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Introduction
The freshwater zone of the San Antonio segment of the Edwards aquifer is used by residents of San Antonio and 

numerous other rapidly growing communities in south-central Texas as their primary water supply source (fig. 1). This 
freshwater zone is bounded to the south and southeast by a saline-water zone with an intermediate zone transitioning from 
freshwater to saline water (transition zone). As demands on this water supply increase, there is concern that the transition 
zone could potentially move, resulting in more saline water in current freshwater supply wells. Since 1985, the U.S. 
Geological Survey (USGS), San Antonio Water System (SAWS), and other Federal and State agencies have conducted 
studies to better understand the transition zone.
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Figure 1.   Areal extent of the freshwater/saline-water transition zone of the San Antonio segment of the Edwards aquifer,
south-central Texas, and locations of monitoring wells within and near the transition zone from which data were collected for
this report, 2010–11 (modified from Lambert and others, 2010, fig. 1). 

Figure 1. Areal extent of the freshwater/saline-water transition zone of the San Antonio segment of the Edwards aquifer, south-central 
Texas, and locations of monitoring wells within and near the transition zone from which data were collected for this report, 2010–11 (modified 
from Lambert and others, 2010, fig. 1).
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Figure 15. Borehole geophysical data from Tri-County transect well TC2 (KX–68–31–403), San Antonio segment of the Edwards aquifer, south-central Texas, 2003–10.



During 2010 and 2011, the USGS, in cooperation 
with SAWS, conducted a study to further assess the 
potential for movement of the transition zone in 
part of the San Antonio segment of the Edwards 
aquifer (Thomas and others, 2012; fig. 1). Equivalent 
freshwater heads were computed to investigate the 
transition from freshwater to saline-water zones in the 
San Antonio segment and evaluate the potential for 
lateral flow at the freshwater/saline-water interface. 
Data were collected within and near the transition 
zone from 15 monitoring wells in four transects (East 
Uvalde, Tri-County, Fish Hatchery, and Kyle; fig. 1).

Hydrogeologic Setting
The San Antonio segment of the Edwards aquifer 

(the study area) is about 175 miles long and extends from 
the western groundwater divide near Brackettville in 
Kinney County to the eastern groundwater divide near 
Kyle in Hays County (fig. 1). From its outcrop (recharge 
zone), the Edwards aquifer dips to the southeast at about 
300–400 feet per mile and becomes buried and confined 
toward the present-day Gulf of Mexico coastline. From 
its outcrop immediately north of the Edwards aquifer 
recharge zone, the Trinity aquifer dips to the southeast 
beneath the Edwards aquifer, thus forming the northern 
lateral boundary and the underlying boundary of the 
Edwards aquifer. 

The present-day Edwards aquifer formed along a 
crustal zone of weakness known as the Ouachita structural 
belt (Maclay, 1995) and consists of Cretaceous-age 
carbonate rocks of varying lithologies that were deposited 
in three depositional environments, or depositional 
provinces: the Maverick Basin, the Devils River Trend, 
and the San Marcos Platform (fig. 1). These depositional 
environments in part influence the transmissive and 
storage properties of the aquifer. 

The direction of groundwater flow is controlled 
partially by regional faulting (Maclay and Land, 1988). 
Once in the aquifer, groundwater generally moves 
downdip and then is directed by faults to the east and 
northeast toward Comal Springs and San Marcos 
Springs, major springs in the northeastern part of the 
San Antonio segment of the aquifer (fig. 1; Groschen, 
1994; Maclay, 1995). 

Description of Transects and Monitoring Wells
The monitoring wells that provided data for this 

report were drilled during 1997–2001 by SAWS. The four 
transects (East Uvalde, Tri-County, Fish Hatchery, and 
Kyle; fig. 1) consist of 2–5 wells per transect and were 
configured approximately perpendicular to and across the 
expected trace of the freshwater/saline-water interface. 
A well descriptor was applied to each well on the basis 
of water type in the borehole (freshwater, saline water, or 
interface [freshwater atop saline water]; fig. 2). 
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(modified from Lambert and others, 2010, fig. 8). 

Figure 2. Hydrogeologic section of the Kyle transect (D–D’), San Antonio segment of the Edwards aquifer, south-central Texas (modified from 
Lambert and others, 2010, fig. 8).

Borehole Geophysical, Fluid, and 
Hydraulic Properties

Borehole geophysical data such as natural gamma, 
formation resistivity, and caliper are commonly used to 
characterize and identify stratigraphic units. These data 
were collected by the USGS at all 15 transect wells in 
the study area during a previous study (Lambert and 
others, 2009) and utilized to determine the stratigraphy 
of each well. Optical and acoustic televiewer logs were 
also collected and used to confirm the tops and bases 
of hydrostratigraphic subdivisions and assess voids and 
faulting identified in the rocks intersecting each well (fig. 
3). In 2010, to further assess the potential for movement 
of the transition zone, electromagnetic (EM) flowmeter 
and multiparameter fluid logs that directly measured 
specific conductance and temperature were collected from 
13 transect wells. The EM flowmeter logs were collected 
under ambient (nonpumping) and stressed (pumping) 
hydraulic conditions to assess the hydraulics of flow within 
the aquifer. Water-level data provided hydraulic-head data 
that were used to interpret borehole geophysical data. 

