DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY

*GEORGE OTIS SMITH, DIRECTOR

BULLETIN 344

THE

STRENGTH OF CONCRETE BEAMS

RESULTS OF TESTS OF 108 BEAMS (FIRST SERIES)

MADE AT THE STRUCTURAL-MATERIALS
TESTING LABORATORIES

By RICHARD L. HUMPHREY

WASHINGTON
GOVERNMENT PRINTING OFFICE
1908

Ţ

CONTENTS.

Introduction	
Scope of investigations	
Methods of testing.	
Results of tests.	,.
Acknowledgments	
Tests of constituent materials	
Cement	
Preparation of typical cement	·
Results of tests	
Sand	
Aggregate	
Preparation of test pieces.	
Preparation of test pieces. Methods of proportioning.	
Method of mixing and consistency	
Mixing.	
Consistency	
Consistency	
Beams	
Cylinders and tubes	•
Moving and storage	
Methods of testing.	
Beams	
Long beams	
Apparatus	
Method of zero deformation	
Method of testing	
Short beams	
Cylinders and cubes	
Results of tests.	
Beams of constant span	
Beams of variable span	٠
Cylinders and cubes	
Illustrative diagrams	
Survey publications on tests of structural materials	

ILLUSTRATIONS.

	Page.
PLATE I. Concrete beam in machine ready for testing	22
Fig. 1. Diagrams illustrating method for computation of concrete beams	25
2. Effect of age and consistency on the strength of cinder concrete	28
3. Effect of age and consistency on the strength of granite concrete	29
4. Effect of age and consistency on the strength of gravel concrete	29
5. Effect of age and consistency on the strength of limestone concrete	30
6. Compression-stress deformation diagrams of cinder concrete	30
7. Compression-stress deformation diagrams of granite concrete	31
8. Compression-stress deformation diagrams of gravel concrete	32
9. Compression-stress deformation diagrams of limestone concrete	33
10. Deformation curves of cinder concrete in flexure	35
11. Deformation curves of granite concrete in flexure	54
12. Deformation curves of gravel concrete in flexure	56
13. Deformation curves of limestone concrete in flexure	58
TABLES.	Page.
TABLE 1. Chemical analyses of the individual brands used in the preparation	rage.
of typical Portland cement	10
2. Physical tests of individual brands of cement	10
3. Strength tests of individual brands of cement	11
4. Physical properties of cements used in concrete beams.	14
5. Mortar tests of Meramec River sand used in concrete beams	17
6. Physical properties of sand and other materials forming aggregates.	17
7. Strength tests of cement (Ct. 140) used in testing Meramec River	~•
sand	18
8. Tests of 13-foot concrete beams of constant (12-foot) span; ages 4,	
13, and 26 weeks	36
9. Tests of concrete beams of variable span; ages 4, 13, and 26 weeks.	42
10. Compression tests of concrete cylinders and cubes accompanying	

THE STRENGTH OF CONCRETE BEAMS.

By RICHARD L. HUMPHREY.

INTRODUCTION.

SCOPE OF INVESTIGATIONS.

The tests of concrete beams described in this bulletin form a part of a comprehensive series of investigations undertaken by the United States Geological Survey for the purpose of determining the strength of concrete and reinforced concrete.

The work involved in these investigations consists of a study (1) of the constituent materials of concrete, (2) of its strength when molded into various structural shapes, and (3) of the methods by which its maximum strength may be developed through various forms of metallic reinforcement.

Although it is true that concrete possesses but little strength in tension and must be reinforced with metal to resist tensile stresses, it is believed that no study of concrete would be complete without a series of tests establishing its strength without reinforcement.

The tests herein reported indicate that concrete is unsuitable for use under conditions where it must resist tensile stresses, because of the small loads it will sustain and particularly because of the suddenness with which it fails, in striking contrast to the behavior of reinforced concrete, which usually shows a gradual development of cracks preceding failure.

This first series of beam tests covers 144 beams without reinforcement 8 by 11 inches in section and 13 feet long, together with the corresponding compression test pieces, consisting of cylinders 8 inches in diameter by 16 inches in length and of 6-inch cubes. Of these tests those on 108 beams of 12-foot span, with their cylinders and cubes, and those on 108 beams of variable spans, 6 to 9 feet, which were made of the larger part of the 13-foot beams after rupture, are herein reported and comprise all of this series except the 52-week tests.

An attempt has been made to bring out, if possible, the comparative value of gravel, granite, limestone, and cinders for use in concrete; the effect of age and consistency on the strength, as shown by the modulus of rupture of the long and short beams and by the ultimate strength of the cylinders and cubes; and the influence of age and consistency on the stiffness, which is indicated by the unit elongation of the long and short beams and by the initial modulus of elasticity, as determined by tests of the cylinders.

Three consistencies—wet, medium, and damp—were somewhat arbitrarily chosen, and are described on pages 20-21 in greater detail. Tests were made at the ages of 4, 13, 26, and 52 weeks. There are, then, as indicated in the following table, but two variables—aggregate and consistency—for each age.

Outline of tests of concrete beams.

Aggregata					·	Consis	tency.					77.15
Aggregate.		4 week	s		13 wee	ks		26 wee	ks.		52 wee	ks.
Granite Gravel Limestone Cinders	Wet.	Med. .do.	Damp. do	Wet.	Med. do.	Damp.	Wet.	Med. do.	Damp.	Wet.	Med. do.	Damp. do
Cinders		ao .	ao	ao.					ao	ao .	ao .	ao

Note.—Three beams, three cylinders, and three cubes were made for each variation shown in the table.

METHODS OF TESTING.

The methods of testing beams of 12-foot and variable spans, together with cylinders and cubes, have been described in considerable detail in Bulletin No. 329. It is thought best, however, to repeat and in some cases amplify matter which appears there, as the intelligent interpretation of much of the test data is greatly aided by ready access to an account of the methods of testing that were used.

RESULTS OF TESTS.

No attempt has been made in this bulletin to generalize the results of the tests herein presented, or to draw any conclusions, however warranted they may appear from an examination of the test data. It is hoped that the matter herein contained will provoke discussion, and in order to promote this end extended expressions of opinion or attempted applications of theory to results have been avoided. A running commentary on the results of the tests, however, emphasizing matters of particular interest and indicating a few points that might lead to interesting analyses, is included in this report. When the results of the 52-week tests become available it is the intention to publish a thorough analysis of the entire series in another bulletin.

The purpose of this series of tests was to determine-

- (1) The effect of age on the strength of concrete;
- (2) The effect of variation in the consistency on the strength of concrete; and
- (3) The effect of different types of aggregates on the strength of concrete.

The first question is perhaps the most important, since an early attainment of considerable strength and no subsequent decrease in

strength are two essential qualities in concrete, in order that a structure may be put to the use for which it is intended as soon as possible and that there shall be no subsequent deterioration in strength.

The least age at which any tests were made was four weeks, and at that period in no case except that of the cinder concrete, wet consistency, did the compressive strength fall below 2,000 pounds per square inch, while the cinder concrete had in every case a compressive strength of at least 1,000 pounds per square inch.

In every instance the compressive strength shows a substantial increase from four to thirteen weeks, with the single exception of limestone concrete mixed to a wet consistency, for which a decreased strength is indicated by the tests, a decrease which continues to the age of twenty-six weeks. This decrease in the strength of the limestone concrete is unexplainable, and the results of the 52-week tests on this material will be of value as indicating whether or not this decrease continues to the latter period. The other aggregates show either the same or a slightly greater strength at twenty-six weeks than at thirteen weeks.

The transverse tests on both the long and the short beams bear out very closely the fact indicated by the compression tests on the cylinders and cubes, and lead to the belief that the tensile and compressive strength are affected alike by both age and consistency. The effect on the strength of the variation in the consistency is clearly shown. In almost every case the concrete of the damp consistency is the strongest and that of the wet consistency the weakest. This is true for the three ages at which the concrete was tested, and is confirmed by the tests of the beams as well as of the cylinders and the cubes. Attention is called to the fact that the damp consistency used is much wetter than the damp consistency used in making mortar building blocks, for which the same conclusions may not apply.

The difference in strength of the stone and gravel concretes of the three consistencies is more pronounced than in the case of the cinder concrete. The effect of the consistency on the strength seems to depend to a great extent on the behavior of the concrete while being tamped and to the method used in tamping. Great care was taken to tamp all the concretes in the same manner. The thorough mixing of the concrete is absolutely essential and has a marked influence on the consistency.

The relatively slight influence exerted by the consistency on the strength of cinder concrete may be partly due to the structural weakness of the cinders themselves, which in the drier mixtures were to a great extent broken up by the tamper, while in the wet mixtures, the cinders would move from beneath the tamper.

While it is true that in almost every instance the drier mixtures give the greater strength, it does not follow that dry (or damp)

mixtures should be used in construction. Practical considerations warrant the use of a wet mixture. The difficulty in securing efficient tamping and a smooth finish in a damp concrete, the loss of strength due to the unavoidable drying out of the concrete used above water, the difficulty of securing in reinforced concrete an intimate union with the steel, and the far greater ease of placing wet concrete all seem to warrant the sacrifice of what in many cases is but a slight difference in strength for a greater ease of manipulation and a thorough bedding of the steel, which is of the utmost importance in reinforced concrete work.

It is dangerous to draw any general conclusions as to the relative value of concrete made of the four aggregates used unless the character of the aggregates used in this particular series of tests is carefully kept in mind. The gravel, granite, limestone, and cinders were used as available representative types of aggregates, and while the results indicate that the granite makes the strongest concrete, it should not be assumed, therefore, that a granite concrete is stronger than a gravel, limestone, or cinder concrete. Every material should be accepted or rejected on the results of the tests of its qualities, regardless of the tests of other materials of the same type. Apparently insignificant differences in two materials which appear to be similar often cause considerable difference in the strength of concrete made from them. For instance, two limestones from the same quarry crushed and screened under similar conditions—except that one was screened while wet, which caused the dust to adhere to the surface of the stone—would make concretes of considerable difference in strength.

Because the hard, flinty gravel used in these tests gave excellent results, it does not necessarily follow that a similar well-graded gravel, but composed of soft limestone or shale, would give like results. No series of investigations, however elaborate, will do away with the necessity of careful inspection of the materials to be used. The relative value of materials reported in this bulletin should be recognized, therefore, as applicable only to the particular materials from which the reported physical properties were obtained.

ACKNOWLEDGMENTS.

All the material used in the tests herein reported was donated by the following companies, who deserve credit for their interest and hearty cooperation in advancing the work:

Cement.—Iola Portland Cement Company, Iola, Kans.
Atlas Portland Cement Company, Hannibal, Mo.
Whitehall Portland Cement Company, Cementon, Pa.
Universal Portland Cement Company, Chicago, Ill.
Edison Portland Cement Company, New Village, N. J.
Omega Portland Cement Company, Mosherville, Mich.

Old Dominion Portland Cement Company, Fordwick, Va. Lehigh Portland Cement Company, Mitchell, Ind. St. Louis Portland Cement Company, St. Louis, Mo.

Sand.—Union Sand and Material Company, St. Louis, Mo. A recent river sand dredged from Meramec River at Drake, Mo.

Gravel.—Union Sand and Material Company, St. Louis, Mo. A recent river gravel dredged from Meramec River at Drake, Mo.

Granite.—Schneider Granite Company, St. Louis, Mo. A hard, red granite quarried near Graniteville, Mo:

Cinders.—United Railways Company, St. Louis, Mo. These cinders were obtained from the Dehodiamont power house, St. Louis, and gave better results than those selected from other sources.

Limestone.—Fruin-Bambrick Construction Company, St. Louis, Mo. Obtained from a quarry in St. Louis.

The tests were supervised by Louis H. Losse, and the results were computed and collated by Harry Kaplan.

TESTS OF CONSTITUENT MATERIALS.

CEMENT.

PREPARATION OF TYPICAL CEMENT.

The cement used in all the tests in these laboratories is known as typical Portland cement. It is prepared by thoroughly mixing together a number of Portland cements. The method of preparing the typical Portland cement that was used in the tests herein reported and in the tests on the second and third series, reinforced beams, including in all 576 beams, cylinders, and cubes, was as follows:

One thousand eight hundred sacks of cement, 200 from each of nine companies, were used. Two hundred sacks of one brand were spread over a concrete floor 25 by 40 feet in area and thoroughly mixed by hoeing from side to side. Two samples were then taken, a 50-pound sample for tests to be made by the constituent-materials section, and a smaller one for chemical tests. The cement was then resacked. When all the brands had been separately mixed in this way, two sacks of each brand were spread on the floor in a layer about 3 inches thick. One brand was spread upon another in blanket form, making nine separate layers of cement for the nine brands used. The mass was mixed very carefully with shovels until a uniform mixture was obtained. A 10-pound sample was taken for physical tests and the cement was sealed in air-tight cans, two cans of 800 pounds capacity each being required to hold one mix.

RESULTS OF TESTS.

Table 1 contains the results of the chemical tests of the individual brands, made on samples taken as indicated above. The average of the columns may be taken as the analysis of the typical Portland cement.

Table 1.—Chemical	analysės			the preparation	of typical
		Portland	cement.	 	

Cement No.	Silica (SiO ₂).	Alumina (Al ₂ O ₃).		Lime (CnO).	Mag- nesia (MgO).	Sul- phuric anhy- dridė (SO ₃).	Water $(H_2())$.	Ignition loss.	Unde- ter- mined.
200. 201. 202. 203. 204. 205. 206. 207. 208. Average.	20. 34 22. 12 20. 96 20. 52 20. 04 22. 04 22. 80 22. 96 23. 48 21. 70	9. 36 6. 50 8. 08 8. 54 7. 70 9. 50 9. 56 9. 34 8. 22 8. 53	3. 04 3. 22 2. 80 2. 68 2. 74 1. 42 1. 06 1. 32 1. 80 2. 23	63. 40 61. 39 62. 68 62. 47 63. 26 61. 46 61. 04 61. 20 61. 10	1. 35 2. 58 1. 45 1. 92 2. 24 1. 68 1. 37 1. 47 1. 62	1. 47 1. 89 1. 54 1. 50 1. 56 1. 58 1. 82 1. 81 1. 68	0. 94 .18 .29 .08 .55 .64 .28 .44	0. 55 1. 61 1. 43 . 96 . 84 . 77 . 86 . 81	1. 04 . 97 . 70 . 65 1. 60 . 93 . 94 . 76 . 85

Table 2 contains the results of the physical tests, except those for strength of the individual brands. All these tests were made according to the methods recommended by the special committee on uniform tests of cement of the American Society of Civil Engineers.

Table 2.—Physical tests of individual brands used in typical Portland cement.a

	Resid				Tim	e of set	(minu	tes).	Normal pat	tests.
Cement No.	sieve		Specific gravity.	Water (per	Vic	at.	Giln	ore.		Water
	100.	200.	g	cent).	Ini- tial.	Final.	Ini- tial.	Final.	Air (70° F.).	(70° F.).
200	5 9 5.5 7.8 4.4 2.0 6.0 5.3 6.0 3.1	20. 9 22. 1 24. 6 20. 6 12. 0 22. 2 21. 5 23. 2 21. 6 21. 0	3. 136 3. 058 3. 121 3. 099 3. 087 3. 165 3. 127 3. 129 3. 141 3. 108	21. 0 20. 5 20. 5 21. 5 24. 0 21. 0 20. 5 22. 5 21. 4	184 93 138 117 124 127 113 146 170	340 378 329 315 416 370 338 391 332 357	155 110 152 150 229 178 195 182 217 174	325 486 393 352 458 394 441 372 400 402	Normaldododododododo	Dο.

a In the accelerated pat tests, in water at 212° F. for 3 hours and in steam maintained at normal pressure for 5 hours, the results were normal in each case for each brand of cement.

Table 3 contains the results of the strength tests of the individual brands. Tests were made for both neat cement and 1:3 mortar with Ottawa sand, in tension, compression on 2-inch cubes, and modulus of rupture on a 1 by 1 inch prism tested by a center load on a 12-inch span. All tests were made according to the methods recommended by the special committee on uniform tests of cement of the American Society of Civil Engineers.

Table 3.—Strength tests of individual brands used in the preparation of typical Portland cement.

