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PREFACE TO SECOND EDITION 

This study of map projections is intended to be useful to both the 
reader interested in the philosophy or history of the projections and the 
reader desiring the mathematics. Under each of the sixteen r¥ojections 
described, the nonmathematical phases are presented first, YTithout in­
terruption by formulas. They are followed by the formulas r.nd tables, 
which the first type of reader may skip entirely to pass to the non­
mathematical discussion of the next projection. Even with the mathe­
matics, there are almost no derivations, very little calculus, and no 
complex variables or matrices. The emphasis is on desc:--ibing the 
characteristics of the projection and how it is used. 

This bulletin is also designed so that the user can turn dire~tly to the 
desired projection, without reading any other section, in order to study 
the projection under consideration. However, the list of synbols may 
be needed in any case, and the random-access feature will be enhanced 
by a general understanding of the concepts of projections and distor­
tion. As a result of this intent, there is some repetition which will be ap­
parent as the book is read sequentially. 

Many of the formulas and much of the history and general discussion 
are adapted from a source manuscript I prepared shortly before joining 
the U.S. Geological Survey. The relationship of the projecthns to the 
Survey has been incorporated as a result of the generous cooperation of 
several Survey personnel. These include Alden P. Colvocoresses, 
William J. Jones, Clark H. Cramer, Marlys K. Brownlee, Tau Rho 
Alpha, Raymond M. Batson, William H. Chapman, Atef .A • Elassal, 
Douglas M. Kinney (ret.), George Y. G. Lee, Jack P. Minta (ret.), and 
John F. W aananen. Joel L. Morrison of the University of Wiscon­
sin/Madison and Allen J. Pope of the National Ocean Survey also made 
many helpful comments. 

Many of the inverse formulas, and a few others, have been derived in 
conjunction with this study. Many of the formulas may be found in 
other sources; however, many, especially inverse formulaf:, are fre­
quently omitted or are included in more cumbersome form elsewhere. 
All formulas adapted from other sources have been tested for accuracy. 

For the more complicated projections, equations are given in the 
order of usage. Otherwise, major equations are given first, followed by 
subordinate equations. When an equation has been given previously, it 
is repeated with the original equation number, to avoid the need to leaf 
back and forth. A compromise in this philosophy is the placing of 
numerical examples in appendix A. It was felt that placing these with 
the formulas would only add to the difficulty of reading through the 
mathematical sections. 

III 



IV 

The need for a working manual of this type has led to an uneroectedly 
early exhausting of the supply of the first edition of this bulletin. In 
this new edition there are minor revisions and corrections noted to 
date. These primarily consist of corrections to equations (15-10) on 
p. 129 and (20-22) on p. 204 and replacement of the inverse van der 
Grinten algorithm on p. 215-216 with that developed by Rubincam. 
The former algorithm is also accurate, but very cumbersome. In addi­
tion, historical notes have been corrected on p. 23, 144, ana 219. 

Further corrections and comments by users are most welcome. It is 
hoped that this study provides a practical reference for those C'lncerned 
with map projections. 

Reston, Va. 
May 1983 

John P. Snyder 
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SYMBOLS 

If a symbol is not listed here, it is used only briefly and identified near 
the formulas in which it is given. 

Az =azimuth, as an angle measured clockwise from the north. 
a= equatorial radius or semimajor axis of the ellipsoid of 

reference. 
b =polar radius or semiminor axis of the ellipsoid of reference. 
= a(1-fJ = a(1- el)t'l. 

c = great circle distance, as an arc of a circle. 
e = eccentricity of the ellipsoid. 
= (1- bl/ a2)112. 

f= flattening of the ellipsoid. 
h = relative scale factor along a meridian of longitude. 
k = relative scale factor along a parallel of latitude. 
n = cone constant on conic projections, or the ratio of the: angle be­

tween meridians to the true angle, called l in scme other 
references. 

R =radius of the sphere, either actual or that corresp1nding to 
scale of the map. 

S =surface area. 
x =rectangular coordinate: distance to the right of th~ vertical 

line (Y axis) passing through the origin or center of a projec­
tion (if negative, it is distance to the left). In practice:, a "false" 
x or "false easting" is frequently added to all values of x to 
eliminate negative numbers. 

y = rectangular coordinate: distance above the horizontal line (X 
axis) passing through the origin or center of a projection (if 
negative, it is distance below). In practice, a "false" ?' or "false 
northing" is frequently added to all values of y to eliminate 
negative numbers. 

Z= angular distance from North Pole of latitude cp, or (91° -cp), or 
colatitude. 

z1 =angular distance from North Pole of latitude cp., or (90°- cp1). 

z2 =angular distance from North Pole of latitude c/>2 , or (90°- c/>2). 

In= natural logarithm, or logarithm to base e, where e = 2. 71828. 
8 =angle measured counterclockwise from the central meridian, 

rotating about the center of the latitude circles on a conic or 
polar azimuthal projection, or beginning due south, rotating 
about the center of projection of an oblique or equatorial 
azimuthal projection. 

8' = angle of intersection between meridian and paralleL 

XI 



XII MAP PROJECTIONS USED BY THE USGS 

Symbols-Continued 

A= longitude east of Greenwich (for longitude west of Grr~enwich, 
use a minus sign). 

Ac, =longitude east of Greenwich of the central meridian of the 
map, or of the origin of the rectangular coordinates (for west 
longitude, use a minus sign). If c/> 1 is a pole, Ac, is the longitude 
of the meridian extending down on the map from tl'~ North 
Pole or up from the South Pole. 

A'= transformed longitude measured east along tran~formed 
equator from the north crossing of the Earth's I:quator, 
when graticule is rotated on the Earth. 

p = radius of latitude circle on conic or polar azimuthal projec­
tion, or radius from center on any azimuthal projec~ion. 

cp = north geodetic or geographic latitude (if latitude j s south, 
apply a minus sign). 

c/>0 = middle latitude, or latitude chosen as the origin of r~~ctangu­
lar coordinates for a projection. 

cp' = transformed latitude relative to the new poles and equator 
when the graticule is rotated on the globe. 

cp., c/>z = standard parallels of latitude for projections with two stand­
ard parallels. These are true to scale and free of angular 
distortion. 

cJ>. (without c/>2) =single standard parallel on cylindrical or conic projec­
tions; latitude of central point on azimuthal projections. 

w =maximum angular deformation at a given point on a projec­
tion. 

1. All angles are assumed to be in radians, unless the degree symbol (0
) is used. 

2. Unless there is a note to the contrary, and if the expression for which the arctan is sought has a numerator over a 
denominator, the formulas in which arctan is required (usually to obtain a longitude) are so arranged that the For· 
tran ATAN2 function should be used. For hand calculators and computers with the arctan function but not ATAN2, 
the following conditions must be added to the limitations listed with the formulas: 

For arctan (A/B), the arctan is normally given as an angle between -90° and + 90°, or between - w/2 and + w/2. If 
B is negative, add ± 180° or ± w to the initial arctan, where the ± takes the sign of A, or if A is zer1, the ± arbi­
trarily takes a + sign. If B is zero, the arctan is ± 90° or ± w/2, taking the sign of A. Conditions not r<>.solved by the 
ATAN2 function, but requiring adjustment for almost any program, are as follows: 
(1) If A and B are both zero, the arctan is indeterminate, but may normally be given an arbitrary value of 0 or of~. 

depending on the projection, and 
(2) If A orB is infinite, the arctan is ± 90° (or ± w/2) or 0, respectively, the sign depending on othe,. conditions. 

In any case, the final longitude should be adjusted, if necessary, so that it is an angle between - 18('0 (or - w) and 
+ 180° (or + w). This is done by adding or subtracting multiples of 360° (or 2.,.-) as required. 

B 
3. Where division is involved, most equations are given in the form A =BIG rather than A= C. This facilitates type-

setting, and it also is a convenient form for conversion to Fortran programing. 



AGS 
GRS 
HOM 
IMC 
IMW 
IUGG 
NASA 
NGS 
SOM 
SPCS 
UPS 
USC&GS 
USGS 
UTM 
WGS 

ACRONYMS 

American Geographical Society 
Geodetic Reference System 
Hotine (form of ellipsoidal) Oblique Mercato~ 
International Map Committee 
International Map of the World 
International Union of Geodesy and Geophysics 
National Aeronautics and Space Administration 
National Geographic Society 
Space Oblique Mercator 
State Plane Coordinate System 
Universal Polar Stereographic 
United States Coast and Geodetic Survey 
United States Geological Survey 
Universal Transverse Mercator 
World Geodetic System 

Some acronyms are not listed, since the full name is used throughout this bulletin. 
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MAP PROJECTIONS 
USED BY THE 

U.S. GEOLOGICAL SURVEY 

By JOHN P. SNYDER 

ABSTRACT 

After decades of using only one map projection, the Polyconic, for its I"lapping pro­
gram, the U.S. Geological Survey (USGS) now uses sixteen of the more comnon map pro­
jections for its published maps. For larger scale maps, including topographic quadrangles 
and the State Base Map Series, conformal projections such as the Transve~se Mercator 
and the Lambert Conformal Conic are used. On these, the shapes of sm1.ll areas are 
shown correctly, but scale is correct only along one or two lines. Equal-are~. projections, 
especially the Albers Equal-Area Conic, and equidistant projections which have correct 
scale along many lines appear in the National Atlas. Other projections, such as the Miller 
Cylindrical and the Van der Grin ten, are chosen occasionally for convenienc,~. sometimes 
making use of existing base maps prepared by others. Some projections treat the Earth 
only as a sphere, others as either ellipsoid or sphere. 

The USGS has also conceived and designed several new projections, hcluding the 
Space Oblique Mercator, the first map projection designed to permit ma"')ping of the 
Earth continuously from a satellite with low distortion. The mapping of extraterrestrial 
bodies has resulted in the use of standard projections in completely new settings. 

With increased computerization, it is important to realize that rectangular coordinates 
for all these projections may be mathematically calculated with formulas which would 
have seemed too complicated in the past, but which now may be programed routinely, if 
clearly delineated with numerical examples. A discussion of appearance, usage, and 
history is given together with both forward and inverse equations for each projection in­
volved. 

INTRODUCTION 

The subject of map projections, either generally or specif~ally, has 
been discussed in thousands of papers and books dating at least from 
the time of the Greek astronomer Claudius Ptolemy (about A.D.150 ), 
and projections are known to have been in use some three centuries 
earlier. Most of the widely used projections date from the 16th to 19th 
centuries, but scores of variations have been developed durin:~ the 20th 
century. Within the past 10 years, there have been several ne"v publica­
tions of widely varying depth and quality devoted exclusiv~ly to the 

1 



2 MAP PROJECTIONS USED BY THE USGS 

subject (Alpha and Gerin, 1978; Hilliard and others, 1978; Le~, 1976; 
Maling, 1973; McDonnell, 1979; Pearson, 1977; Rahman, 1974; 
Richardus and Adler, 1972; Wray, 1974). In 1979, the USGS p•1blished 
Maps for America, a book-length description of its maps (Thompson, 
1979). 

In spite of all this literature, there has been no definitive single 
publication on map projections used by the USGS, the agency r~sponsi­
ble for administering the National Mapping Program. The UrGS has 
relied on map projection treatises published by the former Coast and 
Geodetic Survey (now the National Ocean Survey). These publications 
do not include sufficient detail for all the major projections usei by the 
USGS. A widely used and outstanding treatise of the Coast and Geo­
detic Survey (Deetz and Adams, 1934), last revised in 19~5, only 
touches upon the Transverse Mercator, now a commonly used projec­
tion for preparing maps. Other projections such as the Bipolar Oblique 
Conic Conformal, the Miller Cylindrical, and the Van der Grinten, were 
just being developed, or, if older, were seldom used in 1945. Deetz and 
Adams predated the extensive use of the computer and pocket 
calculator, and, instead, offered extensive tables for plotting projec­
tions with specific parameters. 

Another classic treatise from the Coast and Geodetic Sur,.rey was 
written by Thomas (1952) and is exclusively devoted to the five major 
conformal projections. It emphasizes derivations with a summary of 
formulas and of the history of these projections, and is directed toward 
the skilled technical user. Omitted are tables, graticules, or numerical 
examples. 

In this bulletin, the author undertakes to describe each pr')jection 
which has been used by the USGS sufficiently to permit the skilled 
mathematically oriented cartographer to use the projection in detail. 
The descriptions are also arranged so as to enable a lay pe ... son in­
terested in the subject to learn as much as desired about the pr'nciples 
of these projections without being overwhelmed by mathematical 
detail. Deetz and Adams' work sets an excellent example in this com­
bined approach. 

Since this study is limited to map projections used by the USGS, 
several map projections frequently seen in atlases and geograplty texts 
have been omitted. The general formulas and concepts are usef'll, how­
ever, in studying these other projections. Many tables of rectansmar or 
polar coordinates have been included for conceptual purpm,es. For 
values between points, formulas should be used, rather than interpola­
tion. Other tables list definitive parameters for use in formulas. 

The USGS, soon after its official inception in 1879, apparently chose 
the Polyconic projection for its mapping program. This projection is 
simple to construct and had been promoted by the Survey of th~ Coast, 
as it was then called, since Ferdinand Rudolph Hassler's leadership of 



INTRODUCTION 3 

the early 1800's. The first published USGS topographic "quadrangles," 
or maps bounded by two meridians and two parallels, did not carry a 
projection name, but identification as "Polyconic projection'r w~s added 
to later editions. Tables of coordinates published by the USGS ap­
peared by 1904, and the Polyconic was the only projection mentioned 
by Beaman (1928, p. 167). 

Mappers in the Coast and Geodetic Survey, influenced in turn by 
military and civilian mappers of Europe, established the ~'tate Plane 
Coordinate System in the 1930's. This system involved tte Lambert 
Conformal Conic projection for States of larger east-west extension 
and the Transverse Mercator for States which were longer from north 
to south. In the late 1950's, the USGS began changing q·1adrangles 
from the Polyconic to the projection used in the State Plane Coordinate 
System for the principal State on the map. The USGS also friopted the 
Lambert for its series of State base maps. 

As the variety of maps issued by the USGS increased, a broad range 
of projections became important: The Polar Stereographic for the map 
of Antarctica, the Lambert Azimuthal Equal-Area for maps of the 
Pacific Ocean, and the Albers Equal-Area Conic for National Atlas 
(USGS, 1970) maps of the United States. Several other projections 
have been used for other maps in theNationalAtlas, for tec~onic maps, 
and for grids in the panhandle of Alaska. The mapping of extra­
terrestrial bodies, such as the Moon, Mars, and Mercury, involves old 
projections in a completely new setting. The most recent projection 
promoted by the USGS and perhaps the first to be originatec1 within the 
USGS is the Space Oblique Mercator for continuous mapping using ar­
tificial satellite imagery (Snyder, 1981). 

It is hoped that this study will assist readers to understanc better not 
only the basis for maps issued by the USGS, but also the pri"'lciples and 
formulas for computerization, preparation of new maps, and trans­
ferring of data between maps prepared on different projections. 





MAP PROJECTIONS-GENERAL CONCEPT~ 

1. CHARACTERISTICS OF MAP PROJECTIONS 

The general purpose of map projections and the basic problems en­
countered have been discussed often and well in various books on car­
tography and map projections. (Robinson, Sale, and Mor~ison, 1978; 
Steers, 1970; and Greenhood, 1964, are among recent editions of 
earlier standard references.) It is necessary to mention tl'~ concepts, 
but to do so concisely, although there are some interpretathns and for­
mulas that appear to be unique. 

For almost 500 years, it has been conclusively established that the 
Earth is essentially a sphere, although there were a numbe"" of intellec­
tuals nearly 2,000 years earlier who were convinced of this. Even to the 
scholars who considered the Earth flat, the skies appeared hemispheri­
cal, however. It was established at an early date that attempts to 
prepare a flat map of a surface curving in all directions leads to distor­
tion of one form or another. 

A map projection is a device for producing all or part of a round body 
on a flat sheet. Since this cannot be done without distorthn, the car­
tographer must choose the characteristic which is to be: shown ac­
curately at the expense of others, or a compromise of several char­
acteristics. There is literally an infinite number of ways ir which this 
can be done, and several hundred projections have beer published, 
most of which are rarely used novelties .. Most projections may be 
infinitely varied by choosing different points on the Earth a~ the center 
or as a starting point. 

