

National Water-Quality Assessment Program

# Use of Classes Based on Redox and Groundwater Age to Characterize the Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

Scientific Investigations Report 2012–5220

U.S. Department of the Interior U.S. Geological Survey

# Use of Classes Based on Redox and Groundwater Age to Characterize the Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

By P.B. McMahon

National Water-Quality Assessment Program

Scientific Investigations Report 2012–5220

U.S. Department of the Interior U.S. Geological Survey

## **U.S. Department of the Interior**

**KEN SALAZAR, Secretary** 

### **U.S. Geological Survey**

Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2012

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

McMahon, P.B., 2012, Use of classes based on redox and groundwater age to characterize the susceptibility of principal aquifers to changes in nitrate concentrations, 1991 to 2010: U.S. Geological Survey Scientific Investigations Report 2012–5220, 41 p.

# Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (*http://www.usgs.gov/*). Information on the Nation's water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (*http://water.usgs.gov/nawqa*). The NAWQA Program is designed to answer: What is the quality of our Nation's streams and groundwater? How are conditions changing over time? How do natural features and human activities affect the quality of streams and groundwater, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units (*http://water.usgs.gov/nawqa/studies/study\_units.html*).

In the second decade of the Program (2001–2012), a major focus is on regional assessments of waterquality conditions and trends. These regional assessments are based on major river basins and principal aquifers, which encompass larger regions of the country than the Study Units. Regional assessments extend the findings in the Study Units by filling critical gaps in characterizing the quality of surface water and groundwater, and by determining water-quality status and trends at sites that have been consistently monitored for more than a decade. In addition, the regional assessments continue to build an understanding of how natural features and human activities affect water quality. Many of the regional assessments employ modeling and other scientific tools, developed on the basis of data collected at individual sites, to help extend knowledge of water quality to unmonitored, yet comparable areas within the regions. The models thereby enhance the value of our existing data and our understanding of the hydrologic system. In addition, the models are useful in evaluating various resource-management scenarios and in predicting how our actions, such as reducing or managing nonpoint and point sources of contamination, land conversion, and altering flow and (or) pumping regimes, are likely to affect water conditions within a region.

Other activities planned during the second decade include continuing national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace elements, and aquatic ecology; and continuing national topical studies on the fate of agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects of nutrient enrichment on stream ecosystems, and transport of contaminants to public-supply wells.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and effective water-resource management and strategies that protect and restore water quality. We hope this NAWQA publication will provide you with insights and information to meet your needs, and will foster increased citizen awareness and involvement in the protection and restoration of our Nation's waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource issues of interest. External coordination at all levels is critical for cost-effective management, regulation, and conservation of our Nation's water resources. The NAWQA Program, therefore, depends on advice and information from other agencies—Federal, State, regional, interstate, Tribal, and local—as well as nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and suggestions are greatly appreciated.

William H. Werkheiser USGS Associate Director for Water

# Contents

| Abstract<br>Introduction<br>Methods<br>Well Selection                    | 2<br>2<br>2 |
|--------------------------------------------------------------------------|-------------|
| Methods                                                                  | 2<br>2      |
| Well Selection                                                           | 2           |
|                                                                          |             |
| Sources of Data                                                          | _           |
| Sources of Data                                                          | 3           |
| Aquifer Groups and Geology                                               | 3           |
| Redox Classification                                                     | 3           |
| Groundwater-Age Classification                                           | 3           |
| Evaluation of Redox-Age Classes                                          | 6           |
| Relation Between Redox-Age Classes and Changes in Nitrate Concentrations |             |
| in Trend-Well Networks                                                   |             |
| Redox-Age Classes in Principal Aquifers1                                 | 1           |
| Susceptibility to Changes in Nitrate Concentrations Near the Water Table |             |
| in Agricultural Areas1                                                   | 1           |
| Susceptibility to Changes in Nitrate Concentrations in Parts of Aquifers |             |
| that Provide Domestic Water Supplies1                                    | 9           |
| Susceptibility to Changes in Nitrate Concentrations in Parts of Aquifers |             |
| that Provide Public Water Supplies2                                      | 6           |
| Summary and Conclusions                                                  | 1           |
| Acknowledgments                                                          | 3           |
| References Cited                                                         |             |
| Appendix 1                                                               | 7           |

# Figures

| 1. | Map showing location of selected principal aquifers in the United States                                                                               | 4  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Change in nitrate concentration for pairs of samples collected from selected wells in the United States at near decadal time scales in relation to the |    |
|    | redox-age class of the more recently collected sample                                                                                                  | 0  |
| 2  |                                                                                                                                                        | 0  |
| 3. | Change in nitrate concentration for pairs of samples collected from selected                                                                           |    |
|    | wells in the United States at near decadal time scales in relation to the change<br>in redox condition                                                 | 9  |
| 4. | Map showing central locations of well networks sampled at near decadal                                                                                 |    |
|    | time scales by the National Water-Quality Assessment Program                                                                                           | 10 |
| 5. | Median change in nitrate concentration in relation to the percentage of                                                                                |    |
|    | samples that were classified as oxic-potentially young in well networks                                                                                |    |
|    | that were sampled at near decadal timescales and the susceptibility of                                                                                 |    |
|    | the networks to changes in nitrate concentrations                                                                                                      | 14 |
| 6. | Concentrations of nitrate in pairs of samples collected from selected networks                                                                         |    |
|    | of major-aquifer study wells in the United States at near decadal time scales                                                                          | 15 |
| 7. | Map showing central locations of networks of shallow monitoring wells                                                                                  |    |
|    | in agricultural areas and the susceptibility of the networks to changes in                                                                             |    |
|    | nitrate concentrations.                                                                                                                                | 16 |
| 8. | Median percentage of samples assigned to the four redox-age classes for                                                                                |    |
|    | principal aquifers that have at least two networks of shallow monitoring                                                                               |    |
|    | wells in agricultural areas, and the susceptibility of the aquifers to changes                                                                         |    |
|    |                                                                                                                                                        | 18 |
|    |                                                                                                                                                        |    |

| 9.  | Percentage of samples assigned to the four redox-age classes for networks<br>of shallow monitoring wells in agricultural areas in the Central Valley aquifer<br>system, High Plains aquifer, and the West-central glacial aquifers, and the<br>susceptibility of the networks to changes in nitrate concentrations | 19 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 10. | Map showing central locations of networks of domestic wells and the susceptibility of the networks to changes in nitrate concentrations                                                                                                                                                                            |    |
| 11. | Median percentage of samples assigned to the four redox-age classes<br>for principal aquifers that have at least two networks of domestic wells,<br>and the susceptibility of the aquifers to changes in nitrate concentrations                                                                                    |    |
| 12. | Variability in the percentage of samples classified as oxic-potentially young for principal aquifers that have at least two networks of domestic wells, and the susceptibility of the networks to changes in nitrate concentrations                                                                                |    |
| 13. | Percentage of samples classified as oxic-potentially young in collocated<br>networks of shallow monitoring wells in agricultural areas and domestic wells,<br>and the susceptibility of the networks to changes in nitrate concentrations                                                                          | 27 |
| 14. | Map showing central locations of networks of public-supply wells and the susceptibility of the networks to changes in nitrate concentrations                                                                                                                                                                       | 28 |
| 15. | Median percentage of samples assigned to the four redox-age classes for principal aquifers that have at least two networks of public-supply wells, and the susceptibility of the aquifers to changes in nitrate concentrations                                                                                     | 30 |
| 16. | Percentage of samples classified as oxic-potentially young in collocated networks of public-supply and domestic wells, and the susceptibility of the networks to changes in nitrate concentrations                                                                                                                 | 31 |
|     |                                                                                                                                                                                                                                                                                                                    |    |

# Appendix Figure

| 1–1. | Map showing the central locations of networks of shallow monitoring wells   |    |
|------|-----------------------------------------------------------------------------|----|
|      | in urban areas and the susceptibility of the networks to changes in nitrate |    |
|      | concentrations                                                              | 39 |

# Tables

| 1. | Criteria used to assign redox-age classes to groundwater samples                                                                                                                                                                                              | 6  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Redox-age classes for water samples collected from principal aquifers in the United States and median well depth, well type, and aquifer confinement                                                                                                          | 7  |
| 3. | Redox-age classes for water samples collected from selected well networks<br>in the United States at near decadal time scales, median change in nitrate<br>concentration for each network, and the statistical significance of the change<br>in concentration | 12 |
| 4. | Redox-age classes for water samples collected from networks of shallow<br>monitoring wells in agricultural areas in the United States and the susceptibility<br>of the networks to changes in nitrate concentrations                                          | 17 |
| 5. | Redox-age classes for water samples collected from networks of domestic wells in the United States and the susceptibility of the networks to changes in nitrate concentrations                                                                                | 21 |
| 6. | Redox-age classes for water samples collected from networks of public-supply wells in the United States and the susceptibility of the networks to changes in nitrate concentrations                                                                           | 29 |
|    |                                                                                                                                                                                                                                                               |    |

## **Appendix Table**

 1–1. Redox-age classes for water samples collected from networks of shallow monitoring wells in urban areas in the United States and the susceptibility of the networks to changes in nitrate concentrations .......40

## **Conversion Factors**

| Multiply        | Ву      | To obtain               |
|-----------------|---------|-------------------------|
|                 | Length  |                         |
| centimeter (cm) | 0.3937  | inch (in.)              |
| millimeter (mm) | 0.03937 | inch (in.)              |
| meter (m)       | 3.281   | foot (ft)               |
| kilometer (km)  | 0.6214  | mile (mi)               |
|                 | Volume  |                         |
| liter (L)       | 33.82   | ounce, fluid (fl. oz)   |
| liter (L)       | 0.2642  | gallon (gal)            |
| Mass            | Mass    |                         |
| gram (g)        | 0.03527 | ounce, avoirdupois (oz) |

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter ( $\mu$ g/L). Concentrations of tritium are given in tritium units (TU).

# Use of Classes Based on Redox and Groundwater Age to Characterize the Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

By P.B. McMahon

### Abstract

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is using multiple approaches to measure and explain trends in concentrations of nitrate in principal aquifers of the United States. Near decadal sampling of selected well networks is providing information on where long-term changes in nitrate concentrations have occurred. Because those studies do not include all the NAWQA well networks, a determination has yet to be made as to what might be expected in networks from which timeseries data have not been collected. Characterizing aquifer susceptibility to changes in nitrate concentrations on the basis of data collected from all the NAWQA well networks would be a step toward extrapolating findings from those studies to broader regions.

In this study, water samples collected from 6,593 wells in 39 principal aquifers and 5 alluvial aquifers (collected from 1991 to 2010) were assigned to four redox-age classes on the basis of concentrations of dissolved oxygen and various indicators of groundwater age. The redox-age assignments were then used to characterize the susceptibility of principal aquifers to changes in nitrate concentrations. Aquifer areas (as defined by well networks) in which at least 75 percent of the samples were classified as oxic-potentially young were considered to have a high susceptibility to changes in nitrate concentrations. Aquifer areas were considered to have a medium susceptibility if at least 25 percent and less than 75 percent of the samples were classified as oxicpotentially young. Aquifer areas were considered to have a low susceptibility if less than 25 percent of the samples were classified as oxic-potentially young.

The three primary well types sampled by NAWQA (shallow monitoring wells near the water table, domestic wells, and public-supply wells) generally represent different depth zones and (or) areas of the principal aquifers. For the parts of aquifers near the water table in agricultural areas, the aquifers most susceptible to changes in nitrate concentrations were the Columbia Plateau basin-fill aquifers, Eastern glacial aquifers, and the West-central glacial aquifers. None of the aquifers had a low susceptibility to changes in

nitrate concentrations. For the parts of aquifers that provide domestic water supplies, the aquifers most susceptible to changes in nitrate concentrations were the Northern Atlantic Coastal Plain aquifer system and the Early Mesozoic Basin, Valley and Ridge carbonate-rock, and Piedmont and Blue Ridge crystalline-rock aquifers in the eastern United States; the Ozark Plateaus aquifer system in parts of Missouri and Arkansas; and the Central Valley, Columbia Plateau basalticrock, and Snake River Plain basaltic-rock aquifer systems in the West. The least susceptible aquifers were the Texas Coastal Uplands and Denver Basin aquifer systems. For the parts of aquifers that provide public water supplies, the aquifers most susceptible to changes in nitrate concentrations were the Eastern glacial aquifers and the California Coastal Basin, Basin and Range basin-fill, and High Plains aquifers in the West. The least susceptible aquifer was the Cambrian-Ordovician aquifer system in the upper Midwest.

Principal-aquifer lithology groups with the largest percentage of domestic-well networks considered to have a high susceptibility to changes in nitrate concentrations were the basaltic- and other volcanic-rock aquifer systems, carbonate-rock aquifers, and crystalline-rock aquifers. The lithology groups with the smallest percentage of networks considered to have a high susceptibility to changes in nitrate concentrations were the glacial aquifers and sandstone aquifers. There are important geologic differences between the aquifer lithology groups with high and low susceptibilities to changes in nitrate concentrations. The relatively large percentage of high-susceptibililty networks in the basaltic- and other volcanic-rock aquifer systems, carbonate-rock aquifers, and crystalline-rock aquifers may indicate the importance of fractures and karst features in promoting the rapid movement of oxic-potentially young groundwater in those aquifers. The relatively small percentage of high-susceptibility networks in the glacial and sandstone aquifers reflects geologic characteristics of those aquifers that support anoxic redox conditions (high electron-donor content) and inhibit water movement (fine-grained confining layers).

For networks of monitoring and domestic wells that were approximately collocated, the monitoring-well networks had the higher percentage of samples classified as oxic-potentially young, indicating that susceptibility tended to be higher at the shallower depths of the monitoring wells. For networks of domestic and public-supply wells that were approximately collocated, the public-supply wells had the higher percentage of samples classified as oxic-potentially young, indicating that susceptibility tended to be higher in the vicinity of publicsupply wells than in the vicinity of domestic wells even though the public-supply wells had larger median well depths. Previous studies found that high rates of pumping in publicsupply wells with long screens induced more rapid downward movement of young groundwater than did domestic wells, which had shorter screens and were less heavily pumped. The data from this study are generally consistent with those findings.

## Introduction

Is groundwater quality getting better or worse, why, and what will happen in the future? These are some of the important questions being addressed by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The NAWQA Program is using multiple approaches to measure and explain trends in concentrations of nitrate in principal aquifers of the United States. Near decadal sampling of selected NAWQA well networks has provided a preliminary determination of where changes in concentrations of chloride, dissolved solids, and nitrate in groundwater have occurred (Rupert, 2008; Lindsey and Rupert, 2012). Because those studies do not include all the NAWQA well networks, a determination has yet to be made as to what might be expected in networks from which time-series data have not been collected. Characterizing aguifer susceptibility to changes in nitrate concentrations on the basis of data collected from all the NAWQA well networks would be a step toward extrapolating findings from those studies to broader regions.

Long-term changes in concentrations of nitrate in groundwater are controlled by factors such as nitrogen input history at the land surface, denitrification in the aquifer, and location in the flow system (Clark and others, 2008; Burow and others, 2008a,b; Kauffman and others, 2001; McMahon and others, 2008a,b). Nitrate concentrations in groundwater increased over several decades in many agricultural areas of the United States following the dramatic increase in fertilizer usage that began in the late 1940s (see summary by Puckett and others, 2011). Denitrification is the microbial reduction of nitrate to nitrogen gas  $(N_2)$  and in some aquifers it is an important process for decreasing nitrate concentrations (Böhlke and others, 2002; Green and others, 2008; Tesoriero and Puckett, 2011). Aquifers containing oxic shallow groundwater are more susceptible to changes in nitrate concentrations than aquifers containing anoxic deep groundwater (Dubrovsky and others, 2010). This pattern occurs because nitrate persists in oxic groundwater and is removed by denitrification in

anoxic groundwater, and deep groundwater generally is older, sometimes predating nitrogen inputs by humans at the land surface, and contains a broader mix of water of differing ages and sources than shallow groundwater. Thus, redox-age classifications could provide a framework for characterizing the susceptibility of aquifers to changes in nitrate concentrations and such a framework could be used for interpreting timeseries monitoring data.

To a certain extent, this type of redox-age assessment has already been done using statistically based models of groundwater vulnerability (Rupert, 1998; Nolan and Hitt, 2006; Gurdak and Qi, 2006; Rupert and Plummer, 2009). Vulnerability models sometimes incorporate redox and groundwaterage information, but use surrogate variables, such as soil type and well depth (Nolan and Hitt, 2006). More direct measures of redox conditions and groundwater age are available, such as concentrations of dissolved oxygen, chlorofluorocarbons, and sulfur-hexafluoride, and detections of tritium, pesticide compounds, or volatile organic compounds (VOCs).

The purpose of this report is to characterize the susceptibility of selected principal aquifers of the United States to changes in nitrate concentrations on a basis of the redox-age classification scheme developed in this report. Redox classes are defined by concentrations of dissolved oxygen. Groundwater-age classes are defined by concentrations of tritium, nitrate, pesticide compounds, VOCs, chlorofluorocarbons, sulfur hexafluoride, and (or) helium. The redox-age classification scheme uses NAWQA water-quality data collected from 39 principal aquifers and 5 alluvial aquifers from 1991 to 2010.

### Methods

This section describes the well networks and waterquality data used in the study, and the principal aquifers in which the networks are located. In addition, the redox and groundwater-age classes used to characterize the aquifers are defined.

#### **Well Selection**

Wells included in this study were used in NAWQA studies designed to describe the quality of water withdrawn from principal aquifers and used for drinking (termed major-aquifer studies or MASs, and source-water studies or DWGSs), and studies of shallow groundwater within specific land-use settings (termed land-use studies or LUSs). MASs focused on the quality of groundwater resources without being linked to a specific land use and used data mostly from existing domestic wells. DWGSs focused on the quality of groundwater from public-supply wells. Water samples from MAS and DWGS wells were collected before any treatment or pressure tanks and therefore do not represent water consumed for drinking. LUSs targeted the uppermost recently recharged groundwater to identify the effects of the overlying land use and used data mostly from monitoring wells and some production wells. Generally, MAS networks covered larger geographic areas and their wells were deeper than LUSs. Gilliom and others (1995) presented a general discussion of NAWQA well networks. Individual MASs, DWGSs, and LUSs are described in reports for individual NAWQA study areas (U.S. Geological Survey, 2011). Data for a total of 6,593 wells from networks in 39 principal aquifers and 5 alluvial aquifers were used in this study. Locations of the principal aquifers are shown in fig. 1.

### **Sources of Data**

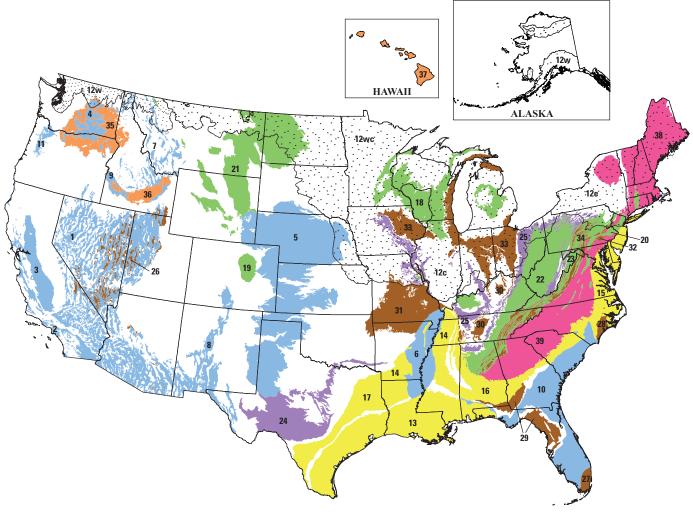
Many of the NAWQA wells have been sampled more than once, but the water-quality data used in this study primarily represent the most recently collected water sample from each well. Water samples included in this study were collected from 1991 to 2010. Methods for collecting and analyzing groundwater samples for the NAWQA program are well documented (U.S. Geological Survey, 2011) and are not repeated here. Water-quality and groundwater-age data of primary interest in this study are concentrations of dissolved oxygen, nitrate, pesticide compounds, volatile organic compounds (VOCs), chlorofluorocarbons, sulfur hexafluoride, tritium, and helium. Dissolved oxygen was measured in the field at the time of sample collection. Nitrate, pesticide compounds, and VOCs were analyzed at the USGS National Water Quality Laboratory in Denver, Colorado. Chlorofluorocarbons and sulfur hexafluoride were analyzed at the USGS Chlorofluorocarbon Laboratory in Reston, Virginia. Tritium was measured at the USGS Tritium Laboratory in Menlo Park, California, the USGS Noble Gas Laboratory in Denver, Colorado, or the Noble Gas Laboratory of the Lamont-Doherty Earth Observatory in Palisades, New York. Helium was measured at the USGS Noble Gas Laboratory in Denver, Colorado, or the Noble Gas Laboratory of the Lamont-Doherty Earth Observatory in Palisades, New York. The data can be found in the USGS National Water Information System (NWIS) or in Hinkle and others (2010).

### **Aquifer Groups and Geology**

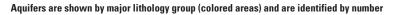
This study primarily examined 39 principal aquifers (fig. 1). Principal aquifers are defined as aquifers that are regionally extensive and can yield useable quantities of water (U.S. Geological Survey, 2003). The aquifers are broadly grouped into eight lithologic groups: basaltic and other volcanic rocks, carbonate rocks, crystalline rocks, glacial sand and gravel, sandstone and carbonate rocks, sandstone, semiconsolidated sand, and unconsolidated sand and gravel (U.S. Geological Survey, 2003). Five relatively small alluvial aquifers also were examined and they are considered to be part of the unconsolidated sand and gravel lithology group.

#### **Redox Classification**

Redox conditions in many of the principal aquifers were described on a regional basis (McMahon and others, 2009) using the redox framework developed by McMahon and Chapelle (2008). That framework uses a dissolvedoxygen concentration of 0.5 milligram per liter (mg/L) as the threshold between oxic and anoxic conditions. The framework has additional redox subclasses for anoxic conditions, but for the purposes of this report only two redox classes are considered-oxic (dissolved oxygen concentration greater than or equal to 0.5 mg/L) and anoxic (dissolved oxygen concentration less than 0.5 mg/L). Consideration of just two redox classes is appropriate for this report because oxygen reduction typically is the first redox process to occur in groundwater and denitrification typically is the first anoxic redox process to follow oxygen reduction when nitrate is present in groundwater (Chapelle and others, 1995; McMahon and Chapelle, 2008). The susceptibility of aquifers to changes in nitrate concentrations would be greater in oxic groundwater than in anoxic groundwater (Rupert, 2008), although the susceptibility also could be high in anoxic groundwater that is actively undergoing denitrification.


The use of a dissolved-oxygen concentration of 0.5 mg/L as the threshold for onset of denitrification probably is conservative. As discussed by Green and others (2010), mixing in heterogeneous aquifers and in well screens can result in the co-occurrence of geochemical indicators of denitrification with dissolved oxygen concentrations greater than 0.5 mg/L. Several field studies have reported apparent threshold concentrations for the onset of denitrification in the range of about 1 to 2 mg/L (Böhlke and others, 2002; McMahon and others, 2004; Böhlke and others, 2007; Green and others, 2008; Tesoriero and Puckett, 2011).

#### **Groundwater-Age Classification**


The substantial increase in fertilizer usage in the United States beginning in about the late 1940s is an important event in the context of this study because fertilizer represents the largest single anthropogenic source of nitrogen in the country (Dubrovsky and others, 2010), and an increase in usage of fertilizer has been linked to increased concentrations of nitrate in groundwater (see review by Puckett and others, 2011). Given this history, a useful tracer of groundwater age for this study would differentiate between water recharged before and after the early 1950s. For the purposes of this report these waters are referred to as old and young groundwater, respectively. The susceptibility of aquifers to changes in nitrate concentrations would be greater in young groundwater than in old groundwater.

Tritium was used to differentiate between old and young groundwater in this study. Tritium is a radioactive isotope of hydrogen with a half-life of 12.32 years (Lucas

#### 4 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010



#### EXPLANATION



| ι    | Inconsolidated sand and gravel aquifers   |    | Semiconsolidated sand aquifers                 | C  | arbonate-rock aquifers                                                         |
|------|-------------------------------------------|----|------------------------------------------------|----|--------------------------------------------------------------------------------|
| 1    | Basin and Range basin-fill aquifers       | 13 | Coastal Lowlands aquifer system                | 26 | Basin and Range carbonate-rocks aquifers                                       |
| 2    | California Coastal Basin aquifers         | 14 | Mississippi Embayment aquifer system           | 27 | Biscayne aquifer                                                               |
| 3    | Central Valley aquifer system             | 15 | Northern Atlantic Coastal Plain aquifer system | 28 | Castle Hayne aquifer                                                           |
| 4    | Columbia Plateau basin-fill aquifers      | 16 | Southeastern Coastal Plain aquifer system      | 29 | Floridan aquifer system                                                        |
| 5    | High Plains aquifer                       | 17 | Texas Coastal Uplands aquifer system           | 30 | Ordovician aquifers                                                            |
| 6    | Mississippi River Valley alluvial aquifer |    | Sandstone aquifers                             | 31 | Ozark Plateaus aquifer system                                                  |
| 7    | Northern Rocky Mountains Intermontane     | 18 | Cambrian-Ordovician aquifer system             | 32 | Piedmont and Blue Ridge carbonate-rock aquifers                                |
|      | Basins aquifer system                     | 19 | Denver Basin aquifer system                    | 33 | Silurian-Devonian aquifers                                                     |
| 8    | Rio Grande aquifer system                 | 20 | Early Mesozoic Basin aquifers                  | 34 | Valley and Ridge carbonate-rock aquifers                                       |
| 9    | Snake River Plain basin-fill aquifers     | 21 | Lower Tertiary aquifers                        | В  | asaltic- and other volcanic-rock aquifers                                      |
| 10   | Surficial aquifer system                  | 22 | Pennsylvanian aquifers                         | 35 | Columbia Plateau basaltic-rock aquifer system                                  |
| 11   | Willamette Lowland aquifer system         | 23 | Valley and Ridge clastic-rock aquifers         | 36 | Snake River Plain basaltic-rock aquifer system                                 |
|      | Glacial sand and gravel aquifers          |    | Sandstone and carbonate-rock aquifers          | 37 | Hawaiian volcanic-rock aquifers                                                |
| 12e  | Eastern glacial aquifers                  | 24 | Edwards-Trinity aquifer system                 |    |                                                                                |
| 12c  | Central glacial aquifers                  | 25 | Mississippian aquifers                         | 38 | rystalline-rock aquifers<br>New York and New England crystalline-rock aquifers |
| 12wc | West-central glacial aquifers             | 20 |                                                | 50 | (unofficial name)                                                              |
| 12w  | Western glacial aquifers                  |    |                                                | 39 | Piedmont and Blue Ridge crystalline-rock aquifers                              |



and Unterweger, 2000). Small concentrations of tritium are produced naturally by interactions between the atmosphere and cosmic rays. It is an excellent tracer of water movement because it is part of the water molecule. In general, tritium in groundwater originates from precipitation. Because tritium is radioactive, its concentration in groundwater decreases over time as a result of radioactive decay. Before the onset of atmospheric testing of nuclear weapons in about 1953 (prebomb), the tritium content of precipitation in the conterminous United States probably ranged from about 2 to 8 tritium units (TU) (Kaufman and Libby, 1954; Thatcher, 1962). As a result of radioactive decay, groundwater derived from precipitation that fell before 1953 would have contained less than 0.5 TU tritium in 2010 (the most recent samples used in this study), but it could have contained upwards of about 1 TU in 1991 (the earliest samples used in this study). The tritium content of precipitation increased substantially after the onset of atmospheric nuclear weapons testing but has slowly decreased from its peak in the early 1960s. Even with the variability in tritium content of precipitation over time, most groundwater in the United States exclusively derived from precipitation that fell since 1953 (postbomb) contained more than 0.5 TU in 2010. On the basis of this information, water samples with tritium concentrations less than 0.5 TU were considered to be potentially old groundwater (recharged before the early 1950s), and water samples with tritium concentrations greater than or equal to 0.5 TU were considered to be potentially young groundwater (recharged after the early 1950s). For comparison, several other studies have used tritium concentrations ranging from about 0.2 to 1 TU as the cutoff between old and young groundwater (Michel and Schroeder, 1994; Plummer and others, 2004; Manning and others, 2005; Landon and others, 2010a).