Fluid property logs were used as indicators of possible 
flow zones, as calculations of equivalent freshwater head, 
and as a characterization of the borehole fluid. Borehole 
fluid was classified on the basis of total dissolved solids 
(TDS) concentration. To correlate specific-conductance 
values with TDS concentrations, observations of specific 
conductance and TDS concentration from Lambert and 
others (2009) were related by regression to yield threshold 
values of specific conductance corresponding to the 
threshold values of TDS concentrations that describe 
freshwater and categories of saline water (slightly, 
moderately, or very saline; fig. 4). 

Changes between ambient and stressed calculated 
specific-conductance logs were analyzed to identify 
possible vertical or horizontal flow zones, to identify 
direction of flow, and to establish the relation between the 
ambient water in the borehole and the formation water 
entering the borehole during pumping. Flow-Log Analysis 
of Single Holes (FLASH) is a spreadsheet-based graphical 
user interface that supplies multilayered Thiem modeling 
results for steady-state flow of a borehole (Day-Lewis and 



2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000 27,500 30,0000

Specific conductance, in microsiemens per centimeter at 25 degrees Celsius  

0

20,000

To
ta

l d
is

so
lv

ed
 s

ol
id

s 
(T

DS
), 

in
 m

ill
ig

ra
m

s 
pe

r l
ite

r (
m

g/
L)

2,500

5,000

7,500

10,000

12,500

15,000

17,500

Freshwater zone

Transition zone

Saline-water zone

Observation

EXPLANATION

y = 0.6522x + 25.77,
     where
     y equals total dissolved solids;
     x equals specific conductance.
Coefficient of determination R² = 0.9914

Moderately to very saline-water
interface = 10,000 mg/L TDS

Slightly to moderately saline-water interface = 3,000 mg/L TDS

Freshwater/saline-water interface = 1,000 mg/L TDS

Figure 4.   Observations of specific conductance and total dissolved solids (TDS) concentration related by regression to yield
threshold values of specific conductance corresponding to the threshold values of TDS concentrations that describe freshwater
and categories of saline water, 1999–2007.

Figure 4. Observations of specific conductance and total dissolved solids (TDS) concentration related by regression to yield threshold values 
of specific conductance corresponding to the threshold values of TDS concentrations that describe freshwater and categories of saline water 
(slightly, moderately, or very saline),1999–2007 (modified from Thomas and others, 2012, app. 2).
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Figure 3.   Borehole geophysical data from Kyle transect well KY2 (LR–67–02–104), San Antonio segment of the Edwards aquifer,
south-central Texas, 2003–10 (modified from Thomas and others, 2012, fig. 19).

Figure 3. Selected borehole geophysical data from Kyle transect well KY2 (LR–67–02–104), San Antonio segment of the Edwards aquifer, south-
central Texas, 2003–10 (modified from Thomas and others, 2012, fig. 19).
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Figure 5.   Conceptual diagram showing ambient flow, transmissive zones, and equivalent freshwater heads in monitoring wells in the
Kyle transect, San Antonio segment of the Edwards aquifer, south-central Texas, 2010 (modified from Thomas and others, 2012, fig. 26).

Figure 5. Conceptual diagram showing ambient flow, transmissive zones, and equivalent freshwater heads in monitoring wells in the Kyle 
transect, San Antonio segment of the Edwards aquifer, south-central Texas, 2010 (modified from Thomas and others, 2012, fig. 26).

others, 2011). FLASH modeling results provided estimates 
of the differences between the open-hole water level under 
ambient and stressed conditions, transmissivities, and 
hydraulic heads for two or more water-producing (flow) 
zones intersecting a single borehole.

Hydraulics of Lateral Flow

Hydraulic heads in the aquifer primarily change in 
response to changes in recharge from rainfall and changes in 
nearby groundwater pumping. In karst systems such as the 
Edwards aquifer, changes in hydraulic heads can be abrupt, 
prolonged, or both (Wong and others, 2012). These changes 
in hydraulic heads were assessed to indicate to what extent 
transect wells were hydraulically connected to each other.

Equivalent freshwater heads define hydraulic gradients 
horizontally, and environmental-water heads define 
hydraulic gradients vertically (Lusczynski, 1961). Changes 
in hydraulic heads were used to evaluate lateral-head 
gradients and thus the potential for movement of water 

from the saline zone into the freshwater zone (fig. 5). 
Because saline water is slightly denser than freshwater, 
higher salinity of water causes a greater difference 
between the environmental-water head relative to the 
equivalent freshwater head. This correction was then used 
to convert measured water-level altitudes to equivalent 
freshwater-head altitudes. The direction of lateral-head 
gradients across the freshwater/saline-water interface was 
used to evaluate the potential for lateral flow across the 
freshwater/saline-water interface relative to the freshwater 
zone in the East Uvalde, Tri-County, and Kyle transects 
(into the freshwater zone, out of the freshwater zone, 
or mixed with regard to direction [head higher or lower 
at the freshwater/saline-water interface than on either 
side]). Lateral-head gradients were not computed for the 
Fish Hatchery transect because of the relatively large 
difference in altitude between the open-hole sections 
of wells FH1 and FH2, caused by fault offset, and the 
relative shallowness of well FH1.



This fact sheet is based on Thomas and others, 2012.
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