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Abstract

Seventeen months of rainfall data (August 1987-December 1988) from nine satel-
lite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer,

Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rain-

fall estimates. The variability among algorithms, measured as the standard deviation

computed from the ensemble of algorithms, shows regions of high algorithm variability

tend to coincide with regions of high rain rates. The ratio of the annual mean algo-

rithm variability to the annual mean (August 1987-July 1988) rain rate is generally less

than 0.5 over most of the regions between 50°N and 50°S. Exceptions are found in the

oceanic dry zones and the Himalayan region. High algorithm variability in the oceanic
dry zones points to the different approaches in the treatment of low rain rates. Arkin's

algorithm, which uses cloud top temperature, tend to over-estimate in the mountainous

Himalayas and in the Indian monsoon region. The over-estimate over the Himalayas

is attributed to the cold surface. Over the Indian Ocean, the frequent occurrence of

non-raining high clouds contributed to the high estimates. The global annual rainfall

(over the latitude belts +50 o and for August 1987-July 1988) ranges from 2.5 to 3.5
mm/day, with higher variability over land than over ocean. The variability of zonal

averaged rain rates is in the range of about 0.5 mm/day in the subtropical dry zones

and increases to 2 mm/day in the tropical rain belts. Histograms of pattern correlation

(PC) between algorithms suggest a bimodal distribution, with separation at a PC value
of about 0.85. Applying this threshold as a criteria for similarity, our analyses show

that algorithms using the same sensor or satellite input tend to be similar, suggesting

the dominance of sampling errors in these satellite estimates.

The sensitivity of the algorithms to the 1986-87 El Nifio Southern Oscillation event
was examined using paired-t tests and PC analyses. Paired-t statistics results indicate

that the algorithms of Chang, Prabhakara, and Spencer show significant difference
between August 1987 and 1988, assuming the difference field is spatially uncorrelated.

This assumption needs to be further examined.
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1 INTRODUCTION

The reality of Global Circulation Models (GCMs) to predict future climate changes hinges
on their ability to realistically reproduce current climate. Although most of the GCMs are

based on the same laws of thermodynamics and dynamics, they emphasize different physical

processes or used different parameterization schemes for many of the important climate

components. The Atmospheric Model Intercomparison Project (AMIP) was established to

evaluate the operational GCMs and to diagnostically compare products of the GCMs. Ten

years (1979-1988) of GCM runs were performed in a controlled situation for the cases with

and without actual sea surface temperature forcing.

Precipitation is an important climate parameter. Theoretical studies have shown the im-

portance of the release of latent heat of condensation associated with precipitation in driv-
ing atmospheric circulation. Observational studies have also demonstrated the association

between precipitation pattern changes and climate variations. However, the spatial and

temporal variability of rainfall at all scales poses a great challenge in estimating space/time
rainfall.

In response to this challenge, the National Aeronautics and Space Administration (NASA)

of the United States (U.S.) and the National Space Development Agency (NASDA) of Japan

jointly sponsored the Tropical Rainfall Measuring Mission (TRMM). With TRMM well un-

derway, the science community saw the opportunity for improved global rainfall estimation.

Techniques for estimating rainfall from space-borne measurements flourished. To compare

and calibrate these techniques, a number of projects to intercompare satellite rain retrieval

techniques have been conducted. The First Algorithm Intercomparison Project (AIP-1) was

organized by the Global Precipitation Climatology Project (GPCP). AIP-1 compared a va-

riety of rainfall estimates derived from geostationary meteorological satellite visible and IR

observations and Special Sensor Microwave/Imager Microwave (SSM/I) observations with

rainfall derived from a combination of surface radar and rain gage data over the Japan and

the adjacent sea region during June and mid-July through mid-August of 1989 (Lee et al.,

1991). Subsequently, AIP-2 and AIP-3 were organized to evaluate the rainfall over England

and the Tropical Ocean-Global Atmosphere Coupled Ocean Atmosphere Response Experi-

ment (TOGA-COARE) region respectively. Under the NASA- led WetNet Project, a series

of Precipitation Intercomparison Projects (PIPs) were organized to compare rainfall derived

from a common SSM/I microwave data set. PIP-1 was undertaken in 1992 and 1993, with

global rainfall for the months of August through November 1987 as its subject (Barrett,
1994). PIP-2 (Smith et al., 1995) and PIP-3 (Ebert, 1996) were organized to evaluate and

compare SSM/I derived rainfall for pre-selected rainfall cases and global patterns. These

intercomparison activities were designed to fulfill specific goals and were usually restricted
to a limited domain.

There are several ongoing satellite rain estimation activities at NASAs Goddard Space

Flight Center (GSFC). At the request of GSFC management, an in-house a£ hoc committee



wasformed in October1993. The main chartersof this committeewereto: (1) review
and evaluatethe GSFC satellite rain estimation efforts, (2) discuss duplications and/or

need for diversity, and (3) develop a plan for coordinating the GSFC efforts, including an

intercomparison of the algorithms at various space and time scales. This study extended

the comparison effort to include other operational or semi-operational rain rate algorithms.

Algorithm developers were requested to submit monthly data for the comparison effort. Two

types of comparison were conducted: snapshot comparison and time series comparison. The

snapshot comparison focuses on the global rain estimates for the months of August 1987 and

May 1988. The time series comparison focused on the time period during which the SSM/I

measurements overlap the AMIP period (July 1987 through December 1988). During this

period, the algorithms went through at least one seasonal cycle, allowing examination of

the seasonal differences of the algorithms. This period also saw the demise of the 1986-

1987 El Nifio Southern Oscillation (ENSO) episode and the return of the atmosphere to its

relatively normal state. This provided the opportunity to intercompare the sensitivity of

the algorithms to the same external forcing.

The remainder of this report is divided into 5 sections. Section 2 describes the algorithms.

Section 3 describes the preprocessing of these data sets. Results of the comparison of the

annual mean, seasonal and regional differences, and for individual months (August 1987 -

July 1988) are described in Sections 4. Section 5 examines the responses of the algorithms to

the 1986-87 ENSO event. Section 6 summarizes the results and discusses possible mutually

beneficial avenues of collaborations between the algorithms.

2 ALGORITHMS

The satellite rain algorithms included in this study are:

(1) The Goddard Scattering Algorithm by Adler, Huffman and Negri (Adler),

(2) Calibrating GOES Precipitation Index (GPI) infrared (IR) data with microwave data

by Adler, Huffman and Negri (Huffman),

(3) Monthly oceanic rainfall using SSM/I brightness temperature histogram by Chang,

Chiu and Wilheit (Chang),

(4) Theoretical regression method by Kummerow (Kummerow),

(5) Precipitation area dependent technique by Prabhakara (Prabhakara),

(6) GOES Precipitation Index (GPI) Technique by Arkin (Arkin),

(7) Oceanic rainfall from Microwave Sounding Unit (MSU) by Spencer (Spencer),



(8) Globalprecipitationfrom TIROSOperationalVerticalSounder(TOVS) by Susskind
(Susskind)and

(9) Multi-spectralrainfall algorithmbyWu (Wu).

In addition, the griddedgaugerainfalldataset preparedby the GlobalPrecipitationCli-
matologyCenter(GPCC)(Rudolfet al., 1994)wasincludedfor validationoverland.

The characteristicsof thesealgorithmsaresummarizedin Table 1. The algorithmsare
describedbelow.