																				-
	L	Temperat	ature (°F.).	·						Stren	igth of r	neat test	Strength of neat test pieces (pounds per square inch).	spunod	persqua	re inch)	÷			
Cement No.					Water (per		ΡÉ	rensile.				Co	Compressive.	ē			Tr	Transverse		
	Air.	Water. Closet	Closet	Tanks.	cent).	day.	days.	28 days.	90 days. d	180 days.	day.	days.	28 days.	90 days.	180 days.	day.	7 days.	28 days.	90 days.	180 days.
1	2	ေ	4	ē.	9	2	∞	6	10	11	12	13	41	15	16	17	18	19.	50	21
200	64.4	68.0	64.4	53.6	21.0	324	655 698 672	864 870 852	845 846 846	886 878 859	2,375 1 2,500 2,400	10,090 9,225 10,925	11, 130 11, 310 10, 060	12, 918 13, 200 13, 270	17,820 18,172 16,542	702 828 . 792	1,962 1,800 1,980	2,088 1,998 2,124	2, 070 2, 124 2, 196	2, 070 2, 124 2, 232
Average						329	675	862	849	874	2, 425	10,080	10,833	13,129	17,511	774	1,914	2,070	2, 130	2,142
201	8.8	0.88	61.4	70.0	20.5	172	616	772 729 728	835 886. 842	886 848 348 348	1,425	5,895 5,638 5,088	8,100 8,655 8,022	11,520 12,225 11,965	11,450	396 414	1,224 1,260 1,278	1,674 1,548 1,710	2,016 1,980 2,061	1,980 1,944 1,908
Average						162	809	743	854	863	1,413	5,540	8,259	11,903	11,279	405	1,254	1,644	2,019	1,944
202	64.4	08.0	64.4	68.9	20.5	401 475 487	754 725 760	792 776 780	842 803 832	832 881 870	3, 900 3, 750 4, 025	7,500 8,125	9,250 9,775 9,300	12, 272 11, 905 12, 050	13,825 14,060 14,187	702 702 648	1,692 1,584 1,728	1,764 1,728 1,836	1,962 2,034 1,935	1,926 1,836 1,980
Average				:		454	746	783	928	198	3,892	7,813	9,442	12,076	14,024	684	1,668	1,776	1,977	1,914
203	66.4	68.0	6.89	73.4	21.5	293 292 292	562 585 548	781 814 809	827 886 881	8835 835 840	2, 400 1, 625 2, 125	6,778 7,300 6,990	9,425 8,867 8,880	11,525 11,312 12,022	13, 525 14, 028 13, 842	792 774 972	1,296 1,260 1,404	1,728 1,908 1,836	1,971 1,908 1,980	2,052 1,980 2,124
Average						301	565	801	865	843	2,050	7,023	9,057	11,620	13, 798	846	1,320	1,824	1,953	2,052
204	0.89	0.89	. 66.2	71.6	24.0	276 285 275	623 623	715 712 732	790 815 821	835	2,325 2,200 2,225	6, 675 6, 055 6, 195	9,200 8,125 8,475	11, 457	14,025 13,062 13,705	558 576 558	1,368 1,368 1,296	1,710 1,656 1,602	1,926 1,908 1,890	2,088 2,052 2,016
Average						579	628	720	808	833	2,250	6,308	8,600	11,341	13,597	564	1,344	1,656	1,908	2,052
205	72.0	68.0	71.6	74.3	21.0	305 308 326	638 616 620	790 762 806	820 811 809	888 888 888	2,075 1,975 2,000	6,550 7,050 7,175	10,125 9,675 9,475	11,800 12,155 11,450	13,655 13,972 14,137	684 720 702	1,350 1,476 1,386	2,052 2,120 1,962		2, 124 1, 980 1, 998
Average				:		313	625	982	813	898	2,017	6,925	9,758	11,802	13,921	202	1,404	2,045	1,985	2,034
206	70.0	. 68.0	. 71:6	69.8	21.0	434 438 438	576 548 578	758 735 742	809 827 851	770 810 775	3, 500 3, 225 3, 400	6,625 6,975 7,300	9,370 9,550 9,655	11,465 11,750 11,505	14,377 13,747 13,712	883 883 936 936	1,584 1,548 1,602	1, 494 1, 656 1, 557	1,710 1,836 1,809	2,088 2,016 2,124
Average		_:	_:			441	267	745	829	785	3,375	6,967	9,525	11,573	13,945	006	1,578	1,569	1,785	2,076

Table 3.—Strength tests of individual brands used in the preparation of typical Portland cement—Continued.

	Ē	Temperature (F°.).	ure (F°.	÷				-		Streng	th of ne	at test	pieces (pounds	Strength of neat test pieces (pounds per square inch)	are inc	(h).			
Cement No.					Water (per		-	Tensile.				Con	Compressive.	a				Transverse.	ge.	ļ
	Air.	Water.	Closet.	Tanks.	cent).	day.	7 days.	28 days.	90 days. d	180 days. d	day. d	days.	28 days.	90 days.	180 days.	day.	7 days.	28 days.	90 days.	180 days.
1	67	80	4	ŭ	9	2	œ	6	91		12	13	14	15	16	1.2	18	19	02	21
207	85.0	64.4	69.8	66.2	20.5	375 375 358 369	685 720 692 699	827 825 788	798 810 793 800	820 804 3 3	3,550	8, 425 8, 000 8, 300	9,698 10,228 10,275	14, 037 12, 583 13, 325	13,817 13,722 14,200	990 846 972	1,530 1,494 1,494	1,926 1,823 1,962	1,800 1,827 1,728	1,962 1,980 1,998
208.	66.2	68.0	69.8	65.3	22.5		820 792 784	748 762 750	810 807 814				6,6,6 9,000,6 300,000	10,798	14,050 13,797	864 954 936	1,728 1,512 1,620	1,566 1,620 1,544	2,106 1,980 2,021	1,998 2,052 1,980
AverageGrand average					21.4		659	753	828		_	7,658		11,070	13,923	918	1,620	1,577	2,036	2,010
			Tempe	Temperature ((°F.).				Stre	ngth of	1:3 sta	ndard-	sand mo	rtar tes	Strength of 1:3 standard-sand mortar test pieces (pounds per square inch).	(pounc	ds per so	quare in	јђ).	
Cement No.				_		≱ [©]	Water -		Teı	Tensile.			Col	Compressive.	7e.			Transverse.	erse.	
		Air.	. Water.	er. Clos	Closet. Tanks.		nt)	days.	28 days.	90 days.	180 days.	7 days.	ys. 28 days.	s. days.	ļ	180 days. 7	days.	28 days.	90 days.	180 days.
		61	60	4	70	 	22	23	24	25	26	27	58		8 8	30	81	32	.88	34
200.		64.	.4	.0 64.	4	53. 6	6.	364 375 395 378	425 419 413 614	426 461 445 444	5 515 1 510 5 486	කුලැකු ල		5,000 4,575 5,125 4,900	4, 175 4, 300 5, 4, 200 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	5,363 5,150 5,100	720 630 675	792 810	846 936 864 882	990 972
201		89	8	68.0 61.	4	70.0	6.8	171 156 194	230 330 320			ેનેનેને – ————————————————————————————————————				3, 175 3, 300 3, 250 3, 242	342 378 288 36	576 576 612	828 819 864	756 810
202		64.4	:	68.0 64.	: 4	6.89	8.9	332 320 328	425 457 435					———— কিনিকি		3, 925 3, 925 3, 775	648	882 954	932	918
Average				-:			:	328	439	431	1 457	7 2,681	 4	208 4,	400 3,	833	999	816	952	945

203.	66.4	68.0	6.89	73.4	9.1	265	355	431	452	1,700	3,667	4,000	4,400	612	828	684	972
						275	362	443	456	1,650	3, 450	4, 125	4, 100	558	684	2,58	016
Average	:		<u> </u>	<u>:</u> 		271	376	440	451	1, 708	3,664	4, 117	4,242	920	762	714	945
204	0.89	0.89	66.2	71.6	9.5	322	24 45 606 606	495	475	2, 100 1, 975	3, 550	9000	4, 325	95.5	810 810	936 918	1,008 891
Average						338	407	478	962	2,075		3,733	4, 223	: F F	810	927	096
205	72.0	68.0	71.6	74.3	9.0	247	401	446		1,625	2,975	3,925	4,375	450	828	1,026	1,008
						220	%	449		1,625	3,00,	3,808 800 800 800	4,625	576	940	954	710
Average		:	- : :	:	-	556	404	442		1,675	2,908	3,858	4, 500	210	895	984	666
206	70.0	0.89	71.6	8.69	9.0	284	445	450 436	465	2, 100 2, 100	3,625	3,325	4, 450	648 648	873 918	972	756 783
						272	:	493		2,075	3, 425	3, 125	4,625	220	837	914	774
Average					:	579	426	460		2,005	3, 458	3,208	4, 492	702	928	626	177
207.	73.0	64. 4	8.69	66.2	8.9	324	455 418	488 476		2,900	3, 425	4, 425	4,975	730 989	972	066	702 720
						328	464	452		2,250	3,650	4,275	4,950	999	1,026	936	720
Average	:::::::::::::::::::::::::::::::::::::::				:	337	446	472		2,083	3,542	4,367	4,942	684	666	954	714
208	66.2	0.89	8.69	65.3	9.3	327	427	535			3,750	4, 162	4, 225	720	1, 539	1,008	684
						388	462	200	529 526	2,29	3,800 3,650 	4,730	4,575	999	1,366	1,026	795 295
Average	•		-	:	:	316	454	525	514	2,258	3,633	4, 460	4, 400	208	1, 557	1,006	714
Grand average	:		-	:	9.1	294	409	457	468	2, 105	3, 572	3,905	4, 343	293	920	200	847
						-	-					-	-			1	

Table 4.—Physical properties of cements used in concrete beams.

Soundness (as indicated by an-	pearance of pat).		Pat A, warped $_{54}^{\downarrow}$ inch around edge. Normal. Pat D, warped $_{54}^{\downarrow}$ inch around edge. Pat C, warped $_{54}^{\downarrow}$ inch around edge.	Normal. O. Do. Do.	D	,	Do.	Po.	0.00	Do.	Do. Do.	Pat A, 2-inch shrinkage crack 1 inch from edge.	Pat A, ½-inch shrinkage crack ¼ inch from edge.	Pat A, 13-inch shrinkage crack 3	Normal. Do.	Pat A, warped & inch around edge. Normal.		, O. O.	D0.
ent	180	days.	836 843 857	851 829 822	833	888	883	208 208 208 208	870	911	. 887 876	864	228	829	851 874	8856	867	870	868
Tensile strength of neat cement (pounds per square inch).	8	days.	704 714 757 792	769 812 798	795 801 818	816	816 831	835	846	857	846 823	855	839	262	840 830	818 814	828	833	818
ngth of 1 per squa	86	days.	841 816 828 799	848 769 785	765 791 758	782	821 827	881	857	988 888	877 826	841	829	161	805 760	774	8 8 8 8 8	362 262 263 263 263 263 263 263 263 263	727 823
sile stre pounds	7	days.	696 698 678 687	758 770 793	757 723 760	735	809	731 731	883	675	648 742	423	436	286	717	761 777	888	325	733
Ten	-	day.	422 468 496 451	470 373 371	368	424	372 409	388	183	220 220	362	. 433	420	387	2 4	£8.	355	\$\$\$	386 386 386
Residue on sieve (per cent)—		007.	22.8 22.8 8,4 8,4	21.8 20.3	20.8	21.0 20.8	27.2	2 4 4 6	22.5	20.5	20.5	2.F.	21.2	21.4	21.1	222	22.5	27.6	21.5 21.5
Resid sieve cer		100.	44.00 8900 2000	5.4 4.9 8.9	0.4.4 0.9.7	. v. v.		4, 4/r		4.4	4.5	8.4	4.8	4.8	.4.9 5.0	4.4. 99.	4 4 4	100	4 4 4 - 8 8
.(8:	nore.	Final.	403 401 430	410 475 470	512 472 474	466	478	85 273 273	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	487	357	465	451	403	404 444	\$05 505 505	86.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	806	461
(minute	Gilmore.	Initial.	180 239 226 275	262 192 275	279 245	242	271	223 243	565 265 265 265 265 265 265 265 265 265	288 288 288 288	250 357	255	353	143	175 239	189	297	390.	227 215
Time of set (minutes).	Vicat.	Final.	372 386 386 389	379 443 432	446 435	419	438 424	443	\$ 65.5	472	20 20 20 20 20	381	432	416	419	369	450	447	£885 25
Tin	Vic	Initial.	138 137 132 180	195 200 195	174	182	1803	206		262	88	738	219	170	147		25.5	208	156
Water	(per cent).		21.0 21.0 21.0 21.0	21.0 21.0 21.0	21.0	21.0	21.0	222	21.0	21.0	21.0	21.0	21.0	21.0	21.0	222	122	21.0	21.0
Temperature (°F.).	:	Alf.	71.6 71.6 71.6 70.6	70.6 71.6 71.6	68.0 0 0 0	9 9 9 9 9 9 9	88.89 10.10	5 <u>1</u> 51 51 51 51 51 51	7,18,1 0,4,4	. 88 4 23	50.0 20.0	59.0	59.0	68.0	70.0	75.0	0.4.7. 0.4.2.	96.0	70.7 62.6
Tempe (°F		water.	75.2 75.2 75.2 10.2	74.0 75.0 75.0	73.0	73.0	70.0	67.1	68.0	8.4.	64.4 68.0	0.89	68.0	0.89		000 888 888			888
Spe-	grav- ity.		3.112 3.116 3.116 3.111	3,116 3,108 113	3,112	3,118	3.113	3.113	3.112	3.113	3, 115	3.118	3, 111	3.116	3.111	3.113			33 HO
Register	No.		209. 210. 211. 213.	214	220223	225. 226	227	231	233	336.	237	272	274	275	283	291292	301		309 312

832 823 823 834 851

839 823 847 824 816

807 812 811 807 811

715 707 705 706 733

356 408 420 398

21.7 21.5 21.5 21.5 21.2

445 445 459 459

252 252 1174 1188 1194 244

425 404 404 421

154 135 137 133 184

21.0 21.0 21.0 21.0 21.0

62. 6 66. 0 66. 0 66. 0

88.0 88.0 69.0 7.7

Table 4 contains the results of all the physical tests made of the typical Portland cement that was used in the present series of concrete beams. In the column "Register No." is given the register number of the cement used. Each number corresponds to two cans of 800 pounds each of typical Portland cement. The sample for each test was taken as already indicated.

As these tests were made with the sole idea of checking the uniformity with which the typical Portland cement was prepared, a full series of neat and sand tests was thought unnecessary and undesirable, for it would entail too much routine work on the part of the constituent-materials laboratory. Accordingly, only tension tests on neat cement were made.

SAND.

The same sand was used with all the aggregates tested. It is known as Meramec River sand, and is composed of flint grains having comparatively smooth surfaces. The yellowish-brown color of the flint imparts a tint of the same color to the sand as a whole.

Tables 5 and 6 (p. 17) give the results of the physical tests on this material. The granulometric analysis in Table 6 shows the sand to be rather finer than desirable. The percentage of voids was computed from the weight per cubic foot and the specific gravity.

Table 7 (p. 18), which contains the results of the tests made on the cement used in the preparation of the test pieces reported in Table 5, will aid in the interpretation of the values given in the latter table.

TABLE 5.—Tests of morter made with Meramec River sand (Sd. 43) and typical Portland cement (Ct. 140) in concrete beams.

_		Temne	rature	Tensi	Tensile strenoth (nounds nor	oth (n	pounde	100	Comp	rossivo	stronoth	Compressive strength (nounds ner	le nor	T. T.	DAVOTOD	atronot	Transverse strangth (nounds ner	de nor	
Jo uc	Water	(F.).	.).		squa	square inch)	1).		dimon	bs	square inch)	h).	10d er	1	8	square inch).	ch).	rad sp	
mortar.	cent).	Air.	Water.	7 days.	28 days.	90 days.	180 days.	360 days.	days.	28 days.	90 days.	180 days.	360 days.	7 days.	28 days.	90 days.	180 days.	360 days.	
1:3.	11.5	71.0	0.89	274	438	418	443	473	2,375	4, 075	5, 625 5, 425	5, 125 4, 900	5,172	594 576	885 936	1,044	1,080	1,080	
Passed 4-inch Average		:	:	266	425	426	466	\$ \$ \$	2, 317	4,000	5, 567	4, 958	5,194	588	888	1,020	1,008	1,002	
	11.0	71.0	68.0	180	302	352	391	408	1,375	2,450	3,625	3, 600 3, 675	3,715	396	612 666	864	. 846	864	
				130	306	361	373	416	1, 325	2, 375	3,812	3, 550	3,740	378	020	883	006	846	
Average	:	:	:	185	301	355	373	408	1,358	2,392	3, 780	3, 608	3,743	390	989	852	864	810	
	11.5	65.0	68.0	215 224	294	343	353	360 372	1,425	2,750	3,400	3,550	3,600 3,618	396 414	648	954	774 810	828 900 103	
Average				215	205	346	340	367	1,417	2,700	3.408	3,575	3,630	414	930	F 000	8	737 840	

Table 6.—Physical properties of sand and other materials forming aggregates used in concrete beams.

