NASA/TM-2014-218548

A Formally-Verified Decision Procedure for
Univariate Polynomial Computation Based on
Sturm’s Theorem

Anthony J. Narkawicz and César A. Mufioz
Langley Research Center, Hampton, Virginia

November 2014

NASA STI Program

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

... in Profile

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page
at http://www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 443-757-5803

e Phone the NASA STI Information Desk at
443-757-5802

e \Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2014-218548

A Formally-Verified Decision Procedure for
Univariate Polynomial Computation Based on
Sturm’s Theorem

Anthony J. Narkawicz and César A. Mufioz
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 2014

Acknowledgments

Authors would like to thank Leonardo de Moura, Manuel Eberl, and anonymous referees
for their comments on previous versions of this document.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Abstract

Sturm’s Theorem is a well-known result in real algebraic geometry that provides a
function that computes the number of roots of a univariate polynomial in a semi-
open interval. This paper presents a formalization of this theorem in the PVS
theorem prover, as well as a decision procedure that checks whether a polynomial is
always positive, nonnegative, nonzero, negative, or nonpositive on any input inter-
val. The soundness and completeness of the decision procedure is proven in PVS.
The procedure and its correctness properties enable the implementation of a PVS
strategy for automatically proving existential and universal univariate polynomial
inequalities. Since the decision procedure is formally verified in PVS, the sound-
ness of the strategy depends solely on the internal logic of PVS rather than on an
external oracle. The procedure itself uses a combination of Sturm’s Theorem, an
interval bisection procedure, and the fact that a polynomial with exactly one root
in a bounded interval is always nonnegative on that interval if and only if it is
nonnegative at both endpoints.

1 Introduction

Problems involving polynomial inequalities appear in applications such as air traffic
conflict detection and resolution algorithms [16], floating point analysis [5], and
uncertainty and reliability analysis of dynamic and control systems [3,10]. Solving
these problems in a rigorous way is fundamental to the logical correctness of these
safety-critical systems. However, formal reasoning about polynomials and other
nonlinear functions in an interactive theorem prover is challenging.

Fortunately, significant advances have been made in this area in recent years.
In addition to related work described in later sections, the authors developed for-
malizations in PVS [24] of multivariate Bernstein polynomials [22] and a generic
branch and bound algorithm [23], both of which yield well-known numerical approx-
imation methods. These PVS developments include formally-verified semi-decision
procedures for checking validity and satisfiability of nonlinear properties involving
variables ranging over real intervals. The procedures are integrated into the PVS
theorem prover as automated proof-producing strategies such as bernstein, which
uses Bernstein polynomials, and interval, which uses interval arithmetic. To au-
tomatically discharge a formula such as

220 — 2250 1 1.001 > 0, (1)

whenever z € [0, 3], the user simply needs to invoke one of those strategies in PVS.
In particular, the user does not need the insight that the polynomial in Formula (1)
is equal to (2% — 1)2 + 0.001. While these strategies are powerful, they inherit the
downsides of other numerical approximation methods. For instance, neither of these
strategies succeed in discharging Formula (1) when the variable z is unbounded even
though the inequality still holds for any real number x. Moreover, in many cases,
only approximations of the given formulas are used for reasoning. In general, Bern-
stein polynomials and other numerical tools like interval arithmetic can compute
a tight bound for the range of a polynomial but not the exact range. Thus, the
strategies bernstein and interval cannot prove that

220 — 2% 41 > 0, (2)

whenever = € [0, 3], because 0 is the precise minimum of the polynomial on this
interval.

This paper addresses shortcomings of numerical approximation methods for the
special case of univariate polynomials. In particular, this paper presents a decision
procedure, which is formally verified in PVS, that can be used to check satisfiability
and validity of single-variable strict and non-strict polynomial inequalities where
the variable is restricted to any interval, even an infinite or an open interval. For
example, it can prove Formula (2) for values of z in [0, 3], (0,3), (—o0,0], [3,00),
(—00,), etc.

The decision procedure presented in this paper is based on Sturm’s theorem.
This is a theorem from real algebraic geometry that can be used to explicitly compute
the number of roots of a univariate polynomial in a bounded, semi-open interval
(a,b]. In the case where the polynomial does not have a multiple root at either a

or b, Sturm’s Theorem provides a computable function o such that the number of
roots is equal to o(a) — o(b). Moreover, the function o can be evaluated at —oo
and oo, making it possible to explicitly count the number of roots in the intervals
(—00,b] and (a,00). Thus, Sturm’s Theorem can be used to prove that a univariate
polynomial is always positive (respectively, always negative) on an interval, provided
that the polynomial does not have a multiple root at either endpoint. This proof can
be done by checking that there are no roots in the interval and that the polynomial
is nonnegative (respectively, nonpositive) at the endpoints.

Sturm’s Theorem allows many useful results to be proved, but it does not directly
apply to problems where an endpoint is a multiple root or where the polynomial
bound is exact, e.g., (x — %)2 > 0 for all z € (0,00). This paper expands the
functionality of Sturm’s Theorem into a decision procedure that addresses both of
these cases and applies to any connected interval, open or closed. To deal with
endpoints that are multiple roots, the decision procedure finds a small positive
number € that is less than the distance between any two roots of the polynomial. It
then perturbs by € either endpoint that is a multiple root. The new interval contains
the same number of roots as the original. This allows counting roots in any connected
interval. Finally, to deal with the fact that Sturm’s Theorem can not directly help
prove the nonnegativity (respectively, nonpositivity) of a polynomial that has roots
in a given interval, a branching algorithm is defined that progressively subdivides
the original interval into smaller intervals until each smaller interval contains at
most one root of the polynomial. Then nonnegativity (respectively, nonpositivity)
is checked by whether or not the function is nonnegative (respectively, nonpositive)
at each endpoint of these subintervals. As noted above, the final result is a decision
procedure that can be used to prove bounds on any univariate polynomial on any
connected interval. This decision procedure, which combines Sturm’s Theorem and
a branching algorithm, appears to be new to the literature. Sturm’s Theorem is
used most often to count roots rather than to prove nonnegativity or positivity.

The decision procedure presented in this paper has been formally proved in PVS.
This paper presents not only the decision procedure itself, but also a proof-producing
strategy in PVS, called sturm, for discharging existentially and universally quanti-
fied univariate polynomial inequalities. It can handle any such problem, it always
terminates, and it is always correct. The soundness of the strategy only relies on the
PVS deduction engine. In particular, the strategy does not depend on any trusted
external oracle.

The formal development presented in this paper is electronically available in the
contribution Sturm of the NASA PVS Library.! Examples are provided in the theory
Sturm@examples.pvs. All theorems presented in this paper are formally verified in
PVS. For readability, standard mathematical notation is used throughout this paper.
The reader is referred to the formal development for implementation details.

"Mttp://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.

2 Sturm’s Theorem

Sturm’s Theorem [28] is easily stated. Let p be a univariate polynomial. A function
o is defined on the extended real line R = RU{—o00, 00} by setting o(x) to be equal
to the number of sign changes in the sequence

po(x), pl($)7 pz(I), ,pm(x), (3)
where
po(z) = p(z),
pi(x) =p'(2),
Vji>1:3ceR+: pj(x)=—c-rem(pj_2,pj—1)(z), (4)
Pm = 0,and

Jy €R :pp-1(y) # 0.

Here, rem(pj—2,pj—1) is the remainder after polynomial division of p;_s by p;_i.
Such a sequence is called a Sturm sequence of polynomial p. When counting the
number of sign changes in the Sturm sequence, any zeros are ignored. For example, if
m =T and po(x) =4, pr(z) = =3, p2(x) = =5, p3(x) = 0, pa(x) = 18, p5(x) = —4,
pe(x) = —1 and p7(x) = 0, there are sign changes between pg(x) and p;(x), between
p2(x) and pg(x), and between py(x) and ps(x). In this case, the number of sign
changes in the sequence is given by o(x) = 3.

Note that the evaluation of a polynomial at —oo or oo is equal to —oco or oo
depending on the degree of the polynomial and its leading coefficient. Thus, it is
possible to count the number of sign changes in the sequence of polynomials even if
x is equal to —oo or co. Also, it is worth noting that the introduction of the positive
real number ¢ in Formula (4) is not included in most statements of Sturm’s Theorem
where ¢ is set to 1. However, a specific sequence will be constructed in the algorithm
presented later that improves the computational efficiency of the standard method
and uses different values for ¢, an idea credited to de Moura and Passmore [6].
Sturm’s Theorem is stated as follows.