It cannot be said that there is one "best" projection for mapping. It is 
even risky to claim that one has found the "best" projection for a given 
application, unless the parameters chosen are artificially c-:mstricting. 
Even a carefully constructed globe is not the best map for rr.ost applica­
tions because its scale is by necessity too small. A straight(ldge cannot 
be satisfactorily used for measurement of distance, and it is awkward 
to use in general. 

The characteristics normally considered in choosing a map projection 
are as follows: 

1. A rea. Many map projections are designed to be equal-a'~'"ea, so that 
a coin, for example, on one part of the map covers exactly the same 
area of the actual Earth as the same coin on any other part of the map. 
Shapes, angles, and scale must be distorted on most parts of such a 
map, but there are usually some parts of an equal-area map which are 
designed to retain these characteristics correctly, or very nearly so. 

5 



6 MAP PROJECTIONS USED BY THE USGS 

Less common terms used for equal-area projections are equivalent, 
homolographic, or homalographic (from the Greek homalos or homos 
("same") and graphos ("write")); authalic (from the Greek autos ("s-:~.me") 
and ailos ("area'')), and equiareal. 

2. Shape. Many of the most common and most important projections 
are conformal or orthomorphic (from the Greek orthos or "straight" and 
morphe or "shape"), in that normally the shape of every small feat'1re of 
the map is shown correctly. (On a conformal map of the entire Earth 
there are usually one or more "singular" points at which shape is still 
distorted.) A large landmass must still be shown distorted in fhape, 
even though its small features are shaped correctly. An important 
result of conformality is that relative angles at each point are correct, 
and the local scale in every direction around any one point is con~tant. 
Consequently, meridians intersect parallels at right (90°) angles on a 
conformal projection, just as they do on the Earth. Areas are gen~rally 
enlarged or reduced throughout the map, but they are relativel:T cor­
rect along certain lines, depending on the projection. Nearly all large­
scale maps of the Geological Survey and other mapping agencies 
throughout the world are now prepared on a conformal projection. 

3. Scale. No map projection shows scale correctly throughout the 
map, but there are usually one or more lines on the map along which 
the scale remains true. By choosing the locations of these lines proper­
ly, the scale errors elsewhere may be minimized, although some errors 
may still be large, depending on the size of the area being mapped and 
the projection. Some projections show true scale between one or two 
points and every other point on the map, or along every meridian. They 
are called "equidistant" projections. 

4. Direction. While conformal maps give the relative local dire~~tions 
correctly at any given point, there is one frequently used group of map 
projections, called azimuthal (or zenithal), on which the directions or 
azimuths of all points on the map are shown correctly with resp~ct to 
the center. One of these projections is also equal-area, another i;;- con­
formal, and another is equidistant. There are also projections on which 
directions from two points are correct, or on which directions from all 
points to one or two selected points are correct, but these are rarely 
used. 

5. Special characteristics. Several map projections provide suecial 
characteristics that no other projection provides. On the Mercator pro­
jection, all rhumb lines, or lines of constant direction, are shown as 
straight lines. On the Gnomonic projection, all great circle paths- the 
shortest routes between points on a sphere- are shown as straight 
lines. On the Stereographic, all small circles, as well as great circles, 
are shown as circles on the map. Some newer projections are specially 
designed for satellite mapping. Less useful but mathematically intrigu-
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ing projections have been designed to fit the sphere conformally into a 
square, an ellipse, a triangle, or some other geometric figure. 

6. Method of construction. In the days before ready acc~ss to com­
puters and plotters, ease of construction was of greater importance. 
With the advent of computers and even pocket calculator~.' very com­
plicated formulas can be handled almost as routinely as simple projec­
tions in the past. 

While the above features should ordinarily be considered in choosing 
a map projection, they are not so obvious in recognizing a p~ojection. In 
fact, if the region shown on a map is not much larger thar the United 
States, for example, even a trained eye cannot often distinguish 
whether the map is equal-area or conformal. It is necessary to make 
measurements to detect small differences in spacing or location of 
meridians and parallels, or to make other tests. The type of construc­
tion of the map projection is more easily recognized with e;'"perience, if 
the projection falls into one of the common categories. 

There are three- types of developable1 surfaces onto whicl' most of the 
map projections used by the USGS are at least partially gf~ometrically 
projected. They are the cylinder, the cone, and the plane. Actually all 
three are variations of the cone. A cylinder is a limiting form of a cone 
with an increasingly sharp point or apex. As the cone becc~es flatter, 
its limit is a plane. 

If a cylinder is wrapped around the globe representing the Earth, so 
that its surface touches the Equator throughout its circumference, the 
meridians of longitude may be projected onto the cylinder as equidis­
tant straight lines perpendicular to the Equator, and the parallels of 
latitude marked as lines parallel to the Equator, around the cir­
cumference of the cylinder and mathematically spaced for certain 
characteristics. When the cylinder is cut along some meridian and 
unrolled, a cylindrical projection with straight meridians and straight 
parallels results (see fig. 1). The Mercator projection is the best-known 
example. 

If a cone is placed over the globe, with its peak or apE:x along the 
polar axis of the Earth and with the surface of the cone touching the 
globe along some particular parallel of latitude, a conic (or conical) pro­
jection can be produced. This time the meridians are projected onto the 
cone as equidistant straight lines radiating from the ap~x, and the 
parallels are marked as lines around the circumference of the cone in 
planes perpendicular to the Earth's axis, spaced for the desired 
characteristics. When the cone is cut along a meridian, unrolled, and 
laid flat, the meridians remain straight radiating lines, but the parallels 
are now circular arcs centered on the apex. The angles between meri­
dians are shown smaller than the true angles. 

1 A developable surface is one that can be transformed to a plane without distortion. 
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Regular Cylindrical Regular Coric 

Polar Azimunal 
(plane) 

Oblique Azimuttal 
(plane) 

FIGURE 1.-Projection of the Earth onto the three major surfaces. In a few cases, pro­
jection is geometric, but in most cases the projection is mathematical to achi~ve certain 
features. 
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A plane tangent to one of the Earth's poles is the ba~is for polar 
azimuthal projections. In this case, the group of projections is named 
for the function, not the plane, since all common tangent-l)lane projec­
tions of the sphere are azimuthal. The meridians are projected as 
straight lines radiating from a point, but they are spaced at their true 
angles instead of the smaller angles of the conic proj qctions. The 
parallels of latitude are complete circles, centered on the p')le. On some 
important azimuthal projections, such as the Stereographic (for the 
sphere), the parallels are geometrically projected from a common point 
of perspective; on others, such as the Azimuthal Equidistant, they are 
nonperspective. 

The concepts outlined above may be modified in two ways, which still 
provide cylindrical, conic, or azimuthal projections (although the 
azimuthals retain this property precisely only for the sphere). 
(1) The cylinder or cone may be secant to or cut the flobe at two 
parallels instead of being tangent to just one. This conceptually pro­
vides two standard parallels; but for most conic projections this con­
struction is not geometrically correct. The plane may likewise cut 
through the globe at any parallel instead of touching a pc 1e. 
(2) The axis of the cylinder or cone can have a direction di~erent from 
that of the Earth's axis, while the plane may be tangent to a point other 
than a pole (fig. 1). This type of modification leads to impor~ant oblique, 
transverse, and equatorial projections, in which most meridians and 
parallels are no longer straight lines or arcs of circles. What were 
standard parallels in the normal orientation now become standard lines 
not following parallels of latitude. 

Some other projections used by the USGS resemble one C""" another of 
these categories only in some respects. The Sinusoidal projection is 
called pseudocylindrical because its latitude lines are parallel and 
straight, but its meridians are curved. The Polyconic proje~tion is pro­
jected onto cones tangent to each parallel of latitude, so tre meridians 
are curved, not straight. Still others are more remotely rel2ted to cylin­
drical, conic, or azimuthal projections, if at all. 





2. LONGITUDE AND LATITUDE 

To identify the location of points on the Earth, a graticule or network 
of longitude and latitude lines has been superimposed on the surface. 
They are commonly referred to as meridians and parallels, respective­
ly. Given the North and South Poles, which are approximately the ends 
of the axis about which the Earth rotates, and the Equator, an im­
aginary line halfway between the two poles, the parallels of latitude are 
formed by circles surrounding the Earth and in planes pr-J.rallel with 
that of the Equator. If circles are drawn equally spaced ak11g the sur­
face of the sphere, with 90 spaces from the Equator to each pole, each 
space is called a degree of latitude. The circles are numbered from 0° at 
the Equator to 90° North and South at the respective poles. Each 
degree is subdivided into 60 minutes and each minute into 60 seconds of 
arc. 

Meridians of longitude are formed with a series of imaginary lines, all 
intersecting at both the North and South Poles, and crossing each 
parallel of latitude at right angles, but striking the Equato~ at various 
points. If the Equator is equally divided into 360 parts, and a meridian 
passes through each mark, 360 degrees of longitude re<:'•1lt. These 
degrees are also divided into minutes and seconds. While the length of 
a degree of latitude is always the same on a sphere, the. lengths of 
degrees of longitude vary with the latitude (see fig. 2). At the Equator 
on the sphere, they are the same length as the degree of t~.titude, but 
elsewhere they are shorter. 

There is only one location for the Equator and poles which serve as 
references for counting degrees of latitude, but there is no natural 
origin from which to count degrees of longitude, since all m~ridians are 
identical in shape and size. It, thus, becomes necessary to choose ar­
bitrarily one meridian as the starting point, or prime meriiian. There 
have been many prime meridians in the course of history, swayed by 
national pride and international influence. Eighteenth-cent·u'Y maps of 
the American colonies often show longitude from London or 
Philadelphia. During the 19th century, boundaries of new States were 
described with longitudes west of a meridian through Washington, 
D.C., 77°03'02.3" west of the Greenwich (England) Prim~ Meridian, 
which was increasingly referenced on 19th century_maps (VanZandt, 
1976, p. 3). In 1884, the International Meridian Conference, meeting in 
Washington, agreed to adopt the "meridian passing througl:t the center 
of the transit instrument at the Observatory of Greenwich as the initial 
meridian for longitude," resolving that "from this meridian longitude 

11 
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shall be counted in two directions up to 180 degrees, east longitude be­
ing plus and west longitude minus" (Brown, 1949, p. 297). 

When constructing meridians on a map projection, the central merid­
ian, usually a straight line, is frequently taken to be the starting point 
or 0° longitude for calculation purposes. When the map is completed 
with labels, the meridians are marked with respect to the Greenwich 
Prime Meridian. The formulas in this bulletin are arranged so that 
Greenwich longitude may be used directly. 

The concept of latitudes and longitudes was originated early in 
recorded history by Greek and Egyptian scientists, especiall:· the 
Greek astronomer Hipparchus (2nd century, B.C.). Claudius Ptolemy 
further formalized the concept (Brown, 1949, p. 50, 52, 68). 

Because calculations relating latitude and longitude to positions of 
points on a given map can become quite involved, rectangular grids 
have been developed for the use of surveyors. In this way, each point 
may be designated merely by its distance from two perpendicular axes 
on the flat map. 



3. THE DATUM AND THE EARTH AS AN ELLIPSOID 

For many maps, including nearly all maps in commercial atlases, it 
may be assumed that the Earth is a sphere. Actually, it is more nearly 
an oblate ellipsoid of revolution, also called an oblate spher1id. This is 
an ellipse rotated about its shorter axis. The flattening of the ellipse for 
the Ea.~. ~his only about one part in three hundred; but it is s·1fficient to 
become a r:ecessary part of calculations in plotting accurate maps 
at a scale of 1:100,000 or larger, and IS significant even for 
1:5,000,000-scale maps of the United States, affecting plotted shapes 
by up to 2/a percent. On small-scale maps, including single-sheet world 
maps, the oblateness is negligible. Formulas for both the sphere and 
ellipsoid will be discussed in this bulletin wherever the pr0jection is 
used in both forms. 

The Earth is not an exact ellipsoid, and deviations from this shape 
are continually evaluated. For map projections, however, tl'~ problem 
has been confined to selecting constants for the ellipsoidal shape and 
size and has not generally been extended to incorporating the much 
smaller deviations from this shape, except that different reference 
ellipsoids are used for the mapping of different regions of the Earth. 

An official shape of the ellipsoid was defined in 1924, wher the Inter­
national Union of Geodesy and Geophysics (IUGG) adopted a flattening 
of exactly 1 part in 297 and a semimajor axis (or equatorial radius) of 
exactly 6,378,388 m. The radius of the Earth along the pclar axis is 
then 1/297less than 6,378,388, or approximately 6,356,911.~ m. This is 
called the International ellipsoid and is based on J ohr Fillmore 
Hayford's calculations in 1909 from U.S. Coast and Geodei-ic Survey 
measurements made entirely within the United States (Brown, 1949, p. 
293; Hayford, 1909). This ellipsoid was not adopted for use in North 
America. 

There are over a dozen other principal ellipsoids, however, which are 
still used by one or more countries (table 1). The different c1;mensions 
do not only result from varying accuracy in the geodetic measurements 
(the measurements of locations on the Earth), but the curvature of the 
Earth's surface is not uniform due to irregularities in the gravity field. 

Until recently, ellipsoids were only fitted to the Earth's sh~.oe over a 
particular country or continent. The polar axis of the reference ellip­
soid for such a region, therefore, normally does not coincid ~ with the 
axis of the actual Earth, although it is made parallel. The same applies 
to the two equatorial planes. The discrepancy between cente:':"s is usual­
ly a few hundred meters at most. Only satellite-determined coordinate 
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N.Pole 

Longitude 
Latitude 

FIGURE 2. -Meridians and parallels on the sphere. 

systems, such as the WGS 72 mentioned below, are considered g~ocen­
tric. Ellipsoids for the latter systems represent the entire Earth more 
accurately than ellipsoids determined from ground measuremeiJ ts, but 
they do not generally give the "best fit" for a particular region. 

The reference ellipsoid is used with an "initial point" of reference on 
the surface to produce a datum, the name given to a f'llooth 
mathematical surface that closely fits the mean sea-level rarface 
throughout the area of interest. The "initial point" is assigned a 
latitude, longitude, and elevation above the ellipsoid. Once a dz.tum is 
adopted, it provides the surface to which ground control measurements 
are referred. The latitude and longitude of all the control points in a 
given area are then computed relative to the adopted ellipsoid znd the 
adopted "initial point." The projection equations of large-scale maps 
must use the same ellipsoid parameters as those used to define tl'o.local 
datum; otherwise, the projections will be inconsistent with the ground 
control. 
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TABLE 1.-Some Official Ellipsoids in use Throughout the Wo'f'ld1 

Equatorial Polar Radius Flattening 
Name Date Radius, a, b, meters f Use 

meters 

GRS 19802 ________ 1980 6,378,137* 6,356, 752.3 11298.257 Newly adopted 
WGS 723 __________ 1972 6,378,135* 6,356, 750.5 11298.26 NASA 
Australian _________ 1965 6,378,160* 6,356, 77 4. 7 11298.25* Australia 
Krasovsky ________ 1940 6,378,245* 6,356,863.0 1/298.3* Soviet Union 
Internat'l _________ 1924 }

6
,
378

,
388

• 
6,356,911.9 11297* Remainder of the Hayford __________ 1909 

world.t 

Clarke ____________ 1880 6,378,249.1 6,356,514.9 11293.46** Most of Africa; France 
Clarke ____________ 1866 6,378,206.4 * 6,356,583.8* 1/294.98 North Arr"!rica; Philip-

pines. 
Airy ______________ 1849 6,377,563.4 6,356,256.9 11299.32** Great Bri'ain 
Bessel ____________ 1841 6,377,397.2 6,356,079.0 11299.15** Central E 'rope; Chile; 

Indonesia. 
Everest ___________ 1830 6,377,276.3 6,356,075.4 11300.80** India; Burma; Paki-

stan; Afghan.; Thai-
land; et~. 

Values are shown to accuracy in excess significant figures, to reduce computational confusion. 
1 Maling, 1973, p. 7; Thomas, 1970, p. 84; Army, 1973, p. 4, endmap; Colvocoresses, 1969, p. 33; World Geodetic, 

1974. 
2 Geodetic Reference System. Ellipsoid derived from adopted model of Earth. 
3 World Geodetic System. Ellipsoid derived from adopted model of Earth. 
• Taken as exact values. The third number (where two are asterisked) is derived using the follC'wing relationships: 

b=a (1-.f);f= 1- bla. Where only one is asterisked (for 1972 and 1980), certain physical constants rot shown are taken 
as exact, but f as shown is the adopted value. 