Because only 39 percent of the samples that were assigned to a groundwater-age class had tritium data, other indicators of groundwater age were used for the samples that did not have tritium data. These indicators include detections of pesticide compounds and (or) VOCs; elevated concentrations of nitrate; and (or) dating with chloroflurocarbons, sulfur hexafluoride, or tritium/helium-3 (Plummer and others, 1993; Kolpin and others, 1995; Busenberg and Plummer, 2000; Shelton and others, 2001; Manning and others, 2005; Plummer and others, 2008). The water-quality data set used in this study contained information for as many as 155 pesticide compounds and 85 VOCs. Minimum detection levels for the pesticide compounds ranged from 0.000057 to 0.021 microgram per liter (µg/L). For the VOCs, minimum detection levels ranged from 0.001 to 0.3 µg/L. Samples that did not have tritium data but had a detection of a pesticide compound or a VOC were considered to be potentially young groundwater. Samples that did not have tritium data but had a nitrate concentration greater than 1.3 milligrams of nitrogen per

liter (mg-N/L) also were considered to be potentially young groundwater. This concentration represents the 75th percentile concentration of nitrate in groundwater samples with tritium concentrations less than 0.5 TU. For comparison, Nolan and Hitt (2003) proposed a national background nitrate concentration of about 1 mg-N/L and Mueller and Helsel (1996) proposed a background concentration of 2 mg-N/L. Background nitrate concentrations in groundwater are likely to vary regionally and locally, but that variability was not taken into account in this study. Some samples were dated using chloroflurocarbons, sulfur hexafluoride, or tritium/helium-3 (Hinkle and others, 2010), and those data were used to determine the presence of young groundwater in samples for which tritium data were unavailable. For samples that had no tritium, chlorofluorocarbon, sulfur-hexafluoride, and tritium/helium-3 data, or detections of a pesticide compound or VOC, and had a nitrate concentration of less than or equal to 1.3 mg-N/L, the age was considered to be potentially old. The criteria used to assign redox-age classes to groundwater samples are summarized in table 1.

The approach for classifying groundwater ages does not consider mixing, which is why the age determinations are qualified as being potentially old or young. It is likely that some groundwater classified as being potentially old contained a component of young groundwater, and vice versa (Weissmann and others, 2002; Manning and others, 2005; Plummer and others, 2008). For example, 54 percent of the samples that were classified as potentially old on the basis of tritium concentrations less than 0.5 TU would have been classified as potentially young using just the pesticide compound, VOC, and nitrate data. Twenty-one percent of the samples that were classified as being potentially young on the basis of tritium concentrations greater than or equal to 0.5 TU would have been classified as potentially old using just the pesticide compound, VOC, and nitrate data. Thus, some samples overlapped the age classes used in this report. Another potential limitation is that some VOCs could be present in groundwater recharged before 1950 either from natural sources or solvent and fuel use in the early 20th century. Chloroform, the most commonly detected VOC in the Nation's groundwater (Zogorski and others, 2006), has both natural and man-made sources (McCulloch, 2003). Although the presence of tritium, pesticide compounds, VOCs, or elevated concentrations of nitrate in a sample generally indicates that the sample contained a fraction of young groundwater (Plummer and others, 2008), it does not indicate how much. Techniques are available for estimating the fractions of old and young groundwater in samples (Plummer and others, 2003; Manning and others, 2005), but the data required for that analysis were not available for most of the samples used in this study. Ideally, one would analyze all the water samples for a comparable set of tracers that characterize groundwater

#### 6 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

**Table 1.** Criteria used to assign redox-age classes to groundwater samples. Young groundwater is defined as water recharged since the early 1950s, and old groundwater is defined as water recharged before the early 1950s. Age classes are labeled as potentially young or old because some samples probably represent a mixture of ages and the fractions of young and old water in them are unknown.

 $[\geq$ , greater than or equal to; >, greater than;  $\leq$ , less than or equal to; < less than; mg/L, milligrams per liter; mg-N/L, milligrams of nitrogen per liter; TU, tritium units]

| Class             | Criteria                                                                                           |
|-------------------|----------------------------------------------------------------------------------------------------|
|                   | Redox class                                                                                        |
| Oxic              | Dissolved oxygen $\geq 0.5 \text{ mg/L}$                                                           |
| Anoxic            | Dissolved oxygen <0.5 mg/L                                                                         |
|                   | Age class                                                                                          |
| Potentially young | (a) If tritium data are available                                                                  |
|                   | Tritium concentration ≥0.5 TU                                                                      |
|                   | (b) If no tritium data are available                                                               |
|                   | Detection of at least one pesticide compound or                                                    |
|                   | Detection of at least one volatile organic compound or                                             |
|                   | Nitrate concentration $>1.3$ mg-N/L or                                                             |
|                   | Dated using chlorofluorocarbons, sulfur hexafluoride, or tritium/helium-3                          |
| Potentially old   | (c) If tritium data are available                                                                  |
|                   | Tritium concentration <0.5 TU                                                                      |
|                   | (d) If no tritium, chlorofluorocarbon, sulfur hexafluoride, or tritium/helium-3 data are available |
|                   | No detection of pesticide compounds and                                                            |
|                   | No detection of volatile organic compounds and                                                     |
|                   | Nitrate concentration $\leq 1.3$ mg-N/L                                                            |

age at multiple time scales to distinguish between water that is completely old or young, or is mixed (Landon and others, 2010a). Despite the limitations of the approach used in this report to classify groundwater age, the approach still provides useful information at the regional scale examined in this report, as is described in the next section.

## **Evaluation of Redox-Age Classes**

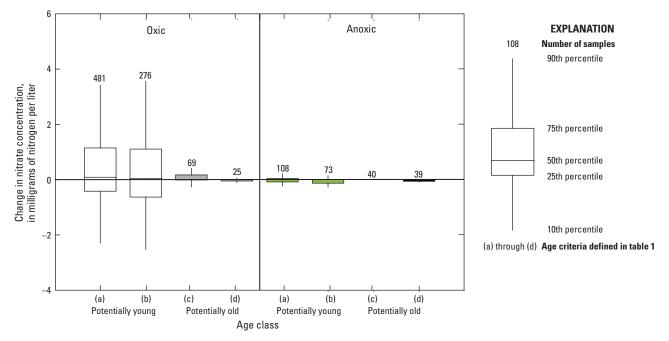
Two approaches were used to evaluate whether the redoxage classes described in table 1 could provide useful information on the susceptibility of principal aquifers to changes in nitrate concentrations. In the first approach, redox-age classes assigned to water samples from as many as 6,489 wells were evaluated in relation to well depth, well type, and aquifer confinement to see if the redox-age classes made sense hydrologically. In the second approach, redox-age classes assigned to water samples from 1,111 trend wells that were sampled at near decadal time scales (Lindsey and Rupert, 2012) were evaluated in relation to changes in nitrate concentrations in those samples to determine which redox-age classes had the largest and smallest changes in nitrate concentrations.

Oxic-potentially young water was mostly associated with relatively shallow monitoring and domestic wells completed in unconfined aquifers, whereas anoxic-potentially old water was mostly associated with deeper domestic wells completed in unconfined and confined aquifers (table 2). In general, the median well depths associated with each of the four primary redox-age classes increased in the order of anoxic-potentially young, oxic-potentially young, oxic-potentially old, and anoxic-potentially old (table 2). The fact that potentially young water came from shallower wells than potentially old water makes sense hydrologically and is consistent with what is known about groundwater-age stratigraphy in the principal aquifers (McMahon and others, 2011; Puckett and others, 2011).

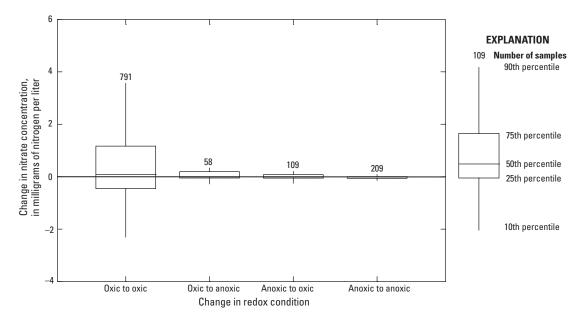
Within a given redox class, the difference in median well depths between age criteria (a) and (b) was smaller than the difference between criteria (c) and (d) (tables 1 and 2). This could mean that age criteria (a) and (b), used to classify potentially young water, are more comparable than age criteria (c) and (d), used to classify potentially old water. For potentially old water, the median well depth was 1.6 to 2.0 times greater for samples classified using criterion (c) than it was for samples classified using criterion (d). This could indicate that small nitrate concentrations and the absence of detections of pesticide compounds and VOCs (criterion (d)) is not always indicative of old water. In some instances, the smaller median well depth for samples classified using criterion (d) might indicate young groundwater that was not impacted by anthropogenic chemicals, in which case criterion (d) would overestimate the amount of potentially old water in an aquifer. For the purpose of characterizing the susceptibility of an aquifer to changes in nitrate concentrations, overestimation of the amount of potentially old water is probably less of an issue in anoxic water than oxic water because of the higher denitrification potential in

|                                         | Well depth below<br>land surface | below<br>face |                      | We                                    | Well type                |                                | Aquif                | Aquifer confinement | nt                  |
|-----------------------------------------|----------------------------------|---------------|----------------------|---------------------------------------|--------------------------|--------------------------------|----------------------|---------------------|---------------------|
| Redox-age class                         | Number of<br>samples             | Median<br>(m) | Number of<br>samples | Shallow<br>monitoring<br>wells<br>(%) | Domestic<br>wells<br>(%) | Public-<br>supply wells<br>(%) | Number of<br>samples | Confined<br>(%)     | l Unconfined<br>(%) |
| Oxic-potentially young, criterion (a)   | 1,489                            | 31            | 1,393                | 46                                    | 43                       | 10                             | 1,106                | 18.1                | 81.9                |
| Oxic-potentially young, criterion (b)   | 2,540                            | 22            | 2,380                | 46                                    | 41                       | 13                             | 1,720                | 12.5                | 87.5                |
| Oxic-potentially old, criterion (c)     | 321                              | 70            | 301                  | 16                                    | 99                       | 18                             | 254                  | 20.5                | 79.5                |
| Oxic-potentially old, criterion (d)     | 319                              | 43            | 305                  | 25                                    | 55                       | 20                             | 181                  | 21.5                | 78.5                |
| Anoxic-potentially young, criterion (a) | 470                              | 18            | 428                  | 49                                    | 43                       | 8                              | 312                  | 24.4                | 75.6                |
| Anoxic-potentially young, criterion (b) | 761                              | 19            | 732                  | 45                                    | 42                       | 14                             | 493                  | 26.8                | 73.2                |
| Anoxic-potentially old, criterion (c)   | 267                              | 93            | 249                  | 12                                    | 61                       | 27                             | 202                  | 77.7                | 22.3                |
| Anoxic-potentially old, criterion (d)   | 322                              | 46            | 313                  | 24                                    | 55                       | 20                             | 197                  | 33.5                | 66.5                |

Table 2. Redox-age classes for water samples collected from principal aquifers in the United States and median well depth, well type, and aquifer confinement.


#### 8 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

anoxic water. For each redox class, the median well depth for potentially old water classified using criterion (d) still was larger than the median well depth for potentially young water, regardless of whether age criterion (a) or (b) was used to classify that water. Overall, age criterion (d) probably is indicative of old water in some instances and young water in others; of the eight possible redox-age classes (tables 1 and 2), the oxic-potentially old classification based on age criterion (d) probably has the greatest uncertainty with respect to characterizing aquifer susceptibility to changes in nitrate concentrations. The oxic-potentially old, criterion (d), redoxage class was assigned to 5 percent of the 6,593 samples used in this study.


Overall, samples classified as oxic-potentially young showed the largest changes in nitrate concentrations for pairs of samples collected at near decadal time scales, whereas samples classified as anoxic-potentially old showed the smallest changes (fig. 2). This result is consistent with what would be predicted on the basis of the discussions in the "Redox Classification" and "Groundwater-Age Classification" sections of this report. Changes in nitrate concentrations for the samples classified as oxic-potentially old and anoxicpotentially young were intermediate in scale. Despite the relatively large uncertainty in age that could be associated with the oxic-potentially old classification based on age criterion (d), it actually had a smaller interquartile range for changes in nitrate concentrations than the same redox-age class based on age criterion (c) (fig. 2). Although nitrate concentration was one of the criteria used to assign groundwater-age classes (table 1), it is unlikely that using nitrate-concentration data in this manner biased the comparison between redox-age classes and changes in nitrate concentrations in paired samples (fig. 2). Age classes were assigned to just one of the paired samples (typically the more recently collected sample), and then compared to *changes* in nitrate concentrations. A high nitrate concentration in a single groundwater sample may be an indicator of recently impacted groundwater, and that is the point of using it as an age indicator, but it is not a guarantee that changes in nitrate concentrations occurred at the time scale of the trends sampling.

In general, only the more recently collected sample was assigned a redox-age class for pairs of samples collected at near decadal time scales. An attempt was made to assign redox-age classes to both pairs of samples, but it quickly became apparent that the age assignments would not be comparable in most cases. This is because the paired samples usually were not analyzed for the same suite of pesticide compounds and VOCs, and often only one of the samples was analyzed for tritium.

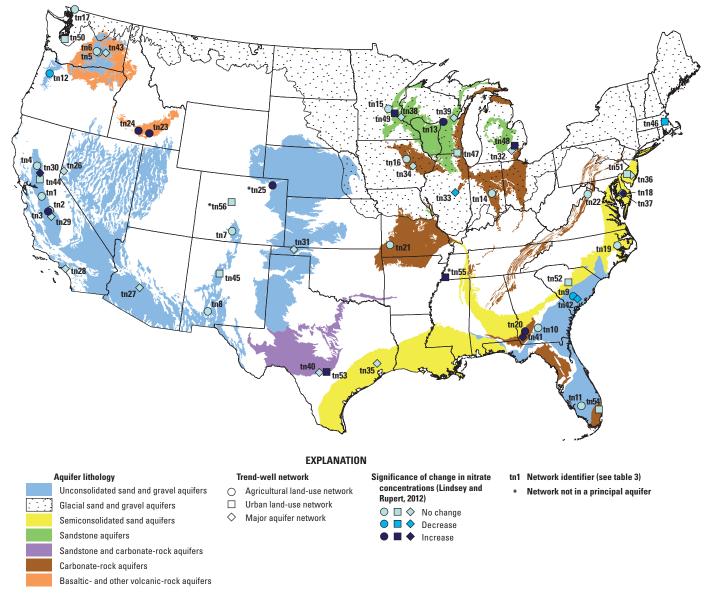
Because data for dissolved oxygen typically were available for both pairs of samples, changes in nitrate concentrations were compared to changes in redox classification. The largest changes in nitrate concentrations occurred in pairs of samples that were both classified as oxic (fig. 3). This indicates that most of the changes in



**Figure 2.** Change in nitrate concentration for pairs of samples collected from selected wells in the United States at near decadal time scales in relation to the redox-age class of the more recently collected sample.



**Figure 3.** Change in nitrate concentration for pairs of samples collected from selected wells in the United States at near decadal time scales in relation to the change in redox condition.


nitrate concentrations were not a result of changes in redox conditions in the aquifer but were more likely a result of changing nitrogen inputs at the land surface and (or) changing fractions of young and old water in the sample pairs.

On the basis of the evaluation presented above, the redox-age classes in table 1 can provide useful information on aquifer susceptibility to changes in nitrate concentrations. For the remainder of this report, results for age criteria (a) and (b) were combined by redox class and the same was done for age criteria (c) and (d). This results in four redox-age classes (oxic-potentially young, oxic-potentially old, anoxicpotentially young, and anoxic-potentially old) instead of eight.

## Relation Between Redox-Age Classes and Changes in Nitrate Concentrations in Trend-Well Networks

The data in figure 2 indicate a strong relation between redox-age class and the change in nitrate concentration in pairs of samples collected from individual wells at near decadal time scales. The relation between redox-age classes and changes in nitrate concentrations also was examined at the well-network level because the well networks, unlike single wells, were designed to be statistically representative of large aquifer areas. Lindsey and Rupert (2012) analyzed nitrate concentrations in water samples collected at near decadal time scales from 56 NAWQA well networks (fig. 4) and found statistically significant changes in concentrations at greater than a 90-percent confidence level in 18 (32 percent) of them. Lindsey and Rupert (2012) did not analyze nitrogen input histories in those 18 networks, but presumably the significant changes in nitrate concentrations were related to changes in nitrogen inputs at the land surface in some of them. Other factors such as variations in recharge rates, depth to groundwater, or pumping also could have affected nitrate concentrations (Rosen and others, 2008). Redox-age classes assigned to water samples from the LUS and MAS networks analyzed by Lindsey and Rupert (2012) are shown in table 3.

Results from 6 of 25 agricultural LUS networks for which near decadal changes could be evaluated showed significant increases in nitrate concentrations and 2 networks showed significant decreases (Lindsey and Rupert, 2012) (fig. 5 and table 3). Agricultural networks that showed significant increases in concentrations were located in the Central Valley aquifer system, Central glacial aquifers, Floridan aquifer system, Snake River Plain basaltic-rock aguifer system, and the South Platte River alluvial aquifer (fig. 4 and table 3). At least 75 percent of the samples in 7 of the 8 networks that showed significant changes in nitrate concentrations were classified as oxicpotentially young (fig. 5), and no more than 4 percent of the samples were classified as anoxic-potentially old (table 3). Samples from urban LUSs generally showed similar results, with 4 of 13 networks showing significant increases in nitrate concentrations and 1 showing a significant decrease. At least





75 percent of the samples in 4 of the 5 networks that showed significant changes in nitrate concentrations were classified as oxic-potentially young (fig. 5), and no more than 5 percent of the samples were classified as anoxic-potentially old (table 3). For 11 of the 17 agricultural LUSs and 7 of the 8 urban LUSs that showed no significant changes in nitrate concentrations, at least 75 percent of their samples also were classified as oxic-potentially young (table 3). Only about 11 percent of the LUS networks studied by Lindsey and Rupert (2012) had more than 10 percent of their samples classified as potentially old (table 3), which is not surprising given that NAWQA land-use studies typically targeted the most recently recharged groundwater.

Three of 18 MASs showed significant increases in nitrate concentrations, and two showed significant decreases (Lindsey and Rupert, 2012) (fig. 4 and table 3). Networks that showed

significant increases in nitrate concentrations were located in the Central Valley, Northern Atlantic Coastal Plain, and Floridan aquifer systems. Only one of the MASs (acfbsus1) that showed a significant change in nitrate concentrations had more than 75 percent of the samples classified as oxicpotentially young. For the other four networks, 0 to 54 percent of the samples were classified as oxic-potentially young (fig. 5 and table 3). On closer inspection, the LUS and MAS results are not necessarily inconsistent because most of the wells with large changes in nitrate concentrations in these MAS networks with significant changes were oxic-potentially young. For the two MAS networks (lirbsus1 and santsus2) that showed significant decreases in nitrate concentrations, 62 to 100 percent of the samples were classified as anoxic and 69 to 79 percent of the samples were classified as potentially old (table 3). The network-level changes in nitrate concentrations for lirbsus1 and santsus2 were -0.04 and -0.05 mg-N/L, respectively (fig. 5 and table 3), and the change in concentration for almost all the sample pairs was less than 0.1 mg-N/L (figs. 6A, B). More than 50 percent of the data were pairs of nondetects (Lindsey and Rupert, 2012). The one sample in those two networks than did show a relatively large change in concentration (greater than 1 mg-N/L) was classified as oxic-potentially young (fig. 6B). The predominance of small changes in nitrate concentrations in these two networks would be expected for aquifers that contained large percentages of anoxic and (or) potentially old water. The two networks (sacrsus1 and dlmvsus1) that showed significant increases in nitrate concentrations, but for which the percentage of samples classified as oxic-potentially young was less than 75 percent (48 to 54 percent), had larger absolute changes in nitrate concentrations (0.14 mg-N/L) than lirbsus1 and santsus2 (fig. 5). The concentration changes for sacrsus1 and dlmvsus1, however, were smaller than the change for the MAS network acfbsus1 (0.32 mg-N/L) that had more than 75 percent of its samples classified as oxic-potentially young (fig. 5 and table 3). Closer inspection of the data from sacrsus1 and dlmvsus1 shows that most of the large changes in concentrations occurred in samples that were classified as oxic-potentially young (figs. 6C, D). Three samples from the dlmvsus1 study that were classified as anoxic-potentially young showed concentration changes of 4.9 to 7.5 mg-N/L (fig. 6D); redox conditions in these samples apparently were anoxic but did not result in complete

Two of the 13 MASs that showed no significant changes in nitrate concentrations had at least 75 percent of their samples classified as oxic-potentially young (table 3). The remaining 11 networks had 32 to 71 percent of their samples classified as oxic-potentially young. About 83 percent of the MAS networks studied by Lindsey and Rupert (2012) had more than 10 percent of their samples classified as potentially old, which is a considerably larger percentage than for the agricultural LUS networks. This finding was expected because wells used in the MAS networks typically were deeper than those used in the LUS networks.

denitrification.

The redox-age results for pairs of samples collected from individual wells show that the largest changes in nitrate concentrations primarily occurred in samples that were classified as oxic-potentially young (figs. 2 and 6). A generally similar pattern was observed when samples were aggregated to the level of well networks. For LUS and MAS networks that showed significant changes in nitrate concentrations, the median changes in concentrations were 0.28, 0.14, and -0.05 mg-N/L for networks that had at least 75 percent, at least 25 percent and less than 75 percent, and less than 25 percent of the samples classified as oxic-potentially young, respectively. On the basis of the data shown in figures 2 and 5, aquifer areas (as defined by well networks) in which at least 75 percent of the samples were classified as oxic-potentially young were considered to have a high susceptibility to changes in nitrate concentrations (fig. 5). Aquifer areas were considered to have a medium susceptibility to changes in nitrate concentrations if at least 25 percent and less than 75 percent of the samples were classified as oxic-potentially young (fig. 5). Aquifer areas were considered to have a low susceptibility to changes in nitrate concentrations if less than 25 percent of the samples were classified as oxic-potentially young (fig. 5). These definitions of high, medium, and low are used to characterize aquifer susceptibility to changes in nitrate concentrations throughout the remainder of the report. The degree of susceptibility is not intended to indicate that significant changes in concentrations of nitrate will or will not be detected in the future in those areas. Other factors such as nitrogen input history at the land surface, mixing, and lag times related to nitrate transport could cause nitrateconcentration trends to develop over longer time scales than the near decadal time scale examined by Lindsey and Rupert (2012), or not at all.

## Redox-Age Classes in Principal Aquifers

The three primary well types sampled by NAWQA generally represent different depth zones and (or) areas of the principal aquifers. Shallow monitoring wells are completed near the water table, whereas domestic and public-supply wells are mostly completed in deeper zones in the aquifers. In this section of the report, redox-age classes assigned to networks of shallow monitoring wells in agricultural areas, domestic wells, and public-supply wells were used to characterize the susceptibility to changes in nitrate concentrations of these different depth zones and (or) areas of the principal aquifers. The susceptibility to changes in nitrate concentrations near the water table in urban areas is not considered here because of the generally small area represented by those networks of shallow monitoring wells, however, redox-age classes and susceptibility rankings for those networks are shown in the Appendix.

### Susceptibility to Changes in Nitrate Concentrations Near the Water Table in Agricultural Areas

Redox-age classes were assigned to samples collected from 40 networks of shallow monitoring wells in agricultural areas (fig. 7 and table 4). Most networks (58 percent) had a high susceptibility to changes in nitrate concentrations because at least 75 percent of their samples were classified as oxicpotentially young. Only 10 percent of the networks had a low susceptibility to changes in nitrate concentrations because less than 25 percent of their samples classified as oxic-potentially young (table 4).

#### 12 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

 Table 3.
 Redox-age classes for water samples collected from selected well networks in the United States at near decadal time scales, median change in nitrate concentration for each network, and the statistical significance of the change in concentration.

