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Abstract 

This document describes the need and justification for the development 

of a design guide for safety-relevant computer-based systems.  This 

document also makes a contribution toward the design guide by presenting 

an overview of computer-based systems design, lifecycle, and safety.   
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1.   Introduction 

An aircraft consists of a collection of systems performing a wide variety of functions with different 

safety criticality levels.  The aviation industry is experiencing an ongoing, decades-old trend of adopting 

increasingly sophisticated computer-based technology to implement aircraft functionality.  Modern aircraft 

are highly complex, functionally integrated, network-centric systems of systems [1].  The design and 

analysis of distributed-computation systems like the ones used on aircraft are inherently complex activities.  

Ensuring that such systems are safe and comply with existing airworthiness regulations is costly and time-

consuming as the level of rigor in the development process, especially the validation and verification 

activities, is determined by considerations of system complexity and safety criticality.  A significant degree 

of care and deep insight into the operational principles of these systems are required to ensure adequate 

coverage of all design implications relevant to system safety.   

1.1.   Background 

Aircraft have used digital and software-based electronics since the 1960s [2].  The first avionics 

architectures were in the form of custom-made line replaceable units (LRU) with each LRU performing a 

single function.  These architectures allocated dedicated physical resources (computing processors, 

communication, input sensors and output effectors) to each function, and the LRUs were either completely 

independent of each other or exchanged limited amounts of data [3].  Later, so-called federated architectures 

retained the allocation of one function per LRU but showed a higher level of integration mostly by 

increasing the data exchange between functions through dedicated one-way data links or shared 

communication data buses [4].  Beginning in the 1990s, Integrated Modular Avionics (IMA) architectures 

were introduced to address market forces that drove the need to reduce the volume, weight, power and 

maintenance cost of avionics systems [5], [6], [7], [8], [9].  The fundamental characteristic of IMA 

architectures is the sharing of resources between functions on a distributed computational platform.  The 

initial examples of the IMA concept consisted of centralized cabinets with multiple simple modules (or 

even just electronic cards) performing specific tasks like processing, networking, data storage and input-

output from sensors and effectors [10].  These resources are shared among various airplane functions that 

run on the platform as time-sharing processes.  These architectures used local backplane buses for 

communication between modules in the same cabinet and single-source data links or shared buses for 

communication cabinet-to-cabinet or between cabinets and separate LRUs.  Thus, at a global level, the 

communication network is segmented and uses gateways for transferring data between segments.  More 

recent IMA architectures connect the modules to a common switch-based data network that handles the 

routing of data messages to their intended destinations [6], [9], [11].  This architectural model can be 

characterized as a distributed IMA (DIMA) with a high degree of functional integration on a platform of 

physically distributed computation and input-output modules (or remote data concentrators), and may 

include federated LRUs on the same network [12]. 

The main drivers for the evolution of avionics architectures are the competition among airlines in the 

air travel market and the competition among airplane manufacturers to meet the demands from the airlines 

for more fuel-efficient and cost-effective airplanes that have more functionality and higher sophistication 

[5], [6], [7], [13].  Over time, functionality has been added to improve airplane flight performance and 

safety, as well as to improve maintenance and passenger comfort [11].  The greatest enabler to the evolution 

of avionics architectures has been advancements in electronics and computer technology, including 

microprocessors, operating systems, data networking, sensors, displays and design development tools [14].  

As technology has improved, the cost of electronic hardware components has decreased, but so has their 

lifecycle duration.  Simultaneously, the ever-increasing functional complexity is being implemented mostly 
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in software, prompting greater interest in ways to simplify software development.  System cost and 

considerations of hardware part obsolescence and software reuse have driven system developers toward 

layered and modular designs with standardized interfaces and generic hardware and software commercial-

off-the-shelf (COTS) components where practicable.  As functionality has increased, software development 

and system integration have become the primary cost factors.    

In addition to functional requirements, aircraft avionics systems must satisfy demanding quality 

requirements for performance, dependability and safety under stated operational and environmental 

conditions [15], [16], [17], [18], [19].  A system is safety-relevant if its failure can endanger human life, 

property or the environment [20], [21].  The main goal behind system safety requirements is to ensure an 

acceptable and rational inverse relation between the probability and severity of functional failures [22].  A 

system can experience internal perturbations due to logical faults (i.e., defects) from design errors 

introduced during system development, or physical faults introduced during system development or 

operation [23].  The basic approach for dealing with these threats to the quality of the services delivered by 

a system consists of fault prevention and removal, as well as the use of redundancy supported by fault and 

error containment techniques (e.g., isolation, separation, partitioning, dissimilarity, selection, and voting) 

to mitigate the propagation of fault effects [22], [23], [24], [25].  Older federated avionics systems had 

logical dependencies that were simple to manage and physical barriers that prevented the propagation of 

effects between architecture-level components, but modern functionally integrated architectures with more 

resource sharing and intricate data exchange patterns have a higher risk of unintended interactions between 

components.  Most of the complexity in modern aircraft systems stems from these requirements for high 

functional quality while protecting against potential failures due to physical or logical defects, or misuse 

[1]. 

A system is said to be complex when its operation, failure modes or failure effects are difficult to 

comprehend without the aid of analytical methods [25].  The complexity of some systems is such that they 

cannot be analyzed and understood well enough to be managed effectively by any one individual or small 

groups.  System complexity has many aspects, including task structure (i.e., the sequencing and timing of 

actions to achieve a goal), predictability (i.e., randomness in the effects of system actions), size (i.e., the 

number of components and functions), and algorithmic complexity (including space and time requirements 

of computations and cognitive complexity) [26], [27].  Distributed safety-critical systems require complex 

algorithms for achieving and preserving distributed coordination and consistency even when operating with 

faulty components [28].  In general, complex interactions between components (including both hardware 

and software components) have a higher potential for execution errors.  This threat can be aggravated by 

coupling between components that allows the propagation of fault effects along paths of data and control 

information flow.  With complex integrated systems, there is also the possibility of unintended coupling 

through shared resources and the logical and physical environment in which the system operates.   

Uncertainty about the interactions and coupling between components in complex computer-based 

aircraft systems, especially under failure conditions, is a recognized point of concern for certification 

authorities because of the possible safety implications [29].  It is known that using testing and statistical 

techniques are not feasible approaches to quantify the reliability of software at the levels required for safety-

critical applications [30].  Likewise, it may not be possible to develop a test suite for complex computer-

based systems to demonstrate the absence of requirements and design errors [24].  Because of the present 

inability to ascertain the completeness and correctness of the requirements and design of complex systems, 

the current state of practice relies heavily on assessments of the process used to develop the system to 

achieve an adequate confidence that errors have been identified and corrected [25], [31], [32], [33].  

However, industry, academia and certification authorities recognize that development process assurance 
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alone may not be sufficient to establish that safety objectives are adequately satisfied [30], [24].  Safety 

engineering and evidence-based approaches have been proposed and are being investigated as a way to 

increase confidence in the safety of complex computer-based systems [30], [34], [35]. 

The validation and verification (V&V) and the certification of complex computer-based systems, 

including safety-critical systems, are recognized problems of national significance [31], [36], [37].  The 

challenges in assuring the design and safety of systems need considerable attention and financial investment 

[38].  As the complexity of systems continues to increase, the V&V and certification costs and related 

programmatic risks can provide a basis against the development and implementation of new capabilities 

[39].  Such obstacles against innovation pose a threat to national competitiveness and can hinder the 

proposed operational improvements to the National Airspace System (NAS) that are intended to increase 

capacity and flexibility and reduce costs, but would also increase the complexity of airborne and ground 

aviation systems [40].  There are initiatives underway to produce methods, tools, and techniques that enable 

predictable, timely and cost-effective complex systems development [41].  NASA aims to identify risks 

and provide knowledge to safely manage the increasing complexity in the design and operation of vehicles 

in the air transportation system.  For this, multidisciplinary tools and techniques are being developed to 

assess and ensure safety in complex aviation systems and enable needed improvements to the NAS. 

