AN ANTICLINAL FOLD NEAR BILLINGS, NOBLE COUNTY, OKLAHOMA.

By A. E. Fath.

INTRODUCTION.

INCENTIVE FOR INVESTIGATION.

During February, 1916, gas was struck in small quantities at shallow depths in a well being drilled by the Mid-Co Petroleum Co. a few miles southeast of Billings, Noble County, Okla. As this discovery was made at a place more than 20 miles distant from any other known oil and gas development it has attracted considerable attention, which is justified by the presence of a large anticlinal fold, a type of structure that should be favorable for the accumulation of oil and gas. A description of the anticlinal fold and a discussion of the possibilities of developing an oil and gas field here are given in this brief report, which is based on a rapid examination of the region made late in February and early in March, 1916.

LOCATION, ACCESSIBİLITY, AND CULTURE.

The anticlinal fold to be described lies in the northwestern part of Noble County, Okla. (See fig. 1, p. iv.) It may extend northward into Kay County, but the scarcity of rock outcrops made it impossible to verify this supposition in advance of sufficient drilling to determine the underground structure.

The town of Billings, which is at the terminus of a branch line of the Chicago, Rock Island \& Pacific Railway running from Enid, is the nearest shipping point. Bliss and Red Rock are near-by towns on the Atchison, Topeka \& Santa Fe Railway, which runs a short distance east of the area shown on the accompanying map (Pl. IX). Perry, the county seat of Noble County, is 9 miles to the south, at the intersection of the Atchison, Topeka \& Santa Fe and the St. Louis \& San Francisco railroads. The region of the anticline can be reached from any of these towns.

The surface of the area is in general a gently rolling prairie but is modified here and there by low escarpments where the more resistant beds have withstood erosion better than the adjacent softer beds. The region is almost devoid of timber except along the stream
valleys. Most of it is under cultivation and it contains many good farms. The roads follow the section lines and most of them are sufficiently good for automobile travel.

METHODS OF FIELD WORK.

For lack of time a detailed map of the entire region was not made, but it is believed that the more important anticlinal features were determined with considerable accuracy. The structure contours on the map (Pl. IX) are based on elevations and locations determined by means of plane table, telescopic alidade, and stadia rod. Such structure contours show how the rock beds lie. They usually refer to some particular bed and represent the elevations or altitude above some datum plane at which this bed may be found. Where the bed has been worn away they represent the elevations at which it lay before it was removed. The elevations shown on Plate IX are based on a bench mark established by B. F. Lewis, surveyor of Garfield County, at the southwest corner of sec. 19, T. 24 N., R. 2 W., and described as a spike in a telephone pole at the northeast corner of the road intersection, elevation $1,036.31$ feet. This bench mark is based on the elevation of a United States Geological Survey bench mark at Enid, Okla. At several places where lack of time did not permit accurate plane-table determinations of strike and dip the approximate strike and dip as observed by the writer are shown on the map (Pl. IX) by the ordinary strike and dip symbol.

ACKNOWLEDGMENTS.

- The writer is indebted to many individuals and companies for information and suggestions, and desires to express especial obligations to Valerius, McNutt \& Hughes, Julius Fohs, Frank B. Van Horn, L. E. Trout, and the drillers of the Mid-Co Petroleum Co.'s well.

GEOLOGY.

STRATIGRAPHY.
The surface rocks of the region have an aggregate thickness of more than 150 feet and are predominantly shale, but include also sandstone and argillaceoùs limestone, all of Permian age. The position of these rocks in the Permian series is roughly estimated at 500 to 900 feet above the horizon of the Neva limestone, which is generally placed near the top of the underlying Pennsylvanian series. No single outcrop shows the complete succession of rocks exposed in the region, and hence to obtain the following stratigraphic section it was necessary to combine parts of the section measured at three localities.

Composite section of exposed rocks measured in the Billings region.

Section exposed in the NW. sec . 23, T. 23 N., R. 2 W.

1. Sandstone, reddish brown, cross-bedded, ripple marked; thickness variable_ \qquad	$3 \pm$
2. Shale and thin sandstones, poorly exposed, probably reddish to chocolate-brown in color \qquad	19
3. Sandstone, reddish brown, thin bedded, poorly exposed \qquad	$1 \pm$
4. Shale, reddish chocolate-colored_-----------------	$5 \pm$
5. Limestone, composed of angular limestone particles \qquad	3
6. Shale, gray; contains four thin limy layers ©in upper 2 feet \qquad	53
7. Limestone, argillaceous, light gray	1
8. a. Shale, gray to reddish chocolate-colored, about_ b. Shale, gray ; near middle contains a 4 -inch layer of concretions as much as 2 inches in diam-eter- \qquad	$6 \pm$ 3
9. Limestone, argillaceous, light gray	2
10. a. Shale, gray	1
b. Shale, mottled greenish gray and red, limy near top \qquad	50
11. Limestone, argillaceous, light gray ; thickness variable \qquad	6-10
12. a. Shale, gray	4
b. Shale, chocolate-colored	2
	2土
	11
u. Shale, reddish chocolate-colored; base not exposed \qquad	$3+$
c. Poorly exp	$9 \pm$