Theorem 1 (Sturm). For a,b € R with a < b, if either p(a) # 0 or p'(a) # 0, and
if either p(b) # 0 or p'(b) # 0, then the number of roots of p in the interval (a,b] is
given by o(a) — o(b).

Numerous proofs of Sturm’s Theorem can be found on the internet. The authors
would be content to avoid redundancy and leave the proof out of this paper, except
for the fact that there is often a gulf between how a theorem is proved on paper
and how it is proved in an interactive theorem prover. The intended audience is
both mathematicians and users of interactive theorem provers. The proof below
breaks the main idea down into basic principles, and the authors hope that it can
be replicated easily in another interactive theorem prover. It is not a verbatim copy
of the PVS proof of the theorem, but it does use the same approach. This proof
is the same in essence as several others that are found online, most notably the
one found in Sottile’s course notes [27]. The main idea behind the PVS proof is
given here, which is inspired by the proof given in [27], although it differs in its key

approach in that it does not use a previous result about Sylvester sequences. The
proof that is given here is both more elementary and more detailed.

Proof of Theorem 1. First, note that if either ¢ = —o0 or b = oo, then there is
another interval (a*,b*] with real numbers as endpoints that is contained in (a, b]
with the same number of roots of p as the interval (a,b], and such that for every
J, pj(a*) has the same sign as pj(a) and p;(b*) has the same sign as p;(b). Thus,
om(a*) = op(a) and o, (b*) = o, (b). Hence, it is sufficient to prove the result for
the interval (a*,b*]. This shows that the proof can be reduced to the case where a
and b are real numbers (not infinite). Thus, it is henceforth assumed that ¢ and b
are simply real numbers with a < b.

It is relatively easy to prove in an interactive theorem prover that there is some
sequence

a=ayp< a1 <---<ap=»>b

of real numbers such that each closed interval [a;, a;+1] contains at most one point
that is the root of any p;, and that this root is in the interior interval (a;, a; 1) unless
either the root is a and ¢ = 0 or the root is b and 7 = k. If Sturm’s Theorem can
be proved on each semi-open interval (a;,a;+1], then the main result will trivially
follow. Thus, instead of proving Sturm’s Theorem when there are multiple roots, it
is sufficient to assume that (1) there is at most one point that is a root of any of the
p;’s in the closed interval [a,b], and (2) if that root is equal to either a or b then it
is not a root of both p and p'.

If there are no roots of any p; in this closed interval then the intermediate value
theorem implies that each p;(a) has the same sign as p;(b), so o(a) —o(b) = 0. This
leaves only the case that there exists exactly one point that is a root of some p; in
[a, b] and where this root can only be either a or b, if it is not a root of both p and
p'. Denote this root 7. It can be verified from the definition of the sequence {p;}
that the following properties hold:

1. For all j < m, there exists a nonnegative integer k; and another polynomial
g; such that p(z) = (z — r)k - g;(x) for all z, where g;(r) # 0.

2. If kg > 0, then k1 = kg — 1.
3. If ko > 1, then kj = kg — 1 and p;(r) = 0 whenever 1 < j < m.

4. If two consecutive elements of the sequence {p;} both have a root at r, then
every p; has a root at r, r # a, r # b, kg > 1, and k; > 0 for all j.

5. If ppp—1(r) =0, then k; > 0 and p;(r) = 0 for all j.
6. If ko <1, then p,,_1 never changes sign on |a, b|.
7. If pj(r) # 0, then p;j(a) and p;(b) have the same nonzero sign.

8 Ifkg <1,1<j<mandpj(r) =0, then p;_i(a) and p;11(b) are nonzero and
have opposite signs, and p;_1(a) and p;j;1(b) are nonzero and have opposite
signs.

9. If kg > 1 and ko is even, then py(a) and po(b) are nonzero and have the same
sign, and for 0 < j < m, p;j(a) and p;(b) have opposite signs.

10. If k9 > 1 and kg is odd, then py(a) and po(b) are nonzero and have opposite
signs, and for 0 < j < m, p;(a) and p;(b) are nonzero and have the same sign.

11. If r # a and r # b, then po(a) and p;(a) are nonzero have opposite signs, and
po(b) and p1(b) are nonzero and have the same sign.

12. If r = a and pp(a) = 0, then both p;(a) and po(b) have the same sign as p;(b),
which is nonzero.

13. If » = b and p;1(b) = 0, then py(a) and p;(a) are nonzero and have opposite
signs, while p;(a) has the same sign as p;(b).

For the purpose of the proof, define o;(x) to be the number of sign changes in the
first j terms of the sequence in Formula (3), so that o = o,,. The proof is carried
out in each case by induction on the subscript j in o;.

First consider the case where r = a. Then ky < 1 by Property 4. It is proved
by induction on j that if p;(a) # 0, then p;(a) and p(b) have the same sign and
that o¢(a) — 0¢(b) = 0 for either t = j or t = j + 1. The result will follow because
Pm—1(a) is nonzero by properties 5 and 4, and o, = 0,,,—1. The base case is either
j=0orj=1. If pg(a) = 0, then the base case is j = 1, and Property 12 implies
that pi(a) and p;(b) have the same sign and that o1(a) = o1(b) = 0. If pg(a) # 0,
then the base case is j = 0, and Property 7 implies that pg(a) and py(b) have the
same sign and that og(a) = 0¢(b) = 0. Now by induction, suppose that p;(r) # 0.
Then, by Property 7, p;j(a) and p;(b) have the same nonzero sign. If p;_1(r) # 0,
then p;_1(a) and p;_1(b) have the same sign as well, so it follows immediately that
oj(a) —oj_1(a) = 0j(b) — 0j—1(b), and the result follows by induction. Conversely,
if pj_1(r) = 0, then Property 8 implies that p;_1(a) and p;ii(b) are nonzero and
have opposite signs, and p;_1(b) and pj;1(b) are nonzero and have opposite signs.
It follows immediately that oj11(a) = oj-1(a) + 1 and o;41(b) = o;—1(b) + 1.
Furthermore, Property 4 implies that pji(a) # 0. By Property 7, pjti(a) and
pj+1(b) have the same sign. This completes the proof in the case where r = a.

The case where r = b follows directly from the cases where r = a and where
a < r < b. To see this, suppose that r = b and note that there is some € > 0
such that no p; has a root in the semi-open interval (b,b + €]. By applying the
result to the interval (a,b + €], which contains r in its interior, it can deduced that
om(a)—om(b+€) = 1. Similarly, by applying the result to the interval (b, b+e¢|, whose
greatest lower bound is r, it can deduced that o,,(b) — 0, (b + €) = 0. Combining
these results yields o,,(a) — 0., (b) = 1. This reduces the argument to the case where
a < r < b, which is assumed for the remainder of the proof.

First suppose that ko > 0, which by Property 3 implies that p;(r) = 0 for all j.
It is proved by induction on j that oj(a) — 0;(b) = 1 for all j > 1. For the base
case, it follows immediately from Property 11 that oi(a) = 1 and o1(b) = 0, and
therefore o1(a) — o1(b) = 1. Define 7 to be 1 if kg is even and —1 if kg is odd. For
the inductive case, note that properties 9 and 10 imply that for all j > 1, the sign
of oj(a) is equal to —y multiplied by the sign of ¢;(b). From this, it can be seen

that pj;1(a) and p;(a) have opposite sign if and only if p;11(b) and p;(b) do as well,
implying that oj1(a) —0j(a) = 0j4+1(b) —0;(b), and the result follows. This reduces
the proof to the case where a < r < b and kg < 1.

It is now proved by induction that for all j > 1, o(a) — 0;(b) = 1 whenever
p;(r) # 0. The result follows because Property 6 implies that p,,—1(r) # 0 and o,, =
om—1. For the base case, it follows immediately from Property 11 that oi(a) = 1
and o1(b) = 0, and therefore o1 (a) —o1(b) = 1. For the inductive case, suppose that
j > 1 and that p;(r) # 0.