1.2.   Purpose 

This document is an initial contribution to a design guide intended to provide insight into the system 

safety domain, present a general technical foundation for designers and evaluators of safety-relevant 

systems, and serve as a reference for designers to formulate well-reasoned safety-related claims and 

arguments and identify evidence that can substantiate the claims.  That evidence forms a basis for 

demonstrating compliance with certification regulations, and its generation is a major objective of a system 

development process.  This work is part of an effort to enable sound assurance of safety-related properties 

of computer-based aircraft systems by developing an effective capability to model and reason about the 

safety implications of the system requirements and design.   

1.3.   Approach 

The approach selected for the design guide is to present a summary of major theoretical and practical 

considerations relevant to the design and evaluation of safety-relevant computer-based systems.  The 

presentation leverages a unified abstract model of system safety applicable globally and locally at every 

level of a design hierarchy to ensure that the material is intellectually accessible to a broad audience with 

the wide range of knowledge and experience on system development and safety.  This is accomplished, in 

part, by leveraging the general concept of a system throughout the presentation and using technical concepts 

and terminology from computer science and engineering only where needed to ensure clarity.  The aim is 

to simplify the description of the domain and offer sufficient insight to enable the identification and 

definition of evidence needed to support explicit claims that the system safety risks are acceptably low.  

This document provides basic foundational material for the design guide in the form of an overview of 

concepts in system design, lifecycle, and safety.  This document is also a survey of major and influential 

research and engineering publications in these areas.   

Future sections of the design guide will introduce a general safety-risk mitigation strategy based on the 

application of rigorous development processes to minimize the likelihood of design errors, and system 

architectures that can mitigate residual logical defects and physical faults.  The concepts and safety 
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implications and considerations of functionally integrated and distributed systems will be reviewed, 

followed by an overview of system-safety risk assessment.  The guide will also offer insight into various 

particularly complex and consequential aspects in the design and development of modern safety-relevant 

computer-based systems. 
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2.   System Design, Lifecycle, and Safety 

This section presents an introduction to basic concepts that provide foundation, background, and 

motivation for the rest of the document.  It begins with an overview of basic aspects of the design of a 

system.  This is followed by a review of important system lifecycle concepts, including topics such as 

concept development, requirements, and system architecture.  The section ends with an overview of system 

safety.   

2.1.   System Design  

An engineered system is an entity with a purpose that is achieved by the interactions (i.e., relations) of 

its internal components (i.e., sub-entities) with each other and with the external environment (i.e., 

surroundings).  A system is defined by a boundary (i.e., border) which delimits the extent of the system 

and is where the system interacts with its environment.   

The concept of system is circular and recursive.  In general, both the environment and the components 

of a system are themselves systems.  The system of interest (SOI) (or system in focus) is identified by its 

boundary.  An SOI is always contained within a larger super-system (or meta-system) which includes the 

SOI and its environment.  An SOI also contains sub-systems which are sub-sets of internal components 

and their interactions.  This recursion is bounded above and below based on relevance to the problem or 

matter under consideration.  This system hierarchy has a tree structure with the super-system composed of 

the SOI and its environment at the top, and each sub-system branch is decomposed into one or more layers 

of sub-systems until atomic components (or items), whose internal structure is irrelevant or unknown, are 

reached at the bottom. 

The purpose of an engineered system is defined in terms of the desired effect on the environment.  This 

effect is achieved by the flow of matter, energy, or information between the SOI and its environment.  An 

SOI can have different kinds of sub-systems such as mechanical, hydraulic, pneumatic, thermal, electrical, 

electronics, human, and computer, as well as combinations of these, which interact to achieve the system 

purpose.    

Henceforth, the focus of this guide will be on digital computer systems embedded in larger engineered 

systems.  A computer system is a data processing system (DPS) whose primary inputs and outputs are 

data sequences.  A computer sub-system interfaces with other kinds of sub-systems to achieve the desired 

overall purpose of the containing domain system.  The environment of a computer consists of other sub-

systems as well as the environment of the domain system. 

2.1.1.   Environment  

The environment of a system of interest can be divided into three parts.  The external systems are the 

set of external entities that directly interact with the SOI at its boundary [42].  The context is the set of 

external entities that have a significant influence on the SOI but are not themselves directly influenced by 

the SOI.  Beyond the external systems and the context is the rest of the environment which has little or no 

influence on the SOI and is thus considered outside the scope of relevance to the purpose of the SOI. 

2.1.2.   Function, Behavior, and Service 

The engineering function of a system is what the system is intended to do [23], and it is described in 
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terms of inputs, outputs, and the relations between these.  In general, the system inputs and outputs are 

sequences (or flows) of data items.  Each data item in a sequence is characterized by a value and time of 

occurrence.  The data items of a system are carried by input, output, and internal variables (or signals).  

The mathematical function of a system is the relation between the values of input and output variables 

of the system.  The behavior of a system is the functional and temporal relation (i.e., value and time) 

between the inputs and outputs of the system.     

There are three basic types of behaviors.  A transformation behavior changes the values of input 

variables into new values at the output variables.  A storage behavior buffers the values of input variables 

until some future point in time when they appear at the output variables.  A transfer (or distribution) 

behavior simply transfers the values of input variables to output variables.  In general, the behavior of a 

system is a combination of these basic behaviors intended to change the attributes (i.e., what, when, and 

where) of data items. 

The service delivered by a system is the output flow as perceived by its users.  A user is a system or 

entity that receives a service.   

2.1.3.   Structure 

The structure of engineered systems is generally hierarchical consisting of a set of internal composite 

and atomic components, their containment relations, and interconnections.  The structure of the system is 

what enables it to generate the intended behavior [23].  Every component has a particular behavior, and the 

hierarchical composition of these internal behaviors results in the intended top-level system behavior1.   

The internal structure of computer systems can be generically described as a hierarchy of computation 

nodes that perform data transformation and storage functions, and a communication capability that transfers 

data between nodes (see Figure 1).  Non-atomic nodes are composite sub-systems that contain internal 

structures that can also be described with this generic pattern of computation and communication 

capabilities, as illustrated in Figure 1.    

 

 

 

 

 

 

                                                           

 
1 Note that this relation between the external behavior of the system and its internal structure is especially significant 

for safety-relevant systems because as the complexity of the desired system functionality increases, the complexity 

of the behavior of the internal system components and their interrelations also increases. 
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2.1.4.   Informational, Logical, and Physical Layers  

A computer system, whose purpose is to process data, can be viewed at three basic levels as illustrated 

in Figure 2.  This is a simplified version of the models described by Avizienis in [43] and Parhami in [44].  

In the informational layer, the system handles data which is processed to accomplish the purpose of the 

system.  The function of the system is achieved by its internal logic, which performs combinations of the 

basic operations of transforming, storing, and transferring data.  The logical layer is where the computation 

algorithms are described [45], [46], [47].  The informational and logical levels are abstract representations 

of a system in terms of operations performed on data.  The physical layer is the substrate that realizes the 

system in a concrete physical sense enabled by equivalence relations (i.e., mappings) between the abstract 

data and functions at the informational and logical levels and conditions and processes at the physical level 

of the system [48], [49], [50].  The physical level of a system is where actual physical space (i.e., volume) 

is occupied, power is consumed, and heat is generated in the performance of the system functions. 