[usg, unconsolidated sand and gravel; gla, glacial sand and gravel; scs, semiconsolidated sand; car, carbonate rock; bav, basaltic and other volcanic rock; san, sandstone; scr, sandstone and carbonate rock; alus, agricultural land-use study; mas, major-aquifer study; ulus, urban land-use study; mg-N/L, milligrams of nitrogen per liter; shading is used to differentiate between alus, mas, and ulus studies; bold indicates a statistically significant change in nitrate concentrations at greater than a 90-percent confidence level]

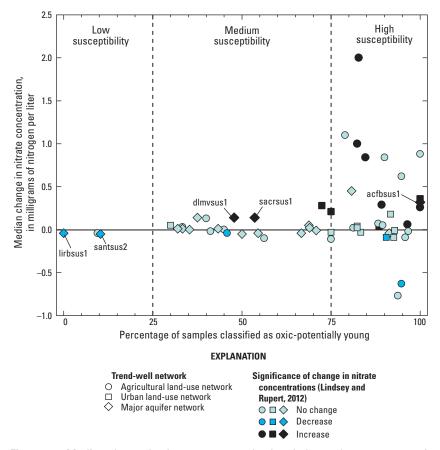
| Aquifer<br>number         | Aquifer<br>lithology | Aquifer name                                      | Study<br>type | Network name<br>(number of wells) | Network identifier<br>(see figure 4) |
|---------------------------|----------------------|---------------------------------------------------|---------------|-----------------------------------|--------------------------------------|
| 3                         | usg                  | Central Valley aquifer system                     | alus          | sanjlusor2a (19)                  | tn1                                  |
| 3                         | usg                  | Central Valley aquifer system                     | alus          | sanjlusor1a (17)                  | tn2                                  |
| 3                         | usg                  | Central Valley aquifer system                     | alus          | sanjluscr1a (18)                  | tn3                                  |
| 3                         | usg                  | Central Valley aquifer system                     | alus          | sacrluser1 (21)                   | tn4                                  |
| 4                         | usg                  | Columbia Plateau basin-fill aquifers              | alus          | ccptlusag2b (16)                  | tn5                                  |
| 4                         | usg                  | Columbia Plateau basin-fill aquifers              | alus          | ccptlusor1b (19)                  | tn6                                  |
| 8                         | usg                  | Rio Grande aquifer system                         | alus          | riogluser1 (12)                   | tn7                                  |
| 8                         | usg                  | Rio Grande aquifer system                         | alus          | rioglusag1 (25)                   | tn8                                  |
| 10                        | usg                  | Surficial aquifer system                          | alus          | santluscr1 (19)                   | tn9                                  |
| 10                        | usg                  | Surficial aquifer system                          | alus          | gaflluscr1 (20)                   | tn10                                 |
| 10                        | usg                  | Surficial aquifer system                          | alus          | sofllusor1 (17)                   | tn11                                 |
| 11                        | usg                  | Willamette Lowland aquifer system                 | alus          | willlusag3 (24)                   | tn12                                 |
| 12c                       | gla                  | Central glacial aquifers                          | alus          | wmiclusag2 (26)                   | tn13                                 |
| 12c                       | gla                  | Central glacial aquifers                          | alus          | whitluser1 (20)                   | tn14                                 |
| 12wc                      | gla                  | West-central glacial aquifers                     | alus          | umisluser1 (22)                   | tn15                                 |
| 12wc                      | gla                  | West-central glacial aquifers                     | alus          | eiwaluscr1 (30)                   | tn16                                 |
| 12w                       | gla                  | Western glacial aquifers                          | alus          | pugtluscr1 (19)                   | tn17                                 |
| 15                        | SCS                  | Northern Atlantic Coastal Plain aquifer system    | alus          | dlmvluscr1 (16)                   | tn18                                 |
| 15                        | SCS                  | Northern Atlantic Coastal Plain aquifer system    | alus          | albelusag1 (12)                   | tn19                                 |
| 29                        | car                  | Floridan aquifer system                           | alus          | acfbluscr3 (19) <sup>1</sup>      | tn20                                 |
| 31                        | car                  | Ozark Plateaus aquifer system                     | alus          | ozrklusag2a (20)                  | tn21                                 |
| 34                        |                      | Valley and Ridge carbonate-rock aquifers          | alus          | potolusag1 (24)                   | tn22                                 |
| 36                        | car                  | Snake River Plain basaltic-rock aquifer system    |               |                                   | tn22                                 |
|                           | bav                  | 1 V                                               | alus          | usnkluser2 (26)                   |                                      |
| <b>36</b><br><sup>3</sup> | bav                  | Snake River Plain basaltic-rock aquifer system    | alus          | usnkluser3 (28)                   | tn24                                 |
|                           | usg                  | South Platte River alluvial aquifer               | alus          | spltluscr1 (29)                   | tn25                                 |
| 1                         | usg                  | Basin and Range basin-fill aquifers               | mas           | nvbrsus2 (16)                     | tn26                                 |
| 1                         | usg                  | Basin and Range basin-fill aquifers               | mas           | cazbsus1a(24)                     | tn27                                 |
| 2                         | usg                  | California Coastal Basin aquifers                 | mas           | sanasus $2(14)$                   | tn28                                 |
| 3                         | usg                  | Central Valley aquifer system                     | mas           | sanjsus1 (26)                     | tn29                                 |
| 3                         | usg                  | Central Valley aquifer system                     | mas           | sacrsus1 (28)                     | tn30                                 |
| 5                         | usg                  | High Plains aquifer                               | mas           | hpgwsus1a (30)                    | tn31                                 |
| 12c                       | gla                  | Central glacial aquifers                          | mas           | lerisus1 (27)                     | tn32                                 |
| 12c                       | gla                  | Central glacial aquifers                          | mas           | lirbsus1 (29)                     | tn33                                 |
| 12wc                      | gla                  | West-central glacial aquifers                     | mas           | eiwasus2 (30)                     | tn34                                 |
| 13                        | SCS                  | Coastal Lowlands aquifer system                   | mas           | trinsus3 (17)                     | tn35                                 |
| 15                        | SCS                  | Northern Atlantic Coastal Plain aquifer system    | mas           | linjsus2 (24)                     | tn36                                 |
| 15                        | SCS                  | Northern Atlantic Coastal Plain aquifer system    | mas           | dlmvsus1 (23)                     | tn37                                 |
| 18                        | san                  | Cambrian-Ordovician aquifer system                | mas           | umissus3 (22)                     | tn38                                 |
| 18                        | san                  | Cambrian-Ordovician aquifer system                | mas           | wmicsus1 (25)                     | tn39                                 |
| 24                        | scr                  | Edwards-Trinity aquifer system                    | mas           | sctxsus1 (23)                     | tn40                                 |
| 29                        | car                  | Floridan aquifer system                           | mas           | acfbsus1 (20)                     | tn41                                 |
| 29                        | car                  | Floridan aquifer system                           | mas           | santsus2 (29)                     | tn42                                 |
| 35                        | bav                  | Columbia Plateau basaltic-rock aquifer system     | mas           | ccptsus1b $(30)^2$                | tn43                                 |
| 3                         | usg                  | Central Valley aquifer system                     | ulus          | sacrlusrc1 (18)                   | tn44                                 |
| 8                         | usg                  | Rio Grande aquifer system                         | ulus          | rioglusrc1 (10)                   | tn45                                 |
| 12e                       | gla                  | Eastern glacial aquifers                          | ulus          | necblusrc1 (21)                   | tn46                                 |
| 12c                       | gla                  | Central glacial aquifers                          | ulus          | uirblusrc1 (18)                   | tn47                                 |
| 12c                       | gla                  | Central glacial aquifers                          | ulus          | lerilusrc1 (29)                   | tn48                                 |
| 12wc                      | gla                  | West-central glacial aquifers                     | ulus          | umislusrc1 (26)                   | tn49                                 |
| 12w                       | gla                  | Western glacial aquifers                          | ulus          | pugtlusrs1 (24)                   | tn50                                 |
| 15                        | SCS                  | Northern Atlantic Coastal Plain aquifer system    | ulus          | linjlusrc1 (27)                   | tn51                                 |
| 16                        | SCS                  | Southeastern Coastal Plain aquifer system         | ulus          | santlusrc1 (17)                   | tn52                                 |
| 24                        | scs                  | Edwards-Trinity aquifer system                    | ulus          | sctxlusrc1 (30)                   | tn52                                 |
| 27                        | car                  | Biscayne aquifer                                  | ulus          | soflusrc1a (17)                   | tn55                                 |
| 3                         |                      | Alluvial aquifer in Memphis, Tennessee            | ulus          | miselusrc1 (20)                   | tn55                                 |
| 3                         | usg                  | Alluvial aquifers in the Colorado Rocky Mountains |               |                                   |                                      |
|                           | usg                  | Anuvial aquiters in the Colorado Rocky Mountains  | ulus          | ucollusrc1 (16)                   | tn56                                 |

#### Relation Between Redox-Age Classes and Changes in Nitrate Concentrations in Trend-Well Networks 13

 Table 3.
 Redox-age classes for water samples collected from selected well networks in the United States at near decadal time scales,

 median change in nitrate concentration for each network, and the statistical significance of the change in concentration.—Continued

[usg, unconsolidated sand and gravel; gla, glacial sand and gravel; scs, semiconsolidated sand; car, carbonate rock; bav, basaltic and other volcanic rock; san, sandstone; scr, sandstone and carbonate rock; alus, agricultural land-use study; mas, major-aquifer study; ulus, urban land-use study; mg-N/L, milligrams of nitrogen per liter; shading is used to differentiate between alus, mas, and ulus studies; bold indicates a statistically significant change in nitrate concentrations at greater than a 90-percent confidence level]

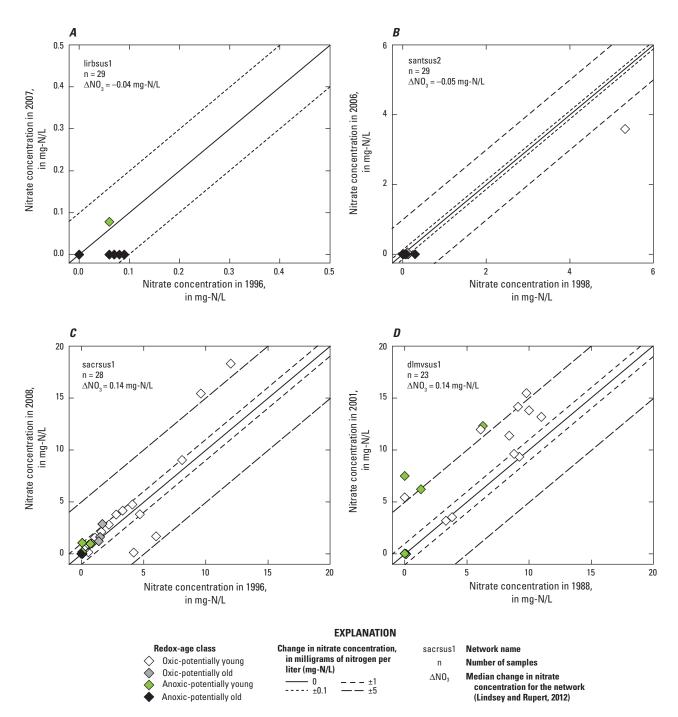

| Annifan            | Re                | edox-age class (pe | rcentage of samples)4 |                 | Data from Linds          | sey and Rupert (2012)           |
|--------------------|-------------------|--------------------|-----------------------|-----------------|--------------------------|---------------------------------|
| Aquifer            | Oxic-             | Oxic-              | Anoxic-               | Anoxic-         | Median change in nitrate | Statistical significance of     |
| number             | potentially young | potentially old    | potentially young     | potentially old | concentration (mg-N/L)   | change in nitrate concentration |
| 3                  | 95                | 0                  | 5                     | 0               | 0.62                     | No change                       |
| 3                  | 88                | 6                  | 6                     | 0               | 0.07                     | No change                       |
| 3                  | 82                | 0                  | 18                    | 0               | 1.0                      | Increase                        |
| 3                  | 10                | 0                  | 86                    | 5               | -0.04                    | No change                       |
| 4                  | 94                | 6                  | 0                     | 0               | -0.77                    | No change                       |
| 4                  | 89                | 0                  | 11                    | 0               | 0.05                     | No change                       |
| 8                  | 75                | 8                  | 17                    | 0               | -0.11                    | No change                       |
| 8                  | 40                | 8                  | 48                    | 4               | 0.13                     | No change                       |
| 10                 | 95                | 0                  | 5                     | 0               | -0.63                    | Decrease                        |
| 10                 | 90                | 10                 | 0                     | 0               | 0.84                     | No change                       |
| 10                 | 41                | 0                  | 53                    | 6               | -0.02                    | No change                       |
| 11                 | 46                | 0                  | 54                    | 0               | -0.04                    | Decrease                        |
| 12c                | 85                | Ō                  | 12                    | 4               | 0.84                     | Increase                        |
| 12c                | 45                | 0                  | 50                    | 5               | 0.00                     | No change                       |
| 12wc               | 100               | 0                  | 0                     | 0               | 0.88                     | No change                       |
| 12wc               | 97                | 3                  | Ő                     | Ő               | -0.02                    | No change                       |
| 12w                | 79                | 0                  | 21                    | Ő               | 1.1                      | No change                       |
| 15                 | 56                | ů<br>0             | 44                    | 0               | -0.10                    | No change                       |
| 15                 | 33                | Ő                  | 58                    | 8               | 0.03                     | No change                       |
| 29                 | 89                | 11                 | 0                     | Ő               | 0.29                     | Increase                        |
| 31                 | 81                | 0                  | 19                    | 0               | 0.02                     | No change                       |
| 34                 | 96                | 0                  | 4                     | 0               | -0.09                    | No change                       |
| 36                 | 100               | Ő                  | 0                     | Ő               | 0.26                     | Increase                        |
| 36                 | 96                | 4                  | 0                     | 0               | 0.06                     | Increase                        |
| 3                  | 83                | 0                  | 17                    | 0               | 2.0                      | Increase                        |
| 1                  | 69                | 19                 | 0                     | 13              | 0.05                     | No change                       |
| 1                  | 38                | 63                 | 0                     | 0               | 0.14                     | No change                       |
| 2                  | 50                | 7                  | 21                    | 21              | -0.05                    | No change                       |
| $\frac{2}{3}$      | 81                | 8                  | 4                     | 8               | 0.45                     | No change                       |
| 3                  | 54                | 18                 | 25                    | 4               | 0.14                     | Increase                        |
| 5                  | 43                | 57                 | 0                     | 0               | 0.01                     | No change                       |
| 12c                | 33                | 22                 | 19                    | 26              | 0.01                     | No change                       |
| 12c                | 0                 | 0                  | 21                    | 20<br>79        | -0.04                    | Decrease                        |
| 12wc               | 67                | 27                 | 3                     | 3               | -0.04                    | No change                       |
| 12wc<br>13         | 35                | 59                 | 6                     | 0               | 0.00                     | No change                       |
| 15                 | 71                | 0                  | 13                    | 17              | -0.01                    | No change                       |
| 15                 | 48                | 0                  | 52                    | 0               | -0.01<br><b>0.14</b>     | Increase                        |
| 18                 | 55                | 9                  | 32                    | 5               | -0.04                    | No change                       |
| 18                 | 32                | 4                  | 32                    | 28              | 0.01                     | No change                       |
| 24                 | 91                | 4 0                | 9                     | 28 0            | -0.04                    | No change                       |
| 24<br>29           | 100               | 0                  | 0                     | 0               | -0.04<br>0.32            | e                               |
| 29<br>29           | 100               | 28                 | 21                    | 0<br>41         | -0.05                    | Increase<br>Decrease            |
| 35                 | 10<br>69          | 28<br>7            | 3                     | 21              | 0.02                     |                                 |
| 35                 | 83                | 0                  | 17                    | 0               | -0.03                    | No change<br>No change          |
| 8                  | 30                | 0                  | 30                    | 40              | 0.05                     | U                               |
| o<br>12e           | 90                | 0                  |                       | 40<br>0         | - <b>0.09</b>            | No change<br>Decrease           |
| 12e<br>12c         | 90                |                    | 10                    | 0               | -0.09<br>-0.01           |                                 |
| 12c<br>12c         | 93<br>72          | 0<br>0             | 7<br>28               | 0               | -0.01<br><b>0.28</b>     | No change<br>Increase           |
|                    | 88                | 0                  | 28<br>12              |                 |                          | Increase                        |
| <b>12wc</b><br>12w | <b>88</b><br>92   | 0                  | 4                     | 0<br>4          | <b>0.04</b><br>0.18      | No change                       |
|                    |                   |                    |                       |                 |                          |                                 |
| 15                 | 93<br>82          | 0                  | 7                     | 0               | -0.09                    | No change                       |
| 16<br>24           | 82                | 12                 | 6                     | 0               | 0.04                     | No change                       |
|                    | 100               | 0                  | 0                     | 0               | 0.36                     | Increase                        |
| 27                 | 82                | 6                  | 12                    | 0               | 0.02                     | No change                       |
| 3<br>3             | 75                | 0                  | 20                    | 5               | 0.21                     | Increase                        |
| 3                  | 75                | 6                  | 19                    | 0               | -0.03                    | No change                       |

<sup>1</sup>Network has wells in the Floridan and Southeastern Coastal Plain aquifer systems.

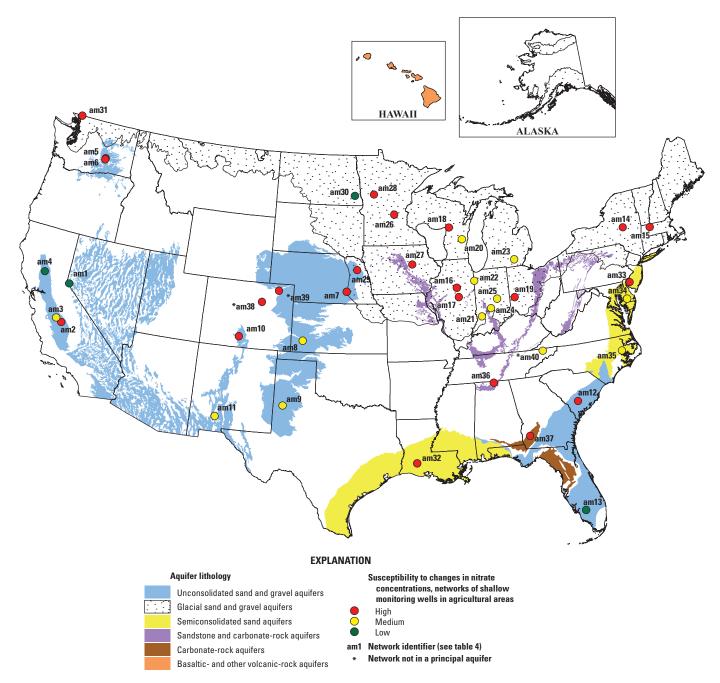
<sup>2</sup>Network has wells in the Columbia Plateau basaltic-rock and basin-fill aquifer systems.

<sup>3</sup>Network not in a principal aquifer.

<sup>4</sup>Redox-age classes where determined for the more recently collected samples in each network, and redox-age percentages may not sum to 100 percent because of rounding.




**Figure 5.** Median change in nitrate concentration in relation to the percentage of samples that were classified as oxic-potentially young in well networks that were sampled at near decadal timescales (concentration data from Lindsey and Rupert, 2012), and the susceptibility of the networks to changes in nitrate concentrations.


For principal aquifers that had at least 2 networks of wells, median percentages of samples classified as oxicpotentially young ranged from about 57 to 96 percent (fig. 8). On the basis of these data, for the parts of aquifers near the water table in agricultural areas, the aquifers most susceptible to changes in nitrate concentrations were the Columbia Plateau basin-fill aquifers, Eastern glacial aquifers, and the West-central glacial aquifers (fig. 8). None of the aquifers had a low susceptibility to changes in nitrate concentrations, which would be indicated by a median percentage of samples classified as oxic-potentially young that was less than 25 percent. The High Plains aquifer had the highest median percentage of samples classified as oxic-potentially old, which generally reflects the low organic-carbon content of sediment and relatively low recharge rates in the aquifer (McMahon and others, 2007). The Central Valley and Surficial aquifer systems had the highest median percentages of samples classified as anoxic-potentially young (fig. 8). Only the Rio Grande aquifer system and the Central glacial aquifers had median percentages of samples classified as anoxic-potentially old that were greater than zero.

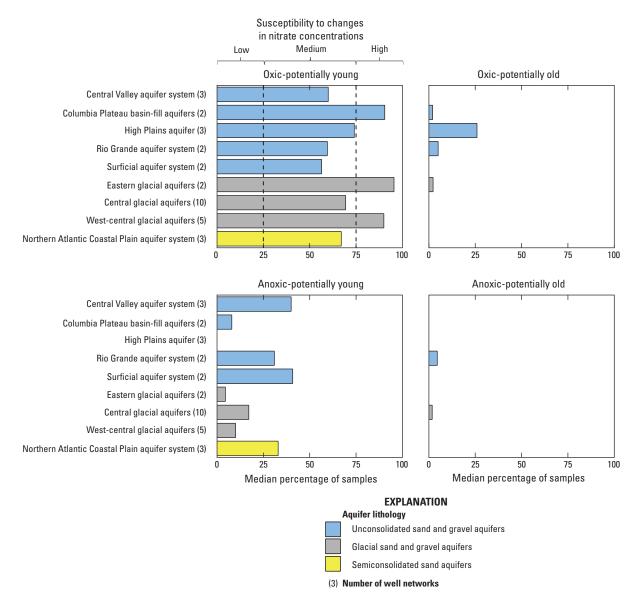
Although the median percentages in figure 8 provide a general comparison of redox-age classes between principal aquifers, they do not indicate the substantial redox-age variability that can occur within an aquifer. For the three well networks in the Central Valley aguifer system, the percentage of samples classified as oxic-potentially young ranged from 13 to 90 percent (table 4 and fig. 9), and the percentage of samples classified as anoxic-potentially young ranged from 10 to 83 percent. In the High Plains aquifer, median percentages of samples classified as oxic-potentially old ranged from 10 to 41 percent (fig. 9). In the West-central glacial aquifer, median percentages of samples classified as anoxic-potentially old ranged from 0 to 35 percent (fig. 9). Large intraaquifer redoxage variability was observed in most of the aquifers that had multiple networks of shallow monitoring wells in agricultural areas (table 4).

Distinct patterns in the spatial distribution of networklevel susceptibilities are apparent in some of the aquifers. Networks in the Central glacial aquifers of Indiana and parts of southern Michigan and Wisconsin had medium susceptibilities, whereas networks in glacial aquifers to the



**Figure 6.** Concentrations of nitrate in pairs of samples collected from selected networks of major-aquifer study wells in the United States at near decadal time scales; (*A*) lirbsus1, (*B*) santsus2, (*C*) sacrsus1, and (*D*) dlmvsus1 networks.




**Figure 7.** Central locations of networks of shallow monitoring wells in agricultural areas and the susceptibility of the networks to changes in nitrate concentrations.

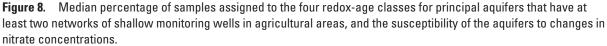
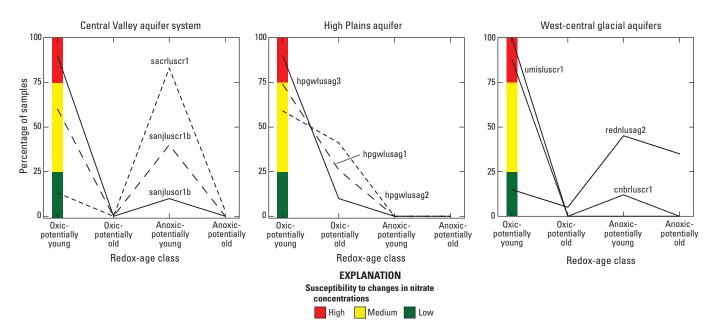

|           |                      |                                                |                              | Montoll        | Redox-a              | ige class (per       | Redox-age class (percentage of samples) $^3$ | mples) <sup>3</sup>    | Susceptibility           |
|-----------|----------------------|------------------------------------------------|------------------------------|----------------|----------------------|----------------------|----------------------------------------------|------------------------|--------------------------|
| Aquifer A | Aquifer<br>lithology | Aquifer name                                   | Network name                 | identifier     | Oxic-<br>notentially | 0xic-<br>notentially | Anoxic-<br>notentially                       | Anoxic-<br>notentially | to changes<br>in nitrate |
|           | Guindy               |                                                |                              | (see figure 7) | young                | old                  | young                                        | old                    | concentrations           |
|           | nsg                  | Basin and Range basin-fill aquifers            | nvbrlusag1 (13)              | aml            | 15                   | 15                   | 31                                           | 38                     | Low                      |
|           | gsn                  | Central Valley aquifer system                  | sanjlusor1b (10)             | am2            | 90                   | 0                    | 10                                           | 0                      | High                     |
|           | gsn                  | Central Valley aquifer system                  | sanjluscr1b (10)             | am3            | 60                   | 0                    | 40                                           | 0                      | Medium                   |
|           | nsg                  | Central Valley aquifer system                  | sacrluscr1 (30)              | am4            | 13                   | 0                    | 83                                           | m                      | Low                      |
|           | nsg                  | Columbia Plateau basin-fill aquifers           | ccptlusag2b (27)             | am5            | 93                   | 4                    | 4                                            | 0                      | High                     |
|           | nsg                  | Columbia Plateau basin-fill aquifers           | ccptlusor1b (25)             | am6            | 88                   | 0                    | 12                                           | 0                      | High                     |
|           | usg                  | High Plains aquifer                            | hpgwlusag3 (30)              | am7            | 90                   | 10                   | 0                                            | 0                      | High                     |
|           | usg                  | High Plains aquifer                            | hpgwlusag1 (27)              | am8            | 74                   | 26                   | 0                                            | 0                      | Medium                   |
|           | nsg                  | High Plains aquifer                            | hpgwlusag2 (27)              | am9            | 59                   | 41                   | 0                                            | 0                      | Medium                   |
|           | nsg                  | Rio Grande aquifer system                      | riogluscr1 (76)              | am10           | 87                   | 1                    | 12                                           | 0                      | High                     |
|           | nsg                  | Rio Grande aquifer system                      | rioglusag1 (34)              | am11           | 32                   | 6                    | 50                                           | 6                      | Medium                   |
| 10        | gsn                  | Surficial aquifer system                       | santluscr1 (30)              | am12           | 93                   | 0                    | 7                                            | 0                      | High                     |
| 10        | gsn                  | Surficial aquifer system                       | sofilusor1 (38)              | am13           | 21                   | 0                    | 76                                           | c                      | Low                      |
| 2e        | gla                  | Eastern glacial aquifers                       | hdsnlusag1 (12)              | am14           | 100                  | 0                    | 0                                            | 0                      | High                     |
| 2e        | gla                  | Eastern glacial aquifers                       | connlusag1 (32)              | am15           | 91                   | ŝ                    | 9                                            | 0                      | High                     |
| 2c        | gla                  | Central glacial aquifers                       | lirbluscr1 (22)              | am16           | 95                   | 0                    | 5                                            | 0                      | High                     |
| 2c        | gla                  | Central glacial aquifers                       | lirbluscr2 (25)              | am17           | 88                   | 0                    | 12                                           | 0                      | High                     |
| 2c        | gla                  | Central glacial aquifers                       | wmiclusag2 (29)              | am18           | 86                   | 0                    | 10                                           | ŝ                      | High                     |
| 2c        | gla                  | Central glacial aquifers                       | miamluscr1 (21)              | am19           | 86                   | 0                    | 14                                           | 0                      | High                     |
| 2c        | gla                  | Central glacial aquifers                       | wmiclusag1a (23)             | am20           | 74                   | 4                    | 13                                           | 6                      | Medium                   |
| 2c        | gla                  | Central glacial aquifers                       | whitluscr2 (20)              | am21           | 65                   | 10                   | 20                                           | 5                      | Medium                   |
| 2c        | gla                  | Central glacial aquifers                       | uirbluscr1 (29)              | am22           | 59                   | 0                    | 41                                           | 0                      | Medium                   |
| 2c        | gla                  | Central glacial aquifers                       | leriluscr1 (30)              | am23           | 57                   | 13                   | 30                                           | 0                      | Medium                   |
| 2c        | gla                  | Central glacial aquifers                       |                              | am24           | 50                   | 0                    | 46                                           | 4                      | Medium                   |
| 2c        | gla                  | Central glacial aquifers                       |                              | am25           | 46                   | 0                    | 50                                           | 4                      | Medium                   |
| 2wc       | gla                  | West-central glacial aquifers                  | -                            | am26           | 100                  | 0                    | 0                                            | 0                      | High                     |
| 2wc       | gla                  | West-central glacial aquifers                  | -                            | am27           | 97                   | τΩ -                 | 0                                            | 0                      | High                     |
| 2wc       | gla                  | West-central glacial aquifers                  |                              | am28           | 90<br>0              | 0                    | 10                                           | 0                      | High                     |
| 2wc       | gla                  | West-central glacial aquifers                  |                              | am29           | 88                   | 0                    | 12                                           | 0                      | High                     |
| 2wc       | gla                  | West-central glacial aquifers                  |                              | am30           | $\frac{15}{15}$      | S                    | 45                                           | 35                     | Low                      |
| 2w        | gla                  | Western glacial aquifers                       |                              | am31           | 75                   | 0                    | 25                                           | 0                      | High                     |
| 13        | SCS                  | Coastal Lowlands aquifer system                | acadluscr1 (21)              | am32           | 100                  | 0                    | 0                                            | 0                      | High                     |
| 15        | SCS                  | Northern Atlantic Coastal Plain aquifer system | _                            | am33           | 100                  | 0                    | 0                                            | 0                      | High                     |
| 15        | SCS                  | Northern Atlantic Coastal Plain aquifer system | dlmvluscr1 (27)              | am34           | 67                   | 0                    | 33                                           | 0                      | Medium                   |
| 15        | SCS                  | Northern Atlantic Coastal Plain aquiter system | albelusag1 (30)              | am35           | 50                   | 0                    | 43                                           | 7                      | Medium                   |
| 5         | scr                  | Mississippian aquifers                         |                              | am36           | 97                   | 0                    | ς<br>Ω                                       | 0                      | High                     |
| 29        | car                  | Floridan aquifer system                        | acfbluscr3 (24) <sup>1</sup> | am37           | 92                   | ~~~                  | 0                                            | 0 0                    | High                     |
| ء د<br>   | gsn                  | Denver Basin alluvial aquiters                 | spltluscr2 (21)              | am38           | 100                  | 0 0                  | 0 <u>i</u>                                   | 0 0                    | High                     |
|           | nsg                  | South Platte Kiver alluvial aquiter            | spltiuscr1 (30)              | am39           | 83<br>62             |                      | 1/                                           | 0 0                    | High                     |
|           | asn                  |                                                |                              |                |                      |                      |                                              | -                      |                          |

Table 4. Redox-age classes for water samples collected from networks of shallow monitoring wells in agricultural areas in the United States and the susceptibility of the networks to changes in nitrate concentrations (only networks with at least 10 wells are listed).