• • Derived from a and b, which are rounded off as shown after conversions from lengths in feet. 
t Other than regions listed elsewhere in column, or some smaller areas. 

"The first official geodetic datum in the United States w<;l.s the New 
England Datum, adopted in 1879. It was based on surveys in the 
eastern and northeastern states and referenced to the Clarl·e Spheroid 
of 1866, with triangulation station Principio, in Maryland, as the 
origin. The first transcontinental arc of triangulation was completed in 
1899, connecting independent surveys along the Pacific Coast. In the 
intervening years, other surveys were extended to the Gulf of Mexico. 
The New England Datum was thus extended to the sout':t and west 
without major readjustment of the surveys in the east. In lf11, this ex­
panded network was officially designated the United States Standard 
Datum, and triangulation station Meades Ranch, in Kansas, was the 
origin. In 1913, after the geodetic organizations of Canada and Mexico 
formally agreed to base their triangulation networks on the United 
States network, the datum was renamed the North Amerir.an Datum. 

"By the mid-1920's, the problems of adjusting new survey~ to fit into 
the existing network were acute. Therefore, during the 5-year period 
1927-1932 all available primary data were adjusted into a system now 
known as the North American 1927 Datum.*** The coordinates of 
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station Meades Ranch were not changed but the revised coordirates of 
the network comprised the North American 1927 Datum" (National 
Academy of Sciences, 1971, p. 7 ). 

The ellipsoid adopted for use in North America is the result of the 
1866 evaluation by the British geodesist Alexander Ross Clarke using 
measurements made by others of meridian arcs in western E'lrope, 
Russia, India, South Africa, and Peru (Clarke and Helmert, 1911, p. 
807 -808). This resulted in an adopted equatorial radius of 6,378,206.4 
m and a polar radius of 6,356,583.8 m, or an approximate flatte--:1ing of 
1/294.9787. Since Clarke is also known for an 1880 revision used in 
Africa, the Clarke 1866 ellipsoid is identified with the year. 

Satellite tracking data have provided geodesists witt new 
measurements to define the best Earth-fitting ellipsoid and for r~lating 
existing coordinate systems to the Earth's center of mass. The I ~fense 
Mapping Agency's efforts produced the World Geodetic System 1966 
(WGS 66), followed by a more recent evaluation (1972) produc~ng the 
WGS 72. The polar axis of the Clarke 1866 ellipsoid, as used with the 
North American 1927 Datum, is calculated to be 159 m from that of 
WGS 72. The equatorial planes are 176 m apart (World G~odetic 
System Committee, 1974, p. 30). 

Work is underway at the National Geodetic Survey to replace the 
North American 1927 Datum. The new datum, expected to be called 
"North American Datum 1983," will be Earth-centered based on 
satellite tracking data. The IUGG early in 1980 adopted a new model of 
the Earth called the Geodetic Reference System (GRS) 1980, from 
which is derived an ellipsoid very similar to that for the WGS 72; it is 
expected that this ellipsoid will be adopted for the new North An1erican 
datum. 

For the mapping of other planets and natural satellites, only T 1ars is 
treated as an ellipsoid. The Moon, Mercury, Venus, and the satellites of 
Jupiter and Saturn are taken as spheres (table 2). 

In most map projection formulas, some form of the eccentricity e is 
used, rather than the flattening f. The relationship is as follows: 

e2 = 2/-f 2 , or f= 1-(1- e2)112 

For the Clarke 1866, e2 is 0.006768658. 

AUXILIARY LATITUDES 

By definition, the geographic or geodetic latitude, which is nC'~mally 
the latitude referred to for a point on the Earth, is the angle which a 
line perpendicular to the surface of the ellipsoid at the given point 
makes with the plane of the Equator. It is slightly greater in magnitude 
than the geocentric latitude, except at the Equator and poles, where it 
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TABLE 2.-Official figures for extraterrestrial mapping 

[(From Batson, 1973, p. 4433; 1976, p. 59; 1979; Davies and Batson, 1975, p. 2420; Pettengill, 198{'; Batson, Private 
commun., 1981.) Radius of Moon chosen so that all elevations are positive. Radius of Mars is based on a level of 6.1 
millibar atmospheric pressure; Mars has both positive and negative elevations] 

Body 
Equatorial 
radius a* 

(kilometers) 

Earth's Moon ------------------------------------------------------1,738.0 
Mercury ------------------------------------------------------·----2,439.0 
Venus ------------------------------------------------------------6,051.4 
Mars -------------------------------------------------------------3,393.4* 

Galilean satellites of Jupiter 

Io ------------------------------------------------------------·----1 ,816 
Europa -----------------------------------------------------------1,563 Ganymede _________________________________________________________ 2,638 

Callisto -----------------------------------------------------------2,410 

Satellites of Saturn 

Mirnas -------------------------------------------------------------195 
Enceladus ----------------------------------------------------------250 
Tethys -------------------------------------------------------------525 
Dione --------------------------------------------------------------560 Rhea _______________________________________________________________ 765 

Hyperion ------------------------------------------------------------155 Iapetus _____________________________________________________________ 720 

* Above bodies are taken as spheres except for Mars, an ellipsoid with eccentricity e of 
0.101929. Flattening f= 1-(1- &)112

• 

is equal. The geocentric latitude is the angle made by a l:ne to the 
center of the ellipsoid with the equatorial plane. 

Formulas for the spherical form of a given map projection may be 
adapted for use with the ellipsoid by substitution of one of various "aux­
iliary latitudes" in place of the geodetic latitude. Oscar S. Adams (1921) 
derived or presented five substitute latitudes. In using them~ the ellip­
soidal Earth is, in effect, first transformed to a sphere und~r certain 
restraints such as conformality or equal area, and the sphere is then 
projected onto a plane. If the proper auxiliary latitudes are ct10sen, the 
sphere may have either true areas, true distances in certain directions, 
or conformality, relative to the ellipsoid. Spherical map projection for­
mulas may then be used for the ellipsoid solely with the subst.itution of 
the approp:. · J.te auxiliary latitudes. 

It shoulri 1Je made clear that this substitution will generalb~ not give 
the projection in its preferred form. For example, using the conformal 
latitude (defined below) in the spherical Transverse Mercator equations 
will give a true ellipsoidal, conformal Transverse Mercato•, but the 
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central meridian cannot be true to scale. More involved formulas are 
necessary, since uniform scale on the central meridian is a stardard re­
quirement for this projection as commonly used in the ellipsoic,~l form. 
For the regular Mercator, on the other hand, simple substitution of the 
conformal latitude is sufficient to obtain both conformality and an 
Equator of correct scale for the ellipsoid. 

Adams gave formulas for all these auxiliary latitudes in closed or ex­
act form, as well as in series, except for the authalic (equal-area) 
latitude, which could also have been given in closed form. Both forms 
are given below. In finding the auxiliary latitude from the geodetic 
latitude, the closed form may be more useful for computer pr'"lgrams. 
For the inverse cases, to find geodetic from auxiliary latitudes, most 
closed forms require iteration, so that the series form is probr l:lly pre­
ferable. The series form shows more readily the amount of d~viation 
from the geodetic latitude cp. The formulas given later for the individual 
ellipsoidal projections incorporate these formulas as needed, so there is 
no need to refer back to these for computation, but the various aux­
iliary latitudes are grouped together here for comparison. 

The conformal latitude x, giving a sphere which is truly conformal in 
accordance with the ellipsoid (Adams, 1921, p. 18, 84), 

x = 2 arctan (tan (1r/4 + cp/2)[(1- e sin cp)/(1 + e sin cp)]e12} -1r/2 (3-1) 
= cp- ( e2/2 + 5e4/24 + 3e6/32 + ... )sin 2cp + (5e4/ 48 + 7 eG/80 + ... ) 

sin 4cp- (13e6/480 + ... )sin 6cp + . . . (3-2) 

with x and cp in radians. In seconds of arc for the Clarke 1866 €.Hipsoid, 

x=c/J -700.04"sin 2cp+ 0.99"sin 4cp (3-3) 

The inverse formula, for cp in terms of x, may be a rapid iteration of 
an exact rearrangement of (3-1), successively placing the value of cp 
calculated on the left side into the right side of (3- 4) for the next 
calculation, using x as the first trial cp. When cp changes by les" than a 
desired convergence value, iteration is stopped. 

cp= 2 arctan {tan (11"14+ x/2)[(1 + e sin cp)/(1- e sin cp)]e12
} -11"/2 (3-4) 

The inverse formula may also be written as a series, without iteration 
(Adams, 1921, p. 85): 

c/J=x+(e2/2+5e4/24+e6/12+ ... )sin 2x+(7e4/48+29e6/240+ ... ) 
sin 4x + (7 eG/120 + ... ) sin 6x + . . . (3-5) 

or, for the Clarke 1866 ellipsoid, in seconds, 

c/J=x+700.04" sin 2x+ 1.39" sin 4x (3-6) 

Adams referred to x as the isometric latitude, but this name is now ap­
plied tot/;, a separate very nonlinear function of cp, which is directly pro-
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portional to the spacing of parallels of latitude from the Equator on the 
ellipsoidal Mercator projection. It is also useful for other conformal 
projections: 

,Y =In[ tan( 1rl4 + ¢/2) [(1- e sin cp )/(1 + e sin cp )]•' 2
} (3-7) 

Because of the rapid variation from ¢, ,Y is not given he•e in series 
form. By comparing equations (3-1) and (3-7), it may be seen, however, 
that 

,Y =In tan ( 1rl 4 + x/2) (3-8) 

so that x may be determined from the series in (3-2) and converted to ,Y 
with (3-8), although there is no particular advantage over using (3-7). 

For the inverse of (3-7), to find cp in terms of 1/;, the choice is between 
iteration of a closed equation (3-10) and use of series (3-5) with a sim­
ple inverse of (3-8): 

x = 2 arctan e"'- 1rl2 (3-9) 

where e is the base of natural logarithms, 2. 71828. 
For the iteration, apply the principle of successive subsf~tion used 

in (3-4) to the following, with (2 arctan e"'- 1r/2) as the firri:. trial ¢: 

cf>= 2 arctan [e"'[(1 + e sin ¢)/(1- e sin ¢)]•'2} -?r/2 (3-10) 

Note that e and e are not the same. 
The authalic latitude 13, on a sphere having the same surface area as 

the ellipsoid, provides a sphere which is truly equal-area (authalic), 
relative to the ellipsoid: 

13 = arcsin ( q/ qp) (3-11) 

where 

q= (1- e2
) [sin ¢/(1- e2 sin2 ¢)- (1/(2e)) In [(1- e sin ¢)/(1 + e sin¢)]} (3-12) 

and qp is q evaluated for a cp of 90°. The radius R9 of the sp'lere having 
the same surface area as the ellipsoid is calculated as foll()ws: 

(3-13) 

where a is the semimajor axis of the ellipsoid. For the Clarke 1866, R9 is 
6,370,997.2 m. 

The equivalent series for 13 (Adams, 1921, p. 85) 

13=¢-(e2/3+31e4/180+59e6/560+ ... )sin 2¢+(17e4/360+61lf/1260+ ... ) 
sin4¢-(383e6/45360+ ... )sin6¢+... (3-14) 

where 13 and cp are in radians. For the Clarke 1866 ellipsoid, the formula 
in seconds of arc is: 

{3=¢-467.01" sin 2¢+0.45" sin 4¢ (3-15) 
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For <Pin terms of (3, an iterative inverse of (3-12) may be us~d with 
the inverse of (3-11): 

<P=<P+ (1- e2 
sin

2 
cp)

2 [-q- _ sin~ +-1-ln (1- e si.n <P )]<3_16) 
2 cos q, 1- e2 1-e2 sm2 q, 2e 1 + e s1n <P 

where q = qp sin {3 (3-17) 

qp is found from (3-12) for a q, of 90°, and the first trial <Pis arcr'n (q/2), 
used on the right side of (3-16) for the calculation of <P on the left side, 
which is then used on the right side until the change is less than a 
preset limit. (Equation (3-16) is derived from equation (3-12) using a 
standard Newton-Raphson iteration.) 

To find cp from {3 with a series: 

cp = {3 + ( e2/3 + 31e4/180 + 517 eG/5040 + ... ) sin 2{3 
+ (23e"/360 + 251&/3780 + ... ) sin 4{3 
+ (761&/45360 + ... ) sin 6{3 + ... 

or, for the Clarke 1866 ellipsoid, in seconds, 

<P = {3 + 467.01 II sin 2{3 + 0.61 11 sin 4{3 

(3-18) 

(3-19) 

The rectifying latitude p., giving a sphere with correct distances along 
the meridians, requires a series in any case (or a numerical inkqration 
which is not shown). 

p. = 1rMI2Mp (3-20) 

where M = a[(1- e2/4- 3e4/64- 5&/256- ... )<P- (3e2/8 + 3e4/32 
+ 45&/1024 + ... ) sin 2<P + (15e4/256 + 45&/1024 + ... ) sin 
4q,- (35&/3072 + ... ) sin 6cp + ... ] (3-21) 

and Mp isM evaluated for a cp of 90°, for which all sine terms d':"op out. 
M is the distance along the meridian from the Equator to laftude cp. 
For the Clarke 1866 ellipsoid, the constants simplify to 

M = 111132.0894cp0 -16216.94 sin 2<P+ 17.21 sin 4cp-0.02 sin 6cp (3-22) 

The first coefficient in (3-21) has been multiplied by 7r/180 to use <Pin 
degrees. To use p. properly, the radius RM of the sphere must b~ 2Mpl1r 
for correct scale. For the Clarke 1866 ellipsoid, RM is 6,367,39£. 7 m. A 
series combining (3-20) and (3-21) is given by Adams (1921, :r" 125): 

p.=cp-(3e1/2-9e1
3/16+ ... ) sin 2cp+(15e1

2/16-15e1
4/32+ ... ) 

sin 4cp- (35e1
3/ 48- ... ) sin 6cp + ... 

where 

(3-23) 

(3-24) 

and p. and <P are given in radians. For the Clarke 1866 elli:r~oid, in 
seconds, 

p.=cp-525.33 11 sin 2cp+0.56 11 sin 4cp (3-25) 
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The inverse of equations (3-23) or (3-25), for cJ> in terms off· given M, 
will be found useful for several map projections to avoid iteration, since 
a series is required in any case (Adams, 1921, p. 128). 

cJ> = !L+(3e1/2- 27e.3/32 + ... ) sin 2/L+ (21e1
2/16- 55e1

4/32 + ... ) 
sin 4/L+(151e1

3/96- ... ) sin 6/L+ • . . (3-26) 

where e1 is found from equation (3-24) and IL from (3-20), but M is 
given, not calculated from (3-21). For the Clarke 1866 ellipsoid, in 
seconds of arc, 

cJ> = IL + 525.33" sin 2/L + 0. 78" sin 4/L (3-27) 

The remaining auxiliary latitudes listed by Adams (1921, p. 84) are 
more useful for derivation than in substitutions for projections: 

The geocentric latitude c/>
11 

referred to in the first paragra oh in this 
section is simply as follows: 

c/>11 = arctan [(1- e2) tan cJ>] 

As a series, 

c/>11 = cJ>- e2 sin 2cp +(e2
2/2) sin 4cp -(e2

3/3) sin 6cp + ... 

(3-28) 

(3-29) 

where c/>11 and cJ> are in radians and e2 = e2/(2- e2). For the Cl'='.rke 1866 
ellipsoid, in seconds of arc, 

c/>11 =c/>-700.44" sin 2cp+ 1.19" sin 4cp (3-30) 

The reduced or parametric latitude 7J of a point on the ellip<:'0id is the 
latitude on a sphere of radius a for which the parallel has the same 
radius as the parallel of geodetic latitude cJ> on the ellipsoid t:t~ough the 
given point: 

7J =arctan [(1- e2)1' 2 tan cp] (3-31) 

As a series, 

(3-32) 

where e1 is found from equation (3-24), and 7J and cJ> are in radians. For 
the Clarke 1866 ellipsoid, using seconds-of arc, 

7J = t/>- 350.22" sin 2tJ> + 0.30" sin 4t/> (3-33) 

The inverses of equations (3-28) and (3-31) for tJ> in terms of c-eocentric 
or reduced latitudes are relatively easily derived and are noniterative. 
The inverses of series equations (3-29), (3-30), (3-32), and (3-33) are 
therefore omitted. Table 3 lists the correction for these auxiliary 
latitudes for each 5° of geodetic latitude. 
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TABLE 3.-Correctionsfor auxiliary latitudes on the Clarke 1866 eUiproid 

[Corrections are given, rather than actual values. For example, if the geodetic latitude is 50° N., the conf'lrmallatitude 
is 50° -11'29. 7" = 49°48'30.3" N. For southern latitudes, the corrections are the same, disregarding the sign of the 
latitude. That is, the conformal latitude for a .p of lat. 50° S. is 49° 48'30.3" S. From Adams, 1921] 

Geodetic Conformal Authalic Rectifying Geocentric Pwametric 
(</!) (x-.p) (tJ-.P) (p.-</J) (</!,-</!) (17-</!) 