 

 

 

 

 

 

2.1.5.   Hardware and Software Layers 

A computer system, in the general sense of data processing system, consists of a set of interconnected 

logical components which together perform the intended function of the system.  A typical computer 
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Figure 1: Generic System Structure 

Figure 2: Basic System Layers 
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contains one or more physical devices (i.e., hardware) that perform functions such as input and output of 

analog, digital, and discrete data; data memory; data communication; application-specific data processing; 

and general-purpose data processing [51].  In general, many of these devices have degrees of 

programmability, performed either offline or online, that enable the specification of a desired functionality 

from a range of possibilities based on the particular needs of the application.  This can include devices such 

as programmable read only memories (ROM), gate arrays, field programmable gate arrays (FPGA), semi-

custom standard cell design, and processing units (e.g., microcontrollers and general-purpose and graphical 

microprocessors) [52].  These devices have particular means of programming.  In the case of processors, 

they have instruction sets that specify the units of computation that a processor can perform [51].  Software 

is a sequence of instructions (i.e., a program) stored in memory to be executed by a processor to realize a 

desired function.   

As illustrated in Figure 3, a computer system consists of a hardware layer and a software layer, and the 

logical layer of the system is divided between the software and the hardware layers.  Because of the great 

flexibility and space (i.e., volume) efficiency afforded by programmable processors and software, most of 

the functionality in modern avionics systems is implemented with software running on processors [52].  

Much of the complexity growth in modern systems is happening in the software.  However, the processors 

and other hardware devices are also increasing in complexity, as predicted by Moore’s Law2 [52].    

 

 

 

 

2.1.6.   Logical Processes 

The behavior of a computer system is determined by the logical layer, which is itself a sub-system of 

the computer and is allocated between the hardware and the software.  The concept of a process, defined 

here as a logical component that performs a particular function, has similar definitions in the domains of 

systems [42], hardware [53], and software [54].  Thus, this concept will be used henceforth to refer to 

logical system components.  We will refer specifically to hardware and software processes only where the 

distinction is significant.   

Logical processes operate on data flows, whose items have value and time attributes.  Also, note that a 

logical process may be composed of multiple interrelated sub-processes whose actions must be coordinated 

in order to achieve a desired overall function.  The following sub-sections address various aspects of the 

value and time dimensions of logical processes and the data they manipulate.  

2.1.6.1.   Data Flow 

The data flow pattern of a system is the set of relations in the flow of data from the inputs, between 

internal processes, and to the outputs.  The data flow relations in a properly executing system determine the 

                                                           

 
2 Moore’s Law is the observation that the processing power and number of transistors in microprocessors will 

double approximately every two years (i.e., exponential growth rate) [52]. 

Logical 

Physical 

Software 
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Figure 3: Mapping from Physical and Logical Layers to Hardware and Software Layers 
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data dependencies among processes such that the data flows among processes in a particular order and 

each process executes only when it has received the necessary data items.  In effect, the data flow relations 

constrain the relative order of execution of the processes based on the availability of required data [55]. 

2.1.6.2.   Control Flow 

The control flow pattern of a system is the set of relations on the relative sequence and timing of process 

activation as determined by the algorithm being executed.  The control flow relations are based on decisions 

regarding process activation sequences.  The system control flow can include process activation patterns 

such as unconditional sequence, branching (i.e., selection), looping (i.e., repeat a predetermined number of 

times), concurrency (i.e., concurrent execution of multiple processes), and synchronization (i.e., multiple 

concurrent processes wait for each other at a point in their execution before continuing) [42].  Depending 

on the application, there may also be timing constraints such as relative delay in activation between 

processes, the rate of activation of the processes, or the duration of execution of a process [27].  These 

control flow relations between processes establish control dependencies which must be satisfied to ensure 

the proper behavior of the system. 

Data and control dependencies in a system must be managed carefully as they are critical determinants 

of the safety-relevant characteristics of the system, including modes and probabilities of failure. 

2.1.6.3.   State and Event 

The concept of the state of a system has various definitions in different fields of study.  The common 

notion in all of them is that the state of a system at a point in time is the information (about the status or 

condition of the system) that, together with the input, determines the future behavior of the system [56], 

[57], [58], [42].  The state of a variable is its value [59].  An event is a change of state at a point in time 

[57].   

2.1.6.4.   Sequential Machines, Time and Triggers 

A digital computer system, regardless of its design and mode of operation, is fundamentally a sequential 

finite-state machine (FSM) that contains internal memory elements and whose outputs are a function of 

present and past inputs as well as the initial state of the machine [51].  Structurally, a computer system can 

consist of multiple levels of interacting sequential sub-machines.  The data flows in a system at the inputs, 

outputs, and between processes carry information about states and events in the system and its environment.  

Changes in the memory and output of a system are conditioned on the input and the state of the system, and 

triggered by events on the inputs or state of the system.   

An asynchronous sequential machine is triggered (i.e., activated) and updates its state and outputs when 

input events occur.  A synchronous sequential machine is triggered at points in time marked by the output 

of a clock oscillator which can be internal or external to the system [51].  Both asynchronous and 

synchronous sequential machines are triggered by events, and the distinction between the two is whether 

the triggering events are strictly time-based or not.   

From a general perspective, logical processes are triggered by events which can be time-referenced or 

not [57], [58].  An event-triggered process is activated by particular non-time-based events.  A time-

triggered process is activated strictly by time-based events.  These time-based events can be derived from 

logical-time clocks that keep track of the passage of time as indicated by clock oscillators [60], [61]. 
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Process triggering is a consideration related to the control of system execution flow.  The distinction 

between time and event triggering is important because these modes of triggering have different advantages 

and detriments in the problem of coordinating multiple system processes in safety-relevant systems, where 

it is critical that the system exhibit a high degree of predictability even under conditions of failure, 

disturbance, and degradation [57], [58], [62], [63], [64].   

2.1.6.5.   Event Timing 

The timing of events is an important consideration in system design.  The relative offset between two 

events is equal to the real time elapsed between the occurrence of the events.  This can be characterized by 

lower and upper bounds on the offset. 

One significant timing attribute of an event is its periodicity (or recurrence), which is the time T 

elapsed between consecutive instances of the event (i.e., inter-arrival time) (see Figure 4).  Table 1 shows 

the range of possibilities of event periodicity based on the upper and lower bounds of the inter-arrival time.  

The jitter of an event is the difference between the upper and lower bounds of the inter-arrival time (i.e., 

Tmax - Tmin) [58].   

 

 

 

 

 

 

Table 1: Event Periodicity Levels 

Event Periodicity Inter-Arrival Time 

Lower Bound Upper Bound 

Periodic (i.e., fixed rate) Nominal T Nominal T 

Sporadic Rate Constrained Tmin Tmax 

Sporadic  Minimum-Rate Constrained Unbounded Tmax 

Sporadic  Maximum-Rate Constrained Tmin Unbounded 

Aperiodic (i.e., unconstrained/unbounded rate) Unbounded Unbounded 

 

Process latency (or response time) is the time duration between activation and completion of an 

instance of execution of a process.  Latency is characterized by lower and upper bounds.  The difference 

between these is the latency jitter of the process. 

If two logical clocks are nominally periodic with the same period, we may be interested in whether they 

are synchronized or unsynchronized (i.e., asynchronous).  The relative skew between two clocks is the real 

time elapsed from the instant one clock makes a particular state transition (i.e., the count reaches a particular 

value) until the other clock makes the same transition [61].  Two clocks are synchronized if the relative 

Time 

Instances of an Event E 

Inter-Arrival Time T 

Figure 4: Inter-Arrival Time 
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skew has a known upper bound which is much smaller than the period of the clocks. 

