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Abstract

A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel

computer architecture has been implemented for the Poseidon ocean circulation model

and tested with a Pacific Basin model configuration. There are about two million

prognostic state-vector variables. Parallelism for the data assimilation step is achieved
by regionalization of the background-error covariances that are calculated from the

phase-space distribution of the ensemble. Each processing element (PE) collects
elements of a matrix measurement functional from nearby PEs. To avoid the

introduction of spurious long-range covariances associated with finite ensemble sizes,

the background-error covariances are given compact support by means of a Hadamard
(element by element) product with a three-dimensional canonical correlation function.

The methodology and the MvEnKF configuration are discussed. It is shown that the

regionalization of the background covariances has a negligible impact on the quality of
the analyses. The parallel algorithm is very efficient for large numbers of observations

but does not scale well beyond 100 PEs at the current model resolution. On a platform
with distributed memory, memory rather than speed is the limiting factor.
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1 Introduction

1.1 Background and motivation

This report summarizes the progress made by the NASA Seasonal-to-Interannual Prediction

Project (NSIPP) at the Goddard Space Flight Center in its use of a multivariate ensemble Kalman

filter (MvEnKF) to assimilate observations into the Poseidon isopycnal ocean general circulation

model (OGCM) (Schopf and Loughe 1995; Konchady et al. 1998; Yang et al. 1999). NSIPP

uses a coupled ocean/land/atmosphere/ice model to produce forecasts of E1 Nifio and its global

teleconnections. The coupled model's components are Poseidon, the NSIPP-1 atmospheric

general circulation model (AGCM) (Suarez and Takacs 1995; Schaffer and Suarez 1998;

Bacmeister and Suarez 2001), the Mosaic land-surface model (Koster and Suarez 1996) and a

thermodynamic sea-ice model. A CRAY T3E is used for ensemble integrations of the parallel

versions of the ocean, atmosphere and land models.

At present, a univariate form of optimal interpolation (univariate OI: UOI) is used for the ocean

analyses resulting in the initial ocean state for the coupled forecasts. The UOI processes

temperature measurements from the Tropical Ocean and Atmosphere (TAO, e.g., McPhaden et

al. 1998) array in the Tropical Pacific Ocean. Like several other ocean data assimilation systems

currently in use at other institutions (e.g., Ji and Leetma 1997), it is based on the assumption that

the forecast-error covariances are approximately Gaussian and that the covariances between the

temperature-field errors and the salinity-field and current-field errors are negligible.

Largely due to the high-resolution coverage and accuracy of the TAO measurements, the UOI

appears to be effective in improving surface and sub-surface temperature field estimates in the

equatorial region in comparison with the estimates obtained without temperature assimilation.

As a result, the introduction of the UOI into the coupled forecasting system has resulted in

significant improvements in the coupled model's hindcast skill of Nifio-3 temperature anomalies.

The UOI has the advantage of being inexpensive in terms of computing resources. Its other main

advantage is that it was relatively easy to implement within the framework of the parallel

OGCM. Nevertheless, the UOI suffers from three major shortcomings. The first shortcoming is

that it can only be used to assimilate measurements of a model prognostic variable. The second

shortcoming is that it does not use any statistical information about the expected inhomogeneous

distribution of model errors. The third shortcoming is that it is based on a steady state error-

covariance model which gives the same weight to a unit innovation regardless of how accurate

the ocean-state estimate has become as a result of previous analyses. Directly linked to this

shortcoming is the failure to provide time-dependent estimates of the model errors.

In response to the first two shortcomings, a parallel multivariate OI (MvOI) system has been

implemented. The MvOI uses steady state estimates of the model-error statistics computed from

ensemble runs of the OGCM in the presence of stochastic atmospheric forcing fields. Yet, the

MvOI cannot adjust to dynamically evolving error statistics. The development of a parallel

MvEnKF has been undertaken to address this shortcoming.



1.2 Overview of the ensemble Kalman filter

Although the Kalman filter (Kalman 1960) and its generalization to nonlinear systems, the

extended Kalman filter, are statistically optimal sequential estimation procedures that minimize

error variance (Daley 1991; Ghil and Malanotte-Rizzoli 1991; Bennett 1992; Robinson et al.

1998), they cannot be used in the context of a high-resolution ocean or atmospheric model

because of the prohibitive cost of time stepping the model-error covariance matrix when the

model has more than a few thousand state variables. Therefore, reduced-rank (e.g., Cane et al.

1996, Verlaan and Heemink 1997) and asymptotic (e.g., Fukumori and Malanotte-Rizzoli 1995)

Kalman filters have been proposed. Evensen (1994) introduced the ensemble Kalman filter

(EnKF) as a Monte Carlo-based alternative to the traditional Kalman filter. In the EnKF, an

ensemble of model trajectories is integrated and the statistics of the ensemble are used to

estimate the model errors. Closely related to the EnKF are the singular evolutive extended

Kalman filter (Pham et al. 1998) and the error-subspace statistical estimation algorithms

described in Lermusiaux and Robinson (1999).

Evensen (1994) compared the EnKF to the extended Kalman filter in twin assimilation

experiments involving a two-layer quasigeostrophic (QG) ocean model on a square 17 × 17

grid. Evensen and van Leeuwen (1996) used the EnKF to process GEOSAT altimeter data into a

two-layer, regional QG model of the Agulhas current on a 51 × 65 grid.

Houtekamer and Mitchell (1998) introduced a version of the EnKF in which two ensembles are

integrated and--in order to maintain a representative ensemble spread when the model is

assumed perfect--the statistics of each ensemble are used to update the other. They tested this

algorithm in identical-twin experiments involving a three-level, spectral QG model at triangular

truncation T21. In Mitchell and Houtekamer (2000), simulated radiosonde profiles were

assimilated into the same model using an EnKF algorithm involving parameterized model errors.

Keppenne (2000, hereafter K00) conducted twin experiments with a parallel MvEnKF algorithm

in the context of an imperfect model and parameterized model errors. The algorithm was applied

to the assimilation of synthetic altimetry measurements into a two-layer, spectral, T 100 primitive

equation model. The state-vector size was small enough in this application to justify a

parallelization scheme in which each ensemble member resides in the memory of a separate

CRAY T3E processor (hereafter processing element: PE). To parallelize the analysis, K00's

algorithm transposes the ensemble across PEs at analysis time, so that each PE ends up

processing data from a sub-region of the model domain. The influence of each observation is

weighted according to the distance between that observation and the center of each PE region.

To filter out noise associated with small ensemble sizes, Houtekamer and Mitchell (2001)

developed a parallel EnKF analysis algorithm that applies a Hadamard (element by element)

product (e.g., Horn and Johnson 1991) of a correlation function having local compact support

with the background-error covariances. They tested this analysis scheme on a 128 x 64

Gaussian grid corresponding to a three-level QG model using randomly generated ensembles of

first-guess fields computed ahead of time, rather than a dynamically evolving ensemble of model

trajectories. The benefits of constraining the covariances between ensemble members using a



Hadamardproductwith a locally supportedcorrelationfunction hasalso beeninvestigatedby
Hamill andSnyder(2000)in thecontextof an intermediateQGatmosphericmodel.