90° -------- 0'00.0" 0'00.0" 0'00.0" 0'00.0" 0'00.0" 
85 --------- - 201.9 -121.2 -131.4 - 202.0 -100.9 
80 --------- - 400.1 -240.0 -300.0 - 400.3 -200.0 
75 --------- - 550.9 -353.9 -423.1 - 551.3 -255.4 
70 --------- - 731.0 -500.6 -538.2 - 731.4 -345.4 
65 --------- - 857.2 -558.2 -643.0 - 857.7 -428.6 
60 --------- -1007.1 -644.8 -735.4 -1007.6 -503.6 
55 --------- -1058.5 -719.1 -814.0 -1058.9 -529.3 
50 --------- -1129.7 -740.1 -837.5 -1130.2 -545.0 
45 --------- -1140.0 -747.0 -845.3 -1140.5 -550.2 
40 --------- -1129.1 -739.8 -837.2 -1129.4 -544.8 
35 --------- -1057.2 -718.6 -813.3 -1057.4 -528.9 
30 --------- -1005.4 -644.1 -734.5 -1005.6 -503.0 
25 --------- - 855.3 -557.3 -641.9 - 855.4 -428.0 
20 --------- - 729.0 -459.7 -537.1 - 729.1 -344.8 
15 --------- - 549.2 -353.1 -422.2 - 549.2 -254.9 
10 --------- - 358.8 -239.4 -259.3 - 358.8 -159.6 

5 --------- - 201.2 -120.9 -131.0 - 201.2 -100.7 
0 --------- 000.0 000.0 000.0 000.0 000.0 



4. SCALE VARIATION AND ANGULAR DISTORTION 

Since no map projection maintains correct scale throughout, it is im­
portant to determine the extent to which it varies on a map. On a world 
map, qualitative distortion is evident to an eye familiar with maps, 
noting the extent to which landmasses are improperly size1 or out of 
shape, and the extent to which meridians and parallels do not intersect 
at right angles, or are not spaced uniformly along a given neridian or 
given parallel. On maps of countries or even of continents. distortion 
may not be evident to the eye, but becomes apparent upon careful 
measurement and analysis. 

TISSOT'S INDICATRIX 

In 1859 and 1881, Tissot published a classic analysis of the distortion 
which occurs on a map projection (Tissot, 1881; Adamr. 1919, p. 
153-163; Maling, 1973, p. 64-67). The intersection of any t·vo lines on 
the Earth is represented on the flat map with an intersection at the 
same or a different angle. At almost every point on the Eartl', there is a 
right angle intersection of two lines in some direction (not n('~essarily a 
meridian and a parallel) which are also shown at right angles on the 
map. All the other intersections at that point on the Earth will not in­
tersect at the same angle on the map, unless the map is conformal. The 
greatest deviation from the correct angle is called w, the maximum 
angular deformation. For a conformal map, w is zero. 

Tissot showed this relationship graphically with a special ellipse of 
distortion called an indicatrix. An infinitely small circle on tbe Earth 
projects as an infinitely small, but perfect, ellipse on any map projec­
tion. If the projection is conformal, the ellipse is a circle, an ellipse of 
zero eccentricity. Otherwise, the ellipse has a major axis and minor axis 
which are directly related to the scale distortion and to the maximum 
angular deformation. 

In figure 3, the left-hand drawing shows a circle repref'9nting the 
infinitely small circular element, crossed by a meridian >.. and parallel cJ> 

on the Earth. The right-hand drawing shows this same element as it 
may appear on a typical map projection. For general purposes, the map 
is assumed to be neither conformal nor equal-area. The meridian and 
parallel may no longer intersect at right angles, but there is a pair of 
axes which intersect at right angles on both Earth (AB and CD) and 
map (A'B' and CD'). There is also a pair of axes which intersP.ct at right 
angles on the Earth (EF and GH), but at an angle on the map (E'F' and 
G'H') farthest from a right angle. The latter case has the maximum 

23 
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(A) 
(B) 

FIGURE 3.-Tissot's Indicatrix. An infinitely small circle on the Earth (A) apper ... s as an 
ellipse on a typical map (B). On a conformal map, (B) is a circle of the sam~ or of a 
different size. 

angular deformation w. The orientation of these axes is such that 
u + u' = 90 °, or, for small distortions, the lines fall about halfway be­
tween A'B' and C'D'. The orientation is of much less interest tb:1.n the 
size of the deformation. If a and b, the major and minor semiaxe;;: of the 
indicatrix, are known, then 

sin{w/2)= la-bll(a+b) (4-1) 

If lines A. and (j> coincide with a and b, in either order, as in cylindrical 
and conic projections, the calculation is relatively simple, using equa­
tions ( 4-2) through ( 4-6) given below. 

Scale distortion is most often calculated as the ratio of the seal~ along 
the meridian or along the parallel at a given point to the sc2.le at a 
standard point or along a standard line, which is made true to scale. 
These ratios are called "scale factors." That along the meridian is called 
h and along the parallel, k. The term "scale error" is frequently applied 
to (h-1) and (k-1). If the meridians and parallels intersect 2'.t right 
angles, coinciding with a and b in figure 3, the scale factor in any other 
direction at such a point will fall between h and k. Angle w may be 
calculated from equation (4-1), substituting hand kin place of a and b. 
In general, however, the computation of w is much more comp1icated, 
but is important for knowing the extent of the angular di~tortion 
throughout the map. 

The formulas are given here to calculate h, k, and w; but the fc:--mulas 
for h and k are applied specifically to all projections for which they are 
deemed useful as the projection formulas are given later. Formulas for 
w for specific projections have generally been omitted. 

Another term occasionally used in practical map projection 2'.nalysis 
is "convergence" or "grid declination." This is the angle betwe~n true 



MAP PROJECTIONS- GENERAL CONCEPTS 25 

north and grid north (or direction of the Y axis). For regular cylindrical 
projections this is zero, for regular conic and polar azimuth~.l projec­
tions it is a simple function of longitude, and for other proja.ctions it 
may be determined from the projection formulas by calculus as the 
slope of the meridian (dyldx) at a given latitude. It is used primarily by 
surveyors for fieldwork with topographic maps. It has been d€cided not 
to discuss convergence further in this bulletin. 

DISTORTION FOR PROJECTIONS OF THE SPHERE 

The formulas for distortion are simplest when applied to regular 
cylindrical, conic (or conical), and polar azimuthal projections of the 
sphere. On each of these types of projections, scale is solely r. function 
of the latitude. 

Given the formulas for rectangular coordinates x and y of any cylin­
drical projection as functions solely of longitude )1. and la.titude c/>, 
respectively, 

h = dyi(Rdc/>) 
k = dxi(R cos ¢d)~.) 

(4-2) 
(4-3) 

Given the formulas for polar coordinates p and () of any cor ic projec­
tion as functions solely of¢ and )1., respectively, where n is the cone con­
stant or ratio of 8 to (>..- )l.o), 

h = - dpi(Rdc/>) 
k=npi(R cos¢) 

(4-4) 
(4-5) 

Given the formulas for polar coordinates p and 8 of any polar 
azimuthal projection as functions solely of cJ> and>.., respectiv~ly, equa­
tions (4-4) and (4-5) apply, with n equal to 1.0: 

h= -dpi(Rdc/>) 
k= pi(R cos¢) 

(4-4) 
(4-6) 

Equations ( 4-4) and ( 4-6) may be adapted to any azimuth::tl projec­
tion centered on a point other than the pole. In this case h' is the scale 
factor in the direction of a straight line radiating from the center, and 
k' is the scale factor in a direction perpendicular to the radiatirg line, all 
at an angular distance c from the center: 

h: = dpi(Rdc) 
k' = p/(R sin c) 

(4-7) 
(4-8) 

An analogous relationship applies to scale factors on oblique cylindrical 
and conic projections. 
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Transverse Mercator Projection 

Lambert Conformal Conic Projection 

·Figure 4.-Distortion patterns on common conformal map projections. The 'f··"nsverse 
Mercator and the Stereographic are shown with reduction in scale along the central 
meridian or at the center of projection, respectively. If there is no reductkn, there is 
a single line of true scale along the central meridian on the TransversE: Mercator 
and only a point of true scale at the center of the Stereographic. The ill ··strations 
are conceptual rather than precise, since each base map projection is aP identic~l 
conic. 
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Oblique Stereographic Projection 

FIGURE 4.-Continued. 

For any of the pairs of equations from (4-2) through (4-8), the max­
imum angular deformation w at any given point is calculated simply, as 
stated above, 

sin 112w= lh-kll(h+k) (4-9) 

where lh-kl signifies the absolute value of (h-k), or the positive value 
without regard to sign. For equations (4-7) and (4-8), h' and k' are used 
in (4-9) instead of hand k, respectively. In figure 4, distortion patterns 
are shown for three conformal projections of· the United States, choos­
ing arbitrary lines of true scale. 

For the general case, including all map projections of the s~here, rec­
tangular coordinates x and y are often both functions of bot.h cf> and A, 
so they must be partially differentiated with respect to both cf> and A, 
holding A and¢, respectively, constant. Then, 

h= (liR) [(ax/a¢)2 +(oyla¢)2)1 12 

k = [1/(R cos ct> )] [(axlaA)2 + (ayloA)2JI' 2 

a'= (h2 + k2 + 2hk sin 8') 112 

b' = (h2 + k2
- 2hk sin 8') 112 

(4-10) 

(4-11) 

(4-12) 

(4-13) 

where cos 8' = [(ay/ocf>}(oyloA)+(ox/ocf>}(oxloA)]I(hk cos c/>) (4-14) 
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(}'is the angle at which a given meridian and parallel intersect, and a' 
and b' are convenient terms. The maximum and minimum scale factors 
a and b, at a given point, may be calculated thus: 

a= (a'+ b')/2 
b=(a'- b')/2 

Equation ( 4-1) simplifies as follows for the general case: 

sin (w/2) = b'!a' 

The areal scale factors: 

s=hk sin 8' 

For special cases: 

(4-12a) 
(4-13a) 

(4-1a) 

(4-15) 

(1) s=hk if meridians and parallels intersect at right angles (ll'=90°); 
(2) h = k and w = 0 if the map is conformal; 
(3) h= 1/k on an equal-area map if meridians and parallels intersect at 
right angles. 2 

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID 

The derivation of the above formulas for the sphere utilizes the basic 
formulas for the length of a given spacing (usually 1° or 1 radian) along 
a given meridian or a given parallel. The following formulas give the 
length of a radian of latitude (Lq,) and of longitude (L.,..) for the sphere: 

(4-16) 
(4-17) 

where R is the radius of the sphere. For the length of 1 o of latitude or 
longitude, these values are multiplied by 1r/180. 

The radius of curvature on a sphere is the same in all directions. On 
the ellipsoid, the radius of curvature varies at each point and in each 
direction along a given meridian, except at the poles. The radius of cur­
vature R' in the plane of the meridian is calculated as follow~·: 

(4-18) 

The length of a radian of latitude is defined as the circumference of a 
circle of this radius, divided by 21r, or the radius itself. Thus, 

Lq,=a{1-e2)/(1-e2 sin 2¢)3
'

2 (4-19) 

For the radius of curvature N of the ellipsoid in a plane perpendicular 
to the meridian and also perpendicular to a plane tangent to the sur­
face, 

' Mating (I ~173, p. 4!l-HJ) has helpful denvations of lht•se t•qualion;; 111 lt•ss <'ondt·n~l'd forms. Thl're :w.• ty pogTaphieal 
t>rrors 111 several of tlw t•quations 111 Mating·, hut tlll'st• ma,; he dl'lt•dl'd h,; follnll'lllg til<' dt•nvation dost{V. 
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(4-20) 

Radius N is also the length of the perpendicular to the surface from the 
surface to the polar axis. The length of a radian of longitude is found, as. 
in equation ( 4-17), by multiplying N by cos cp, or 

L-,.. =a cos cp/(1- e2 sin2cp )1'2 ( 4-21) 

The lengths of 1 o of latitude and 1 o of longitude for the Clarke 1866 
and the International ellipsoids are given in table 4. They are found 
from equations (4-19) and (4-21), multiplied by 1r/180 to convert to 
lengths for 1 °. 

When these formulas are applied to equations ( 4-2) through ( 4-6), 
the values of h and k for the ellipsoidal forms of the projections are 
found to be as follows: 

For cylindrical projections: 

h = dyi(R' dcp) 
= (1- e2 sin2cp )3

'
2 dy/[ a(1- e2)dcp] 

k = dxi(N cos cpd'A) 
= (1- e2 sin2 c/>) 112 dx/(a cos cJ> d'A) 

(4-22) 

(4-23) 

TABLE 4.-Lengths, in meters, ~~ll o of latitude and longitud-e on two ellipsoids oft·e..terent>e 

Latitude __ Cl-,-ar_k_e_1_86_'6_e_ll_..._ip_so_id__ International (Hayford) ellipsoid 
_( __ c/J __ ) _______ 1 o lat. 1 o long. 1 o lat. 1 o long. 

90°--------------- 111,699.4 0.0 111,700.0 0.0 
85 --------------- 111,690.7 9,735.0 111,691.4 9,735.0 
80 --------------- 111,665.0 19,394.4 111,665.8 19,394.5 
75 --------------- 111,622.9 28,903.3 111,624.0 28,903.5 
70 --------------- 111,565.9 38,188.2 111,567.4 38,188.5 
65 --------------- 111,495.7 47,177.5 111,497.7 47,177.9 
60 --------------- 111,414.5 55,802.2 111,417.1 55,802.8 
55 --------------- 111,324.8 63,996.4 111,327.9 63,997.3 
50 --------------- 111,229.3 71,698.1 111,233.1 71,699.2 
45 --------------- 111,130.9 78,849.2 111,135.4 78,850.5 
40 --------------- 111,032.7 85,396.1 111,037.8 85,397.7 
35 --------------- 110,937.6 91,290.3 110,943.3 91,292.2 
30 --------------- 110,848.5 96,488.2 110,854.8 96,490.4 
25 --------------- 110,768.0 100,951.9 110,774.9 100,954.3 
20 --------------- 110,698.7 104,648.7 110,706.0 104,651.4 
15 --------------- 110,642.5 107,551.9 110,650.2 107,554.8 
10 --------------- 110,601.1 109,640.7 110,609.1 109,643.7 
5 --------------- 110,575.7 110,899.9 110,583.9 110,903.1 
0 --------------- 110,567.2 111,320.7 110,575.5 111,323.9 
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For conic projections: 

h= -dpi(R'd¢) 
= - (1- e2 sin2c/J }112 dp/[ a(1- e2)dc/J] 

k = npi(N cos cf>) 
= np(1- e2 sin2¢)112/(a cos¢) 

For polar azimuthal projections: 

(4-24) 

(4-25) 

h = - (1- e2 sin2¢ )312 dpl[ a(1- e2)dc/J] ( 4-24) 
k = p(1- e2 sin2c/J )112

/( a cos cf>) ( 4-26) 

Equations (4-7) and (4-8) do not have ellipsoidal equivalents- Equa­
tion ( 4-9) remains the same for equations ( 4-22) through ( 4-2f): 

sin 1i2w= lh-kj/(h+k) (4-9) 

For the general projection of the ellipsoid, equations (4-JO) and 
(4-11) are similarly modified: 

h =[(ox/oct> )2 + (oy/ocf> )2)1' 2(1- e2 sin2¢ }112
/[ a(1- e2

)] ( 4-27) 
k = [(oxlo>-.)2 + (oy/o>-.)2)1' 2(1- e2 sin2c/J) 1

'
2/(a cos¢) (4-28) 

Equations (4-12) through (4-15), (4-12a), (4-13a), and (4-1a), listed 
for the sphere, apply without change. 

Specific calculations are shown during the discussion of individual 
projections. 