2.1 GSFC Scattering Algorithm, Adler, Huffman and Negri (Adler)

This algorithm is based on the technique described by Adler et al. (1993). The first step

is the screening of SSM/I data for missing and physically unrealistic data and jumps in

scan-average values. The SSM/I brightness temperatures are then interpolated to 12.5

km resolution pixels. Pixels that are unlikely to precipitate are identified and screened

out. The remaining pixels are tested for the scattering signal at 85.5 GHz due to frozen

hydrometeors. A precipitation rate is calculated based on radiative computation using

numerical cloud model results (Adler et al. 1991). The relationship they derived is:

Tb(85.5V) = 251.0- 4.19R, (1)

where Tb(85.5V) is the SSM/I brightness temperature of the vertically polarized 85.5 GHz

channel, and R is the rain rate in mm/hr. A rain/no-rain cutoff was set at 1 mm/hr

(Tb = 247K). The cutoff is applied to each individual SSM/I pixels. However, no cutoff

is applied to subsequent averages. Comparison with rain gage data collected over the

Pacific atolls (Morrissey, 1991) showed that the rain rate derived from (1) consistently

underestimated precipitation by a factor of two over the atolls, so the slope in (1) was
adjusted for oceanic regions to yield:

Tb(85.5V) = 251.0 - 2.09R (2)

while keeping the same rain/no-rain cutoff. In coastal regions, the slope is an average of
the land and ocean value. In the areas where sea ice is possible, land value is used.



2.2 Calibrating Geostationary IR Data with Microwave Data, Adler,

Huffman and Negri (Huffman)

This method takes advantage of the frequent temporal sampling by the geostationary satel-

lite (8 times per day) and the physically based microwave rain signal by the Defense Meteo-

rological Satellite Program (DMSP) SSM/I (twice per day) (Huffman et al., 1993). Coinci-

dent SSM/I and geostationary IR data are compared to derive an IR-rain rate relationship
consistent with the microwave-inferred rain rate. It is assumed that these microwave cali-

brated IR-rain rate relationships vary slowly in space and time. The calibrated IR-rain rate

relationships are then applied to all the geostationary satellite data to take advantage of

the superior IR time sampling. At present, the microwave rain estimates are based on the

85.5 GHz measurements of the SSM/I. The algorithm can, however, accommodate any rain

estimates derived from microwave techniques if they are deemed to be superior.

2.3 GOES Precipitation Index (GPI) Technique (Arkin)

The GPI technique (described in detail in Arkin and Meisner, 1987) was developed over the

Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) domain in

the Atlantic Inter-tropical Convergence Zone (ITCZ) region west of the African continent.

From linear regression analyses between cloud-top temperature as inferred from satellite IR

data, and radar derived rainfall, a linear relationship between the fraction of high cloud as

inferred from IR histogram and rain rate is established. The method is a simple cloud-top

temperature thresholding algorithm that assumes that satellite pixels with IR equivalent

blackbody temperatures at or below 235K precipitate at a constant rainfall rate of 3 mm/hr,

and pixels warmer than 235K do not precipitate. Although the GPI was developed exclu-

sively over the GATE region, the technique has been applied to satellite data over the entire

global tropics (40°N-40°S).

2.4 Probability Distribution Functions Algorithm, Chang, Chiu and Wil-

heit (Chang)

This algorithm is used to derive the oceanic monthly SSM/I rainfall estimates for the GPCP.

It is based on a plane parallel radiative transfer model for the 19 and 22 GHz radiance

(Wilheit et al., 1991). A Marshall-Palmer rain drop distribution was assumed, and water

vapor and non-raining cloud are also included in the model. However, frozen hydrometeor

and surface wind speed are excluded. An analytic function of the rain rate and brightness

temperature (R-Tb relationship) is obtained based on radiative transfer calculations.

Monthly histograms of brightness temperatures and linear combinations of brightness tem-

peratures are collected over 5 ° x 5° grid boxes. The probability distribution of the, rainfall



is assumedto follow a mixedlog-normaldistribution. Usingthe R - Tb relationship, the

mixed log-normal rainfall distribution is transformed into an expected brightness temper-

ature histogram. The parameters of the log-normal distribution are obtained by adjusting

the fitting parameters of the expected histogram to the observed histogram. The freezing

height, which is needed for converting the brightness temperature to rain rates, is estimated

from the Tb (19V) and Tb (22V) histograms by an objective technique using the R - Tb
relationships.

No empirical calibration has been applied to this data set. The principal parameter that

needs to be studied is a beam-filling correction factor. The beam filling correction factor

depends on the R - Tb relationship and the spatial variance of the rain fields (Chiu et al.,

1990). At present, an empirically derived correction factor of 1.5, estimated from observed
radar rain rates, is applied to the entire data set.

2.5 Linear Regression Algorithm (Kummerow)

This algorithm makes use of an inversion technique based on theoretically calculated re-

lationship between rainfall rates and SSM/I brightness temperatures. The algorithm uses

18 convective and 9 stratiform distinct rain structures. These structures, which are based

primarily on dynamic cloud model output, consist of five vertical layers. Hydrometeor
distributions in each of the layers are specified based on the surface rainfall rate. Poten-

tial errors introduced into the theoretical calculation by the unknown vertical distribution

of hydrometeors are minimized by explicitly accounting for the diverse hydrometeor pro-

files. Detail descriptions of this algorithm can be found in Kummerow et al. (1989) and
Kummerow and Giglio (1994).

One unique feature of the cloud structures is the fact tfiat hydrometeor contents are not

assumed uniform over a given cloud structure. This is necessary to avoid the classical beam-

filling problem. To account for the variability within each retrieved pixel (50 km), the 85.5
GHz variability is used as a proxy indicator for the true variability. The proxy indicator

is defined as the standard deviation of the 85.5 GHz measurements divided by the mean

rainfall within a given pixel. Rainfall is then assumed to be log-normally distributed with
a standard deviation that is consistent with the 85.5 GHz measurements.

Due to the strong dependence of the upwelling radiance on the vertical distribution of

hydrometeors, the retrieval algorithm selects the optimal structure from among the 27

cloud structures. This is accomplished by comparing the observed and calculated brightness
temperatures at all frequencies and polarizations. The vertical structure and rainfall rate

which produces the smallest brightness temperature deviations in the root mean square

(rms) sense is selected as the optimal solution for any given pixel.

5



2.6 Rain Area Dependent Algorithm (Prabhakara)

SSM/I data were used to develop a model to discriminate heavy convective and light strat-

iform rain in mesoscale convective systems. Weather radar data from Japan and Florida

were used to calibrate this model. This discrimination is done on the basis of the packing

of rain cells in the field-of-view of the radiometer. From the SSM/I data, it is inferred

that strong convective rain cells normally associated with downdrafts and/or entrainment

produce relatively large "holes" or clearances between cells. This leads to a loose packing

of rain cells of a few kilometers in size in a large radiometer footprint. Clouds with diffused

cell structure appear to produce uniform light rain. This model is used to determine the
effective rain area over oceans. The effective rain areas are then related to the area aver-

aged rain intensity empirically. Monthly rainfall maps using the Scanning Multi-channel

Microwave Radiometer (SMMR) and SSM/I data have been produced at a resolution of 3°

latitude by 5 ° longitude.

2.7 Oceanic Rainfall from MSU (Spencer)

The Spencer algorithmforoceanicrainfallisbased on observationsofthe Microwave Sound-

ing Unit (MSU) onboard the TIROS-N seriesofNOAA polarorbitingsatellites.The MSU

measures the microwave radianceat4 frequenciesinthe50-70GHz oxygen absorptionband.

Although the instrument was designed primarilyto measure atmospherictemperature pro-

files,rainand cloud signalswithinthesefrequencieswere exploited.The 50.3GHz channel

has the leastatmospheric absorptionand approaches a window channel measurement such

as the 37 GHz channel of the SSM/I. The rainrateisassumed to be proportionalto the

brightnesstemperature warming above a threshold.The algorithmiscalibratedby com-

paring7 to 10 years of monthly rainfallrecordsat 122 islandand coastallocationsat both

high and low latitudesand in both hemispheres.Detaileddescriptionsofthisalgorithmare

given by Spencer (1993).