If pj_1(r) # 0, then Property 7, when applied to both j — 1 and j, gives that
pj—1(a) and pj—1(b) have the same nonzero sign, and that p;(a) and p;(b) have the
same nonzero sign. From this, it can be seen that p;_1(a) and p;(a) have opposite
sign if and only if p;_1(b) and p;(b) do as well, implying that o;(a) — 0j_1(a) =
0j(b) — o;—1(b), and the result follows.

Finally, suppose that p;_i(r) = 0. Property 4 implies that p;_o(r) and p;(r)
are both nonzero. Property 8 implies that p;_2(a) and p;j(a) are nonzero and have
opposite signs and that p;_»(b) and p;(b) are nonzero and have opposite signs.
Thus, 0j(a) = 0j—2(a) + 1 and 0j(b) = 0j_2(b) + 1. If j —2 > 1, then the inductive
hypothesis can be applied to deduce that o;(a) — oj(b) = 1. This completes the
proof except in the case where j = 2. However, then j —1 = 1, and so by hypothesis
p1(r) = 0. Property 1 would then imply that k; > 0, and so by Property 2, kg > 1,
a contradiction, since it is assumed in this part of the proof that kg < 1.]

Sturm’s Theorem is less efficient than other methods at isolating roots. How-
ever, as this paper shows, Sturm’s Theorem works well for determining whether the
polynomial is always positive, negative, non-zero, etc., on a given interval.

3 Sturm Sequence of Integer Polynomials

An important element in the definition of a decision procedure for polynomial reason-
ing is a function that explicitly computes the remainder between two polynomials.
For the development presented in this paper, pseudo division is used rather than
standard polynomial division. This removes the need for dividing coefficients in the
algorithm, which means that if the coefficients of the original polynomials are inte-
gers, then the coefficients of their remainder after division will also be integers. In
fact, the pseudo division algorithm in PVS is defined only for integer polynomials.

The remainder after pseudo division of a polynomial g by a polynomial A is
not equal to the remainder after standard division, but is a power of the leading
coefficient of A multiplied by the standard remainder. This power can be either pos-
itive or negative. In the PVS development, the pseudo remainder is multiplied by a
constant so that this multiple is always negative. This ensures that the conditions
in Formula (4), defining the polynomial remainder sequence, all hold. Moreover,
pseudo division can be costly in terms of memory, because avoiding divisions can
cause integer coefficients to become quite large in the pseudo remainder. Thus, in
the PVS development, the pseudo remainder of two integer polynomials is also mul-
tiplied by the reciprocal of the greatest common division of all its coefficients, which
still ensures that the output is an integer polynomial. This multiplication helps to

mitigate coefficient growth, and since the greatest common divisor is positive, it does
not affect the conditions in Formula (4). In the PVS development, the function ged
on polynomials is defined such that ged(p) is equal to the greatest common divisor
of the coefficients of p whenever p is nonzero.

Formally, a univariate polynomial function p is a function from real numbers to
real numbers such that

p(z) = Zcimi, (5)
=0

where ¢, # 0. The natural number n is the degree of p and real numbers ¢; are the
coefficients of p. If ¢; is an integer for every i < n then p will be called an integer
polynomial. If each such ¢; is a rational number, then p will be called a rational
polynomial. In order to specify functions and properties involving polynomials in
an interactive theorem prover, it is necessary to define a data structure to represent
them. The development presented in this paper uses a degree-dense representation
where a polynomial is a list of numerical coefficients of type T, i.e., the i-th element
of the list represents the coefficient of the 2’ monomial. The type 7" can be real,
for real polynomials, int, for integer polynomials, or rat, for rational polynomials.
Nothing in this paper fundamentally depends on this particular representation. For
readability, when there is no ambiguity, lower case letters f,g,...,p,q,... will be
used for both the mathematical concept of polynomial, e.g., Formula (5), and the
polynomial data structure used in the definition of PVS functions, e.g., Formula (6)
below. In the latter case, the expressions deg(p) and coeff(p, i) refer to the degree
of p and the i-th coefficient of the polynomial p, respectively. The same remark
applies to p’, etc. It denotes the mathematical definition of the derivative of p and
the data structure that represents this polynomial.

The adjusted pseudo remainder can be calculated for two integer polynomials g
and h as follows.

adjusted_rem(g, h) =
let r = pseudo_rem(g, h),
d = ged(p) in
if coeff(h,deg(h)) >0 V mod(deg(g) — deg(h) +1,2) =0
then —1r/d
else r/d endif.

(6)

Here, pseudo_rem(g, h) is the remainder after pseudo division of g by h. Its definition
is common enough that it is left out here, although it can be found in the PVS
development. Also, note that coeff(h,deg(h)) is the leading coefficient of h, i.e.,
the nonzero coefficient with the highest degree. It can be verified that since g and
h both have integer coefficients, the polynomial adjusted_rem(g, k) does as well.
The function comp_rem_seq, defined below, computes the remainder sequence
for any two integer polynomials g and h such that the degree of h is less than the
degree of g. It has a list £ of integer polynomials as an input, which is also used as

an accumulator to store the sequence that is recursively computed by the function.

comp_rem_seq(g, h,l) =
if length(¢) = 0 then comp_rem_seq(g, h, cons(g,?))
elsif deg(head({)) =0 then ¢
elsif length(¢) = 1 then comp_rem_seq(g, h, cons(h,()) (7)
else let p = adjusted_rem(head(tail(¥)),head({)) in
comp_rem_seq(g, h, cons(p, {))

endif.

The function sturm_seq, defined below, computes a Sturm sequence of an integer
polynomial p.
sturm_seq(p) = comp_rem_seq(p,p’, ¢), (8)

where ¢ refers to the empty list. A curious reader may have noticed that sturm_seq
computes a Sturm sequence in reverse order, i.e., if £ = sturm seq(p), pn, in For-
mula (3) corresponds to head(¥), p,,—1 corresponds to head(tail(¢)), and so on. It
can be easily checked that the sign changes of ¢ and reverse({) are equal.

4 Decision Procedure for Integer Polynomials

This section presents a decision procedure for computing the sign of an integer
polynomial p, i.e., its positivity, nonpositivity, negativity, nonnegativity, or nonzero
property, on a nonempty interval, which may or may not have infinite endpoints.
This decision procedures depends on a function that explicitly computes the number
of roots of p in that interval. One immediately obvious problem with using the
function ¢ from Sturm’s Theorem to define such function is that it will not work
when either the lower bound or the upper bound of the interval is a multiple root
of the polynomial, i.e., when the polynomial and its derivative both have roots at
that point.

The problem of multiple roots at the endpoints of an interval can be addressed
by perturbing such bounds outward by a small amount so that the new interval
contains exactly the same number of roots as the original but has endpoints that
are not multiple roots. To see how such a perturbation can be computed, let r be
a root of p, so p(r) = 0. A function can be defined with p and r as inputs that
computes the width of a small interval around r that contains no other roots of p.
The first step is to compute the degree of the first successive derivative of p that
does not vanish at r, which is accomplished with the following recursive function.

md(p,r) = if deg(p) =0 V p(r) # 0 then deg(p)
else md(p,r) endif.

(9)

The function md is well defined since the degree of the polynomial that is passed as
parameter strictly decreases at each recursive call.

By using Taylor’s Theorem, p is approximated in a small neighborhood of
r by pmd®m)(r) . (z — r)?~m@r) The error is bounded by a constant times

(z — r)r @)+ where p(»—md®1)) (1) is the (n — md(p,r))-th derivative of p at
r. The interval around 7 containing no other roots is determined by computing a
neighborhood of r on which this derivative is always nonzero. Since it is always
nonzero, it can be proved by induction and the mean value theorem that all lesser
derivatives vanish only at r on this neighborhood. This neighborhood is computed
as follows. First, the following function is defined that takes as inputs polynomial
p, r €R,, and ¢ € R > 0, and returns a § € R > 0 so that any input within § of =
will have value less than e from x when p is applied to both points.

pcc(p, @, €) =
let n = deg(p),

c= m%gi |coeff(p,i)|+ 1 in
1=

if n =0 then 1/2 (10)
€ U 1 ; 1

else min | - 1—}—22(, >\x]]1 y =
c P j—1 2

endif.