The importance of using the ellipsoid instead of the sphere for design­
ing a projection may be quantitatively evaluated by determining the 
ratio or product of some of the elementary relationships. The ratio of 
the differential length of a radian of latitude along a meridian on the 
sphere to that on the ellipsoid is found by dividing equation (4-16) by 
equation (4-19), or 

(4-29) 

A related ratio for the length of a radian of longitude along a parallel on 
the sphere to that on the ellipsoid is found by dividing equatior ( 4-17) 
by equation (4-21), or 

(4-30) 

From these, the local shape factor C.. may be found as the ratio of 
( 4-29) to ( 4-30): 

C..= Cm!C" = (1- e2 sin2 cf> )/(1- e2
) 

and the area factor C" is their product: 

C" = CmCp =R2(1- e2 sin2 ct> )2/[ a 2(1- e2
)] 

(4-31) 

(4-32) 
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If h and k are calculated for the spherical version of a map projection, 
the actual scale factors on the spherical version relative to tl:~ ellipsoid 
may be determined by multiplying h by Cm and k by Cp. For normal 
cylindrical and conic projections and polar azimuthal proje,~tions, the 
conformality or shape factor may be taken as hlk (not the same as w) 
multiplied by C.,, and the area scale factor hk may be multir 1ied by C". 

Except for C., which is independent of Ria, R must be given an ar­
bitrary value such as Rq (see equation (3-13)), RM (see seconi sentence 
following equation (3-22)), or another reasonable balance between the 
major and minor semiaxes a and b of the ellipsoid. Using Rq and the 
Clarke 1866 ellipsoid, table 5 shows the magnitude of these corrections. 
Thus, a conformal projection based on the sphere has the correct shape 
at the poles for the ellipsoid, but the shape is about 2/3 of 1 percent 
(0.00681) in error near the Equator (that is, Tissot's Indic"'.trix is an 
ellipse with minor axis about 2f3 of 1 percent shorter than the major axis 
at the Equator when the spherical form is compared to the ellipsoid). 

A map extending over a large area will have a scale variation of 
several percent, which far outweighs the significance of the less-than-1-
percent variation between sphere and ellipsoid. A map of a r'llall area, 
such as a large-scale detailed topographic map, or even a narrow strip 
map, has a small-enough intrinsic scale variation to make the ellipsoidal 
correction a significant factor in accurate mapping; e.g., a 7.5-min 
quadrangle normally has an intrinsic scale variation of 0.0002 percent 
or less. 

TABLE 5.-Ellipsoidal correction factors to apply to spherical pro}ections ba.~qd on Clarke 
1866 ellipsoid 

Lat. (N&S) Cm* cp c. C,.* 
90° _______________ 

0.99548 0.99548 1.00000 0.99099 

75 --------------- .99617 .99571 1.00046 .99189 

60 --------------- .99803 .99633 1.00170 .99437 

45 --------------- 1.00058 .99718 1.00341 .99775 

30 --------------- 1.00313 .99802 1.00511 1.00114 

15 --------------- 1.00499 .99864 1.00636 1.00363 

0 --------------- 1.00568 .99887 1.00681 1.00454 

Multiply by** h k hlk hk 

• C.,= 1.0 for 48.24° lat. and C.= 1.0 for 35.32° lat. Values of C.., C,, and C. are based on a radius of 6,370,997 m for 
the sphere used in the spherical map projection. 
• • h =scale factor along meridian. 

k = scale factor along parallel of latitude. 
For normal cylindrical and conic projections and polar azimuthal projections: 
hlk = shape factor. 
hk=area scale factor. 
For example, if, on a spherical Albers Equal-Area Conic map projection based on sphere of radius 6,370,997 m, 

h -1.00132 and k .. 0.99868 at lat. 45 o N ., this map has an area scale factor of 1.00132 x 0.99868 x (' .99775 • 0.99775, 
relative to the correct area scale for the Clarke 1966 ellipsoid. If the ellipsoidal Albers were used, th's factor would be 
1.0. 





5. TRANSFORMATION OF MAP GRATICULES 

As discussed later, several map projections have been rrlapted to 
showing some part of the Earth for which the lines of true scr.le have an 
orientation or location different from that intended by the inve~tor of 
the basic projection. This is equivalent to moving or transfcrming the 
graticule of meridians and parallels on the Earth so that the "north 
pole" of the graticule assumes a position different from that of the true 
North Pole of the Earth. The projection for the sphere may be plotted 
using the original formulas or graphical construction, but applying 
them to the new graticule orientation. The actual meri iians and 
parallels may then be plotted by noting their relationship on the sphere 
to the new graticule, and landforms drawn with respect to the actual 
geographical coordinates as usual. 

In effect, this procedure was used in the past in an often entirely 
graphical manner. It required considerable care to avoid cumulative er­
rors resulting from the double plotting of graticules. With computers 
and programmable hand calculators, it now can be a relatively routine 
matter to calculate directly the rectangular coordinates of the actual 
graticule in the transformed positions or, with an automatic plotter, to 
obtain the transformed map directly from the computer. 

The transformation most notably has been applied to the azimuthal 
and cylindrical projections, but in a few cases it has been used with 
conic, pseudocylindrical, and other projections. While it is fairly 
straightforward to apply a suitable transformation to the sphere, trans­
formation is much more difficult on the ellipsoid because of the con­
stantly changing curvature. Transformation has been appl:~d to the 
ellipsoid, however, in important cases under certain limitjng condi­
tions. 

If either true pole is at the center of an azimuthal map proj<'~tion, the 
projection is called the polar aspect. If a point on the Equator is made 
the center, the projection is called the equatorial or, less often, merid­
ian or meridional aspect. If some other point is central, the projection 
is the oblique or, occasionally, horizon aspect. 

For cylindrical and most other projections, such transform~tions are 
called transverse or oblique, depending on the angle of rotation. In 
transverse projections, the true poles of the Earth lie on the equator of 
the basic projection, and the poles of the projection lie on the Equator 
of the Earth. Therefore, one meridian of the true Earth lies along the 
equator of the basic projection. The Transverse Mercator projection is 
the best-known example and is related to the regular Mercator in this 
manner. For oblique cylindrical projections, the true poles of the Earth 
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lie somewhere between the poles and the equator of the basic projec­
tion. Stated another way, the equator of the basic projection is drawn 
along some great circle route other than the Equator or a meridian of 
the Earth for the oblique cylindrical aspect. The Oblique Mercator is 
the most common example. Further subdivisions of these aspects have 
been made; for example, the transverse aspect may be first transverse, 
second transverse, or transverse oblique, depending on the positions of 
the true poles along the equator of the basic projection (Wray, 1974). 
This has no significance in a transverse cylindrical projection, since the 
appearance of the map does not change, but for pseudocylindrical pro­
jections such as the Sinusoidal, it makes a difference, if the additional 
nomenclature is desired. 

To determine formulas for the transformation of the spher~, two 
basic laws of spherical trigonometry are used. Referring to the spheri­
cal triangle in figure 5, with three points having angles A, B, and C on 
the sphere, and three great circle arcs a, b, and c connecting them, the 
Law of Sines declares that 

sin A/sin a= sin B/sin b =sin C/sin c 

while by the Law of Cosines, 

cos c = cos b cos a+ sin b sin a cos C 

(5-1) 

(5-2) 

If C is placed at the North Pole, it becomes the angle between two 
meridians extending to A and B. If A is taken as the starting p')int on 
the sphere, and B the second point, c is the great circle distance be­
tween them, and angle A is the azimuth Az east of north which point B 
bears to point A. When latitude cpt and longitude Ao are used fc r point 
A, and cp and }.. are used for point B, equation (5-2) becomes the follow­
ing for great circle distance: 

cos c =sin cpt sin cp +cos cpt cos cp cos(>-.- Ao) (5-3) 

While (5-3) is the standard and simplest form of this equation, it is 
not accurate for values of c very close to zero. For such cases, the equa­
tion may be rearranged as follows: 

sin c = (cos2 cp sin2 (>-.- >-.o) + [cos cpl sin cp- sin cp. cos cp cos(>-.- >-.o)]2) 112 (5-3a) 

This equation is unsatisfactory when cis close to 90° or is greater 
than 90°. For general purposes, the still longer tangent form is sug­
gested, for which simplification is not very helpful: 

tan c =sin c/cos c (5-3b) 

where sin c and cos care found from (5-3a) and (5-3), respectively, and 
quadrant adjustment is made as described under the list of symbols. 
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Equation (5-1) becomes the following for the azimuth: 

sin Az =sin (A.- 'Ao) cos <t>/sin c 

or, with some rearrangement, 

cosAz= [cos <1>1 sin <t>- sin <j> 1 cos <t> cos (A.- 'Ao)]/sin c 

or, eliminating c, 
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(5-4) 

(5-5) 

tan Az =cos <t> sin (A.- 'Ao)/[cos <1>1 sin <t>- sin <1>1 cos <t> cos (A.- 'Ao)] (5-6) 

Either of the three equations (5-4) through (5-6) may be used for the 
azimuth, depending on the form of equation preferred. Equation (5-6) 
is usually preferred, since it avoids the inaccuracies of finding an arcsin 
near 90° or an arccos near 0°. Quadrant adjustment as described under 
the list of symbols should be employed. 

Applying these relationships to transformations, without showing 
some intermediate derivations, formulas (5-7) through (5·-10) are ob­
tained. To place the North Pole of the sphere at a latitude a on a merid­
ian {3 east of the central meridian ('A'= 0) of the basic projec+ion (see fig. 
6), the transformed latitude <t>' and transformed longitude 'A' on the 
basic projection which correspond to latitude <t> and longit'1de 'A of the 
spherical Earth may be calculated as follows, letting the central merid­
ian A.o correspond with 'A'= {3: 

sin <t>' = sin a sin cp - cos a cos cp cos ('A- 'Ao) (5-7) 
sin ('A'- {3) =cos <t> sin ('A- }..0)/cos cp' (5-8) 

or cos ('A'- {3) = [sin a cos cp cos ('A- 'Ao) +cos a sin cp ]/cos <t>' (5-9) 

or 
tan ('A' - {3) = cos cp sin ('A- A.o)/[ sin a cos cp cos ('A- 'Ao) 

+cos a sin¢] (5-10) 

Equation (5-10) is generally preferable to (5-8) or (5-9) for the reasons 
stated after equation (5-6). 

These are general formulas for the oblique transformation. (For 
azimuthal projections, {3 may always be taken as zero. Othe ... values of {3 
merely have the effect of rotating the X and Y axes witho·1t changing 
the projection.) 

The inverse forms of these equations are similar in app~arance. To 
find the geographic coordinates in terms of the transformed coor­
dinates, 

sin ¢ = sin a sin <t>' + cos a cos <t>' cos ('A' - {3) 
sin ('A- 'Ao) =cos <t>' sin ('A'- {3)/cos cp 

or cos ('A- 'Ao) = [sin a cos cp' cos ('A'- {3)- cos a sin <t>1/ cos cp 

or 
tan ('A- 'Ao) = cos <t>' sin ('A' - {3)/[ sin a cos <t>' cos ('A'- (i) 

- cos a sin <t>'] 

(5-11) 
(5-12) 
(5-13) 

(5-14) 
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C (N.Pole) 

B(ct>,~) 

FIGURE 5.- Spherical triangle. 

with equation (5-14) usually preferable to (5-12) and (5-13) for the 
same reasons as those given for (5-6). 

If a= 0, the formulas simplify considerably for the transverse or 
equatorial aspects. It is then more convenient to have central meridian 
Ao coincide with the equator of the basic projection rather than with its 
meridian {3. This may be accomplished by replacing (A- 'Ao) with 
(A- 'Ao- 90°) and simplifying. 

If {3=0, so that the true North Pole is placed at (A'=O, c/>'=0): 

or 

sin cf>' = - cos cp sin (A- 'Ao) 
cos A'= sin cp/[1- cos2 cf> sin2(A- 'Ao)]112 

tan A'= - cos (A- 'Ao)/tan cp 

If {3 = 90°, placing the true North Pole at (A'= 90°, cp' = 0): 

sin cf>' = - cos ¢ sin (A- 'Ao) 
cos A'= cos¢ cos (A- 'Ao)/[1- cos2 cp sin2 (A- 'Ao)] 1

'
2 

or tan A'= tan cp/cos (A- 'Ao) 

(5-15) 
(5-16) 
(5-17) 

(5-15) 
(5-18) 
(5-19) 

The inverse equations (5-11) through (5-14) may be similarly al~ered. 
As stated earlier, these formulas may be directly incorporatei into 

the formulas for the rectangular coordinates x and y of the basi~ map 
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4>1 = -900 

FIGURE 6. -Rotation of a graticule for transformation of projection. Dashed lines show 
actual longitudes and latitudes (A. and 4> ). Solid lines show the transfon"'l.ed longitudes 
and latitudes (>..' and 4>) from which rectangular coordinates (x and y) ~.re determined 
according to map projection used. 

projection for a direct computer or calculator output. In some other 
cases, especially in the past, it may be easier to calculate the transverse 
or oblique projection coordinates by first calculating cp' and >..' for each 
point to be plotted (such general tables have been prepared), and then 
calculating the rectangular coordinates by inserting cp' and)' one by one 
into the basic projection formulas. In still other cases, a graphical 
method has been used. 

While these formulas, or their equivalents, will be incorporated into 
the formulas given later for individual oblique and transv,~rse projec­
tions, the concept should help interrelate the various aspe~ts or types 
of centers of a given projection. The extension of these con~epts to the 
ellipsoid is much more involved technically and in some· cases requires 
approximation. General discussion of this is omitted here. 





6. CLASSIFICATION OF MAP PROJECTIONS 

Because of' the hundreds of map projections already published and 
the seemingly infinite number which are theoretically pcssible, con­
siderable attention· has been given to classification of projections so 
that the user is not overwhelmed by the numbers and the variety. One 
obvious type of classification has already been implied in this work: 
division of map projections into those which are (1) equal-area, (2) con­
formal, (3) equidistant, (4) azimuthal, and (5) miscellaneour. This is an 
unsatisfactory approach because of overlapping and because so many 
then fall into the "miscellaneous" category. 

The most popular classification, which is partially u~ed in this 
bulletin, is division by type of construction: (1) cylindrical, (2) conic, (3) 
azimuthal, (4) pseudocylindrical, (5) pseudoconical, and (6) miscellane­
ous. Each of these divisions may be subdivided, especially the latter. 
This type of classification is often easier to distinguish, but i~. is far from 
ideal. Since nearly all projections used by the USGS fall into the first 
three categories, and a fourth category called "space map projections" 
is introduced, the "miscellaneous" category is limited to two projections 
in this bulletin. 

Interest has been shown in some other forms of classification which 
are more suitable for extensive treatises. In 1962, Waldo R. Tobler pro­
vided a simple but all-inclusive proposal which has aroused considerable 
interest (Tobler, 1962; Maling, 1973, p. 98-104; Maurer, 1935, p. v-vii). 
Tobler's classification involves eight categories, four for rectangular 
and four for polar coordinates. For the rectangular coordinates, 
category A includes all projections in which both x andy vary with both 
latitude cJ> and longitude A, category B includes all in which y varies with 
both cJ> and A while xis only a function of A, C includes those projections 
in which x varies with both cJ> and A while y varies only witb c/>, and D is 
for those in which xis only a function of A andy only of¢ .. There are 
very few published projections in category B, but Cis u~·ually called 
pseudocylindrical, D is cylindrical, and A includes nearly all the rest 
which do not fit the polar coordinate categories. 

Tobler's categories A to D for polar coordinates are respectively the 
same as those for rectangular, except that radius p is rez.d for y and 
angle 0 is read for x. The regular conic and azimuthal projections fall in­
to category D, and the pseudoconical (such as Bonne's) into C. Category 
A may have a few projections like A (rectangular) for whict· polar coor­
dinates are more convenient than rectangular. There are no well­
known projections in B (polar). 
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Hans Maurer's detailed map projection treatise of 1935 introduced a 
"Linnaean" classification with five families ("true-circular", "straight­
symmetrical," "curved-symmetrical," "less regular," and "comb~nation 
grids," to quote a translation) subdivided into branches, subbrr.nches, 
classes, groups, and orders (Maurer, 1935). As Maling says, Maurer's 
system "is only useful to the advanced student of the subject," but 
Maurer attempts for map projections what Linnaeus, the Swedish 
botanist, accomplished for plants and animals in the eighteenth century 
(Maling, 1973, p. 98). Other approaches have been taken by Lee (1944) 
and by Goussinsky (1951). 