In this paper,we build uponthe contributionsmadeby eachof the above-mentioned studies to

implement a parallel MvEnKF for the Poseidon OGCM. Initial tests are undertaken with a 20-

layer, Pacific basin configuration of the model with about two million state variables. The

system noise is accounted for in a manner similar to that used in K00, by including a stochastic

component in the forcing fields. Following Houtekamer and Mitchell (2000), the background-

error covariances are multiplied element-by-element by an idealized three-dimensional

compactly supported correlation function.

1.3 Organization of the following Sections

The remainder of this paper is concerned with describing the parallel MvEnKF implementation

for the Poseidon model. The model is briefly discussed in Section 2 and the algorithms are

presented in Section 3 where the focus is on the aspects of this EnKF implementation that differ

from other implementations. To illustrate the plausibility o fusing the MvEnKF in an operational

framework, some timing numbers are given in Section 4. The scalability of the algorithms and

the effect of distributing the analysis calculations between PEs are also discussed in Section 4.

Section 5 contains a summary. In a companion article (Keppenne and Rienecker 2001, hereafter

KR01), the parallel MvEnKF is validated in the context of TAO-temperature and TOPEX-

altimeter data assimilation and is compared with the UOI presently used quasi-operationally at

NSIPP.

2 The Poseidon parallel ocean model

2.1 Model summary

The Poseidon model (Schopf and Loughe, 1995) is a finite-difference reduced-gravity ocean

model which uses a generalized vertical coordinate designed to represent a turbulent, well-mixed

surface layer and nearly isopycnal deeper layers. Coastal topography is represented, but the

reduced-gravity treatment precludes the use of variable bottom depth. Poseidon has been

documented and validated in hindcast studies of El Nifio (Schopf and Loughe 1995) and has

since been updated to include prognostic salinity (e.g., Yang et al. 1999). More recently, the

model has been used in an investigation of the annual cycle in the eastern Equatorial Pacific (Yu

et al. 1997) and in a numerical study of the surface heat balance along the equator (Borovikov et

al. 2001).

Poseidon's prognostic variables are layer thickness, h(A, 0, _', t), temperature, T(2, 0, _', t),

salinity, S(A,, 0, _, t), and the zonal and meridional current components, u(/_, 0, _, t) and

v(X, 0, _, t), where & is longitude, 0 latitude, t time and _'is a generalized vertical coordinate

which is 0 at the surface and increments by 1 between successive layer interfaces.



Explicit detail of the model, its vertical coordinaterepresentationand its discretizationare
providedin Schopfand Loughe(1995) andareonly summarizedhere. The equationfor mass
continuity is

--+V.(vh)+ =0,
bt

(1)

where V. and v are the two-dimensional (2D) divergence operator and velocity vector and we

represents the volume flux across layer interfaces, including freshwater flux through the surface.

The heat equation is

OhT _v.(vhT).tbweT_ O (toOT I OQ+hFh(T) ' (2)

where Q is the external heat flux, n"is a heat diffusivity and Fh is a 2D smoothing operator. The

salinity equation is

bh---_S+v'(vhS)4OweS-ot _ O_(t¢_3S)+hF_'(S)'h_
(3)

where _ is a salinity diffusivity. The 2D momentum equation is

O(vh) + V.(vhv) + OWeV--
Ot O_"

h 'Vp" - bhVz - fk x v v hF,, (v), (4)
po

where v is a vertical friction, _"is the vertical shear stress, f kxv is the Coriolis acceleration and

F,, is a dissipation term. A hydrostatic Boussinesq approximation is made, whereby p'(z) is the

pressure anomaly at depth z, b is buoyancy and Po is the mean density. The hydrostatic equation
then becomes

= -pobh. (5)

Following Pacanowski and Philander (1981), vertical mixing is parameterized through a

Richardson number-dependent mixing scheme implemented implicitly. An explicit mixed layer

is included with a mixed layer entrainment parameterization following Niiler and Kraus (1977).

A time-splitting integration scheme is used whereby the hydrodynamics are done with a short

time step (15 minutes), but the vertical diffusion, convective adjustment and filtering are done

with coarser time resolution (half-daily).

4



2.2 Model setup

The version of Poseidon used here has been parallelized as in Konchady et al. (1998) using the

same message-passing protocol and 2D horizontal domain decomposition used by Schaffer and

Suarez (1998) for the AGCM.

The experiments described in this article use a 20-layer Pacific basin version of the parallel
model with uniform 1° zonal resolution. The meridional resolution varies between 1/3 ° at the

equator and 1° in the extratropics. A solid boundary is imposed at 45 ° south. There, a no-slip

condition is used for the currents and a no-flux condition is used for mass, heat and salinity. The

issue of the forcing is discussed in Section 3.12.
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Figure 1. Horizontal domain decomposition for the Pacific model. The thin lines delineate grid cells. The thick
lines correspond to the boundaries of each PE box on the 16 x 16 PE lattice. Each dark circle corresponds to a TAO
mooring.



There are 173 x 164 x 20 grid boxes, of which 28% are situated over land, resulting in a total of

2.0422 x 106 individual prognostic variables. A 16 x 16 PE lattice is used as shown in Figure 1.

The PEs located over land are virtual PEs which do not take part in the ensemble integrations

and analyses.

Figure 2 illustrates the horizontal setup for one PE box. Locally within the box, the grid cells are

numbered 1 < i < 1, zonally and 1 < j < J, meridionally, from the box's lower-left, southwest

comer. In order to minimize the communication overhead in the horizontal differencing of the

model equations, the PE boxes overlap. The overlapping regions, called halo regions, have

width i/- 1 to the West, I- i2 to the East, j/- 1 to the South and J-j2 to the North. The PE-

private regions are thus defined by i I < i < i 2 and j_ < j < J2. Vertically within each grid cell,

the grid boxes are numbered 1 < k < K.

1,1

Figure 2. Schematic setup for one PE. The halo regions are colored gray. The thin lines delineate grid cells. The

thick lines delimit the halo regions and PE boundaries. In this example, I = J = 9, it =jl = 3 and iz =j2 = 7.

3 Assimilation methodology

3.1 Horizontal domain decomposition

In K00, the number of model state variables, 2.7 x 105, was small enough to integrate each

ensemble member on a separate PE. Across-PE transpositions of the ensemble were used to

conduct the analyses in parallel (Fig. 1 in K00). After each transposition, each PE contained the

state-vector elements of every ensemble member that correspond to a sub-region of the model

domain, rather than the entire state of a single ensemble member as it did before the

transposition. Local background covariances were computed on every PE from the local
ensemble distribution and were then used to calculate the analysis increments.

An advantage of K00's algorithm is that both the error-covariance forecasting step (ensemble

integration) and the analysis step occur in parallel, although the model itself is coded serially.



Yet, therearetwo obvious disadvantages to this scheme. First, it can only be used if each copy

of the model can fit in the memory of a single PE. This precludes using this algorithm with a

high-resolution GCM on most massively parallel processors (MPPs) with distributed memory.