2.1.6.6.   Value and Timing Uncertainty 

In digital computer systems there can be various sources and conditions of uncertainty (i.e., unknown 

but possibly bounded) in the duration of operations, the timing of events, and the value and time of data 

items.  From the perspective of processing and communication, the workload and latency of a process can 

vary over time, the latency of a logical process can vary for the same workload (e.g., due to data-dependent 

control flow), different processes performing the same computation can have different latencies, the 

communication delay between processes can vary [57], and the drift rate of clock oscillators can vary [61].  

The execution timing of modern processors can be unpredictable due to advanced features such as cache 

memories, pipelining, branch prediction, out-of-order execution, dynamic scheduling, interrupts, multi-

master arbitration of buses, and the use of multiple direct memory access (DMA) engines [65].  Reference 

[66] offers an overview of the problem of estimating worst-case execution time (WCET). 

Digital computer systems are discrete-value and discrete-time systems [67], [52].  From this perspective, 

uncertainties are primarily due to the sampling and discretization of physical analog quantities, such as 

position, speed, angle, and time. The data item uncertainties in the system can be relative to the real physical 

world (i.e., accuracy) or relative between different data items representing the same quantity (i.e., 

precision) [58].   

Another source of uncertainties, both in terms of accuracy and precision of data items, is finite-precision 

computer arithmetic.  The problem of developing algorithms to perform precise computations using finite-

precision arithmetic is studied in the field of numerical analysis [68].  One concern regarding finite-

precision computer arithmetic is that the computation errors vary with the specific mathematical 

expressions used and the order in which they are evaluated.  Thus, even if two processes compute the same 

function, their results can be different in ways that can be significant for particular applications [69], [70], 

[71].  Hall and Driscoll in [72] provide a list of numerical analysis consideration for safety-relevant systems. 

This issue of value and timing uncertainty is an important aspect in the problem of achieving predictable 

interactions and coordination of multiple system processes in safety-relevant systems.  

2.1.7.   Interfaces 

An interface is a link (or point of interaction) between entities.  The purpose of an interface is to enable 

the exchange of information (i.e., communication) between entities.  These interfacing entities can be 

systems or components, as a system consists of components and interfaces at the inputs, outputs, and 

between components.   

We consider interfacing at the physical and logical levels.  Hardware interfaces are a combination of 

physical and logical level interfaces.  Software interfaces are logical interfaces.  Hardware – software 

interfaces link the logical layer of the hardware with the software. 

The scale and complexity of a communication problem is determined by the physical and logical 

attributes of the entities and what lies between them.  A general communication system must deal with a 

complex set of problems such as physical media, signaling, formatting, synchronization, flow control, 

addressing, error management, and routing [73].  Most component communication problems are simpler 

instances of this general problem.   
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2.1.7.1.   Physical Interfaces 

Interfaces at the physical layer3 deal with the mechanical and electrical characteristics of interacting 

components and the communication medium, including considerations such as power, volume, thermal 

properties, voltage and current levels and timing, signaling rates, signal propagation, electrical interference, 

and others related to the physical environment [73], [74].  These interfaces can range from interconnects 

on integrated circuits [49] and printed circuit boards [75] to cables and connectors for interfacing between 

boards, modules, and cabinets [76].   

2.1.7.2.   Logical Interfaces 

Logical components interact to achieve the larger purpose of the system that contains them.  These 

interactions are exchanges of functional and temporal information in the form of states and events related 

to the data and control flows of the system [57], [58].  In modern systems, the interactions can be highly 

complex with intricate patterns of data and control dependencies between components at all levels of the 

structural hierarchy.  The logical interfaces are critical determinants of safety-related system properties as 

they can be sources of uncertainties and also serve as paths for the propagation of effects of value and 

timing uncertainties.  The dependencies between components must be carefully managed to ensure system-

level predictability even under conditions of failure, degradation, or disturbances. 

Hall and Driscoll in [72] provide a list of considerations for system interfaces and environment in safety-

relevant systems. 

2.1.8.   Functional Modes 

A mode of a system is a distinct operational capability [42].  Modes are high-level states that determine 

lower level states and functionality (i.e., algorithms), including state transitions.  An aircraft system may 

have different available operational modes for different operational mission phases and conditions.  The 

components of a system may also have their own operational modes.  Statecharts are an effective means to 

model the mode transition logic of a system [77]. 

Figure 5 illustrates the basic system modes and transitions.  A system’s functionality may not be required 

at a particular point in time (i.e., there may not be a demand for it).  When there is a demand for it, the 

system must first go through an initialization and startup process to reach a state of operational readiness.  

When required, the system transitions to the operational mode where it may have a number of sub-modes 

and mode transition logic.  When the functionality is no longer needed, the system executes an orderly 

shutdown process.   

In general, this basic mode logic applies to a system as well as its internal components.  An important 

system design problem is the relation between the modes of the system and the modes of the components 

and how to properly coordinate mode transitions of system components.  This system design problem is 

critically important in safety-relevant systems, which must achieve predictability at the system level even 

under conditions of uncertainty about the status of the components due to failures, disturbances, or 

degradations. 

                                                           

 
3 Note that the concept of physical layer here is a subset of  the one used in standard computer communications 

theory. 
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Hall and Driscoll provide a number of considerations for initialization and startup in safety-relevant 

systems [72]. 

 

 

 

 

 

 

 

 

 

 

2.1.9.   Composition 

The purpose (i.e., the goal) of a system is to have a desired (i.e., intended) effect on its environment by 

interacting with it.  In general, this interaction sets up an interdependence (i.e., mutual dependence) relation 

between the system and the environment such that the intended environmental effect is achieved if the 

output of the system satisfies certain assumptions, but the system can only guarantee properties about its 

output if the environment satisfies certain assumptions (see Figure 6).  Thus, the goal of the system is 

achieved if the guarantees by the system are a superset of the assumptions about the system and the 

guarantees by the environment are a superset of the assumptions about the environment.  These assumptions 

and guarantees cover both the physical and logical layers of the system and the environment.  Proper 

operation requires that the system and the environment restrain their physical and logical actions at their 

interfaces to remain within assumed (i.e., hypothesized) bounds.  Physical layer assumptions and guarantees 

concern physical interaction properties (e.g., mechanical and electrical).  Logical layer assumptions and 

guarantees are functional and temporal (i.e., value and time) properties of data flows.   

The goal of a system design is to satisfy required service guarantees.  These can be functional and non-

functional service goals.  Functional goals concern the input-output response and achieving and maintaining 

certain output conditions.  Non-functional goals pertain to the quality of the service in terms of criteria such 

as reliability, availability, integrity, and performance [42], [59]. 
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Figure 5: Basic System Modes 
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The design of a system consists of the specification of the components and the interaction protocols.  

The assume-guarantee model of interaction also applies at this level.  Thus, the system service properties 

are a result of the properties of the components and the properties of the interactions between them and 

with the environment (see Figure 7).  The delivery of system service guarantees requires that the actions of 

the components and the interaction protocols remain within assumed bounds. 

 

 

 

 

 

 

 

 

Composition analysis is central to achieving predictable (i.e., guaranteed or ensured) system behavior 

in safety-relevant systems.  Violation of system-level guarantees is the result of the violation of physical or 

logical assumptions about the environment, the components, or the interaction protocols.  Such violations 

cause unintended (or undesired) interactions whose effects can propagate throughout the system and out to 

the external interface.  Predictable system behavior under conditions of failure, disturbances or degradation 

requires that the system design be able to tolerate a bounded degree of uncertainty about the actions of 

individual elements and the number of elements whose actions are uncertain.   

Hall and Driscoll have provided a number of considerations for system temporal composition and 

determinism [72].  Additional information about assume-guarantee reasoning and the related topic of 

contract-based-design is available from Bate et al. [78] and Benveniste et al. [79]. 
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Figure 6: Assume-Guarantee Model of Interaction between System and Environment 

Figure 7: Assume-Guarantee Relations in System Composition 
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2.2.   System Lifecycle 

This section goes over some of the considerations in the system lifecycle, the high-level design of a 

system, the development lifecycle, and management of the evolution of the system after entry into 

operation.  The system development process is the set of interrelated activities performed to produce a 

system that meets the needs and goals of the stakeholders.   This process should include explicit activities 

to identify the full set of stakeholders, as their needs and goals are the basis for the system requirements. 