The individual projections used by the USGS are discussed b8low. 



CYLINDRICAL MAP PROJECTIONS 

The map projection best known by name is certainl:' the Mer­
cator-one of the cylindricals. Perhaps easiest to draw, if s~mple tables 
are on hand, the regular cylindrical .projections consist of meridians 
which are equidistant parallel straight lines, crossed at right angles by 
straight parallel lines of latitude, generally not equidi"tant. Geo­
metrically, cylindrical projections can be partially developE.d by unroll­
ing a cylinder which has been wrapped around a globe representing the 
Earth, touching at the Equator, and on which meridians have been pro­
jected from the center of the globe (fig. 1). The latitudes can also be 
perspectively projected onto the cylinder for some projections (such as 
the Cylindrical Equal-Area and Gall's), but not on those which are 
discussed in this bulletin. When the cylinder is wrapped around the 
globe in a different direction, so that it is no longer tangent along the 
Equator, an oblique or transverse projection results, and neither the 
meridians nor the parallels will generally be straight lines. 
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• Cylindrical. 
• Conformal. 

7. MERCATOR PROJECTION 

SUMMARY 

• Meridians are equally spaced straight lines. 
• Parallels are unequally spaced straight lines, closest near the Equator, cutting 

meridians at right angles. 
• Scale is true along the Equator, or along two parallels equidistant from the Equator. 
• Loxodromes (rhumb lines) are straight lines. 
• Not perspective. 
• Poles are at infinity; great distortion of area in polar regions. 
• Used for navigation. 
• Presented by Mercator in 1569. 

HISTORY 

The well-known Mercator projection was perhaps the first projection 
to be regularly identified when atlases of over a century ago gradually 
began to name projections used, a practice now fairly commonplace. 
While the projection was apparently used by Erhard Etzlaub of Nurem­
burg (1462-1532) on a small map on the cover of some sundials con­
structed in 1511 and 1513, the principle remained obscure until Gerhar­
dus Mercator (1512- 94) independently developed it and presented it 
in 1569 on a large world map of 21 sheets totaling about 1.3 by 2 m 
(Keuning, 1955, p. 17 -18). 

Mercator, born at Rupelmonde in Flander~, was probably originally 
named Gerhard Cremer (or Kremer), but he always used the latinized 
form. To his contemporaries and to later scholars, he is better known 
for his skills in map and globe making, for being the first to use the 
term "atlas" to describe a collection of maps in a volume, for his 
calligraphy, and for first naming North America as such on a map in 
1538. To the world at large, his name is identified chiefly with his pro­
jection, which he specifically developed to aid navigation. His 1569 map 
is entitled "Nova et Aucta Orbis Terrae Descriptio ad Usum Navigan­
tium Emendate Accommodata (A new and enlarged description of the 
Earth with corrections for use in navigation)." He described in Latin 
the nature of the projection in a large panel covering much of his por­
trayal of North America: 

" * * * In this mapping of the world we have [desired] to spread out 
the surface of the globe into a plane that the places shall everywhere be 
properly located, not only with respect to their true direction and 
distance, one from another, but also in accordance with their due 
longitude and latitude; and further, that the shape of the lands, as they 
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FIGURE 7.-Gerhardus Mercator (1512-94). The inventor of the most famous map pro­
jection, which is the prototype for conformal mapping. 

I 
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appear on the globe, shall be preserved as far as possible. For this there 
was needed a new arrangement and placing of meridians, so that they 
shall become parallels, for the maps hitherto produced by geographers 
are, on account of the curving and the bending of the me~idians, un­
suitable for navigation* * *. Taking all this into consideration, we have 
somewhat increased the degrees of latitude toward each pole, in pro­
portion to the increase of the parallels beyond the ratio they really have 
to the equator." (Fite and Freeman, 1926, p. 77-78). 

Mercator probably determined the spacing graphically, since tables 
of secants had not been invented. Edward Wright (ca. 15.58-1615) of 
England later developed the mathematics of the projection and in 1599 
published tables of cumulative secants, thereby indicating the spacing 
from the Equator (Keuning, 1955, p. 18). 

FEATURES AND USAGE 

The meridians of longitude of the Mercator projection are vertical 
parallel equally spaced lines, cut at right angles by horizontal straight 
parallels which are increasingly spaced toward each pole so that confor­
mality exists (fig. 8). The spacing of parallels at a given latitude on the 
sphere is proportional to the secant of the latitude. 

The major navigational feature of the projection is founcl in the fact 
that a sailing route between two points is shown as a straight line, if the 
direction or azimuth of the ship remains constant with respect to north. 
This kind of route is called a loxodrome or rhumb line ani is usually 
longer than the great circle path (which is the shortest possi'"'1e route on 
the sphere). It is the same length as a great circle only if it follows the 
Equator or a meridian. 

The great distortion of area on the Mercator projection cf the Earth 
leads to mistaken concepts when it is the chief basis of world maps seen 
by students in school. The classic comparison of areas is between 
Greenland and South America. Greenland appears larger, although it is 
only one-eighth the size of South America. Furthermore, theN orth and 
South Poles cannot be shown, since they are at infinite dirt,ance from 
other parallels on the projection, giving a student an impr~ssion they 
are inaccessible (which of course they seemed to explorer~ long after 
the time of Mercator). The last fifty years have seen an increased em­
phasis on the use of other projections for world maps in published 
atlases. 

Nevertheless, the Mercator projection is fundamental in the develop­
ment of map projections, especially those which are conformal. It re­
mains a standard navigational tool. It is also especially suitrl:lle for con­
formal maps of equatorial regions. The USGS has recently used it as an 
inset of the Hawaiian Islands on the 1:500,000-scale base map of 
Hawaii, for a Bathymetric Map of the Northeast Equatorial Pacific 
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Ocean (although the projection is not stated) and for a Tectonic Map of 
the Indonesia region, the latter two both in 1978 and at a scale of 
1:5,000,000. 

The first detailed map of an entire planet other than the Earth was 
issued in 1972 at a scale of 1:25,000,000 by the USGS Center of Astro­
geology, Flagstaff, Ariz., following imaging of Mars by Mariner 9. 
Maps of Mars at other scales have followed. The mapping of the planet 
Mercury followed the flybys of Mariner 10 in 1974. Beginning in the 
late 1960's, geology of the visible side of the Moon was rna oped by the 
USGS in quadrangle fashion at a scale of 1:1,000,000. The four Galilean 
satellites of Jupiter and several satellites of Saturn are be.ing mapped 
following the Voyager missions of 1979-81. For all these bodies, the 
Mercator projection has been used to map equatorial p1rtions, but 
coverage extends in some cases to lats. 65° N. and S. (Se~ table 6.) 

The cloudy atmosphere of Venus, circled by the Pionee"' Venus Or­
biter beginning in late 1978, is delaying more precise mapping of that 
planet, but the Mercator projection alone has been us~d to show 
altitudes based on radar reflectivity over about 93 percent of the sur­
face. 

FORMULAS FOR THE SPHERE 

There is no suitable geometrical construction of the Mercator projec­
tion. For the sphere, the formulas for rectangular coordinates are as 
follows: 

or 

X=R ('A-'Ao) 
y = R In tan ( -rrl 4 + cJ>/2) 
y=R arctanh (sin c/>) 

(7-1) 
(7-2) 

(7-2a) 

where R is the radius of the sphere at the scale of the mao as drawn, 
and cJ> and}.. are given in radians. The X axis lies along the Equator, x in­
creasing easterly. The Y axis lies along the central meridian 'Ao, yin­
creasing northerly. If ('A- 'Ao) lies outside the range ± 180°, 360° should 
be added or subtracted so it will fall inside the range. To ur~ cJ> and }.. in 
degrees, 

or 

X= -rrR ('A 0 - 'Ao}/180° 
y=R In tan (45° +c/> 0 /2) 
y=R arctanh (sin c/>) 

(7-la) 
(7-2b) 
(7-2c) 

Equations (7-2a) and (7-2c) may be more convenient to use than 
(7-2) or (7-2b), if hyperbolic functions are standard to the computer or 
calculator. Note that if cJ> is ± -rr/2 or ± 90°, y is infinite. For scale fac­
tors, application of equations (4-2), (4-3), and (4-9) to (7-1) and (7-2) or 



TABLE 6.-Mercator Projection: Used for extraterrestrial mapping 

[From Batson, 1973; Davies and Batson, 1975; Batson and others, 1980; Pettengill, 1980; Batson, private commun., 1981] 

Body1 Scale2 Range in lat. Adjacent Projection Overlap Matching Parallel 
with (scale)3 

Moon ----------- 1:1,000,000 16°S.-16°N. Lambert Conformal Conic oo 16° 
(geologic series) (1:1,021,000) 

Mercury--------- 1:15,000,000 57°S.-57°N. Polar Stereographic 20 56° 
(1:8,388,000) 

1:5,000,000 25°S.-25°N. Lambert Conformal Conic 50 22.5° 
(1:4,619,000) 

Venus ---------- 1:50,000,000 65°S.-78°N. none -- --
Mars ----------- 1:25,000,000 65°S.-65°N. Polar Stereographic 100 60° 

(1:12,549,000) 
1:15,000,000 57°S.-57°N. Polar Stereographic 20 56° 

(1:8,418,000) 
1:5,000,000 30°S.-30°N. Lambert Conformal Conic oo B0° 

1:2,000,000 30°S.-30°N. Lambert Conformal Conic 
(1:4,336,000) oo 30° 
(1:1,953,000) 

Comments 

Quadrangles 
20° long. x 16° lat. 

Quadrangles 
72° long. x 50° lat. 

Quadrangles 
45 ° long. x 30° lat. 

Quadrangles 
22.5° long. x 15° lat. 
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Galilean satellites of Jupiter 
Io 1:25,000,000 57°S.-57°N. Polar Stereographic 20 56° 

(1:13,980,000) 
Europa 1:15,000,000 57°S.-57°N. Polar Stereographic 20 56° 

(1:8,388,000) 
Ganymede 1:5,000,000 50°S.-50°N. Polar Stereographic 50 45° Quadrangles 

(lo & Europa) (1:4,268,000) 180° long. x 100° lat. 
Callisto 1:5,000,000 22°S.-22°N. Lambert Conformal Conic 10 21.3° Quadrangles 

(Ganymede & Callisto) (1:4, 780 ,000) 72° long. x 44 ° lat. 

Satellites of Saturn 

Mimas } 1:5,000,000 57°S.-57°N. Polar Stereographic 20 56° Enceladus 
Hyperion (1:2,796,000) 

Tethys I Dione 1:10,000,000 57°S.-57°N. Polar Stereographic 20 56° 
Rhea (1:5,592,000) 
Iapetus 

• Taken as sphere, except for Mars (ellipsoid). See table 2. 
2 Scale at equator, except for Moon (at 11 °00'45" N. & S.), Io and Europa 1:5,000,000 (at 34°04' N. & S. and pole of Stereographic), Ganymede and Callisto 1:5,000,000 (at 13°00' N. & S. and pole of 

Stereographic), and Mars 1:2,000,000 (at 27°29' N. & S. and standard parallels of Lambert Conformal Conic). 
3 Some scales revised from those previously published, per communications from Batson, 1979. Matching parallels are both N. & S. 
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(7 -2a), gives results consistent with the conformal feature of the Mer­
cator projection: 

h = k = sec cf> = 1/ cos cf> 
w=O 

(7-3) 

Normally, for conformal projections, the use of h (the scale factor 
along a meridian) is omitted, and k (the scale factor along a parallel) is 
used for the scale factor in any direction. The areal scale factor for con­
formal projections is k2 or sec2 q, for the Mercator in spherical form. 

The inverse formulas for the sphere, to obtain cf> and 'A from rectangu­
lar coordinates, are as follows: 

cf> = 1rl2- 2 arctan ( e-yl R) 
'A=xiR +'Ao 

(7-4) 
(7-5) 

Here e = 2. 7182818, the base of natural logarithms, not eccentricity. 
These and subsequent formulas are given only in radians, as stated 
earlier, unless the degree symbol is used. Numerical examples (see Ap­
pendix A) are given in degrees, showing conversion. 

FORMULAS FOR THE ELLIPSOID 

For the ellipsoid, the corresponding equations for the Mercator are 
only a little more involved: 

X=a('A-'Ao) (7-6) 

y = a In [tan( 1rl 4 + q,/2) ( i -e s~n P )e'l] (7 -7) 
+e sin q, 

where a is the equatorial radius of the ellipsoid, and e is its ecce--ttricity. 
Comparing equation (3-7), it is seen that y= a,P. From equatiors (4-22) 
and ( 4-23), it may be found that 

(7-8) 

and of course w = 0. The areal scale factor is k2
• The derivation of these 

equations is shown in Thomas (1952, p. 1,'2, 85-90). 
The X and Y axes are oriented as they are for the spherical fc~mulas, 

and ('A- 'Ao) should be similarly adjusted. Thomas also provides a series 
equivalent to equation (7 -7), slightly modified here for consistency: 

yla= In tan (7r/4+ ¢/2)- (e2 + e4/4 + e6/8 + ... ) sin q, 
+(e4/12+e6/16+ ... ) sin 3 ¢-(e6/80+ ... ) sin 5</>+ . . . (7-7a) 

The inverse formulas for the ellipsoid require rapidly converging 
iteration, if the closed forms of the equations for finding <1> are used: 

</>= 1rl2-2 arctan (t [(1-e sin <t>)/(1+e sin <t>)]e'2 } (7-9) 
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where t = e-yta 

e is the base of natural logarithms, 2. 71828 ... , 
and the first trial c1> = 1r/2- 2 arctan t 
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(7-10) 

(7-11) 

Inserting the first trial c1> in the right side of equation (7 -9), c1> on the left 
side is calculated. This becomes the new trial cj>, which is used on the 
right side. The process is repeated until the change in c1> is less than a 
chosen convergence factor depending on the accuracy desir~d. This c1> is 
then the final value. For A, 

(7-12) 

The scale factor is calculated from equation (7 -8), using th~ calculated 
cj>. 

To avoid the iteration, the series (3-5) may be used with (7 -13) in 
place of (7-9): 

ct>=x+(e2/2+5e4/24+e6/l2+ ... ) sin 2x+(7e4/48+29e6/240+ ... ) 
sin 4x + (7 e6/l20 + ... ) sin 6x + . . . (3-5) 

where x = 1r/2- 2 arctan t (7 -13) 
Rectangular coordinates for each 5° of latitude are given in table 7, 

for both the sphere and the Clarke 1866 ellipsoid, assuming R and a are 
both 1.0. It should be noted that k for the sphere applies only to the 
sphere. The spherical projection is not conformal with rer'1ect to the 
ellipsoidal Earth, although the variation is negligible for a nap with an 
equatorial scale of 1:15,000,000 or smaller. 