2.8 Global Precipitation from TOVS (Susskind)

This technique is primarily based on a relationship between cloud volume and rain rate

(Susskind et al., 1984). Products from the TOVS sounding retrievals are used. The retrieval
provides global coverage of geophysical parameters at 60 km spatial resolution twice per

day. The retrieved data is potentially useful for initialization of general circulation models as

well as climate studies. Currently the algorithm estimates precipitation based on the cloud

top pressure, effective cloud fraction, and temperature-humidity profile with a nominal

60 km resolution. Empirically obtained proportionality constants have been developed for

different seasons and different surface types (land or water) (Susskind and Pfaendtner, 1989)

by comparisons with rain gage data for 1979. Production of a 16 year TOVS global data



set hasbegunaspart of the Pathfinderactivity. Differentempiricalcoefficientsmay have
to begeneratedto relateprecipitationto soundingdatafromdifferentsatellites.

2.9 Multi-spectral Rainfall Algorithm (Wu)

Wu's (1991)rainfall algorithmis basedoncloudtop altitude,emissivity,cloudamount,and
diurnal variationof surfacetemperaturederivedfrom TOVSsoundingdata. It useslong-
wavecloudradiative forcing (LCRF) togetherwith the differencebetweenday-time and
night-timeclearsky outgoinglong-waveradiation(DCLR). A linear relationshipbetween
rainfall (rain gagedata overland) and LCRF and DCLR is established.The correlation
coefficientbetweenthe rainfallestimatesandgagedatafor 4°latitudeby 5° longitudeboxes
is 0.8. Global ten-day and monthly mean rainfall maps have been produced for 1979 and

1980. Multi-year (1979-1995) rainfall estimates will be produced in the coming years using

results generated from the TOVS pathfinder activities.

As part of the GPCP, the Global Precipitation Climatology Center (GPCC) is responsible

for assembling rain gauge data over land (Rudolf et al., 1994). The GPCC data were

included for comparison over land.

3 DATA PRE-PROCESSING

Table 2 shows the data available from each algorithm. There are substantial missing data

in the SSM/I radiance for December 1987, hence that month is missing for algorithms using

SSM/I as input. Due to the evolutionary nature of some of these algorithms, data sets are

often updated after they are first acquired for our analysis. For example, a revised version

of Spencers data set came into existence in the middle of our analysis. The newer version

has been used in comparison with GCM results (Lau et al., 1996) and was used in our

comparison study. Since this change, the data sets for our comparison study have been
frozen.

These rain rate data sets have different spatial and temporal resolutions. Some of the algo-

rithms have produced pentad (five day) data and monthly means were derived by averaging

the pentad data. There are six pentads for all the months except August when the monthly

mean is the average of seven pentads. Other algorithms have used calendar months. For

comparison purpose, the data are resampled to the lowest spatial resolution of the data

sets (5 ° by 5 °) without area weighting. For example, Prabhakara's data has a resolution

of 3 ° latitude by 5 ° longitude, hence latitudinal weights of [3,2], [1,3,1], or [2,3] were used

where appropriate. All units are converted to mm/day by dividing the monthly mean by

the appropriate number of days in the month. This reduces the mismatch for data sets

using pentad and calendar month.
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While mostof the algorithmsareapplicableoverboth land and ocean,someareocean-
specificalgorithms. To comparethe performanceoverland and ocean,a land-seamask,
with 5° by 5° resolution,wascreated.Statisticsarecomputedfor oceanicandland areas,
respectively.Theoceanis further dividedinto threeoceansectors:Atlantic, Pacific,and
IndianOcean.Landareasaredividedinto fivelandmasks:NorthAmerica,SouthAmerica,
Eurasia,Africa, andAustralia. Figure1showsthe land-seamaskusedin this study.

Wefirst pre-screenedthe databy computingthe histogramsof the rain rates.Datapoints
of unrealisticallyhigh valuesoccurin mostof the SSM/I algorithms. Inspectionshowed
that thesepixelsmaybecontaminatedbylandor islands.Hence,all rain rateswith values
greaterthan 30mm/dayarescreenedout andassignedamissingvalue.The maximumand
minimumrain rate,therainratehistograms,andthenumberofdatapointsscreenedout are
listedin AppendixA. In general,oneto twodatapointsarescreenedout by this procedure
eachmonth for mostSSM/I-basedalgorithms.Thenumberof datapointsscreenedout is
muchlessfor otheralgorithms.In examiningthemeanfields,a largejump acrossthe 50°S
latitude wasnoted.This maybedueto the50° boundary for most algorithms.

The number of data points screened out from Kummerow's algorithm is generally higher

than average. We also noted that unrealistically high rain rates occur over the Himalayas.

Only oceanic rain rates from Kummerow's algorithm were included in our comparison.

4 COMPARISON RESULTS

4.1 Annual mean (August 1987 - July 1988)

The annual mean (August 1987 - July 1988) rain rate distributions for each algorithms were

computed. The upper panel of Figure 2 shows the annual mean rain rate averaged over all

algorithms. The annual mean map shows all the major features of the global precipitation

field: Inter-tropical Convergence Zone (ITCZ), South Pacific Convergence Zone (SPCZ),

South Atlantic Convergence Zone (SACZ), Monsoon regions, mid-latitude storm tracks,

and major rain areas in the Amazon and equatorial Africa. The oceanic dry zones in the
Atlantic and Pacific are also evident. There is a rain band in the southern mid-latitudes

(30°-60°S), and a sudden decrease at about 50°S which is due to the difference in the number

of algorithms across this boundary.

The standard deviation (SD) averaged over the algorithms for the annual mean is depicted

in the middle panel of Figure 2. Areas of high SD tend to coincide with high rain rate

areas. There is a region of high SD in the Himalayas region. The high SD in this region

is attributed to high rain rate estimates from Arkins algorithm during the northern winter

months, as demonstrated later in Section 4.4.

The ratio of SD to the mean is shown in the lower panel of Figure 2. Over the oceans, this



ratio is lessthan 0.5,exceptin theoceanicdry zones.Thereis a jump in the ratio across
the 50°Sboundary,which is probablydueto the suddendecreasein the meanacrossthe
boundary(seeupperpanel).

Figure 3 showsthe algorithmwith the maximum(upperpanel)andthe minimum(lower
panel)rain rates.Algorithmswith the maximumrainfall tend to orientin thezonaldirec-
tion. Arkins algorithmdisplaythe largestrain rate in mostland areasand in the Indian
Ocean,whilePrabhakara'srain rate is the highestin mostof the oceanicregions.Wu's
rain rate is the highestoverthe oceanicdry regions.The lowerpanelof Figure 3 shows
the algorithmsof minimumrain rate. Kummerow'sis the lowestin most of the tropical
oceanarea. Prabhakara'salsorevealsthe minimumin the 40°-50°Slatitude band. Pole-
wardof 50°, whereonly algorithmsof Adler,Kummerow,Susskind,andWu havecoverage,
Adler andWu'salgorithmdisplaythe minimumin thesouthernand northernhemisphere,
respectively.

4.2 Monthly Comparison

Figures4.1-4.17showthe mean(averagedoverall algorithms),SD,andthe ratio of SDto
the meanfor August1987to December1988.

In August1987(Figure4.1),all algorithmsshowthemajorpatternsof precipitation:ITCZ,
SPCZ,andtheoceanicdry areasin thewesternnorthAtlanticandsouthPacific.Overland,
themaximumovertheAmazon,equatorialAfrica,andovertheIndiancontinentareevident.
Themaximumandminimumintensitiesat the locationof the maximumandminimumare
quite varied,however.The dry oceanicregionsshowthe largestratios. This is probably
due to the small rain ratesovertheseregionsand the deficiencyin somealgorithms in
estimatingthe low rain rates. Again,as in the annualmeancase,the regionsof high SD
correspondgenerallyto regionsof highmeanrain rate. The ratio in the rangeof 0.5. in
mostareas.

Theupperpanelof Figure5.1showsthe algorithmwhichproducesthe maximumrain rate
at eachgrid point for August1987.Arkins algorithmdisplaysthe largestrain rate over
the Indiancontinentand northernIndianOcean.This is consistentwith earlierresultsof
Chiu et al. (1993) who attributed the high rain rates to the presence of non-precipitating

high cirrus in these areas. Arkin's rain rate is also the maximum in Africa between .the

latitudes of 10°S to 20°N, and in most of the latitude band between 35°S to 40°S. In the

oceanic dry regions, such as the eastern north and south Pacific, and western south Atlantic,

Wu's algorithm shows the maximum. The high variability may be due to the use of cloud

radiative forcing in Wu's algorithm and the low cutoff threshold imposed in some microwave

algorithms. Most of the algorithms are confined to latitudes of 50 ° -60 ° latitude. Poleward

of 60 ° latitude, algorithms of Adler, Susskind, and Huffman show the maximum rain rate.

