent. of total solids.	Probable combina	tion.
SiO ₂	0. 1310	12.83	SiO2, free	0.1008
SO4	0. 3492	34.19	Na2SiO3	0.0613
Cl	0.2070	20.27	Na2SO4	0.4715
Са	0.0121	1.18	NaCl	0.3266
Mg	0.0004	0.04	KCl	0.0180
Na	0.3040	29.78	Ca SO4	0. 0409
K	0. 0094	0.92	Mg SO4	0.0020
O for SiO3	0. 0080	0.79	•	1. 0211
	1.0211	100.00	99. 93 per cent. accou	nted for.

[Total solids : 1,0218 gramme to the liter.]

Two other springs in Honey Lake Valley were examined qualitatively. In the water of the High Rock Spring were found carbonates, chlorides, and sulphates of calcium, magnesium, sodium and potassium, with a little silica. The Lower Hot Spring contained chlorides and sulphates of the same bases.

LAKE TAHOE, CALIFORNIA.

Analysis by F. W. Clarke.

[Total solids : 0.0730 gramme to the liter.]

Found.	•	Per cent. of total solids.	Probable combination,
SiO ₂	.0137	18.77	SiO2
SO4	. 0054	7.40	KCl
C1	. 0023	3.14	NaCl
Са	. 0093	12.74	K2SO4
Mg	. 0030	4.11	Na ₂ SO ₂
Na	.0073	10.00	Na ₂ CO ₃
K	. 0033	4. 52	CaCO3
	. 0443		MgCO ₃
CO3	.0287	39. 32	. 0723
-	. 0730	100.00	99.04 per cent. accounted for.
1			

ABERT LAKE, OREGON.

The water of this lake was collected by I. C. Russell, at a point about 150 meters off from the west shore. It was analyzed by Mr. F. W. Taylor, of the Smithsonian Institution, and the analysis is here included S

merely for the purpose of completing the series of waters specially examined for the division of the Great Basin. Specific gravity, 1.02317.

0.065
7,217
8.455
0.921
10.691
10.006
27.355

An efflorescence from the north shore of the lake, examined qualitatively by T. M. Chatard, contained carbonates and chlorides of sodium and potassium, with traces of sulphates, phosphates, and calcium.

UTAH LAKE, UTAH.

Analysis by F. W. Clarke.

[Total solids: 6.3060 gramme to the liter.]

Found.		Probable combina	tion.
. 0100	3.27	SiO ₂	. 0100
. 1306	42.68	NaCl	. 0204
.0124	4.04	Na ₂ CO ₃	.0204
.0558	18.24	CaSO4	. 1849
.0186	6.08	CaCO3	. 0038
.0178	5. 81	MgCQ ₃	. 0644
. 2452			. 3039
. 0608	19.88	99. 31 per cent a ccour	nted for.
. 3060	100.00		
	. 1306 . 0124 . 0558 . 0186 . 0178 . 2452 . 0608	.1306 42.68 .0124 4.04 .0558 18.24 .0186 6.08 .0178 5.81 .2452 .0608 .0508 19.88	of total solids. Probable combination .0100 3. 27 SiO2 .1306 42. 68 NaCl .0124 4. 04 NazCO3 .0558 18. 24 CaSO4 .0166 6. 08 CaCO3 .0178 5. 81 MgCO3 .02452

A little potassium is present, but was not separately estimated.

CITY CREEK, UTAH.

Water collected above the reservoir which supplies Salt Lake City. Analysis by T. M. Chatard.

Found.	•	Per cent. of total solids.	Probable combination,
SiO2,	. 0090	3.69	SiO ₂
Al ₂ O ₃	.0010	0.41	Al ₂ O ₃
SO4	.0070	2.87	NaCl
Cl	.0131	5. 38	Na ₂ CO ₃
Ca	.0589	24.19	CaSO4
Mg	.0174	7.15	CaCO ₃ 1400
Na	.0091	3.74	MgCO3
-	. 1155		. 2435
CO3	. 1245	52. 57	Total, 101. 45 per cent.
	. 2400	100.00	

[Total solids: 0.2400 gramme to the liter.]

(269)

BEAR RIVER, UTAH.

Analysis by F. W. Clarke.

TOTAL 80	olide: 0. 184	o gramme to	the liter. J

Per cent. of total solids.	Probable combination.
0070 3.79	SiO ₂
0105 5.69	NaCl
049 2.65	Na2SO4
432 23.41	CaCO ₃
0125 6.78	MgCO3
0082 4.44	. 1824
0863	98. 86 per cent accounted for.
0982 53. 24	-
845 100.00	
	solids. 0070 3.79 0105 5.69 0049 2.65 0432 23.41 0125 6.78 0082 4.44 0982 53.24

UTAH HOT SPRINGS, EIGHT MILES N. OF OGDEN, UTAH.