	Percent-	•					Perce	Percentage passing sieve or screen—	ssing sie	ve or sc	reen-				
~ 90	Specific age of voids gravity. (computed).	(pounds percubic foot).	200.	100.	.08	50.	40.	30.	20.	10.	· }-inch.	ş-inch.	-inch.	1-inch.	1‡-inch.
Unders. Granite Gravel Limestone Meramee River sand.	1. 530 50.7 2. 585 40.9 2. 450 33.0 2. 489 37.1 2. 597 37.9	7 47.0 9 95.3 0 102.4 97.7 97.7	2,84 1,59 0 2,96 .20	4.17 2.29 0 3.48 1.30	4.91 2.62 3.70 3.60	6.45 3.22 0 4.18 13.90	8. 26 3. 74 0 4. 68 37. 00	10.48 4.38 5.23 64.00	13.66 5.45 0 6.21 81.50	21. 07 8. 50 . 95 10. 69 97. 00	36.89 19.88 43.0 28.71 100	60.32 57.54 79.3 .60.86	81. 44 99. 25 95. 2 96. 04	89. 68 99. 71 98. 5 99. 37	100

AGGREGATE.

The results of the physical tests on the granite, gravel, cinders, and limestone used in the plain beams are reported in Table 6. The crushing strength of the 1:2:4 concrete made of these aggregates is given in connection with the results of tests on the plain beams, in Table 10 (pp. 48-53).

Table 7.—Tests of cement	140, used in	testing	Meramec	River	sand	(strength	in	pounds
	per.	square i	nch).					

Kind of test.	Neat.					1:3 mortar.					
	1 day.	7 days.	28 days.	90 days.	180 days.	360 days.	7 days.	28 days.	90 days.	180 days.	360 days
Tension	362 375 372	710 700 718	696 705 709	775 792 781	827 811 813	846 853 831	342 375 364	527 540 531	445 445 413	405 388 394	414 408 405
Average	370	709	703	783	817	843	360	533	434	396	408
Compression	3, 425 3, 275 3, 300	9,300 9,325 9,175	10, 512 11, 125 10, 497	12, 288 12, 612 12, 862	13, 980 13, 725 13, 803	14, 274 14, 410 14, 320	1,570 1,555 1,735	3, 200 3, 300 3, 025	3, 698 3, 400	5, 025 5, 025 4, 800	5, 500 5, 425 5, 239
Average	3, 333	9,266	10,711	12,590	13,836	13, 335	1,620	3, 175	3, 549	4,950	5, 388
Transverse	756 792 774	1,440 1,440 1,476	1,872 1,908 1,944	1,998 2,016 1,962	1,944 2,088 2,034	2,142 $2,232$ $2,124$					
Average	774	1,452	1,908	1,992	2,022	2,166	 				

Remarks.—Fineness: Residue on No. 100 sieve, 6.8 per cent; on No. 200 sieve, 22.8 per cent. Specific gravity, 3.12. Time of set: Initial, 142 minutes; final, 428 minutes. Soundness: Pat test in air at 70° F., normal; in water at 70° F., normal; in water at 212° F., 3 hours, normal; in steam at normal pressure, 5 hours, normal. Water used in mixing: Neat, 20.5 per cent; mortar, 8.9 per cent. Temperatures: Of air, 71.0° F.; of water, 68.0° F.

PREPARATION OF TEST PIECES.

METHODS OF PROPORTIONING.

A 1:2:4 volume proportion was adopted for all the concrete used in the following tests. Since, however, the volume of a given weight of dry sand is greatly affected by the percentage of moisture present, it was thought best to do the actual proportioning by weight. The weight of 1 cubic foot of cement was assumed to be 100 pounds. The weight per cubic foot of the dry, loose sand and the dry, loose aggregate as determined by tests in the constituent-materials laboratory, was used in reducing the proportions by volume to the proportions by weight.

With this as a basis, the necessary weight of dry material for the desired batch was determined. Since the sand and stone, as stored in the bins, contained an appreciable amount of moisture, the dry weight of the material had to be increased by the weight of the moisture present before the batch could be weighed out. The percentage of moisture was determined on a 500-gram sample of the sand and stone each day on which beams were molded.

The above method of correcting for moisture was followed in the series of concrete beams and in the greater part of the first reinforced beam series. It was noticed from time to time, however, that the concrete when dumped from the mixer was not always of the same consistency, in spite of the fact that the total weight of water present (weight of water added plus the weight of the moisture in the sand and the stone) was a constant. A moisture determination was then made on a sample representing as nearly an average of the material in the bin as it was possible to obtain, and this was then maintained constant and gave much better results. The effect on the consistency of a given change in the weight of the moisture in the sand or stone does not appear to be the same as that of an identical change in the weight of the water added to the batch, the difference probably being due to the fact that the moisture test is only local and does not represent the true average of the material in the bin.

It should be noted here that the proportions by volume of the cinder concrete are nearer 1:2:5 than 1:2:4. This is due to an error in making the moisture determination at the time the weight per cubic The weight per cubic foot of the cinders, infoot was determined. cluding apparently 11.1 percent moisture, was reported as 68.1 pounds. Using these figures gives 61.3 pounds per cubic foot for the weight of the dry, loose cinders. These determinations were accepted as correct until a sample, which had been forgotten in the oven, showed 23 per cent moisture present. This error in the weight per cubic foot. due to insufficient drying of the test sample, was not discovered until the series of cinder beams was almost completed. While a new determination of the weight per cubic foot was made and the proportions by weight and volume modified accordingly, it was thought best to use these proportions and the correct weight per cubic foot on the remaining cinder beams rather than the 1:2:4 volume proportions, in order to make the cinder beams comparable among themselves even if not strictly comparable with the beams of other aggregates.

The weight per cubic foot, as redetermined, was found to be 47.0 pounds.

METHOD OF MIXING AND CONSISTENCY.

MIXING.

All concrete was mixed in a motor-driven cubic-yard cube mixer, which is equipped with a charging hopper. All water used in mixing concrete was weighed and was supplied to the mixer through a hose attached to a water barrel, which is mounted on a platform scale on a support above the mixer. To insure uniform conditions the interior of the mixer was wetted down each morning before the first mix of the day. All concrete was mixed two minutes dry and three minutes

wet, after which it was dumped on the cement floor, shoveled into wheelbarrows and wheeled to the molding floor. Sufficient material was charged into the mixer to make two beams, two cylinders, and two cubes from the same batch of concrete.

CONSISTENCY.

Definition.—The three consistencies, wet, medium, and damp, as here used, represent each a certain characteristic behavior and appearance of the concrete in the mixer, on the floor, and in the mold when subjected to tamping. In order to eliminate the personal equation as far as possible, the amount of water required to bring the batch to a desired consistency for a particular aggregate was carefully determined by trial before the test pieces were molded. Thereafter the weight of water to be used with each aggregate for that consistency could be obtained by making a simple correction each day, depending upon the percentage of water contained in the aggregate as it came from the bins. The total amount of water, including moisture, was expressed as a percentage of the total weight of the dry material and was maintained constant.

A brief description of the consistencies is given. It should be recognized that the consistencies as defined are purely arbitrary, but each, it is thought, represents a characteristic appearance and behavior, and, with a little practice, is readily distinguished from the others.

Wet consistency.—Concrete of wet consistency has a smooth and somewhat viscous appearance in the mixer, or immediately before dumping. It flows back from the ascending side of the mixer without any tendency toward "breaking" over at the top. The upper surface of the concrete in the bottom of the mixer rolls underneath the mass smoothly and is carried upward by adhesion to the metal. When dumped, it stands on the floor in a low pile, having a smooth surface, and showing neither voids nor individual stones. It can not be compacted by tamping in the molds, but splashes under the action of the tamper. When finished, water stands from one-fourth to one-half inch deep over the surface of the mold.

Medium consistency.—Concrete of medium consistency has a smooth appearance in the mixer, but shows a tendency to lump. As compared to that of wet consistency it flows less smoothly and is carried higher by the ascending side of the mixer, part flowing back smoothly and part breaking over at the top in lumps. When dumped, it stands in a higher pile with steeper side slopes, exhibiting a somewhat lumpy appearance, and showing individual stones, but no voids. The stones show an even coating of sand mortar. No water collects on the surface of the beam in the mold. The surface is easily finished with a trowel.

Damp consistency.—Concrete of damp consistency is decidedly granular in the mixer with little tendency to lump. The material is carried to the top of the mixer and falls in individual stones and fragments of mortar. When dumped, it stands at the same angle as medium concrete, showing both individual stones and voids. The surface of the pile is irregular. In the mold it offers considerable resistance to tamping, but compacts fairly well under hand tamping. No water flushes to the surface and it can not be finished smooth by troweling.

METHOD OF MOLDING.

BEAMS.

The beam molds consisted of three long steel channels with flanges turned outward, forming the sides and bottom of the mold. The ends were closed by short pieces of channels. The side and end pieces were removable. The molds were oiled before the concrete was placed, to prevent adhesion to the surface of the steel. In molding the plain beams the concrete was deposited in three layers of about equal thickness. The tamping was done by hand with a 13\frac{3}{4}-pound tamper having a rectangular head 1½ by 3½ inches. The tamping was started at one side of one end of the mold and the tamper moved toward the opposite side, the width of the tamper at each stroke. The tamper was then set forward and the process repeated. In this way each part of the layer was tamped once. The mold was gone over twice in this way, after which the concrete was spaded back from the sides of the mold and the layer tamped a third time. The same operation was followed for each of the three layers. The surface of each beam was finished as smooth as possible by troweling.

The side and end pieces of the mold were removed at the end of twenty-four hours, and the beam was covered with burlap and allowed to remain on the bottom channel until moved into the moist room.

CYLINDERS AND CUBES.

In order to make the compression test representative of the true crushing strength of the concrete in the beam, the cylinders and cubes were molded from the same batch as the beam of the same number. They were molded in cast-iron separable molds, which were oiled previous to placing the concrete. The concrete was deposited in layers approximately 3 inches thick, and each layer was tamped twice, a circular hand tamper $3\frac{1}{2}$ inches in diameter and weighing 7 pounds being used for the cylinders and a rectangular tamper $3\frac{1}{2}$ by $1\frac{1}{4}$ inches, weighing $13\frac{3}{4}$ pounds, for the cubes.

In molding the cubes an effort was made to "spade" back the concrete from the sides of the mold, as was done in molding the beams.

The top surfaces of the cubes and cylinders were finished smooth with a trowel. All molds were removed at the end of twenty-four hours, and the test pieces were marked and transferred to the moist room.

MOVING AND STORAGE.

The large number of beams to be molded and the small space available made it imperative that the beams be moved as soon as possible. In no case could they remain where molded for more than 12 or 16 days. Since a concrete beam without reinforcement, and weighing about 1,200 pounds, has very little tensile resistance at this age, it was very important that they be handled at points that would prevent any chance of injury when being moved to the moist room. The following plan was followed, and was entirely satisfactory:

The channel forming the bottom of the mold was placed with the flanges turned down. At the points where the beams were supported in moving them, the webs of the bottom channels were cut away for a width of 1_{10}^{10} inches. Prior to molding this slot was closed by a filler resting on the uncut flanges. When the beam was to be moved, this filler was driven out and a slightly narrower piece, which projected $1\frac{1}{4}$ inches beyond each side of the beam, was substituted.

A stirrup hanging from the chain blocks suspended from trolleys running on overhead I beams, was hooked under these projecting ends and lifted a 13-foot beam at two points 8 feet apart, which give equal positive and negative bending moment, and consequently minimum stresses in a beam of that length.

The beams in the moist room were stored six high, being supported at the same points as when brought to the damp closet.

All test pieces were sprinkled from a hose three times each day—at midnight, at 8 a. m., and at 4 p. m.—both before and after being placed in the moist room.

The temperature on the molding floor and in the moist room was recorded on a self-recording thermometer, and was maintained as near 70° as possible.

METHODS OF TESTING.

BEAMS.

LONG BEAMS.

APPARATUS.

Pl. I shows a photograph of a beam in place. The supports "P" for the beams have cylindrical top surfaces, and are so designed as to give a slight yielding motion outward, the object being to prevent any restraint of the beam which might follow from the lengthening of the lower fiber.

U. S. GEOLOGICAL SURVEY

BULLETIN NO. 344 PL. I

CONCRETE BEAM IN MACHINE READY FOR TESTING.

The deformeter yokes (E, E') are fastened to the beam by tightening the nuts A, which force the contact points (b) and those directly opposite on the far side of the beam, against the surface of the concrete. The yokes are equidistant from the center of the beam, the contact points being 29.25 inches apart for the outer yokes and 24 inches apart for the inner set. The contact points of the outer set were 10 i ches apart vertically and those of the inner yokes 5.75 inches apart. Both yokes were centered on the horizontal axis of the beam, thus bringing the contact points of the outer yokes 0.5 inch below the top and 0.5 inch above the bottom. The inner yokes were used only on some of the earlier beams in order to test the conservation of plane section. Four pins directly in line with the contact points on E engage cylindrical holes in the ends of the four rods, the other ends of which rest lightly on hard rubber rollers fastened to the arms C, which are rigidly connected to the yoke E.

Four micrometer screws reading directly to 0.0001 inch work in bushings fastened to the yoke E'. When any micrometer screw is brought in contact with the end of the corresponding rod, an electric contact is made, which causes a click in the telephone receiver F. Both yokes are divided into two vertical halves by rubber insulation, thus making it possible to read micrometers on both sides of the beam simultaneously.

METHOD OF ZERO DEFORMATIONS.

The deformation of concrete in compression in a beam is obtained from a reading of the upper micrometers, while the lower ones give the elongation of concrete. The readings of both upper and lower micrometers, making the usual assumption of conservation of plane section, fix the position of the neutral axis. The beams were all tested on a 12-foot span by two equal loads, applied at the third points of the span.

The load apparatus consists of a box girder (H) built of two 6-inch channels with a ½-inch cover plate on the top and the bottom. The load is transmitted from the testing machine to the box girder through a spherical bearing block (I), and from the box girder to the beam by two 2-inch steel rollers (J) bearing on two steel blocks (not shown) set in plaster of Paris. The upper surface of these blocks is a cylinder of very large radius whose axis is parallel to the length of the beam. With the exception of these bearing blocks the entire load apparatus is suspended from the top head (L) of the testing machine by a bolt passing through the spherical bearing block and engaging a plate on the inner surface of the box girder. The steel rollers (J) are kept in place by the casting which extends a trifle below their axis.

On commencing a test the bearing blocks are removed and yokes (K) are passed under the test beam and over the box girder directly above the 2-inch rollers. The head (L) is then run up until the reaction at the ends of the test beam has been so reduced that the total positive bending moment area is equal to the total negative bending moment area within the gage length, considering the beam as a continuous girder over four supports, viz, the two end supports and the two intermediate yokes.

This method is used for the following reason: In tests of beams as usually made, the upper and lower fibers of the beam are already deformed and are under stress due to the weight of the beam when the first, or zero, reading of the deformeters is taken; the deformations computed from these readings are too small by an amount which becomes relatively more and more important as the breaking loads decrease and which in the case of plain beams (many of which fail by a load but little in excess of the weight of the beam) becomes a very large part of the ultimate deformation.

When a beam rests freely on supports, the upper and lower fibers are deformed on account of the bending moment due to the weight of the beam. When the supports are at the ends of the beam the upper fibers are shortened and the lower are lengthened. For equal moduli. of elasticity in tension and compression, which are constant for concrete under small loads, the deformation at any point of the beam is proportional to the area of the bending-moment diagram over that length. Therefore, when the total positive bending moment area in the gage length of the deformeters equals the total negative bending moment area in the gage length, the net total deformation in that length is zero, and both the upper and lower fibers of the beam have the same length as when unstressed. For a particular reaction at the ends of the beam the positive bending moment area in the gage length is equal to the negative bending moment area. get this reaction the beams are supported at the third points by the head of the machine as previously described. As the stirrups under the third points of the span take more and more of the weight of the beam the end reactions become smaller and smaller and the character of the bending-moment diagram within the gage length changes until the desired condition is reached.

The method of finding the required reactions for total zero deformations within the gage length, in terms of the weight of the beam and other known quantities, may be understood by reference to fig. 1, as follows:

Fig. 1.—Diagrams illustrating method for computation of concrete beams. Upper diagram: Notation used. Lower diagram: Curve of bending moment within gage length (beam supported at third points).

Let L = distance between the supports.

g = gage length of deformeters.

Z = overhang of beam at each end.

 $\frac{L}{3}$ = distance from each support to force exerted by each stirrup.

W = total weight of beam.

 $\frac{W}{2}$ -R = force exerted by each stirrup at a distance of $\frac{L}{3}$ from the supports.

R = each reaction at end.