The system architecture is the strategy to satisfy the requirements and it is a critical factor in the 

effectiveness of a system throughout its lifecycle.   

2.2.1.   System Lifecycle and Stakeholders 

It is important to take a broad perspective in multiple dimensions when developing a system.  One aspect 

of this is considering the full lifecycle of the system, which covers all the phases in the life of the system 

beginning with the identification of the operational need and ending with disposal after the system is no 

longer needed.  Figure 8 illustrates the phases and periods in the lifecycle of a system [42], [80], [81].  In 

the development period, the operational needs and goals of the stakeholders are identified, system concept 

studies are performed, a conceptual design is selected, necessary technologies are developed, and the system 

is designed.  The pre-initial operational capability period overlaps with the development period and 

includes the production and manufacturing phase of the system, deployment to the operational field, and 

training of operators and maintainers of the system.  In the operational use and refinement period, the 

system sees operational use while production and deployment of the system continues and the system is 

refined based on needs identified during operation.  In the retirement period, the system is no longer refined 

or produced, but operational use continues while instances or parts of it are decommissioned and disposed 

of.   

Another area where taking a broad perspective is important is in regards to the stakeholders.  A system 

stakeholder is an individual or group who has an interest in some aspect of the system lifecycle because 

they are affected by or accountable for the outcome.  Stakeholders can be internal or external to the 

organization(s) directly involved in the lifecycle of the system.  Examples of stakeholders include owners, 

developers, manufacturers, trainers, operators, maintainers, victims (if there is an accident), and 

government regulators.  Every stakeholder has a different perspective on the system lifecycle and different 

needs and goals.  Stakeholder identification, analysis, and management is crucially important because their 

needs, goals, values, capabilities, and constraints influence every aspect of the system lifecycle [81], [82].  

The system is intended to satisfy the needs of the stakeholders.  The success or failure of the system will 

be decided by them. 
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2.2.2.   Operational Needs Analysis and Concept Development 

The origin of an engineered system is a perceived need (or opportunity), either current or projected, in 

the operational domain of an organization.  The purpose of an operational needs analysis is to identify and 

characterize operational capability gaps (i.e., deficiencies) relative to the goals and values of the 

stakeholders.   Operational needs can arise for various reasons such as change in goals, conditions (e.g., 

product obsolescence, change in the operational environment), or regulations, and availability of new or 

more effective capabilities enabled by new technology.  Note that the broader notion of system, as a set of 

interacting elements with a purpose, applies to organizational operations.  Thus we will refer to this as the 

operations system, which may have technological (e.g., machines and tools) and human elements with 

machine-machine, human-machine, and human-human interactions within the system and between the 

system and its environment.   

A number of tools can be used for the needs analysis including operational tests, experiments, and 

modeling and simulation.  Qualitatively and quantitatively indices (or measures) of performance (IoP) 

relevant to the goals and values of the stakeholders can be used to measure operational effectiveness and 

efficiency.  Examples of these include operational cost, delays, and processing capacity, as well as quality 

measures such as safety, availability, reliability, and flexibility.  Systems-based approaches can be 

leveraged in assessments of operations systems.  Examples of these approaches include hard systems 

thinking, system dynamics, and soft systems methodology [83].  Gibson’s systems analysis approach is 

another means of gaining insight into operational problems, as well as developing candidate solutions [84].   

Systems Engineering handbooks by NASA and MITRE offer additional approaches and guidelines for the 

assessment of operational needs [81], [85]. 
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The next part of the operational needs analysis is determining whether a technically feasible and cost 

effective solution exists.  This involves the exploration of the problem and solution spaces to identify and 

develop a plausible concept of operations (ConOps), which is a description of an envisioned system and 

operations that satisfy the needs of the stakeholders.  Kossiakoff et al. [86] describe a structured approach 

for concept development.  IEEE Standard 1362-1998 is a guide for documenting ConOPs [87].  A fully 

developed ConOps considers the needs of all the stakeholder groups and covers the full lifecycle of a system 

from development to retirement and disposition [42].  A ConOps describes operational scenarios in the 

environment of a system of interest (SOI) and serves as the basis for defining the boundary and required 

major capabilities and attributes of the SOI.  Domain knowledge, insight into the stakeholder needs, 

awareness of technology and capability options, and creativity are critical factors in the development of an 

effective ConOps.  A concept of operations may also be referred to as a concept of execution. 

2.2.3.   System Requirements  

The system requirements capture the needs and goals of the stakeholders for the SOI.  As the purpose 

of a system is to achieve a desired effect on its environment and an overall performance level in the 

operations system, the SOI requirements are primarily statements about phenomena in the environment in 

the form of monitored inputs and controlled outputs by the SOI.  Part of the system development effort and 

operations system analysis is to determine the SOI inputs and outputs and their relations such that the 

desired overall operational goals are achieved.  The effectiveness of the requirements in realizing the 

operational goals is dependent on known properties and assumptions (i.e., hypotheses) about environmental 

processes.   

There are a number of ways to structure the system requirements.  The three basic categories of 

requirements are functional (i.e., behavior in interaction with the environment), non-functional (i.e., 

attributes, qualities), and design constraints (i.e., limits on the design of SOI) [88].  Examples of non-

functional system requirements include reliability, maintainability, usability, safety, availability, flexibility, 

producibility, testability, disposability, and performance (e.g., throughput, reaction time, size, speed, 

weight).   

Buede describes a thorough and insightful category structure for requirements in which, for each system 

lifecycle phase, there are input/output, technology and system-wide, trade-off, and qualification 

requirements [42].  Input/output requirements include descriptions of valid inputs and outputs, functions 

(i.e., input-output relations), and external interface constraints.  The technology and system-wide 

requirements are constraints and performance thresholds on physical system resources, including 

technologies to be used (or not used), qualities (e.g., reliability, availability, safety, maintainability), and 

lifecycle cost and schedule.  The trade-off category of requirements are decision algorithms used for 

comparing and selecting among design alternatives relative to performance and cost.  Trade space 

exploration and decision making use the trade-off requirements combined with an objectives hierarchy, 

which is a hierarchical structure of performance and cost objectives expressed in terms of qualitative and 

quantitative figures of merit (FoM) with relative weights, valid ranges, and utility (i.e., value) curves as 

determined by the stakeholders.  The qualification requirements specify the plans for validation, 

verification, and acceptance of the system by the stakeholders and the data to be gathered in support of 

assessments of quality for the developed system.   

Requirements engineering is the discipline concerned with the elicitation, evaluation, specification, 

and quality assurance of requirements [59], [85].  The system requirements are generated in an iterative 

process of interaction with stakeholders.  As illustrated in Figure 9, requirements engineering operates in a 
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cyclic process of exploration and discovery in which additional requirements are identified and generated 

based on new domain knowledge, followed by a quality assessment activity to ensure the effectiveness of 

the revised requirements set.  Assurance of requirements quality is about detecting and correcting defects 

by means of inspections, reviews, simulations, and formal analysis.  Requirements validation activities 

check the requirements set against desired extrinsic properties aimed at ensuring completeness and 

adequacy, while requirement verification activities ensure desired intrinsic properties such as consistency, 

unambiguity, traceability, feasibility, and verifiability (i.e., be able to check that the developed SOI meets 

the requirements).  Requirements engineering is also responsible for monitoring the stakeholder needs to 

identify changes over the lifecycle of the system and generate suitable requirements as the basis for 

refinement and evolution of the system. 