Water received through the Smithsonian Institution. Reported temperature 55°. Analysis by F. W. Clarke.

Found.	Per cent. of total solids.	Probable combination.
SiO ₂ 0. 0460 Al ₂ O ₃ 0. 0040 SO ₄ 0. 2184	0. 20 0. 02 0. 94	SiO2 0.0460 Al2O3 0.0040 KC1 1.6732
C1 13. 7030 Br trace. CO3 undet. Ca 1. 1428	59. 28 4. 83	NaCl 18.0168 CaCl2 2.9187 MgCl2 0.1398 CaSO4 0.3094
Mg 0. 0929 Na 7. 0825 K 0. 8759 Li trace.	0.40 30.64 3.79	MgCO3 0. 2016 23. 3095 Total, 100.84 per cent.
23. 1655	100.10	•

[Total solids: 23.1150 grammes to the liter.]

The CO_3 in the last column, having been proved to be present, was computed to satisfy the excess of magnesium after the other acids had all been balanced. The water as received contained no iron in solution, but held an abundant ferruginous deposit.

(270)

WATER ANALYSES.

LIVINGSTON WARM SPRINGS, MONTANA.

Water received from A. C. Peale. Analysis by F. W. Clarke. Free H_2S present.

Found.		Per cent. of total solids.	Probable combinat	ion.
SiO ₂	0290	3. 83	SiO ₂	. 0290
SO4	2224	29.37	KCl	.0078
Cl	0124	1.64	NaCl	.0143
Са	1678	22.11	Na2CO3	.0461
Мд	0438	5.79	CaCO3	.1880
Na	0256	3. 38	CaSO4	. 3150
к	0041	0.55	MgCO ₃	. 1533
	5051		-	. 7535
CO3	2524	33. 33	99.47 per cent. accour	ted for.
	7575	100.00		

[Total solids: 0.7575 gramme to the liter.]

WARM SPRINGS OF EMIGRANT GULCH, YELLOWSTONE VALLEY, MONTANA.

Water received from A. C. Peale. Analysis by F. W. Clarke.

Found.		Per cent. of total solids,	Probable combinat	ion.
·SiO2	. 0317	13. 49	SiO2	. 0317
SO4	. 0329	14.00	KCl	. 0083
Cl	. 0074	3.15	NaCl	.0058
Са	. 0346	14.72	Na2SO4	. 0487
. Mg	. 0077	3.28	Na2CO3	. 0274
Na	. 0299	12.72	CaCO3	.0865
K	. 0043	1.83	MgCO3	. 0269
-	. 1485			. 2353
CO3	. 0865	36. 81	Total, 100.13 per cent.	
	. 2350	100.00		

[Total solids: 0.2350 gramme to the liter.]

(271)

HELENA HOT SPBINGS, HELENA, MONT.

Water received from A. C. Peale. Reported temperature, 60.5°. Analysis by F. W. Clarke.

Found.		Per cent. of total solids.	Probable combina	tion.
SiO ₂	. 0938	15.06	SiO ₂	. 0938
SO4	. 1854	29.78	NaCl	. 0596
C1	.0362	5.82	Na2CO3	. 1730
Са	. 0107	1.72	CaCO3	.0268
Mg	trace.		Na2SO4	. 2742
Na	. 1873	30.09	· -	. 6274
Ŕ	trace.		=	
Li	trace.		Total, 100.79 per cent	5.
. –	. 5134			
CO3	. 1091	17.53		
-	. 6225	100.00		

[Total solids: 0.6225 gramme to the liter.]

MILL CREEK COLD SPRING, YELLOWSTONE VALLEY, MONTANA.

Water received from A. C. Peale. Highly effervescent. temperature, 4.5°. Analysis by F. W. Clarke.

Reported

solids.	Probable combination.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO2 0.0250 &C1 0.0981 NaC1 0.3795 Na2SO4 0.9402 Na2C03 0.9853 MgC03 0.2838 FeCO3 0.1268 CaUO3 0.9270 CaSO4 0.0204 3.7861 0.9246 09.31 per cent. accounted for.

[Total solids: 3.8125 grammes to the liter.]

In this analysis the amount of available material was insufficient. The iron in the third column is made to include the trifling quantity of . aluminum which, though present, could not be separately estimated; and the calcium sulphate was directly determined as such in the insoluble residue left upon evaporating the water to dryness. The carbonates in the original water are all undoubtedly bicarbonates, and, reckoned as such, should receive the following weights: Sodium bicarbonate, 1.5618; calcium bicarbonate, 1.5017; magnesium bicarbonate, .4932; ferrous bicarbonate, .1945.