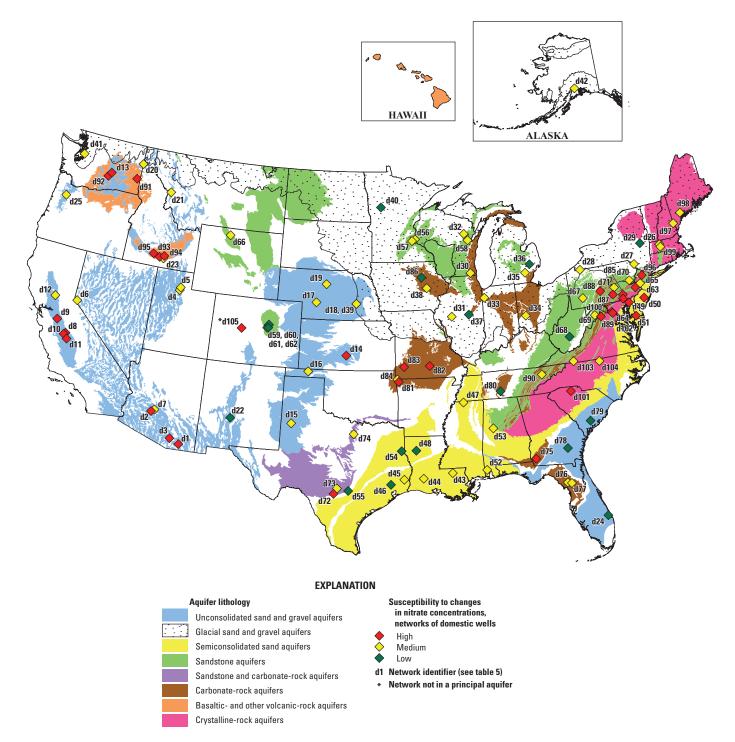
<sup>3</sup>Redox-age percentages may not sum to 100 percent because of rounding. <sup>2</sup>Network not in a principal aquifer.

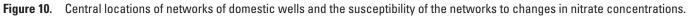
#### 18 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010






east and west had high susceptibilities. The areas of medium susceptibility in Indiana had relatively high percentages of samples classified as anoxic-potentially young compared to the surrounding networks with high susceptibilities (fig. 7 and table 4). This difference in redox-age classes between the two areas could indicate shallower depths to water and (or) finer grained sediment in the medium-susceptibility area relative to the high-susceptibility areas, both of which could result in anoxic groundwater. Other studies have reported an increase in concentrations of dissolved organic carbon, probably from the soil zone, and a decrease in concentrations of dissolved oxygen in groundwater with decreasing depths to the water table (Pabich and others, 2001; McMahon and Chapelle, 2008). In the High Plains aquifer, network susceptibility decreased from high in the north to medium in the central and southern parts of the aquifer (fig. 7). This change in


susceptibility corresponds to a north-to-south increase in the percentage of samples classified as oxic-potentially old (fig. 9 and table 4), an increase that is probably related to the north-to-south decrease in recharge and increase in depth to the water table (McMahon and others, 2007). In the Central Valley aquifer system, network susceptibility increased from low in the north to medium and high in the south (fig. 7). The percentage of samples classified as anoxic-potentially young in the northern network was about 2 to 8 times greater than the percentages in the southern networks where oxic-potentially young groundwater predominated (fig. 9 and table 4). The common occurrence of anoxic groundwater in the north may be related to the much shallower depths to the water table in the northern network of wells (median depth 1.1 m) than in the southern networks (median depths 14 to 20 m). Redox-age classes were assigned to samples collected from 105 networks of domestic wells (fig. 10 and table 5). Thirty-one percent of the networks were considered to have a high susceptibility to changes in nitrate concentrations and 17 percent of the networks were considered to have low susceptibilities (table 5). In comparison, 58 percent of the networks of shallow monitoring wells in agricultural areas were considered to have a high susceptibility to changes in nitrate concentrations and 10 percent were considered to have a low susceptibility.


For principal aguifers that had at least 2 networks of domestic wells, the median percentage of samples classified as oxic-potentially young ranged from about 6 to 100 percent (fig. 11), compared to about 57 to 96 percent for the shallow monitoring wells (fig. 8). For the parts of aquifers that provide domestic water supplies, the aquifers most susceptible to changes in nitrate concentrations were the Northern Atlantic Coastal Plain aquifer system and the Early Mesozoic Basin, Valley and Ridge carbonate-rock, and Piedmont and Blue Ridge crystalline-rock aquifers in the eastern United States; the Ozark Plateaus aguifer system in parts of Missouri and Arkansas; and the Central Valley, Columbia Plateau basalticrock, and Snake River Plain basaltic-rock aquifer systems in the West (figs. 10 and 11). For this analysis, western states are considered to be those located west of Minnesota, Iowa, Missouri, Arkansas, and Louisiana. The least susceptible aquifers were the Texas Coastal Uplands and Denver Basin aquifer systems (figs. 10 and 11).

Relatively large intraaquifer variability in redox-age classes was observed in some of the principal aquifers. For the five well networks sampled in the Floridan aquifer system, the percentage of samples classified as oxic-potentially young ranged from 10 to 100 percent (fig. 12). Aquifer confinement probably is an important control on redox-age variability in the Floridan aquifer system. More than 90 percent of the wells in network santsus2 were completed in the confined part of the aquifer and only 10 percent of its samples were classified as oxic-potentially young (table 5). Only 20 percent of the wells in network acfbsus1 were completed in the confined part of the aquifer and 100 percent of its samples were classified as oxicpotentially young. The Central glacial aquifers also showed large redox-age variability (fig. 12), which could be attributed to the diversity of depositional environments represented by well networks in those aquifers. Wells in network uirbsus1 were completed in glacial-moraine sands and gravels and 67 percent of their samples were classified as oxic-potentially young. Wells in network uirbsus2 were completed in glacial-till deposits and 48 percent of their samples were classified as oxic-potentially young. Wells in network lirbsus1 were completed in confined buried-bedrock-valley deposits and 0 percent of their samples were classified as oxic-potentially young. Not all of the aquifers exhibited large variability in redox-age classes. Networks in the Columbia Plateau and Snake River Plain basaltic-rock aguifers had consistently high percentages of samples classified as oxic-potentially young (fig. 12). In contrast, networks in the Texas Coastal Uplands aquifer system had consistently low percentages of samples classified as oxic-potentially young. The number of well networks in each of those aquifers, however, was relatively small compared to the Floridan aquifer system and Central glacial aquifers (fig. 12).



**Figure 9.** Percentage of samples assigned to the four redox-age classes for networks of shallow monitoring wells in agricultural areas in the Central Valley aquifer system, High Plains aquifer, and the West-central glacial aquifers, and the susceptibility of the networks to changes in nitrate concentrations.





[usg, unconsolidated sand and gravel; gla, glacial sand and gravel; scs, semiconsolidated sand; san, sandstone; scr, sandstone and carbonate rock; car, carbonate rock; bav, basaltic and other volcanic rock; cry, crystalline rock; shading is used to differentiate between aquifer lithologies]

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                      |                                                              |                                   | Network                       | Redox-a                       | ige class (pe               | Redox-age class (percentage of samples) <sup>5</sup> | amples) <sup>5</sup>          | - Suscentibility to                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|--------------------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------|-----------------------------|------------------------------------------------------|-------------------------------|--------------------------------------|
| ustBrain and Ruge basineli al aquitescochesis (13)dg $7$ $0$ $0$ ustBrain and Ruge basineli al aquitescochesis (13)dg7 $0$ 0ustBrain and Ruge basineli al aquitespassal (17)dg7 $0$ 00Brain and Ruge basineli al aquitespassal (17)dggg000Brain and Ruge basineli al aquitespassal (12)dgggg000Brain advitesbasine and suge basineli aquitespassal (12)dggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg <t< th=""><th>Aquifer<br/>number</th><th>Aquifer<br/>lithology</th><th>Aquifer name</th><th>Network name<br/>(number of wells)</th><th>identifier<br/>(see figure 10)</th><th>Oxic-<br/>potentially<br/>voung</th><th>Oxic-<br/>potentially<br/>old</th><th>Anoxic-<br/>potentially<br/>voung</th><th>Anoxic-<br/>potentially<br/>old</th><th>changes in nitrate<br/>concentrations</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aquifer<br>number | Aquifer<br>lithology | Aquifer name                                                 | Network name<br>(number of wells) | identifier<br>(see figure 10) | Oxic-<br>potentially<br>voung | Oxic-<br>potentially<br>old | Anoxic-<br>potentially<br>voung                      | Anoxic-<br>potentially<br>old | changes in nitrate<br>concentrations |
| estBistin and Kange basie fil aquifesexchoss 10 (1)ddggg06Bistin and Kange basie fil aquifespissis 1 (1)ddgggg06Bistin and Kange basie fil aquifespissis 1 (1)ddggggg06Bistin and Kange basie fil aquifespissis 1 (1)ddgggggg06Cannol Valley aquifer systemsmiller fil (2)dggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg <td< td=""><td>1</td><td>usg</td><td>Basin and Range basin-fill aquifers</td><td>cazbsus3 (15)</td><td>dl</td><td>93</td><td>7</td><td>0</td><td>0</td><td>High</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                 | usg                  | Basin and Range basin-fill aquifers                          | cazbsus3 (15)                     | dl                            | 93                            | 7                           | 0                                                    | 0                             | High                                 |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                 | use                  | Basin and Range basin-fill aguifers                          | cazhsus1h (17)                    | d2                            | 82                            | 0                           | 18                                                   | 0                             | High                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Bon                  | Basin and Range basin-fill aquifers                          | cazhsus2. (22)                    | ۲<br>دل                       |                               | 18                          | , v                                                  | 0                             | High                                 |
| By<br>Basin and Range beam-fill aquifesmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethodsmethods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                 | B                    | Basin and Range basin-fill aquifers                          | ersisusta (17)                    | d4                            | 71                            | 29                          | . 0                                                  | 0                             | Medium                               |
| Bis<br>and Parage Isstan-III and itedcontrolcontrol $6$ $5$ $5$ $5$ $0$ $0$ $0$ Control Alley opticity systemcontrol Alley opticity systemcontrol Alley opticity system $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | nse                  | Basin and Range basin-fill aguifers                          | grassus1b (16)                    | d5                            | 63                            | 13                          | 19                                                   | 9                             | Medium                               |
| useBest mad Range basen fill audrerseaches la (1) $(7)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ </td <td>-</td> <td>nsg</td> <td>Basin and Range basin-fill aquifers</td> <td>nvbrsus3 (10)</td> <td>d6</td> <td>50</td> <td>50</td> <td>0</td> <td>0</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                 | nsg                  | Basin and Range basin-fill aquifers                          | nvbrsus3 (10)                     | d6                            | 50                            | 50                          | 0                                                    | 0                             | Medium                               |
| usisCentral Malley autifier systemanijhaseri a $(2)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | asn                  | Basin and Range basin-fill aguifers                          | cazbsus1a (21)                    | d7                            | 38                            | 57                          | 0                                                    | 5                             | Medium                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                 | usg                  | Central Valley aquifer system                                | sanilusor1a (28)                  | d8                            | 93                            | 4                           | 4                                                    | 0                             | High                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                 | usg                  | Central Valley aquifer system                                | sanjlusor2a (26)                  | 6р                            | 92                            | 0                           | ∞                                                    | 0                             | High                                 |
| $\alpha_{\rm eff}$ Central Valles against (s2)d118166 $\alpha_{\rm eff}$ Central Valles against (sectoracresus (L2)d1181666 $\alpha_{\rm eff}$ Plants aquifeplants aquifepressus (23)d13000000 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d1300000000 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d13010000000 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d13d13d14d14000000 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d13d13d14d14d111 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d13d13d14d14d14d14d14 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d13d13d14d14d14d14d14d14d14 $\alpha_{\rm eff}$ Plants aquifeppessus (23)d23d23d23d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14d14 </td <td>С</td> <td>usg</td> <td>Central Valley aquifer system</td> <td>sanjluscr1a (24)</td> <td>d10</td> <td>83</td> <td>0</td> <td>13</td> <td>4</td> <td>High</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                 | usg                  | Central Valley aquifer system                                | sanjluscr1a (24)                  | d10                           | 83                            | 0                           | 13                                                   | 4                             | High                                 |
| use<br>to Control Multy aquifer systemcontrastal (2)d123815234use<br>to BHigh Plans aquifer<br>High Plans aquifer<br>to BHigh Plans aquifer<br>hypewast 10(1)11310001000use<br>to BHigh Plans aquifer<br>High Plans aquifer<br>to BHigh Plans aquifer<br>hypewast 10(1)1131030010000use<br>to BHigh Plans aquifer<br>High Plans aquifer<br>to BHigh Plans aquifer<br>hypewast 10(1)113114100100000000000use<br>to BHigh Plans aquifer<br>hypewast 11High Plans aquifer<br>hypewast 20)113114110110110111111111use<br>to BKof Crande aquifer system<br>to use<br>Staficial aquifer system<br>to use<br>BMilast 10(2)213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213213<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                 | nsg                  | Central Valley aquifer system                                | sanjsus 1 (32)                    | d11                           | 81                            | 9                           | 9                                                    | 9                             | High                                 |
| useColumbia Placen basi-fill aquiferscollongia (12)d13100000useHigh Plans aquiferhigh watchhigh w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                 | gsn                  | Central Valley aquifer system                                | sacrsus 1 (26)                    | d12                           | 58                            | 15                          | 23                                                   | 4                             | Medium                               |
| useHigh Plans aquifer<br>high Plans aquifer<br>useHigh Plans aquifer<br>high Plans aquifer<br>useHigh Plans aquifer<br>high Plans aquifer<br>high Plans aquifer<br>high Plans aquifer<br>high Plans aquifer<br>useHigh Plans aquifer<br>high Plans Plans aquifer<br>high Plans aquifer<br>high Plans aquifer<br>high Plans Pl                                                                                                                                                 | 4                 | nsg                  | Columbia Plateau basin-fill aquifers                         | ccptlusag2a (12) <sup>1</sup>     | d13                           | 100                           | 0                           | 0                                                    | 0                             | High                                 |
| uegHigh Plans aquifer<br>tigg Plans aquifer<br>uegHigh Plans aquifer<br>tigg Plans aquifer<br>systemHigh Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>systemHigh Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer systemHigh Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer systemHigh Plans aquifer<br>tigg Plans aquifer<br>tigg Plans aquifer systemHigh Plans aquifer<br>tigg Plans aquifer system<br>tiggs Plans aquifer systemHigh Plans aquifer system<br>tiggs Plans aquifer systemHigh Plans aquifer system<br>tiggs Plans P                                                                                                                                                           | 5                 | nsg                  | High Plains aquifer                                          | hpgwsus2 (20)                     | d14                           | 90                            | 0                           | 10                                                   | 0                             | High                                 |
| usgHigh Plains aquifer<br>high Plains aquifer<br>usgHigh Plains aquifer<br>high statist aduit<br>bigs sust of collHigh Plains aquifer<br>high statist aduit<br>high statist aduit<br>high Plains aquifer<br>bigs sust of collHigh Plains aquifer<br>high statist aduit<br>high statist aduit<br>high valuesHigh Plains aquifer<br>high statistHigh Plains<br>high PlainsHigh Plains<br>high statistHigh P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                 | gsn                  | High Plains aquifer                                          | hpgwsus1b (46)                    | d15                           | 70                            | 26                          | 4                                                    | 0                             | Medium                               |
| Big<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is <br< td=""><td>5</td><td>nsg</td><td>High Plains aquifer</td><td>hpgwsus1a (74)</td><td>d16</td><td>46</td><td>53</td><td>1</td><td>0</td><td>Medium</td></br<>                                                                                                                                                               | 5                 | nsg                  | High Plains aquifer                                          | hpgwsus1a (74)                    | d16                           | 46                            | 53                          | 1                                                    | 0                             | Medium                               |
| use<br>is High Plains aquifer<br>use<br>is Withern Rocky Mountains Intermontaine Basins aquifer system<br>use<br>is Northern Rocky Mountains Intermontaine Basins aquifer system<br>use<br>is Northern Rocky Mountains Intermontaine Basins aquifer system<br>use<br>is Northern Rocky Mountains Intermontaine Basins aquifer system<br>is so Northern Rocky Mountains Intermontaine Rasks $(20)$<br>is so Northern Rocky Mountains Intermontaine Rasks $(20)$<br>is so Northern Rocky Mountains Rasks $(20)$<br>is so Northern Rocky Mountains Rasks $(20)$<br>is so Northern Rocky Mountains Rasks $(20)$<br>is                                                               | 5                 | nsg                  | High Plains aquifer                                          | hpgwsus1c (108)                   | d17                           | 45                            | 45                          | 4                                                    | 9                             | Medium                               |
| usg<br>usg<br>big Plains aquifer<br>usgHigh Plains aquifer<br>soundHigh Plains aquifer<br>soundHigh Plains aquifer<br>soundHigh Plains aquifer<br>soundHigh Plains aquifer<br>soundHigh Plains aquifer<br>soundHigh Plains<br>soundHigh Plains<br>soundHigh Plains<br>soundHigh PlainsHigh Plains<br>soundHigh PlainsHigh Plains<br>soundHigh PlainsHigh Plains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                 | nsg                  | High Plains aquifer                                          | hpgwsus4 (30)2                    | d18                           | 43                            | 23                          | 23                                                   | 10                            | Medium                               |
| useNorthern Rocky Mountains Intermontaine Basins aquifer systemnoksual (29)d205528143useRo Grande aquifer systemnocsua2 (23)d21543970useShade River Plain basin-fill aquifersnocsua2 (23)d23d2442147useShade River Plain basin-fill aquifersnocsua2 (30)d2413153327useShade River Plain basin-fill aquiferssofhaus (30)d2413103527useglaEastern glacial aquiferswilkus (66)d25525527useglaEastern glacial aquiferswilkus (63)d27d27d27d27d2d2d2useglaEastern glacial aquiferswilkus (53)d27d27d27d27d2d2d2d2useglaEastern glacial aquifersuirbus (23)d27d27d27d23d2d2d2d2useglaCentral glacial aquifersuirbus (23)d27d23d26d2d2d2d2d2usecentral glacial aquifersuirbus (23)d23d23d23d2d2d2d2d2d2d2d2useglaCentral glacial aquifersuirbus (23)d23d23d2d2d2d2d2d2d2d2useglaCentral glacial aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                 | nsg                  | High Plains aquifer                                          | hpgwsus5 (27)                     | d19                           | 41                            | 37                          | 11                                                   | 11                            | Medium                               |
| ugNorthern Rocky Mountains Intermontaine Basins aquifer systemnroksus $2(8)$ d21543970ugRock Grande aquifer systemningsus $(24)$ d22d423d471ugSnake Rycer Plain beam-fill aquifer systemningsus $(24)$ d23d4032d47ugSurficial aquifer systemusgSurficial aquifer systemusflasset $(30)$ d24131032d47uegaEastern glacial aquifer systemwillsus $(66)$ d255253277uegaEastern glacial aquifer systemwillsus $(66)$ d255253277uegaEastern glacial aquifer systemwillsus $(66)$ d25d23d44377uegaEastern glacial aquifer systemwillsus $(23)$ d23d23d44377uegaCentral glacial aquiferuifer systemuifbasu $(27)$ d33d23d33d5765uegaCentral glacial aquiferuifbasu $(27)$ d33d33d6d33d5d33d6d33d5uegaCentral glacial aquiferuifbasu $(27)$ d33d33d6d33d6d33d5d5d3d3d5uegaCentral glacial aquifersuifbasu $(27)$ d33d33d6d33d6d3d6d3 <td>7</td> <td>nsg</td> <td>Northern Rocky Mountains Intermontaine Basins aquifer system</td> <td>nroksus1 (29)</td> <td>d20</td> <td>55</td> <td>28</td> <td>14</td> <td>ŝ</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                 | nsg                  | Northern Rocky Mountains Intermontaine Basins aquifer system | nroksus1 (29)                     | d20                           | 55                            | 28                          | 14                                                   | ŝ                             | Medium                               |
| use<br>BRio Grande aquifer<br>sorten<br>weigRio Grande aquifer system<br>use<br>State Rule Rev Plain basin-fill aquifers<br>baserio gal<br>softsus 2 (3) $d_{22}$ $d_{4}$ $21$ $d_{4}$ $71$ 1use<br>use<br>SSmake Rule Rule Royter<br>Milamette Lowland aquifers systemsoftsus 2 (3) $d_{23}$ $d_{4}$ $13$ $10$ $30$ $27$ 2glaEastern glacial aquifers<br>a gracial aquiferssoftsus 2 (3) $d_{23}$ $d_{24}$ $13$ $10$ $50$ $27$ 2glaEastern glacial aquifersoffsus 2 (3) $d_{27}$ $50$ $33$ $8$ $8$ 2glaCentral glacial aquifersdimsus 2 (2) $d_{23}$ $d_{23}$ $d_{4}$ $17$ $65$ 2glaCentral glacial aquifersuibsus (2) $d_{23}$ $d_{23}$ $d_{33}$ $d_{4}$ $17$ $65$ 2glaCentral glacial aquifersuibsus (2) $d_{23}$ $d_{23}$ $d_{4}$ $13$ $d_{33}$ $d_{4}$ 2central glacial aquifersuibsus (2) $d_{23}$ $d_{23}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ 2central glacial aquifersuibsus (2) $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ $d_{33}$ 2central glacial aquifersuibsus (2) $d_{33}$ $d_{33}$ $d_{33}$ $d_{34}$ $d_{34}$ $d_{34}$ $d_{35}$ $d_{34}$ 2central glacial aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                 | nsg                  | Northern Rocky Mountains Intermontaine Basins aquifer system | nroksus2 (28)                     | d21                           | 54                            | 39                          | 7                                                    | 0                             | Medium                               |
| usgSmake River Plain basin-fill aquifersusnkluscr1 (25)d236403241usgWillmatte Lovidar systemuslkluscr1 (25)d24131050272glaEastern glacial aquifers systemwillmus1 (60)d255743272glaEastern glacial aquiferswillmus1 (60)d255743272glaEastern glacial aquifersuinsus2 (30)d265743272glaCentral glacial aquifersuinbuus1 (27)d205743772glaCentral glacial aquifersuinbuus1 (27)d20d23338882central glacial aquifersuinbuus1 (27)d20d23d315703302central glacial aquifersuinbuus1 (27)d30d57033272central glacial aquifersuinbuus1 (30)d33d33d333302central glacial aquifersuinbuus2 (30)d34d4317d52glaCentral glacial aquifersuinbuus2 (30)d34d430272central glacial aquifersuinbuus2 (30)d34d43023272central glacial aquifersuinbuus2 (23)d33d33d33d3d3d3d32central glacial aquifersuinbuus2 (30)d34 <t< td=""><td>8</td><td>nsg</td><td>Rio Grande aquifer system</td><td>riogsus1 (24)</td><td>d22</td><td>4</td><td>21</td><td>4</td><td>71</td><td>Low</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                 | nsg                  | Rio Grande aquifer system                                    | riogsus1 (24)                     | d22                           | 4                             | 21                          | 4                                                    | 71                            | Low                                  |
| uggSurficial aquifer systemsoffsus $2$ (3)d2413105027uggEastern glacial aquifer systemwillsus 1 (6)d25574327eglaEastern glacial aquifersconnsus 2 (3)d26574327eglaEastern glacial aquifersdelnsus 3 (2)d27503388eglaEastern glacial aquifersdelnsus 2 (3)d28500437eglaCentral glacial aquifersuirbsus 2 (3)d291341765cglaCentral glacial aquifersuirbsus 2 (3)d291341765cglaCentral glacial aquifersuirbsus 2 (2)d33481765cglaCentral glacial aquifersuirbsus 2 (2)d33481765cglaCentral glacial aquifersuirbsus 2 (2)d33481765cglaCentral glacial aquifersuirbsus 2 (2)d33481765cglaCentral glacial aquifersuirbsus 2 (3)d33d3397cglaCentral glacial aquifersuirbsus 2 (3)d33d33027cglaCentral glacial aquifersuirbsus 2 (3)d33d33d333227cglaCentral glacial aquiferserroset (30)d34d3d32020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                 | nsg                  | Snake River Plain basin-fill aquifers                        | usnkluscr1 (25)                   | d23                           | 64                            | 0                           | 32                                                   | 4                             | Medium                               |
| usgWillametre Lowland aquifer systemwillsus 1 (66) $d25$ $52$ $5$ $32$ $12$ glaEastern glacial aquifersEastern glacial aquifers $delrsus 2(28)$ $d26$ $57$ $4$ $32$ $7$ glaEastern glacial aquifers $delrsus 2(3)$ $d29$ $57$ $4$ $32$ $7$ glaEastern glacial aquifers $delrsus 2(3)$ $d29$ $13$ $4$ $17$ $65$ glaEastern glacial aquifers $uirbsus 1(27)$ $d29$ $13$ $4$ $17$ $65$ glaCentral glacial aquifers $uirbsus 1(27)$ $d20$ $67$ $0$ $33$ $0$ glaCentral glacial aquifers $uirbsus 2(25)$ $d23$ $48$ $17$ $65$ glaCentral glacial aquifers $uirbsus 2(23)$ $d33$ $48$ $17$ $65$ glaCentral glacial aquifers $uirbsus 2(23)$ $d33$ $48$ $12$ $27$ glaCentral glacial aquifers $uirbsus 1(30)$ $d34$ $43$ $0$ $27$ glaCentral glacial aquifers $uirbsus 1(30)$ $d35$ $39$ $20$ $27$ $27$ glaCentral glacial aquifers $uirbsus 1(30)$ $d36$ $43$ $23$ $27$ $27$ glaCentral glacial aquifers $uirbsus 1(30)$ $d36$ $43$ $23$ $27$ $27$ glaCentral glacial aquifers $uirbsus 1(30)$ $d36$ $43$ $23$ $27$ $28$ glaWest-central glacial aqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                | nsg                  | Surficial aquifer system                                     | softsus2 (30)                     | d24                           | 13                            | 10                          | 50                                                   | 27                            | Low                                  |
| glaEastern glacial aquifersconnsus2 (28)d26574327glaEastern glacial aquifersadmsus3 (12)d27503388glaEastern glacial aquifersadmsus3 (23)d291341765glaEastern glacial aquifersalmsus2 (28)d30d570330437glaCentral glacial aquifersuirbsus1 (27)d3067033007glaCentral glacial aquifersuirbsus2 (28)d3157023441765glaCentral glacial aquifersuirbsus2 (28)d3157023007glaCentral glacial aquifersuirbsus2 (23)d334412202014glaCentral glacial aquifersuirbsus2 (23)d33d3348122020glaCentral glacial aquifersuirbsus2 (23)d33d344305714glaCentral glacial aquifersuirbsus2 (23)d33d33303327glaCentral glacial aquiferslerisus1 (30)d35d33303737glaCentral glacial aquiferslerisus1 (20)d37002327glaCentral glacial aquiferslerisus1 (20)d37002327glaWest-central glacial aquiferslerisus1 (20)d37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                | nsg                  | Willamette Lowland aquifer system                            | willsus1 (66)                     | d25                           | 52                            | 5                           | 32                                                   | 12                            | Medium                               |
| gla Eastern glacial aquifers delrsus $3(12)$ $d_27$ $50$ $33$ $8$ $8$ gla Eastern glacial aquifers dimensus $(30)$ $d_{28}$ $50$ $0$ $43$ $7$ gla Eastern glacial aquifers hasnes $2(3)$ $d_{29}$ $13$ $4$ $17$ $65$ gla Central glacial aquifers uirbsus $(27)$ $d_{31}$ $57$ $0$ $29$ $14$ $17$ $65$ gla Central glacial aquifers uirbsus $(23)$ $d_{31}$ $57$ $0$ $29$ $14$ $17$ $65$ gla Central glacial aquifers uirbsus $(23)$ $d_{31}$ $67$ $0$ $29$ $14$ $17$ $65$ gla Central glacial aquifers uirbsus $(23)$ $d_{31}$ $48$ $12$ $20$ $20$ $20$ gla Central glacial aquifers uirbsus $(23)$ $d_{32}$ $48$ $12$ $20$ $20$ $14$ $13$ $20$ $20$ $20$ $21$ $20$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $2$          | 12e               | gla                  | Eastern glacial aquifers                                     | connsus2 (28)                     | d26                           | 57                            | 4                           | 32                                                   | 7                             | Medium                               |
| glaEastern glacial aquifersalmnus2 (30) $d28$ 500 $43$ 7glaCentral glacial aquifershdsnsus3 (23) $d29$ 1341765glaCentral glacial aquifersuirbsus1 (27) $d30$ 670330glaCentral glacial aquifersuirbsus2 (28) $d31$ 5702914glaCentral glacial aquifersuirbsus2 (25) $d33$ 48122020glaCentral glacial aquifersuirbsus2 (25) $d33$ 480507glaCentral glacial aquifersuirbsus2 (23) $d33$ 480507glaCentral glacial aquifersuirbsus2 (23) $d33$ 480507glaCentral glacial aquiferslerispcg1 (21) $d35$ 30202327glaCentral glacial aquiferslerispcg1 (23) $d35$ 302327glaCentral glacial aquiferslerispcg1 (23) $d36$ 434305714glaCentral glacial aquiferslerispcg1 (23) $d37$ 002377glaCentral glacial aquifershgwsus4 (30)' $d36$ 434323232333glaWest-central glacial aquiferslerispcg1 (23) $d37$ 0253333glaWest-central glacial aquiferslirbsus2 (26) $d37$ 02323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12e               | gla                  | Eastern glacial aquifers                                     | delrsus3 (12)                     | d27                           | 50                            | 33                          | ∞ ;                                                  | 8                             | Medium                               |
| glaEastern glacial aquifershdsnuss3 (23)d291341765glaCentral glacial aquifersuirbsus2 (28)d30670330glaCentral glacial aquifersuirbsus2 (28)d315702914glaCentral glacial aquifersuirbsus2 (23)d3348122020glaCentral glacial aquifersuirbsus2 (23)d3348122020glaCentral glacial aquifersuirbsus2 (23)d34430507glaCentral glacial aquiferslerisus1 (30)d3530202327glaCentral glacial aquiferslerisus1 (30)d353020333777glaCentral glacial aquiferslerisus1 (20)d3700232777glaCentral glacial aquiferslirbsus1 (26)d37002327glaVest-central glacial aquiferslirbsus2 (32)d3869233333glaWest-central glacial aquiferslirbsus2 (32)d37002377glaWest-central glacial aquiferslirbsus2 (32)d39d3943232310glaWest-central glacial aquiferslirbsus2 (23)d37002377glaWest-central glacial aquiferslirbsus2 (23)d39d39232310gla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12e               | gla                  | Eastern glacial aquifers                                     | almnsus2 (30)                     | d28                           | 50                            | 0                           | 43                                                   | 7                             | Medium                               |
| glaCentral glacial aquifersuirbsus1 (27)d30670330glaCentral glacial aquifersuirbsus2 (28)d315702914glaCentral glacial aquiferswincsus2 (25)d3248122020glaCentral glacial aquifersuirbsus2 (23)d33480520glaCentral glacial aquifersuirbsus2 (23)d33430520glaCentral glacial aquiferslerisus1 (30)d3530202327glaCentral glacial aquiferslerisus1 (30)d3519105714glaCentral glacial aquiferslerisus1 (20)d37002327glaCentral glacial aquiferslirbsus1 (26)d37002327glaWest-central glacial aquiferslirbsus1 (26)d37002377glaWest-central glacial aquifershpgwsus4 (30) <sup>2</sup> d39d323232333glaWest-central glacial aquiferslirbsus1 (26)d37002377glaWest-central glacial aquifershpgwsus4 (30) <sup>2</sup> d39d33232323333333glaWest-central glacial aquifershpgwsus4 (30) <sup>2</sup> d39d39d32232310glaWest-central glacial aquiferspugtsus1 (29)d40100 <td< td=""><td>12e</td><td>gla</td><td>Eastern glacial aquifers</td><td>hdsnsus3 (23)</td><td>d29</td><td>13</td><td>4</td><td>17</td><td>65</td><td>Low</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12e               | gla                  | Eastern glacial aquifers                                     | hdsnsus3 (23)                     | d29                           | 13                            | 4                           | 17                                                   | 65                            | Low                                  |
| gla Central glacial aquifers lirbsus2 (28) d31 57 0 29 14<br>gla Central glacial aquifers wicesus2 (25) d32 48 12 20 20<br>gla Central glacial aquifers wicesus2 (23) d33 48 0 55 7 7<br>gla Central glacial aquifers lerisus1 (30) d34 43 0 50 77<br>gla Central glacial aquifers lerisus1 (30) d35 19 10 57 14<br>gla Central glacial aquifers lerisus2 (21) d36 19 10 57 14<br>gla West-central glacial aquifers hpgwsus4 (30) <sup>2</sup> d38 69 25 3 77<br>gla West-central glacial aquifers putters hpgwsus4 (30) <sup>2</sup> d39 40 10 0 50 40<br>gla West-central glacial aquifers pugtsus1 (29) d41 72 10 10 7<br>gla West-central glacial aquifers pugtsus1 (29) d41 72 10 10 7<br>gla West-central glacial aquifers pugtsus1 (29) d41 72 10 10 7<br>gla West-central glacial aquifers pugtsus1 (29) d41 72 10 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12c               | gla                  | Central glacial aquifers                                     | uirbsus1 (27)                     | d30                           | 67                            | 0                           | 33                                                   | 0                             | Medium                               |
| gla Central glacial aquifers wencesus $(25)$ d $32$ 48 12 20 20 gla Central glacial aquifers wencesus $(30)$ d $33$ 48 12 20 20 gla Central glacial aquifers miamsus $(30)$ d $33$ 48 0 52 7 0 57 7 gla Central glacial aquifers lerisus $(30)$ d $33$ 19 10 57 14 23 27 gla Central glacial aquifers lerisus $(30)$ d $33$ 19 10 57 14 33 30 20 23 77 gla West-central glacial aquifers hpgwsus $(30)^2$ d $33$ 69 25 3 10 gla West-central glacial aquifers putters hpgwsus $(30)^2$ d $33$ d $33$ 27 0 0 7 0 50 40 gla West-central glacial aquifers putters hggwsus $(30)^2$ d $39$ d $40$ 10 0 50 40 gla West-central glacial aquifers glacial aquifers for the west-central glacial aquifers for the west | 12c               | gla                  | Central glacial aquifers                                     | lirbsus2 (28)                     | d31                           | 57                            | 0                           | 29                                                   | 14                            | Medium                               |
| glaCentral glacial aquifersuirbsus2 $(23)$ d33480520glaCentral glacial aquifersmiamsus1 $(30)$ d34430507glaCentral glacial aquiferslerisus1 $(30)$ d34430507glaCentral glacial aquiferslerisus1 $(30)$ d353020232714glaCentral glacial aquiferslirbsus1 $(20)$ d3700237714glaWest-central glacial aquiferslirbsus1 $(20)$ d3700237713glaWest-central glacial aquifershpgwus4 $(30)^2$ d386925333glaWest-central glacial aquifersrednsus2 $(10)$ d40100504010glaWest-central glacial aquiferspugtsus1 $(29)$ d41721010710glaWest-central glacial aquiferspugtsus1 $(29)$ d41721010710glaWest-central glacial aquiferspugtsus1 $(29)$ d41721010710glaWest-central glacial aquiferspugtsus1 $(29)$ d41721010710glaWest-central glacial aquiferspugtsus1 $(29)$ d41721010710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12c               | gla                  | Central glacial aquifers                                     | wmicsus2 (25)                     | d32                           | 48                            | 12                          | 20                                                   | 20                            | Medium                               |
| gla       Central glacial aquifers       miamsus I (30)       d34       43       0       50       7       1         gla       Central glacial aquifers       lerisus I (30)       d35       30       20       23       27       1         gla       Central glacial aquifers       lerisus I (21)       d35       19       10       57       14       1         gla       Central glacial aquifers       lirbsus I (26)       d37       0       0       23       77       14         gla       West-central glacial aquifers       lirbsus I (26)       d37       0       0       23       77       14       1         gla       West-central glacial aquifers       eiwasus 2 (32)       d38       69       25       3       3       3       3         gla       West-central glacial aquifers       rednsus 2 (10)       d40       10       0       50       40       10       10       10       13         gla       West-central glacial aquifers       rednsus 2 (10)       d40       10       0       50       40       10       10       10       10       10       10       10       10       10       10       10       10       10 <td>12c</td> <td>gla</td> <td>Central glacial aquifers</td> <td>uirbsus2 (23)</td> <td>d33</td> <td>48</td> <td>0</td> <td>52</td> <td>0</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12c               | gla                  | Central glacial aquifers                                     | uirbsus2 (23)                     | d33                           | 48                            | 0                           | 52                                                   | 0                             | Medium                               |
| gla       Central glacial aquifers       lerisus1 (30)       d35       30       20       23       27       1         gla       Central glacial aquifers       lerispcg1 (21)       d36       19       10       57       14       1         gla       Central glacial aquifers       lirbsus1 (26)       d37       0       0       23       77       14         gla       West-central glacial aquifers       lirbsus1 (26)       d37       0       0       23       77       13         gla       West-central glacial aquifers       eiwasus2 (32)       d38       69       25       3       3       10       10       1         gla       West-central glacial aquifers       rednsus2 (10)       d40       10       0       50       40       10       10       10       1         gla       Westerm glacial aquifers       pugtsus1 (29)       d41       72       10       10       7       10       10       10       10       10       7       10       10       7       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>12c</td><td>gla</td><td>Central glacial aquifers</td><td>miamsus1 (30)</td><td>d34</td><td>43</td><td>0</td><td>50</td><td>7</td><td>Medium</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12c               | gla                  | Central glacial aquifers                                     | miamsus1 (30)                     | d34                           | 43                            | 0                           | 50                                                   | 7                             | Medium                               |
| gla       Central glacial aquifers       lerispcg1 (21)       d36       19       10       57       14       1         gla       Central glacial aquifers       lirbsus1 (26)       d37       0       0       23       77       13         gla       West-central glacial aquifers       lirbsus1 (26)       d37       0       0       23       77       13         gla       West-central glacial aquifers       eiwasus2 (32)       d38       69       25       3       3       10       13         gla       West-central glacial aquifers       rednsus2 (10)       d40       10       0       50       40       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12c               | gla                  | Central glacial aquifers                                     | lerisus1 (30)                     | d35                           | 30                            | 20                          | 23                                                   | 27                            | Medium                               |
| gla       Central glacial aquifers       lirbsus1 (26)       d37       0       0       23       77       1         gla       West-central glacial aquifers       eiwasus2 (32)       d38       69       25       3       3       3         gla       West-central glacial aquifers       hpgwsus4 (30) <sup>2</sup> d39       43       23       23       10       1         gla       West-central glacial aquifers       rednsus2 (10)       d40       10       0       50       40       1         gla       Western glacial aquifers       pugtsus1 (29)       d41       72       10       10       7       1       gla         gla       Western glacial aquifers       cooksus1a (21)       d42       52       0       38       10       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12c               | gla                  | Central glacial aquifers                                     | lerispcg1 (21)                    | d36                           | 19                            | 10                          | 57                                                   | 14                            | Low                                  |
| gla       West-central glacial aquifers       eiwasus2 (32)       d38       69       25       3       3       3         gla       West-central glacial aquifers       hpgwsus4 (30) <sup>2</sup> d39       43       23       23       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12c               | gla                  | Central glacial aquifers                                     | lirbsus1 (26)                     | d37                           | 0                             | 0                           | 23                                                   | 77                            | Low                                  |
| gla         West-central glacial aquifers         hpgwsus4 (30) <sup>2</sup> d39         43         23         23         10         1           gla         West-central glacial aquifers         rednsus2 (10)         d40         10         0         50         40         1           gla         Western glacial aquifers         pugtsus1 (29)         d41         72         10         10         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12wc              | gla                  | West-central glacial aquifers                                | eiwasus2 (32)                     | d38                           | 69                            | 25                          | ŝ                                                    | ŝ                             | Medium                               |
| glaWest-central glacial aquifersrednsus2 (10)d4010050401glaWestern glacial aquiferspugtsus1 (29)d4172101071glaWestern glacial aquiferscooksus1a (21)d4252038101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12wc              | gla                  | West-central glacial aquifers                                | hpgwsus4 $(30)^2$                 | d39                           | 43                            | 23                          | 23                                                   | 10                            | Medium                               |
| gla Western glacial aquifers pugtsus (29) d41 72 10 10 7 1 gla Western glacial aquifers cooksus la (21) d42 52 0 38 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12wc              | gla                  | West-central glacial aquifers                                | rednsus2 (10)                     | d40                           | 10                            | 0                           | 50                                                   | 40                            | Low                                  |
| gla Western glacial aquifers cooksus1a (21) d42 52 0 38 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12w               | gla                  | Western glacial aquifers                                     | pugtsus1 (29)                     | d41                           | 72                            | 10                          | 10                                                   | 7                             | Medium                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12w               | gla                  | Western glacial aquifers                                     | cooksus1a (21)                    | d42                           | 52                            | 0                           | 38                                                   | 10                            | Medium                               |