Using the function pcc, it is now possible to define a radius around the point r
in which the polynomial p has no other roots. This radius is computed with the
function root_rad.

root_rad(p,r) = let n =deg(p) in

T, —m T T, — I T (11)
pec(pmd®) p | pnmder)) (1)),

Note that the function root_rad can be used to compute the number of roots in
any interval, not simply an interval without a multiple root at either endpoint. To
see this by example, note that if (a,b|] is an interval of real numbers such that b is
a multiple root of p but a is not, then the interval (a, b+ root_rad(p,b)/2] contains
the same number of roots as (a, b] but neither endpoint is a multiple root.

The next step in the development is to define a function called roots_cl_int
with two extended real numbers a and b as inputs, with a < b, along with an integer
polynomial p. The function returns the number of roots in the closed interval [a, b].
The other input to this function is a list £ of polynomials, which in practice is set
to sturm_seq(p).

roots_cl_int(p,a,b,l) =
leta* =if a=—o0 V p(a) #0 V p'(a) #0 then a
else a — root_rad(p,a)/2 endif
b*=ifb=o0 V p(b) #0 V p'(b) #0 then b
else b+ root_rad(p,b)/2 endif
c =ifa# —o00 A pla)=0 A p'(a) #0 then 1
else 0 endif

in sigma(/,a*) — sigma(?,b") + c.

The definition of roots_cl_int uses the function sigma, which implements the
function o from §2. This function takes as inputs a finite list £ of polynomials and
an extended real number r, and returns the number of sign changes in that list when
each element is evaluated at r. The introduction of the number ¢ in the definition of
roots_cl_int addresses the limitation in Sturm’s Theorem, which only gives a way
to count the number of roots in a half open interval that does not include its lower
bound. The term c¢ adjusts this number based on whether the lower bound is equal
to the newly computed a* and is also a root of p but not of its derivative. Finally, it
should also be noted that the numbers a and b in the definition of roots_cl_int are
extended real numbers and therefore may be equal to —oo or oco. There is no built-in
support for extended reals in PVS. Hence, a simple data structure for representing
these numbers has been defined. Using this data structure, the evaluation of a
polynomial p at an extended real r € {—o00, 00} is defined as +o0o0, where the sign
of the infinite number is given by sign(coeff(p,deg(p))), if deg(p) is even, and
sign(r) - sign(coeff(p,deg(p))), otherwise. Furthermore, it is assumed that —oo
is smaller than any other extended real number and oo is greater than any other
extended real number. No other operations are defined on infinite extended real
numbers.

The following theorem states the correctness of the function roots_cl_int. It
has been formally proved in PVS, where it is called roots_closed_int_def.

Theorem 2. Let a,b € R, with a < b, p be an integer polynomial, and S = {r €
R|la<r<bandp(r) =0} If N = roots_cl_int(p,a,b, sturm_seq(p)) then
N >0 and there exists a bijection B: {0,1,...,N —1} — S.

The next step in the PVS development is to use the function roots_cl_int to
define a function roots_interval that computes the number of roots of an integer
polynomial in any interval, whether it is closed, open, half open and half closed,
unbounded, and whether or not the polynomial has a multiple root at an end-
point of the interval. The precise definition of this function is omitted from this
description, because it is straightforward to define it directly in terms of the func-
tion roots_cl_int. The reader is referred to the PVS development Sturm in the
NASA PVS Library for the precise definition of this function. Basically, the number
of roots in the closure of the given interval is computed using roots_cl_int, and
this number is then adjusted upward or downward depending on whether the lower
bound or the upper bound of the interval is a root of the polynomial, and whether
the interval itself actually contains this bound. The function roots_interval takes
as inputs an integer polynomial p, two extended real numbers a and b as inputs,
with a < b, as well as two Boolean values cont_1b and cont_ub, which refer to
whether the interval contains its lower or upper bound, respectively. That is, if
a = —10, b = 7, cont_1b = true, and cont_ub = false, then the corresponding
half open interval is [—10,7). The following theorem has been proved in PVS and
can be found in the PVS development with the name number_roots_interval_def.

10

Theorem 3. Let a,b € R, with a < b, p be an integer polynomial, and

S={reR|a<r<bandp(r)=0 and
(r=a = cont_lb = true) and
(r=0b = cont_ub = true)}.

If N = roots_interval(p,a,b, cont_1lb, cont_ub, sturm_seq(p)) then N > 0 and
there exists a bijection 5: {0,1,...,N —1} — S.

It can now be noted that if a polynomial is always positive on a given interval, it
is trivial to prove that this is true using the function roots_interval. All that must
be checked is that the function roots_interval returns 0, so that the polynomial
has no roots on the interval, and that it is positive at any fixed point in the interval,
such as (a + b)/2 in the case where a,b € R. Thus, the difficulty when determining
whether the polynomial p satisfies p(r) R 0 for all r in a given interval, when R is a
relation in {>, <, #, >, <} lies in the case when R is nonstrict, i.e., when R € {>, <}.
Moreover, if a decision procedure can be defined for when R is >, then it can be
defined for when R is < as well by just replacing p with —p. Thus, the next step is to
define a specific decision procedure that determines whether an integer polynomial
is always nonnegative on a bounded closed interval. The PVS function nonneg_int
takes as inputs an integer polynomial p, real numbers x and y (not extended real
numbers), and a list ¢ of polynomials, which in practice is set to sturm_seq(p). It
returns a Boolean, which is equal to true if and only if p(r) > 0 for r in the closed,
bounded interval [z, y].

The function nonneg_int works by recursively subdividing the interval [z, y] into
left and right halves, until each subinterval is small enough that it contains at most
one root of the polynomial p. Then, the polynomial p is evaluated at each endpoint
of each subinterval. Omne important fact that is used in the verification of this
function is that a continuous function with at most one root in a closed, bounded
interval is always nonnegative on that interval if and only if it is nonnegative at its
endpoints. This result follows directly from the intermediate value theorem. The
recursive function nonneg_int is defined below.

nonneg_int(p,x,y,{) =
if x > y then true
elsif x =y then p(z) >0
elsif roots_cl_ int(p,z,y,¢) <1 then p(x) >0 A p(y) >0 (13)
else nonneg_int(p,z, (z +vy)/2,¢) A
nonneg_int(p, (z +v)/2,y,¢)

endif.

The function nonneg_int is a decision procedure for nonnegativity on closed, bounded
intervals. However, it should be noted that a polynomial is always nonnegative on
any given interval if and only if it is nonnegative on the closure of that interval.
For instance, p is always nonnegative on the open interval (0, 1) if and only if it is
nonnegative on the closed interval [0, 1]. Thus, the function nonneg_int can be used

11

as a decision procedure on any bounded interval, even if it is open. To extend this
function to unbounded intervals, a number is computed that can be guaranteed to
bound all of the roots of the integer polynomial p. This bound is used to reduce any
unbounded interval to a bounded interval on which the polynomial is nonnegative
if and only if it is nonnegative on the original unbounded interval.

deg(p)—1

ff)
root_bound(p) = max | 2, Z |coeff(p, i)

|coetf(p, deg(p))|

(14)

It can be proved that any root of p must lie in the bounded interval
(—root_bound(p), root_bound(p)).

The function nonneg_int can now be used to define a function always_nonneg that
takes as inputs an integer polynomial p and two extended (so possibly unbounded)
real numbers ¢ and b with a < b. It returns true precisely when p is always
nonnegative on (a, b), which, as noted above, is equivalent to p being nonnegative on
the closure of this interval. Thus, this function does not need inputs that determine
whether the interval contains its endpoints, since that information is irrelevant to
nonnegativity.

always_nonneg(p,a,b) =
let ¢ = sturm_seq(p),
M = root_bound(p) in
if a # —00 A b # oo then nonneg_ int(p,a,b, /) (15)
elsif b # —oo then nonneg_int(p, min(—M,b—1),b,/)
elsif a # oo then nonneg int(p, a, max(M,a + 1),/)
else nonneg_int(p, —M, M, /()

endif.

The following theorem has been proved in PVS and can be found in the PVS devel-
opment under the name always_nonnegative_def.

Theorem 4. If a,b € R, with a < b, and p is an integer polynomial, then
always_nonneg(p,a,b) = true
if and only if every real number x, with a < x < b, satisfies p(x) > 0.

Note again that the continuity of p implies that this theorem is true if either (or
both) of the < signs is replaced with a < sign.