On such computer architectures, the memory of each PE is usually insufficient to contain the

entire state vector of a GCM. Second, the ensemble transpositions across PEs involve a

significant communication overhead.

Since the version of Poseidon used here is parallelized, the same domain decomposition used to

run the model can be used in the analyses, provided the background error-covariance matrix,

pr, is locally approximated. This simplification avoids costly ensemble transpositions across

PEs. Thus, the ensemble is distributed so that the memory of each PE contains the same

elements of each ensemble member's state vector. These elements correspond to every variable

contained within the PE boxes illustrated in Figure 2. This decomposition is used for the

ensemble integrations as well as for the analyses.

3.2 Assimilation on geopotential surfaces

The temperature measurements from each TAO mooring are recorded at specific depths which

are fairly consistent between moorings. Since Poseidon uses an isopycnal vertical coordinate,

the model fields must be interpolated to the latitude, longitude and depth of each observation.

With the MvEnKF, the elements of p r can be calculated in the ()t, 0, 4) coordinate system and

the analysis can occur on isopycnals, whereby the vertical interpolation can be made part of the

measurement functional (Section 3.9). To the contrary, when the UOI was implemented, the

choice was made to treat the temperature observations in the usual ()t, 0, z) coordinate system in

light of the absence of corresponding salinity observations. Thus, to maintain compatibility with

the UOI which interpolates model fields vertically to a series of pre-specified depths (hereatter

levels) prior to each analysis, the same approach is used here and the background covariances are
calculated on levels rather than on layers j. Therefore, the T, S, u and v fields are converted from

isopycnals to levels and the analysis increments are calculated on the levels before being mapped
back to the isopycnals. Sixteen levels are used in KR01.

The above scheme results in only T, S, u and v being updated. The layer thicknesses, h, are lel_

unchanged by the assimilation. Rather, the procedure allows the model to dynamically

recalculate h from to the new density distribution and the target interface buoyancies, as it does

at every time step (see Schopf and Loughe 1995). Thus, the decision not to calculate h

increments is deliberate. Rather, the incremental update mechanism discussed in Section 3.8 lets

the model dynamically adjust the layer thicknesses using the information contained in the T, S, u
and v increments.

Since only the layer-average value of T, S, u and v in each grid box (i, j, l) appear in the model

equations, the mapping from isopycnals to levels could be made by assigning to a given field at

()t/j, 00., zk).the value of the same field at ()t,j, 00,/). However, if the mapping were performed in

this manner, ambiguities would arise when several levels pass through the same layer at ()to, 00.).

J The latest version of the NSIPP ocean data assimilation code implemented after running the experiments discussed

in this study allows the user to choose between mapping the model state to levels prior to each analysis or
conducting the assimilation on the quasi-isopycnal layers.



A possible consequence is the singularity of the analysis equations of Section 3.6 in the (2, O, z)

coordinate system. To avoid this problem, the mapping is made as though the vertical variations

of the field were piecewise linear, with the discontinuities in the slope occurring in the middle of

the layers. This is illustrated in Figure 3 for the temperature field.

"SSS-S'-'-'-?SSSSSSS? 5555555??$555555 55SSSSSSSS5S55555Z ............._..55._-- 1

.......................................................................................................................................................+1_

Fig.ure 3. Mapping of the model temperature field to a specified level, z = zk. Within the current grid cell, zk is
contained between the layer interfaces (= l and (= l+1. In the model discretization, only the layer-average
temperature matters. Yet, to avoid ambiguities when more than one specified level pass through the same layer in
the grid cell, the field is interpolated linearly as shown.

3.3 Ensemble size

With the MvEnKF, PE memory imposes constraints on both the domain decomposition and the

ensemble size. With the usual compromise between parallelism and communication, the Pacific

basin version of Poseidon is typically run on 64 PEs. The goal is for the MvEnKF runs to be

done on a few times as many PEs. In this study, 256 PEs are used and the memory available on

these PEs imposes a limit of about 40 ensemble members. Encouraging results have been

obtained with comparably sized ensembles by Mitchell and Houtekamer (2000) with a three-

level QG model and by K00 with a two-layer shallow water model. Moreover, a common

objective of ocean and atmospheric modelers when they gain access to more powerful computer

systems is to increase their model resolution. Therefore, it is sensible to expect that the largest

ensembles of GCMs that one will be able to run concurrently on a single MPP will generally
remain on the order of a few tens. In order to demonstrate that the MvEnKF can be used in a

quasi-operational setting with a high-resolution GCM, one thus has to show that it can perform

as well as the simpler methods currently in use at most centers, even with as few as 40 ensemble
members.



3.4 Compactly supported covariances

The small ensemble size considered here introduces the need to filter out spurious long-range

correlations when the background covariances are computed. Following Houtekamer and

Mitchell (2000) and a suggestion by Gaspari and Cohn (1999), this filtering is achieved through

a Hadamard product (i.e. A • B such that {A • B}u = AoB o ) of the error-covariance matrices

with a local compactly supported correlation function.

The compactly supported correlation function is the product of a horizontal correlation function,

Ch( rjl_2>), rl1121= [(A2- Ai)2/l;t + (02- 01)2/10]°5, and a vertical correlation function, C,,( r)12)),

r_vTM = Iz2 - zll/l:, where (A,i, 0,-, z,-) are the coordinates of point i. In this study, C h = C,, = C O,

where C O is defined by (4.10) of Gaspari and Cohn (1999). The normalization is such that

Co(r ) = 0, r > 2. The correlation scales are l;t = 30 °, Io = 15° and l: = 500m for the assimilation

of TAO temperature data. These scales are slightly broader than those used to define the

univariate idealized correlation function employed in the UOI. When gridded TOPEX altimeter

data are assimilated, lz-- 15° and lo = 7.5 °. These shorter correlation scales give better results

than longer ones given the high horizontal coverage of the altimeter data.
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Figure 4. Domain decomposition for the analysis. The outer rectangle delimits the area, ,4, from which the data
assimilated on one PE are collected. The innermost rectangle depicts the boundary of the PE-private area (grid cells

(i,j) with ii < i < i2, Jl < J < -/'2), O. The ellipse delimits the influence region, _e4_, of the PE-private area's

southeastern corner cell, (i:,jl). The shaded area contains the ellipses, _9; for all grid cells, (i, j), contained in B

The region Ccontains all the PE's grid cells ( ! _<i < 1, 1 < j < J ), including the halo regions.

3.5 Confined analysis

Although the TAO temperature data assimilated here are sufficiently few (about 600 at each

analysis) for each PE to process them all, an approach whereby each PE processes data from a

sub-region of the model domain is used. Besides the obvious efficiency gain in a parallel

environment, another justification for this approach is that the compactly supported background

covariances result in the data that directly (i.e., through the measurement functional of Section

3.8) influence the state variables within each grid cell being contained within an ellipse with

semi axes 21z and 21o. Taking advantage of this fact, the region from which the observations



assimilated on each PE are collected is chosen to be the smallest rectangle, with sides A,i2jl-

J,itjl + 414 and 0_1j2- Oiljl + 4lo, containing all the ellipses that correspond to the PE-private grid

cells of this PE. This is illustrated in Figure 4.