SS = any vertical section within the gage length at a distance, x, from one of the gage points.

 M_x = bending moment at section SS.

 M_o = bending moment at deformeters, where x = 0.

 M_c = bending moment at center of beam, where $x = \frac{g}{2}$.

m = constant bending moment over the gage length due to the weight of all attachments, such as bearing blocks under the load points and the deformeters. This weight is applied outside of the gage length and equally on each side of the center of the beam.

The bending moment at section SS, considering forces to the left only, is as follows:

$$\begin{split} M_x &= R \bigg(\frac{L}{2} - \frac{g}{2} + x\bigg) + \bigg(\frac{W}{2} - R\bigg) \bigg(\frac{L}{6} - \frac{g}{2} + x\bigg) - \frac{W}{2(L+2Z)} \\ & \bigg(\frac{L}{2} + Z - \frac{g}{2} + x\bigg)^2 + m. \end{split}$$

Reducing to a simpler form gives:

$$M_{x}\!=\!\!\frac{RL}{3}\!-\!\frac{W}{4}\!\!\left(\!\frac{L}{6}\!+\!Z\right)\!-\!\frac{W}{4\!\left(\!\frac{L}{2}\!+\!Z\right)}\!\left(\!\frac{g}{2}\!-\!x\right)^{2}+m.$$

The bending moment at the end of the gage length (x=0) is as follows:

$$M_{\text{o}} = \frac{RL}{3} - \frac{W}{4} \bigg(\frac{L}{6} + Z \bigg) - \frac{Wg^2}{16 \bigg(\frac{L}{2} + Z \bigg)} + m.$$

The bending moment at the center of the gage length $\left(x = \frac{g}{2}\right)$ is as follows:

$$M_c\!=\!\frac{RL}{3}\!-\!\frac{W}{4}\!\left(\frac{L}{6}\!+\!Z\right)\!+m.$$

The moment diagram between the third points, when there is both positive and negative bending moment in the gage length, is shown in fig. 1, in which xx' is the horizontal axis of the moment diagram. The curve bee'b' is a parabola and crosses the axis at two points (viz, e and e') between the ends of the deformeters. Then in the gage length cc' there is negative bending moment from c to e and from e' to c', and positive bending moment from e to e'. The dotted lines cb, c'b', and bb' are drawn for the purpose of demonstration. Then the distance M_c represents the bending moment at the center of the gage length, and M_o represents the bending moment at the end of the gage length. The negative bendingmoment areas within the gage length are cbe and c'b'e', each being represented by -B. The positive bending moment area within the gage length is eFe' and is represented by A.

The condition that the positive bending moment area is equal to the negative bending moment areas is represented by the equation A = -2B. Adding the quantity -C to both sides of the equation gives A + (-C) = -2B - C. The first part of this equation is the area included between the horizontal line bb' and the parabola bFb'; that is, $A + (-C) = \frac{2}{3}g \left[M_c + (-M_o)\right]$.

The second part of the equation is equal to the area of the rectangle bcc'b'; that is, $-2B-C=-gM_o$.

Therefore $\frac{2}{3}g\left[M_o + (-M_o)\right] = -gM_o$. Whence $2M_c = -M_o$.

Substituting the values of M_{o} and M_{c} as found above gives:

$$\begin{split} \frac{2RL}{3} - \frac{W}{2} \bigg(\frac{L}{6} + Z\bigg) + 2m &= -\frac{RL}{3} + \frac{W}{4} \bigg(\frac{L}{6} + Z\bigg) + \frac{Wg^2}{16 \bigg(\frac{L}{2} + Z\bigg)} - m. \end{split}$$
 Whence
$$RL = \frac{3W}{4} \bigg(\frac{L}{6} + Z\bigg) + \frac{Wg^2}{16 \bigg(\frac{L}{2} + Z\bigg)} - 3m$$
 and
$$R = \frac{3W}{4L} \bigg(\frac{L}{6} + Z\bigg) + \frac{Wg^2}{16L \bigg(\frac{L}{2} + Z\bigg)} - \frac{3m}{L}.$$

In almost all the beams tested at the laboratories L, Z, g, and m are constant. It only remains to find W and to compute R. A table computed by the above formula has been compiled for all the usual values of W, from which the corresponding value of R in any case can be directly read.

METHOD OF TESTING.

When the test is commenced, the top head is run up until the reactions causing equal positive and negative bending moments over the gage length are developed at the ends of the beam. The sum of these reactions will appear on the weighing beam, the testing machine having been balanced before the weight of the beam and all test apparatus comes on it. A full set of deformeter readings is then taken.

After the readings at zero total deformations in the gage length and when the beam rests under its own weight are taken, the load is applied in increments of 200 to 1,000 pounds, depending on the stiffness of the beam, the top and bottom set of micrometer readings being recorded on the log sheets. Wood blocks are placed underneath the beam during the test, so that the distance it falls at rupture is not more than one-fourth inch.

SHORT BEAMS.

The longer portion of each beam after first failure is again tested on as great a span as its length permits, thus making a secondary series of short beams.

The load is applied by the same apparatus as that used for the long beams, but instead of being applied at the third points it is applied at points 2 feet from the center of the span. The short beams are not suspended for zero deformation readings, since for such small spans the deformation of the beam under its own weight is very small. On all short beams the outer yokes having a gage length of 29.25 inches are alone used.

CYLINDERS AND CUBES.

The cylinders and cubes are tested on a four-screw, 200,000-pound Olsen machine. To insure an even distribution of load over the entire cross section the ends of the cylinders are bedded in plaster of Paris to a thickness of about one-half inch on a piece of plate glass (previously oiled to prevent adhesion of the plaster). The bearing surfaces are made normal to the axis of the cylinder by means of a spirit level applied to its sides. The cubes are not capped with plaster of Paris, but a thin piece of asbestos is placed on a spherical bearing plate when under test, in order to take up all nonparallelism of the ends.

The load is in each case carried to failure, being applied continuously to rupture in the case of the cubes and in increments of 5,000 pounds, or approximately 100 pounds per square inch for the cylinders. For each increment gross deformations are read on two opposite sides of the cylinder over a gage length of 12 inches.

RESULTS OF TESTS.

BEAMS OF CONSTANT SPAN.

The detailed results of the tests of concrete beams 8 by 11 inches in section, 13 feet long, tested on a 12-foot span by two equal loads applied at the third points are given in Table 8 (p. 36), comprising the

Fig. 2.—Diagrams showing the effect of age and consistency on the strength of cinder concrete.

three ages of 4, 13, and 26 weeks, and some of the results are graphically shown in figs. 2-5 and 10-13.

Fig. 3.—Diagrams showing the effect of age and consistency on the strength of granite concrete.

Fig. 4.—Diagrams showing the effect of age and consistency on the strength of gravel concrete.

The percentage of water is expressed in the table in terms of the total weight of the dry material. This percentage includes the weight of the moisture in the sand and aggregate, which varies from

1.5 to 2.0 per cent of the weight of the stone, from 3 to 4 per cent of the weight of the sand, and may include as much as 21 per cent of the weight of the cinders. A simple computation, using the proportions

FIG. 5.—Diagrams showing the effect of age and consistency on the strength of limestone concrete.

Fig. 6.—Characteristic compression-stress deformation diagrams, cinder concrete of medium consistency; ages 4, 13, and 26 weeks.

by weight, will show that this 21 per cent moisture forms as much as 43 per cent of the total amount of water, including moisture, that is necessary to bring the concrete to the desired consistency. Deduct-

ing this 43 per cent moisture from the total percentage of water leaves about 12 per cent of the total weight of the dry material as the weight of the water added plus the weight of the moisture in the sand. This does not differ so very much from the percentage of water used for the other aggregates. As already indicated, it would seem that the influence of the water present in the stone or cinders and even for usual values of 3 to 4 per cent in the sand does not influence

the consistency as greatly as does the same weight of water when added to the batch.

Column 6 of the table gives the consistency of the concrete and must be compared with the definitions of wet, medium, and damp concrete already given (p. 20).

Columns 7, 8, and 9 give the dimensions of the beam, the span being kept constant at 12 feet.

Column 10 gives the total weight of the beam, which is obtained by weighing the beam on the testing machine. The error in weighing is in no case greater than 5 pounds in either direction. Column 11 gives the weight per cubic foot of the beam.

Column12 gives the unit elongation of the lower fiber when the beam rests freely on a 12-foot span

Fig. 7.—Characteristic compression-stress deformation diagrams, granite concrete of medium consistency; ages 4, 13, and 26 weeks.

subjected only to its own weight and the weight of the deformeters. This value is obtained by first taking a reading for zero total deformation as already described (p. 23) and a second reading when the beam rests as above. This value is included for the reason that in all tests made up to the present time deformations due to applied load only were read. If it is desired to compare the present tests with others already made the unit elongation as given in column 14, which was measured at a load just previous to rupture, when decreased by the

value in column 12 will give the unit elongation at a point near rupture for the applied load alone.

Column 13 shows $\frac{M}{bd^2}$ (pounds per square inch) for the last load previous to failure. The relation of this value to the breaking value in column 19 is readily seen by comparison. In computing all the values of $\frac{M}{bd^2}$ given in these tables the nominal values 8 inches and 11

Fig. 8.—Characteristic compression-stress deformation diagrams, gravel concrete of medium consistency; ages 4, 13, and 26 weeks.

inches were used for the breadth (b) and the depth (d) of the beam.

Column 14 shows the unit elongation of the lower outer fiber for the load previous to rupture. An unsuccessful attempt was made to obtain an exact value for the unit elongation of the lower fiber at rupture; but it was found impossible to take a reading of the micrometers at the exact instant of the breaking of the beam. Just previous to the break the concrete in the lower fiber elongates so rapidly that it is impossible to revolve the micrometer fast enough to maintain contact with the rod. While the lower micrometers on both sides of the beam may be read as the beam breaks the values obtained are so erratic that they have

not been included in the tables of this bulletin.

The unit elongations reported under "Final deformeters" (columns 13, 14, and 15) in Table 8 are the values obtained at the last full set of readings preceding the breaking of the beam, and it must therefore be recognized that while they approximate the elongations at maximum load they are not absolute. Attention is called to the apparent

relation between the values in columns 13 and 14. Separating the aggregates into cinders on one hand and the three stone concretes on the other, the elongation seems to bear a direct relation to $\frac{M}{bd^2}$ or the load carried. This comparison, however, can not be made for the cinders, owing perhaps to the nonuniformity in the strength of the clinker itself.

Column 15 shows the position of the neutral axis for the load pre-

ceding failure. This is obtained from the usual assumption of proportionality between deformation and position of the neutral axis.

The maximum load applied at the third points of the span (column 16) excludes the weight of the deformeters. The corresponding $\frac{M}{bd^2}$ is shown in column 17.

Column 18 shows the $\frac{M}{bd^2}$ for the weight of the beam, taking into consideration the effect of the 6-inch overhang on each end and also the constant weight of the deformeters.

Column 19 shows the maximum total $\frac{M}{bd^2}$, which is equal to the sum of the values in columns 17 and 18.

Fig. 9.—Characteristic compression-stress deformation diagrams, limestone concrete of medium consistency; ages 4, 13, and 26 weeks.

Column 20 shows the modulus of rupture in pounds per square inch. These values were obtained by multiplying those in column 19 by 6. The method of computing the modulus of rupture should be emphasized. It is based on the assumption that the coefficients of elasticity in tension and compression are equal and constant and that

consequently the neutral axis remains in the center of the beam. An examination of the table shows, however, that the neutral axis actually varies from 30.4 to 63.0 per cent of the depth of the beam below the top.

Column 21 gives the distance of the break from the center of the beam, which in few cases is more than 1 foot.

Table 8.—Tests of 13-foot concrete beams of constant 12-foot span.

TESTED AT FOUR WEEKS.

ب ،	¥a, 1	1	£ 4:	, ;	808		2 8 9		2 9 0	: ∞∞ ⊴	, ,	∞ c₁ ∞	
Distance	from from cen- ter (inch es).	21	,			_						4	:
Mod-	of rup- ture 6M bds	20	178		213 195 185	198	188 · 193 212	198	394 367 363	375 485 472 468	475	494 459 543	200
Maxi-	total M Dd ² (cen- ter).	19	29.64 31.46		35. 57 32. 42 30. 77	32.92	31.28 32.12 35.22	32.89	65.60 61.24 60.58	62. 47 80. 89 78. 73	79.23	82.35 76.50 90.54	
Own weight	$\begin{array}{c} + \\ \text{defor-} \\ \text{meters} \\ \hline M \\ \overline{\text{bd 2}} \\ \text{(cen-} \\ \text{ter)}. \end{array}$	81	17. 10 17. 57 17. 57	17.36	16. 72 16. 55 16. 89	16.72	16.38 16.47 16.85	16.57	21.34 20.38 21.15	20.36 21.01 21.03 21.03 22.03	21. 32	21. 47 21. 04 21. 27	
	M 1 bd 2 (center).	17	12. 54 13. 89 8. 93		18.85 15.87 13.88	16.20	14. 15. 18. 18. 18.	16.32	44. 26 40. 86 39. 43	41. 52 59. 88 57. 64 56. 23	57.92	60.88 55.46 69.27	
Maximum applied.	Load.	16	560	477	04.0 04.0 04.0 04.0 04.0 04.0 04.0 04.0	653	986 087 087	289	1,840 1,710 1,590	1, 713 2, 470 2, 370		2,2,400	4,040
ers.	Posi- tion neu- tral axis.	15	39.2	4.8		39. 7		37.2	63. 5 43. 8 52. 6	53.3 46.0 40.0	48.1	60. 4 43. 5 50. 6	
Final deformeters.	Unit elonga- tion, lower outer fiber.	14	0. 000200	. 000222	. 000430 . 000263 . 000283	. 000335	. 000329 . 000374 . 000377	. 000360	. 000067	. 000080	. 000115	. 000103	erronn.
Final	M bd³ total).	13	25. 95 31. 46	26.26	35. 57 30. 43 30. 77	32. 26	29.84 29.75 35.27	31.62	58.38 58.37 60.58	59. 11 76. 04 78. 73		72. 20 67. 02 86. 94	
Unit elonga-	lower outer fi- ber (own weight + defor- meters).	12	0.000092	660000	.000096	. 000095	.000110	. 000111	. 000024	. 000027	•	. 000024	1E40000 .
ht ds).	Per cubic foot.	11	117.4	119.1	114.3 112.9 115.6	114.3	111.9 115.5 115.1	114.2	150. 2 144. 8 146. 7	147. 2 147. 5 147. 3		148.3 149.8 150.8	1.20 C
Weight (pounds)	Total.	9	940 960	950	910 900 920	910	920 940 940	933	1,220 1,170 1,170	1,187	1, 207	1,160	1,600
beam	eb.	6	===	1	===		11,11		****	113	8	10g 114 11 13	-
ions of	Section.	œ	8 8 X	,	00 00 00		တ်တွဲတွဲတွဲ	:	8748 8748 8	88.8	,	8 8 8	
Dimensions of beam (inches).	Length in ex- cess of 13 feet.	7	O minori	o	1300-161-144		-4cs -4-4roto		-401 calco soleto	10/10-HC1-H		-K1000-14	
	Consist- ency.	9	Wet	}	Med do		Damp.		Wet do	Med		Damp. do	
	Wa- ter (per cent).	ī.	22.22		20.02 4 4 4		19.00	:	666	1,000 6,44		000	-
lon.	Weight.	4	1:2. 02:2. 38	i :	1:2. 02:2. 38 1:2. 07:2. 54 1:2. 07:2. 54		1:2. 01:2. 44 1:2. 01:2. 44 1:2. 01:2. 44		1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	1:2.01:3.80		1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	
Proport	Volume.	66	1:2:5.06	3	$1:2:5.06 \\ 1:2.06:5.40 \\ 1:2.06:5.40$		1:2:5.19 1:2:5.19 1:2:5.19		1:2:4	1:2:4		1:2:4 1:2:4 1:2:4	
	Aggregate.	63	Cinder		dodo	-	op op	-	Granitedo	do do		op op	
	Register No.	1	18	Average	28 28	Average	37 38	Average	53. 54.	Average 5164	Average	72	agrianv