Redox-age classes for water samples collected from networks of domestic wells in the United States and the susceptibility of the networks to changes in nitrate concentrations (only networks with at least 10 wells are listed).—Continued Table 5.

[usg, unconsolidated sand and gravel; gla, glacial sand and gravel; ses, semiconsolidated sand; san, sandstone; ser, sandstone and carbonate rock; car, carbonate rock; bay, basaltic and other volcanic rock; cry, crystalline rock; shading is used to differentiate between aquifer lithologies]

| Appling<br>the functionApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |                                                |                                   | Network         | Redox-a              | ge class (pe         | Redox-age class (percentage of samples) <sup>3</sup> | :amples) <sup>5</sup> | - Succentihility to |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------------------------------|-----------------------------------|-----------------|----------------------|----------------------|------------------------------------------------------|-----------------------|---------------------|
| Annual<br>to the standard spating systemAnnual spating systemSoutherstand transpating systemCamping sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aquifer | Aquifer | Aquifer name                                   | Network name<br>(number of welle) | identifier      | 0xic-<br>notantially | Oxic-<br>notentially | Anoxic-<br>notentially                               | Anoxic-               | changes in nitrate  |
| sist Costal Lowinds quifer system     machast (1)     64     74     11     16     0       sist Costal Lowinds quifer system     masked (1)     64     24     59     7       sist Costal Lowinds quifer system     masked (1)     64     24     59     7       sist Costal Lowinds quifer system     masked (1)     64     24     59     7       sist Northerm Alumic Costal Plan agifer system     masked (1)     64     77     0     24     53       sist Northerm Alumic Costal Plan agifer system     masked (1)     64     77     0     24     53       sist Northerm Alumic Costal Plan agifer system     mostal (1)     64     77     0     24     53       sist Northerm Alumic Costal Plan agifer system     mostal (1)     64     77     0     24     33       sist Costal Plan agifer system     mostal (1)     65     77     0     23     24     44       sist Costal Plan agifer system     mostal (1)     65     74     44     33     34       sin Cambran-Oddovician aquifer system     misusk (2)     65     44     33     34       sin Cambran-Oddovician aquifer system     misusk (2)     65     44     33     34       sin Cambran-Oddovician aquifer system     misu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Khonon  |                                                |                                   | (see figure 10) | young                | old                  | young                                                | old                   | concentrations      |
| <ul> <li>See Consult Lowinds aquifer system</li> <li>Consult Lowinds aquifer system</li> <li>Consult Lowinds aquifer system</li> <li>Kisstoppi Enhayment aquifer system</li> <li>Kisstoppi Enhangent equifer system</li> <li>Kisstoppi Enhangent equif</li></ul>                                                                                                                                                                                                                   | 13      | SCS     | Coastal Lowlands aquifer system                | acadsus2 (19)                     | d43             | 74                   | 11                   | 16                                                   | 0                     | Medium              |
| <ul> <li>se Constal Lowhads aguifer system</li> <li>se Manaster Cassal Plain aguifer system</li> <li>Missespip Embourtent audifer system</li> <li>Morthern Allantic Cassal Plain aguifer system</li> <li>Morthern Allantic Cassal Plain aguifer system</li> <li>Southeastern Coastal Plain aguifer system</li> <li>Cambrian-Ordovician aquifer system</li> <li>Cambrian-Ordovician aquifer system</li> <li>Cambrian-Ordovician aquifer system</li> <li>Cambrian-Ordovician aquifer system</li> <li>Denver Blain aquifer system</li></ul>                                                                                                                                                                                                                         | 13      | SCS     | Coastal Lowlands aquifer system                | acadsus1 (20)                     | d44             | 65                   | 15                   | 10                                                   | 10                    | Medium              |
| <ul> <li>ses Constal Lowhader system</li> <li>Missistipf Embourent aufrer system</li> <li>Missistipf Embourent aufrer system</li> <li>Missistipf Embourent aufrer system</li> <li>Missistipf Embourent aufrer system</li> <li>Morthern Allanic Costal Plain aquifer system</li> <li>Morthern Allanic Costal Plain aquifer system</li> <li>Southastern Costal Plain aquifer system</li> <li>Cambrian-Odovician aquifer system</li> <li>Dever Blain aquifer system</li> <li>Dever Blain</li></ul>                                                                                                                                                                                                                            | 13      | SCS     | Coastal Lowlands aquifer system                | trinsus4 (11)                     | d45             | 27                   | 64                   | 0                                                    | 6                     | Medium              |
| Ses       Missingli Endyment aquifer system       missues (10)       647       40       0       20         Ses       Nordern-Allanic Costal Plan aquifer system       postalsas (17)       648       18       6       0       23         Ses       Nordern-Allanic Costal Plan aquifer system       postalsas (13)       650       77       0       23       64         Ses       Southeastern Costal Plan aquifer system       mobilans (13)       651       77       0       23       64         Ses       Southeastern Costal Plan aquifer system       mobilans (13)       653       41       23       23       44       73       23       65       44       74       74       73       23       66       77       0       23       66       73       66       74       74       73       23       44       73       74       74       73       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13      | SCS     | Coastal Lowlands aquifer system                | trinsus3 (29)                     | d46             | 24                   | 59                   | 7                                                    | 10                    | Low                 |
| <ul> <li>Ses Musierin Allanis Constant Plan audifer system</li> <li>Southerastern Constant Plan audifer system</li> <li>Sea Southerastern Constant Plan audifer system</li> <li>Canabrian-Odoviciant aquifer sy</li></ul>                                       | 14      | SCS     | Mississippi Embayment aquifer system           | misesus4 (10)                     | d47             | 40                   | 40                   | 0                                                    | 20                    | Medium              |
| ses       Nothern Allanic Castal Plain aquifer system       pollas(10)       40       81       0       6       13         ses       Nothern Allanic Castal Plain aquifer system       intersit       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14      | SCS     | Mississippi Embayment aquifer system           | acadsus3 $(17)^3$                 | d48             | 18                   | 9                    | 24                                                   | 53                    | Low                 |
| ses         Nordnem Admine Costent Paina equifer system         Insus (2)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15      | SCS     | Northern Atlantic Coastal Plain aguifer system | podlsus2 (16)                     | d49             | 81                   | 0                    | 9                                                    | 13                    | High                |
| ses Southeastern Costata Plain aquifer system mobiluus (13) d51 77 0 23 0<br>ses Southeastern Costata Plain aquifer system mobiluus (23) d53 71 23 12 24<br>rexast Costata Plain aquifer system mobiluus (23) d53 71 23 12 8 33 13<br>ses Taxas Costata Plain aquifer system mobiluus (23) d53 12 12 8 33 13<br>ses Taxas Costata Plain aquifer system mobiluus (24) d56 53 41 23 12 8 33 13<br>sen Cambrian-Ordovician aquifer system musisues (23) d55 12 12 8 33 24<br>sen Cambrian-Ordovician aquifer system musisues (23) d55 14 1 23 12 8 33 14<br>sen Cambrian-Ordovician aquifer system musisues (23) d55 14 1 23 12 24 17<br>sen Cambrian-Ordovician aquifer system serves. (23) d55 14 1 23 23 28<br>sen Cambrian-Ordovician aquifer system serves. (23) d55 14 1 23 23 28<br>sen Cambrian-Ordovician aquifer system serves. (23) d56 14 17 0 0 10 0 0 0 0<br>mere Basin aquifer system splasus (10) d61 0 12 15 19 24 3 23 28<br>sen Denver Basin aquifer system splasus (10) d65 0 0 10 10 10 0 10 0 10 0 10 0 10 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15      | SCS     | Northern Atlantic Coastal Plain aquifer system | linisus2 (26)                     | d50             | 77                   | 0                    | ~                                                    | 15                    | High                |
| ses Southeastern Coastal Plain aquifer system moblsus 3 (18) d2 72 0 22 6<br>ses Texas Coastal Plain aquifer system moblsus 3 (13) d5 12 12 4 73<br>ses Texas Coastal Uplands aquifer system actessus (26) d5 12 12 4 73<br>sen Carbinan-Ordovician aquifer system musisus 4 (25) d5 12 12 4 73<br>sen Cambrian-Ordovician aquifer system musisus 4 (25) d5 7 12 12 4 7<br>sen Cambrian-Ordovician aquifer system musisus 4 (25) d5 7 12 12 4 7<br>sen Cambrian-Ordovician aquifer system musisus 4 (25) d5 7 14 8 21 2 7 23<br>sen Denver Basin aquifer system splass (10) d6 10 12 115 19 24 7 7 32<br>sen Denver Basin aquifer system splass (10) d6 10 12 115 19 54 19 10 12<br>sen Denver Basin aquifer system splass (10) d6 10 12 115 19 54 19 10 10<br>sen Denver Basin aquifers spatem splass (10) d6 10 12 115 19 54 19 10 10<br>sen Early Mescoric Basin aquifers patem splass (10) d6 10 12 115 19 54 19 10 10<br>sen Early Mescoric Basin aquifers patem splass (10) d6 10 12 115 19 54 19 10 10<br>sen Valley and Ridge clastic-rock aquifers potous (22) d6 7 70 10 12 117 4 4 10 12 117 4 10 12 118 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15      | SCS     | Northern Atlantic Coastal Plain aguifer system | dlmvsus1 (13)                     | d51             | 77                   | 0                    | 23                                                   | 0                     | High                |
| <ul> <li>Southeastern Coastal Plain aquifer system</li> <li>Southeastern Coastal Uplands aquifer system</li> <li>Texas Costal Uplands aquifer system</li> <li>Texas Costal Uplands aquifer system</li> <li>Cambrian-Ordovician aquifer system</li> <li>Denver Basin aquifer system</li> <li>Denver Basin aquifer system</li> <li>San Denver Basin aquifer system</li> <li>San Valley and Ridge clastic-rock aquifers</li> <li>San Valley and Ridge clastic-rock aquifers</li> <li>San San San Advards-Tinniy aquifer system</li> <li>San San San San San San San San San San</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16      | SCS     | Southeastern Coastal Plain aguifer system      | moblsus3 (18)                     | d52             | 72                   | 0                    | 22                                                   | 9                     | Medium              |
| ssTexas Coastal Uplands aquifer systemacadatus 3 (13)d5423838sesTexas Coastal Uplands aquifer systemexestast (26)d5554233831sesTambrian-Ordovician aquifer systemumissust (25)d574483473senCambrian-Ordovician aquifer systemumissust (25)d57448342424senCambrian-Ordovician aquifer systemumissust (25)d5934343732senDenver Basin aquifer systemsplasus (10)d6012151934senEarly Mesocic Basin aquifer systemsplasus (10)d660200009senEarly Mesocic Basin aquiferssplasus (10)d66020000914senEarly Mesocic Basin aquifersplasus (22)d647700000senValey and Ridge clastic-rook aquifersplasus (22)d667700000senValey and Ridge clastic-rook aquifersslasus (12)d6633531533senValey and Ridge clastic-rook aquifersslasus (22)d77d67700000senValey and Ridge clastic-rook aquifersslasus (10)d66335333333333333333 <td>16</td> <td>SCS</td> <td>Southeastern Coastal Plain aguifer system</td> <td>moblsus1 (22)</td> <td>d53</td> <td>41</td> <td>23</td> <td>18</td> <td>18</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16      | SCS     | Southeastern Coastal Plain aguifer system      | moblsus1 (22)                     | d53             | 41                   | 23                   | 18                                                   | 18                    | Medium              |
| ses Texas Coastal Uplands aquifer system actssus (26) d55 12 12 4 73<br>sun Cambran-Ordovician aquifer system umissus (22) d57 44 8 33 4 4<br>sun Cambran-Ordovician aquifer system umissus (22) d57 44 8 3 33 4 4<br>cambran-Ordovician aquifer system umissus (22) d58 41 0 27 32<br>sun Denver Basin aquifer system splitsus (10) d61 0 12 15 19 54 3 33<br>m Denver Basin aquifer system splitsus (23) d59 14 14 0 27 32<br>sun Denver Basin aquifer system splitsus (10) d61 0 12 15 19 54 13 28<br>m Denver Basin aquifer system splitsus (21) d66 12 14 9 7<br>m Barby Mescoric Basin aquifers and the static definition of the system splitsus (21) d66 33 8 0 18 4 4<br>m Denver Basin aquifer system splitsus (21) d66 33 6 2 2 3 3 15<br>m Pennsylvantian aquifers and the static definition of the system sun value aquifers and the system static definition of the system statis definition of the system static definition of the system stat                   | 17      | SCS     | Texas Coastal Uplands aquifer system           |                                   | d54             | 23                   | 8                    | 38                                                   | 31                    | Low                 |
| smCambrian-Ordovician aquifer systemumissus (24) $656$ $54$ $8$ $33$ $4$ smCambrian-Ordovician aquifer systemwmissus (25) $657$ $41$ $8$ $24$ $24$ smCambrian-Ordovician aquifer systemwmissus (25) $657$ $41$ $8$ $24$ $24$ smDenver Basin aquifer systemwmissus (25) $656$ $34$ $34$ $3$ $28$ smDenver Basin aquifer systemspltsus (10) $665$ $74$ $94$ $32$ $32$ smDenver Basin aquifer systemspltsus (10) $665$ $70$ $20$ $20$ $60$ smDenver Basin aquifer systemspltsus (10) $665$ $70$ $10$ $92$ $32$ smDenver Basin aquifer systemspltsus (10) $665$ $70$ $10$ $92$ $32$ smDenver Basin aquiferspolsus (10) $665$ $70$ $10$ $92$ $32$ smDenver Basin aquiferspolsus (10) $665$ $70$ $10$ $92$ $33$ smDenver Pasin aquiferspolsus (10) $665$ $70$ $10$ $94$ $15$ smDenver Pasin aquiferspolsus (16) $666$ $77$ $00$ $12$ $16$ $166$ smDenver Pasin aquiferspolsus (16) $666$ $77$ $00$ $167$ $166$ $12$ $166$ $33$ $126$ smPansylvanian aquiferspolsus (16) $666$ $720$ $666$ $720$ $6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17      | SCS     | Texas Coastal Uplands aquifer system           | sctxsus4 (26)                     | d55             | 12                   | 12                   | 4                                                    | 73                    | Low                 |
| sın Cambrian-Ordovician aquifer system umissus4 (25) d57 44 8 24 24 24 24 24 24 24 24 25 24 25 24 25 24 25 24 25 24 25 25 25 25 25 25 25 25 26 26 26 25 26 26 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18      | san     | Cambrian-Ordovician aquifer system             | umissus3 (24)                     | d56             | 54                   | 8                    | 33                                                   | 4                     | Medium              |
| sanCambrian-Ordovician aquifer systemwmicsus1 (22)d584102732sanDenver Basin aquifer systemspltsus2 (29)d6012151924sanDenver Basin aquifer systemspltsus2 (20)d6012151924sanDenver Basin aquifer systemspltsus3 (10)d610100202928sanDenver Basin aquifer systemspltsus3 (10)d610100202924sanDenver Basin aquifersbelisus1 (25)d6388002020060sanEarly Mesozoic Basin aquifersbelisus1 (21)d667701497sanLower Funsy aquifersbelisus3 (20)d66335331515sanPennsylvanian aquifersbelisus3 (20)d6633536333sanValley and Ridge clastic-rock aquifersbelisus2 (22)d663353333sanValley and Ridge clastic-rock aquifersbelisus2 (22)d66333333333333333333333333333333333333333333333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18      | san     | Cambrian-Ordovician aquifer system             | umissus4 (25)                     | d57             | 44                   | 8                    | 24                                                   | 24                    | Medium              |
| sanDenver Basin aquifer systemsplsus2 $(29)$ $d59$ $34$ $34$ $3$ $28$ sanDenver Basin aquifer systemsplsus3 $(10)$ $d60$ $12$ $15$ $19$ $54$ sanDenver Basin aquifer systemsplsus3 $(10)$ $d60$ $12$ $15$ $19$ $54$ sanDenver Basin aquifer systemsplsus3 $(20)$ $d63$ $88$ $0$ $20$ $20$ $60$ sanEarly Mesozoic Basin aquiferssplsus3 $(20)$ $d63$ $88$ $0$ $20$ $20$ $66$ sanFarly Mesozoic Basin aquiferspotouse2 $(22)$ $d64$ $77$ $0$ $14$ $9$ sanPennsylvanian aquiferspotouse2 $(22)$ $d66$ $33$ $5$ $29$ $33$ $18$ sanNaley and Ridge clastic-rock aquiferskanausl $(10)$ $d66$ $33$ $5$ $29$ $33$ $16$ sanValley and Ridge clastic-rock aquiferskanausl $(10)$ $d67$ $48$ $33$ $50$ $0$ $0$ sanValley and Ridge clastic-rock aquiferskanausl $(10)$ $d77$ $41$ $41$ $17$ $42$ $3$ sanValley and Ridge clastic-rock aquiferskanausl $(10)$ $d77$ $d66$ $53$ $20$ $0$ $0$ $0$ sanValley and Ridge clastic-rock aquiferskanausl $(10)$ $d77$ $41$ $41$ $17$ $41$ $41$ $21$ $41$ sanValley and Ridge clastic-rock aquiferskanausl $(10)$ $d77$ <td>18</td> <td>san</td> <td>Cambrian-Ordovician aquifer system</td> <td>wmicsus1 (22)</td> <td>d58</td> <td>41</td> <td>0</td> <td>27</td> <td>32</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18      | san     | Cambrian-Ordovician aquifer system             | wmicsus1 (22)                     | d58             | 41                   | 0                    | 27                                                   | 32                    | Medium              |
| sanDenver Basin aquifer systemspltsus3 (26)d6012151954sanDenver Basin aquifer systemspltsus3 (10)d620000sanDenver Basin aquifers systemspltsus3 (10)d6200000sanEarly Mesozoic Basin aquifersdelsus1 (23)d647701490sanEarly Mesozoic Basin aquifersdelsus1 (23)d647701490sanEarly Mesozoic Basin aquifersbijsus3 (20)d663352331515sanPennsylvanian aquifersbijsus3 (20)d6633553331515sanPennsylvanian aquifersbijsus3 (20)d66335533151516sanPennsylvanian aquifersbijsus3 (20)d66335533151516sanValley and Ridge clastic-rock aquifersbusus1 (24)d7d748323151745331517453315151515151515151670141747332333553315154533151545331545317453 </td <td>19</td> <td>san</td> <td>Denver Basin aquifer system</td> <td>spltsus2 (29)</td> <td>d59</td> <td>34</td> <td>34</td> <td>С</td> <td>28</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19      | san     | Denver Basin aquifer system                    | spltsus2 (29)                     | d59             | 34                   | 34                   | С                                                    | 28                    | Medium              |
| sanDenver Basin aquifer systemspltsus4 (10) $d61$ $0$ $10$ $0$ $0$ sanDenver Basin aquifer systemspltsus5 (10) $d61$ $0$ $10$ $0$ $0$ sanEarly Mesozic Basin aquifersgalisus5 (10) $d63$ $88$ $0$ $20$ $20$ $60$ sanEarly Mesozic Basin aquiferspotosus2 (22) $d64$ $77$ $0$ $14$ $9$ sanEarly Mesozic Basin aquiferspotosus2 (21) $d66$ $33$ $5$ $22$ $33$ $15$ sanPennsylvarian aquiferspotosus2 (21) $d66$ $33$ $5$ $22$ $33$ $15$ sanValley and Ridge clastic-rock aquiferskanasus1 (16) $d66$ $33$ $5$ $23$ $34$ $3$ sanValley and Ridge clastic-rock aquifersbotolusag2 (22) $d70$ $58$ $21$ $17$ $4$ $4$ sanValley and Ridge clastic-rock aquiferslausus2 (24) $d77$ $d73$ $85$ $36$ $0$ $17$ $4$ $4$ $21$ sanValley and Ridge clastic-rock aquiferslausus2 (24) $d77$ $d73$ $85$ $22$ $17$ $4$ $4$ $21$ $17$ $4$ $4$ $21$ $17$ $4$ $4$ $21$ $17$ $4$ $4$ $21$ $17$ $4$ $4$ $22$ $22$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19      | san     | Denver Basin aquifer system                    | spltsus3 (26)                     | d60             | 12                   | 15                   | 19                                                   | 54                    | Low                 |
| am Derver Basin aquifer system spltsus $5(10)$ d62 0 20 20 60 1<br>am Early Mesozoic Basin aquifers part (25) d63 77 0 20 20 60 1<br>am Early Mesozoic Basin aquifers potouses (22) d63 77 0 14 9 17 0 14 9 18<br>am Early Mesozoic Basin aquifers potouses (21) d66 33 5 29 33 18<br>am Pennsylvanian aquifers part (16) d66 33 5 2 29 33 18 18 20 10 5 11 17 0 18 11 10 10 11 10 10 11 10 10 11 10 10 11 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19      | san     | Denver Basin aquifer system                    |                                   | d61             | 0                    | 10                   | 0                                                    | 90                    | Low                 |
| sanEarly Mesozoic Basin aquifersdefsusl (25)d6388084sanEarly Mesozoic Basin aquiferspotosus2 (22)d64770149sanEarly Mesozoic Basin aquiferspinjsus3 (20)d657710149sanEarly Mesozoic Basin aquiferspinjsus3 (20)d663352933sanPennsylvanian aquiferspinsusl (16)d681308161sanValley and Ridge clastic-rock aquiferskanasusl (16)d681308161sanValley and Ridge clastic-rock aquiferskanasusl (16)d681308161sanValley and Ridge clastic-rock aquiferskanasusl (10)d7187211741sanValley and Ridge clastic-rock aquiferskanasusl (14)d71872117421sanValley and Ridge clastic-rock aquiferskanasusl (14)d71471006233sanValley and Ridge clastic-rock aquiferskanasusl (14)d7141104747421sanValley and Ridge clastic-rock aquiferskanasusl (14)d71d7141104747421sanValley and Ridge clastic-rock aquiferskanasusl (14)d71d714747174747serEdwards-Trinity aquifer systemkan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19      | san     | Denver Basin aquifer system                    |                                   | d62             | 0                    | 20                   | 20                                                   | 60                    | Low                 |
| san Early Mesozoic Basin aquifers potosus2 (22) d64 77 0 14 9<br>san Early Mesozoic Basin aquifers injisus3 (20) d65 70 10 5 15<br>san Pennsylvanian aquifers values vellsus2 (21) d66 33 5 2 9 33<br>san Pennsylvanian aquifers kanasus1 (16) d68 13 0 81 6<br>san Valley and Ridge clastic-rock aquifers kanasus1 (16) d68 13 0 81 6<br>san Valley and Ridge clastic-rock aquifers kanasus1 (16) d68 13 0 81 6<br>san Valley and Ridge clastic-rock aquifers kanasus1 (16) d68 13 0 81 6<br>san Valley and Ridge clastic-rock aquifers kanasus1 (29) d67 48 3 3 45 3<br>san Valley and Ridge clastic-rock aquifers kanasus1 (29) d71 41 10 45 3 3<br>ser Edwards-Trinity aquifer system sctxsus2 (24) d73 65 17 7 7 7 0<br>ser Edwards-Trinity aquifer system sctxsus2 (24) d73 67 11 41 10 45 3 3<br>ser Floridan aquifer system sctxsus2 (24) d73 60 13 8 20<br>car Floridan aquifer system sctxsus2 (24) d73 60 13 8 20<br>car Floridan aquifer system sctxsus2 (24) d73 60 13 8 20<br>car Floridan aquifer system sctxsus2 (24) d73 60 10 17 13<br>car Floridan aquifer system sctxsus2 (20) d77 60 10 17 13<br>car Cordwider system car Floridan aquifer system car Cark Radifer car Cark Radifer system car Cark Radifer car Cark Radifer car Cark Radifer system car Cark Radifer system car Cark Radifer car Cark Radifer system car Cark Radife | 20      | san     | Early Mesozoic Basin aquifers                  | delrsus1 (25)                     | d63             | 88                   | 0                    | 8                                                    | 4                     | High                |
| sanEarly Mesozoic Basin aquiferslinisus3 (20)d657010515sanLower Tertiary aquifersyellsus2 (21)d66335293315sanPemsylvanian aquifersalmasus1 (16)d66335293311sanPemsylvanian aquiferskanasus1 (16)d681308163331sanValley and Ridge clastic-rock aquiferskanasus1 (16)d68130816019sanValley and Ridge clastic-rock aquiferskanasus1 (16)d681308161453114sanValley and Ridge clastic-rock aquiferskassus1 (29)d71d141104533177000serEdwards-Trinity aquifer systemsextsus1 (27)d72857770000000000000000000000000000000000000000000000000000000000000000000000000 <td>20</td> <td>san</td> <td>Early Mesozoic Basin aquifers</td> <td>potosus2 (22)</td> <td>d64</td> <td>77</td> <td>0</td> <td>14</td> <td>9</td> <td>High</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20      | san     | Early Mesozoic Basin aquifers                  | potosus2 (22)                     | d64             | 77                   | 0                    | 14                                                   | 9                     | High                |