3.6 Analysis equations

Without the Hadamard product of the background-error covariances with the compactly

supported correlation function, the EnKF analysis equations can be written as

y, -(x)'), (6.)
1, :t(y i +(x)f )--t((x)f ), (6b)

Y={Y,,"',Ym}, L:{l,,'",lm_

[Ld+w] :a-t.(.v, +(x)*)+e,, (e)

x; =d +Vd (60')

In (6) and throughout this discussion, uppercase boldface symbols represent matrices, lowercase

boldface symbols represent vectors and lowercase regular (i.e., not bold) symbols denote scalar

variables. Boldface subscripts, such as in x_, identify the ith instance of the x vector. Regular

subscripts identify array elements. The vector, d (na × 1) contains na observations, x i (nx × 1),

1 < i < m, is the ith ensemble state vector and m stands for the ensemble size. The superscripts a

and frefer to the analyzed state and the forecast, respectively, E is a smoothing operator (Section

3.11) and < > denotes an ensemble average. The vectors y; (nx × 1) and ii (rid × 1) are columns

of the matrices Y (nx × m) and L (na × m) respectively, and l,(x) is a measurement functional

which relates the state vector to the observations (Section 3.9). Matrix W (na × na) is the

measurement-error covariance matrix. The representer matrix, R = L L r, maps the background-

error covariance matrix, P r (nx × n_), to the error subspace of the measurements. The elements

of biare the representer-function amplitudes used to update x_. The na× 1 vector,

z_ =d-L(yi +(x)S)+e_, contains the innovations with respect to the ith ensemble member. Prior to

their calculation, _ is applied to smooth x i . Following Burgers et aL (1998), e i is a random

chosen such that (el)=0 and (eieir)=W. Its role is to maintain the influence ofperturbation

observation uncertainty in the error covariances estimated directly from the ensemble so that

these covariances are consistent with the theoretical estimates. Its inclusion helps prevent the

ensemble from collapsing resulting in a systematic error underestimation. The introduction of

this term is crucial to maintain a representative ensemble variance when the matrix norm of W,

Iwl, is comparable to or greater than Iel, i.e. when the observations are more uncertain than the

model state. The data assimilated here are relatively accurate, so that Iwl/IRI=-o(10-'),

When L(x) is a linear functional and = is an identity mapping, (6) simplifies to
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f f
y_ =x i -(x), (7a)

l,(y,) = Hy,., (Tb)

LL r=HP tH r, yL r=Pt Hr '

[HP/H r +W]b,=d-Hx/ +e i, (7c)

x:. = x/+pr n r b,., (7d)

which amounts to applying the usual Kalman filter analysis equations to update each ensemble
member in turn.

When the Hadamard products with the compactly supported correlation function are introduced

and when the subscript ranges are explicitly written down, (6c) and (6d) are replaced by

for(l<p<nd,__ l_<q<_nd): Cpq=Cqp=Ch(r(hpq))C,,(r,,(Pq)), (Sa)

f
for(l_<i_<m): [CELL r +wlb,. =d-L(y i +<x> )+e,, (Sb)

for(1 <k<nbo_, l<p<nd)" _) (_)__ . 'l, :Ch(rh )C,(r, ), (8c)

T •
7a=L b_ Fi, , (8d)

for(l___i <._ l < k <_nbox)"
Lxiak : Xt._" + y ` o_i,, (8e)

where o refers to the inner product of two vectors and C (rid X rid) is a compactly supported

correlation matrix whose elements are defined by (8a), where the indicesp and q refer to the data

Wp and Wq. The components of the nd× ! vector th defined by (8c) contain idealized correlations

between the (A, 0, z) coordinates, of grid box k and the coordinates of each measurement. Note

that to simplify the notation only one subscript is used to identify the grid box. The

index, 1 < k < nbox, thus loops over the three dimensions of the (A, 0, z) coordinate system. The

m x 1 vector, Y, = {Y,k ,'", Y,,k }, contains smoothed deviations from the ensemble mean of the

m ensemble state vectors in the kth grid box. It is thus a single row of matrix Y. In the MvEnKF

implementation discussed herein, Yik actually has four components, i.e.,

Yi, = E({T,S,u, v},., - {(T>,(S>,<u>,(v)} k).

The m × 1 vector, 7a, contains the weights with which the elements of Yk are combined in the

kth grid box to update the ith ensemble member.

With the horizontal domain decomposition discussed in Sections 3.1 and 3.5, the equations

solved on each PE during the analysis become

11



ly7 =_-"(x/ @)/), (_)
for(l_<i_<m):[l_°=l-°(Yi+(x)/)-LO((x)/)' (gb)

for(l<p<n_, l<q<nff): c_=Ch(r_Pq))C,,(r,!Pq)), (9c)

for(l<p<nff, l<k<n_ox): _lkp=Ch(r(kP))c,,(r_!kP)), (9e)

t,i. °Tfor(1---/---.t1-<_---._o._): --(L) b,o,t,, (9/)
f + (gg)txik=xik Yk°Ta"

In (9), Y7 identifies the part of yi that corresponds to all grid boxes on the current PE including

those contained in the halo regions (area Cin Figure 4). Likewise, d ° denotes the measurements

contained within the ,4 region. The local matrices, C', /.*and W °, correspond to the global C, L

and W but only account for the observations contained in d °. As in (9a), the indices p and q in

(9c) refer to the pth and qth observations. The measurement functional, /.° (x), maps the global

state vector, distributed across PEs, to the elements of d ° . With the form of/.° considered

herein, the mapping does not necessitate an exchange of information between PEs (Section 3.9).

The smoothing function, _c, returns the local elements of the global vector retumed by E in

(6a).

To update the state variables of the ith ensemble member in grid box k, {T, S,u,v}i k , the analysis

update, (9e-g) or (8c-e), involves m matrix-vector multiplication of L r by b_ • qk (8d, 9f). If the

state variables were not distributed across PEs, or if the observations allowed to influence the

variables of each grid box were not limited to a sub-region of the entire domain as a result of

imposing compactly supported background covariances, these multiplications would be costly.

Yet, for the Poseidon model distributed across 256 PEs, the number of matrix-vector products on

each PE drops tom(/2 -i_ +l)(j2-Jl +I)K =32000, where a typical size of L r is 40× 100.

Although these products take up most of the time spent in the analyses, they correspond to a
tolerable fraction of the total cost of the MvEnKF--most of which is associated with the error-

covariance forecast (ensemble integration).

The above remark illustrates how the paradigm shift from serial algorithms to massive

parallelism ones enables one to conveniently solve problems that can not be addressed in a

traditional scientific computing environment consisting in vector supercomputers. Yet, the

massively parallel solution of a complex numerical problem usually requires ad hoc

approximations. The crucial approximation made here is the confinement of the analysis

(Section 3.5) that results from relying on a compactly supported covariance model (Section 3.4).