MERCATOR PROJECTION WITH ANOTHER STANDARD PARALLEL 

The above formulas are based on making the Equator of the Earth 
true to scale on the map. Thus, the Equator may be called the standard 
parallel. It is also possible to have, instead, another parallel (actually 
two) as standard, with true scale. For the Mercator, the m.::tp will look 
exactly the same; only the scale will be different. If latitudE: cj> 1 is made 
standard (the opposite latitude - cj> 1 is also standard), the above for­
ward formulas are adapted by multiplying the right side of equations 
(7-1) through (7-3) for the sphere, including the alternate forms, by cos 
cj> 1 • For the ellipsoid, the right sides of equations (7-6}, (7-7}, (7-8}, and 
(7-7a) are multiplied by cos cj> 1/(l-e2 sin2 cj> 1}

112
• For inversE: equations, 

divide x andy by the same values before use in equation~ (7-4) and 
(7-5) or (7-10) and (7-12). Such a projection is most commonly used for 
a navigational map of part of an ocean, such as the North Atlantic 
Ocean, but the USGS has used it for equatorial quadrangles of some ex­
traterrestrial bodies as described in table 6. 
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TABLE 7. -Me-rcator p·rojection:Rectangu.la-r coo-rdinates 

Latitude S_ehere (R = 1) Clarke 1866 elli_esoid {a= 1} 
(cp) y 

90o _______________ Infinite 

85 --------------- 3.13130 
80 --------------- 2.43625 
75 --------------- 2.02759 
70 --------------- 1.73542 
65 --------------- 1.50645 
60 --------------- 1.31696 
55 --------------- 1.15423 
50 --------------- 1.01068 
45 --------------- .88137 
40 --------------- .76291 
35 --------------- .65284 
30 --------------- .54931 
25 --------------- .45088 
20 --------------- .35638 
15 --------------- .26484 
10 --------------- .17543 

5 --------------- .08738 
0 --------------- .00000 

X 0.017453 (>.->.o) 

Note: x, y =rectangular coordinates. 
</>=geodetic latitude. 

k 

Infinite 
11.47371 
5.75877 
3.86370 
2.92380 
2.36620 
2.00000 
1.74345 
1.55572 
1.41421 
1.30541 
1.22077 
1.15470 
1.10338 
1.06418 
1.03528 
1.01543 
1.00382 
1.00000 

(>.- A0 )= geodetic longitude, measured east from origin in degrees. 
k= scale factor, relative to scale at Equator. 
R =radius of sphere at scale of map. 
a.= equatorial radius of ellipsoid at scale of map. 
If latitude is negative (south), reverse sign of y. 

y k 

Infinite Irfinite 
3.12454 11.43511 
2.42957 5.73984 
2.02104 3.85148 
1.72904 2.91505 
1.50031 2.35961 
1.31109 1.99492 
1.14868 1.73948 
1.00549 1.55263 

.87658 1.41182 

.75855 1.30358 

.64895 1.21941 

.54592 1.15372 

.44801 1.10271 

.35406 1.06376 

.26309 1.03504 

.17425 1.01532 

.08679 1.00379 

.00000 1.00000 

0.017453 (>.->.o) 



8. TRANSVERSE MERCATOR PROJECTION 

SUMMARY 

• Cylindrical (transverse). 
• Conformal. 
• Central meridian, each meridian 90° from central meridian, and Equator are 

straight lines. 
• Other meridians and parallels are complex curves. 
• Scale is true along central meridian, or along two straight lines equidistant from and 

parallel to central meridian. (These lines are only approximately straight for the 
ellipsoid.) 

• Scale becomes infinite 90° from central meridian. 
• Used extensively for quadrangle maps at scales from 1:24,000 to 1:250,000. 
• Presented by Lambert in 1772. 

HISTORY 

Since the regular Mercator projection has little error close to the 
Equator (the scale 10° away is only 1.5 percent larger than the scale at 
the Equator), it has been found very useful in the transverse form, with 
the equator of the projection rotated 90° to coincide with the desired 
central meridian. This is equivalent to wrapping the cylinder around a 
sphere or ellipsoid representing the Earth so that it touches the central 
meridian throughout its length, instead of following the Equator of the 
Earth. The central meridian can then be made true to scale, no matter 
how far north and south the map extends, and regions near it are 
mapped with low distortion. Like the regular Mercator, the map is 
conformal. 

The Transverse Mercator projection in its spherical form was invented 
by the prolific Alsatian mathematician and cartographer Johann 
Heinrich Lambert (1728-77). It was the third of six new projections 
which he described in 1772 in his classic Beitriige (Lambert, 1772). At 
the same ti:rpe, he also described what are now called the Lambert Con­
formal Conic and the Lambert Azimuthal Equal-Area, both of which 
will be discussed subsequently; others are omitted here. He described 
the Transverse Mercator as a conformal adaptation of the Sinusoidal 
projection, then commonly in use (Lambert, 1772, p. 57-58). Lambert's 
derivation was followed with a table of coordinates and a map of the 
Americas drawn according to the projection. 

Little use has been made of the Transverse Mercator for single maps 
of continental areas. While Lambert only indirectly discussed its ellip­
soidal form, mathematician Carl Friedrich Gauss (1777 -1855) analyzed 
it further in 1822, and L. Kruger published studies in 1912 and 1919 pro­
viding formulas suitable for calculation relative to the ellipsoid. It is, 
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FIGURE 9.-Johann Heinrich Lambert (1728-77). Inventor of the Transverse Mercator, 
the Conformal Conic, the Azimuthal Equal-Area, and other important projections, as 
well as outstanding developments in mathematics, astronomy, and physics. 

therefore, sometimes called the Gauss conformal or the Gauss-Kruger 
projection in Europe, but Transverse Mercator, a term first applied by 
the French map projection compiler Germain, is the name normally 
used in the United States (Thomas, 1952, p. 91-92; Germain, 1865?, p. 
347). 

Until recently, the Transverse Mercator projection was not precisely 
applied to the ellipsoid for the entire Earth. Ellipsoidal formulas were 
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limited to series for relatively narrow bands of about ±4 ° longitude. 
ln 1945, E. H. Thompson, (and in 1962, L. P. Lee) presented exact or 
closed formulas permitting calculation of coordinates for the full ellip­
soid, although elliptic functions, and therefore length:r series, 
numericalintegrations,and (or) iterations, are involved (Lee, 1976, p. 
92-101; Snyder, 1979a, p. 73; Dozier, 1980). 

The formulas for the complete ellipsoid are interesting acad~mically, 
but they are practical only within a band between 4 o of lon~tude and 
some 10° to 15° of arc distance on either side of the central meridian, 
because of the much more significant scale errors fundamental to any 
projection covering a larger area. 

FEATURES 

The meridians and parallels of the Transverse Mercato:-- are no 
longer the straight lines they are on the regular Mercator, except for 
the Earth's Equator, the central meridian, and each meridian 90° away 
from the central meridian. Other meridians ctnd parallels are complex 
curves. 

The spherical form is conformal, as is the parent projection, and scale 
error is only a function of the distance from the central meridian, just 
as it is only a function of the distance from the Equator on th~ regular 
Mercator. The ellipsoidal form is also exactly conformal, but its scale 
error is slightly affected by factors other than the distance al -:me from 
the central meridian (Lee, 1976, p. 98). 

The scale along the central meridian may be made true to scale, or 
deliberately reduced to a slightly smaller constant scale so that the 
mean scale of the entire map is more nearly correct. There are also 
forms of the ellipsoidal Transverse Mercator on which the central merid­
ian is not held at a constant scale, but these forms are not used in 
practice (Lee, 1976, p. 100-101). If the central meridian is mal)ped at a 
reduced scale, two straight lines parallel to it and equally spa ~ed from 
it, one on either side, become true to scale on the sphere. Tr~se lines 
are not perfectly straight on the ellipsoidal form. 

With the scale along the central meridian remaining constant, the 
Transverse Mercator is an excellent projection for lands extending 
predominantly north and south. 

USAGE 

The Transverse Mercator projection (spherical or ellipsoidal) was not 
described by Close and Clarke in their generally detailed article in the 
1911 Encyclopaedia Britannica because it was "seldom used" (Close 
and Clarke, 1911, p. 663). Deetz and Adams (1934) favorably referred 
to it several times, but as a slightly used projection. 
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The spherical form of the Transverse Mercator has been used by the 
USGS only recently. In 1979, this projection was chosen for a 1'-:tse map 
of North America at a scale of 1:5,000,000 to replace the Bipolar 
Oblique Conic Conformal projection previously used for tectonic and 
other geologic maps. The scale factor along the central meridi::tn, long. 
100° W., is reduced to 0.926. The radius of the Earth is taken at 
6,371,204 m, with approximately the same surface area as the Interna­
tional ellipsoid, placing the two straight lines of true design scale 2,343 
km on each side of the central meridian. 

While its use in the spherical form is limited, the ellipsoidal form of 
the Transverse Mercator is probably used more than any other one pro­
jection for geodetic mapping. 

In the United States, it is the projection used in the State Plane Coor­
dinate System (SPCS) for States with predominant north-south extent. 
(The Lambert Conformal Conic is used for the others, excep4: for the 
panhandle of Alaska, which is prepared on the Oblique Mercator. 
Alaska, Florida, and New York use both the Transverse Mercator and 
the Lambert Conformal Conic for different zones.) Except for narrow 
States, such as Delaware, New Hampshire, and New Jersey, all States 
using the Transverse Mercator are divided into two to eight zones, each 
with its own central meridian, along which the scale is slightly rniuced to 
balance the scale throughout the map. Each zone is designed to main­
tain scale distortion within 1 part in 10,000. 

In addition to latitude and longitude as the basic frame of reference, 
the corresponding rectangular grid coordinates in feet are used to 
designate locations (Mitchell and Simmons, 1945). The param,~ters for 
each State are given in table 8. All are based on the Clarke 1Pt36 ellip­
soid. It is important to note that, for the metric conversion to feet using 
this coordinate system, 1 m equals exactly 39.37 in., not the current 
standard accepted by the National Bureau of Standards in 1959, in 
which 1 in. equals exactly 2.54 em. Surveyors continue to fcHow the 
former conversion for consistency. The difference is only two parts in a 
million, but it is enough to cause confusion, i_f it is not accourted for. 

Beginning with the late 1950's, the Transverse Mercator projection 
was used by the USGS for nearly all new quadrangles (maps normally 
bounded by meridians and parallels) covering those States using the 
TM Plane Coordinates, but the central meridian and scale fr~tor are 
those of the SPCS zone. Thus, all quadrangles for a given zone may be 
mosaicked exactly. Beginning in 1977, many USGS maps have been 
produced on the Universal Transverse Mercator projection (se~ below). 
Prior to the late 1950's, the Polyconic projection was used. Th~ change 
in projection was facilitated by the use of high-precision rectangular­
coordinate plotting machines. Some maps produced on the Tr,'1nsverse 
Mercator projection system during this transition period are identified 
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FIGURE 10.-The Transverse Mercator projection. While the regular Mercator 
has constant scale along the Equator, the Transverse Mercator ha~ con­
stant scale along any chosen central meridian. This projection is nnfor­
mal and is often used to show regions with greater north-south extent. 
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as being prepared according to the Polyconic projection. F:nce most 
quadrangles cover only 7112 minutes (at a scale of 1:24,('00) or 15 
minutes (at 1:62,500) of latitude and longitude, the difference between 
the Polyconic and the Transverse Mercator for such a sm!ill area is 
much more significant due to the change of central meridian than due 
to the change of projection. The difference is still slight and is detailed 
later under the discussion of the Polyconic projection. The Transverse 
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TABLE 8. - U.S. State plane coordinate systems 

[T indicates Transverse Mercator; L, Lambert Conformal Conic; H, Hotine Oblique Mercator. Modified slightly and up· 
dated from Mitchell and Simmons, 1945, p. 45-47] 

Area Projection Zones Area Projection Zones 

Alabama -------- T 2 Montana -------- L 3 
Alaska ---------- T 8 Nebraska -------- L 2 

L 1 Nevada --------- T 3 
H 1 New Hampshire __ T 1 

Arizona --------- T 3 New Jersey ------ T 1 
Arkansas -------- L 2 New Mexico ______ T 3 
California ------- L 7 New York------- T 3 
Colorado -------- L 3 L 1 
Connecticut ------ L 1 North Carolina ___ L 1 
Delaware-------- T 1 North Dakota ____ L 2 
Florida ---------- T 2 Ohio ------------ L 2 

L 1 Oklahoma ------- L 2 
Georgia --------- T 2 Oregon ---------- L 2 
Hawaii ---------- T 5 Pennsylvania _____ L 2 
Idaho ----------- T 3 Puerto Rico & 
Illinois ---------- T 2 Virgin Islands __ L 2 
Indiana --------- T 2 Rhode Island _____ T 1 
Iowa ------------ L 2 Samoa ---------- L 1 
Kansas ---------- L 2 South Carolina ___ L 2 
Kentucky -------- L 2 South Dakota ____ L 2 
Louisiana -------- L 3 Tennessee ------- L 1 
Maine ----------- T 2 Texas ----------- L 5 
Maryland -------- L 1 Utah ------------ L 3 
Massachusetts ____ L 2 Vermont T 1 
Michigan1 --------

Virginia --------- L 2 
obsolete ------- T 3 Washington ______ L 2 
current-------- L 3 West Virginia ____ L 2 

Minnesota ------- L 3 Wisconsin ------- L 3 
Mississippi ------- T 2 Wyoming-------- T 4 
Missouri --------- T 3 

Transverse Mercator projection 

Zone Central meridian Scale reduction2 Origins (la~itude) 

Alabama 
East ------- 85°50' w. 1:25,000 30°30'' N. 
West ------- 87 30 1:15,000 30 00 

Alaska4 

2 ---------- 142 00 1:10,000 54 00 

3 ---------- 146 00 1:10,000 54 00 

4 ---------- 150 00 1:10,000 54 00 

5 ---------- 154 00 1:10,000 54 00 

6 ---------- 158 00 1:10,000 54 00 

7 ---------- 162 00 1:10,000 54 00 

8 ---------- 166 00 1:10,000 54 00 

9 ---------- 170 00 1:10,000 54 00 
Arizona 

East _______ 110 10 1:10,000 31 00 
Central _____ 111 55 1:10,000 31 00 
West ------- 113 45 1:15,000 31 00 

Delaware ------ 75 25 1:200,000 38 00 
Florida4 

East ------- 81 00 1:17,000 24 20 
West ------- 82 00 1:17,000 24 20 
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TABLES. -U.S. State plane coordinate systems-Continued 

Transverse Mercator projection- Continued 

Zone Central meridian Scale reduction2 Origins (latitnde) 

Georgia 
30°00' N. East ------- 82°10' w. 1:10,000 

West _______ 84 10 1:10,000 30 00 
Hawaii 

1 ---------- 155 30 1:30,000 18 50 

2 ---------- 156 40 1:30,000 20 20 

3 ---------- 158 00 1:100,000 21 10 

4 ---------- 159 30 1:100,000 21 50 

5 ---------- 160 10 0 21 40 
Idaho 

East _______ 112' 10 1:19,000 41 40' 
Central _____ 114 00 1:19,000 41 40 

West ------- 115 45 1:15,000 41 40 
Illinois 

East _______ 88 20 1:40,000 36 40 
West _______ 90 10 1:17,000 36 40 

Indiana 
East ------- 85 40 1:30,000 37 30 

West------- 87 05 1:30,000 37 30 
Maine 

East ------- 68 30 1:10,000 43 50 

West ------- 70 10 1:30,000 42 50 
Michigan ( old)4 

East _______ 83 40 1:17,500 41 30 
Central _____ 85 45 1:11,000 41 30 

West ------- 88 45 1:11,000 41 30 
Mississippi 

East _______ 88 50 1:25,000 29 40 
West _______ 90 20 1:17,000 30 30 

Missouri 
East _______ 90 30 1:15,000 35 50 
Central _____ 92 30 1:15,000 35 50 
West _______ 94 30 1:17,000 3E 10 

Nevada 
East _______ 115 35 1:10,000 34 45 
Central _____ 116 40 1:10,000 34 45 
West _______ 118 35 1:10,000 34 45 

New Hampshire _ 71 40 1:30,000 4~ 30 
New Jersey _____ 74 40 1:40,000 3f 50 
New Mexico 

East _______ 104 20 1:11,000 31 00 
Central _____ 106 15 1:10,000 31 00 
West _______ 107 50 1:12,000 31 00 

New York4 

East _______ 74 20 1:30,000 40 00 
Central _____ 76 35 1:16,000 40 00 
West _______ 78 35 1:16,000 40 00 

Rhode Island ____ 71 30 1:160,000 41 05 
Vermont _______ 72 30 1:28,000 42 30 
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TABLE 8.-U.S. Sta.te plane coordinate systems-Continued 

Zone 

Wyoming 
East ______ _ 

East Central 
West Central 
West ______ _ 

Transverse Mercator projection- Continued 

Central meridian 

105°10' w. 
107 20 
108 45 
110 05 

Scale reduction2 

1:17,000 
1:17,000 
1:17,000 
1:17,000 

Lambert Conformal Conic projection 

Origin3 (lrtitude) 

40°40' N. 
40 40 
40 40 
40 40 

Origin5 

Zone Standard parallels Long. Lat. 

Alaska4 

10 -----------­
Arkansas 

North ________ _ 
South ________ _ 

California 

I -------------II ___________ _ 
III ___________ _ 
IV ___________ _ 

v ------------
VI ___________ _ 
VII __________ _ 

Colorado 
North ________ _ 
Central _______ _ 
South ________ _ 

Connecticut ______ _ 
Florida4 

North ________ _ 
Iowa 

North ________ _ 
South ________ _ 

Kansas 
North ________ _ 
South ________ _ 

Kentucky 
North ________ _ 
South ________ _ 

Louisiana 
North ________ _ 
South ________ _ 
Offshore ______ _ 

Maryland ________ _ 
Massachusetts 

Mainland _____ _ 
Island ________ _ 

51°50' N. 