| sanLower Tertiary aquifersyellsus2 (21)d66335293311sanPennsylvanian aquifersalmnsus I (29)d67483453315sanValley and Ridge clastic-rock aquiferskanasus I (16)d681308161314531sanValley and Ridge clastic-rock aquiferspotolusag2 (22)d695953601sanValley and Ridge clastic-rock aquifersbususus I (29)d7141104531serEdwards-Trinity aquifer systemsetxsus2 (24)d7747414141serEdwards-Trinity aquifer systemsetxsus2 (24)d73501382914211serFloridan aquifer systemsetxsus2 (24)d77d7350130142114211421142114211421142114211421142114211421142114211421142114211421142114211421142114211421142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20      | san     | Early Mesozoic Basin aquifers                  | linjsus3 (20)                     | d65             | 70                   | 10                   | 5                                                    | 15                    | Medium              |
| sanPemsylvanian aquifersalmnsus (16)d67483453sanPemsylvanian aquiferskanasus (16)d681308161sanValley and Ridge clastic-rock aquiferskanasus (16)d681308161sanValley and Ridge clastic-rock aquifersbelrsus2 (22)d695953601sanValley and Ridge clastic-rock aquifersbelrsus2 (22)d6758211741sanValley and Ridge clastic-rock aquifersbelrsus2 (24)d775877701scrEdwards-Trinity aquifer systemsctxsus1 (10)d73501382911211scrFloridan aquifer systemsctxsus1 (10)d735013823113829112111211121112111211121112111211121112111211121112111211121112111211121112111211121112111211121112111 <t< td=""><td>21</td><td>san</td><td>Lower Tertiary aquifers</td><td>yellsus2 (21)</td><td>d66</td><td>33</td><td>5</td><td>29</td><td>33</td><td>Medium</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21      | san     | Lower Tertiary aquifers                        | yellsus2 (21)                     | d66             | 33                   | 5                    | 29                                                   | 33                    | Medium              |
| sanPennsylvanian aquiferskanasusl (16)d681308161sanValley and Ridge clastic-rock aquiferspotolusag2 (22)d695953601sanValley and Ridge clastic-rock aquifersdersus2 (24)d7058211741sanValley and Ridge clastic-rock aquifersletrsus2 (24)d7141104531sanValley and Ridge clastic-rock aquifersletrsus2 (24)d728577701serEdwards-Trinity aquifer systemsetrsus1 (27)d73501382911serEdwards-Trinity aquifer systemsetrsus1 (10)d74d74432114211carFloridan aquifer systemgaffsus2 (30)d76672013013131carFloridan aquifer systemgaffsus2 (30)d7760101713131131carFloridan aquifer systemsantsus2 (29)d77601017131312113113111311311311311311311311311310171313113101017131311310171313131313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22      | san     | Pennsylvanian aquifers                         | almnsus1 (29)                     | d67             | 48                   | ŝ                    | 45                                                   | ŝ                     | Medium              |
| sanValley and Ridge clastic-rock aquiferspotolusag2 (22)d695953601sanValley and Ridge clastic-rock aquiferslsussus1 (29)d7141104531sanValley and Ridge clastic-rock aquiferslsussus1 (29)d7141104531serEdwards-Trinity aquifer systemsetxsus2 (24)d73501382291serEdwards-Trinity aquifer systemsetxsus2 (24)d73501382291serFloridan aquifer systemsetxsus2 (24)d74432114211carFloridan aquifer systemacrbsus1 (10)d751000001carFloridan aquifer systemgaffsus2 (30)d7667201301carFloridan aquifer systemsantsus2 (29)d791000001carFloridan aquifer systemsantsus2 (23)d76d7667201301carFloridan aquifer systemsantsus2 (21)d801919521013101carOrdovician aquifer systemcarOrdovician aquifer systemsantsus2 (21)d8194060101310carOrdovician aquifer systemcarOrdovician aquifer systemcar(17)d82851238101010 <td>22</td> <td>san</td> <td>Pennsylvanian aquifers</td> <td>kanasus1 (16)</td> <td>d68</td> <td>13</td> <td>0</td> <td>81</td> <td>9</td> <td>Low</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22      | san     | Pennsylvanian aquifers                         | kanasus1 (16)                     | d68             | 13                   | 0                    | 81                                                   | 9                     | Low                 |
| sanValley and Ridge clastic-rock aquifersdelrsus2 (24)d705821174sanValley and Ridge clastic-rock aquiferslsussus1 (29)d714110453scrEdwards-Trinity aquifer systemsctxsus1 (27)d72857770scrEdwards-Trinity aquifer systemsctxsus2 (24)d7350138291scrEdwards-Trinity aquifer systemsctxsus2 (24)d7443211421carFloridan aquifer systemacfbsus1 (10)d751000000carFloridan aquifer systemgaflsus2 (30)d7667201301313carFloridan aquifer systemgaflsus2 (29)d77601017131313carFloridan aquifer systemsantsus2 (29)d77601017131313carFloridan aquifer systemsantsus2 (29)d7910028243813carOrdovician aquifer systemsantsus2 (29)d79102824381017131313101713131017131310171313101713131010171313101017131310101713101010171310 <td>23</td> <td>san</td> <td>Valley and Ridge clastic-rock aquifers</td> <td>potolusag2 (22)</td> <td>69p</td> <td>59</td> <td>5</td> <td>36</td> <td>0</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23      | san     | Valley and Ridge clastic-rock aquifers         | potolusag2 (22)                   | 69p             | 59                   | 5                    | 36                                                   | 0                     | Medium              |
| san         Valley and Ridge clastic-rock aquifers         Isussus1 (29)         d71         41         10         45         3           ser         Edwards-Trinity aquifer system         sctxsus1 (27)         d72         85         7         7         0         1           ser         Edwards-Trinity aquifer system         sctxsus2 (24)         d73         50         13         8         29           ser         Edwards-Trinity aquifer system         sctxsus2 (24)         d74         43         21         14         21           car         Floridan aquifer system         acfbsus1 (10)         d75         100         0         0         0         0         0         0         0         0         0         13         0         0         13         0         0         13         0         0         17         13         0         0         13         0         0         13         0         0         13         0         0         13         0         0         13         0         0         13         0         0         13         0         0         0         0         0         0         0         0         0         0         13 <td>23</td> <td>san</td> <td>Valley and Ridge clastic-rock aquifers</td> <td>delrsus2 (24)</td> <td>d70</td> <td>58</td> <td>21</td> <td>17</td> <td>4</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23      | san     | Valley and Ridge clastic-rock aquifers         | delrsus2 (24)                     | d70             | 58                   | 21                   | 17                                                   | 4                     | Medium              |
| scr       Edwards-Trinity aquifer system       sctxsus1 (27)       d72       85       7       7       0       1         scr       Edwards-Trinity aquifer system       sctxsus2 (24)       d73       50       13       8       29       1         scr       Edwards-Trinity aquifer system       sctxsus2 (24)       d73       50       13       8       29       1         car       Floridan aquifer system       acrbsus1 (10)       d75       100       0       0       0       1         car       Floridan aquifer system       gaflsus2 (30)       d76       67       20       13       0       1       13       1         car       Floridan aquifer system       gaflsus2 (20)       d77       60       10       17       13       1         car       Floridan aquifer system       santsus2 (29)       d79       10       28       24       38       1         car       Ordovician aquifer system       ozrklusag1a (17)       d81       94       0       6       0       1       13       1       13       1       13       1       13       1       13       1       13       1       10       17       13       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23      | san     | Valley and Ridge clastic-rock aquifers         | lsussus1 (29)                     | d71             | 41                   | 10                   | 45                                                   | 3                     | Medium              |
| scr       Edwards-Trinity aquifer system       sctxsus2 (24)       d73       50       13       8       29       1         scr       Edwards-Trinity aquifer system       trinsus1 (14)       d74       43       21       14       21       1         car       Floridan aquifer system       acfbsus1 (10)       d75       100       0       0       0       1         car       Floridan aquifer system       gaflsus2 (30)       d76       67       20       13       0       1         car       Floridan aquifer system       gaflsus2 (30)       d77       60       10       17       13       1         car       Floridan aquifer system       santsus2 (29)       d79       10       28       42       38       1         car       Floridan aquifer system       santsus2 (21)       d80       19       29       10       17       13       1         car       Ordovician aquifer system       santsus2 (21)       d80       19       28       24       38       1         car       Ozark Plateaus aquifer system       ozrklusag1a (17)       d81       94       0       6       0       10       10       17       13       10 <td< td=""><td>24</td><td>SCT</td><td>Edwards-Trinity aquifer system</td><td>sctxsus1 (27)</td><td>d72</td><td>85</td><td>7</td><td>7</td><td>0</td><td>High</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24      | SCT     | Edwards-Trinity aquifer system                 | sctxsus1 (27)                     | d72             | 85                   | 7                    | 7                                                    | 0                     | High                |
| scr       Edwards-Trinity aquifer system       trinsus1 (14)       d74       43       21       14       21         car       Floridan aquifer system       acfbsus1 (10)       d75       100       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       17       13       0       12       13       12       13       12       13       12       13       12       13       12       13       12       13       12       13       12       13       12       13       12       13       12       13       12       13       10       10       12       10       12 <td>24</td> <td>SCT</td> <td>Edwards-Trinity aquifer system</td> <td></td> <td>d73</td> <td>50</td> <td>13</td> <td>8</td> <td>29</td> <td>Medium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24      | SCT     | Edwards-Trinity aquifer system                 |                                   | d73             | 50                   | 13                   | 8                                                    | 29                    | Medium              |
| car       Floridan aquifer system       acfbsus1 (10)       d75       100       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       12       0       12       13       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       13       1       10       13       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24      | SCT     | Edwards-Trinity aquifer system                 | trinsus1 (14)                     | d74             | 43                   | 21                   | 14                                                   | 21                    | Medium              |
| car       Floridan aquifer system       gaflsus2 (30)       d76       67       20       13       0       1         car       Floridan aquifer system       gaflsus3 (30)       d77       60       10       17       13       1         car       Floridan aquifer system       gaflsus4 (26)       d78       12       8       42       38       1         car       Floridan aquifer system       santsus2 (29)       d79       10       28       24       38       1         car       Ordovician aquifer system       ozrklusag1a (17)       d81       94       0       6       0       10       10       10       10       10       10       10       10       12       13       10       10       12       38       10       10       10       13       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29      | car     | Floridan aquifer system                        | acfbsus1 (10)                     | d75             | 100                  | 0                    | 0                                                    | 0                     | High                |
| car       Floridan aquifer system       gaflsus3 (30)       d77       60       10       17       13         car       Floridan aquifer system       gaflsus4 (26)       d78       12       8       42       38         car       Floridan aquifer system       santsus2 (29)       d79       10       28       24       38         car       Ordovician aquifer system       santsus2 (21)       d80       19       52       10       10         car       Ozark Plateaus aquifer system       ozrkusag1a (17)       d81       94       0       6       0       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>29</td><td>car</td><td>Floridan aquifer system</td><td>gafisus2 (30)</td><td>d76</td><td>67</td><td>20</td><td>13</td><td>0</td><td>Medium</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29      | car     | Floridan aquifer system                        | gafisus2 (30)                     | d76             | 67                   | 20                   | 13                                                   | 0                     | Medium              |
| carFloridan aquifer systemgaflsus4 (26)d781284238carFloridan aquifer systemsantsus2 (29)d7910282438carOrdovician aquifersltensus2 (21)d80195210carOzark Plateaus aquifer systemozrklusag1a (17)d8194060carOzark Plateaus aquifer systemozrksus2a (33)d82851230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29      | car     | Floridan aquifer system                        | gafisus3 (30)                     | d77             | 60                   | 10                   | 17                                                   | 13                    | Medium              |
| carFloridan aquifer systemsantsus2 (29)d7910282438carOrdovician aquifersltensus2 (21)d8019195210carOzark Plateaus aquifer systemozrklusag1a (17)d8194060carOzark Plateaus aquifer systemozrksus2a (33)d82851230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29      | car     | Floridan aquifer system                        | gafisus4 (26)                     | d78             | 12                   | 8                    | 42                                                   | 38                    | Low                 |
| carOrdovician aquifersItensus2 (21)d80195210carOzark Plateaus aquifer systemozrklusag1a (17)d8194060carOzark Plateaus aquifer systemozrksus2a (33)d82851230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29      | car     | Floridan aquifer system                        | santsus2 (29)                     | d79             | 10                   | 28                   | 24                                                   | 38                    | Low                 |
| car Ozark Plateaus aquifer system ozrklusag1a (17) d81 94 0 6 0<br>car Ozark Plateaus aquifer system ozrksus2a (33) d82 85 12 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30      | car     | Ordovician aquifers                            | ltensus2 (21)                     | d80             | 19                   | 19                   | 52                                                   | 10                    | Low                 |
| Ozark Plateaus aquifer system ozrksus2a (33) d82 85 12 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31      | car     | Ozark Plateaus aquifer system                  | ozrklusag1a (17)                  | d81             | 94                   | 0                    | 9                                                    | 0                     | High                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31      | car     | Ozark Plateaus aquifer system                  | ozrksus2a (33)                    | d82             | 85                   | 12                   | 3                                                    | 0                     | High                |

|                   |                      |                                                    |                                   | Network         | Redox-a              | ge class (pe         | Redox-age class (percentage of samples) <sup>5</sup> | amples) <sup>5</sup>   | Cuccontilities to  |
|-------------------|----------------------|----------------------------------------------------|-----------------------------------|-----------------|----------------------|----------------------|------------------------------------------------------|------------------------|--------------------|
| Aquifer<br>number | Aquifer<br>lithology | Aquifer name                                       | Network name<br>(number of wells) | identifier      | Oxic-<br>potentially | Oxic-<br>potentially | Anoxic-<br>potentially                               | Anoxic-<br>potentially | changes in nitrate |
|                   | 5                    |                                                    |                                   | (see tigure 10) |                      | old                  | , gunoy                                              | old                    | concentrations     |
| 31                | car                  | Ozark Plateaus aquifer system                      | ozrklusag2a (16)                  | d83             | 81                   | 0                    | 19                                                   | 0                      | High               |
| 31                | car                  | Ozark Plateaus aquifer system                      | ozrksus3a (16)                    | d84             | 56                   | 19                   | 13                                                   | 13                     | Medium             |
| 32                | car                  | Piedmont and Blue Ridge carbonate-rock aquifers    | lsuslusag1 (29)                   | d85             | 83                   | 0                    | 17                                                   | 0                      | High               |
| 33                | car                  | Silurian-Devonian aquifers                         | eiwasus1 (25)                     | d86             | 16                   | 4                    | 20                                                   | 60                     | Low                |
| 34                | car                  | Valley and Ridge carbonate-rock aquifers           | Isuslusag3 (29)                   | d87             | 100                  | 0                    | 0                                                    | 0                      | High               |
| 34                | car                  | Valley and Ridge carbonate-rock aquifers           | Isuslusag2 (29)                   | d88             | 67                   | 0                    | б                                                    | 0                      | High               |
| 34                | car                  | Valley and Ridge carbonate-rock aquifers           | potolusag1 (32)                   | d89             | 94                   | 0                    | 9                                                    | 0                      | High               |
| 34                | car                  | Valley and Ridge carbonate-rock aquifers           | utensus1 (18)                     | 06p             | 67                   | 11                   | 22                                                   | 0                      | Medium             |
| 35                | bav                  | Columbia Plateau basaltic-rock aquifer system      | ccptlusag1a (17)                  | d91             | 82                   | 9                    | 0                                                    | 12                     | High               |
| 35                | bav                  | Columbia Plateau basaltic-rock aquifer system      | ccptlusag2a (16) <sup>1</sup>     | d92             | 81                   | 13                   | 9                                                    | 0                      | High               |
| 36                | bav                  | Snake River Plain basaltic-rock aquifer system     | usnkluscr4 (15)                   | d93             | 100                  | 0                    | 0                                                    | 0                      | High               |
| 36                | bav                  | Snake River Plain basaltic-rock aquifer system     | usnkluscr2 (28)                   | d94             | 100                  | 0                    | 0                                                    | 0                      | High               |
| 36                | bav                  | Snake River Plain basaltic-rock aquifer system     | usnkluscr3 (28)                   | d95             | 96                   | 4                    | 0                                                    | 0                      | High               |
| 38                | cry                  | New York and New England crystalline-rock aquifers | linjsus 1 (25)                    | 96p             | 88                   | 8                    | 4                                                    | 0                      | High               |
| 38                | cry                  | New York and New England crystalline-rock aquifers | necbsus2 (30)                     | 797             | 53                   | 0                    | 47                                                   | 0                      | Medium             |
| 38                | cry                  | New York and New England crystalline-rock aquifers | necbsus1 (28)                     | 86p             | 46                   | 0                    | 54                                                   | 0                      | Medium             |
| 38                | cry                  | New York and New England crystalline-rock aquifers | connsus1 (27)                     | 66P             | 44                   | 33                   | 4                                                    | 19                     | Medium             |
| 39                | cry                  | Piedmont and Blue Ridge crystalline-rock aquifers  | lsussus2 (29)                     | d100            | 100                  | 0                    | 0                                                    | 0                      | High               |
| 39                | cry                  | Piedmont and Blue Ridge crystalline-rock aquifers  | santsus3 (29)                     | d101            | 86                   | 0                    | 14                                                   | 0                      | High               |
| 39                | cry                  | Piedmont and Blue Ridge crystalline-rock aquifers  | potosus1 (21)                     | d102            | 81                   | 0                    | 19                                                   | 0                      | High               |
| 39                | cry                  | Piedmont and Blue Ridge crystalline-rock aquifers  | kanasus2 (19)                     | d103            | 74                   | 5                    | 16                                                   | 5                      | Medium             |
| 39                | cry                  | Piedmont and Blue Ridge crystalline-rock aquifers  | albesus8 (48)                     | d104            | 67                   | 10                   | 21                                                   | 7                      | Medium             |
| +4                | 115.0                | Allinvial addifers in the Colorado Rocky Mountains | neolsus1 (23)                     | d105            | 78                   | 13                   | 6                                                    | 0                      | Hioh               |

Table 5. Redox-age classes for water samples collected from networks of domestic wells in the United States and the susceptibility of the networks to changes in nitrate concentrations (only networks with at least 10 wells are listed).—Continued

[use, unconsolidated sand and gravel; gla, glacial sand and gravel; scs, semiconsolidated sand; san, sandstone; scr, sandstone and carbonate rock; car, carbonate rock; bay, basaltic and other volcanic rock; cry

Network has wells in the Columbia Plateau basaltic-rock aquifer system and Columbia Plateau basin-fill aquifers. <sup>2</sup>Network is part of the High Plains aquifer and West-central glacial aquifers.