The parallel distribution of the calculations naturally follows. It is shown in Section 4.1 that the

impact of this approximation on the assimilation increments is negligible.
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3.7 Incremental analysis

Incremental analysis updating (IAU, e.g., Bloom et al. 1995) is used to insert the analysis

increments, x a -x c , into the model in a gradual manner. Namely, the model partial differential

equations (1-4) are replaced with

bx (x ° (ti) - x c (t,))
--=F(x,t)+ , t i <t<t,+,, (10)
3t (ti+ t -ti)

where F stands for the right hand sides of (1-4) and x" (t,)and x -c(t i) are the analysis and

forecast at the time, ti, of the ith analysis.

Unlike nudging (e.g., Daley 1991), which relaxes the model state toward an analysis, the analysis

increments are inserted as a state-independent forcing term. The IAU has properties similar to

those of a low-pass filter and can improve observed-minus-forecast statistics with respect to a

non-incremental updating scheme (Bloom et al. 1995).

The IAU is used here for two reasons. First, it lessens the unwanted effects of intermittent data

assimilation, specifically initialization shocks resulting from imbalances between the model

fields following the direct insertion of the analysis increments. Second, the IAU allows the

model to gradually adjust the h field in response to the T, S, u and v increments without violating

the constraints imposed by the continuity equation (1).

3.8 Measurement functional

The data processed in oceanographic data assimilation are usually current, temperature or

salinity measurements made inside the model domain. Alternatively, the data sometimes

measure an integrated quantity such as sea surface height, heat content or, in acoustic

tomography, travel time.

In the application discussed here, the measurement functional, /,,°(x), is simply a 2D

interpolation operator which maps the model temperature field--previously interpolated

vertically to a set of levels which include the depths of the measurements--to the latitude and

longitude of each observation on the appropriate depth level.

Prior to the interpolation, bisection (e.g., Knuth 1998) is used to find the grid box, (i, j, k),

containing each measurement. Then, quadratic polynomials passing through the grid cell

containing each measurement and the eight grid cells which border that cell are used to complete

the mapping. Four polynomials are used per observation (Fig. 5b). Unlike biquadratic splines,

this type of polynomial fitting does not guarantee the continuity of the first derivative across grid

cell boundaries. It is however less costly than spline fitting when the observations are scarce or

far apart, as is common in oceanography.
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Each PE performs the interpolation to the locations of the observations, d b , contained within its

PE-private area (Fig. 5a). Due to the presence of the halo regions, the horizontal interpolation

can be made without exchanging information between neighboring PEs.

a

l,J /,,/

r,,l_ _,/_

ri,11 f_,b

1,1

b)

f,l

Figure 5. Illustration of horizontal interpolation in measurement functional. (a) Grid cells involved in interpolation

called for by /a (x). Two cases are illustrated. The white circles indicate the position of the observations located

inside the unshaded PE-private area. The gray-colored rectangles show which grid cells contain the state-vector

elements needed to complete the interpolation. The presence of the halo regions (outer gray areas) saves the

communication cost associated with requesting information from nearby PEs when the measurements are located

near the boundary of the PE-private area. (b) Horizontal interpolation mechanism using four quadratic polynomials

for each observation represented by the white circle in grid cell (i, j).

3.9 Superobsevations

As is common when several measurements are made at the same location between successive

analyses, the observations are smoothed temporally. This operation, sometimes referred to as

superobing and introduced by Lorenc (1981), combines the measurements using weights which

decrease exponentially with the time interval between the time, t; + 6, of a measurement and

that, ti, of the ith analysis:

A +_ I_I

d(ti) =-_-o (l-e-°)-' _w(t i +6)e-° dt_.

-A

(11)
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In (11), O is a time scale, d(ti)is a superobservation and the w are individual measurements

made between time t;-A and time ti +A. Here and in KR01, O = A= 10 days and the

analyses occur every five days (TAO temperature data) or daily (TOPEX altimeter data).

3.10 Pre-filtering

The purpose of the smoothing operator, E in (6-9), is to remove spurious short-range covariances

from the representer matrix, R. These spurious elements result from the limited ensemble size

used to estimate the error distribution and from associated sampling errors. Spurious long-range

covariances are filtered out by imposing that the covariance functions be compactly supported
(Section 3.4).

The operator = relies on a simple one-dimensional recursive (infinite impulse response) filter

which is applied horizontally in each layer to damp small-scale variability prior to calculating L.
The filter equations are

1 [o)c(xj 2Yi -- - --
1 +w c

b 1 [oj¢(xj+ 2yi --
1+o_

1
Yi =--[(i-1)y; + (n - i + 1)y_ ],

n

7r
where co_ = tan(f_ ) and 0 < fc < 5- is the cutoff frequency.

and yi, l<i<n.

vector y.

x;)+ 2y7_ , - (1 - O)_)yi__2], (12a)

xi)+ 2y/b+, 1 0 ], (lZb)- ( - O))Y,+2

(12c)

The filter input and output are x_

Note that the term recursion denotes a spatial recursion: i is a subscript into

Unlike non-recursive filters ( e.g., a Shapiro filter or a running mean), which have polynomial

response functions, recursive filters have rational response functions which make it easier to

design a filter with a sharp response (e.g., Hamming 1983).

Three passes of the filter are used with .[_ = _4 • Each pass consists of applying (12) successively

along the zonal and meridional directions. Prior to the filter's application, the ensemble mean is

subtracted from each ensemble member's state vector, as indicated in (6a) and (9a).

Before applying (12), each PE collects the state-vector elements from the PEs which belong to

the same row (zonal application of the filter) or column (meridional application of the filter) of

the PE lattice (Fig. 1). For each input array x in (12), every PE calculates the entire array y and

discards the array elements it does not need. Because of the latency time associated with each

message, this approach is less costly than letting each PE wait until the downstream PE has

finished computing its own elements of y and has sent the corresponding end values to the

current PE before starting the PE's own calculations, and so forth. To circumvent memory

limitations, the filtering is applied to the 7, s, u and v fields of each ensemble member in turn.
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3.11 System-noise representation

The theory of the Kalman filter (e.g., Gelb, 1974) assumes that the first- and second-order

statistics of the unknown errors in the model and external forcing are known. Higher-order

statistics are neglected. Let the evolution of the true state be represented by

bx
--=F(x,t)+((x,t), (13)
bt

where _ combines the model errors and forcing errors, and is commonly known as system noise

or process noise. As in (11), F is the vector of right hand sides of (1-4) which includes the

model hydrodynamics, physics and forcing. It is assumed that the model and forcing are

unbiased, i.e. (¢(x,t))= 0, and that the _ vectors are uncorrelated in time:

(_(x k, t k ) _(x,, t,)) : F(xk, x t )_(t k - t, ), (14)

where the system-noise covariance matrix, F, is assumed known. Of course, the unbiased

assumption is rarely correct in practice. This is especially true with ocean models in which the

thermocline layer is usually too diffuse. The latest version of the assimilation code includes an

algorithm, derived from Dee and Da Silva (1998), to estimate and correct systematic model

errors. The issue of correcting the model bias with the EnKF will be discussed in a separate

paper.