The lower panel of Figure 5.1 shows the algorithm that produces the minimum rain rate for



August 1987.Adler and Kummerowsalgorithmsarethe minimumin mostof the regions
between60°N and 60°S.At the 45°-50°Slatitude band, Prabhakara'sis the minimum.
Polewardof 60° latitude, Wu's algorithm is the minimum.

In September 1987 (Figure 4.2), streaks of large rainfall areas, oriented in a north-south

direction, are seen in the north Pacific. These large rainfall areas are associated with

typhoon tracks. The corresponding SD is also high. Figure 6 shows the rainfall distribution

for all nine algorithms. SSM/I-based algorithms generally have the largest rain rates in

the typhoon track areas, followed by the algorithms of Arkin and Spencer. The algorithms

of Susskind and Wu also show streaks of high rain rate areas associated with the typhoon

tracks, but the rainfall intensity are lower than other algorithms. The lower panel of Figure

6 shows the ratio of theSD to the mean rain rate. Large ratios appear south of the equatorial

rain band and in the oceanic dry zones.

Over the Himalayan region the ratio is high in general. The ratio reaches a value above 2

in October 1987 (Figure 4.3) and remains high till June 1988.

We examined the similarity between the different algorithms. Table 3 shows the pattern

correlation coefficients (PCs) between the different algorithms for August 1987. All coeffi-

cients greater than 0.85 were highlighted. The PCs range from 0.6 to 0.95. Figure 7 shows

the histogram of the PCs for August 1987. The histograms suggests a bi-modal distribu-

tion, with peaks around 0.75 and 0.90. If we consider a PC value of 0.85 as a threshold

for similarity, i.e., algorithms with PC higher than 0.85 are similar, then the algorithms

tend to cluster. For example, there is similarity between the algorithms of Huffman, Adler,

Chang, and Kummerow, all of which use SSM/I data as input. The highest correlation of

0.94 is found between Susskind and Wu, which are based on TOVS retrieved parameters.

There is also a high PC between Arkin's and Huffman's algorithm, which may be due to the

incorporation of GPI data in Huffman's algorithm. Spencer's algorithm, which is the only

one using MSU data, has no PC values greater than 0.85 with any of the other algorithms.

This pattern suggests that algorithms that use the same sensor data (SSM/I or MSU) or

retrieved parameters (TOVS) tend to be similar. The reason for this similarity may be

due to the error inherent in these algorithms. There are essentially two kinds of errors in

satellite retrieval algorithms: retrieval and sampling error(Wilheit, 1988). The above result

indicates that the rainfall pattern derived from these retrieval algorithms are extremely
dependent on the sampling of the sensors.

To ascertain that our results are not fortuitous, we repeated the computation for May 1988.

Table 4 shows the PCs between the algorithms for May 1988. The histogram of correlation

coefficients are also shown in figure 7. If we again impose a PC threshold of 0.85 as a criteria

for similarity, similar conclusion to the August 1987 analysis can be reached.

There is a general degradation of the pattern correlation between Huffmans algorithm and

the other algorithms in 1988. Figure 8 shows the rain fields for all nine algorithms for April

1988. Huffmans algorithm shows a very strong precipitating region in the equatorial Indian
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oceanwhich is not presentin otheralgorithmsexceptthat of Arkin.

4.3 Zonal Means

Zonalmeanrain ratefor all algorithmswerecomputedfor theannualmean,August1987,
and May 1988.Theresultsarepresentedin Figures9-11.Figure9 showsthe annualzonal
meansoverocean(upperpanel),overland (middlepanel),and overboth land and ocean
(lowerpanel).Thevariabilityoveroceansiscomparableto that overland. Overtheocean,
Kummerow'srain rateis the minimumthroughoutmostof the tropicsandin the northern
extra-tropics.Prabhakara'sis the highestin the latitudesbetween10°N- 25°N. Over land,

Arkin's rain rate is highest in most of the latitude bands, with large departure from the

mean particularly in the latitudes between 300-40 °. P_in rates over land compiled by the

GPCC were plotted on the same figure. Most of the algorithms, except Arkin's in latitudes

north of 20°N, are very close to the GPCC estimate.

Figure 10 shows the zonal average rain rate for August 1987. The range of oceanic zonal

mean is about 3 mm/day near the equator and about 1.5 mm/day in the subtropics around

20 ° latitudes. All oceanic algorithms show zonal maximum at latitude 5°N-10°N, except

that of Prabhakara, which shows a maximum further north in the latitude 10°N-15°N. At

the zonal mean rain rate minimum (20°S), the algorithms tend to cluster into two groups.

The first group, consisting of Chang, Prabhakara, Wu, and Spencer has a zonal average of

about 2 mm/day. The second group, consisting of Adler, Huffman, Kummerow, Arkin, and

Susskind has a zonal average of less than 1 mm/day.

The variability over land (middle panel) is higher than that over the oceans. At the rain

rate peak between 10°-15°N, the algorithms range from about 6 to 11 mm/day. Arkin's

rain rates is the highest at this latitude. All algorithms peak at 10°N-15°N, whereas the
GPCC data show a maximum at a latitude south of 10°N-15°N.

When averaged over ocean and land, the global zonal averages for all algorithms track each

other well (lower panel). At the global zonal peak (5°-10°N), the algorithms range from

about 7 to 10 mm/day. Arkin's rain rate is much higher than the rest at 35°-40°S.

Figure 11 shows the same statistics as those depicted in Figure 10 for May 1988. The

peak in the oceanic zonal mean (4-7 mm/hr) is much smaller than that in August 1987

(7-10 mm/hr). There is also more variability among algorithms, with a range (maximum-

minimum) of 3-4 mm/day for most of the latitude bands (upper panel). Over land (middle

panel), the latitude of maximum rain shifted southward, and peaks between 50°S - 50°N.

The high rain rate of Arkin's algorithm at the 350-40 ° latitudes is also quite discernible.

Figure 12 shows the time series (August 1987- December 1988) of the global average rain

rate over ocean (upper panel), over land (middle panel), and over both land and ocean

(lower panel). Zonal averages derived from the GPCC are also included. The algorithm
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variability over the oceansis of the order of 1.5 mm/day. Over land, the variability is
higher,with Arkins rain ratesdistinctly higherthan theaverage,especiallyduringJanuary
- April 1988.If Arkin's dataisexcludedfrom thecomparison,therangeofgloballyaveraged
rainfall overland is comparableto that overtheocean.The globaloceanaverageis about
3 mm/day,whereasthat overlandis about 2- 2.5mm/day. Thecombinedaverage(land
andocean)arefairly stablefor mostalgorithms,with a medianof about 3 mm/day.

4.4 Regional Comparison

To investigate regional discrepancies, we partitioned the globe into three ocean sectors:

Pacific, Atlantic, and Indian Ocean, and five land masses: North and South America,

Eurasia, Australia, and Africa. Monthly zonal means for these ocean and land sectors were

computed and their temporal variability examined.

Figures 13.1-13.17 shows the monthly zonal means for the Atlantic, Pacific, and Indian

Ocean sectors for the period August 1987 through December 1988. In August 1987, the

mean position of the ITCZ is located at 5°N-10°N. A secondary peak appears at 5°S-10°S.

The secondary zonal peak strengthens in time. By December 1987, the intensity of the

secondary peak is comparable to that of the ITCZ. The two zonal peaks then weakens.

By March 1988, these peaks are no longer the prominent features in the zonal mean. In

May 1988, the ITCZ re-establishes itself and continues to be the dominant zonal peak until

November 1988. By December 1988, the peak in the southern hemisphere (10°S-15°S)
re-emerges. All algorithms show this change.