Section exposed in the NW. $\frac{1}{d}$ sec. 14, T. 23 N., R. 2 W.
15. Sandstone, dark red, cross-bedded; contains plant
remains; thickness variable_---------------
16. a. Shale, gray----------------------------------- $5 \pm$

c. Shale, gray----------------------------------- 5
17. Limestone, argillaceous, light gray, thin bedded;
weathers out in small angular fragments_---
18. Shale, gray, limy near top------------------------ 9
19. Limestone, argillaceous, light gray _-------------- . 3
20. Shale, gray ------------------------------------ 3
21. Limestone, argillaceous, light gray_-------------- 3
22. Shale, gray -------------------------------------- 6
23. Limestone, argillaceous, light gray, rather mas-
sive ; contains mud cracks_-_------------- 8

24. a. Shale, limy, and argillaceous limestone; in beds
$\begin{array}{l}\frac{1}{2} \text { inch to } 3 \text { inches thick; limestone light gray } \\ \text { and shale dark gray ----------------------- }\end{array}$

b. Shale, not well exposed but probably gray_-.-- 6
25. Limestone, argillaceous, light gray; contains thin
lenses of gray shale; lowest bed 2i inches thick
and contains many shells of the bivalved crus-
tacean (Estherea cf. E. minuta). At some in.

The three most conspicuous of these strata were used as key beds in determining the details of the structure. These key beds are No. 29 of the section, which is the lowest limestone bed; No. 15, which is the sandstone bed near the middle of the section; and Nos. 1, 2, and 3, the group of sandstones at the top. The structure contours on the map show the position and elevation of bed No. 29 , the lowermost limestone, which is generally very thin bedded and weathers out as thin plates or slabs. Where these characteristics are not pronounced or the outcrop is poor the bed can usually be identified by the presence of the less prominent but fossiliferous limestone bed (No. 25) about 20 feet above it. The sandstone beds of the section usually form prominent ledges and can generally be distinguished from one
another. The lowermost bed of sandstone (No. 15) ranges in thickness from a few inches to 5 feet and can be distinguished from the upper bed by its association with the thin limestones beneath rather than by any inherent characteristics of its own. The upper sandstones can be identified by the presence immediately beneath them of a considerable thickness of associated chocolate-colored shale. These associations are not uniformly persistent, but by a study of the section in the field the beds can usually be discriminated.

STRUCTURE.

GENERAL FEATURES.

The rock beds of northeastern and north-central Oklahoma generally dip to the west or the northwest, and in north-central Oklahoma the average dip at different places ranges from 25 to 50 feet to the mile. Wherever the dip to the west is typically developed the place is unfavorable for finding oil and gas. Oil and gas are more likely to be found at places where the rocks have been warped or folded and the beds either lie flat or dip to the east. The size and value of the more productive oil fields of Oklahoma depend almost directly on the areal extent of the folds and the amount of their dip to the east, and if these are here the controlling features, the anticlinal fold herein described, which resembles that of the developed oil fields in Oklahoma, should be favorable to the accumulation of oil and gas in this region.
The anticlinal fold in this area trends in general northeastward and occupies parts of at least Tps. 23 and 24 N., Rs. 1 and 2 W. As there are few outcrops its exact magnitude and extent can not be fully determined, but sufficient data are at hand to indicate its general shape and size. The scattered rock outcrops show that the anticlinal fold has at least two parts, an elongated dome to the southwest and a broad anticline to the northeast.

THE DOME.
Near the center of T. 23 N., R. 2 W., the anticlinal fold is narrower and its sides are steeper than elsewhere, as is shown by the rock beds, which are excellently exposed here. This local feature is oval and may be called a short anticline or, preferably, an elongated dome.
Unlike many other anticlines and domes in Oklahoma, whose forms can be determined only by painstaking work or by doubtful correlation of beds, this dome is so well exposed that it can be readily seen even by the layman. The structure can be observed to the best advantage by looking south and west from the northeastern part
of sec. 15, T. 23 N., R. 2 W.; and by looking west, north, and east from the top of the escarpment near the center of the northern part of sec. 22 of the same township. From the first point of observation the crest of the fold may be seen near the north quarter corner of sec. 22 , where the beds in the escarpment are practically flat. The dip to the east may be seen in the escarpment east of this crest and can be followed into the west side of sec. 14. From the second point of observation the thin limestone beds can readily be seen descending both to the east and the west from the crest of the dome.
The highest part of the dome is in the south-central part of sec. 15. As before mentioned, the dome is oval and appears to extend southwestward into the SE. $\frac{1}{4} \mathrm{sec} .21$ and northeastward into the SE. $\frac{1}{4}$ sec. 10. The southeast dip on the dome persists for at least a mile, and in this distance the beds descend in elevation more than 130 feet. Exactly how far this dip to the southeast persists is not known, for the rock outcrops are insufficient to permit its determination farther.
On the northwest side of the dome the beds dip away steeply for a mile or more before they resume the normally gentle westward dip of the region.

The southwestern termination of the dome appears to be in the NE. $\frac{1}{4}$ sec. 28 , although this assumption could not be definitely proved. It seems probable that the sandstone which crops out in the road about a quarter of a mile east of the southwest corner of sec. 22 is the lowest sandstone bed (No. 15 of the section on pp. 123-124). The sandstone exposed a few hundred feet north of the south quarter corner of sec. 22 is almost certainly the highest sandstone bed (No. 1) of the section. Less certainly, but probably, the sandstone exposed in the center of the SW. $\frac{1}{4}$ NW. $\frac{1}{4} \mathrm{sec} .27$ and the residual sandstone near the center of the NE. $\frac{1}{4}$ sec. 28 are from this same bed. Whether or not the slope of the surface in the SW. $\frac{1}{4} \mathrm{sec} .22$ and the SE. $\frac{1}{4} \mathrm{sec} .21$ represents roughly the position in which the underground rock beds lie (dip slopes) can not be certainly determined, but the position of the few scattered outcrops just mentioned seems to lend some basis for this assumption.