The decision procedure that determines whether p(z) R0 for all z in a given
interval, and where R is a relation in {>, <, #, >, <}, can now be defined as follows.
If R is either > or <, then the function always_ nonneg is used for either p or —p
(respectively). Otherwise, it is simply checked that the function roots_interval
returns 0 on the interval and that a given point 7 in the interval satisfies p(r) R 0.

12

The correctness of the procedure then follows from the intermediate value theorem.
As above, the interval here is represented by two extended real numbers a and b, as
well as two Boolean values cont_1b and cont_ub, which refer to whether the interval
contains a and b, respectively. The point r can be chosen in a number of ways. For
this development, it is simply assumed that there is a function choose with inputs a,
b, cont_1b, and cont_ub as inputs that picks a point in this interval. In the actual
PVS development, r is defined as the midpoint of the non-empty proper interval
[c,d], where ¢ and d are real numbers and ¢ < d. The numbers ¢, d are defined as
follows. If a and b are both real numbers then ¢ = a and d = b; if both a and b
are infinite numbers, ¢ = —1 and d = 1; if a is a real number and b is +oo, then
¢ =a and d = a + 1; otherwise, c = b — 1 and d = b. The input p to the function
compute_poly_sat, defined below, must be an integer polynomial.

compute_poly_sat(p,a,b, cont_1b, cont_ub, R) =
if R = (>) then always nonneg(p,a,b)
elsif R = (<) then always_nonneg(—p,a,b) (16)

else roots_interval(p,a,b, cont_1b, cont_ub, sturm seq(p))
A R(p(choose(p,a,b, cont_1b, cont_ub)),0)

endif.

The following theorem has been formally proved in PVS and can be found in the
PVS development under the name poly_sat_correct.

Theorem 5. Ifp is a nonzero integer polynomial, a and b are extended real numbers,
and R is a relation in {>,<,#,>,<}, then

compute_poly_sat(p,a,b, cont_lb, cont_ub, R) = true

if and only if p(x) RO for all real numbers x in I, where I is the interval corre-
sponding to a, b and the Boolean values cont_1b and cont_ub.

Example 1. Ifa =0, b = 3, cont_lb = false, and cont_ub = false, then the
corresponding interval is I is (0,3). If p is the integer polynomial in §1 given by
2120 — 2200 11, then p(x) > 0 for all x in I. In fact, p factors as (x50 —1)2. It can
be checked that

compute_poly_sat(p,0,3, false, false,>) = true, (17)
compute_poly_sat(p,0,3, false, false,>) = false.

5 Decision Procedure for Rational Polynomials

If the polynomial p has integer coefficients and R € {>, <,#, >, <}, the function
compute_poly_sat, defined in §4, decides whether or not p(x) R 0 holds on any given
interval. Thus, if p has rational coefficients, the relation p(z) R 0 can be decided
on any given interval by multiplying this relational formula by the product of the
denominators of coefficients in p and then using the procedure compute_poly_sat
on the resulting polynomial.

13

In order to multiply the polynomial p by the product of all of its coefficients’
denominators, a function must be defined that computes the denominator of a given
coefficient. In a theorem prover like PVS, where rational numbers are built-in,
defining such as function is not straightforward. For example, in PVS, the terms %
and % are indistinguishable. However, there are several ways in which a function that
computes the numerator and denominator of a rational number can be defined in
PVS. For example, the PVS function that computes the rational decomposition uses
a recursive function called compute_pos_rat that continually simplifies a positive
rational number, making its numerator and denominator smaller and removing the
integer part at each steps. In the final recursive call, the function is called on an
integer, making the answer trivial. The function takes a positive rational number
and return as a pair of positive integers, the first being the numerator and the second
being the denominator.

compute_pos_rat(r) =
if floor(r) = r then (floor(r),1)
elsif r > 1 then let (a,b) = compute_pos_rat(r — floor(r)) in (18)
(b-floor(r) + a,b)
else let (a,b) = compute_pos_rat(l/r) in (b,a) endif.

The function compute_pos_rat can then be used to define two other functions
numerator and denominator, which are simply given by the first and second com-
ponet of the output of compute_pos_rat. It has been proved in PVS that if r is
any positive rational number, then r = numerator(r)/denominator(r). A challeng-
ing part of the proof is showing that the function compute_pos_rat terminates. In
PVS, showing termination requires that the function be given a measure, which is
a function on the inputs of the function that returns a natural number and strictly
decreases in value every time the function is called recursively. In PVS, the measure
function on r is defined by

pos_rat meas(r) = if r < 1 then 109 else 10Y — 1 endif, (19)

where g is the least integer such that there exists positive rational numbers a and b
with r = a/b and g = a +b.

The final step before defining a decision procedure for rational polynomials is
to define a function that takes as an input a rational polynomial p and returns an
integer polynomial that is a positive multiple of the first. This integer polynomial
is obtained by multiplying p by the product of the denominators of its coefficients.
Each coefficient supplies one integer to this product. If ¢ is one of the coefficients,
then this number is 1 if ¢ is zero and it is |denominator(c)| otherwise. A function
rat2poly is defined in PVS that takes a rational polynomial and coverts it to an
integer polynomial. This process works by recursively considering each coefficient
of the polynomial. At each step, it multiplies the polynomial by the denominator
of the coefficient in question, and it also stores the current greatest common divisor
of all resulting integer coefficients that it has simplified so far in the recursion. At
the end of the recursion, all of the coefficients are divided by this greatest common

14

divisor to simplify the answer. The fact that rat2poly(p) is a positive multiple of
p is specified in the output type of the function rat2poly. Using this function, the
decision procedure for rational polynomials is defined below.
compute_poly_sat_rat(p,a,b, cont_1b, cont_ub, R) = (20)
compute_poly_sat(rat2poly(p),a,b, cont_1b, cont_ub, R).
The following theorem has been formally proved in PVS and is found in the PVS
development under the name poly_sat_rat_correct.

Theorem 6. Let p be a nonzero rational polynomial, a,b € R, and R be a relation
in {>,<,#,2,<}.

compute_poly sat_rat(p,a,b, cont_1b, cont_ub, R) = true

if and only if p(x) RO for all real numbers x in I, where I is the interval corre-
sponding to a, b and the Boolean values cont_1b and cont_ub.

Example 2. Ifa = —o0, b =3, cont_lb = false, and cont_ub = false, then the
corresponding interval I is (—o0,3). If p is the rational polynomial in §1 given by
120 - %3660 + é, then p(x) > 0 for all x in I. In fact, p factors as (20 — %)2 It can
be seen that

compute_poly_sat_rat(p, —00,3, false, false,>) = true, (21)
compute_poly_sat_rat(p, —00,3, false, false,>) = false.

6 Automated Strategy

The decision procedure implemented by the function compute_poly_sat_rat and its
correctness property (Theorem 6) can be used to discharge, in a methodical way,
PVS sequents involving univariate polynomial inequalities.

In a nutshell, a PVS sequent is a logical judgement of the form I' = A, where
I', called the antecedent, and A, called the consequent, are lists of logical formulas.
The intuitive meaning of a sequent is that from the conjunction of formulas in I', the
disjunction of formulas in A can be deduced. PVS proof commands are logical rules
that transforms a sequent into a set of sequents, with the objective of producing
sequents where the formula false appears in the antecedent or the formula true
appears in the consequent. When all sequents generated by a proof command are
of one of these forms, the initial sequent is discharged. Hence, a proof in PVS can
be represented by a tree of proof commands that discharge an initial sequent.

The following example describes a PVS proof of the polynomial inequality given
in Example 2 using the development presented in §5.

Example 3. Consider the sequent below displayed in a vertical layout. Formulas in
a PVS sequent are numbered using the notation {n}, where n < 0 in the antecedent
and n > 0 in the consequent. In this sequent, x is a free real variable (actually, a
Skolem real constant in PVS terminology).

{-1} z <3
l_
{1}@'120—%1‘60—1—%20

15

. The first step in the PVS proof is to execute a proof command that instantiates
Theorem poly_sat_rat_correct with a = —oo, b = 3, cont_lb = false,
cont_ub = false, and p = p, where p is a list of rational numbers that is
0 everywhere except in the positions 0, 60, and 120, where it has the values
é, , and 1, respectively. It should be noted that p 1s a PVS data structure
that represents the polynomial p(x) = 229 — 2 260 + 1 5- The notation p(x) will
be used to represent the evaluation of the polynomml represented by the data

structure p on x. That proof command yields the following sequent.