<sup>3</sup>Network has wells in the Mississippi embayment and Texas coastal uplands aquifer systems.

<sup>4</sup>Network not in a principal aquifer.

<sup>5</sup>R edox-age percentages may not sum to 100 percent because of rounding.

#### 24 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

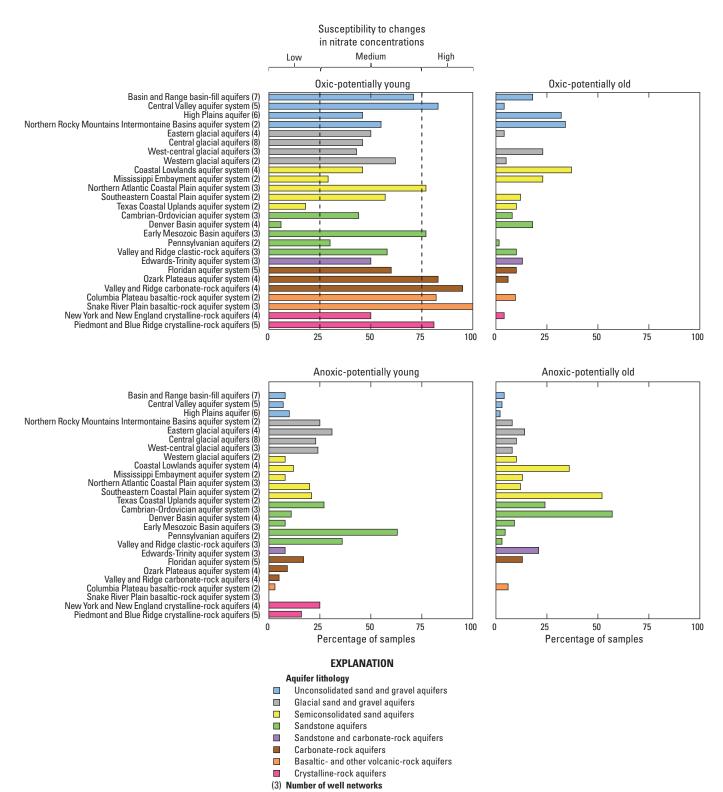
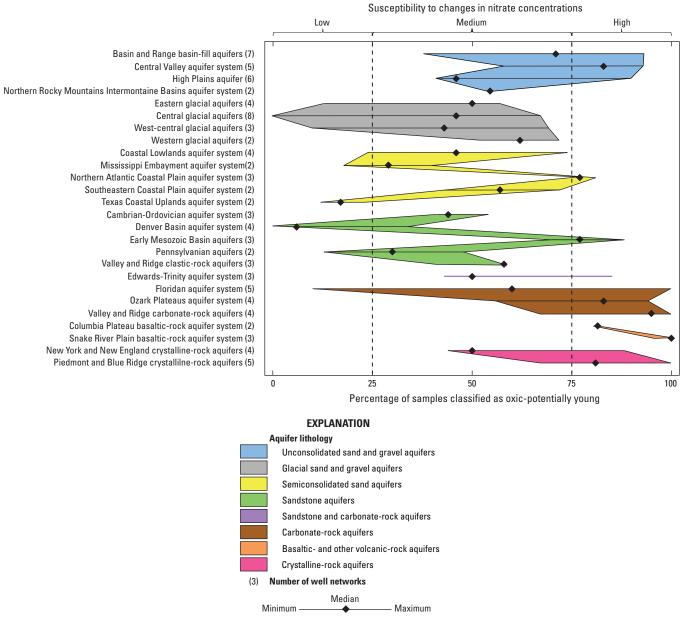
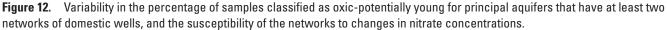





Figure 11. Median percentage of samples assigned to the four redox-age classes for principal aquifers that have at least two

networks of domestic wells, and the susceptibility of the aquifers to changes in nitrate concentrations.



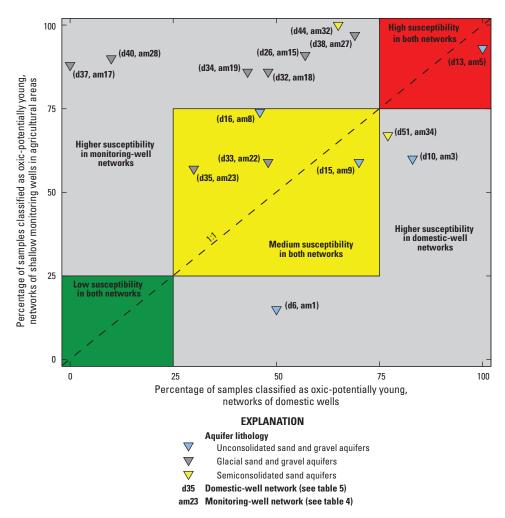


Principal-aquifer lithology groups with the largest percentage of networks considered to have a high susceptibility to changes in nitrate concentrations were the basaltic- and other volcanic-rock aquifer systems (100 percent of networks), carbonate-rock aquifers (50 percent), and crystalline-rock aquifers (44 percent) (table 5 and figs. 10 and 12). These three lithology groups include five of the six domestic-well networks with 100 percent of their samples classified as oxic-potentially young. The lithology groups with the smallest percentage of networks considered to have a high susceptibility to changes in nitrate concentrations were the glacial aquifers (0 percent of networks) and sandstone aquifers (about 13 percent) (table 5 and fig. 10). These two lithology groups include the three well networks with 0 percent of their samples classified as oxic-potentially young (table 5).

There are important geologic differences between the aquifer lithology groups with high and low susceptibilities to changes in nitrate concentrations. The relatively large percentage of high-susceptibilility networks in the basalticand other volcanic-rock aquifer systems, carbonate-rock aquifers, and crystalline-rock aquifers may indicate the importance of fractures and karst features in promoting the rapid movement of oxic-potentially young groundwater in those aquifers (Dubrovsky and others, 2010; McMahon and others, 2011). The relatively small percentage of highsusceptibility networks in the glacial and sandstone aquifers reflects geologic characteristics of those aquifers that support anoxic redox conditions (high electron donor content) and inhibit water movement (fine-grained confining layers).

Domestic-well networks in the eastern and western United States differed with respect to the percentage of samples assigned to certain redox-age classes. The 45 networks located in the western United States had a larger median percentage (13 percent) of samples classified as oxic-potentially old than the 60 networks located in the East (4 percent). Previous studies already noted the presence of oxic groundwater that was sometimes thousands of years old in organic carbon-poor unconsolidated sand and gravel aquifers in the western United States, particularly in the Central Valley and Rio Grande aquifer systems (Plummer and others, 2004; Jurgens and others, 2008), and the Basin and Range basin-fill and High Plains aquifers (Winograd and Robertson, 1982; McMahon and others, 2004). Those aquifers typically have low natural recharge rates and large, thick flow systems. In contrast, networks located in the eastern United States had a larger median percentage (20 percent) of samples classified as anoxic-potentially young than networks located in the West (7 percent). This is not surprising considering the generally shallower depths to water, higher natural recharge rates, and smaller, shallower flow systems in the eastern United States than in the West (Wolock, 2003; Reilly and others, 2008; McMahon and others, 2011). Oxic-potentially old and anoxic-potentially young conditions both reduce aquifer susceptibility to changes in nitrate concentrations, but for different climatic, geologic, and hydrologic reasons.

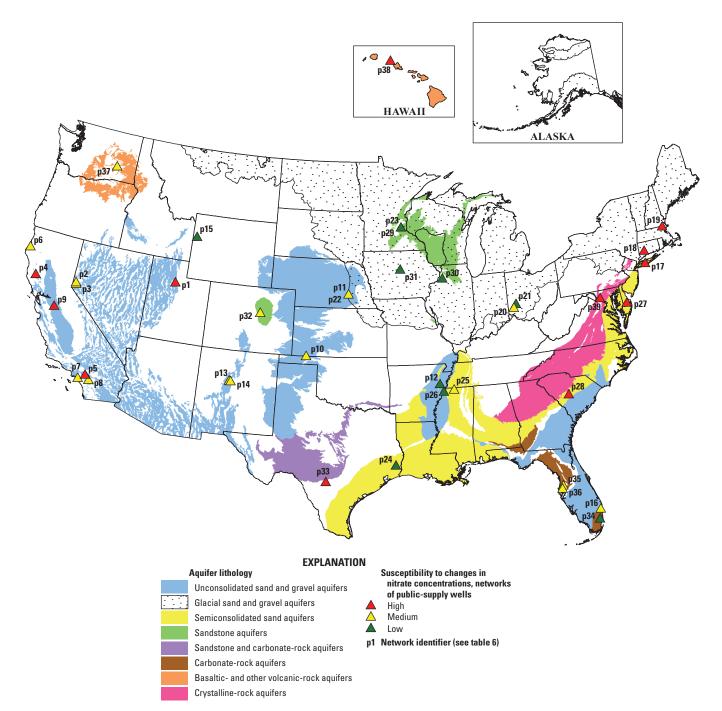
Fifteen of the domestic-well networks were approximately collocated with networks of shallow monitoring wells in agricultural areas, which provides the opportunity to compare the susceptibility to changes in nitrate concentrations at different depths in the same aquifer area. The median depth of the domestic wells was greater than the median depth of the monitoring wells for each pair of well networks. Overall, the median difference in depth between domestic and monitoring wells was 13 m. For 10 of the 15 pairs of networks, the monitoring-well networks had the higher percentage of samples classified as oxic-potentially young (fig. 13), indicating that susceptibility tended to be higher at the shallower depths of the monitoring wells. For 7 of the 15 pairs of nested networks, susceptibility was in fact higher in the monitoring wells than the domestic wells. Six of those seven pairs are in glacial aquifers (fig. 13). Only 3 of the 15 pairs of nested networks showed higher susceptibilities in the domestic wells than in the monitoring wells. For 5 of the 15 pairs of networks, susceptibilities were generally the same in both well types.


#### Susceptibility to Changes in Nitrate Concentrations in Parts of Aquifers that Provide Public Water Supplies

Redox-age classes were assigned to samples collected from 39 networks of public-supply wells (fig. 14 and table 6). Thirty-one percent of the networks were considered to have a high susceptibility to changes in nitrate concentrations and 26 percent of the networks were considered to have low susceptibilities (table 6). The percentage of high-susceptibility networks for public-supply wells was the same as for domestic wells, but the public-supply wells had a larger percentage of low-susceptibility networks than the domestic wells.

For principal aquifers that had at least 2 networks of public-supply wells, the median percentage of samples classified as oxic-potentially young ranged from about 7 to 87 percent (fig. 15), compared to about 57 to 96 percent for the shallow monitoring wells (fig. 8) and about 6 to 100 percent for domestic wells (fig. 11). For the parts of aquifers that provide public water supplies, the aquifers most susceptible to changes in nitrate concentrations were the Eastern glacial aquifers and the California Coastal Basin, Basin and Range basin-fill, and High Plains aquifers in the West (figs. 14 and 15). The least susceptible aquifer was the Cambrian-Ordovician aquifer system in the upper Midwest (figs. 14 and 15).

Susceptibility to changes in nitrate concentrations in the networks of public-supply wells appeared to be controlled in part by aquifer confinement and well depth, as was the case for several of the networks of monitoring and domestic wells. Low-susceptibility networks in the Cambrian-Ordovician aquifer system had relatively large well depths (median depths of 124 to 558 m) and large percentages of wells completed in confined parts of the aquifer (median values of 0 to 100 percent) compared to networks in the four aquifers with the highest susceptibilities. Well networks in the Eastern glacial aquifers, for example, had median well depths of 17 to 118 m and percentages of wells completed in confined parts of the aquifer that ranged from 0 to 24 percent.

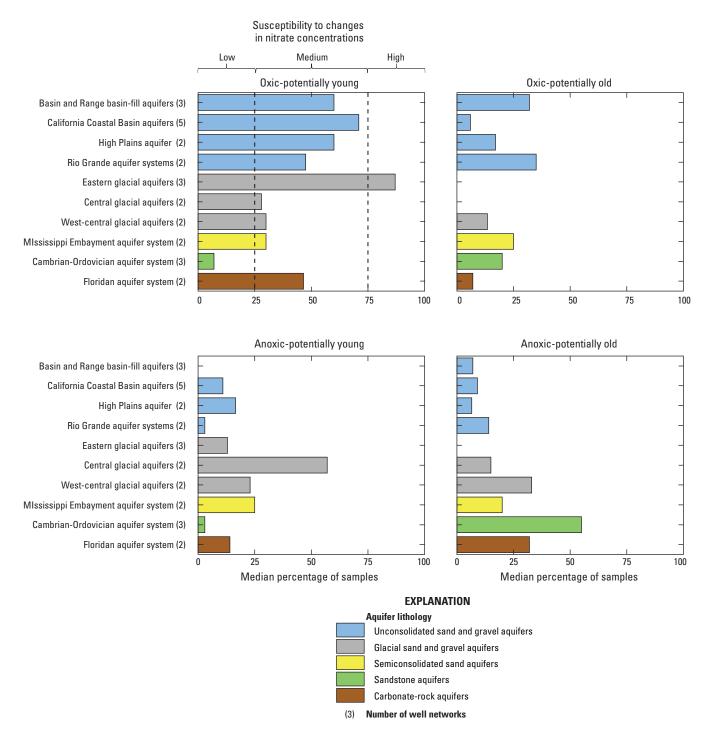

Well networks sanasus2 and sanasus3, in the California Coastal Basin aquifers (table 6 and fig. 14), had medium susceptibilities even though the median well depths (232 to 294 m) were relatively large and 56 percent of the sanasus2 wells were completed in confined parts of the aquifer. Several factors probably contributed to the susceptibility of those two networks. One factor is long well screens. Median well-screen lengths in the networks accounted for 60 to 68 percent of the well depths. Long well screens could increase the chances of mixing shallow, young water and deep, old water (Landon and others, 2010b). Another possible factor is artificial recharge that occurs in parts of the California Coastal Basin aquifers in southern California that could increase aquifer susceptibility to changes in nitrate concentrations by increasing recharge rates (Hamlin and others, 2002; McMahon and others, 2011). Pumping rate also may affect susceptibility but data were not available to evaluate this factor.



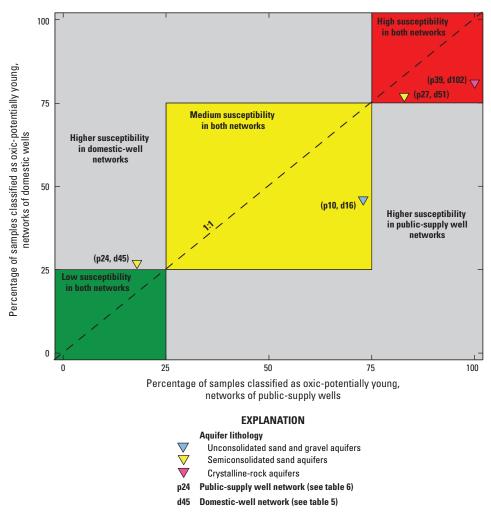
**Figure 13.** Percentage of samples classified as oxic-potentially young in collocated networks of shallow monitoring wells in agricultural areas and domestic wells, and the susceptibility of the networks to changes in nitrate concentrations.

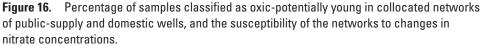
Only four of the networks of public-supply wells were approximately collocated with networks of domestic wells. The median depth of the public-supply wells was greater than the median depth of the domestic wells for each pair of well networks. Overall, the median difference in depth between public-supply and domestic wells was 39 m, which is three times larger than the median difference in depth between the pairs of domestic- and monitoring-well networks. For three of the four pairs of networks, the public-supply wells had the higher percentage of samples classified as oxic-potentially young (fig. 16), indicating that susceptibility tended to be higher in the vicinity of public-supply wells than in the vicinity of domestic wells even though the public-supply wells had larger median well depths. Although the number of paired networks of public-supply and domestic wells was small, this finding is the opposite of what was observed for shallow monitoring wells and domestic wells (fig. 13). For one pair of public-supply (p24) and domestic-well networks (d45) (fig. 16), the percentage of samples classified as oxic-potentially young was higher for the

domestic wells. This may be due to the fact that only 50 percent of the domestic wells were completed in confined parts of the aquifer (Coastal Lowlands aquifer system) whereas 80 percent of the public supply wells were completed in confined parts of the aquifer. Bruce and Oelsner (2001) studied closely located pairs of domestic and public-supply wells in the High Plains aquifer and found a more frequent occurrence of pesticide compounds and tritium in water from the public-supply wells than in water from the domestic wells. They concluded that high rates of pumping in public-supply wells with long screens induced more rapid downward movement of young groundwater than did domestic wells, which had shorter screens and were less heavily pumped. Jurgens and others (2008) studied a longscreened public-supply well in the Central Valley aquifer system and also found that well construction and operation induced downward movement of young groundwater. The data in figure 16 are consistent with the idea that construction and operation characteristics of public-supply wells can enhance the downward movement of young groundwater (Landon and others, 2010b).




**Figure 14.** Central locations of networks of public-supply wells and the susceptibility of the networks to changes in nitrate concentrations.


Redox-age classes for water samples collected from networks of public-supply wells in the United States and the susceptibility of the networks to changes in nitrate concentrations (only networks with at least 10 wells are listed). Table 6.


[usg, unconsolidated sand and gravel; gla, glacial sand and gravel; scs, semiconsolidated sand; san, sandstone; scr, sandstone and carbonate rock; car, carbonate rock; bay, basaltic and other volcanic rock; cry, crystalline rock; shading is used to differentiate between aquifer lithologies]

|                  | A        |                                                   | Matterior In and            | Network         | Rec               | lox-age class (pei | Redox-age class (percentage of samples) <sup>3</sup> | S) <sup>3</sup> | Susceptibility to  |
|------------------|----------|---------------------------------------------------|-----------------------------|-----------------|-------------------|--------------------|------------------------------------------------------|-----------------|--------------------|
| Aquiter <i>F</i> | Aquiter  | Aquifer name                                      | Network name                | identifier      | 0xic-             | 0xic-              | Anoxic-                                              | Anoxic-         | changes in nitrate |
| -                | Agoioini |                                                   |                             | (see figure 14) | potentially young | potentially old    | potentially young                                    | potentially old | concentrations     |
|                  | gsn      | Basin and Range basin-fill aquifers               | grslsus3 (30)               | pl              | 83                | 10                 | 0                                                    | 7               | High               |
|                  | nsg      | Basin and Range basin-fill aquifers               | nvbrsus2 (25)               | p2              | 60                | 32                 | 0                                                    | 8               | Medium             |
|                  | usg      | Basin and Range basin-fill aquifers               | nvbrdwgs1 (14)              | p3              | 57                | 36                 | 0                                                    | 7               | Medium             |
|                  | nsg      | California Coastal Basin aquifers                 | sacrsus3 (11)               | p4              | 82                | 0                  | 6                                                    | 6               | High               |
|                  | nsg      | California Coastal Basin aquifers                 | sanasus1 (29)               | p5              | 79                | 21                 | 0                                                    | 0               | High               |
|                  | usg      | California Coastal Basin aquifers                 | sacrsus4 (17)               | b6              | 71                | 9                  | 18                                                   | 9               | Medium             |
|                  | nsg      | California Coastal Basin aquifers                 | sanasus2 (18)               | p7              | 67                | 9                  | 11                                                   | 17              | Medium             |
|                  | nsg      | California Coastal Basin aquifers                 | sanasus3 (17)               | p8              | 47                | 24                 | 12                                                   | 18              | Medium             |
|                  | nsg      | Central Valley aquifer system                     | sanjdwgs1 (15)              | 6d              | 100               | 0                  | 0                                                    | 0               | High               |
|                  | nsg      | High Plains aquifer                               | hpgwspcg7 (15)              | p10             | 73                | 27                 | 0                                                    | 0               | Medium             |
|                  | nsg      | High Plains aquifer                               | hpgwdwgs1 (15) <sup>1</sup> | p11             | 47                | 7                  | 33                                                   | 13              | Medium             |
|                  | nsg      | Mississippi River Valley alluvial aquifer         | misesus1 (10)               | p12             | 10                | 0                  | 80                                                   | 10              | Low                |
|                  | nsg      | Rio Grande aquifer system                         | riogdwgs1 (16)              | p13             | 56                | 31                 | 9                                                    | 9               | Medium             |
|                  | nsg      | Rio Grande aquifer system                         | riogtanc (23)               | p14             | 39                | 39                 | 0                                                    | 22              | Medium             |
|                  | nsg      | Snake River Plain basin-fill aquifers             | usnksus3 (12)               | p15             | 8                 | 92                 | 0                                                    | 0               | Low                |
| 10               | nsg      | Surficial aquifer system                          | sofidwgs1 (15)              | p16             | 40                | 0                  | 60                                                   | 0               | Medium             |
| 12e              | gla      | Eastern glacial aquifers                          | linjdwgs1 (12)              | p17             | 100               | 0                  | 0                                                    | 0               | High               |
| 12e              | gla      | Eastern glacial aquifers                          | conndwgs1 (15)              | p18             | 87                | 0                  | 13                                                   | 0               | High               |
| l 2e             | gla      | Eastern glacial aquifers                          | necbsus3 (29)               | p19             | 79                | ŝ                  | 17                                                   | 0               | High               |
| 12c              | gla      | Central glacial aquifers                          | miamspcb1 (15)              | p20             | 33                | 0                  | 09                                                   | 7               | Medium             |
| 12c              | gla      | Central glacial aquifers                          | whmidwgs1 (13)              | p21             | 23                | 0                  | 54                                                   | 23              | Low                |
| 12wc             | gla      | West-central glacial aquifers                     | hpgwdwgs1 (15) <sup>1</sup> | p22             | 47                | 7                  | 33                                                   | 13              | Medium             |
| l2wc             | gla      | West-central glacial aquifers                     | umisdwgs1 (15) <sup>2</sup> | p23             | 13                | 20                 | 13                                                   | 53              | Low                |
| 3                | SCS      | Coastal Lowlands aquifer system                   | trinsus4 (11)               | p24             | 18                | 36                 | 18                                                   | 27              | Low                |
| 4                | SCS      | Mississippi Embayment aquifer system              | misesus4 (10)               | p25             | 40                | 50                 | 10                                                   | 0               | Medium             |
| 4                | SCS      | Mississippi Embayment aquifer system              | misesus2 (30)               | p26             | 20                | 0                  | 40                                                   | 40              | Low                |
| 5                | SCS      | Northern Atlantic Coastal Plain aquifer system    | dlmvspcg10 (30)             | p27             | 83                | 0                  | 17                                                   | 0               | High               |
| 6                | SCS      | Southeastern Coastal Plain aquifer system         | santsus1 (20)               | p28             | 95                | 0                  | 0                                                    | 5               | High               |
| 8                | san      | Cambrian-Ordovician aquifer system                | umisdwgs1 (15) <sup>2</sup> | p29             | 20                | 20                 | 40                                                   | 20              | Low                |
| 8                | san      | Cambrian-Ordovician aquifer system                | uirbsus3 (29)               | p30             | 7                 | 7                  | 0                                                    | 86              | Low                |
| 8                | san      | Cambrian-Ordovician aquifer system                | eiwasus3 (28)               | p31             | 0                 | 41                 | 3                                                    | 55              | Low                |
| 19               | san      | Denver Basin aquifer system                       | spltdwgs1 (12)              | p32             | 25                | 33                 | 17                                                   | 25              | Medium             |
| 24               | scr      | Edwards-Trinity aquifer system                    | sctxsus3 (21)               | p33             | 95                | 0                  | 5                                                    | 0               | High               |
| 27               | car      | Biscayne aquifer                                  | softsus1 (23)               | p34             | 13                | 0                  | 87                                                   | 0               | Low                |
| 29               | car      | Floridan aquifer system                           | gafidwgs1 (14)              | p35             | 64                | 7                  | 14                                                   | 14              | Medium             |
| 29               | car      | Floridan aquifer system                           | gafidwgs2 (14)              | p36             | 29                | 7                  | 14                                                   | 50              | Medium             |
| 35               | bav      | Columbia Plateau basaltic-rock aquifer system     | ccptsus1b (22)              | p37             | 55                | 18                 | 0                                                    | 27              | Medium             |
| 37               | bav      | Hawaiian volcanic-rock aquifers                   | oahusus1 (23)               | p38             | 100               | 0                  | 0                                                    | 0               | High               |
| 30               | 010      | Diedmont and Blue Ridge crystalline-rock aquifers | nodldwos1 (15)              | n39             | 100               | 0                  | C                                                    | 0               | Hiah               |



**Figure 15.** Median percentage of samples assigned to the four redox-age classes for principal aquifers that have at least two networks of public-supply wells, and the susceptibility of the aquifers to changes in nitrate concentrations.





### **Summary and Conclusions**

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is using multiple approaches to measure and explain trends in concentrations of nitrate in principal aquifers of the United States. Near decadal sampling of selected well networks is providing information on where long-term changes in nitrate concentrations have occurred. Because those studies do not include all the NAWQA well networks, a determination has yet to be made as to what might be expected in networks from which time-series data have not been collected. Characterizing aquifer susceptibility to changes in nitrate concentrations on the basis of data collected from all the NAWQA well networks would be a step toward extrapolating findings from those studies to broader regions.

The purpose of this report is to characterize the susceptibility of selected principal aquifers of the United States to changes in nitrate concentrations on a basis of the redox-age classification scheme developed in this report. In this study, water samples collected from 6,593 wells in 39 principal aquifers and 5 alluvial aquifers (collected from 1991 to 2010) were assigned to four redox-age classes on the basis of concentrations of dissolved oxygen and various indicators of groundwater age. The redox-age classes are oxicpotentially young, oxic-potentially old, anoxic-potentially young, and anoxic-potentially old. The redox-age assignments were then used to characterize the susceptibility of principal aquifers to changes in nitrate concentrations. Aquifer areas (as defined by well networks) in which at least 75 percent of the samples were classified as oxic-potentially young were considered to have a high susceptibility to changes in nitrate concentrations. Aquifer areas were considered to have a medium susceptibility if at least 25 percent and less than 75 percent of the samples were classified as oxic-potentially young. Aquifer areas were considered to have a low susceptibility if less than 25 percent of the samples were classified as oxic-potentially young.

For the parts of aquifers near the water table in agricultural areas, the aquifers most susceptible to changes in nitrate concentrations were the Columbia Plateau basin-fill aquifers, Eastern glacial aquifers, and the West-central glacial aquifers. None of the aquifers had a low susceptibility to changes in nitrate concentrations. Large intraaquifer redox-age variability was observed in most of the aquifers that had multiple networks of shallow monitoring wells in agricultural areas. For the three well networks in the Central Valley aquifer system, for example, the percentage of samples classified as oxic-potentially young ranged from 13 to 90 percent, and the percentage of samples classified as anoxicpotentially young ranged from 10 to 83 percent.