12 :8	:	16 1	15	: 1	• 9	0	:	∞ ı	c, vo	:	9	ನ್ಟ	:	rO n	15	:
396	391	477	425	451	4 4	437	426	473	396	422	463	484 486	458	581	491	537
66.00	65. 22	79. 46 75. 39			69.07		70.97		8.8 8.8 8.8	70.36		81.08 84.08	76. 28		81.86 86.86	89.61
20. 13	20. 27	20.34			38 38 38		20.38	20.75	19. 53	20.02		21.32	20.84		20.58	20.56
45.87	44.95	59. 12 55. 97			8. 25.	52.20	50.58	86.	46. 14 46. 14	50.34		49. 77 59. 72	55.44		61.28	69. 05
1,850	1,830	2,420	S)	ວາົດ	2,010	C)	2,037		1,990	2, 130	2,390	2,2,5	2,270		, c, 88	2,830
52.9	49.7	50.5		49. 2	47.3	41.8	46.0	47. 7	50.9	50.6	51.4	49. I	50.6	52.6	48 0 0	48.7
960000	. 000092	. 000095	. 000100	. 000095	. 000082	000100	. 000093	. 000119	. 000101	. 000101	. 000127	. 000114	. 000117	. 000125	. 000142	. 000134
66.00	62. 79	69. 6 9 67. 16	70.83	69. 23	59.37	62. 68	61.03	69. 16	56.65 56.52 56.52	64.03	77. 13	21. 20.7 20.00	72.63	87.32	. 65 6. 66 6. 68	82. 54
. 000028	. 000027	. 000025	. 000023	. 000025	. 000021	. 000035	. 000026	. 000032	. 000023	. 000027	. 000028	.000028	620000	. 000026	.000038	. 000030
139. 5	141.1	142. 4 137. 8			142.9		140.9	145.0	142.0	142.0	143. 2	145. 1	145.7	144. 2	143.5	143.6
1,110	1,130	1,140	1, 160	1, 143	1,150	1,110	1, 123	1,170	1,150	1, 163	1,170	1,170	1,170	1,170	1,150	1,153
11	:	118	1018	:	11	1013	:	1114	1113		1113	11 14 11		1113	P111.	
8		745 84	8 14 8	: •	0 00	813		81g	Σ ∞	:	878	735		000	0 00	
-44-44-44	<u> </u>	10100-4	1-44	-	K1 -44	tcı	-	m)so.	Opp-4.79		H21	aloc volco		iojide	100-404	
Wet	-	Med	do		do .	op	<u> </u>	Wet	- do		Med	- do	:	Samp.		
9.99	i	99	0	1		7.6	<u> </u>	000		:	0	10.0	-	4	€ 00 4 4	
1:2 01:4 10 1:2 01:4 10 1:2 01:4 10	:	1:2 01:4 10	01:4		1:2, 01:4, 10	01:4		01:3	1:2 01:3 91	:	01:3	1:2.01:3.91	:	01:3	1:2 01:3 91	
1:2:4		1:2:4	1:2:4		1:2:4	1:2:4	<u> </u>	1:2:4	1:2:4		1:2:4	1:2:4		1:2:4	1:2:4	
Gravel do		dodo	qo		do	qo		Limestone.	qo		do	do		do	op.	
889 a.	Average	100	102	Average	113	115	Average	128	130	Average	141	143	Average	150	152	Average

a Accidentally broken before test.

Table 8.—Tests of 13-foot concrete beams of constant 12-foot span—Continued.

TESTED AT THIRTEEN WEEKS.

[# 8 [설립소 _리	<u>.</u>	15	12 :	2008	:	15 3	:	16 6 6	:	8124	٠:	91 0 0	:
Dis-					:	:	•			:		:		_:
1	rup- ture 6M.	pd ²	230	243	271 203 219	231	224 236 216	225	463 534 507	. 501	498 574 536	536	575 610 588	591
	$\begin{array}{c} \text{mum} \\ \text{total} \\ \hline \mathbf{M} \\ \overline{\mathbf{bd}^2} \\ \text{(cen-} \end{array}$	ter).	38. 32 41. 33	40.44	45, 12 33, 86 36, 51	38.50	37. 28 39. 39 35. 99	37.55	77. 17 89. 08 84. 50	83.58	83. 07 95. 64 89. 38	89.36	95.85 101.65 98.08	98. 53
Own	$\begin{array}{c} + \\ \text{defor-} \\ \text{meters} \\ \overline{\text{M}} \\ \underline{\text{bd}}^{2} \end{array}$	(cen- ter).	16.99 16.85	16.68 16.84	16. 51 16. 70 16. 55	16.59	16.35 16.85 16.87	16.69	21. 18 21. 42 21. 25	21.28	20. 73 21. 44 19. 70	20.62	20.82 20.78 20.51	20.70
Maximum applied.	M bd 2 (cen-	ter).	21.33	23.76	28. 61 17. 16 19. 96	21.91	20. 93 22. 54 19. 12	20.86	55.99 67.66 63.25	62.30	62.34 74.20 69.68	68.74	75.03 80.87 77.57	77.82
Maxi	Load.	16	890 1,010	08 08 08	1,180 700 830	- 603	880 280 280 280	867	2,310 2,760 2,600	2, 557	2,710 3,120 3,140	2,990	3, 050 3, 400 3, 200	3, 217
ers.	Posi- tion neu-	axis.	47.8	37.4	37.6 36.9 35.4	36.6	38.8	36.0	52.6 48.3 44.1	48.3	50.0 45.7 48.8	48.2	44.0 43.7 47.1	44.9
Final deformeters.	Unit elonga- tion, lower	outer fiber.	0.000142	. 000275	. 000284 . 000293 . 000287	.000288	. 000238 . 000320 . 000292	. 000283	.000078 .000129 .000131	.000113	.000096	. 000109	.000160 .000162 .000155	. 000159
Final	M bd ²	13	36. 16 36. 72	36. S0 36. 56	41. 72 32. 39 36. 51	36.87	35. 63 36. 72 32. 32	34.89	68.69 89.08 78.66	78.81	74. 10 86. 12 80. 50	80.24	89.70 95.94 98.08	94. 57
Unit	lower lower outer fi- ber (own weight	+ delor- meters).	0.000042	. 000066	.000051	.000061	.000062 .000073 .000091	.000075	.000023	.000026	.000023	. 000023	.000032	. 000027
ht ds).	Per cubic foot		118.4	115.3 116.8	114.2 114.8 114.8	114.5	114.3 116.8 115.9	115.7	149. 1 149. 7 148. 7	149.2	149.2 151.9 145.0	148.7	144. 5 146. 9 143. 9	145.1
Weight (pounds)	Total.	01	960	930	026 026 036 036	923	940 940 930	937	1,200 1,200 1,200	1,200	1,240 1,240 1,220	1,233	1, 160 1, 200 1, 160	1,173
beam	Section.	e e	111	113			11111	•	11 8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	1111 1111 1111		11.3	- <u>- </u>
ions of nches).	Sect	00	∞ ∞	∞	∞ ∞ ∞ 		8 8 8 A	:	& & &	-	8 8 5 4 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5	:	873 876 8	
Dimensions of beam (inches).	Length in ex- cess of		1000-101	arka	color-los rotas		rajoo-4+rajoo	. :	-44-464000		nokom)zembo		op-rot-atc.	
	Con- sist- ency.	9	1 ' ;	op	Med do	:	Damp. do		Wet do		Meddo		Damp.	
	Wa- ter (per cent).	re	22. 15	22.0	21. 4 21. 0 20. 0	:	19.0 19.0 18.9		8.7 9.0	:	0,00 0,00 0,00	:	6.9	-
on.	Weight.	4	1:2. 02:2. 29	02:2.	1:2. 02:2. 41 1:2. 01:2. 45 1:2. 01:2. 45	- :	1:2.01:2.44 1:2.01:2.44 1:2.01:2.44		1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82		1:2.01:3.82 1:2.01:3.82 1:2.01:3.78		1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	
Proporti	Volume.	cc	1:2:4.86	1:2:4.79	1:2:5.13 1:2:5.21 1:2:5.21		1:2:5.19 1:2:5.19 1:2:5.19		1:2:4 1:2:4 1:2:4		1:2:4 1:2:4 1:2:3.97		1:2:4 1:2:4 1:2:4	-
	Aggregate.	. 62	Cinders	qo	Cinders		Cinders		Granite		Granite		Granite	Average
	Register No.	-	85	9		Average		Average		Average	68 69 70	Average		Average

977 111	42862	24 3 4	10 19	10	12 22 15
399 336 404 380	472 481 477	492 488 515	451 471 487	5267	523 492 548 548
66. 51 55. 94 67. 39		82.06 81.37 84.15		89.35 94.44 90.44	
19. 78 20. 98 20. 22		20.35 21.05 20.68			
46. 73 34. 96 47. 17		61.71 63.69 63.10			
1, 990		64,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	2, 260 2, 760 2, 400 473		
52.6 54.1 46.6	266 -	45.5 46.0 6.0	- 0992	949 2	നായസ 4
.000062	.000112	.000132	.000096	.000124	.000155 .000136 .000143
57. 17 50. 74 57. 91		80.81 81.37 73.80			
. 000023	. 000021 . 000024 . 000021	.000025	. 000028 . 000026 . 000024	.000026	.000026 .000032 .000034
141.9 145.2 143.7		142.7 145.0 144.1	147. 6 147. 7 146. 6	143.5 146.4 146.1	
1,160	1,170 1,150 1,140 1,140	1, 140 1, 150 1, 120 1, 120	1,130	1,150	1,150 1,150 1,160 1,153
113	10 11 11 11 11 12	1015 1015 1015 1018	#11 #11	1115	107 1046 1016
745 8 8	818 877 748	818 8 718	8 718	73.58	8 7116 8
-teu-tonio	-स्थलक-स्व	444444	-400/4-44	-ter-teres	najtro najtro najtro
Wet	Med do	Damp.	Wetdo	Med do	Damp. do . do .
9.0	0.00	7.6 8.0 8.1	11.0	10.4 10.4 10.0	80 80 80 4 4 4
1:2, 01:4, 10 1:2, 01:4, 10 1:2, 01:4, 10	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2, 01:4, 10 1:2, 01:4, 10 1:2, 01:4, 10	1:2, 01:3, 91 1:2, 01:3, 91 1:2, 01:3, 91	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1.2.01.3.91 1.2.01.3.91 1.2.01.3.91
1:2:4	1:2:4 1:2:4 1:2:4	1:2:4	1.2:4 1.2:4 1.2:4	1.2:4	1.2:4 1.2:4 1.2:4
92	103 Gravel 104 do:	Graveldo	Limestonedodo	126. Limestone 1.2:4 127. do. 1.2:4 140. do. 1.2:4 A vorage	153. Limestone 154. do 155. do do
Α το το σο	33 134 15	116 117 A vorage	0	6	erage

Table 8.—Tests of 13-foot concrete beams of constant 12-foot span—Continued.

TESTED AT TWENTY-SIX WEEKS.

										٠				
Dis- tance	or break from cen- ter (inch- es).	21	11.5	:	01 4:		იბ.4		었야드		8,15,8	:	119 15 4	
Mod-	of of rup- ture 6M bd2	02	242 242 248	246	310 276 245	277	257 247 245	250	522 557 a 310	539	554 596 547	566	631 607 616	618
Maxi-	mum total M bd² (cen- ter).	19	41.27 40.40 41.34	41.00	51. 73 45. 93 40. 78	46.15	2.1.8 81.8	41.60	86.94 92.76 a51.60	89.85	92. 27 99. 30 91. 24	94.27	105. 25 101. 20 102. 71	103.05
Own weight	+ defor- meters M bd 2 (cen- ter).	18	16.26 15.31 15.32	16.12	16. 43 16. 26 16. 26	16.32	15. 45 15. 91 15. 62	15.66	19. 42 20. 84 20. 68	20.31	20. 11 20. 68 20. 13	20.31	20. 41 20. 33 19. 85	20.20
<u> </u>	M n pd 2 (cen-ter).	17	25. 01 24. 09 25. 54	24.88	35.30 29.67 24.52	29.83	27.35 25.21 25.26	25.94	67.52 71.92 130.92	69. 72	72. 16 78. 62 71. 11	73.96	84.84 80.87 82.86	82.86
Maximum applied.	Load.	16	1,020 950 1,050	1,007	1, 440 1, 210 1, 000	1,217	1,150 1,040 1,050	1,080	3,000 3,000 1,300	3,000	3, 170 3, 280 3, 000	3, 150	3,350 3,350 3,000 3,000	3, 493
irs.	Posi- tion neu- tral	15	44. 0 47. 9 42. 6	44.8	42.9 43.9 4.0 5.0	40.1	40.8 38.2 38.5	39.5	45.8 3,000 47.1 3,000 a 48.5 a1,300	46.4	48. 1 44. 3 46. 5	46.3	44.4.6.9 2.4.4.8.3	45.1
Final deformeters	Unit elonga- tion, lower outer fiber.	14	0.000216 .000146 .000186	. 000183	. 000249 . 000180 . 000371	. 000267	. 000265	. 000277	. 000132 . 000137 a. 000060	. 000134	.000114	. 000132	.000161	. 000158
Final	M bd² total).	13	40. 78 36. 60 40. 13	39.17	51. 73 42. 00 40. 78	44.84	39. 23 40. 15 39. 67	39.68	86.94 .92.76 a 44.47	89.82	88.39 92.60 91.24	90.74	105. 25 92. 74 99. 76	99. 25
Unit elonga-	tion, lower outer fi- ber (own weight + defor- meters).	12	0.000045 .000045 .000047	. 000046	.000041	. 000045	. 000049	. 000048	. 000021	. 000021	. 000021	. 000022	000019	. 000021
ht ds).	Per cubic foot.	11	115.9 114.2 112.8	114.3	117.2 116.0 116.1	116.4	111.3 114.0 111.8	112. 4	145.2 151.9 150.3	149.1	149. 4 150. 5 147. 0	149.0	147. 5 146. 1 146. 9	146.8
Weight (pounds)	Total.	10	930 900 910	913	940 930 930	933	910 920 910	913	1,220 1,230 1,230	1,227	1,250 1,220 1,200	1,223	1, 190 1, 190 1, 230	1,203
beam	deb.	6	11 4 10 4 11 4 11 4 11 4 11 4 11 4 11 4		1111		1113 1118 113	:	11½ 11¼ 11¼ 11¼	:	11.3		######################################	
isions of (inches).	Section Wide. De	œ	& & & & & & & & & & & & & & & & & & &	-	∞ ∞ ∞		818 8 818	:	8.16 8.16 8.16	:	8 8 8 4 4 8	:	& & &	
Dimensions of beam (inches).	Length in ex- cess of 13 feet.	2	nato-kvento		napo-ilercatos	:	rotorotorot-e		edecules of 4		대 국 -(21대 4		to)to odos odos	
	Consist- ency.	9	Wet do		Med do		Damp. do		Wetdo		Meddo		Damp. do	
	Wa- ter (per cent).	70	22.22 4 4 4 1.33	÷	21.7	:	19.0		000	:	8.8.8. 044	:	7.0	
ortion.	Weight.	+	1:2. 02:2. 25 1:2. 02:2. 25 1:2. 02:2. 38		1:2. 02:2. 25 1:2. 02:2. 25 1:2. 01:2. 45	.,	1:2. 01:2. 44 1:2. 01:2. 44 1:2. 01:2. 44		1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82		1:2. 01:3. 78 1:2. 01:3. 82 1:2. 01:3. 82		1:2.01:3.82 1:2.01:3.82 1:2.01:3.82	
Proporti	Volume.	co	1:2:4.79 1:2:4.79 1:2:5.06	-	1:2:4. 79 1:2:4. 79 1:2:5. 21	7	1:2:5.19 1:2:5.19 1:2:5.19		1:2:4		1:2:3.97 1:2:4 1:2:4		1:2:4	
-	Aggregate.	61	Cinderdo		Cinder do		Cinder do		Granite do:		Granite do		Granite	Average
	Register No.	1	12. 15.	Average	5. 6. 35.	Average	43. 44.	Average	59 60	Average	71. 74. 75.	Average	82. 83.	Average