The dominant feature in the Atlantic is the SACZ which shows a very pronounced seasonal

displacement. The zonal maximum is situated at 5°N-10°N from August 1987 to November

1987. Its southward migration took place in January 1988, and a band of maximum rainfall

is found in 5°S-5°N from February to April 1988. The return of the zonal maximum to its

northern position started in May 1988. By June 1988, the zonal maximum is again seen at

5°N-10°N. Most of the algorithms follow this trend.

The main feature in the Indian Ocean is the Monsoon. The range of rain rates is highest in

the equatorial and northern Indian Ocean (5°S-20°N). A band of maximum zonal rainfall is

situated in the north Indian Ocean from August 1987 - October 1987. In November 1988,

the maximum zonal rainfall is seem in the southern hemisphere. By December 1988, the

zonal peak in the south equatorial Indian Ocean peak is clearly established. The zonal peak

maintains its position till April 1988 when its northward excursion takes place. Arkin's rain

rate is the largest, followed by Wu's for all the summer months at the zonal peak. The only

exception is Huffman's rain rate in April 1988- it shows a peak at 10°S-15°S.

Figure 14.1-14.17 shows the zonal average for the land sectors. High variability are seen

over South America (especially in the Amazon basin region), at the low latitudes of Eurasia,
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and in the tropicsin Africa. In SouthAmericathe variability of algorithmsseemsto show
seasonaldependency.For example,the rain rate rangeat 0°-5°Nis 3 mm/dayin August
1987,andreachesa rangeof 7mm/dayin February1988.Arkin's rain ratesismuchhigher
then the rest of the algorithmsat latitudesnorth of 25°N in Eurasiafrom October1987
to May 1988.This periodcorrespondsto the snowseasonin theselatitudes,and IR rain
estimatesmaybecontaminatedby the coldgroundsurface.

5 RESPONSE TO 1986-87 ENSO

Our study period saw the demise of the 1986-1987 (El Nifio Southern Oscillation) (ENSO)

episode and the return of the atmosphere to a relatively normal state. It therefore provides

an opportunity to compare the responses of the algorithms to the same climate (ENSO)
signal.

Figure 15 shows the rain rate distribution for August 1987 (upper panel), August 1988 (mid-

dle panel), and the normalized difference between August 1987 and August 1988 (difference

divided by the mean, lower panel). The normalized difference is an index that ranges from

-2 to +2. The extreme values occur when the rain rate in a pixel changes from zero in one

month to a non-zero rain rate in the other month. Visual inspection shows the high spatial
variability in the normalized index of Adler's algorithm which is contrasted with the low

spatial variability of the algorithm's of Wu and Susskind.

Figure 16 shows the histograms of the normalized difference for all seven algorithms. Most

of the histograms show bell-shape distributions. The histograms of Adler and Spencer's

algorithm show secondary peaks at a normalized difference values of 2, whereas the GPCC

histogram shows a secondary peak at a value of-2.

To quantify the difference, we define a paired-t statistics between these two months. Let

X(x) and Y(x) denote the rain field in August 1987 and August 1988, respectively, where

x is the position vector. The difference field Z(x) is defined as

Z(x) - X(x) - Y(x) (3)

We want to test the null hypothesis H0 : E(Z) = O, where E(Z) is the expected value of Z;

i.e., there is no difference between the rain field in August 1987 and August 1988. Taking
the expected value of the above equation, we get

E(Z) = E(X)- E(Y) (4)
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Let

to- n_l/_S D (5)

where [Z] and SD are the sample mean and standard deviation of Z (see Chang et al., 1995)

Since to has a t distribution with n - 1 degree of freedom, H0 is rejected if abs(t) > t_,,_-l.
H0 is accepted otherwise. For a = 0.025, ta,_-i = 1.96 if n > 30.

Table 5 shows the paired-t statistics and PC between August 1987 and August 1988 for all

the algorithms. Only the algorithms of Chang, Prabhakara, and Spencer show t-statistics

greater than 1.96, hence H0 can be rejected at the 95% confidence level, if all grid boxes

can be assumed independent. Since rain fields are spatially correlated, the number of

independent samples may effectively be less than n, even for the difference field. We will

address this issue in a separate study. PCs between these two months were aJso computed.

High paired t-statistics tend to be associated with low PC. Adler's algorithm is an exception.
His algorithm shows the least paired-t statistics and the lowest PC.

6 SUMMARY AND DISCUSSIONS

Annual mean and monthly rain rates from nine algorithms were compared. Results from the

annual (August 1987-July 1988) and two monthly (August, 1987 and May, 1988) comparison

showed that there are substantial differences in the amount of rainfall estimated by different

algorithms. The global mean rainfall estimated from the algorithms ranges from 2.7 to 3.5

mm/day. In comparison, the range of the GCM estimates (Figure 3 of Chahline, 1992) in

the tropical region vary from 2 ram/day to 9 mm/day, and a more recent comparison shows

a range from 2 to 3.7 ram/day (Lau et al., 1996). These global estimates can be compared
to past estimates. From water budget analysis, the global annual mean rainfall is estimated

to be in the range of 2.6 to 3.2 mm/day (950 mm to 1130 mm) (Chahine, 1993; Eagleson,
1960).

The variability among algorithms tends to be high in regions of high rain rates, such as in

the major rain bands (ITCZ, SPCZ, SACZ), monsoon regions, and in the Amazon. The

ratio of the variability to the mean is in general less than 0.5, except in the oceanic dry
regions. This high ratio is due to the difference in treatment of the low rain rates.

High PCs were found between algorithms that use the same satellite/sensor data as in-

put. This points to sampling error as the dominant contributor to the errors in space/time
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satellite rain algorithms. Future algorithms must address the sampling issue to improve

the accuracy of satellite rain algorithms.The algorithms of Adler, Chang, Kummerow, and

Prabhakara all used SSM/I data. Similarities between these algorithms are minimal since

each algorithm is focused on different physics. Adler's algorithm is mainly based on the

scattering signatures from ice particles. Chang's algorithm is based on the relationship

between hydrometeors and microwave emission. The strength of Kummerow's algorithm is

the capability to retrieve vertical profiles of precipitation and hydrometoers. Prabhakara's

algorithm emphasizes the characterization of convective and stratiform rainfalls. These ef-

forts are complementary. By combining their strength, an improved rainfall product can

be provided to the community. For example, by combining Adlers scattering and Chang's

emission algorithms, a global data set over land and oceans can be achieved. A beam-filling

correction factor is required for Chang's algorithm which depends on the rain type and struc-

ture. Prabhakara's scheme for discriminating heavy convective and light stratiform rain can

potentially contribute to Chang's algorithm. The convective and stratiform classification

can also be valuable to Adler's scattering algorithm to account for the varying distribution

of warm rain and stratiform rain, when the scattering signal is small. Kummerow's theoret-

ical model should provides a better understanding of the instantaneous rainfall information

in the footprint scale. This knowledge can be used by other investigators to further under-

standing the effect of non-raining cloud, thus improving the brightness temperature-rainfall

rate (Tb--R) relationship.

Algorithms of Susskind and Wu are based on the parameters retrieved from TOVS sounding

data. The major differences between these two algorithms are the variables used in their

regression analyses. These products are derived primarily from TOVS observations and are

complementary to those derived from SSM/I.

To address the sampling issue, techniques are being developed that combine microwave

and IR data. These techniques take advantage of the superior time sampling of IR sensors

onboard geostationary satellites and the physically based retrieval from microwave measure-

ments. The unique feature of the combined algorithm is that the IR data can be calibrated

against any microwave estimates, if such estimates are deemed superior.

tL_infall retrieval algorithms using SSM/I data are typically based on the differences in

multi-spectral responses. General meteorological conditions associated with the satellite

overpasses are usually treated as additional degrees of freedom in the retrieval While satel-

lite information has been used for data assimilation in GCMs, it might be advantageous to

incorporate GCM parameters and rain gage measurements to the satellite rainfall retrievals,

as described by Huffman et al. (1997).