In meteorological and oceanographic data assimilation, the statistics of _ are generally unknown

and are the object ofparameterization. Adaptive Kalman filters that simultaneously estimate the

state and system-noise statistics have been developed. However, the prohibitive cost of the

adaptive filters has limited their application. Blanchet and Frankignoul (1997) summarize and

compare several adaptive filtering algorithms.

Motivated by the current lack of information about the model-error statistics, the system-noise is

represented solely by modeling the errors in the surface wind stress and heat flux forcing. A

system-noise representation in which not only the forcing errors but also the model errors are

parameterized is in development.

Because of the focus on seasonal-to-interannual variability, the forcing errors (uncertainties) are

modeled on those time scales, with each ensemble member being forced by a monthly mean

perturbation of the monthly mean basic state. The basic state is the superposition of the

climatological seasonal cycle with interannual anomalies. The climatology is provided by

Special Sensor Microwave Imager (SSM/I: Atlas et al. 1996) winds and Earth Radiation Budget

Experiment (ERBE) heat flux data. The interannual anomalies are provided by the atmospheric

model integrated over observed SST data (Reynolds and Smith 1994). The perturbations applied

are due entirely to internal atmospheric chaos and are generated by starting the atmospheric

integration at different times. By using the same SST, each member of the atmospheric

ensemble used to force the ocean ensemble has the same seasonal and interannual phase. The
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spreadof the atmosphericensemblefi'om which the forcing anomalies are derived is meant to be

representative of the uncertainty of the forcing products used to force the model in non-ensemble
runs.

3.12 Inter-processor communications

All information exchanges between PEs, during the analysis as well as during the error-

covariance forecast (ensemble integration), use message-passing functions from the Goddard

Earth Modeling System (GEMS, Schaffer and Suarez 1998) library. The GEMS functions

provide a high-level, object oriented interface to the CRAY native SHMEM (shared memory)

communication library.

The position of each PE on the lattice is stored in the ripe × meE array PE, where ripe and m1,L"

are the number of PEs along the zonal and meridional directions, respectively. In this

implementation, neE = mpE =16. The total number of PEs is NeE. Every PE has a copy of PE.

Some tasks, such as accessing external files, are always done by the same PE which is referred to
as root.

The assimilation algorithm relies mostly on two GEMS functions to exchange information

between PEs. These two functions are mentioned here in template form to simplify the

discussion of Section 3.13. The first function, po_colleet (...), is used to collect data fi'om

either the entire PE array or from the row or column of PE which contains the current PE. The

second function halo (...) updates its array argument in the halo regions of each PE after the

PEs have modified the PE-private part of this array.

3.13 Parallel algorithm

The assimilation algorithm, various aspects of which were discussed in the preceding Sections,

contains the following steps which are listed from the point of view of one PE, hereafter referred

to as the current PE. The enumeration of these steps starts after the current PE has obtained the

observations, dt' , made within its PE-private region (8 in Fig. 4) from root. The task of

reading all the data and broadcasting them is assigned to root. The current PE then extracts the

data that fall into its PE-private area. In the array PE, The current PE is PEicjc.

• Step 1: Vertical interpolation of the T, S, u and v fields from the isopycnal model layers to the

analysis levels as explained in Section 3.2.

• Step 2: Calculation of the anomalies with respect to the ensemble mean over the entire

domain of the current PE, x_ I (xC) r- ,l<i<m.

• Step 3: Calculation of y_, as in (9a). Prior to each zonal application of the filter (12), a call

to pc_collect ( ) is used to collect the state elements required to run the recursive

filter from the PEs listed in columnjc of PE. The same holds for each meridional application

of(l 2), where row ic of PE is now involved.
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• Step 4: Identification of the PE-private data required by the other PEs. First,

po_colleet ( ) is used to collect the longitudes and latitudes of each PE's southwestern,

southeastern, northwestern and northeastern corner grid cells. Using this information, the

current PE calculates for each (i, j) pair which elements of dt' fall inside the rectangle, A0.,

which is the region from which PEgj will need to collect data (Fig. 4). The indices of the

relevant elements of d t, are stored in the array k 0 .

• Step 5: Evaluation of the measurement functional. The current PE calculates a

t, is the number of observations contained in its own PE-privaten_ x m matrix, Lt' where n a

region. The element at the intersection of the pth row and ith column of Lb is

b

where Lp is the interpolation operator which maps its argument to the location of dp° , the pth

PE-private observation on the current PE (Section 3.8).

Step 6: Calculation of z t', the innovations with respect to the ensemble mean for the current

PE's private region. The innovation corresponding to dpt' is

b t,_LP((x¢)r).Zp _ dp

Step 7: Gathering of L ° on each PE using the information recorded in the k//arrays. The

function pc_collect ( ) is called Nt,E times. Each call results in a different PE

completing the collection of its version of L° .

Step 8: Collection of the innovations, z ° , required by each PE. As for gathering L",

De_collect( ) is called NpE times. Each PE passes to ]oe_collect( ) the

elements of its z b innovation vector required by the other PEs. The PEs now have all the

information required to calculate the analysis increments.

Step 9: Calculation of the representer amplitudes. First the local representer matrix,

R°=L°(L°) r, and its Hadamard product with the compactly supported correlation function,

C°•R °, are computed. Then the m right hand sides of (9d) are calculated

asz ° -/,_ +el, 1 _<i <_m, where e i is the random perturbation term of (6c). Finally, (9d) is

solved m times, yielding the b i vectors. Since the effective rank of R" is m rather than n_

and as a precaution against R _ losing its positive definiteness due to round off errors, LU

decomposition with partial pivoting is used rather than Cholesky decomposition. If LU

decomposition fails, singular value decomposition (SVD) is used and near-zero singular

values of S ° are ignored.
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• Step10:Computationof theanalysisincrements.The calculations(9e-g)aremadefor each
PE-privategrid box. Calls to halo ( ) are usedto fill the elementsof x"-x / in the

current PE's halo regions. It is more economical to obtain these elements in this manner than

through the application of (9e-g) to each grid box situated within the halo regions.

• Step 11: Transformation of the 7', S, u and v increments from the analysis levels to averages

on the model layers. This step is the reciprocal of step 1. Following this, the analysis

increments are added gradually to each ensemble member's state vector by means of the IAU
mechanism discussed in Section 3.7.

4 Discussion

4.1 Effect of parallel decomposition on analysis

The impact of performing a different local inversion on each processor (9d) rather than inverting

the global system matrix, S=CoR+W in (8b), is examined in this Section. So that the local and

global solutions can be compared, a single TAO temperature analysis is used as an example

because it involves sufficiently few data for (8b) to be solved on each PE without partitioning S

as in (9d).

The parallel algorithm relies on the assumption that (1) the analysis calculations can be

partitioned resulting in each processor assimilating local data and that (2) the partitioning does

not have a deleterious effect on the analysis results. An alternative approach when presented

with many data to assimilate simultaneously is to solve the global problem (6c) with an iterative

method. The NASA Data Assimilation Office's Physical Space Statistical Analysis System

(Cohn et al. 1998) and the Naval Research Laboratory Variational Data Assimilation System

(Daley and Barker 2001) use a preconditioned conjugate gradient solver (PCGS) to solve a

system akin to (6c). A similar algorithm has been implemented into the NSIPP multivariate data

assimilation system (MvDAS). This iterative solver is faster than LU decomposition for

n_ > O(10_). So far, the number, " of data processed on each PE have been less than that.-- n d ,

Thus, LU decomposition or SVD has been used most of the time (Section 3.13).