The dip of the beds in the NW. $\frac{1}{4} \mathrm{sec} .15$ is almost north and indicates that the dome is lower in the northern part of this section than farther south. The structure here could not be exactly determined for lack of outcrops, but it is probable that a "low" or "saddle" in the anticlinal axis in this locality marks the northeastern termination of the dome.

THE ANTICLINE.

The northern and apparently the larger part of the Billings anticlinal fold can not be so fully nor so readily distinguished because of insufficient rock outcrops. It is a broad fold at least 5 miles
wide and can be traced with certainty northeastward for about 7 miles. It narrows abruptly at its southern extremity, where it is connected with the dome to the southwest by a "low" or "saddle." Its sides are poorly outlined by two belts of scattered outcrops-an eastern belt, in which the beds dip to the southeast and which extends from the SW. $\frac{1}{4} \mathrm{sec} .23$, T. 24 N., R. 1 W., to the NW. $\frac{1}{4} \mathrm{sec} .16$, T. 23 N., R. 1 W., and a western belt, in which the beds dip to the west and which extends from the SW. $\frac{1}{4}$ sec. 31, T. 25 N., R. 2 W., to the NW. $\frac{1}{4}$ sec. 3, T. 23 N., R. 2 W . The eastern limit of the eastwarddipping beds was determined at but one place-in the SE. $\frac{1}{4}$ sec. 22 , T. 24 N., R. 1 W. On the northeast there are no outcrops that indicate the character and location of that end of the anticline. The axis of the fold is indistinctly indicated at one place; it appears to cross secs. 30 and 31, T. 24 N., R. 1 W., in a northeasterly direction.
In the belts of outcrops mentioned above, the beds exposed are the same as those in the dome to the southwest, and they can be recognized with comparative ease. The almost complete absence of rock outcrops in the northern part of T. 24 N., R. 1 W., leaves the attitude of the northeast end of the anticline a matter of conjecture only. Whether the beds north of secs. 22 and 23, T. 24 N., rise rapidly and resume the normal westward dip, thereby terminating the anticline within this township, or whether they continue to strike northeastward and thereby extend the anticline to the township and county to the north can not be determined. The presence of the broad, silt-covered valley of Salt Fork River would appear to preclude any possibility of finding the northeast end of the anticline in the township on the north, as even the upland on the south contains practically no outcrops.
In the area embraced by the two belts of outcrops that outline the southeastern and northwestern flanks of the anticline there are a few scattered outcrops that expose beds of shale and thin beds of sandstone. These were not traced from place to place, and their exact position with reference to the beds of the measured section on pages 123-124 is not known, but they lie below the limestone-bearing series shown in the section. The strike and dip at several of these outcrops are more or less apparent, and the writer's observations are shown on the map (PI. IX) by strike and dip symbols. An accurate determination of the strike and dip was made instrumentally in the SE. $\frac{1}{4}$ sec. 31 , T. 24 N., R. 1 W., and these are shown on the map by a few short contours. A dip of 18 feet in 500 feet, or at an angle of about 2°, was measured by hand level and pacing in a "wash" in the SW. $\frac{1}{} \mathrm{sec} .32$, T. 24 N., R. 1 W . The direction of this dip was measured on a line trending S. $72^{\circ} \mathrm{E}$. The exact strike of the beds was not determined. These observations, together with the attitude of the beds in the southeastern belt of outcrops men-
tioned above, indicate a dip to the southeast in a zone that averages more than three-quarters of a mile in width. This southeastward dip doubtless extends in both directions, but how far can not be determined. The amount of dip can also not be determined with any certainty. Estimates of the amount of dip to the southeast by different geologists would probably differ considerably. To the writer, 100 feet would be a low estimate; he would rather consider it equal to or even greater than that of the east dip on the dome, which, measured at one place, was about 130 feet.
The strong dip to the southeast observed in the SW. $\frac{1}{4}$ sec. 32, the dip to the south measured in sec. 31, and the probable dip to the west observed in the east-central part of sec. 36 and the NE. $\frac{1}{4} \mathrm{sec} .25$, T. 24 N., R. 2 W ., indicate that the crest of the anticline probably crosses secs. 30 and 31 .
The eastern limit of the easterly dip was determined at one place, in the southeastern part of sec. 22, T. 24 N., R. 1 W., for in sec. 23 of the same township the dip is to the west. The axis of the syncline thus formed by the convergence of eastward and westward dipping beds can probably be followed southward, but the poor outcrops in this locality would necessarily make the work slow and uncertain.

A study of the structure contours shows that the anticline pitches to the southwest. The rise of the anticline to the northeast may produce either a broadening or a flattening of the structure in this direction. If it flattens, the northern extension of the dip to the east may terminate in T. 24 N., R. 1 W., and the beds may there resume their normal dip to the west. If the anticline does not flatten but, continues northeastward, it probably extends northward to T. 25 N., R. 1 W . The drill will no doubt at some time furnish much of the information which is now lacking because of the absence of rock exposures.