{—1} compute poly sat rat(p,—o0,3, false, false, >) <~
(V(z:R): z € (—00,3) = p(x)>0)

{-2}z<3

'_

{ 1 }$1207%x60+%20

. Next, a proof rule that evaluates
compute_poly sat_rat(p, —00,3, false, false,>)

is executed. This evaluation, which only involves computable functions and
ground terms, s efficiently performed by the PVS ground evaluator. The fol-
lowing sequent is obtained.

{-1} true <= (V(z: R): z € (—00,3) = p(z) >0)
{-2} <3

l_

{1}a120 22504 3>0

. Sequent formula {—1} can be easily reduced using propositional simplification
to
{-1} V(z: R): z € (—00,3) = p(z) >0
{-2}z<3
l_
{ 1 } $1 2 60 + > 0

. Neat, the quantified variable x in sequent formula {—1} is instantiated with
the Skolem constant x appearing in sequent formulas {—2} and {1}. This
instantiation yields the sequent.

{—1} z € (-00,3) = p(z) >0
{-2} <3

l_

{1} a0 -2294+5>0

. The elimination of the implication in sequent formula {—1} yields two se-
quents.

{1}z <3 {1} p(x) = 0

F {-2} <3

{1} ze(-00,3) -

{2}3;.120 260_|_ >0 {1}$120—%ZE60+%ZO

16

6. The two sequents generated in the previous step can be easily discharged by
unfolding the definitions of the operations “€” and “p(x)”, respectively.

The PVS proof in Example 3 illustrates a well-known technique in theorem
proving known as computational reflection [12]. Given an object theory, such as
the theory of univariate rational polynomials, a computable target theory is defined
such that elements of the object theory are embedded using data structures in
the target theory, e.g., formulas z € (—00,3) and p(x) > 0 are embeddings of
x < 3 and z'?0 — %xﬁo + % > 0, respectively. Functions and theorems, such as
compute_poly_sat_rat and poly_sat_rat_correct, that relate both theories enable
the proof of formulas in the object theory by evaluating terms in the target theory,
e.g., Step 2 in Example 3.

Computational reflection is particularly well-adapted for the development of au-
tomated proof strategies in interactive theorem provers. First, it produces proofs
whose size is independent of the size of the initial sequent. For instance, the method
in Example 3 can be used for discharging inequalities on any univariate polynomial
of any degree and any number of monomials. Second, proofs by computational re-
flection are small since the most involved logical steps are done once for all in the
proof of theorems such as poly_sat_rat_correct. Finally, proofs by computational
reflection are efficient since they depend on computation rather than on deduction.

A PVS strategy is a procedure that, when executed by the theorem prover’s
Lisp engine, produces a PVS proof, i.e., a tree of proof commands. The PVS
strategy language includes combinators for sequencing, branching, and backtracking
of proof commands. The language also provides mechanisms to inspect the internal
representation of PVS syntactic elements within a proof context. For instance,
in the PVS specification language, the expression z'?0 — %xﬁo + % > 0 is just a
Boolean expression. In the strategy language, it is possible to parse the internal
Lisp representation of this expression and determine that it is a real order relation
whose left hand side is a univariate rational polynomial of degree 120 over variable
x with monomials 220, —%x%, and %. PVS strategies, as tactics in the LCF-style
of interactive theorem provers, preserve the logical consistency of the proof system.
That is, any strategy within a proof can be unfolded in a tree of proof commands
that only includes basic PVS proof rules.

The development presented in this paper includes a PVS strategy called sturm
that implements an enhanced version of the method described in Example 3. Us-
ing this strategy, the initial sequent in this example is automatically discharged in
less than one second. More generally, the strategy sturm automatically discharges
sequents having one of the following forms

L Xp,.., X, ' F pi(x) © pa(x), A
2. X1, o, X, p1() O pa(z), T = A

3. VY(x:T): Xi Ao AN Xy = pi(z) O pa(x), A

4. V(.Z‘ZT):Xl/\.../\Xm - pl(x)Opg(x),F F A

5. T F J(x:T): Xy Ao o A X Apr(x) O pa(z), A

17

6. x:T): Xa Ao AXpy Api(z) O pa(z), T FH A

where
e T is a subtype of R,
e [' and A are arbitrary lists of formulas, which are ignored by the strategy,

e m >0 and for 1 < j < m, X,, denotes a Boolean expression of one of the
forms a < z, z < a, |z| < a, or x € [a,b], where < € {<,<}, and a,b are
numerical rational constants,

p1(z) and po(x) denote univariate rational polynomial such that the polyno-
mial p(z) = p1(x) — p2(x) is not a constant.

e Oisareal order in {<, <, >,>,#} and ¢’ is a real order in {<,<,> > =}

The strategy sturm works on a formula of interest, which is the underlined for-
mula in the forms above. By default, the strategy assumes that the formula of
interest is the first formula in the consequent, but the user can specify a different
formula though an optional parameter in the strategy. As specified above, the for-
mula of interest can appear in the antecedent or in the consequent, be nonquantified
or quantified, and the quantifier can be existential or universal.

The strategy proceeds as follows. First, it examines the sequent and determines
whether or not it has one of the supported forms. If this is not the case, the strat-
egy prints an error message and does nothing else. If the sequent is supported,
the strategy parses the formula of interest and constructs a PVS data structure
p that represents the univariate polynomial p(x) = pi(x) — p2(x). This part of
the strategy uses a function developed by B. Di Vito (NASA) for parsing PVS
polynomial expressions [22]. The parse does not assume any particular polynomial
normal form. In particular, real expressions such as (x-1)2, (x-1)*(x-1), and
x*x-2*x+1 are all parsed into the same data structure p. Next, the strategy com-
putes PVS data structures for instantiating the variables a, b, cont_1b, cont_ub in
Theorem poly_sat_rat_correct. These data structures are constructed by examin-
ing the relational formulas X;, 1 < j < m, and, in the case of quantified forms, the
type T'. It is noted that the correctness of the strategy is not compromised by the
constructions of these objects. Indeed, as shown in Example 3, the strategy checks
that the semantics of the original expressions and their data structure embeddings
coincide.

The instantiation of relation R in Theorem poly_sat_rat_correct depends on
the form of the sequent. In the case of forms 1, 3, and 4, R is instantiated with
<. Otherwise, R is instantiated with —<’. From this point on, the strategy fol-
lows the method described in Example 3. Some minor modifications are needed
for the cases where the formula of interest is quantified. Sequents of the forms 3
and 6 can be transformed into sequents of the forms 1 and 2 by introducing the
quantified variable (this process is called Skolemization, in PVS terminology) and
propositional simplification. Sequents of the forms 4 and 5 use the fact that The-
orem poly_sat_rat_correct is a double implication. In this case, the evaluation

18

of the function compute_poly_sat_rat returns false and the proof proceeds ac-
cordingly. Finally, if the sequent holds, the strategy succeeds and the sequent is
discharged. If the sequent does not hold, the strategy prints a message stating that
the sequent is not provable.

Example 4. Turan’s inequality for Legendre’s polynomials is a theorem that states
that pp(2)? > pp—1(x) - put1(x) for all x such that —1 < x < 1, where p; is the j-th
Legendre polynomial (of degree j). For instance, the 10-th Legendre polynomial is
given by 5z - (4618920 — 1093952% + 900902% — 300302 + 34652% — 63). Turan’s
inequality for n = 10 easily reduces to showing that

3969 63063 o 1792791 ,, = 3002285 .5 6600165 ,, 72765 4

65536 | 4096 - 1096 © 1006 1096 65536
3558555 5 10207760 5 35043645 ,, 95851899 5

— x° — - — - —
32768 65536 32768 65536)

forallz € (—1,1). The strategy sturm in PVS automatically discharges this theorem
i less than a second. In fact, the strategy is able to prove that the polynomial on
the left hand side of this inequality is positive over this interval when it is cubed and
then has degree 60, a proof that takes the decision procedure less than 10 seconds to
rUun.

The Appendix includes examples of PVS formulas, including Example 3 and
Example 4, that are automatically discharged by the strategy sturm.