Here, for illustrative purposes, a 25-member ensemble distributed across 100 PEs is used. The

experiments of KR01 involve a 40-member ensemble and 256 PEs. There are 642 temperature

measurements in this example. They correspond to January 1, 1997. Although the number of

observations does not necessitate distributing the analysis computations, the example illustrates

how the inversion would be distributed if there were too many data for each PE to process them
all at one time, as is the case when TOPEX altimeter data are assimilated.
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Figure 6. Structure of error-covariance matrices in observation space for one TAO temperature analysis

corresponding to January 1, 1997. (a) Global system matrix, S, without compact support. (b) Global compactly

supported S. (c-e) Example PE-Iocal S matrices corresponding to PE 8 for which n d = 247, PE 28 ( n d = 356)

and PE 86 ( n,_ = 160 ).
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Figure 7. Equatorial sections through the temperature-field part of the analysis increments (degrees C)

corresponding to the cases shown in Fig.6. (a) Global inversion without compactly supported covariances. (b)
Global inversion with compact support. (c) Distributed inversion with compact support.
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Figure 6 shows how imposing compact support to R impacts the sparseness of the global S. It

also illustrates how the sparseness is exploited by distributing the analysis calculations in the

parallel algorithm. Figures 7 and 8 illustrate the respective impacts on the assimilation

increments of using compactly supported background covariances and distributing the analysis

among PEs. As is common, a diagonal W is assumed.

Figure 6a shows the global S, when the condition that it be compactly supported is not imposed

(LLr+W in 6c). Figure 7a shows an equatorial section through the corresponding temperature

increment. The corresponding sea-surface temperature (SST) increment is shown in Figure 8a.

When the background covariances are compactly supported, the global S (C*LLr+W in 8b),

becomes sparse as Figure 6b illustrates. The most obvious effect of the Hadamard product of C

and R on the assimilation increment is that the latter is tapered away from the Equator where no

measurements are available (Fig. 8b). The effect of the Hadamard product on the vertical

structure of the temperature increment is not as dramatic (Fig. 7b) since the data come from

several depths between the surface and 500 meters.

When the analysis is distributed, the calculation of the local S on each PE (C",,L*(L*f+W* in

9d) amounts to sub-sampling the global compactly supported S of Figure 6b. On each PE, the

sub-sampling results in a local S which is less sparse than the global S because it does not

contain covariances between remote locations which are identically zero as a result of the

Hadamard product. Figures 6c-e show local S matrices on three randomly chosen PEs.

Comparing Figure 7c to Figure 7b or Figure 8c to Figure 8b shows that the analysis increments

obtained with the local analysis equations (9) are virtually identical to those obtained with (8),

even though the global inversion (Sb) is bypassed. Indeed, the root mean square difference

between the Equatorial temperature increments of Figures 7b and 7c is 6.0×10-4C. That

between the SST increments of Figures 8b and 8c is 1.0×10-3C. Thus, the tremendous

computational savings associated with substituting the local S for the global S occur with a

negligible impact on the quality of the analysis.

4.2 Timing

Table 1 lists the wall-clock time spent in each step of the assimilation algorithm and in the

ensemble integration in the case of a one-month TAO temperature assimilation experiment

(TAOA: middle column) and in that of a one-month assimilation experiment with gridded

TOPEX-altimeter data (TOPA: right column). The operation labeled "data processing and

distribution" refers to the root PE reading the observations and broadcasting them to the other

PEs. Each PE then determines which data fall within its PE-private region and superobs them

(Section 3.9). The remaining, non PE-private data are discarded.

The TAOA example involves approximately 600 data per analysis. The TOPA example involves

about 10 a data per analysis. Although the TOPEX data are processed daily in KR01, they are

assimilated every five days in the TOPA run to facilitate comparison to the TAOA run which is

made with a five-day assimilation interval. The times listed correspond to one five-day cycle and
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are averages over the lengths of the experiments. As in KR01, 40 ensemble members distributed

across 256 PEs are used.

In both TAOA and TOPA, a little more than 1000 seconds are spent time stepping the ensemble

(error-covariance forecast). The four-second difference between the two cases results from

differences in the time spent in disk access, which varies with the system load, and, to a lesser

extent, in the time spent communicating between PEs and synchronizing the computations. In

TAOA, the ensemble integration takes 72% of the time. In TOPA, it takes 62% of the time. The

remainder of the time (TAOA: 395 seconds, TOPA: 626 seconds) is used to process the data.

Table 1. Mean duration of each phase of the analysis cycle. Middle column: TAO temperature assimilation (TAOA

in text). Right column: TOPEX altimeter data assimilation (TOPA in text).

Operation

Five-day ensemble inte_ation

Data processing and distribution

Step 1

TAOA Wall-clock time (s)
1035

25

5

Step 2 4

Step 3 19

Step 4 3

Step 5 12

Step 6 3

Step 7 14

Step 8 5

Step 9 4

Step 10 292

Step 11 9
Total 1430

TOPAWall-clock time(s)
1039

107

5

4

17

5

93
17

19

6

37

307

9

1665

Steps 1-3 and 10 are independent of the number and nature of the data and thus take the same

amount of time in TAOA and TOPA. Most of step 4 is spent communicating, and the number

and length of the messages involved is the same in TAOA and TOPA. Therefore, the time spent

in this step changes little between the two cases.

The differences between the times spent in steps 5 and 6 are due to the number of data processed

being larger in TOPA. Yet, the cost of these steps is not directly proportional to n because the

L operator is more expensive in TAOA, since more lookups are involved per datum. Indeed, the

data assimilated in the TOPA example have been interpolated onto the model grid before

runtime. The cost of mapping the model state to the observations is reduced as a result.

Although about 20 times more data are processed in TOPA than in TAOA, the cost of steps 7

and 8 is roughly the same in TAOA and TOPA. The reason is that these steps consist mostly in

communications and the number of messages exchanged is the same in both cases. Only their

length changes. Step 9, on the other hand, involves the solution of (9d) which scales like (rid) 3 .

a Q
InTAOA, nd=600 while 0<n d <200. InTOPA, n d=104 and n d =103 . Thus, step9 is the

step with the most data dependent cost.
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A large fraction of the analysis time is spent in Step 10 (TAOA: 74%, TOPA: 49%), the

calculation of the analysis increments in each PE-private grid box. The reason for this is the

matrix-vector products of (9e). When the contribution of C,, is removed fi'om the compactly

supported correlation function used in (9d) and (9e), i.e. when Cv(rv)=1 for all r,,, the time

taken to complete Step 10 drops to 23 seconds in the TAOA example, i.e. by more than 90%.

The reason is that the 71kvectors become independent of the analysis level. Thus, rather than K

matrix-vector products, a single product is needed to calculate the analysis increment within each

grid cell (i, j). Nevertheless, the experience accumulated so far with the MvEnKF has shown

that the computational savings associated with setting Cv = 1 occur to the detriment of the filter's

skill.