Rainfall information from ground observations is needed for algorithm validation and com-

parison. At present, comparison data are available from only a few sources. GPCC and

the Surface Reference Data Center (SRDC) of the GPCP are preparing global and regional

(test-sites) rain gage data sets. Over the oceans, a 20 year monthly rainfall data set cov-

ering the western Pacific region have been compiled by Morrisey (1991). During the recent
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TOGA-COAREIntensiveObservingPeriod,shipboardradar and gage data have been col-

lected. This radar rain rate data set has been used to validate satellite based rain algorithms

for AIP-3. Over land_ the network of weather radar can potentially provide continuous spa-

tial coverage. Looking ahead, the TRMM project is acquiring data from various ground

radar sites and field campaigns are planned as part of the validation program for TRMM

algorithms. These rainfall data sets will prove to be of great value to the satellite rainfall

community. However, a major effort is required to manage and distribute these data sets.

It is hoped that the Earth Observing System Data and Information System (EOSDIS) will
be able to fill this role.
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Table 2: Available Data from the Nine Algorithms for this Study

Algorithm

Adler x x x x

Huffman x x x x

Chang x x x x
Prabhakara x x x x

Kummerow x x x x

Spencer

Arkin

Suskind

Wu

X X X X X X X X X X X X

X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X

X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

Table 3: Pattern Correlation Coefficients for August 1987 Between Different A]._orithms

Huffman Prabhakara Chang Kummerow Spencer I Arkin I Susskind ] Wu
Adler 0.9 0.66 0.88 0.92 0.74

Huffman 0.65 0.83 0.83 0.71

Prabhakara 0.70 0.68 0.76

Chang

Kummerow

Spencer
Arkin

Susskind

0.90 0.75

0.76

0.82 0.83 0.79

0.88 0.82 0.79

0.60 0.68 0.70

0.78 0.79 0.78

0.79 0.79 0.77

0.72 0.81 0.79

0.91 0.87

0.94

Table 4: Same as Table 2 except for May 1988

Huffman Prabhakara Chang Kummerow Spencer I Arkin I Susskind I Wu
Adler 0.45 0.54 0.82 0.90

Huffman 0.23 0.38 0.42

Prabhakara 0.65 0.53

Chang 0.85

0.63 0.77 0.77 0.70

0.33 0.47 0.44 0.42

0.63 0.58 0.56 0.61

0.69 0.75 0.73 0.69

0.74 0.81 0.78 0.71

0.76 0.79 0.75

0.93 0.89

0.93

Kummerow

Spencer
Arkin

Susskind

21



Table5: Paired-tStatisticsandPatternCorrelationCoefficientsBetweenAugust1987and
1988

Algorithm I Adler
Aug 87mean 2.76
Aug 87S.D. 3.40
Aug 88mean 2.71
Aug 88S.D. 3.25
paired-t 0.63
Corr. coeff. 0.55

Chang
3.56 3.18
3.59 3.09
3.29 2.94
3.41 2.84
2.77 2.73
0.60 0.58

Spencer[Arkin Susskind[
3.10 3.48 2.68
2.69 4.38 2.46
2.93 3.35 2.60
2.82 4.26 2.49
2.29 1.07 1.59
0.59 0.70 0.73

Prabhakara Wu

3.34

2.68

3.41

2.90

-1.13

0.75
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Figure 1: Land and sea mask used in this study. The oceans are further divided into the

Atlantic, Pacific, and Indian ocean sectors, and the land into north and south America,
Eurasia, Africa, and Australia sectors.
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Figure 2: Mean (upper panel), standard deviation(SD, middle panel), and the ratio of the

SD to the mean (lower panel) for the annual mean (August 1987 - July 1988). The ensemble

average is taken over all nine algorithms.
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Algorithms With Maximum Rain Rate -- 8/87 to 7/88

60N

30N

EQ

30S

60S :

60E 120E 180 120W 60W

Algorithms With Minimum Rain Rate -- 8/87 to 7/88

0

6ON"

30N

EQ

30S

60S

0 60E 120E 180 120W 60W

Adler Huff WCC Kum Prab Suss Wu Arkin Spen

1 2 3 4 5 6 7 8 9

Figure 3: Algorithm with maximum (upper panel) and minimum (lower panel) rain rates
for the annual mean.
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Mean RR (ram/day) of 9 Algorithms - Aug 1987
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Figure 4.1: Same as Figure 2, except for August 1987.
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Figure 4.2: Same as Figure 2, except for September 1987.
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Figure 4.3: S_me as Figure 2, except for October 1987.
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Figure 4.4: Same as Figure 2, except for November 1987.
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Figure 4.5: Same as Figure 2, except for December 1987.
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Figure 4.6: Same as Figure 2, except for January 1988.
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Figure 4.7: Same as Figure 2, except for February 1988.
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Figure 4.8: Same as Figure 2, except for March 1988.
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Figure 4.9: Same as Figure 2, except for April 1988.
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Mean RR (mm/day) of 9 Algorithms- May 1988
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Figure 4.10: Same as Figure 2, except for May 1988.
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Figure 4.11: Same as Figure 2, except for June 1988.
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Figure 4.12: Same as Figure 2, except for July 1988.
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AlgorithmsWith MaximumRain Rate -- Aug 1987
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Figure 5.1: Same as Figure 3, except for August 1987.
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Algorithms With Maximum Rain Rate -- May 1988
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Figure 5.2: Same as Figure 3, except for May 1988.
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Figure 6: Monthly rainfall for September 1987 for all algorithms.
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Mean RR (mm/day) of Kummerow - Sep 1987
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Figure 6-continued 1: Monthly rainfall for September 1988 for all algorithms.
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Figure 6-continued 2: Monthly rainfall for September 1987 for all algorithms.
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Figure 7: Histogram of pattern correlation coefficients among algorithms for August 1987

and May 1988. The bin 0.9 includes PC coefficients in the interval (0.90, 0.95).
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Meon RR (mm/doy) of Kummerow - Apr 1988
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Figure 8: Monthly rainfall for April 1988 for all algorithms.
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Figure 8 continued 1: Monthly rainfall for April 1988 for all algorithms.
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Figure 8 continued 2: Monthly rainfall for April 1988 for all algorithms.
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Figure 13.1: Zonal mean rain r_tes for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for August 1987.
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Figure 13.2: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for September 1987.
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Figure 13.3: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for October 1987.
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Figure 13.4: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for November 1987.
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Figure 13.5: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for December 1987.
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Figure 13.6: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle p_nel),
and Indian ocean sector (lower panel) for January 1988.
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Figure 13.7: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for February 1988.
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Figure 13.8: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for March 1988.
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Figure 13.9: Zonal mean rain rates for the Pacific (upper p_nel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for April 1988.
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Figure 13.10: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for May 1988.
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Figure 13.11: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for June 1988.
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Figure 13.12: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for July 1988.
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Figure 13.13: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for August 1988.
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Figure 13.14: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for September 1988.
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Figure 13.15: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower p_nel) for October 1988.
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Figure 13.16: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for November 1988.
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Figure 13.17: Zonal mean rain rates for the Pacific (upper panel), Atlantic (middle panel),

and Indian ocean sector (lower panel) for December 1988.
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Figure 14.1: Zonal mean rain rate for the north and south American (upper panel), Australia

and Eurasia (middle panel), and Africa land sector (lower panel) for August 1987.
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Figure 14.2: Zonal mean rain rate for the north and south American (upper panel), Australia

and Eurasia (middle panel), and Africa land sector (lower panel) for September 1987.