 

 

 

 

 

 

 

 

 

Additional information on requirements engineering is available from many other sources.  Hall and 

Driscoll have a list of questions to ask regarding system requirements [72].  The FAA has published a 

Requirements Engineering Management Handbook [89].  The following sources also have useful 

information on requirements engineering: [59], [81], [85], [86], [90], [91], and [92]. 

2.2.4.   System Architecture 

The system requirements are the goals to be achieved by the system, and the system architecture is the 

high-level strategy to achieve those goals.  The IEEE defines architecture as “the fundamental organization 

of a system embodied in its components, their relationships to each other, and to the environment, and the 

principles guiding its design and evolution” [93].  As a set of interacting components whose properties are 

integrated through the interactions, the architecture provides the link between the system assumptions and 

the required system-level properties (i.e., emergent holistic guarantees).  The architecture describes not only 

how the functional requirements are satisfied, but also the non-functional quality requirements [94].  The 

architecture must account for the full system lifecycle, from development to disposal [42].  The architectural 

description should include the structural relationships as well as behavioral aspects of the components and 

their interactions to ensure that the system will work as intended [95].   

The architecture also serves as a means to reduce the complexity of a system design problem.  A design 
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Figure 9: Basic Model of Requirements Engineering Process 
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process consists of four basic activities: abstraction (i.e., generalization and omission of irrelevant details); 

decomposition (i.e., hierarchy; partitioning; reduction of an object into smaller and simpler parts); 

elaboration (i.e., adding detail, either structural or behavioral (functional or temporal)); and decision 

making (i.e., selection among alternatives) [96].  Decomposition can be horizontal (i.e., breakdown into 

multiple modules at the same level of abstraction) or vertical (i.e., breakdown into multiple modules at 

sequentially lower levels of abstraction).  With vertical decomposition (also referred to as layering), every 

layer receives a cohesive set of services from the lower substrate layers and provides more abstract services 

to the layers above [97], [98].  In addition to abstraction and decomposition, other classical complexity 

reduction techniques include regularity (i.e., decomposition into regular structures with similar 

components), modularity (i.e., decomposition into components with particular well-defined functions and 

interfaces), and locality (i.e., information hiding and use of mainly local variables) [49].  Reusable 

architectural patterns can also be used to solve recurring design problems and manage the complexity of a 

system [99], [100].    

One approach to develop a system architecture is to decompose the problem into the development of a 

functional architecture and a physical architecture which are combined as an allocated architecture [42].  

The functional (or logical) architecture is an arrangement of system functions, their decompositions, and 

interfaces, and the definition of control and data flows at internal and external functional interfaces.  The 

physical architecture is an arrangement of physical resources for computation and communication, their 

decompositions, and internal and external interfaces and their physical constraints.  The allocated 

architecture is a complete system architecture with the mapping of functions to physical resources that 

implement them.  In the case of a computer system, the functional architecture could be an application-

dependent software architecture and the physical architecture could be a computing platform consisting of 

hardware resources and an operating system.  The advantage of this approach is that the design problem is 

decomposed into major manageable parts whose development can proceed concurrently, though not 

completely independent as there are relations between the functional and physical architectures which must 

be actively managed during the development process. 

Architecture design can be viewed as a decision-making process [101], [91], [102], [103].  These 

decisions are broad in scope and concern system-level properties captured in the requirements.  

Architectural decisions also pertain to guiding principles for development and evolution to ensure system-

wide conceptual integrity over time [103], [102].  At each level of architecture development, decisions are 

made about how requirements will be satisfied, and these decisions result in particular mappings of 

requirements to the next level in the hierarchical decomposition.  These architectural decisions are often 

made under uncertainty about operational conditions and about the implications of the decisions as the 

system development advances.  Experienced engineering judgment is required to mitigate the risks to the 

development effort and the operational effectiveness of the system.   

Bass, Clemens, and Kazman list a number of advantages of architectures, particularly software 

architectures, including: predicting system qualities, enhancing communication with stakeholders, defining 

constraints on implementation, allowing incorporation of independently developed components, enabling 

reasoning about and managing change, and influencing organizational structure [94]. 

Additional information and insight into system and software architectures is available from Maier and 

Rechtin [104]; Bass, Clemens, and Kazman [94]; Buede [42]; NASA Systems Engineering Handbook [81]; 

and the Guide to the Systems Engineering Body of Knowledge [105].  Cleland-Huang et al. describe the 

relation between software requirements and architecture [106].  Koopman has developed a taxonomy of 

decomposition strategies [107].   
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2.2.5.   Development Lifecycle 

The need to develop a system has its origin in identified operational deficiencies and/or awareness on 

the part of the stakeholders about technological opportunities to enhance operational performance with the 

introduction of new or more sophisticated capabilities.  As described above, the path to realizing this 

potential operational improvement begins with an analysis of operational needs and the development of an 

operational concept.  After this, the boundaries for the system of interest (SOI) are defined and the system 

requirements are generated describing the interaction between the SOI and its environment to achieve the 

desired operational outcomes.   

The system requirements are, in effect, the definition of a technical engineering design problem to be 

solved and stated in terms of functional, performance, and quality goals and constraints.  The complexity 

of a technical problem can vary depending on the number and diversity of stakeholders and their needs. 

The solution to a technical problem can range from a trivial one-possible-solution exercise to highly 

complex and multi-dimensional problems with multiple possible solutions and requiring active engagement 

by the stakeholders throughout the design process to ensure a satisfactory solution.  This later case is the 

most general and most relevant to modern complex systems. 

Solving complex system design problems involves a combination of rational analytic approaches (i.e., 

science) and experience-based intuition (i.e., judgment, design “art”) [58], [104].  Gibson’s Systems 

Analysis methodology offers insight and guidance into general goal-centered analysis and synthesis for 

complex systems problems [84].  This requires the definition of performance criteria, generation of 

alternative solutions, and ranking and selection of alternatives based on their performance.  In general, 

arriving at a complete system solution is fundamentally an iterative and recursive decision-rich analysis 

process of decomposition that generates a hierarchical tree structure of simpler but interrelated sub-

problems and continues along each branch until sub-problems are reached which can be solved whole, at 

which point the lower-level solutions are composed along each branch until the top-level problem is solved.  

Iteration is required in complex-problem solving to correct decisions that lead to inadequate results or 

unintended consequences.  From a structural system perspective, this problem decomposition corresponds 

to components, interfaces, and interactions at different levels of abstraction.  Thus, the design problem 

solution is a hierarchical structure of decisions ranging in scope from global system-level decisions to low-

level decisions about components and interfaces. 

Although it is known that the final complex-system solution will have hierarchical structure, there is no 

deterministic process by which to arrive at the final satisfactory solution.  There are at least two reasons for 

this.  First, the development of requirements is an iterative process of discovering and refining the 

stakeholder needs.  In general, the basic needs can be derived from the operational concept, but the 

generation of a comprehensive and accurate set of requirements is complicated by the fact that the priorities 

of the stakeholders change over time and the IKIWISI (I’ll-know-it-when-I-see-it) syndrome, which means 

that the stakeholders must interact with prototypes or early versions of the system in order to discover their 

requirements [108].  The second reason is that complex, interdependent, and potentially conflicting system 

requirements can lead to significant uncertainty about the implications of high-level decisions.  This 

requires an iterative process to refine the requirements and discover a satisfactory solution.  The design of 

complex systems is a wicked problem as it exhibits the characteristics that the problem is uniquely 

dependent on the specific characteristics of the environment, the problem cannot be defined independently 

of the solution, and there are no clear rules for when a final solution has been reached [58].  The complex-

system solution must seek a balance between conflicting requirements, especially performance and quality 

requirements.  Thus, there is significant degree of subjectivity and uncertainty in solving complex system 
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problems.  Also, usually there is no single satisfactory solution, there are multiple decision paths (i.e., 

sequences) to arrive at a solution, and most decisions have the potential for unintended consequences.  