DEVELOPMENT.

The well in which the original discovery of gas in the Billings region was made was drilled by the Mid-Co Petroleum Co. It is on the W. Hoover farm, near the center of the north line of the SW. $\frac{1}{4}$ sec. 22, T. 23 N., R. 2 W., and is high on the dome. The mouth of the well is about at the horizon of bed 24 of the stratigraphic section given on pages 123-124. Up to May 8, 1916, drilling had reached a depth of about 1,570 feet.

After the discovery of gas in the dome, the Humphreys Petroleum Co., according to press reports, started two wells ${ }^{1}$ on the anticline. One of these is located on the Fred Murray farm, in sec. 17, T. 24 N., R. 1 W., and the other is in sec. 20, T. 24 N., R. 1 W. A depth of about 500 feet has been reported for the one in sec. 17.

[^0]
OIL AND GAS SANDS.

The Mid-Co Petroleum Co.'s well, which is on the dome, has encountered seven gas sands (see log on p. 133) at depths of $570-582$, $740-755,830-842,860-870,880-905,1,027-1,047$, and 1,476-1,545 feet. Each sand encountered increased the production, and, according to the trade journals, the well is now capable of producing several million cubic feet of gas a day.

The Humphreys Petroleum Co.'s well in sec. 17, T. 24 N., R. 1 W., is reported to have struck a gas sand at a depth of 470 feet. Whether or not this gas sand is the same as the highest sand in the Mid-Co Petroleum Co.'s well is not known.
The finding of gas sands in the Mid-Co well shows that the dome is favorable for the accumulation of gas, even at shallow depths. The quantity of gas found in the Humphreys test on the anticline was not reported. Its presence, however, is encouraging, and would seem to indicate that the anticline also contains paying quantities of gas.
In any further discussion of the possibilities for finding additional oil and gas sands in this or any other region the relation of the area to all the near-by oil and gas producing regions should be considered. Three such regions must be considered in relation to the Billings anticlinal fold. Located with reference to the Mid-Co Petroleum Co.'s well, they are the Blackwell oil and gas field, about 30 miles to the north; the Ponca City oil and gas field, about 21 miles to the northeast; and the area in which the Watchorn \& Fortuna Oil Co.'s gas wells were recently drilled, 23 miles to the east.
The Watchorn \& Fortuna Oil Co.'s first well, in so far as the well record (see p. 134) shows, encountered no oil and gas sands until it reached a depth of 1,990 feet. Twenty-five feet below this depththat is, at a depth of 2,015 feet-it encountered its main flow, which yielded an initial production of over $35,000,000$. cubic feet of gas a day. If this prolific gas sand extends northwestward it should have been penetrated by all the deep wells in the Ponca City field. As far as the writer is aware no prolific gas sand has been reported at Ponca City at a depth of 2,000 to 2,300 feet, where this sand should be found.

In the Ponca City field, northeast of the Mid-Co Petroleum Co.'s well, there are several shallow gas sands and three deeper oil sands, at depths of about $975,1,330$, and 1,550 feet. The two lower are the only productive oil sands. ${ }^{1}$ These oil sands or closely related sands are either barren or absent in the region of the Watchorn \& Fortuna Oil Co.'s wells. Records of two Ponca City wells are given on pages 134-136.

[^1]In 1911 a dry hole was drilled on the 101 Ranch, in sec. 25, T. 25 N., R. 1 E., which is 3 miles nearer to the Mid-Co Petroleum Co.'s well than the Ponca City field. The log of the drilling is given on page 136.

In the Blackwell field, in Kay County, north of the area here discussed, there are many gas sands, both shallow and deep, and one deep producing oil sand, from which some wells have had initial productions of over 1,000 barrels a day. Logs of two wells in this field are given on pages 137-138. The Blackwell field is 13 miles distant from the Ponca City field. The two fields are similar in respect to the presence of numerous shallow gas sands. The oil sands of the Ponca City field are either gas bearing, barren, or absent at Blackwell, where it might be expected that they would be found 100 to 400 feet lower than at Ponca City. Similarly, the deep oil and gas sand at Blackwell is either absent or nonproductive in the wells that penetrate its horizon at Ponca City.

As far as it has been developed, the dome in the Billings region is similar to the Ponca City and Blackwell fields in respect to the presence of numerous shallow gas sands. It appears, however, that the producing sands at Blackwell, at Ponca City, or in the Watchorn \& Fortuna Oil Co.'s wells, in sec. 33, T. 23 N., R. 3 E., and sec. 4, T. 22 N., R. 3 E., are not of the persistent type, such as the Bartlesville and other sands found farther east in the State. Because of this apparent nonpersistency, especially of the more prolific oil sands, the probability that these particular sands will be productive in the Billings region seems small. However, the fact that the oil sands are more or less local in extent gives hope that local oil sands will also be found in the Billings region.

If any of the producing sands at Blackwell persist southward into the Billings region and are there capable of producing either oil or gas, it is the writer's opinion, which, however, is not based on field work done between the two areas, that, unless there is a considerable change in the thickness of the beds in the intervening area, the sands should be found at practically the same depth with reference to sea level in the two fields, which appear to be almost in line with the regional strike of the rocks. In like manner the producing sands of the Ponca City field should lie 200 to 500 feet lower in the Billings region than at Ponca City, and the gas sand of the Watchorn \& Fortuna Oil Co.'s wells should lie 300 to 600 feet lower.