14 14	4-	14		:	30 14	:	9 18 23	į	$^{21}_{1}$:
449 395 461	545 514 514	501	527 465 a 333	496	. a 331 475	507	549 553 597	566	273 595	589
	90.90 85.74		87.85 77.58 55.54	82. 72	90.00 79.22 22.03	84.61	91. 54 92. 09 99. 43	94.35	97. 22 45. 48 99. 17	98. 20
	18.88 8.88 8.88		19.94 19.72 19.87	19.84	20.25 19.81 19.96	20.01	19.94 20.18 19.74	19.95	20. 51 20. 89 20. 13	20.51
	53. 68 71. 10 86. 94		67. 91 57. 86 a 35. 67	65.89	69.75 35.28 59.26	64.51	71. 60 71. 91 79. 69	74.40	76. 71 24. 59 79. 04	77.88
	2, 9,9 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8		2, 750 2, 370 a1, 450	2,560	2,900 2,500 2,500	2, 700	დ. დ. დ. 000 ф 000 ф	3, 133	3,200 3,360	3, 280
53.2 48.0	50. 1 47. 5 47. 7	47.5	50.0 47.8 a 45.5	48.9	49.2 a 48.9 44.7	46.9	53.0 49.4 50.0	50.8	45.0.2 8.88.8	47.5
. 000099	.000088	.000109	. 000102 . 000103 a . 000062	. 000102	a.000111 0.000081 0.000125	. 000118	. 000119 . 000131 . 000109	. 000120	α.000144 0.000049 000111	. 000127
	68. 73 81. 10 76. 50		81. 68 68. 54 44. 47	75.11	25.09 79.22	79.80	91. 54 92. 09 90. 07	91.23	92. 42 45. 48 90. 70	91.56
. 000021	. 000026	. 000019	.000023	. 000022	. 000021	. 000023	. 000021 . 000026 . 000021	. 000023	. 000026	. 000023
136. 4 139. 0 140. 5	138.6 142.1 138.0	142. 7 140. 9	141. 5 140. 7 141. 8	141.3	146. 4 144. 5 145. 8	145.6	144. 0 146. 7 145. 1	145.3	149. 2 149. 4 147. 3	148.6
1,150 1,140 1,170	1, 153 1, 140 1, 150	1,160	1,140 1,140 1,140	1,140	1,190 1,190 1,190	1, 190	1,180 1,190 1,190	1, 187	1,210 1,200 1,210	1,207
117 115 116 116	: ,0,1	- ·	10/20	- -			cda,cda		ko	
	11 to	= :	2==	į	###	;	113年113年113年113年113年113年113年113年113年113	:	11.18 11.18	
	<u>:</u>		10}8 11 11 11.			<u>:</u>				
	× 55	S _r s			\$ & &		హే చేస్తో అంత		8 8 1.8 8 1.8 8 1.6	
	<u>:</u>	S _r s								
	00 00	orates CO			\$ & &		nateratorismo		8 8 1.8 8 1.8 8 1.6	
et 88 88 84 do 24 88	× 55	O do S _T	mememe Sec. 30. 30.		00 00 00 00 00 00 00 00 00 00 00 00 00		హే చేస్తో అంత		88 -4:1-4:1	
9 Wet \$ 84 8 8 8 9do \$ 9do	1 Med \$ 8	01:4.10 9.0do § 8.7.	1 Damp. \$\frac{4}{8}\$ \$\frac{8}{8}\$ \$\frac{8}{1}\$ \$\frac{6}{1}\$ \$6		0 Wet \$ 5.16 0do \$ 8.16 0do		0 Med \$ 85 0do \$ 8 0do \$ 8		6 Damp. \$ 8 6do \$ 81 6do \$ 81 6do	
01:4.10 9.9 Wet \$\frac{8}{4} \ 8\frac{8}{4} \ 01:4.10 9.9 \dots 0.00 \dots 0.9 \dots 0.00 \dots \frac{8}{4} \ 8\frac{8}{4} \dots \frac{8}{4} \dots	01:4.10 9.1 Med § 84 84 84 84	1:2.01:4.10 9.0 dodo	01:4.10 8.1 Damp. \$\frac{4}{5}\$ 8\frac{4}{5}\$ 01:4.10 8.1do \$\frac{4}{5}\$ 8\frac{4}{5}\$ 01:4.10 8.1do \$\frac{4}{5}\$ 8\frac{4}{5}\$		01:3.91 11.0 Wet \$ 848 01:3.91 11.0do \$ 848 01:3.91 11.0do \$ 8 848 848 848 848 848 848 848 848 848		01:3.91 10.0 Med \$ 8\frac{1}{8} 8 01:3.91 10.0do \$ 8 8		01:3.91 8.6 Damp. 8 8.74 01:3.91 8.6do 9 8.74 01:3.91 8.6do 9 8.74	
Gravel 1:2:4 1:2.01:4.10 9.9 Wet \$ 84 85 85 85 85 85 85 85 85 85 85 85 85 85	1:2.01:4.10 9.1 Med. § 8 1:2.01:4.10 9.1 do.	1:2:4 1:2:01:4:10 9:0 dodo	1:2.01:4.10 8.1 Damp. 8 84 1:2.01:4.10 8.1do 8 84 1:2.01:4.10 8.1do 8 845	Average	1:2.01:3.91 11.0 Wet 845 12.01:3.91 11.0do 845 17.01:3.91 11.0do 845	Average	1.2. 01:3. 91 10.0 Med \$ \$\frac{1}{8}\$ 1:2. 01:3. 91 10.0 \dots	Average	1:2.01:3.91 8.6 Damp. \$ 84.1:2.01:3.91 8.6do \$ 84.1:2.01:3.91 8.6do \$ 84.1:2.01:3.91	А verage

a Not included in average.

Table 9.—Tests of concrete beams of variable span.

TESTED AT FOUR WEEKS.

Constraint Section Span Span Fee Market Fee Fee Market Fee Fee Market Fee Fee Fee Market Fee Fee Fee Market Fee
Ft. In. Wide. Deep. Total. Cubic. 7 8 9 10 11 12 13 9 7 8 th 11 9 693 117.4 6 8 8 11 6 508 120.5 6 8 11 6 467 114.3 6 9 84 11 6 467 114.3 6 6 84 11 6 467 114.3 7 7 8 114 646 115.5 7 7 8 114 646 116.9 7 7 8 114 646 116.9 8 114 646 116.1 114.8 9 8 114 646 116.1 1 8 114 646 114.8 1 8 114 656 144.8 1 8 114 656 144.
7 8 9 10 11 12 13 6 10 8 % 11 6 568 117.4 6 8 11 7 542 119.3 6 8 11 6 460 112.9 6 9 84 11 6 470 114.3 6 6 84 11 6 478 115.6 7 7 8 114 74 578 115.5 7 7 7 8 114 64 506 115.1 8 8 114 64 506 114.2 144.9 7 7 7 8 114 6 586 144.9 8 8 114 6 586 144.5 7 8 8 114 7 777 153.8 11 8 6 66 66 66 1
9 7 8 Th 11 9 683 117.4 6 8 8 111 6 568 119.3 6 9 8 11 6 467 114.3 6 9 8 11 6 470 112.9 8 0 8 11 6 470 112.9 8 0 8 11 6 470 112.9 7 7 8 114 74 578 115.5 7 7 8 114 64 60 111.9 6 6 8 114 64 650 114.2 7 7 8 11 64 650 144.8 8 8 11 64 650 650 144.8 8 11 64 656 650 145.7 153.8 8 11 66 650 145.7
6 6 8 8 111 6 457 114.3 6 9 84 111 6 458 115.0 6 9 84 111 6 478 115.0 7 8 111, 6 478 115.0 8 111, 6 478 115.0 114.3 7 7 7 8 111, 6 48 115.1 7 7 7 8 111, 6 48 115.1 7 7 7 8 111, 6 48 115.1 8 8 111, 6 58 144.9 8 8 111, 6 58 144.9 8 8 111, 6 58 144.9 8 8 111, 6 58 145.7 7 8 8 111, 6 58 145.7 8 8 11, 6 6 68 147.3 8 8 10, 6 6 639 147.2
6 8 8 111 6 467 114.3 6 9 88 111 6 4480 115.2 6 6 88 111 6 4480 115.2 7 0 88 111, 6 480 111.9 8 11, 4 7, 5 58 115.5 7 7 7 88 111, 6 6, 586 144.9 6 6 8 7 11, 6 6, 586 144.9 8 7 8 11, 6 6, 586 144.9 8 8 10, 6 6, 686 147.3 8 1 8 8 11, 6 6, 686 147.5 7 8 8 11, 6 6, 686 147.5 8 8 10, 6 6, 689 147.7 8 8 11, 6 6, 689 147.7 8 8 10, 6 6, 689 147.7
6 84 11 6 6 6 11.9 114.3 8 8 114 6 6 6 6 11.9 114.9 8 114.9 6 6 6 6 115.5 114.9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 84 111 6 460 111.5 5 115.5 5
7 8, 114 64 650 144.9 6 8 74 114 64 650 144.9 0 8 114 7 7 7 115.3 1 8 114 7 7 7 115.3 1 8 114 6 650 147.2 2 8 8 114 6 650 147.2 8 8 114 6 650 147.2
7 8-15, 114 64, 712 150.2 6 8 114 64, 585 144.8 11 65, 585 144.9 12 8-114 7 732 145.7 1 8-114 7 771 153.8 1 8-104 64, 656 147.3 1 8-8 110 64, 659 147.8
2 8 11 6 69 147. 3 2 8 10 64 650 147. 3 1 8 10 64 650 147. 3 1 148.9
2 8 10 ² 6 ² 639 147. 2 8 8 11 6 626 149. 8
2 8 11 ₇ % 6½ 673 150.8

				•							
16 6 6	:	8 17 16	:	14 2 2 3		7 19 3	:	15 9.	:	14 9 16	
375 355 355	362	491 424	421	408 408 537	448	431 456 409	432	479 479 472	477	571 531 494	532
62. 52 59. 17 59. 09	60.26	81.76 57.88 70.66	70.10	66.75 67.98 89.48	74. 74	71. 80 75. 93 68. 13	71.95	79.87 79.89 78.65	79.47	95. 16 88. 57 82. 29	88.67
6.73 6.65 5.87		6. 39 6. 85 6. 85	:	5.71 6.00 4.91		5.96 4.82 79	:	5.99 6.91 5.11		4. 97 5. 17 7. 00	
55. 79 52. 52 53. 22	:	75.17 53.10 63.86		61.04 61.98 84.57	-	65.84 71.11 63.34	:	73.88 72.98 73.54		90. 19 83. 40 75. 24	
6,000		8,390 9,000 7,000		8,000 8,000 11,000		8, 660 12, 000 10, 930		9,720 8,000 12,000		15,000 13,000 8,000	
44.8 42.6 47.7	45.0	44.1 45.5 39.1	42.9	43.6 46.1 40.0	42.6	50.0 49.1 43.2	47.4	47.3 50.0 42.7	46.7	44. 5 45. 0 46. 8	45.4
. 0000073	920000.	.000097	.000094	.000114	611000	.000101	901000.	. 000130 . 000102 . 000145	.000126	.000138 .000145 .000120	. 000134
46. 49 52. 52 45. 62		62. 72 53. 10 63. 86		61. 04 61. 98 84. 57	:	60.82 71.11 57.96	:	68. 42 63. 86 73. 54	:	84. 18 83. 40 65. 84	
139. 5 142. 3 142. 6	141.5	142.4 137.8 145.5	141.9	139.3 142.9 140.6	140.9	145. 0 139. 1 142. 0	142.0	143. 2 146. 1 147. 8	145.7	144. 2 143. 2 143. 5	143.6
640 700 634		687 572 692		605 619 555	:	645 612 623	:	630 698 608	:	623 607 686	
7 7 61	:	191	:	£\$0°0	:	2 00	:	7.79		400	
117				===		1114 1114 1133		11 4 11 14 14 14 14 14 14 14 14 14 14 14		101音	
8 8 8 8 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1		20.00.00	:	28,8 8 1.	:	- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	:	818 818 818	:	s s	
968		01 7 9		109		1112	-	000	:	1116	
	:	r ₉ r	:	9	-	7 9	:	7 9	:	991-	
Wet	:	Med do	:	Damp do		Wet do		Med do		Damp do	
9.50	:	88.6 9.0	:	7.6		10.8 10.8 11.0		10.0	:	00.00.00 4.4.4	
1:2.01:4.10 1:2.01:4.10 1:2.01:4.10		1:2.01:4.10 1:2.01:4.10 1:2.01:4.10		1:2.01:4.10 1:2.01:4.10 1:2.01:4.10		1:2.01:3.91 1:2.01:3.91 1:2.01:3.91		1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	· · · · · · · · · · · · · · · · · · ·	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	
1:2:4		1:2:4		1:2:4		1:2:4		1:2:4		1:2:4	
Gravel do		Gravel do		Gravel do		Limestone do		Limestonedo		Limestone do	
888.	Average	100 101 102	Average	112. 113.	Average	128 129 130	Average	141 142	Average	150 151 152	Average

Table 9.—Tests of concrete beams of variable span—Continued.

τń
WEEKS
ΕÌ
Ξ
⋛
THIRTEEN
Ħ
Η
<u> </u>
Ξ
Η
4
ΥT
9
TESTED A
H.
Ω
H
Н

•										
4.00	 21 15		8 8 9 9		23 14 16		400	:	17 3 18	
341 459 439	413 489 484 477	£8;	476 512 508	499	507 540 485	510	514 534 512	520	510 507 484	201
	68.85 81.43 80.68		79.40 85.36 84.65	83.14	84. 47 89. 95 80. 79	85.07	85.70 89.00 85.25	86.65	85.04 84.52 80.73	83.43
5.71 8.95 5.83	7.05	3	5.01 5.06 9.05	:	5.12 5.96 7.91		$\frac{5.12}{5.11}$ $\frac{5.12}{5.82}$		6.06 7.99 6.93	
51. 12 67. 52 67. 41	74.38	3	74.39 80.30 75.60		79.35 83.99 72.88		80.58 83.89 79.43	:	78.98 76.53 73.80	
7,000 5,570 9,000	8,000		12,000 13,000 5,960		13,000 11,000 6,950		13,000 14,000 10,640		10,000 7,000 8,000	
48.0 48.9 48.9	8.7.8 2.8.7.4 2.4.1	45.2	88.84 8.60 4.60	45.0	49.5 46.2 46.1	47.3	51.8 48.3 50.0	50.0	44.8 47.6	45.0
.000067	.000079	901000.	.000159	.000112	.000101	.000106	.000113	.000115	.000147	.000132
51.12 60.60 59.92	74.38 67.41 74.38	3	68. 19 74. 12 63. 42		73.24 83.99 62.91		80.58 83.89 74.66	:	78.98 76.53 73.80	:
141.9 145.2 143.7	143.6 146.5 143.6	144.5	142.7 145.0 144.1	143.9	147. 6 147. 7 146. 6	147.3	143. 5 146. 4 146. 1	145.3	144. 0 146. 1 146. 3	145.5
758 668	634	3	599 597 732		633 660 734	-	575 623 660		649 737 692	-
5 85	7 65	:	ဖွေဖွ	- :	6 74 74 74		99	:	7.2	
11.8 11.8 11.8 11.3 11.3	11 11 11 11 11 11 11 11 11 11 11 11 11	1	11 111 104		11,3	-	11 1138 114		10 1 8	
715 8 8		,	8 715 8		88 715 8	:	8 8 715		27 Tab	:
200	00 61 00	3	0000	- <u>:</u>	1141	-	004	-	440	Ť
1.87		• :	99%	:	⊕ \~ &	:	9 2 2	:	1-01-	
Wet do	Med		Damp do	. :	Wet do		Med do do		Damp do	
9.9	9.0	3	8.0 8.1 8.1		11.0 11.0	:	10.4 10.0 10.0	:	88.8 444	
1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:4.10		1:2.01:4.10 1:2.01:4.10 1:2.01:4.10		1:2.01:3.91 1:2.01:3.91 1:2.01:3.91		1:2.01:3.91 1:2.01:3.91 1:2.01:3.91		1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	:
1:2:4	1:2:4		1:2:4		1:2:4		1:2:4		1:2:4 1:2:4 1:2:4	
Graveldo	Gravel		Gravel do		Limestonedo	:	Limestone do	:	Limestonedo	
91. 92. 93.	Average 103 104	Average.	116 117	Average.	131 132	Average.	126 127 140	Average.	153. 154. 155.	Average

Table 9.—Tests of concrete beams of variable span—Continued.

TESTED AT TWENTY-SIX WEEKS.