6O

6O

69



E
E

15

I0

o

-60

15

10--

5 -

0
-60

15

10

N & S America Zonal Mean Rain -- Oct 1987
i , i _ i , t ,

Adler Susskind

............ Huffman ....... Wu

_ _ _ GPCC ........ Arkin

Spencer

\ /,>,

--_.2 <>.-_ _;¢ :/I

-40 -20 0
Latitude

, _t . - f

20 40

Eurasia and Australia Zonal Mean Rain -- Oct 1987
I • i

Adler

............ Huffman

O _ _ GPCC

-40 -20
i i

o
Latitude

i

Susskind

Wu

Arkin

Spencer

i

\

'\
_.',. ./

l I L

6O

o
-60 -4o

20 40 60

Africa Zonal Mean Rain -- Oct 1987

' *dX_r ' ' ' S._kind
............ Huff man Wu

0 0 0 0 GPCC ......... Arkin

Spencer

.--°°

j" \

, "_. _. -- ._ _ . .-.L__ i_-._ ___,_ _. , _"_.-=_. ._ ,
-20 0 20 40

Latitude

Figure 14.3: Zonal mean rain rate for the north and south American (upper panel), Australia

and Eurasia (middle panel), and Africa land sector (lower panel) for October 1987.
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ERRATA

Following is Figure 14.12, page 79 which was not printed.
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tralia and Eurasia (middle panel), and Africa land sector (lower panel) for August 1988.
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Figure 14.16: Zonal mean rain rate for the north and south American (upper panel), Aus-

tralia and Eurasia (middle panel), and Africa land sector (lower panel) for November 1988.
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Figure 14.17: Zonal mean rain rate for the north and south American (upper panel), Aus-

tralia and Eurasia (middle panel), and Africa land sector (lower panel) for December 1988.
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Figure 15.1: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Adler.
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Figure 15.2: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Chang.

86



60N
50N
40N
30N-
20N-
1ON
EQ

10S
20S-
30S.
40S.
50S.
60S

0

Probkahara SSMI Rain (mm/doy) -- Aug 1987

J

60E 120E 180 120W 60W 0

Prabkohoro SSMI Rain (mm/doy) -- Aug 1988
60N
50N J
40N
30N
20N
1ON
EQ

10S
20S
30S
COS
50S ...................................................

60S
12[)W 60W

20 24
1987 -- Aug 1988

o B6E 12'0E 180
II II

0 4 8 12 16
Prabkahoro Normalized Difference: Aug

60N
5ON- : J :

0 _"
40N -
3ON"
20N -
1ON.......
EQ

10S.
20S.
30S.

40S'
50S .....................................................
60S

0 66E 12'0E 180 120W 60W 0

-1.5 -0.5 0.5 1.5

0

Figure 15.3: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Prabhakara.
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Figure 15.4: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Arkin.
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Figure 15.5: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Spencer.
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Figure 15.6: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Susskind.
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Figure 15.7: Rain rate distribution for August 1987 (upper panel), August 1988 (middle

panel), and the normalized difference (difference between August 1987 and August 1988

divided by the average of these two months) (lower panel) for the algorithms of Wu.
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divided by the average of these two months) (lower panel) for the algorithms of GPCC.
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Figure 16: Histograms of the normalized difference for Adler, Chang, Prabhakara, Arkin,

Spencer, Susskind, Wu, and GPCC.
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Appendix A: Histogram of Rain Rate for All Algorithms

Adler Max Min ntot
8708 21.9 0 2135
8709 22.1 0 20951
8710 18.3 0 1964
8711 24.9 0 1870!
8712 0 0 0_
8801 25.1 0 1874
8802 17.5 0 1880
8803 28.4 0 1901
8804 21 0 1919
8805 18.4 0 2005
8806 27,6 0 2084
8807 18.9 0 2112
8808 23.3 0 2122
8809 17.9 0 2101
8810 20.1 0 1954
8811 24.6 0 1843
8812 20,6 0 1846

Chang
8708 24.7 0 1033
8709 29.9 0 1029
8710 20.5 0 1014
8711 22.6 0 1029
8712 0 0 0
8801 28.6 0 998
8802 29.9 0 1026
8803 27.6 0 1026
8804 20.2 0 1033
8805 21.3 0 1026
8806 24.4 0 1023
8807 17.2 0 1027
8808 28 0 1031
8809 22.5 0 1007
8810 27 0 1016
8811 23.4 0 1016
8812 26.1 0 1015

Kummemw
8708 22.4 0 1440 0
8709 22.3 0 1440 0
8710 28.2; 0 1425 15
8711 25.7 0 1412 28
8712 0 0 0 0
8801 0_ 0 0 0
8802 28.6 0 1373 67
8803 28.4 0 1397 43
8804 28 0 1428 12
8805 271 0 1437 3
8806 28.21 0 1438 2
8807 21! 0 1438 2
8808 0! 0 0 0
8809 0 01 0 0
8810 0 0 0 0
8811 0 0 0 0
8812 0 0 0 0

nd Bin1 Bin2
0 1468 363 151 71
1 1435 378 155 62
0 1181 397 179 90
0 1312 319 117 69
0 0 0 0 0
1 1332 286 132 55
2 1156 341 155 94
0 1378 337 127 36
0 1207 371 171 92
0 1188 349 232 127
0 1467 374 157 52
0 1291 426 185 117
0 1463 390 152 67
0 1319 363 205 106
0 1216 364 203 84
0 1269 303 137 84
0 1190 303 174 78

0 522 256 126 67
1 585 279 87 36
0 420 257 157 72
0 475 259 145 60
0 0 0 0 0
1 590 214 107 45
1 609 232 99 37
0 524 281 133 45
1 436 279 148 91
0 421 282 147 76
0 480 300 124 54
0 408 242 142 96
0 579 279 98 35
1 492 259 105 79
0 577 215 114 58
0 513 228 131 85
2 535 250 124 63

939 244 145 52
941 269 128 49
962 286 101 45
878 323 117 40

0 0 0 0
0 0 0 0

884 289 114 38
866 324 116 46
904 304 142 32
913 323 131 47
980 302 109 28
887 282 144 68

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
o o o! o
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Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin 10 Bin 11
41 19 11 6 3 1 1
34 14 9 4 1; 2 1
54 28 14 13 3 4 1
25 16 61 5i 0 0 1
0 0 0 0! 0 0 0

36 16 10 2_ 2 2 1
53 32 19 17_ 11 1 1
14 6 2 0i 0 0 1
43 20 8 3; 2 1 1
49 30 17 4 7 1 1
21 8 1 1 1 1 1
48 16 15 8 3 2 1
23 14 7 3 2 0 1
48 29 15 7 6 2 1
45 21 12 4 4 01 1
26 15 7 1 0 0! 1
53 25 6 7 5 4j 1

22 19 13 6 0 1 1
31 5 2 0 1 2 1
36 28 24 10 6 3 1
43 22 9 7 6 2 1

0 0 0 0 0 0 0
18 10 6 5 1 1 1
27 17 3 1 0 0 1
23 12 3 1 3 0! 1
40 12 11 7 4 4 1
52 28 10 6 3 0 i 1
31 15 11 6 0 1 1
54 38 16 13 8 9 1
20 10 7 1 1 0 1
29 21 7 8 2 4 1
34 13 1 2 0 1 1
28 11 10 3 4 2 1
20 14 2 3 3 0 1

26 14 9 2 7 1 1
22 17 8 3 1 1 1
18 7 2 1 0 2 1

20!0 13 11 3 1 5 10 0 0 0 0 0
0; 0 0 0 0 0 0

191 7 8 4 6 3 1
12 _ 8 6 9 5 4 1
16_ 14 6 3 4 2 1
9 8 3 1 1 0 1

13 3 1 1 0 0 1
27 12 8 6 3 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Huffman
8708
8709
8710
8711
8712
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812

Prabhakara
8708
8709
8710
8711
8712
8801
8802
8803
8804
8805
8806
8807
8808
8809:
8810
8811
8812

Spencer
8708
8709
8710
8711
8712
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812