The value of a commercial oil or gas pool depends directly on the areal extent and richness of the pay sands and inversely on the depth at which the oil or gas is found. The deeper the sands the richer must the production be to put the wells on a commercial basis. The deepest known producing sands in north-central Oklahoma are
in the Blackwell field, at a deptli of about 3,300 feet. There is no apparent reason why oil or gas bearing sands may not exist in the Billings region at the same or even greater depths than at Blackwell, and for this reason a favorably located deep test well should be drilled there at some future time. If highly productive sands are found at shallow depths such a deep test will naturally be deferred until it seems advisable to look for additional producing sands.

RELATIVE VALUES OF THE PROSPECTIVE OTL AND GAS LANDS.

The region discussed in this report is probably all under lease by oil and gas companies, and it is therefore believed that the dome and anticline will be thoroughly tested. The insertion here of any statement as to the value of different parts of the region for drilling will probably not seriously influence any plans for development, but inasmuch as this report is for the benefit, not only of geologists and oil and gas producers, but also of the general public and those unfamiliar with the interpretation of geologic structure with reference to oil and gas, a feiw notes are given. It is a generally accepted fact that only the drill can determine the exact oil and gas value of any piece of land. For this reason the following discussion of land values must be tentative and suggestive only. It is based entirely on geologic structure and the fact that the rocks underlying the region are yielding commercial quantities of oil and gas in localities near by, these being the only factors governing the occurrence of oil and gas that can be determined by a study of the surface of the region. It must also be understood that other geologists may arrive at different conclusions from those here presented, and inasmuch as any such conclusions are more or less theoretical, all of them may carry equal weight.
Until drilling has definitely demonstrated the relative value for oil and gas of the different land units in the field, the crests of the dome and the anticline must be assumed to be the most valuable. The land lying immediately adjacent to the crests ranks next to them in value. Farther from the crests, however, the value decreases rapidly, being governed by the rate of dip and the distance from the crests. The greater the dip the greater is the corresponding decrease in value with increasing distance, and in the troughs of the neighboring synclines the lands theoretically have no oil and gas value.

On applying the principles above given to the dome, it would appear that the most valuable land on this structure is included in the NW. $\frac{1}{4} \mathrm{sec} .22$, the E. $\frac{1}{2}$ NE. $\frac{1}{4} \mathrm{sec} .21$, the southeastern part of the SE. $\frac{1}{4} \mathrm{sec} .16$, and the SW. $\frac{1}{4}$ and W. $\frac{1}{2}$ SE. $\frac{1}{4} \mathrm{sec} .15$. The rest of sec. 15 , the northwest half of sec. 22 , the northeast half of sec. 21 ,
the southeast half of sec. 16 , the SE. $\frac{1}{4} \mathrm{sec} .10$, the southwestern part of sec. 11, and a small area in the western and northwestern parts of sec. 14 are to be considered as next in value. Outside of these areas the probable value of the land decreases rapidly as its distance from the central area increases. As the dip is greater on the southeast side of the dome, the value of the land in this direction decreases more rapidly than it does on the west and northwest flanks.
The valuation of the land on the anticline is much more difficult than of that on the dome, because the rock outcrops on which the determination of structure depends are much fewer in number. If the dip of the rocks on the anticline corresponds to the dip of the rocks on the dome, the steeper dips should be found on the southeast side, a relation which places the crest nearer the eastern than the western margin of the anticline. The crest appears to be twice as far from the belt of rocks outlining the western margin of the fold (see p. 127) as from the similar belt on the east and probably crosses secs. 30 and 31, T. 24 N., R. 1 W., as indicated by dips in a few rock outcrops in that vicinity. The highest land values would probably be included in a strip about a mile wide extending from sec. 1, T. 23 N., R. 2 W., northeastward to sec. 16, T. 24 N., R. 1 W. This strip would include parts or all of sec. 1, T. 23 N., R. $2 \mathrm{~W} . ;$ sec. 6, T. 23 N., R. 1 W.; sec. 36, T. 24 N., R. 2 W., and secs. 31, 32, $30,29,19,20,21,17$, and 16, T. 24 N., R. 1 W. Land adjacent to this strip is promising territory, although not of equal value with the strip. Because of the greater dip on the southeast side of the anticline, land values decrease more rapidly in that direction than on the northwest side. To the northeast, where practically nothing can be determined as to the structure of the rocks, the values may also decrease.

CONCLUSIONS REGARDING THE POSSIBIIITIES OF THE FIRST THREE TEST WELLS.

In view of the fact that the original test well in this region is being drilled on the dome, interest naturally centers on this local structure. Though the well is not on the highest point of the dome, which is in the south-central part of sec. 15 , yet it is believed that if it is drilled deep enough it will make a fair test of the dome.
The anticline, because of its larger areal extent and possible greater dip to the east, may be more promising than the dome. The two wells being drilled by the Humphreys Petroleum Co. appear to be located on a favorable part of the anticline. Whether they are on the highest part of the anticline can not be determined because of the doubt as to the location and configuration of the anticlinal crest. At the time this report was written these wells were not deep enough to base any definite conclusions on their findings.