For the parts of aquifers that provide domestic water supplies, the aquifers most susceptible to changes in nitrate concentrations were the Northern Atlantic Coastal Plain aquifer system and the Early Mesozoic Basin, Valley and Ridge carbonaterock, and Piedmont and Blue Ridge crystalline-rock aquifers in the eastern United States; the Ozark Plateaus aquifer system in parts of Missouri and Arkansas; and the Central Valley, Columbia Plateau basaltic-rock, and Snake River Plain basaltic-rock aquifer systems in the West. The least susceptible aquifers were the Texas Coastal Uplands and Denver Basin aquifer systems.

Relatively large intraaquifer variability in redox-age classes was observed in some of the principal aquifers. For the five networks of domestic wells sampled in the Floridan aquifer system, for example, the percentage of samples classified as oxic-potentially young ranged from 10 to 100 percent. Aquifer confinement probably is an important control on redox-age variability in the Floridan aquifer system. The Central glacial aquifers also showed large redox-age variability, which could be attributed to the diversity of depositional environments represented by well networks in those aquifers.

Principal-aquifer lithology groups with the largest percentage of domestic-well networks considered to have a high susceptibility to changes in nitrate concentrations were the basaltic- and other volcanic-rock aquifer systems, carbonate-rock aquifers, and crystalline-rock aquifers. These three lithology groups include five of the six domestic-well networks with 100 percent of their samples classified as oxic-potentially young. The lithology groups with the smallest percentage of networks considered to have a high susceptibility to changes in nitrate concentrations were the glacial aquifers and sandstone aquifers. These two lithology groups include the three well networks with 0 percent of their samples classified as oxic-potentially young. There are important geologic differences between the aquifer lithology groups with high and low susceptibilities to changes in nitrate concentrations. The relatively large percentage of highsusceptibililty networks in the basaltic- and other volcanic-rock aquifer systems, carbonate-rock aquifers, and crystalline-rock aquifers may indicate the importance of fractures and karst features in promoting the rapid movement of oxic-potentially young groundwater in those aquifers. The relatively small percentage of high-susceptibility networks in the glacial and sandstone aquifers reflects geologic characteristics of those aquifers that support anoxic redox conditions (high electron donor content) and inhibit water movement (fine-grained confining layers).

Domestic-well networks in the eastern and western United States differed with respect to the percentage of samples assigned to certain redox-age classes. The 45 networks located in the western United States had a larger median percentage (13 percent) of samples classified as oxic-potentially old than the 60 networks located in the East (4 percent). Previous studies already noted the presence of oxic groundwater that was sometimes thousands of years old in organiccarbon-poor unconsolidated sand and gravel aquifers in the western United States, particularly in the Central Valley and Rio Grande aquifer systems, and the Basin and Range basinfill and High Plains aquifers. Those aquifers typically have low natural recharge rates and large, thick flow systems. In contrast, networks located in the eastern United States had a larger median percentage (20 percent) of samples classified as anoxic-potentially young than networks located in the West (7 percent). This is not surprising considering the generally shallower depths to water, higher natural recharge rates, and smaller, shallower flow systems in the eastern United States than in the West. Oxic-potentially old and anoxic-potentially young conditions both reduce aquifer susceptibility to changes in nitrate concentrations, but for different climatic, geologic, and hydrologic reasons.

Fifteen of the domestic-well networks were approximately collocated with networks of shallow monitoring wells in agricultural areas, which provided the opportunity to compare the susceptibility to changes in nitrate concentrations at different depths in the same aquifer area. The median depth of the domestic wells was greater than the median depth of the monitoring wells for each pair of well networks. For 10 of the 15 pairs of networks, the monitoring-well networks had the higher percentage of samples classified as oxic-potentially young, indicating that susceptibility tended to be higher at the shallower depths of the monitoring wells.

For the parts of aquifers that provide public water supplies, the aquifers most susceptible to changes in nitrate concentrations were the Eastern glacial aquifers and the California Coastal Basin, Basin and Range basin-fill, and High Plains aquifers in the West. The least susceptible aquifer was the Cambrian-Ordovician aquifer system in the upper Midwest.

Only four of the networks of public-supply wells were approximately collocated with networks of domestic wells. The median depth of the public-supply wells was greater than the median depth of the domestic wells for each pair of well networks. For three of the four pairs of networks, the publicsupply wells had the higher percentage of samples classified as oxic-potentially young, indicating that susceptibility tended to be higher in the vicinity of public-supply wells than in the vicinity of domestic wells even though the public-supply wells had larger median well depths. Although the number of paired networks of public-supply and domestic wells was small, this finding is the opposite of what was observed for shallow monitoring wells and domestic wells. Previous studies found that high rates of pumping in public-supply wells with long screens induced more rapid downward movement of young groundwater than did domestic wells, which had shorter screens and were less heavily pumped. The data from this study are generally consistent with those findings.

## **Acknowledgments**

Karen Burow and Matthew Landon provided helpful comments on earlier versions of this report.

# **References Cited**

Böhlke, J.K., Wanty, R., Tuttle, M., Delin, G., and Landon, M., 2002, Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota: Water Resources Research, v. 38, doi:10.1029/2001WR000663.

Böhlke, J.K., Verstraeten, I.M., and Kraemer, T.F., 2007, Effects of surface-water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer: Applied Geochemistry, v. 22, p. 152–174.

Bruce, B.W., and Oelsner, G.P., 2001, Contrasting water quality from paired domestic/public supply wells, central High Plains: Journal of the American Water Resources Association, v. 37, p. 1389–1403.

Burow, K.R., Shelton, J.L., and Dubrovsky, N.M., 2008a, Regional nitrate and pesticide trends in groundwater in the eastern San Joaquin Valley, California: Journal of Environmental Quality, v. 37, p. S249–S263.

Burow, K.R., Jurgens, B.C., Kauffman, L.J., Phillips, S.P., Dalgish, B.A., and Shelton, J.L., 2008b, Simulations of ground-water flow and particle pathline analysis in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California: U.S. Geological Survey Scientific Investigations Report 2008–5035, 41 p.

Busenberg, E., and Plummer, L.N., 2000, Dating young ground water with sulfur hexafluoride—Natural and anthropogenic sources of sulfur hexafluoride: Water Resources Research, v. 36, p. 3011–3030.

Chapelle, F.H., McMahon, P.B., Dubrovsky, N.M., Fujii, R.F., Oaksford, E.T., and Vroblesky, D.A., 1995, Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems: Water Resources Research, v. 31, p. 359–371.

Clark, B.R., Landon, M.K., Kauffman, L.J., and Hornberger, G.Z., 2008, Simulations of ground-water flow, transport, age, and particle tracking near York, Nebraska, for a study of transport of anthropogenic and natural contaminants (TANC) to public supply wells: U.S. Geological Survey Scientific Investigations Report 2007–5068, 48 p.

Dubrovsky, N.M., Burow, K.R., Clark, G.M., Gronberg, J.M., Hamilton P.A., Hitt, K.J., Mueller, D.K., Munn, M.D., Nolan, B.T., Puckett, L.J., Rupert, M.G., Short, T.M., Spahr, N.E., Sprague, L.A., and Wilber, W.G., 2010, The quality of our Nation's waters—Nutrients in the Nation's streams and groundwater, 1992–2004: U.S. Geological Survey Circular 1350, 174 p. Gilliom, R.J., Alley, W.M., and Gurtz, M.E., 1995, Design of the National Water-Quality Assessment Program: Occurrence and distribution of water-quality conditions: U.S. Geological Survey Circular 1112, 33 p.

Green, C.T., Puckett, L.J., Böhlke, J.K., Bekins, B.A., Phillips, S.P., Kauffman, L.J., Denver, J.M., and Johnson, H.M., 2008, Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States: Journal of Environmental Quality, v. 37, p. 994–1009.

Green, C.T., Böhlke, J.K., Bekins, B.A., and Phillips, S.P., 2010, Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer: Water Resources Research, v. 46, doi:10.1029/2009WR008903.

Gurdak, J.J., and Qi, S.L., 2006, Vulnerability of recently recharged groundwater in the High Plains aquifer to nitrate contamination: U.S. Geological Survey Scientific Investigations Report 2006–5050, 45 p.

Hamlin, S.N., Belitz, K., Kraja, S., and Dawson, B., 2002, Groundwater quality in the Santa Ana watershed, California, overview and data summary: U.S. Geological Survey Water-Resources Investigations Report 02–4243, 55 p.

Hinkle, S.R., Shapiro, S.D., Plummer, L.N., Busenberg, E., Widman, P.K., Casile, G.C., and Wayland, J.E., 2010, Estimates of tracer-based piston-flow ages of groundwater from selected sites—National Water-Quality Assessment Program, 1992–2005: U.S. Geological Survey Scientific Investigations Report 2010–5229, 90 p.

Jurgens, B.C., Burow, K.R., Dalgish, B.A., and Shelton, J.L., 2008, Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California: U.S. Geological Survey Scientific Investigations Report 2008–5156, 78 p.

Kaufman, S., and Libby, W.F., 1954, The natural distribution of tritium: Physics Review, v. 93, p. 1337–1344.

Kauffman, L.J., Baehr, A.L., Ayers, M.A., and Stackelberg, P.E., 2001, Effects of land use and travel time on the distribution of nitrate in the Kirkwood-Cohansey aquifer system in southern New Jersey: U.S. Geological Survey Water-Resources Investigations Report 01–4117, p. 49.

Kolpin, D.W., Goolsby, G.A., and Thurman, E.M., 1995, Pesticides in near-surface aquifers: An assessment using highly sensitive analytical methods and tritium: Journal of Environmental Quality, v. 24, p. 1125–1132.

Landon, M.K., Belitz, K., Jurgens, B.C., Kulongoski, J.T., and Johnson, T.D., 2010a, Status and understanding of groundwater quality in the Central–Eastside San Joaquin Basin, 2006—California GAMA Priority Basin project: U.S. Geological Survey Scientific Investigations Report 2009–5266, 97 p.

#### 34 Use of Classes to Characterize Susceptibility of Principal Aquifers to Changes in Nitrate Concentrations, 1991 to 2010

Landon, M.K., Jurgens, B.C., Katz, B.G., Eberts, S.M., Burow, K.R., and Crandal, C.A., 2010b, Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States: Hydrogeology Journal, v. 18, p. 577–593.

Lindsey, B.D., and Rupert, M.G., 2012, Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988–2010: U.S. Geological Survey Scientific Investigations Report 2012–5049, 49 p.

Lucas, L.L., and Unterweger, M.P., 2000, Comprehensive review and critical evaluation of the half-life of tritium: Journal of Research of the National Institute of Standards and Technology, v. 105, p. 541–549.

Manning, A.H., Solomon, D.K., and Thiros, S.A., 2005, <sup>3</sup>H/<sup>3</sup>He age data in assessing the susceptibility of wells to contamination: Ground Water, v. 43, p. 353–367.

McCulloch, A., 2003, Chloroform in the environment— Occurrence, sources, sinks and effects: Chemosphere, v. 50, p. 1291–1308.

McMahon, P.B., Böhlke, J.K., and Bruce, B.W., 1999, Denitrification in marine shales in northeastern Colorado: Water Resources Research, v. 35, p. 1629–1642.

McMahon, P.B., Böhlke, J.K., and Christenson, S.C., 2004, Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA: Applied Geochemistry, v. 19, p. 1655–1686.

McMahon, P.B., Dennehy, K.F., Bruce, B.W., Gurdak, J.J., and Qi, S.L., 2007, Water-quality assessment of the High Plains aquifer, 1999–2004: U.S. Geological Survey Professional Paper 1749, 136 p.

McMahon, P.B., and Chapelle, F.H., 2008, Redox processes and water quality of selected principal aquifer systems: Ground Water, v. 46, p. 259–271.

McMahon, P.B., Böhlke, J.K., Kauffman, L.J., Kipp, K.L., Landon, M.K., Crandall, C.A., Burow, K.R., and Brown, C.J., 2008a, Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States: Water Resources Research, v. 44, W04401, doi:10.1029/2007WR006252.

McMahon, P.B., Burow, K.R., Kauffman, L.J., Eberts, S.M., Böhlke, J.K., and Gurdak, J.J., 2008b, Simulated response of water quality in public supply wells to land use change: Water Resources Research, v. 44, W00A06, doi:10.1029/2007WR006731.

McMahon, P.B., Cowdery, T.K., Chapelle, F.H., and Jurgens, B.C., 2009, Redox conditions in selected principal aquifers of the United States: U.S. Geological Survey Fact Sheet 2009–3041, 6 p. McMahon, P.B., Plummer, L.N., Böhlke, J.K., Shapiro, S.D., and Hinkle, S.R., 2011, A comparison of recharge rates in aquifers of the United States based on groundwater-age data: Hydrogeology Journal, v. 19, p. 779–800.

Michel, R.L., and Schroeder, R.A., 1994, Use of long-term tritium records from the Colorado River to determine timescales for hydrologic processes associated with irrigation in the Imperial Valley, California: Applied Geochemistry, v. 9, p. 387–401.

Mueller, D.K., and Helsel, D.R., 1996, Nutrients in the Nation's waters—Too much of a good thing?: U.S. Geological Survey Circular 1136, 24 p.

Nolan, B.T., and Hitt, K.J., 2003, Nutrients in shallow groundwaters beneath relatively undeveloped areas in the conterminous United States: U.S. Geological Survey Water-Resources Investigations Report 02–4289, 17 p.

Nolan, B.T., and Hitt, K.J., 2006, Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States: Environmental Science & Technology, v. 40, p. 7834–7840.

Pabich, W.J., Valiela, I., and Hemond, H.F., 2001, Relationship between DOC concentration and vadose zone thickness and depth below the water table in groundwater of Cape Cod, U.S.A.: Biogeochemistry, v. 55, p. 247–268.

Plummer, L.N., Michel, R.L., Thurman, E.M., and Glynn, P.D., 1993, Environmental tracers for age-dating young ground water, *in* Alley, W.M., ed., Regional groundwater quality, chap. 11: New York, Van Nostrand Reinhold, p. 255–294.

Plummer, L.N., Bohkle, J.K., and Busenberg, E., 2003, Approaches for ground-water dating, *in* Lindsey, B.D., Phillips, S.W., Donnelly, C.A., Speiran, G.K., Plummer, L.N., Böhlke, J.K., Focazio, M.J., Burton, W.C., and Busenberg, Eurybiades, Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed: U.S. Geological Survey Water-Resources Investigations Report 03–4035, p. 12–24.

Plummer, L.N., Bexfield, L.M., Anderholm, S.K., Sanford, W.E., and Busenberg, E., 2004, Geochemical characterization of groundwater flow in the Santa Fe Group aquifer system, middle Rio Grande Basin, New Mexico: U.S. Geological Survey Water-Resources Investigations Report 03–4131, 395 p.

Plummer, L.N., Busenberg, E., Eberts, S.M., Bexfield, L.M., Brown, C.J., Fahlquist, L.S., Katz, B.G., and Landon, M.K., 2008, Low-level detections of halogenated volatile organic compounds in groundwater—Use in vulnerability assessments: Journal of Hydrologic Engineering, v. 13, p. 1049–1068.

Puckett, L.J., Tesoriero, A.J., Dubrovsky, N.M., 2011, Nitrogen contamination of surficial aquifers—A growing legacy: Environmental Science & Technology, v. 45, p. 839–844. Reilly, T.E., Dennehy, K.F., Alley, W.M., and Cunningham,W.L., 2008, Groundwater availability in the United States:U.S. Geological Survey Circular 1323, 70 p.

Rosen, M.R., Voss, F.D., and Arufe, J.A., 2008, Evaluation of intra-annual variations in U.S. Geological Survey National Water-Quality Assessment groundwater quality data: Journal of Environmental Quality, v. 37, p. S199–S208.

Rupert, M.G., 1998, Probability of detecting atrazine/ desethylatrazine and elevated concentrations of nitrate  $(NO_2 + NO_3 - N)$  in groundwater in the Idaho part of the Upper Snake River Basin: U.S. Geological Survey Water-Resources Investigations Report 98–4203, 32 p.

Rupert, M.G., 2008, Decadal-scale changes of nitrate in groundwater of the United States, 1988–2004: Journal of Environmental Quality, v. 37, p. S240–S248.

Rupert, M.G., and Plummer, L.N., 2009, Groundwater quality, age, and probability of contamination, Eagle River watershed valley-fill aquifer, north-central Colorado, 2006–2007: U.S. Geological Survey Scientific Investigations Report 2009–5082, 59 p.

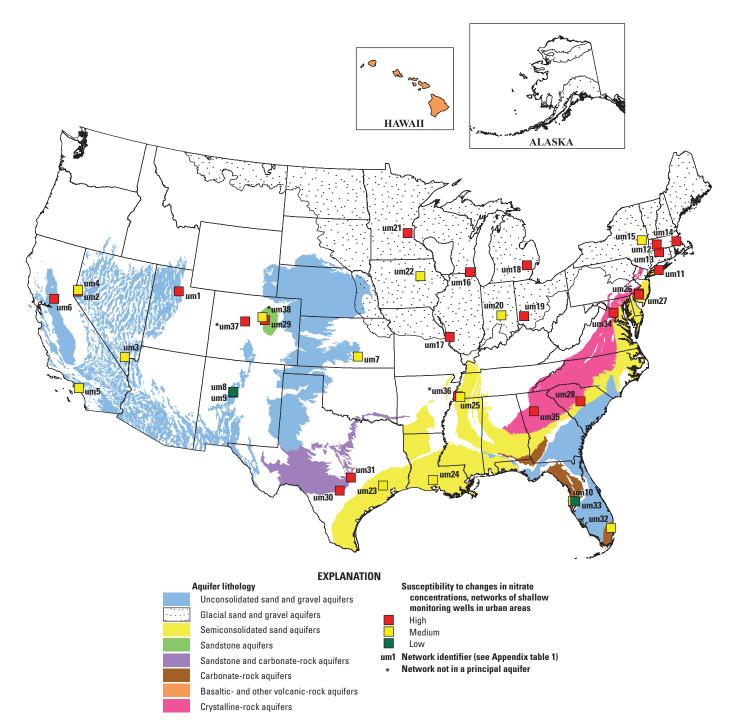
Shelton, J.L., Burow, K.R., Belitz, K., Dubrovsky, N.M., Land, M., and Gronberg, J.M., 2001, Low-level volatile organic compounds in active public supply wells as groundwater tracers in the Los Angeles physiographic basin, California, 2000: U.S. Geological Survey Water-Resources Investigations Report 01–4188, 35 p.

Tesoriero, A.J., and Puckett, L.J., 2011, O<sub>2</sub> reduction and denitrification rates in shallow aquifers: Water Resources Research, v. 47, doi:10.1029/2011WR010471.

Thatcher, L.L., 1962, The distribution of tritium fallout in precipitation over North America: Bulletin of the International Association of Scientific Hydrology, v. 7, p. 48–58.

U.S. Geological Survey, 2003, Principal aquifers, *in* National Atlas of the United States of America, 1 sheet, 1:5,000,000 scale, available at *http://www.nationalatlas.gov/ wallmaps.html*.

U.S. Geological Survey, 2011, Publications of the National Water-Quality Assessment (NAWQA) Program:
U.S. Geological Survey, accessed September 21, 2011, at *http://water.usgs.gov/nawqa/bib/*.


Weissmann, G.S., Zhang, Y., LaBolle, E.M., and Fogg, G.E., 2002, Dispersion of groundwater age in an alluvial aquifer system: Water Resources Research, v. 38, doi:10.1029/2001WR000907.

Winograd, I.J., and Robertson, F.N., 1982, Deep oxygenated groundwater—Anomaly or common occurrence?: Science, v. 216, p. 1227–1230.

Wolock, D.M., 2003, Estimated mean annual natural groundwater recharge in the conterminous United States: U.S. Geological Survey Open-File Report 03–311, digital data set.

Zogorski, J.S., Carter, J.M., Ivahnenko, T., Lapham, W.W., Moran, M.J., Rowe, B.L., Squillace, P.J., and Toccalino, P.L., 2006, Volatile organic compounds in the Nation's groundwater and drinking-water supply wells: U.S. Geological Survey Circular 1292, 101 p.

# Appendix 1



**Figure 1–1.** Central locations of networks of shallow monitoring wells in urban areas and the susceptibility of the networks to changes in nitrate concentrations.

Table 1–1. Redox-age classes for water samples collected from networks of shallow monitoring wells in urban areas in the United States and the susceptibility of the networks to changes in nitrate concentrations (only networks with at least 10 wells are listed). [usg, unconsolidated sand and gravel; gla, glacial sand and gravel; scs, semiconsolidated sand; san, sandstone; scr, sandstone and carbonate rock; car, carbonate rock; cry, crystalline rock; shading is used to dif-ferentiate between aquifer lithologies]

| Aquifer<br>number | Aquifer   |                                                   |                   |               |             |             | •           |             | SUSCEDU DI IV TO   |
|-------------------|-----------|---------------------------------------------------|-------------------|---------------|-------------|-------------|-------------|-------------|--------------------|
| number            | •         | Annifer name                                      | Network name      | Identifier    | Oxic-       | -DXIC-      | Anoxic-     | Anoxic-     | changes in nitrate |
|                   | lithology |                                                   | (number of wells) | (see Appendix | potentially | potentially | potentially | potentially | concentrations     |
|                   |           |                                                   |                   | figure 1)     | young       | 010         | young       | 010         |                    |
| 1                 | nsg       | Basin and Range basin-fill aquifers               | grsllusrc1 (29)   | uml           | 100         | 0           | 0           | 0           | High               |
| 1                 | nsg       | Basin and Range basin-fill aquifers               | nvbrlusrc1 (16)   | um2           | 81          | 13          | 9           | 0           | High               |
| 1                 | nsg       | Basin and Range basin-fill aquifers               | nvbrlusur1 (27)   | um3           | 70          | 11          | 19          | 0           | Medium             |
| 1                 | nsg       | Basin and Range basin-fill aquifers               | nvbrlusur2 (20)   | um4           | 35          | 10          | 50          | 5           | Medium             |
| 2                 | gsn       | California Coastal Basin aquifers                 | sanalusrc1 (24)   | um5           | 67          | 0           | 25          | 8           | Medium             |
| ŝ                 | nsg       | Central Valley aquifer system                     | sacrlusrc1 (26)   | um6           | 77          | 12          | 12          | 0           | High               |
| 5                 | asu       | High Plains aquifer                               | hpgwlusur1 (30)   | um7           | 60          | 0           | 40          | 0           | Medium             |
| ~                 | asu       | Rio Grande aquifer system                         | rioglusur1 (24)   | um8           | 17          | 4           | 42          | 38          | Low                |
| 8                 | gsn       | Rio Grande aquifer system                         | rioglusrc1 (20)   | 0 mu          | 15          | 0           | 45          | 40          | Low                |
| 10                | nsg       | Surficial aquifer system                          | gafilusrc1a (12)  | um10          | 58          | 0           | 42          | 0           | Medium             |
| 12e               | gla       | Eastern glacial aquifers                          | linjlusrc2 (26)   | um11          | 100         | 0           | 0           | 0           | High               |
| 12e               | gla       | Eastern glacial aquifers                          | connlusur1 (39)   | um12          | 90          | 8           | 0           | ŝ           | High               |
| 12e               | gla       | Eastern glacial aquifers                          | connlusrc1 (27)   | um13          | 81          | 0           | 19          | 0           | High               |
| 12e               | gla       | Eastern glacial aquifers                          | necblusrc1 (29)   | um14          | 76          | 0           | 24          | 0           | High               |
| 12e               | gla       | Eastern glacial aquifers                          | hdsnlusur1 (16)   | um15          | 50          | 19          | 19          | 13          | Medium             |
| 12c               | gla       | Central glacial aquifers                          | uirblusrc1 (21)   | um16          | 95          | 0           | 5           | 0           | High               |
| 12c               | gla       | Central glacial aquifers                          | lirblusrc1 (25)   | um17          | 80          | 16          | 4           | 0           | High               |
| 12c               | gla       | Central glacial aquifers                          | lerilusrc1 (35)   | um18          | 77          | 0           | 23          | 0           | High               |
| 12c               | gla       | Central glacial aquifers                          | miamlusrc1 (24)   | um19          | 75          | 0           | 25          | 0           | High               |
| 12c               | gla       | Central glacial aquifers                          | whitlusur1a (25)  | um20          | 56          | 0           | 40          | 4           | Medium             |
| 12wc              | gla       | West-central glacial aquifers                     | umislusrc1 (32)   | um21          | 88          | 0           | 13          | 0           | High               |
| 12wc              | gla       | West-central glacial aquifers                     | eiwalusrc1 (29)   | um22          | 55          | 0           | 45          | 0           | Medium             |
| 13                | SCS       | Coastal Lowlands aquifer system                   | trinlusrc1 (26)   | um23          | 65          | 0           | 31          | 4           | Medium             |
| 13                | SCS       | Coastal Lowlands aguifer system                   | acadlusrc1 (25)   | um24          | 48          | 16          | 28          | ~           | Medium             |
| 14                | SCS       | Mississippi Embayment aquifer system              | miselusrc2 (10)   | um25          | 50          | 30          | 20          | 0           | Medium             |
| 15                | SCS       | Northern Atlantic Coastal Plain aquifer system    | linjlusur1 (20)   | um26          | 100         | 0           | 0           | 0           | High               |
| 15                | SCS       | Northern Atlantic Coastal Plain aquifer system    | linjlusrc1 (30)   | um27          | 60          | 0           | 7           | ŝ           | High               |
| 16                | SCS       | Southeastern Coastal Plain aquifer system         | santlusrc1 (30)   | um28          | 60          | 7           | ŝ           | 0           | High               |
| 19                | san       | Denver Basin aquifer system                       | spltlusrc2 (20)   | um29          | 75          | 5           | 15          | 5           | High               |
| 24                | SCI       | Edwards-Trinity aquifer system                    | sctxlusrc1 (30)   | um30          | 100         | 0           | 0           | 0           | High               |
| 24                | SCT       | Edwards-Trinity aquifer system                    | sctxlusrc2 (23)   | um31          | 78          | 6           | 4           | 6           | High               |
| 27                | car       | Biscayne aquifer                                  | sofilusrc1a (30)  | um32          | 09          | 7           | 30          | б           | Medium             |
| 29                | car       | Floridan aquifer system                           | gafilusrc1b (17)  | um33          | 9           | 12          | 65          | 18          | Low                |
| 39                | cry       | Piedmont and Blue Ridge crystalline-rock aquifers | podllusrc1 (30)   | um34          | 90          | 0           | 10          | 0           | High               |
| 39                | cry       | Piedmont and Blue Ridge crystalline-rock aquifers | acfblusur1 (15)   | um35          | 80          | 13          | 7           | 0           | High               |
| -                 | nsg       | Pleistocene Terrace deposits                      | miselusrc1 (26)   | um36          | 77          | 4           | 15          | 4           | High               |
| -                 | gsn       | Alluvial aquifers in the Colorado Rocky Mountains | ucollusrc1 (25)   | um37          | 76          | 8           | 16          | 0           | High               |
|                   | nsg       | Denver Basin alluvial aquifers                    | spltlusrc1 (23)   | um38          | 52          | 4           | 43          | 0           | Medium             |

Publishing support provided by: Denver Publishing Service Center, Denver, Colorado

For more information concerning this publication, contact: Director, USGS Colorado Water Science Center Box 25046, Mail Stop 415 Denver, CO 80225 (303) 236-4882

Or visit the Colorado Water Science Center Web site at: http://co.water.usgs.gov/

This report is available at: http://pubs.usgs.gov/sir/2012/5220