7 Related Work

The authors are aware of three bodies of work that are closely related to this paper
in their use of Sturm’s Theorem for nonlinear reasoning in a theorem prover.

The first related work was accomplished by John Harrison in the 90’s [13]. He
proved Sturm’s Theorem in HOL and used it there for root isolation. The intended
application of that work was to guarantee error bounds of polynomial approxima-
tions to transcendental functions. Root isolation was used on the derivative of the
error to find the places where an error may be maximized. In that work, Sturm’s
Theorem was proved in the case where the polynomial is square free, which simpli-
fies the proof. In that paper, Harrison writes “[...] we would prefer the polynomial
to have no multiple real roots [...] Sturm’s Theorem is easier to prove for polyno-
mials without multiple real roots - this is actually the only form we have proved in
HOL.” Harrison was not interested in proving statements like p(x) > 0, so a decision
procedure for such problems was out of the scope of his paper.

The recent work by Eberl [8] is the most similar to this paper. It was apparently
being completed concurrently with this work. Eberl completed a formal proof in
Isabelle/HOL of Sturm’s Theorem and used that to define a proof method sturm in
Isabelle/HOL for solving simply quantified polynomial inequalities similar to those
solved by PVS’s strategy sturm. In the case of non-strict universally-quantified
inequalities, Eberl’s proof method relies on unverified ML code to generate the
interval splitting as a witness. In practice, the use of ML code improves efficiency

19

and does not compromises soundness. However, it may compromise completeness.
In contrast, the PVS’s strategy sturm relies on a PVS algorithm that is proven
to be correct and complete. Another distinction between the current paper and
the work of Eberl is in the use of pseudo division instead of regular division. PVS
handles A final point worth noting regarding the differences between the work in
this paper and that by Eberl is that the proofs of Sturm’s Theorem are different.
Eberl proves Sturm’s Theorem in the square free case, similar to Harrison’s proof in
HOL [13]. In the non-square free case, the proof proceeds by dividing each term in
the remainder sequence by the greatest common divisor of the original polynomial
and its derivative. The resulting sequence is not a Sturm sequence in the standard
sense, but it maintains similar properties regarding root counting. The proof in
the PVS development presented in this paper is a direct approach that considers
the highest power of a linear divisor that divides each polynomial in the sequence
and analyzes whether the polynomial swaps signs at the corresponding root. The
distinctions between these proof methods primarily amount to user preference.

Sturm sequences and several speed enhancements such as the use of pseudo
division are implemented in the SMT solver Z3 [6]. That implementation was the
inspiration for the work presented in this paper.? 73 is a highly efficient tool. In
some cases, for example when a formula is satisfiable, Z3 can produce models, which
can be understood as proof certificates for existential formulas. However, in general,
73 statements are not supported by formal proofs. Hence, in formal verifications
efforts, Z3 is used as a trusted oracle.

Z3 is used as an external algebraic decision method (EADM) in Metitarski, a
theorem prover for real numbers [1]. In a recent work, Denman and Munoz [7]
developed the PVS proof rule metit that integrates Metitarski as an external oracle
into PVS theorem prover. In contrast to the work presented in this paper, metit
is not implemented as a proof producing strategy. Nevertheless, the integration of
Metitarski/Z3 in PVS, while unproven, is quite useful and has helped the authors
to check results that were impossible with previous strategies in PVS.

There is a much larger collection of works on the general problem of reason-
ing about nonlinear arithmetic. Sophisticated implementations of the Cylindrical
Algebraic Decomposition (CAD) [2] procedure are available in the Redlog system?
and in the QEPCAD library.* The systems RealPaver [11] and dReal [9] integrate
powerful methods based on interval constraint propagation [11]. MetiTarski [1] and
RAHD (Real Algebra in High Dimensions) [25] are specialized theorem provers for
the theory of real closed fields. MetiTarski is designed to prove universally quan-
tified inequalities involving real-valued functions such as trascendental functions.
RAHD combines several decision methods for the existential theory of real closed
fields. Both systems use a CAD procedure for quantifier elimination among many
other proof strategies.

Proof tactics that implement Hormander’s quantifier elimination method are
available in Coq and HOL Light [18,19]. These tactics are theoretically interesting.

2The authors would like to give credit to Leonardo de Moura for directing their work in this
direction and advising them in this effort.

Shttp://redlog.dolzmann.de.

“http://www.usna.edu/cs/~qepcad/B/QEPCAD . html.

20

Hormander’s method is known to be more inefficient than CAD. An implementation
of CAD that will eventually yield a proof producing tactic is available in Coq [17].
Another approach to solve multivariate polynomial inequalities in theorem provers
is based on polynomial sum of square (SOS) decompositions through semidefinite
programming. Such an approach has been implemented in HOL Light [14] and
seems to be more promising than quantifier elimination for polynomials with many
variables. Semidefinite programming is a somewhat complicated numerical proce-
dure that is usually implemented with floating point numbers. Because of numerical
approximation errors, it is difficult to integrate this method into theorem provers.
Recent developments in SOS address this issue by producing rational polynomial
decompositions [15,21]. Proof producing strategies for proving real-number prop-
erties based on interval arithmetic and branch and bound methods are available in
PVS [4], Coq [20], HOL Light [26]. As stated in the introduction, the authors have
developed semi-decision procedures for multivariate polynomials, based on Bernstein
polynomials [22], and Boolean expressions involving real-valued functions, based on
interval arithmetic [23]. Those algorithms are quite powerful and can prove tight
bounds on complex polynomials with up to 16 variables and degree 4. However,
since Bernstein polynomials and interval arithmetic yield numerical approximation
methods, they cannot always prove exact bounds on a polynomial. That is, in gen-
eral, they cannot prove that p(z) > 0 for x in a fixed, bounded interval unless it is
also true that p(x) > ¢ for some positive c¢. This limitation is key to the authors’
development of Sturm’s Theorem in PVS.

8 Conclusion

This paper presented a formalization Sturm’s Theorem in PVS along with a deci-
sion procedure for deciding the sign of univariate rational polynomials where the
polynomial variable ranges over an interval, which can be any connected set of real
numbers. The decision procedure, which is is shown to be complete and correct in
PVS, is used to implement a proof strategy for automatically discharging sequents
involving univariate polynomial inequalities. The correctness of this strategy only
depends on the correctness of PVS deduction engine. The strategy is based on
computational reflection, which is a theorem proving technique for building efficient
strategies. Although the strategy uses concrete data structures for representing
polynomials and infinite numbers, these data structures are invisible to the user.
The strategy can be used to discharge sequents involving native PVS real number
expressions.

In its standard form, Sturm’s Theorem is only applied when the end points of the
interval are not multiple roots and the polynomial inequality is strict. The authors
address these limitations by using a branching algorithm that progressively subdi-
vides the interval, noting that a polynomial with at most one root in a given interval
is nonnegative on that interval if and only if it is nonnegative at both endpoints.
Furthermore, the PVS development presented in this paper uses the remainder of
polynomials after pseudo division rather than standard division. This technique
ensures that integer polynomials beget more integer polynomials. Moreover, be-

21

fore working with a polynomial, the PVS decision procedure first divides it by the
greatest common divisor of its coefficients. These features substantially improve the
efficiency of the decision procedure.

The authors’s main motivation for developing Sturm’s Theorem in PVS comes
from NASA’s verification effort on aircraft separation assurance systems.” The
PVS proofs of correctness of these system are nontrivial and require considerable
algebraic manipulations. In one particular case of an actual verification effort, a
176-line sequent involving a 16-variable polynomial was generated. That sequent
was automatically checked using a PVS proof rule that integrates Metitarski and Z3
as trusted external oracles into the PVS theorem prover [7]. This example shows the
usefulness of techniques based on Sturm sequences, which are implemented in Z3.
The ultimate goal of the work presented here is to build a similar algorithm to that
used in Z3, directly in PVS with a formal proof of its correctness. The work with
univariate polynomials presented in this paper is a first step in that direction. The
next step is to define an algorithm that not only handles multivariate polynomials,
but also handles arbitrary Boolean expressions involving those polynomials. This
work will be guided by the algorithm developed by de Moura in Z3, but the authors
expect subtleties to arise, since it will have to be designed with its formal verification
in mind. That is, having to prove its correctness may change the way that the
algorithm is defined in PVS.