WELL RECORDS.

The following detailed records of wells were obtained in the course of the investigation:

Log of Mid-Co. Petroleum Co.'s No. 1 well in the N. $\frac{1}{2}$ SW. $\frac{1}{4}$ sec. 22, T. 23 N., R. 2 W., near Billings, Okla.

	Thickness.	Depth.		Thickness.	Depth.
Earth.	Feet. 6	Feet. 6	Hardi sand......................	Feet. 15	Fcet. 640
Lime.	24	30	Red rock.	56	696
Sand.	4	34	Hard slate.	19	715
Slate.	16	50	Red rock..	25	740
Red rock	10	60	Gas sand.	15	755
Blue slate	37	97	Slate....	10	765
White shale	13	110	Soft gray lime.	42	807
Red rock.	5	115	Red rock....	23	830
Slate..	20	135	Gas sand.........................	12	842
Red rock.	105	240	Red rock.	18	860
White slate.	10	250	Hard sand and gas.	10	870
Red rock.	15	265	Red rock..........	14	884
Lime..	4	269	Hard, gritty lime, gas.	21	905
Red rock	46	315	Hard slate.........	10	915
Slate.	10	325	Red rock.	112	1,027
Red rock	5	330	Gas sand.	20	1,047
White slate.	8	338	Blue slate......................	2	1,049
Red rock...	17	355	Sand and lime...................	17	1,066
Soft slate.	10	365	Red rock........................	64	1,130
Soft red rock	15	380	Lime............................	6	1,136
Lime......	8	388	Red rock........................	14	1,150
Sand rock.	7	395	First water sand; water salty.	20	1,170
White slate.	25	420	Slatè...........................	25	1,195
Hard lime..	15	435	Lime..	23	1,218
Soft lime.	15	450	Red rock	52	1,270
White slate.	42	492	Lime...	30	1,300
Red rock.	28	520	Brown slate.	15	1,315
Gray lime.	15	535	Lime.....	75	1,390
Red rock.	25	560	Blue slate.	5	1,395
Hard slate.	10	570	Lime..	5	1,400
Gas sand.	12	582	Lime and slate	76	1,476
Red rock.	38	620	Gas sand.	69	1,545
Blue lime.	5	625	Slate.	25	1,570

Log of the Watchorn \& Fortuna Oil Co.'s 101 Ranch well No. 1, in the SW. $\frac{1}{4}$ sec. 39, T. 23 N., R. 3 E.

	Thickness.	Depth.		Thickness.	Depth.
Red bed.	Feet. 40	Feet. 40	Lime.	Fcet.	Fect. 1,140
Sandstone	5	45	Blue shale.	50	1,190
Red bed.	5	50	Lime......	5	1,195
Sandstone	20	70	Blue shale.	90	1,285
Red bed.	190	260	Gray sandy shale.	30	1,315
Lime.	2	262	Lime......	4	1,319
Red bed.	28	290	Sand.	16	1,335
Water sand	5	295	Blue shale.	65	1,400
Lime...	10	305	Sand..	25	1,425
Red bed..	10	315	Sandy shalé...................	25	1,450
Water sand water)	35	350	Blue shale (streak water sand 1,555)	120	1,570
Lime....	18	368	Hard sand...	5	1,575
Red mud.	5	373	Blue shale.	105	1,680
Red bed.	62	435	Red bed.	10	1,690
Water san	10	445	Water sand.	15	1,705
Red bed.	10	455	Sand (shelly)	15	1,720
Blue slate	20	475	Hard sand...	5	1,725
Red bed.	25	500	Blue shale.	5	1,730
Lime.	6	506	Broken sand.	25	1,765
Blue shale	14	520	Blue shale.	35	1,800
Lime.	10	530	Blue slate.	10	1,810
Blue shale	70	600	Hard lime.	5	1,815
Red bed..	10	610	Sandy lime.	15	1,830
Water sand	10	620	Broken lime, sandy.	30	1,860
Blue slate.	10	630	Hard lime...	5	1,865
Blueshale.	195	825	Broken lime.	10	1,875
Red bed.	15	840	Broken lime, shelly.	20	1,895
Blue shale.	25	865	Broken lime........	20	1,915
Lime..	5	870	Blue shale.	20	1,935
Blue shale.	70	940	Sand...	25	1,960
Water sand	10	950	Blue shale..	30	1,990
Red bed.	35	-985	Sand; gas enough to blow	3	1,990
Blue shale.	65	1,040	water out of hole.............	5	1,995
Water sand	10	1,050	Sand..	5	2,000
Blue shale.	5	1,055	Broken sand.	12	2,012
Water sand	20	1,075	Shell.	3	2,015
Blue Shale.	30	1,105	Sand shelly, big gas	5	2,020
Lime.	4	1,109	Sand shelly, gas increasing....	20	2,040
Blue shale.	26	1,135			

Casing record: 151-inch, 373 feet; 122-inch, 859 feet; 10 -inch, 1,561 feet; 83 -inch, 2,016 feet; 68 -inch, 2,041 feet.
Log of 101 Ranch Oil Co.'s Flossie Running After Arrow well No. 16, in the W. $\frac{1}{2}$ NE. $\frac{1}{4}$ sec. 17, T. 25 N., R. 2 E.