In summary, the time spent in one TOPA analysis is less than twice that spent in one TAOA

analysis, although many more data are involved. The significant efficiency gain of TOPA over

TAOA is attributable to two factors. First, the la and lo correlation scales used in TOPA are half

those used in TAOA. Thus, although n,l is 20 times larger in TOPA than in TAOA, TOPA's n d

is not 20 times more than TAOA's. Second, the load is nearly optimally balanced in TOPA

where the data cover the whole domain. To the contrary, most off-equatorial PEs in TAOA are

idle during the analysis. The parallel algorithm is thus much more efficient for a large number of

evenly distributed data.

In a serial algorithm, the cost of step 9 in TOPA would be overwhelming unless the PCGS

algorithm were used to solve (6c) or (Sb). Since the PCGS solver iterates using matrix-vector

products of S with b, it scales like nd2 rather than like n3 . In the parallel algorithm, a non-

iterative O(n 3) solver can be used with no significant penalty (Section 4.1).

For reference, when the TAO temperature data are assimilated using the UOI, the time spent in

one complete analysis cycle on 64 (vs. 256) PEs is 151 seconds, i.e. about 11% of the time taken

by the MvEnKF in TAOA. Of these, 61 seconds are used to integrate the model for five days, 27

seconds are spent in preprocessing and distributing the data and 63 seconds are taken by the

analysis.

4.3 Scaling

This Section discusses the two main current limitations of the parallel MvEnKF: (1) that it scales

poorly beyond 100 PEs in the present machine/model configuration and (2) that the maximum

ensemble size attainable is dictated by the memory of the individual PEs on a MPP with

distributed memory. A CRAY T3E-600 with 128MB RAM per PE is used here. Before

examining these two points, it is worth pointing out that they are of little long-term importance.

Whether the implementation would be most efficient on the CRAY T3E on which it was

developed matters little because this machine will have been phased out before the MvEnKF

becomes mature enough to replace the UOI in the coupled global forecasting system. The

expected lifetime of a modern supercomputer is about two years. Therefore, a main objective of

the flexible, object-oriented message-passing sot_ware engineering approach used to implement

25



the MvEnKF and the other MvDAS components has been that they be adaptable and easily

portable to any parallel platform, small-scale parallel or MPP.

In Figure 9a, it is shown how t,,, the time spent per ensemble member in each five-day analysis

cycle in the TAOA run (Section 4.2), scales with Npe (diamonds). The dashed curve labeled

"EnKF perfect" extrapolates the value of t,, for 16 PEs in the range fi'om 16 to 256 PEs,

assuming linear scaling. According to Amdhal's law, such scaling can never be achieved. He

predicted that the speedup attainable in a parallel computing environment can not be linear as

there should always come a point where further task division creates more overhead than

computational speedup. Instead, the time used by an algorithm on p PEs is given by

t_, = t, (f + (1 -f)/p), where ts is the time used by the same algorithm on a serial machine andf

is the fraction of the operations that must be performed sequentially.

The observed scaling is hard to compare with theory. First, because ts is unknown. Second,

because f depends on Nee. For example, the ratio of the size of the halo regions to that of the

PE-private regions increases with Nee: the former is essentially dictated by the finite

differencing scheme while the latter decreases when NeE increases. Also, the scaling numbers

shown involve different ensemble sizes for different values of NeE (see Figure 9b). Still, t,,

decreases by a mere 16% when NeEdoubles from 128 to 256. Rather, t,, decreases by 45%

between 16 PEs and 32 PEs. This is indicative of saturation. The horizontal resolution of the

Pacific basin version of Poseidon used in these experiments is not high enough for the

distribution of its state vector over more than 100 PES to be optimal. In contrast, the global

ocean component of the NSIPP coupled model to which the MvEnKF will be applied next has

enough state variables to warrant its distribution over more than 100 PEs.. For reference, the

observed and perfect scaling curves are also shown for the UOI. In this case, the saturation

becomes apparent with 64 PEs at the current model resolution.

In figure 9b, the largest ensemble size allowed by the individual-PE memory on NSIPP's current

computational platform, m ...... is shown as a function of NeE. For each value of Nee, the timing

number in Figure 9a corresponds to m,,,_ ensemble members, so that memory is saturated.

Between 16 PEs and 128 PEs, m .... increases approximately linearly from 6 to 36. On 256 PEs,

m,,,xis 46. To increase m,,_ for given Nz, E , the following approach can be used: partition the

ensemble so as, for example, to run 16 6-member sub-ensembles on 16 PEs each, for a total of

96 members on 256 PEs. This is easier said than done because it would require a

communication mechanism present in the Message Passing Interface (MPI, Message Passing

Interface Forum 1994) but not currently supported by the GEMS library. Alternatively, running

the MvEnKF on a platform with globally addressable memory would also allow larger ensemble

sizes. The cost of the MvEnKF would obviously be higher in both cases. As seen in KR01, the

40-member ensembles used there achieve a good compromise between accuracy and keeping the

cost of the data assimilation within acceptable limits (also see Section 3.3).
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Figure 9. (a) Time per ensemble member required to complete one five-day analysis cycle when TAO temperature

data are assimilated (t., in text). The curves labeled "perfect" correspond to a unattainable linear scaling. (b)

Largest ensemble size possible as a function of NpE ( m ..... in text) on the CRAY T3E-600.

5 Summary

This article describes the MvEnKF design and its parallel implementation for the Poseidon

OGCM. A domain decomposition whereby the memory of each PE contains that portion of

every ensemble member's state vector which corresponds to the PE's position on a 2D horizontal

lattice is used. The assimilation is parallelized through a localization of the forecast error-

covariance matrix. When data become available to assimilate, each PE collects from

neighboring PEs the innovations and measurement-functional elements according to the

localization strategy. The covariance functions are given compact support by means of a
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Hadamard product of the background-error covariance matrix with an idealized locally supported

correlation function. In EnKF implementations involving low-resolution models, one has the

freedom to work with ensemble sizes on the order of hundreds or thousands. Rather, with the

state-vector size of approximately two million variables considered here, memory, interprocessor

communications and operation count limit the ensemble size. Here, 40 ensemble members are

used and the model domain is distributed over 256 CRAY T3E PEs.

Besides the details of the observing system implementation, the impact of the background-

covariance localization on the analysis increments, as well as timing and scaling issues, were

discussed. The validation of the MvEnKF in experiments involving TAO-temperature and

TOPEX altimeter data is discussed in a companion article referred to herein as KR01.

Some issues that must be addressed to improve the MvEnKF are the deficiency of the system-

noise model which only accounts for forcing errors, the problem of ensemble initialization which

can be addressed using a perturbation-breeding approach, and the memory limitations inherent

with running the MvEnKF on a MPP with distributed memory. On a machine with globally

addressable memory, the memory-imposed constraints will be less severe. Fortunately, the

modular, object oriented approach used to implement the MvDAS is not tied to the CRAY T3E
architecture.
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