23.9
22
27

27.7!
0
0

23.7
18.9
20.1
23.4
:):):1

0
0
0
0
0
0

19.9
26.4
21.1
20.4

0
28.3
28.6
24.7
26.3
19.8
22.9
19.4
23.6
20.4
27.2
29.6
25.6

15.4
18

16.5
18.3
15.4
14.8
17.8
19.5
16.8
14.8
17.7
15.6
18.1
15.7
16.1
17.4
17.91

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2592
2592
2591
2592

0
0

2592
2592
2592
2592
2592

0
0
0
0
0
0

1000
1000
1000
1000

0
999
998=
998
999
998
999
998

1000
1000
999
999

1000

2592
2592
2592
2592
2592
2592
2592
2592
2591
2592
2592
2592
2592
2592
2592
2592
2592

0
0
1
0
0 _
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
2
2
1
2
1
2
0
O_
1
1
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

1899
1831
2013
2044

0
0

1968
1942
1833
1926
1841

0
0
0
0
0
0

445
543
420
394

0
547
554
460
496
388=
513 !
461
548
482
571
567
520

1402
1555
1465
1511
1487
1460
1602
1632
1540
1521
1581
1440
1499
1421
1525
1554
1530

378
432
331
313

0
0

326
337
382
405
370

0
0
0
0
0
0

294
260
276
288

0
283
263
299
304
293
273
2761
257
241
229
259
265

555
482
519
578
433
449
445
481
494
453
531
515
570
545
515=
480
514

152
152
135
130

0
0

150
150
192
152
187

0
0
0
0
0
0

128
115
138
164

0=
91
87

128
120
137
117
112
109
121
112
108
128

293
278
284
258
285
311
252
275
277
302
2471
287
298
294
266
284
290

74
69
521
51

0
0

71
81
82
64
91

0
0
0
0
0
0

58
45
87
71

0
43
46
58
37
81
46
67
49
7O
54
39
43

155
141
175
126
157
158
130
101
151
162
115
156
115
141
122
142
132

42 23 10 8 4 1 1
45 29 16 14 2 1 1
31 18 6 3 1 0 1
30 11 8 2 2 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

34 25 11 3 1 2 1
32 20 13 10 3 3 1
41 32 20 6 1 2 1
23 11 4 3 3 0 1
51 21 18 6 4 2 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

8] 12 7 3 5 1:39,
221 7J 2 2 1 2 1
39i 25 9 4 1 0 1
36' 19 13 9 4 1 1

0 0 0 0 0 0 0
16 6 4 6 1 1 1
31 12 1 3 0 0 1
29 11 7 5 0 0 1
24 10 3 2 2 0 ! 1
46 39 6 2 4 1 1
28 11 81 1 0 1 1
38 25 14 = 2 1 1 1
21 10 3 2 0 0 1
56 15 8 2 3 1 1
20 6 4 2 0 0 1
15 4 3 2 1 0 1
24 7 6 3 2 1 1

85 49 20 18 11 3
69 40 24 2 0 0
71 41 27 6 3 0
69 34 9 3 2 1
90 57 48 19 11 4
87 58 33 21 9 5
68 48 28 14 3 1
58 30 12 1 0 1
71 26 18 9 3 1
67 37 ! 29 12 3 5
64 _ 27 12 7 5 2
92 44 21 18 11 7
55 19 17 8 6 41
85 40 27 21 11 6
77 52 20 8 5 1
76 24 19! 7: 2 3
69 30 20 4 1 1
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Arkln
8708 24.5 0 1151 1 645 188
8709 24.3 0 1152 0 618 204
8710 24.4 0 1152 0 610 216!
8711 18.7 0 1152 0 474 227
8712 22.8 0; 1152 0 606 196

8801 22.3 0 1152 0 585 221
8802 21.5 0 1152 0 609 206
8803 22.5 0 1152 0 591 205
8804 18.6 0 1152 01 477 236

8805 26.8 0 1152 01 611 217
8806 25.2 0 1152 01 612 203
8807 23.3 0 1152 0 i 629 178
8808 21.3 0 1152 0 620 172
8809 23.9 0 11,52 0! 635 192
8810 26.4 0 1152 0 660 220
8811 ! 29.5 0 1150 2 683 258
8812; 25.7 0 1152 0 636 208

Susskind
8708 13.7 0 2592 0 1323 556
8709 11.9 0 2592 0 1179! 515

8710 13 0 2592 0 1256 495
8711 11 0 2592 0 1117 534
8712 15.1 0 2592 0 1359 645
8801 13.9 0 2592 0 1296 474
8802 14.1 0 2592 0 1337 511
8803 10.7 0 2592 0 1099 492
8804 12.2, 0 2592 0 1121 583
8805 14 0 2592 0 1287 517
8806 13.9 0 2592 0 1308 514
8807 13.3 0 2592 0 1266 545
8808 13.7 0 2592 0 1288 568
8809 12 0 2592 0 1249 486
8810 17.3 0 2592 0 1487 599
8811 15.2 0 2592 0 1404 579
8812 15.4 0 2592 0 1417 533

Wu
8708 16.5 0 2592 0 1361 727
8709 13.3 0 2592 0 1150 668
8710 13.1 0 2592 0 1172 738
8711 13.5 0 2592 0 1141 861
8712 15.6 0 2592 0 1395 793
8801 15 0 2592 0 1320 783
8802 14.3 0! 2592 0 1306 832
8803 14.7 0! 2592 0 1263 830
8804 13.1 0 2592 0 1159 801
8805 15.5 0 2592 0 1223 705
8806 13.6 0 2592 0 1283 642
8807 14.3 0 2592 0 1292 662!
8808! 16.7 0 2592 0 1370 741
8809 14.7 0 2592 0 1304 709
8810 16 0 2592 0 1366 817
8811 20 0 2592 0 1516 764
8812 18.7 0 2592 0 1572 641

111 76 64 36 19 7! 1 3

132 90 53 31 20 0 2 1
152 95 44 23 7 3 0 1
183 103 55 43 32 22 9 3
131 77 57 37 26 7 10 4
129 65 58 40 27 12 8 6
111 65 44 43 35 18 12 8
136 90 71 26 13 11 2 6
157 100 84 42 29 13 8 5
171 93 40 12 3 2 1 1
169 102 37 19 5 2 1 1
123 85 55 38 25 8 6 4
116 89 60 35 20 20 12 7
133 75 55 27 21 4 6 3
130 67 26 28 9 5 5 1
109 48 30 5 8 4 2 2
114 83 53 37 17 2 1 0

313 205 87 56 25 16 8 2
383 274 112 68 36 13 8 3
418 191 103 66 39 13 9 1
412 176 124 89 57 52 19 11i
322 158 105 50 26 18 6 2
401 188 108 63 26 23 10 2
342 176 98 48 36 21 18 4
312 261 209 102 53 31 22 10
362 255 142 79 31 14 4 0
389 217 105 53 14 7 1 1
395 194 87 54 21 15 2 1
444 132 75 59 36 18 10 6
362 188 67 57 27 21 8 5
378 234 85 58 43 28 23 7
289 126 44 23 13 6 3 1

296 147 93 30 20 7 9 6
321 146 72 46 28 22 4 2

258 76 57 55 36 13 6 2
465 131 60 471 52 _ 13 2 3
403 105 69 541 35 10 4 1

299 106 72 441 40 19 8 1
171 69 65 34! 28 18 10 8
238 79 65 36 28 28 12 2
178 101 58 32 29 20 26 9
235 102 81 34 22 10 11 3
332 113 56 54 34 27 13 2
370 135 77 54 14 8! 3 2
356 105 98 67 21 15 2 2
321 101 57 69 38 26 14 11
210 911 64: 39 28 23 20 5
321 71 62 51 34 21 9 9
208 84 44 34 16 12 6 4
147 66 38 27 14 11 3 5
172 74 44 39 23 11 13 2

First column shows the year and month yymm
Second column shows the ma)dmum for the month in ram/day (max)
Third column shows the rdrimum rain rate in ram/day (rain) |
Fourth column shows the local number of pixels excluding pixels larger than 30 mm/day (ntot]
Fifth column shows the number of pixels in excess of 30 ram/day (nd)
Sixth -sixteenth columns show the histogram [ [ I

Bin I = number of pixels between rain and rain + (max-rain)/10, ...,
Bin 10 = number between max - (max-min)/lO and max I
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