Casing record: 88 -inch, 1,035 feet; $6 \frac{5}{8}$-inch, 1,320 feet; 47 -inch, 1,445 feet; packer, 1,520 feet.

Log of Margaret Primeaux No. 7 well in sec. 4, T. 25 N., R. 2 E.

	Thickness.	Depth.		Thickness.	Depth.
	Feet.	Feet.		Fiet.	Fcet.
Soil.	2	2	Sand.	5	1,685
Slate	48	50	Slate	15	1,700
Sand and	8	58	Sand (hard; bad cave).........	35	1,735
Lime.....	6	64	Slate.....................	12	1,748
Slate.	10	74	Lime.	10	1,758
Red rock	96	170	Red rock	5	1,763
Lime.	5	175	Lime..	70	1,770
Slate	10	185	Black shale (very cavy)......	44	1,814
Lime.	50	235	Lime....	13	1,827
Red rock.	65	300	Slate.	13	1,840
Lime.....	2	302	Lime.	7	1,847
Shale.	4	306	Slate.	43	1,890
Lime.	3	309	Lime.	5	1,895
Shale.	13	322	Slate.	3	1,898
Lime.	11	333	Lime.	4	1,912
Slate.	4	337	Slate.....................	91	2,003
Lime.	13	350	Sand (hole full of water)......	32	2,035
Red rock	90	440	Slate.....................	3	2,038
Sand (13,00	12	452	Lime.	7	2,045
Slate.....	138	590	Slate.	15	2,060
Lime.	4	594	Lime.	12	2,072
Slate.	13	607	Slate.	32	2,104
Lime.	11	618	Lime.	10	2,114
Slate.	5	623	Slate.	14	2,128
Lime.	42	665	Lime.	10	2,138
Slate.	25	690	Slate.........................	11	2,149
Lime.	40	730	Lime (3 feet below water).....	1	2,150
Slate.	40	770	Sand ($3,000,000$ feet of gas at		2,150
Lime.	5	775	2,150 feet)......................	75	2,225
Slate.	15	790	Lime and sand.	120	2,355
Lime.	10	800	Sand..........................	10	2,365
Slate.	40	840	Black slate.	47	2,412
Lime.	5	845	Sand..........................	3	2,415
Slate.	75	920	Slate.	125	2,540
Lime.	10	930	Lime.	8	2,548
Slate.	25	955	Brown shale.	82	2,630
Sand.	15	970	Lime.....	4	2, 634
Slate.	70	1,040	Brown shale.	31	2,665
Lime.	5	1,045	Lime........	8	2,673
Slate.	60	1,105	Brown sand.	15	2,688
Lime	3	1,108	Light sand.....................	12	2,700
Slate	17	1,125	Slate..	16	2,716
Lime	5	1,130	Sand........	24	2,740
Slate.	35	1,165	Coarse sand Light sand	15	2,755
Lime	13	1,178	Light sand	15	$\stackrel{\text { 2, }}{\mathbf{2} 70}$
Slate.	22	1,200	White sand (3 bailers water). Blue lime (very hard)	10	2,780
Sand.	20	1,220	Blue lime (very hard) Black slate	25	2,805
Slate.	15	1,235	Black slate. Sandy shale.	90 35	2, 895 2,930
Slate.	10	1,245	Sandy shale. Black slate.	35	2,930 2,995
Slate.	25 20	1,270	Black slate. Lime.	65 7	2,995 3,002
Slato.	35	1,325	Brown shale.	4	3,006
Lime.	10	1,335	Lime......	14	3,020
Slate.	10	1,345	Blue shale.	22	3,042
Sand (hol	30	1,375	Bluish sand.	23	3,065
Slate...	25	1,400	Blue slate.	20	3,085
Lime.	5	1,405	Gray sand.	13	3,098
Slate.	13	1,418	Gray slate..	27	3,125
Lime.	3	1,421	Blue shale.	43	3,168
Slate.	14	1,435	Lime.	19	3,187
Lime and	13	1,448	Blue shale.........	13	3,200
Lime...	4	1,452	Lime (very hard).	2	3,202
Slate.	18	1,460	Shale.............	9	3,211
Lime.	6	1, 466	Lime..........	16	3,227
Slate.	24	1, 490	Sand and lime.	15	3, 242
Lime.	20	1,510	Shale.	6	3,248
Slate.	10	1,520	Lime.	62	3,310
Lime.	3	1,523	Black shale...................	5	3,315
Slate.	9	1,532	Lime.	10	3,325
Lime.	4	1,536	Black shale.	2	3,327
Slate......	3	1,539	Lime........	13	3,340
Red rock.	2	1,541	Black shale.	7	3,347
Slate....	1	1,542	Lime.......	7	3,354
Sand (sho	10	1,552	Black shale.	18	3,372
Slate.	25	1,577	Lime......	8	3,380
Red rock	3	1,580	Black shale.	10	3,390
Lime...	5	1,585	Lime.......	7	3,397
Slate.	10	1,595	Black shale.	30	3,427
Sime.	15.	1,610	Lime.......	3	3,430
Slate.	35	1,645	Black shale.........	5	3,435
Lime.	10	1,655	Sandy lime (water)	10	3,445
Sand..	10	1,665	Shale..............	10	3,455
	15	1,680	Sandy lime.	2	3,457

Log of Margaret Primeaux No. 7 well in sec. 4, T. 25 N., R. 2 E.-Continued.