References

1. Behzad Akbarpour and Lawrance C. Paulson. MetiTarski: An automatic theo-
rem prover for real-valued special functions. Journal of Automated Reasoning,
44(3):175-205, 2010.

2. George Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In Second GI Conference on Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, pages 134—183,
Kaiserslautern, 1975. Springer-Verlag.

3. Luis G. Crespo, César A. Munoz, Anthony J. Narkawicz, Sean P. Kenny, and
Daniel P. Giesy. Uncertainty analysis via failure domain characterization: Poly-
nomial requirement functions. In Proceedings of European Safety and Reliability
Conference, Troyes, France, September 2011.

4. Marc Daumas, David Lester, and César Munoz. Verified real number calcu-
lations: A library for interval arithmetic. [EEFE Transactions on Computers,
58(2):1-12, February 2009.

5. Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying
the floating-point implementation of an elementary function using Gappa. IEEE
Transactions on Computers, 60(2):242-253, February 2011.

®http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html

22

10.

11.

12.

13.

14.

15.

16.

. Leonardo de Moura and Grant Passmore. Computation in real closed infinites-

imal and transcendental extensions of the rationals. In Automated Deduc-
tion - CADE-2/, 24th International Conference on Automated Deduction, Lake
Placid, New York, June 9-1/4, 2013, Proceedings, 2013.

William Denman and César Munoz. Automated real proving in PVS via meti-
tarski, 2014. Accepted for publication at 19th International Symposium on
Formal Methods (FM 2014).

. Manuel Eberl. A formal proof of Sturm’s theorem in Isabelle/HOL. Manuscript.

Available from http://afp.sf.net/entries/Sturm_Sequences.shtml, 2014.

. Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for

nonlinear theories over the reals. In Maria Paola Bonacina, editor, Automated
Deduction - CADE-2) - 2/th International Conference on Automated Deduction,
Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture
Notes in Computer Science, pages 208-214. Springer, 2013.

J. Garloff. Application of Bernstein expansion to the solution of control prob-
lems. Reliable Computing, 6:303-320, 2000.

Laurent Granvilliers and Frédéric Benhamou. RealPaver: An interval solver
using constraint satisfaction techniques. ACM Transactions on Mathematical
Software, 32(1):138-156, March 2006.

John Harrison. Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge,
UK, 1995.

John Harrison. Verifying the accuracy of polynomial approximations in HOL.
In Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: 10th International Conference, TPHOLs 97, volume 1275 of Lecture
Notes in Computer Science, pages 137-152, Murray Hill, NJ, 1997. Springer-
Verlag.

John Harrison. Verifying nonlinear real formulas via sums of squares. In Theo-
rem Proving in Higher Order Logics, volume 4732 of Lecture Notes in Computer
Science, pages 102-118. Springer, 2007.

Erich L. Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification
in global polynomial optimization via sums-of-squares of rational functions with
rational coefficients. In Lorenzo Robbiano and John Abbott, editors, Approxi-
mate Commutative Algebra, Texts and Monographs in Symbolic Computation.
Springer Vienna, 2010.

James Kuchar and Lee Yang. A review of conflict detection and resolution
modeling methods. IEEE Transactions on Intelligent Transportation Systems,
1(4):179-189, December 2000.

23

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Assia Mahboubi. Implementing the cylindrical algebraic decomposition within
the Coq system. Mathematical Structures in Computer Science, 17(1):99-127,
February 2007.

Assia Mahboubi and Loic Pottier. Elimination des quantificateurs sur les réels
en Coq. In Journées Francophone des Langages Applicatifs (JFLA), 2002.

Sean McLaughlin and John Harrison. A proof-producing decision procedure
for real arithmetic. In Robert Nieuwenhuis, editor, Proceedings of the 20th
International Conference on Automated Deduction, proceedings, volume 3632 of
Lecture Notes in Computer Science, pages 295-314, 2005.

Guillaume Melquiond. Proving bounds on real-valued functions with computa-
tions. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Syd-
ney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes
in Computer Science, pages 2-17. Springer, 2008.

David Monniaux and Pierre Corbineau. On the generation of Positivstellensatz
witnesses in degenerate cases. In Proceedings of Interactive Theorem Proving
(ITP). Lecture Notes in Computer Science, 2011.

César Munoz and Anthony Narkawicz. Formalization of a representation of
Bernstein polynomials and applications to global optimization. Journal of Au-
tomated Reasoning, 51(2):151-196, August 2013.

Anthony Narkawicz and César Munoz. A formally verified generic branching
algorithm for global optimization. In Ernie Cohen and Andrey Rybalchenko,
editors, Fifth Working Conference on Verified Software: Theories, Tools and
Ezperiments (VSTTE 2013), volume 8164 of Lecture Notes in Computer Sci-
ence, pages 326-343. Springer, 2014.

Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verifi-
cation system. In Deepak Kapur, editor, Proceeding of the 11th International
Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748-752. Springer, June 1992.

Grant Olney Passmore and Paul B. Jackson. Combined decision techniques
for the existential theory of the reals. In L. Dixon, editor, Proceedings of Cal-
culemus/Mathematical Knowledge Managment, number 5625 in LNAI, pages
122-137. Springer-Verlag, 2009.

Alexey Solovyev and Thomas C. Hales. Formal verification of nonlinear inequal-
ities with Taylor interval approximations. In Guillaume Brat, Neha Rungta, and
Arnaud Venet, editors, Proceedings of the 5th International Symposium NASA
Formal Methods, volume 7871 of Lecture Notes in Computer Science, pages
383-397, 2013.

Frank Sottile. Chapter 2: Real solutions to univariate polynomials. Course
Notes.

24

28. C. Sturm. Mémoire sur la résolution des équations numériques. In Jean-
Claude Pont, editor, Collected Works of Charles Francois Sturm, pages 345—390.
Birkhuser Basel, 2009.

25

Appendix A

PVS Examples of Strategy sturm

examples : THEORY

BEGIN
IMPORTING Sturm@strategies
x : VAR real

Example_0 : LEMMA x*x(1-x) <= 1/4
%|- Example_O : PROOF (sturm) QED

Example_1 : LEMMA
0 < x AND x < 3 IMPLIES x7120 - 2*x"60 + 1 >= 0
%|- Example_1 : PROOF (sturm) QED

Example_2_3 : LEMMA
x < 3 IMPLIES x~120 - (2/3)*x"60 + 1/9 >= 0
%|- Example_2_3 : PROOF (sturm) QED

Example_4: LEMMA
abs(x) < 1 IMPLIES

3969/65536 + 63063/4096 * x~6 + 1792791/4096 * x~10 +
3002285/4096 * x~18 + 6600165/4096 * x~14
- 72765/65536 * x"4 - 3558555/32768 * x"8
- 10207769/65536 * x~20 - 35043645/32768 * x"12
- 95851899/65536 * x~16 > 0

%|- Example_4 : PROOF (sturm) QED

Example_5: LEMMA
abs(x) < 1 IMPLIES
(3969/65536 + 63063/4096 * x"6 + 1792791/4096 * x~10 +
3002285/4096 * x~18 + 6600165/4096 * x~14
- 72765/65536 * x4 - 3558555/32768 * x78
- 10207769/65536 * x~20 - 35043645/32768 * x"12
- 95851899/65536 * x716)7°3 > 0
%|- Example_5 : PROOF (sturm) QED

Example_6: LEMMA
EXISTS (x) : -1 <= x AND x <= 0 AND
32xx"5 - 160%x73 + 120%x > 16%x"4 - 48%x"2 +12
%|- Example_6 : PROOF (sturm) QED

END examples

26

REPORT DOCUMENTATION PAGE o ApDroved o

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01-11-2014 Technical Memorandum

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Formally-Verified Decision Procedure for Univariate Polynomial 5b. GRANT NUMBER

Computation Based on Sturm's Theorem

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Narkawicz, Anthony J.; Munoz, Cesar A. 5e. TASK NUMBER

5f. WORK UNIT NUMBER
534723.02.15.07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-2199

L-20489
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA

Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2014-218548

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 64

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots
of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem
prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative,
or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The
procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and
universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the
strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination
of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval
is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

15. SUBJECT TERMS

Polynomial inequalities; Prototype verification system; Sturm'’s theorem; non-linear arithmetic decision procedure

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT [b. ABSTRACT [c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U 0]0) 32 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