Complex systems typically fail because of unintended and unanticipated consequences of requirements and 

design decisions.   

The decision to develop a system is based on cost and benefit considerations.  The costs are the funds 

and time allocated to develop the system.  The benefits are related to the degree to which the technical 

performance of the acquired system meets the needs and expectations of the stakeholders, while complying 

with applicable standards, guidance, regulations, and policies.  These cost, schedule, and technical 

performance considerations are assessed based on estimates (i.e., models) of the acquisition processes.  As 

with all models, these estimates are based on assumptions about required resources and the effectiveness 

and efficiency of the development process.  Thus, risks (i.e., uncertainties and related potential undesired 

consequences) on attainment of cost, schedule, and performance goals must also be considered in 

development feasibility analyses.   

A structured and managed development process is needed to ensure a successful development project.  

Figure 10 illustrates a simple high-level model of a system development project in which cost and time are 

“consumed” to transform the needs of the stakeholders into a system with the required level of technical 

performance.  For this, a Development System of people, technology, and processes (e.g., methodologies, 

techniques, and tools) with certain level of capability and maturity [109] is engaged to develop the SOI.  

The relation between project cost, schedule, and technical performance is determined, in part, by the 

complexity of the technical problem and the capability and maturity of the development system.  The 

management of a development project includes activities of planning, coordination, measuring, monitoring, 

controlling, and status reporting to stakeholders [91].  The project management function can be divided into 

two major sub-functions: project control and systems engineering [81].  Project control is responsible for 

activities such as planning and management of the schedule, system configuration, resources, and 

acquisition.  Systems engineering is responsible for system design, product realization, and technical 

management, including planning, control, assessment, and decision analysis.   
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Risk management is a project management process responsible for the identification, assessment, and 

generation of mitigation actions against cost, schedule, or technical performance risks.  The solution of 

unexpected problems during the development process typically requires tradeoffs among cost, schedule, 

and technical performance.  The overall system development process should be managed to ensure that 

risks diminish and are minimized as the development advances toward completion.  For safety-relevant 

systems, it is critically important that the technical performance of the developed system satisfy the 

requirements with high confidence (i.e., low uncertainty).  Two important risk considerations in the 

development of a system are the readiness (i.e., maturity) level of the technologies introduced in the system 

(i.e., Technology Readiness Level, TRL) and risks associated with software development, which are caused 

by factors such as inadequate understanding of operational requirements and system interfaces, and lack of 

sufficient qualified personnel [92].   

Feiler has identified two main points of concern in the development of embedded systems [110].  One 

of these problems is the potential for multiple truths in the results of system analyses.  Loose coupling 

among system development teams and between development and analysis activities can lead to 

inconsistencies between models of different aspects of a system and also between the system being 

developed and the one captured in analyses.  The second main problem of concern in the development is 

the introduction of errors early in the development process and their discovery much later during the 

integration of components or system-level testing.  This is a concern because, in general, the cost of 

correcting errors increases exponentially with the distance in the development process between the point 

where they are introduced and the point where they are identified [110].  This is because both the breadth 

and depth of implications of design decisions increases as the development process advances.  One 

significant source of errors and inconsistencies are mismatched assumptions about different aspects of a 

system.  Assumptions of different sorts are leveraged to simplify and bound the design and analyses efforts, 

but for complex systems, successful development critically depends on the use of a consistent set of 

assumptions by everyone involved.  Another source of development errors is the inability to identify and 

to understand all the implications of design assumptions and decisions.  The difficulty in doing a thorough 

and precise examination increases with the complexity of the system. 

Additional information and insight into the system development lifecycle, including risk management, 

is available from multiple sources [92], [81], [86], [111], [91], [105], [112], [113].  Information on readiness 

levels for technology, integration, and systems is available from [92], [114], [115], [116].  Information on 

formal contracts for systems design is available from [79].  Information on decision analysis is available 

from [42] and [81].  Hall and Driscoll have checklists for configuration management and organizational 

factors [72].  Goossen and Buster recently completed a study that identifies issues and makes 

recommendations to enhance the state-of-the-practice in regulatory compliance for avionics development 

in multi-tier supplier networks [117].   

2.2.6.   Refinement and Evolution 

The requirements and design of a system is based on assumptions, expectations, and best understanding 

of stakeholder needs and the current and future environment in which the system will operate.  For a 

complex system with complex requirements and design, perfection is unattainable and there are no means 

to show with complete certainty that a fixed final design will meet the stakeholder needs over the full system 

lifecycle.  Instead, the decision to transition to production and deployment is based on an assessment of 

whether a satisfactory level of technical performance and expected lifecycle costs has been achieved and 

the operational impacts of any remaining shortcomings can be accepted as-is or adequately mitigated.   
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One way to manage initial development deficiencies or limitations and future changes in stakeholder 

needs is with refinement and evolution of the requirements and design over the system lifecycle.  The 

changes to a system can be anticipated and planned for at the time of initial development, or the changes 

can be due to conditions that were not anticipated during initial development.  System changes can be 

reactive or proactive to correct defects or to enhance technical performance.  The system requirements and 

configuration management processes are critical enablers of post-development design changes by ensuring 

a thorough assessment of impact, feasibility, and implementation.   

Additional information on product refinement and evolution (i.e., upgrades and modernization) is 

available from multiple sources.  The Guide to the Software Engineering Body of Knowledge has extensive 

guidance on requirements change management, software maintenance, and configuration management [91].  

Lamsweerde has insightful information on requirements change control and traceability management [59].  

Other sources include [81], [92], [105], [86], [111], [113], [80], and [118].   

 

2.3.   System Safety 

There are various definitions of safety and related concepts.  Avizienis et al. define safety as “absence 

of catastrophic consequences on the user(s) and the (natural) environment” [23].  NASA uses the definition 

in MIL-STD-882 where safety is defined as “freedom from those conditions that can cause death, injury, 

occupational illness, damage to or loss of equipment or property, or damage to the (natural) environment” 

[119], [120].  Leveson defines safety as “freedom from accidents or losses” [34].  Ericson offers several 

definitions of safety, including “the state of being safe”, where safe is defined as “the condition of being 

protected from danger, mishaps, or other undesirable consequences” [121].  Definitions of an accident 

include “an undesired and unplanned (but not necessarily unexpected) event that results in (at least) a 

specified level of loss” [34], and “an unplanned event, or events, that results in an outcome culminating in 

death, injury, damage, harm, and/or loss” [121].  MIL-STD-882 defines a mishap as “an event or series of 

events resulting in unintentional death, injury, occupational illness, damage to or loss of equipment or 

property, or damage to the (natural) environment” [120].  So, MIL-STD-882 equates mishap with accident.  

The FAA uses slightly different definitions in the context of aviation safety, where mishap is “a source of 

irritation, annoyance, grievance, nuisance, vexation, mortification … a minor accident”; incident is “an 

unplanned event that could have resulted in an accident, or did result in minor damage”; and accident is 

defined as “an unplanned fortuitous event that results in harm, i.e., loss, fatality, injury, system loss” [122].  