WATER ANALYSES.

VIRGINIA HOT SPRINGS, BATH COUNTY, VIRGINIA.

The waters of six different springs were received from the Virginia Hot Springs Company, as follows:

A. Boiler bath. Temperature, 41° C.

B. Hot spout bath. Temperature, 40°.5 C.

C. Octagon bath. Temperature, 38° C.

D. New hot spring. Temperature, 37° C.

E. "Sulphur" bath. Temperature, 36°.5 C.

F. "Magnesian" spring. Temperature, 25°.5 C.

Analyses by F. W. Clarke. Traces of bromine were found in A and B. The other waters were so similar to these that bromine was not specially sought for in them.

A.—Boiler bath.

[Total solids : 0.5975 gramme to the liter.]

Found.		Per cent. of total solids.	Probable combina	tion.
SiO2	. 0275	4.60	SiO ₂	. 0275
SO4	. 1319	22.07	Al203	.0020
Cl	.0050	0. 83	KCl	. 0105
Al2O3	. 0020	· 0.32	K2SO4	. 0138
Са	. 1356	22.69	Na2SO4	. 0370
Мд	. 0357	5.96	CaSO4	. 1407
Na	. 0120	2.08	CaCO3	. 2355
K	. 0117	1.95	MgCO ₃	. 1249
-	. 3614		· -	. 5919
CO3	. 2361	39.50	99. 06 per cent. accoun	ted for.
-	. 5975	100.00		

B.-Hot spout bath.

[Total solids: 0.5925 gramme to the liter.]

Found.		Per cent. of total solids.	Probable combina	tion.
SiO2	. 0235	3. 97	SiO ₂	. 0235
SO4	. 1298	21.91	Al2O3	.0025
C1	.0044	0.74	KCl	.0092
Al ₂ O ₃	.0025	0.42	K ₂ SO ₄	. 0187
Са	. 1375	23. 21	Na2SO4	.0281
Mg	. 0343	5.79	CaSO4	. 1424
Na	.0091	1.53	CaCO ₃	. 2390
к	.0132	2.23	MgCO3	. 1201
-	. 3543		-	. 5835
CO8	. 2882	40. 20	= 98.46 per cent. accoun	ted for.
	. 5925	100.00		

Bull. 9-----3

- (273)

C0	Dctagon	bath.
----	---------	-------

[Total solids : 0.5940 gramme to the liter.]

		Per cent. of total solids.	Probable combination.		
SiO ₂ SO ₄ Cl Ca Mg Na K	. 0255 . 1364 . 0041 . 0035 . 1378 . 0348 . 0348 . 0096 . 0128	4. 29 22. 96 0. 69 0. 59 23. 20 5. 86 1. 61 2. 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
 CO3	. 3645 . 2295 . 5940	38. 65 100. 00	. 5919 99. 64 per cent. accounted for.		

D.—New hot spring.

Found.	Per cent. of total solids.	Probable combination.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.09 22.54 0.50 1.04 23.15 6.13 1.57 2.21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
CO3	38.77 100.00	Total, 100.12 per cent.

[Total solids : 0.5740 gramme to the liter.]

E.—"Sulphur" bath.

1	Total	anlida ·	0 5775	gramme	to	the	liter 1	
	LOUAL	somus:	0.0110	gramme	υU	шө	mon.	

Found.		Per cent. of total solids.	Probable combination.		
SiO ₂	.0230	3. 98	SiO ₂ 0230		
SO4	.1273	22.04	Al ₂ O ₃		
C1	. 0032	0.55	KC1		
Al ₂ O ₃	. 0065	· 1.13	K2SO4		
Са	. 1318	22.82	Na ₂ SO ₄		
Mg	. 0330	5.71	CaSO4 1278		
Na	.0136	2.36	CaCO3		
K	. 0107	1.85	MgCO ₃ 1155		
. –	. 3491		. 5729		
CO3	. 2284	39. 56	99.20 per cent. accounted for.		
	. 5775	100.00			

⁽²⁷⁴⁾

No H_2S nor sulphides were found in this water. The spring, however, is said to have at times a "sulphur odor."

F.-Magnesian spring.

[Total solids; 0.38	325 gramme	to	the liter.]
---------------------	------------	----	-------------

Found.	Per cent. of total solids.	Probable combination.
SiO ₂	3. 14	Si O ₂
O ₄	18.85 0.52	KCl
Ca	25. 02	Na ₂ SO ₄
Mg 0209	5.46	CaSO4
Na	1.70	CaCO3
K	1.85	MgCO ₃ 0731
.2163		
CO3	43. 46	99.14 per cent. accounted for.
. 3825	100.00	

Why this spring is specially named "Magnesian" is not explained. It will be noted that this spring, the coolest of the series, is proportionally richer in carbonates and poorer in sulphates than the others. This relation is shown by a comparison of the percentage columns.