		Propo	ortion.			Dim	ension	Dimensions of beam	sam.		Weight (pounds).	ht is).	Final	Final deformeters	ers.	Maximum applied.		Own weight		-poM	Dis-
Register No.	Aggregate.			Wa- ter (per	Con- sis-	Length.	th.	Section (inches).	1 5	Span (ft.).		Per	×	Unit elonga-	Posi-			defor- meters M	mum total M	ulus of rup-	of break from
		Volume.	Weight.	cent).		Ft.	In.	Wide. Deep.	Seep.	<u> </u>	Total.	cubic foot. (bd² total).	lower lower outer fiber.	neu- tral axis.	Load.	(cen- ter).	bd ² (cen- ter).		Pd ²	ter (inch-
1	61	es	+	5	9	2	œ	6	10	11	15	13	14	15	16	17	18	61	50	13	. 22
12. 15.	Cinder do	1:2:4.79 1:2:4.79 1:2:5.06	1:2. 02:2. 25 1:2. 02:2. 25 1:2. 02:2. 38	22. 4 22. 4 21. 3	Wet	92-9	11 28	818 8 745	11 1/4 10 1/4 11	653	495 513 467	115.9 114.2 112.8	39. 52 35. 67 40. 60	0.000266	38.0 44.2 40.6	6, 670 6, 500 6, 500	40.60 40.60	4.4.4 4.80 11.1	44. 60 44. 43 44. 71	268 267 268	222
Average.				:		:	:		-	-		114.3		. 000232	40.9	` :			44. 58	268	:
5. 6. 35.	Cinder do	1:2:4.79 1:2:4.79 1:2:5.21	1:2, 02:2, 25 1:2, 02:2, 25 1:2, 01:2, 45	21.7 21.7 20.0	Med do	r 1 9	0 4 0	8 1 8 1 8 8 1 6	1113	6 6 6	506 525 489	117.2 116.0 116.1	48. 31 38. 44 34. 10	.000232	43.5 40.9 40.4	6, 500 5, 500 6, 600	48. 31 42. 28 34. 71	4.82	53.06 47.10 38.84	318 283 233	. 11 9 24
Average				<u>:</u>				-	<u> </u>	-	-	116.4	:	.000212	42.3				46.33	278	
43. 45.	Cinder do	1:2:5.19 1:2:5.19 1:2:5.19	1:2. 01:2. 44 1:2. 01:2. 44 1:2. 01:2. 44	19.0 19.0 18.5	Damp do	229	000	చాచాచా	11 15 11 18 11 15	663	490 495 478	111.3	41. 48 37. 29 39. 22	. 000327 . 000264 . 000290	39.0 39.2 38.1	5, 600 5, 350 6, 500	42. 24 39. 90 39. 22	4. 68 4. 67 3. 94	46. 92 44. 57 43. 16	282 267 259	17 3 14
Average		:					•	-	:			112.4	:	.000294	38.8			:	44.88	569	
59 60 61	Granite do	1:2:4 1:2:4 1:2:4	1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	0.89.0	Wet do	ထပ္	461	2017 2017 2017 2017 2017 2017 2017 2017	11 16 11 76 11 16	7½ 6 6	782 639 623	145.2 151.9 150.3	81. 42 81. 56 78. 78	.000124	47.8 46.4 45.8	8,000 14,950 13,550	81. 42 87. 09 82. 11	7.87 5.09 5.33	89. 29 92. 18 87. 44	536 553 525	0 8 19
Average				:		:	-	i	-	-	- - -	149.1		.000120	46.7		:		89.64	538	:
71 Granite. 74do	Granite do	1:2:3.97 1:2:4 1:2:4	1:2. 01:3. 78 1:2. 01:3. 82 1:2. 01:3. 82	0,00,00 0.4.4	Med do	6.1.	0,00	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 76 11 76 11 76 11 76	6 7 6	689 727 615	149. 4 150. 5 147. 0	85.36 89.18 83.90	000112	48.0 45.0 44.5	12,000 10,000 14,000	85.36 89.18 83.90	5. 95 7. 02 5. 12	91.31 96.20 89.02	548 577 534	25 25 25 25 25
Average						:	-	-			:	149.0		.000125	45.8	:		:	92.18	553	:
82	Granite do	1:2:4	1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	7.0	Damp.	œ1-9	10	80.80 20.80	1113	7. 7. 6	740 709 647	147. 5 146. 1 146. 9	85. 13 80. 56 87. 22	000123 000123 000132	47.1 42.8 45.8	8,900 10,000 15,550	94. 70 89. 50 90. 42	8.09 5.08 5.06	102. 79 96. 28 95. 48	617 578 573	16 7 16
Average	Average.						_	-	-		_	146.8	_	.000126	45.2	_	-		98. 22	589	;

9410	17 16 5	8 8 2 4	4 14 6	9 16 6	21 0 14
504 461 403 436	471 551 473	501 467 528	464 480 521	488 577 551 534	577 603 616 632
84.07 76.82 67.16	78. 51 91. 88 78. 84		25. 14 77. 27 79. 99 86. 85	81.37 96.13 91.88 89.07	
6. 43 6. 50 6. 57	4.96 5.10 6.84	5.03 5.00 5.79	5. 12 8.87 6.85	5.93 7.98 7.66	5. 23 7. 86 5. 20
77. 64 70. 32 60. 59	73.55 86.78 72.00	72.50 82.22 22.22	72.15 71.12 80.00	90. 20 83. 90 81. 41	90. 90 92. 61 97. 41
9,000 8,000 7,000	12,000 14,000 7,920	12, 620 11, 850 10, 900	12,000 6,000 9,000	12, 000 8, 000 8, 000	15,000 9,000 16,200
51.9 48.2 43.5 47.9		6.64 6.04 7.00 6.00 6.00	50.5 49.1 48.3	49.3 47.1 51.6	
.000087	.000094	. 000105 . 000119 . 000119	. 000100 . 000092 . 000105	.000099	. 000127 . 000128 . 000137 . 000131
69. 02 70. 32 60. 59	67. 42 80. 58 63. 63	74. 65 67. 65 75. 43	66. 14 59. 26 71. 11	82. 68 73. 41 81. 41	84. 84 92. 61 97. 41
136. 4 139. 0 140. 5	142.1 138.0 142.7	141.5 140.7 141.8	146.4 144.5 145.8	145.6 144.0 146.7 145.1	149. 2 149. 4 147. 3 148. 6
678 672 690	599 582 684	599 592 636	603 824 702	658 732 770	621 762 613
	9	<u> </u>	780	7227	. 6 77 6
113	11 16 11 18	1018 11 1118	######################################	1118 1113 1116 1116	**************************************
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	∞ ∞ ∞	25 SS	တ်ထထ	8.78 8.78 8.78	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
∞ ∞∞	10 7 8	01	807	800	4300
	6 7	9 2	90	- xx	989
Wetdo	Med do	Damp. do	Wetdo	Meddo	Damp. do
6 6 6 6 6	9.1	% % % % %	11.0	10.00	8.8
1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1:2.01:3.91 1:2.01;3.91 1:2.01:3.91
11:2:4	1.2:4 1.2:4 4.2:4	1.2:4 1.2:4 1.2:4	1.2:4 1.2:4 1.2:4	1.2:4 1.2:4 1.2:4	1.2:4 1.2:4 1.2:4
Gravel	Gravel do	Gravel do	Limestone do	Limestone do	Limestone Compared to the comp
9495	106 107	119 120 121 A voroge	134 135	Average 144	158. 259. 260. Average.

Table 10.—Compression tests of concrete cylinders and cubes accompanying beams.

TESTED AT FOUR WEEKS.

		Propo	roportion.					Cylin	Cylinders.				Cubes	, i		Stress
Ags	Aggregate.	, in the state of	Weight	Water (per	Consist- ency.	Dimensions (inches).	1	Weight (pounds	Maxi-	Initial	Range	Dimensions (inches).		Weight (pounds	Maxi- mum	ratio of cylin-
		A Olumbe.	weigne.	. (2)		Diam- eter.	Length.	cubic foot).	unit stress.	of elasticity.	linear values.	Base.	Height.	cubic foot).	unit stress.	to cubes.
	67	60	4	7.0	9	1-	œ	6	91	111	12	13	14	15	16	17
5 : :	Cinderdodo.	1:2:5.06 1:2:5.06 1:2:5.06	1:2.02:2.38 1:2.02:2.38 1:2.02:2.38	21.6 21.8 21.6	Wetdo	888	16.00 16.00 16.00		1,243 1,000 1,000	1,017,000 1,337,000 1,355,000	82.88	6.00×6.00 6.00×6.00 6.00×6.00	5.94 6.00		1,394 1,200 1,173	0.892 .833 .853
:5::	Cinder do	1:2:6:5.40 1:2.06:5.40 1:2.06:5.40	1:2.02:2.38 1:2.07:2.54 1:2.07:2.54	19.4 20.4 20.4	Meddodo	8.80	16.00 16.00 16.00		1,081 1,114 1,250 1,240	1, 236, 000 2, 020, 000 1, 000, 000 1, 035, 000	270 250 300	6.00×6.00 6.00×6.00 6.00×6.00	6.00 6.25 6.13		1, 256 1, 179 1, 093 1, 302	. 945 1. 144 952
: 5 : :	Cinderdodo	1:2:5.19 1:2:5.19 1:2:5.19	1:2. 01:2. 44 1:2. 01:2. 44 1:2. 01:2. 44	19.0 19.0 19.0	Dampdo	888	16.00		1,201	1,352,000 1,250,000 1,390,000 1,225,000	270 320 320 320 320	6.00×6.00 6.00×6.00 6.00×6.00	6. 13 6. 13 6. 13	· · · · · · · · · · · · · · · · · · ·	1, 191 1, 541 1, 394 1, 199	. 685 . 868 . 909
: ૩::	Granitedodo.	1.22.1	1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	9.0	Wetdo	8.8.8	16.00 16.00 16.00	149.3 146.6 150.4	2, 350 2, 350 2, 607 2, 683	1,28%,000 3,690,000 4,000,000	8820	6.00×6.00 6.00×6.00 6.00×6.00	6.00 6.13 6.13	144.0 146.0 148.9	3,318 3,151 3,000	. 932
:ਲ::	Granitedodo.	4:2:1	1:2.01:3.82 1:2.01:3.82 1:2.01:3.82	7.%% 6.4.4	Meddo	8.00 7.99 8.07	16.00 16.05 16.19			4, 640, 000 3, 510, 000 4, 640, 000 4, 640, 000	1,000	6.00×6.00 6.02×6.02 6.03×6.03	6.00 6.13 6.14		4, 063 4, 251 3, 954	. 982 . 765 . 809
. 🖰 : : :	Granitedo.	444	1:2.01:3.82 1:2.01:3.82 1:2.01:3.82	6.00 6.00 6.00	Dampdo	8.8.8 0.03 0.02	15.95 16.14 15.97			4,860,000 4,960,000 4,960,000	1,000 1,000 950	5. 98×5. 98 6. 03×6. 03 5. 99×5. 99	6.06 6.05 6.03		5,072 3,780 4,703	. 789 1. 058 . 851
	Graveldo	1:2:1 1:2:4 4:4 4:4	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	9.5	Wetdo	8. 02 7. 99 7. 99	16. 24 16. 11 16. 22	141.1 138.2 141.6	2,336 2,087 1,758 2,060	3,850,000 4,040,000 3,470,000 3,787,000	1,000 800 800 870	5. 98×5. 98 6. 02×6. 02 6. 04×6. 04	6.18 6.23 6.22		2, 757 2, 342 1, 799 2, 299	. 905

. 869 . 695 . 951	838	. 750	. 720	. 735	. 541	. 497 a 1. 684	. 519	1.471	. 803	1.005	.803	88.	0.20	
3,886 3,576 3,179	3, 547	4,581	4, 689	4,612	5,065	5,216 a 2,307	5, 141	2,644	2,965	2,975	3,948	4,760	4, 367	
142.1 146.1 142.2	143.5	142.9	144. 9	145.0	142.3	147. 1 145. 5	145.0	. 146.1	143.9	144.6	147.8	148.5	148.5	
6.12 6.14 6.16		6.09	6.02		6.16	6.14		6.12	6.14	:	6.07	90.9		
6, 02×6, 02 5, 97×5, 97 6, 02×6, 02		6. 02×6. 02	5. 97×5. 97		6.06×6.06	5.99×5.99 5.98×5.98		5. 98×5. 98 6.02×6.02	6.01×6.02	:	6.03×6.03	5. 98×5. 98		
1,500 1,500 1,500	1,500	1,000	1,400	1,200	006	1,300	1,130	90g	1,100	870	808	1,200	830	
46,620,000 3,900,000 3,850,000	3,875,000	4,640,000	3,730,000	4,070,000	466	3,890,000 3,415,000	3, 588, 000	3, 400, 000	3, 195, 000	3, 432, 000	4,025,000	4,025,000	4, 257, 000	
3,375 2,486 3,022	2,961	3,437	3,377	3,407	2,741	2,591 3,884	3,072	3,889	2,385	2,910	3,171	2,761	2,894	
142. 6 142. 7 142. 7	142.7	~ c	142.9	141.8	147.6	145.5 143.2	145.4	145.5	146.6	146.0	146.2	149.0	148.7	
16.09 16.18 16.18		16.04	16.08		16.02	16.07		16.11	16.04		16.22	16.12	:	
8.06 7.99 7.99		8.09	8.07			8 8 8 8		7.99	8.01		8.03			
Meddo		Damp			Wet	qo		Med	qo		Damp	q		
88.69 9.09 9.00		7.6	7.6		10.8	10.8		10.0	10.0		% 4.4	7		\ _
1:2.01:4.10 1:2.01:4.10 1:2.01:4.10		1:2.01:4.10	1:2.01:4.10		1:2.01:3.91	1:2.01:3.91 1:2.01:3.91		1:2.01:3.91	1:2.01:3.91		1:2.01:3.91	1:2.01:3.91		
1:2:4		1:2:4	1:2:4		1:2:4	1:2:4		1:2:4	1:2:4		1:2:4	1:2:4		
100	Average.	Gravel	115do	Average	Limestone	129do	Average.	Limestone	do		Limestone	op		
100.	Average.	720	-96	A Average	all	1.30	A verage.	O 141 Limestone 1:2:4	143	Average.	151	153	Average.	

a Not included in average.

Table 10.—Compression tests of concrete cylinders and cubes accompanying beams—Continued. TESTED AT THIRTEEN WEEKS.

Cylinders. Stress	Weight Maxi Initial Range (inches). (pounds mum modulus of	of linear Base Height fout; stress.	8 9 10 11 12 13 14 15 16 17	16.00 120.3 1,651 3,500,000 400 6.04×6.04 6.04 115.7 2,037 0.311 15.88 117.2 1,963 1,740,000 600 6.04×6.04 6.09 114.8 2,086 .941	111.9 1,678 2,730,000 300 6.02×6.03 6.01 115.8 1,923 116.5 1.764 2,657,000 430	118.7 1,830 3,120,000 400 6.07×6.07 6.04 112.6 1,687	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115.6 1,819 2,275,000 400 111.5 1,855 .999	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	470	16.10 146.6 3.528 4.840,000 1,300 6.04×6.05 6.27 145.2 4,779 738 16.15 144.9 3,197 3,690,000 1,200 6.05×6.07 6.25 145.0 4,954 645 16.00 146.7 3,805 4,320,000 1,300 6.01×6.03 6.04 148.0 4,529 840	146.1 3,510 4,283,000 1,270 146.1 4,754741	16.13 147.9 (P) 4,800,000 1,100 6.02%6.06 6.20 149.9 5,099 16.24 147.8 3,777 4,800,000 1,100 6.01%6.01 6.11 146.3 5,372 16.01 147.8 3,777 4,600,000 1,100 6.03%6.03 6.11 146.3 4,504	147.1 4,747,000 1,130 148.1 4,992	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148.0
	Consist- Dimensions (inches).	Diam- eter.	6 7 8	8.02	8.01	8.01	8.00 15 6do		Damp 8.00 16		Wet 8.00 16do 7.99 16		Med 8.00 16		Damp 8.05 16	
on.	Water (per	weignt.	4 5	1:2.02:2.29 22.15 1:2.02:2.25 22.3	02:2.25	02:2. 41	1:2.01:2.45 20.0		1:2.01:2.44 19.0 1:2.01:2.44 19.0 1:2.01:2.44 18.9		1:2.01:3.82 8.7 1:2.01:3.82 8.7 1:2.01:3.82 9.0	:	1:2.01:3.82 8.2 1:2.01:3.82 8.2 1:2.01:3.78 8.6		1:2.01:3.82 6.9 1:2.01:3.82 7.0 1:2.01:3.82 7.0	
Proportion.	77.	v onume.	66	1:2:4.86	1:2:4.79	<u> </u>	1:2:5.21		1:2:5.19 1:2:5.19 1:2:5.19		1:2:4		1:2:4		1:2:4	_
	Register Aggregate.		1 2	Cinder	A versoe		op	Average.	Cinder do	Average.	56 aGranite 57do 58do	Average.	Granite	Average	79. Granite 80. do	Average.