Based on these definitions, safety is concerned with events or conditions with various degrees of severity 

in terms of loss or damage to people, property, or the natural environment.  Henceforth, we will refer to 

these safety-relevant events or conditions as mishaps.   
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It is generally impossible in the real world to guarantee the absence of mishaps.  Thus, safety is better 

defined as “the state in which risk is acceptable”, where risk is defined as “the combination of the frequency 

(or likelihood) of an occurrence and its associated level of severity” [25].  This risk of mishaps is known as 

safety risk.  Figure 11 illustrates the relation between the risks of events and the boundary risk, which is 

the upper limit of acceptable risk.  From the perspective of designing a system, the boundary risk is the 

maximum allowed residual risk when the system is in operation.  The acceptable risk level varies with the 

needs and values of individuals and societies, as well as the practicalities and cost of achieving a particular 

level of risk (i.e., it is the result of implicit or explicit decisions based on cost-benefit assessment) [123].  In 

general, the boundary risk defines an inverse relation between the likelihood (or frequency) and severity of 

mishaps.  Note that the uncertainty about future occurrences must be commensurate with the required upper 

bound on the likelihood (or probability) of an event.  The lower the required probability of an event, the 

higher the certainty (i.e., confidence) must be that the event will not occur.   

The concepts of safety and safety risk are assessed based on a model of a system, defined previously as 

a set of interacting components with a purpose.  As safety pertains to physical damage, the system in 

question is a physical operations system with human and/or technological components (e.g., machines and 

tools) interacting with each other and with a physical environment.  Mishaps are the result of a chain of 

causality that extends from root (i.e., initiating) causes to mishaps.  A hazard is “a condition, event, or 

circumstance that could lead to or contribute to an unplanned or undesired event” [122], where the relevant 

unplanned or undesired event here is a mishap.  Ericson defines a hazard as “an existing system state that 

is dormant, but which has the potential to result in a mishap when the inactive hazard state components are 

actualized” [121].  In general, other conditions in the system or the environment are necessary for the 

activation of a hazard (i.e., the propagation of effects in the form of a chain of events) and the occurrence 

of a mishap.  Hazards are defined with respect to a physical operational system and its environment.  

Hazards are not necessarily root causes but can be intermediate conditions in a causal chain.  The 

identification of hazards is the result of decisions based on multiple factors, some of which may be 

subjective, including the ability to describe the hazards clearly and concisely, allocate responsibility for the 

hazards in the context of a system development or sustainment process, and effectively manage safety 
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engineering activities [124].  The selection and definition of hazards is also based on considerations of 

observability and controllability of safety-relevant events or conditions.  The severity of a hazard is the 

worst-case possible mishap what could result when other conditions are at their most unfavorable [34].  The 

safety risk of a hazard is the product of the hazard severity, likelihood of occurring, exposure (i.e., 

duration), and likelihood that the hazard leads to a mishap.  The exposure condition is a critical risk factor 

as the longer a hazard remains present, the more likely that other required conditions will happen (i.e., time 

coincidence) and trigger a mishap.   

The risk of a particular mishap can be mitigated by manipulating its causal chain to reduce the frequency 

of the mishap, its severity, or both (see event E in Figure 11).  The mishap model can be reduced to a 

sequence of three elements: hazards  mechanisms  mishap, where mechanisms represent the means 

of propagation of hazards effects.  Based on such a mishap model, there are four categories of risk mitigation 

actions [34].  The most effective risk mitigation action is hazard elimination, which results in an inherently 

safer system.  This is also known as design for minimum risk [122].  The next risk mitigation alternative is 

hazard reduction, which reduces the likelihood of a hazard by increasing controllability of the system 

state, introducing barriers to prevent the coincidence of reinforcing hazardous conditions, and making a 

system more robust to prevent individual hazards from occurring.   Hazard control can be achieved by 

reducing exposure and by containment of effects by passive means or by reactive means involving detection 

and activation of suitable mechanisms to limit the propagation of effects.  Hazard reduction and control 

involve the incorporation of passive or automatic technological devices to enhance safety by and providing 

warnings in case of unsafe conditions.  If this is not possible or practical, the next option is to introduce 

personnel procedures and training to prevent and manage hazards [122].  The last risk mitigation alternative 

is damage minimization by ensuring that potential victims of a mishap are protected from its effects (e.g., 

by keeping non-involved workers or the public away, or by operating in remote environments such as a 

desert).   

The safety threats are the set of physical processes or phenomena that are causes of system hazards.  

Endogenous hazards are caused by factors inherent to the system, such as design defects or operational 

procedures [34].  Exogenous hazards are caused by phenomena external to the system, such as lightning.  

The set of relevant threats is determined based on knowledge of the domain, past experience, standards, or 

as required per regulations or policies.   

The assessment of safety risk in the physical operations system is based on models of the system and 

assumptions about operating conditions.  The system models must take into account epistemic 

uncertainties due to modeling abstractions and lack of knowledge about the system and its environment, 

and also aleatoric uncertainties due to inherent randomness or variation in the physical system and the 

environment.  In general, the uncertainties in a computer-based system are primarily due to its complexity, 

which is a function of the number and variety of components and the intricacy of their interactions.   

There are two basic types of safety analyses.  Inductive analyses begin with the hazards and proceed 

forward along the chains of causality toward the mishaps.  Deductive analyses begin with mishaps and 

proceed backward toward the hazards.  These complementary analyses can be used to develop insight into 

the dependency structure and the hazard-effects propagation mechanisms of a system.   

Safety analysis can be qualitative (i.e., subjective and non-numerical) and quantitative (i.e., applying 

mathematical methods), with qualitative analyses performed early on in the development process when the 

system exists mostly as a concept or high level abstraction, and quantitative analyses performed later when 

the design is sufficiently refined to use reasonably accurate quantitative measures.  A safety assessment 
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must include an examination of confidence in the results (i.e., the claims) to ensure their validity based on 

the methods, tools, and techniques used, the supporting arguments, and the available data (i.e., evidence), 

which itself can be a mix of qualitative or quantitative items.   

The safety goal in the design of an operations system is to ensure that the safety risk does not exceed 

the acceptable boundary risk.  As illustrated in Figure 11, given the severity S of a possible mishap, the 

boundary risk determines the maximum acceptable frequency (or likelihood) F.  Using deductive analyses, 

it is then possible to allocate risk (i.e., allowed events and frequency) to the various elements in the 

operations system.   

 

 

 

 

 

As illustrated in Figure 12, the operations system, where accidents can happen and operational safety 

risk is assessed, consists of a number of subsystems (SS) including our computer-based system of interest 

(SOI).  The SOI requirements, including functional, non-functional, and design constraints, are defined 

taking into consideration the contribution of the SOI to safety risk in the operations system.  Henceforth it 

is assumed that the intended (though not necessarily the actual) SOI functional and performance 

requirements are safe in the sense that the SOI will not cause a mishap if its delivered service is in 

compliance with the intended requirements.  SOI safety then is about (service) failure events in which the 

SOI fails to meet its intended service and fails to deliver service or delivers an unintended service (i.e., 

the delivered service deviates from the intended one).  An SOI failure is a hazard in the operations system.  

The non-functional safety attributes (or qualities) of the SOI capture the safety risk requirements covering 

the failure modes (i.e., the hazards) and maximum frequency of occurrence for each.  As illustrated in 

Figure 13, the system safety design problem is how to design the SOI to deliver the required functions with 

the specified safety-related quality attributes under stated threat conditions.  The threats are the causes of 

SOI failures and can be endogenous or exogenous to the SOI.  As stated previously, the system architecture 

is the high-level strategy to achieve the goals of the system (i.e., the requirements).  These three concepts 

of system architectures, safety-relevant qualities, and safety-relevant threats will be examined further in the 

future sections of the design guide.   

Additional information on safety, system safety, risk, and safety-relevant system properties for systems 

and software is available from the sources referenced above as well as the following documents: [28], [125], 

[126], [127], [128], [129], [130], and [131]. 
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3.   Final Remarks 

This document presented an overview of system design, lifecycle, and safety.  The document is intended 

to be part of larger design guide for safety-relevant computer-based systems.  The next report in this series 

will address the topic of system-safety threats. 
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