(275)

THE ESTIMATION OF ALKALIES IN SILICATES, BY THOMAS M. CHATARD.

Walter Hempel proposed (Fres. Zschr. 1881, p. 496) bismuth subnitrate as a means of decomposing silicates containing alkalies, and recommended the use of 20 parts of this salt (=10 parts of bismuth oxide) to one part of the silicate. In the Berichte d. D. Chem. Gesellsch, 1881, there is an abstract of his paper, in which is proposed the use of bismuth oxide directly.

This process has been in use in this laboratory for the past six months, and, with some modifications, has given great satisfaction. Bismuth oxide has been used instead of the subnitrate, and experience has shown that, instead of ten parts, as stated above, *two parts* of oxide to *one part* of the mineral are ample in every case in which we have employed the method.

The oxide and mineral, both finely powdered, must be most thoroughly mixed, and then heated in a platinum crucible; applying at first a gentle heat and gradually increasing to full redness, which is kept up ten to fifteen minutes. In the case of an acid silicate, complete fusion may result, while the more basic the silicate the less fusible the mixture will be. Complete decomposition has been obtained when the resulting mass was so slightly sintered together as to fall on gentle pressure into powder, none of which adhered to the crucible. It has therefore been found advantageous, in dealing with acid silicates, to add to the mixture a quantity of calcium carbonate, in weight equal to that of the mineral. This device prevents the fusion which might hinder the after treatment with acid.

After the mass has been thoroughly heated to bright redness it is allowed to cool, placed in a dish, and hydrochloric acid somewhat diluted poured over it. On heating over the water bath the mass should go into solution rapidly, leaving no residue of undecomposed mineral, which is easily distinguishble from floating flakes of silica.

If complete analysis is required, evaporate to dryness and separate the silica, as in a soda fusion, afterwards removing the bismuth by sulphureted hydrogen. If only alkalies are to be determined, add ammonia and ammonium carbonate, filter, and separate magnesia from the alkalies by any of the usual methods.

(276)

The results of this process have been very satisfactory. Out of a large number of analyses the following duplicate has been selected as being sufficient to show the accuracy of the work. It may be remarked that in the case of this margarite (a very basic silicate) the mass was but slightly sintered together.

Margarite.—Gainesville, Ga.

1.0300 grammes gave 0.0440 alkali chlorides $= 0.0233 \text{ Na}_2\text{O} = 2.26$ per cent. 1.0243 grammes gave 0.0435 alkali chlorides $= 0.0231 \text{ Na}_2\text{O} = 2.25$ per cent.

(277)

INDEX.

	Page.
Abert Lake	28
Alkalies in silicates, estimation of	36
Allanite	10
Alum rock	13
Alunogen	13
Basalt from Mount Thielson	15
Basalt from Pit River	16
Bear River	30
Beryl	11
Boiling Spring, Honey Lake Valley, California	28
Cimolite	12
City Creek	29
Clays from Mill City, Nevada	15
Coal from Cranston, Rhode Island	18
Dacites from Lassen's Peak	16
Damourite	11
Emigrant Gulch, Warm Springs	31
Fulgurite	16
Gahnite	-9
Halloysite	12
Halotrichite	14
Helena Hot Springs	32
High Rock Spring, Honey Lake Valley, California	28
Hot Spring, Hot Spring Station, Nevada	24
Hot Spring, foot of Granite Mountain, Nevada	24. 24
Humboldt River	23
Inclusion in dacite	25 16
Jade	9
Lahontan beds, powder from	5 14
Limestones, West Virginia	14
Limestones, west virginia	18
Livingston Warm Springs	31
Lower Hot Spring, Honey Lake Valley, California	28
Magnetite, from Montana	20 17
Magnetite, from Montana	11
Margarite	14
Mill Creek Cold Spring	32
Mono Lake	26
Obsidian, scoriaceous	14
Pectolite	9
Petroleum Spring, Mono Lake	27
Prochlorite	13
Pyramid Lake	19
Saussurite	10
Scoriaceous obsidian	14
Silicates, estimation of alkalies in	36

(279)

39

	Page			
Soda lakes	25			
Tahoe, Lake	28			
Tufa Crag, Mono Lake, spring on	27			
Utah Hot springs	30			
Utah Lake	29			
Virginia Hot Springs				
Walker Lake	22			
Walker River	23			
Warm Springs, Emigrant Gulch	31			
Warm Springs, Mono Basin	27			
Winnemucca Lake	21			
(280)				