	Thickness.	Depth.		Thickness.	Depth.
	Feet.	Feet.		Feet.	Feet.
Black shale.	11	3,468	Hard lime.	5	3,570
Red rock.	2	3,470	Sand, hard.	5	3,575
Lime..	2	3,472	Blue shale.....................	5	3,580
Sand, gray, very hard.	10	3,482	Lime shells and shale..........	11	3,591
Blue shale. .i...	14	3,496	Lime......	7	3,598
Sand, like oil sand.	14	3,510	Blue shale.....................	27	3,625
Blue shale.	15	3,525	Sand, little oil.	8	3,633
Lime.	3	3,528	Hard sand.	15	3,648
Shale..	7	3, 535	Lime........................	4	3,652
Red rock.	5	3,540	Sand, very hard, showing of		
Blue shale.	15	3,555	oil..	73	3,725
Lime.	5	3,560	Lime, very hard...............	29	3,754
Black shale.	5	3,565			.

Casing record: $12 \frac{1}{2}$-inch, 73 feet; 10 -inch, 610 feet; $8 \frac{1}{1}$-inch, 1,260 feet; $6 \frac{5}{8}$-inch, 2,038 feet; $5 \frac{3}{10}$ inch, 2,632 feet.

Log of H. F. Wolf well No. 1, SW. sec. 6, T. 28 N., R. 1 E.

Casing record: $15 \frac{1}{2}$-inch, 135 feet; $12 \frac{1}{2}$-inch, 680 feet; 10 -inch, 1,040 feet; $8 \frac{1}{3}$-inch, 2,080 feet; $6 \frac{5}{8}$-inch, 2,360 feet; $5{ }^{\frac{4}{1} 6}$-inch, 2,734 feet.

$$
43768^{\circ}-\text { Bull. } 641-17-10
$$

Log of Gus Sivenson well No. 1, NE. $\frac{1}{4}$ sec. 32, I'. 29 N., R. 1 E.

	Thickness.	Depth.		Thickness.	Depth.
	Fect.	Fret.		Feet.	Fcet.
Soil.	5	5	Lime.	20	1,230
Clay (water).	9	14	Slate..	60	1,290
Shale........	12	26	Lime.	10	1,300
Gypsum	4	30	Slate..	120	1,420
Shale....	16	46	Llme...............	24	1,444
Gypsum.	8	54	Sand (water, little gas)	36	$\cdots 1,480$
Shale.	25	79	Lime.	20	1,500
Lime.	3	82	Shale.	110	1,610
Shale.	19	101	Lime.	20	1,630
Lime.	4	105	Shale.	10	1,640
Red rock	18	123	Lime.	3	1,643
Shale.	140	263	Shale.	97	1,740
Red rock.	34	297	Lime.	10	1,750
Shale.	30	327	Sand (gas).	25	1,775
Lime.	5	332	Red rock.	15	1,790
Shale.	14	346	Shale.	10	1,800
Lime.	4	350	Sand (water)	25	1,825
Sand (gas)	20	370	Shale.	15	1,840
Shale......	65	435	Red rock	60	1,900
Lime, sand (water)	7	442	Lime.	40	1,940
Red rock.....	15	457	Shale.	20	1,960
Shale.	41	498	Sand (oil, good showing)	25	1,985
Lime.	3	501	Sand (water)............	2	1,987
Slate.	26	527	Slate........	13	2, 000
Lime.	10	537	Lime.	7	2,007
Shale.	20	557	Slate.	83	2,090
Sand (gas, into water)	33	590	Lime.	10	2, 100
Shale..	22	612	Red rock	10	2,110
Lime.	7	619	Lime	105	2,215
Slate...	21	640	Slate.	63	2,278
Red rock (caved badly	21	661	Sand (oil, good showing)	15	2,293
Shale..	6	667	Slate....	5	2,298
Slate.	2	668	Sand (water)	12	2,310
Lime.	5	674	Slate....	345	2, 655
Shale.	41	715	Sand (oil)	32	2,687
Sand.	27	742	Sand.	73	2, 750
Shale.	28	770	Slate.	5	2,755
Sand (water).	26	796	$\underline{L i m e}$	10	2,765
Shale.........	80	876	Sand (water)	15	2,780
Lime.	9	885	Lime.	220	3,000
Red rock	17	902	Shale.	50	3,050
Shale..	18	920	Sand (oil, fair showing).	20	3,070
Sand (gas)	22	942	Lime........	130	3,200
Lime......	3	945	Shale, slate.	100	3,300
Sand (water)	55	1,000	Sand (water)	30	3,330
Red rock....	30	1,030	Slate........	25	3,355
Shale.	70	1,100	Sand (gas).	10	3,365
Lime.	15	1,115	Oil sand (still in sand).	20	3,385
Shale.	95	1,210			,

Casing record: 10 -inch, 686 feet; $8 \frac{1}{4}$-inch, feet; $6 \frac{5}{8}$-inch, 2,408 feet; $5 \frac{8}{16}$-inch, 2,800 feet, and underreamed to 3,337 feet.

[^0]: 1. The reported locations of these wells were received too late to be incorporated on Plate IX.
[^1]: ${ }^{1}$ Ohern, D. W., and Garrett, R. E., The Ponca City oil and gas field: Oklahona Geol: Survey Bull. 16, pp. 28-29, 1912.