			.835 .879 .879	.870 .898 .898		
		4,071 5,369 5,528 4,989	4,068 4,179 3,776 4,008	4,004 3,974 3,838 3,939	(m) 5, 483 5, 451	ress. ress.
			141. 3 142. 5 141. 5	143.3 143.2 143.7 143.4	146.1 145.9 147.3	99 unit st 69 unit st mit stress
7	. pansar	6.01 6.10 6.05	6.07 6.17 6.15	6.19 6.19 6.18	6.12 6.17 6.13	fail at 3,98 fail at 3,98 id. at 5,447 u
	Cubes not tested.	6. 03×6. 03 6. 05×6. 05 6. 02×6. 01	6. 10×6. 15 6. 05×6. 05 6. 10×6. 06	6. 02×6. 03 6. 04×6. 05 6. 03×6. 05	6.01×6.11 6.02×6.06 6.03×6.03	j Cylinder did not fail at 3,999 unit stress. k Cylinder did not fail at 3,999 unit stress l Cubes 17 weeks old. m Cube did not fail at 5,447 unit stress.
1,200	1,200	1,400	1,000	1,000 1,100 800 970	1,200 1,000 1,000 1,000	j Cylir k Cylis l Cube m Cub
5, 360, 000 5, 000, 000 4, 310, 000 4, 890, 000	5, 920, 000 5, 300, 000 4, 380, 000	5, 140, 000 5, 140, 000 5, 200, 000 5, 160, 000	3, 700, 000 4, 240, 000 4, 010, 000	3, 800, 000 3, 960, 000 4, 130, 000 3, 963, 000	4, 680, 000 4, 500, 000 4, 800, 000 4, 660, 000	er load.
2,699 2,967 3,195 2,954		520	3, 397 3, 441 3, 318	ි නිනිනි නි		stress. ess. stress.
139.6 140.9 139.7 140.1	140.7 142.3 141.1	145.1 146.4 143.4 145.0	145.0 145.5 145.5	146.2 146.2 143.5 145.6	146.7 148.3 149.0 148.0	900 unit unit str 891 unit ral minu
16.37 16.16 16.37	16. 10 16. 13 16. 17	16. 15 16. 16 16. 18	16.23 16.12 16.10	16. 16 16. 11 16. 27	16. 41 16. 22 16. 20	fail at 3, at 5,483 fail at 3, ter seve
8.01 8.01 8.03	8.05 8.05 8.03	8.02 8.01 8.03	8.05 8.00 7.99	8.03 8.05 8.05	8.02 8.00	did not not fail did not broke a
Wetdo	Meddo	Dampdo	Wetdo	Med do do	Damp do	f Cylinder did not fail at 3,900 unit stress. \$\theta\$ Cube did not fail at 5,433 unit stress. \$\theta\$ Cylinder did not fail at 5,831 unit stress. \$\theta\$ Cylinder broke after several minutes under load.
9.6	0.0 0.0 0.0	7.6 8.0 8.1	11.0 11.0 11.0	10.0 4.00 10.0	%.%.%. 4.4.4.	
1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	unit stress. unit stress. unit stress. t stress
1:2:4 1:2:4 4:4	1:2:1 4:2:1 4:4:4	1:2:4 1:2:4 1:2:4	1:2: 1:2: 1:2:4:	1:2:4 1:2:4 1:2:4	1:2:4	
Graveldo	Graveldodo	Graveldo	Limestonedo	Limestonedo	Limestonedo	a Cylinder spalled before test. b Cylinder did not fail at 3,979 c Cylinder did not fail at 3,399 d Cylinder did not fail at 3,399 c Cube did not fail at 5,528 uni
91					153 154 155	a Cylir b Cylir c Cylin d Cylin c Cube

Table 10.—Compression tests of concrete cylinders and cubes accompanying beams—Continued.

TESTED AT TWENTY-SIX WEEKS.

•																	
Stress	racio of cylin- ders	to cubes.	17	0.797 .984 .845	.875	. 841 . 810 . 736	. 796	. 840 . 779 . 736	. 785							.913 .927 .903	.914
	Maxi- mum	unit stress.	16	2,350 2,124 2,486	2,320	2,950 2,633 2,712	2,765	2, 310 2, 434 2, 720	2,488	4, 768 4, 859 4, 633	4, 753	4,814 4,892 5,142	4,949	5, 410 (f) 5, 519		3, 793 3, 699 3, 949	3,814
150	Weight (pounds	cubic foot).	15	114.0 115.0 115.0	114.7	115.7 116.7 111.9	114.8	113.1 109.2 115.5	112.6	146.3 145.8 157.4	149.8	144. 7 149. 5 145. 2	146.5	149.0	148.0	, 138.5 138.1 138.1	137.9
Cubes		Height.	14	6.00 6.00 6.00		6.03		6.02 6.14 6.02		6.00 6.03 6.03		6.00 6.12 6.17		6.00 6.08 6.04		6.21 6.22 6.17	
	Dimensions (inches).	Base.	13	6.00×6.00 6.00×6.00 6.00×6.00		6. 01×6. 03 6. 00×5. 99 6. 03×6. 03		6.04×6.04 6.04×6.03 6.14×6.02		6.03×6.00 6.01×6.01 6.01×6.02		6. 13×6. 09 6. 00×5. 98 6. 06×6. 01		6.00×6.06 6.00×6.00 6.02×6.02		6.00×6.00 6.05×6.01 6.00×6.04	_
	Range	linear values.	12	500 800 1,000	170	1,200 700 600	830	6688 6008	630	1,400	1,700	2,200 2,200 1,000	2,100	2,2,2, 000, 000,	2,100	1,900 1,200 1,100	1,730
	Initial modulus	of elasticity.	11	1, 720, 000 1, 580, 000 1, 530, 000	1,610,000	1, 680, 000 1, 535, 000 1, 640, 000	1,618,000	$^{1,300,000}_{1,245,000}_{1,600,000}$	1, 382, 000	4,000,000 4,040,000 4,130,000	4,057,000	4,020,000 3,800,000 3,920,000	3, 913, 000	4, 760, 000 4, 310, 000 4, 220, 000	4, 430, 000	4, 090, 000 3, 660, 000 4, 400, 000	4,050,000
Cylinders.		unit stress.	10	1,872 2,090 2,100	2,021	2, 481 2, 132 1, 995	2,203	1,940 1,895 2,001	1,945	<u>eee</u>		<i>EEE</i>	:	EES	:	73, 461 3, 431 3, 565	3,486
Cyli	Weight (pounds	cubic foot).	6	113.2 113.9 114.6	113.9	113.4 116.2 113.4	114.3	112.2 114.2 114.8	113.7	147.6 147.1 149.2	148.0	146.8 147.5 147.1	147.1	149.9 150.3 149.1	149.8	138.4 139.1 138.3	138.6
	su.	Length.	8	15.95 16.11 16.02		15.85 15.91 16.10		16.16 16.02 16.10		15.81 15.90 16.02	:	16.08 16.11 16.10		16.11 16.11 16.02		16.09 16.15 16.15	_
	Dimensio (inches)	Diam- eter.	12	7.99 8.00 7.98		8.01 7.98 8.00		8.02 7.98		8.03 8.03 8.02		8.88 8.00 8.00		8.80		8.00 8.01 8.01	
	Consist- ency.		9	Wet do		Med do		Damp do		Wet do		Me ddo		Damp do		Wet do	
	Water (per		39	22. 4 22. 4 21. 3		21.7 21.7 20.0		19.0 19.0 18.5		9.89 9.00		888 844		7.0 7.0 7.1		0.00 0.00	
ortion.	Wolcht	W 518116.	4	, 1:2. 02:2. 25 1:2. 02:2. 25 1:2. 02:2. 38		1:2. 02:2. 25 1:2. 02:2. 25 1:2. 01:2. 45		1:2.01:2.44 1:2.01:2.44 1:2.01:2.44		1:2.01:3.82 1:2.01:3.82 1:2.01:3.82	,	1:2.01:3.78 1:2.01:3.82 1:2.01:3.82		1:2. 01:3. 82 1:2. 01:3. 82 1:2. 01:3. 82	,	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	
Propo	Volumo	A Oramie.	89	1.2:4.79 1.2:4.79 1:2:5.06		1:2:4.79 1:2:4.79 1:2:5.21		1.2:5.19 1:2:5.19 1:2:5.19		1:2:4		1:2:3.97 1:2:4 1:2:4		1:2:4 1:2:4 1:2:4		1:2:4	
	Aggregate.		61	Cinder do do do		Cinderdodo		Cinderdodo		Granitedodo		Granitedodo		Granitedodo		Graveldodo	-
	Register No.		1	12. 15. 16.	Average.		Average.	43. 44. 45.	Average.	59 60 61	Average.	71. 74. 75.	Average.	83. 83.	Average.	94. 95.	Average.

		967 807 1.035	1. 081 1. 133 1. 731		
5, 176 4, 810 4, 439 4 808	4, 208 4, 208 4, 208	3, 167 3, 860 3, 354	3, 300 4, 935 8, 935	4, 218 5, 325 5, 532 5, 025	stress.
142.5 140.9 142.6	144.0 146.0 7	148.0 144.0 148.0	450.0 148.0 147.3	150.0 148.0 147.8 148.6	te. someter. 3,858 unit
6. 15 6. 20 6. 02	6.00 6.00 6.00	6.00 6.00 6.00	6.00	6.00 6.09 6.03	pproxima compres break at
6.00×6.00 6.03×6.03 6.06×6.06	6.00×6.00 6.00×6.00 6.00×6.00	6.00×6.00 6.00×6.00 6.00×6.00	6.00×6.00 6.00×6.00 6.01×6.01	6.00×6.00 5.96×6.05 6.01×5.99	h Cylinder stress approximate. #Machine vibrated compressometer. #Cylinder did not break at 3,858 unit stress.
2, 400 2, 600	2,100	1, 600	1,500	2,000 1,400 1,900 1,770	h Cyli i Mac i Cyli
4, 760, 000 4, 740, 000 4, 480, 000 4, 660, 000	\$ \$ \$ £ £	3,980,000 3,080,000 3,210,000	3, 640, 000 4, 160, 000 4, 160, 000 3, 943, 000	3,690,000 4,400,000 4,220,000 4,310,000	SSS.
585	999	3, 062 3, 113 3, 473	ි නිනිනි න		unit stre t stress. unit 'tre
142. 4 142. 7 143. 9	145.9 147.0 147.5	144.3 145.8 143.4	146. 7 145. 2 146. 8 146. 8	145. 7 149. 0 148. 4 147. 7	at 3,969 ,556 unii at 3,978
16. 17 16. 14 16. 12	16.02 16.02 16.00	16.00 16.03 16.06	16.05 16.13 16.06	16. 13 16. 19 16. 19	t break eak at 5 t break
8.01 8.00 8.01	8.00 8.00 8.00	8.00 8.00 8.03	8.88 8.00 8.00	8. 13 7. 99 8. 00	Cylinder did not break at 3,969 unit stress. Cube did not break at 5,556 unit stress. Cylinder did not break at 3,978 unit 'tress.
Meddo	Dampdo	Wetdo	Me ddo	Damp do do	e Cylinde / Cube d g Cylinde
9.1	8.8.8. 1.1.1.	11.0 11.0 11.0	10.0 10.0 0.0	8.8.8 6.6.6	
1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:4.10 1:2.01:4.10 1:2.01:4.10	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1:2.01:3.91 1:2.01:3.91 1:2.01:3.91	1:2. 01:3. 91 1:2. 01:3. 91 1:2. 01:3. 91	550 unit stress. 89 unit stress. 559 unit stress. 779 unit stress.
1:2:4	112:4	112:4	1:2:4	1:2:4 1:2:4 1:2:4	ot break at 3,9 ot break at 3,9 ot break at 3,9 ot break at 3,9
Graveldo	Graveldo	Limestonedo	Limestonedo	Limestonedo	e Cylinder did not break at 3,950 unit stress. b Cylinder did not break at 3,989 unit stress. c Cylinder did not break at 3,959 unit stress. d Cylinder did not break at 3,979 unit stress.
106		134 135 A vera œ	144	158 259 Average.	9000

Fig. 11.—Characteristic deformation curves for flexure, granite concrete of medium consistency; ages 4, 13, and 26 weeks.

BEAMS OF VARIABLE SPAN.

The detailed results of tests of the beams of variable span are given in Table 9 (pp. 42-47), and some of the results are graphically shown in figs. 2-5. The information given in columns 1-14, 17, 18, 21, and 22 of the table is identical in character with that given in the corresponding columns of Table 8.

Column 15 contains the unit elongation of the lower outer fiber for the applied load only, since the short beams were not suspended for zero total deformations as were the long beams. The values of the unit elongation, including that due to the weight of the beam and the deformeters, may be approximated by increasing the values in column 15 by an amount obtained from the averages in column 12, Table 8, on the assumption that the elongation is directly proportional to the values for $\frac{M}{bd^2}$, which is approximately true for values below those for the weight of the beam plus the weight of the deformeters. The values for $\frac{M}{bd^2}$ for own weight and deformeters are given in column 19 and, as may be seen by comparing with the maximum total values in column 20, are in the majority of cases but a small percentage of the total.

Column 16 gives the position of the neutral axis in percentage of the depth below the top of the beam. These values are not strictly comparable with those in column 15, Table 8, since they are based on deformations due to the applied load alone.

CYLINDERS AND CUBES.

The detailed results of the compression tests of cylinders 8 inches in diameter by 16 inches in length and of 6-inch cubes are given in Table 10. Some of the results are also graphically shown in figs. 2-9.

Columns 1-6 contain the same kind of information as is given for the beams in the corresponding columns of Tables 8 and 9.

Columns 7 and 8 and columns 13 and 14 show the dimensions of the cylinders and cubes, respectively, in inches.

Columns 9 and 15 show the weight in pounds per cubic foot, as figured from the dimensions and the actual weight of each cylinder and cube when tested.

Columns 10 and 16 show the ultimate strength of each cylinder and cube in pounds per square inch.

The initial modulus of elasticity (given in column 11) was obtained from a curve showing the relation between the unit gross deformation and the compressive stress in pounds per square inch, by drawing a line tangent to the curve at the origin or where possible coincident with the straight line or initial part of the curve. The range in pounds

o fo⁻tneo 169

Fig. 12.—Characteristic deformation curves for flexure, gravel concrete of medium consistency; ages 4, 13, and 26 weeks.

per square inch within which the line drawn coincides with the curve is also shown (column 12).

Column 17 gives the ratio of the ultimate strength of the cylinders to that for the cubes.

It is to be regretted that the capacity of the machines composing the equipment was exceeded by the strength of many of the cylinders and cubes at the time these tests were made, preventing the accurate determination of the actual growth of strength with age. There is, however, in almost every case a substantial increase in strength with age.

The effect of consistency on the strength is much more noticeable, and leads to much more uniform results for the cubes and cylinders than for the beams. This would lead one to believe that the effect of consistency is much more noticeable and much more uniform on the compressive strength of concrete than on the tensile strength.

Owing to a breakdown of the engine it became necessary to apply the load by hand for a number of tests. The beams and cylinders, being deemed the most important, were tested in this way, but because of the difficulty of turning the gears of the testing machine by hand the testing of the cubes was omitted.

ILLUSTRATIVE DIAGRAMS.

Figs. 2, 3, 4, and 5 show graphically the effect of age and consistency on the ultimate compressive strength of cinder, granite, gravel, and limestone concretes, as obtained from the tests on the cylinders and cubes and in the modulus of rupture as given by the tests in the beams of constant and variable span.

Figs. 6, 7, 8, and 9 show graphically several characteristic compression-stress deformation curves obtained from tests on the cylinders, while figs. 10, 11, 12, and 13 show the deformation curves for a few of the beams of 12-foot span.

SURVEY PUBLICATIONS ON TESTS OF STRUCTURAL MATERIALS.

The following reports, published by the Geological Survey, relate to structural materials, etc.:

BULLETIN 238. Economic geology of the Iola quadrangle, Kansas, by G. I. Adams, Erasmus Haworth, and W. R. Crane. 1904. 8°. 83 pp., 11 pls.

BULLETIN 243.* Cement materials and industry of the United States, by E. C. Eckel. 1905. 8°. 395 pp., 15 pls. 65c.

Bulletin 260.* The American cement industry, pp. 496-505. 1905. 40c.

BULLETIN 324. The San Francisco earthquake and fire of April 18, 1906, and their effects on structures and structural materials, by G. K. Gilbert, R. L. Humphrey, J. S. Sewell, and Frank Soulé. 1907. 170 pp.

Bulletin 329. Organization, equipment, and operation of the structural-materials testing laboratories at St. Louis, Mo., by R. L. Humphrey. 1908. 85 pp.

BULLETIN 331. Portland cement mortars and their constituent materials; results of tests made at the structural-materials testing laboratories, St. Louis, Mo., by R. L. Humphrey and William Jordan, jr. 1908. 130 pp.

WATER-SUPPLY PAPER 143. Experiments on steel-concrete pipes on a working scale, by J. H. Quinton. 1905. 8°. 61 pp., 4 pls.

MINERAL RESOURCES U. S. FOR 1901,* 1902, 1903,* 1904, AND 1905.* Cement. A series of annual articles on the cement industry and the production of cement in the United States, by L. L. Kimball. 50c. for each volume.

MINERAL RESOURCES U. S. FOR 1906, pp. 897-905. Advances in cement technology, 1906, by E. C. Eckel.

Reports marked with an asterisk (*) are out of stock, but may be had from the Superintendent of Documents, Washington, D. C., at the prices named. The others will be sent free to anyone interested on application to The Director, United States Geological Survey, Washington, D. C.