34 56 
33 18 

40 00 
38 20 
37 04 
36 00 
34 02 
32 47 
33 52 

39 43 
38 27 
37 14 
41 12 

29 35 

42 04 
40 37 

38 43 
37 16 

37 58 
36 44 

31 10 
29 18 
26 10 
38 18 

41 43 
41 17 

36 14 
34 46 

41 40 
39 50 
38 26 
37 15 
35 28 
33 53 
34 25 

40 47 
39 45 
38 26 
41 52 

30 45 

43 16 
41 47 

39 47 
38 34 

38 58 
37 56 

32 40 
30 42 
27 50 
39 27 

42 41 
41 29 

92 00 
92 00 

122 00 
122 00 
120 30 
119 00 
118 00 
116 15 
118 20 

105 30 
105 30 
105 30 

72 45 

84 30 

93 30 
93 30 

98 00 
98 30 

84 15 
85 45 

92 30 
91 20 
91 20 
77 00 

71 30 
70 30 

51 °00' N. 

34 20 
32 40 

39 20 
37 40 
36 30 
35 20 
33 30 
32 10 
34 085b 

39 20 
37 50 
36 40 
40 505d 

29 00 

41 30 
40 00 

38 20 
36 40 

37 30 
36 20 

30 40 
28 40 
25 40 
37 5or•c 

41 oor·d 
41 oo'·c 
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TABLE 8.- U.S. State plane coordinate systems- Continued 

Lambert Conformal Conic projection- Continued 

Zone Standard parallels 
Origin6 

Long. Lat. 

Michigan (current)4 

North--------- 45°29' N. 47°05' N. 87°00' w. 44°47' N. 
Central ________ 44 11 45 42 84 20 43 19 
South _________ 42 06 43 40 84 20 41 30 

Minnesota 
North _________ 47 02 48 38 93 06 46 30 
Central ________ 45 37 47 03 94 15 45 00 
South _________ 43 47 45 13 94 00 43 00 

Montana 
North _________ 47 51 48 43 109 30 47 00 
Central ________ 46 27 47 53 109 30 45 50 
South _________ 44 52 46 24 109 30 44 00 

Nebraska 
North _________ 41 51 42 49 100 00 41 20 
South _________ 40 17 41 43 99 30 39 40 

New York4 

Long Island ____ 40 40 41 02 74 00 40 305f 
North Carolina _____ 34 20 36 10 79 00 33 45 
North Dakota 

North _________ 47 26 48 44 100 30 47 00 
South _________ 46 11 47 29 100 30 45 40 

Ohio 
North _________ 40 26 41 42 82 30 39 40 
South _________ 38 44 40 02 82 30 38 00 

Oklahoma 
North _________ 35 34 36 46 98 00 35 00 
South _________ 33 56 35 14 98 00 33 20 

Oregon 
North _________ 44 20 46 00 120 30 43 40 
South _________ 42 20 44 00 120 30 41 40 

Pennsylvania 
North _________ 40 53 41 57 77 45 40 10 
South _________ 39 56 40 58 77 45 39 20 

Puerto Rico and 
Virgin Islands 

1 ------------- 18 02 18 26 66 26 17 505g 

2 (St. Croix) ____ 18 02 18 26 66 26 17 505f· g 

Samoa------------ 14°16' S. (single) 110 oo5h 

South Carolina 
North _________ 33°46' N. 34 58 81 00 33 00 
South _________ 32 20 33 40 81 00 31 50 

South Dakota 
North _________ 44 25 45 41 100 00 43 50 
South _________ 42 50 44 24 100 20 42 20 

Tennessee ________ 35 15 36 25 86 00 34 40;,r 
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TABLE 8.- U.S. State plane coordinate systems- Continued 

Lambert Conformal Conic projection- Continued 

Zone Standard parallels 
Origin5 

Long. Lat. 

Texas 
North --------- 34°39' N. 36°11' N. 101 °30' w. 34°00' N. 
North central ___ 32 08 33 58 97 30 31 40 
Central ________ 30 07 31 53 100 20 29 40 
South central ___ 28 23 30 17 99 00 27 50 
South --------- 26 10 27 50 98 30 25 40 

Utah 
North --------- 40 43 41 47 111 30 40 20 
Central ________ 39 01 40 39 111 30 38 20 
South--------- 37 13 38 21 111 30 36 40 

Virginia 
North --------- 38 02 39 12 78 30 37 40 
South --------- 36 46 37 58 78 30 36 20 

Washington 
North _________ 47 30 48 44 120 50 47 00 
South --------- 45 50 47 20 120 30 45 20 

West Virginia 
North _________ 39 00 40 15 79 30 38 30 
South --------- 37 29 38 53 81 00 37 00 

Wisconsin 
North--------- 45 34 46 46 90 00 45 10 
Central -------- 44 15 45 30 90 00 43 50 
South _________ 42 44 44 04 90 00 42 00 

Hotine Oblique Mercator projection 

Zone 
Center of erojection Azimuth of Scale6 

Long. Lat. central line re(htction 

Alaska4 

1 ------- 133°40' w. 57°00' N. arctan ( - 3f4) 1:10,000 

Note.- All these systems are based on the Clarke 1866 ellipsoid. 
'The major and minor axes of the ellipsoid are taken at exactly 1.0000382 times those of the C'arke 1866, for 

Michigan only. This incorporates an average elevation throughout the State of about 800ft, with limited variation. 
2Aiong the central meridian. 
3At origin, .r=500,000 ft, y=O ft, except for Alaska zone 7, .r=700,000 ft; Alaska zone 9, .r=600,000 ft; and New 

Jersey, :r=2,000,000 ft. 
4Additional zones listed in this table under other projection(s). 
5At origin, .r= 2,000,000 ft, y= 0 ft, except (a) .t=3,000,000 ft, (b) .r=4, 186,692.58, y=4,l60,926. 74ft. (c) .r=800,000 

ft, (d) x=600,000 ft, (e) .r =200,000 ft. (f) 11= 100,000 ft, (g) .r= 500,000 ft, (h) .r=500,000 ft, y=O, but radius to lat. of 
origin= - 82,000,000 ft. 

"At central point. 
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Mercator is used in many other countries for official topographic map­
ping as well. The Ordnance Survey of Great Britain began switching 
from a Transverse Equidistant Cylindrical (the Cassini-Soldner) to the 
Transverse Mercator about 1920. 

The use of the Transverse Mercator for quadrangle maps has been 
recently extended by the USGS to include the planets Me:"'cury and 
Mars. Although other projections are used at smallE:r scales, 
quadrangles at scales of 1:1,000,000 and 1:250,000, and covering areas 
from 200 to 800 km on a side, are drawn to the ellipsoidal T.-~ansverse 
Mercator between lats. 65° N. and S. on Mars, and to the spherical 
Transverse Mercator for any latitudes on Mercury. The sc-<:~Je factor 
along the central meridian is made 1. 0 in all cases. 

In addition to its own series of larger-scale quadrangle maps, the 
Army Map Service used the Transverse Mercator for two other major 
mapping operations: (1) a series of 1:250,000-scale quadrangle maps 
covering the entire country, and (2) as the geometric bas-:q for the 
Universal Transverse Mercator (UTM) grid. 

The entire area of the United States has been mapped since the 
1940's in sections 2° of longitude (between even-numbered neridians, 
but in 3° sections in Alaska) by 1 o of latitude (between each full degree) 
at a scale of 1:250,000, with the UTM grid superimposed and with some 
variations in map boundaries at coastlines. These maps WE.re drawn 
with reference to their own central meridians, not the cent':'al merid­
ians of the UTM zones (see below), although the 0.9996 certral scale 
factor was employed. The central meridian of about one-third of the 
maps coincides with the central meridian of the zone, but it does not for 
about two-thirds, the "wing" sheets, which therefore do not perfectly 
match the center sheets. The USGS has assumed publicatior and revi­
sion of this series and is casting new maps using the corre~t central 
meridians. 

Transverse Mercator quadrangle maps fit continuously ir a north­
south direction, provided they are prepared at the same scale, with the 
same central meridian, and for the same ellipsoid. They do not fit ex­
actly from east to west, if they have their own central neridians; 
although quadrangles and other maps properly constructed at the same 
scale, using the SPCS or UTM projection, fit in all directions within the 
same zone. 

UNfVERSAL TRANSVERSE MERCATOR PROJECTION 

The Universal Transverse Mercator (UTM) projection and grid were 
adopted by the U.S. Army in 1947 for designating rectangular coor­
dinates on large-scale military maps of the entire world. Th~ UTM is 
the ellipsoidal Transverse Mercator to which specific parame~ers, such 
as central meridians, have been applied. The Earth, betweer lats. 84 ° 
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N. and goo S., is divided into 60 zones each generally 6° wide in 
longitude. Bounding meridians are evenly divisible by 6 o, and zones are 
numbered from 1 to 60 proceeding east from the 1g0th meridian from 
Greenwich with minor exceptions. There are letter designations from 
south to north (see fig. 11). Thus, Washington, D.C., is in grid zone 
1gs, a designation covering a quadrangle from long. 72° to 7go W. and 
from lat. 32° to 40° N. Each of these quadrangles is further su~divided 
into grid squares 100,000 meters on a side with double-letter designa­
tions, including partial squares at the grid boundaries. From lat. g4 ° N. 
and goo S. to the respective poles, the Universal Polar Stereographic 
(UPS) projection is used instead. 

As with the SPCS, each geographic location in the UTM projection is 
given x and y coordinates, but in meters, not feet, according to the 
Transverse Mercator projection, using the meridian halfway between 
the two bounding meridians as the central meridian, and reducing its 
scale to 0.9996 of true scale (a 1:2,500 reduction). The reduction was 
chosen to minimize scale variation in a given zone; the variation 
reaches 1 part in 1,000 from true scale at the Equator. The USGS, for 
civilian mapping, uses only the zone number and the x and y coor­
dinates, which are sufficient to define a point, if the ellipsoid and the 
hemisphere (north or south) are known; the 100,000-m square iden­
tification is not essential. The lines of true scale are approximately 
parallel to and approximately 180 km east and west of the central merid­
ian. Between them, the scale is too small; beyond them, it is tC'0 great. 
In the Northern Hemisphere, the Equator at the central me':idian is 
considered the origin, with an x coordinate of 500,000 m and a y of 0. 
For the Southern Hemisphere, the same point is the origin, but, while 
x remains 500,000 m, y is 10,000,000 m. In each case, numbers increase 
toward the east and north. Negative coordinates are thus avoided 
(Army, 1973, p. 7, endmap). A page of coordinates for the UTI\"" projec­
tion is shown in table 9. 

The ellipsoidal Earth is used throughout the UTM projection system, 
but the reference ellipsoid changes with the particular region of the 
Earth. For all land under United States jurisdiction, the Clarke 1g66 
ellipsoid is used for the map projection. For the UTM grid E·uperim­
posed on the map of Hawaii, however, the International ellipsoid is 
used. The Geological Survey uses the· UTM graticule and grid for its 
1:250,000- and larger-scale maps of Alaska, and applies the UTM grid 
lines or tick marks to its quadrangles and State base maps for tt:le other 
States, although they are generally drawn with different projections or 
parameters. 

FORMULAS FOR THE SPHERE 

A partially geometric construction of the Transverse Mercator for 
the sphere involves constructing a regular Mercator projection and us-
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TABLE 9.- Universal Transverse Mercator grid coordinates 

U.T.M. GRID COORDINATES • CLARKE 1866 SPHEROID Mll'ERS 

LATITUDE 48"00'00" LATITUDEW15'00" 
WesloiC.M. EastoiC.M. WestoiC.M. EastoiC.M. 1\). E E N &~ E E N v;; 5 oo.ooo.o 5 oo.ooo.o 5,316.~81.~ 

~ 5oo.ooo.o 5 oo.ooo.o 5,3A3.8~8.4 .. 90,6 7'5.3 5 09,32A.7 5.316,088.9 A90,720.A 509.279.6 5,3A3,875.9 1500 A 81,350.5 5 18.649.'5 5,316,111.6 1500 A81,440.8 5 I 8.5 59.2 5,343.8~8.6 2230 1172.025.8 52 7.9 74.2 5,316.1A9 4 2230 A 72.161.2 52 7.838.8 5,3A3,916.3 

3000 .. 62,701.1 5 37.2 98.9 5.316.202.3 3000 .. 62,881.7 5 37.1183 5.3A3,919.Z 3730 A53.376.A 5 46,6 23.6 5,316.270.3 3730 4 53.602.1 5 46.3 97.9 5,3AA,0,7 .2 4500 .. 4 4.051.8 555,948.2 5,316.353.5 4500 • 4 ... 322.6 5 55,6 77.4 5,34A,IA0.2 5230 1134.727.1 5 65.272.9 5.316.A51.7 5230 435.043.1 56A.956.9 5.34A.238.4 

10000 4 25.A02.5 5 74.597.5 5.316.565.1 10000 A 25.763.7 57 A.2 36.3 5,344,3"11.7 0730 .. 16.078.0 5 83,922.0 5.316.693.6 0730 4 16.4 84.3 583,515.7 5.3AA.480.1 1500 4 06.753.5 5 93.2 46.5 5.316.837 3 1500 4 07.204.9 5 92,7 95.1 5.3 44,6~ 3.6 2230 397,429.0 602.5 71.0 5.316.996.1 2230 3 97.92'5.6 6 02.074.4 5.3 4 4.7 82 .2 

3000 388.104.5 611,8955 5.317,169.9 3000 3 88.646.3 6 11,353.7 5.3 44,9"i5 9 3730 3 78.780.2 6 21,219.8 5.317.359.0 3730 379.367.1 6 20.6 32.9 5,345.144 8 4500 3 69,455.9 630,544.1 5,317.563.1 4500 3 70,088.0 6 29.91 2·0 5,3 45.3 ~ 8.7 5230 3 60.131.6 6 3 9,8 68.4 5,317.782.4 5230 360,808.9 6 39.191.1 5.345.5'\ 7 8 

20000 3 50,807.4 6 49.192.6 5,318.016 8 20000 351,529.9 6 4 8.4 70.1 '>.345.r02.0 
0730 3 41,4 83.3 6 58.516.7 5.318.266.3 0730 3 42.25 t.O 657,7419.0 5,346.C'51.3 
1500 332.159.3 6 6 7.8 40.7 5.31 8.5 31 .0 1500 332,972.2 6 67.027.8 5,3 46,, 5.7 
2230 3 2 2.8 35.4 6 77.164.6 5,318.8108 2230 3 2 3,693.4 6 76,306.6 5,346595.3 

3000 3 13.511 5 6 86.488.5 5,319.105 8 3000 :514.414.8 6 85,585.2 5,3 46,e'89.9 
3730 30A.187.7 6 95,812.3 5,319.AI5.9 3730 3 05.136.2 694,863.8 5,347.199.7 
4500 2 94.864.1 705.135.9 5.319.7 41 .I 4500 2 95.857.8 7 04.1 42.2 5,347,5'24.7 
5230 2 85.540.5 7 IA.459.5 5,320,081.5 !1230 2 86.5 79.4 7 13,420.6 5,3A7.e'64.7 

30000 Z 76.2 I 7.0 7 23.783.0 5.320,437.0 30000 277,301.2 7 22,6 98.8 5,3 48,Z I 9.9 
0730 z 66.893.7 7 33.106.3 5,3 20.80 7.7 0730 2 68.023.1 73t,976.9 5,348,590.3 
1500 z 5 7,5 70.5 7 42,1129 5 5,321,1 9J .6 1500 Z 58,7 A5.1 7 41,254.9 5,3 485'75 .8 
2230 z 118.2414 7 51,7 52.6 5,321,594.6 2230 2 49.467.3 7 50,532.7 5,3 A9,!176.4 

3000 2 38.924 4 761,075.6 5.322,010.8 3000 2 A0,189.6 7 5 9,810.4 5,3A9.792.Z 
3730 2 2 9.60 I 5 7 70,398.5 5.32Z,A42.1 3730 2 30,912.0 7 6 9,088.0 5,350.<'23.1 
4500 2 20.2 78.8 7 79.721.2 5,3 22,888.6 4500 2 21,6 34.6 7 7 8.3 65.4 5,3 50,669.2 
5230 210,9562 7 89.043.8 5.323.350 3 52 30 212.357.3 7 8 7.6 42 7 5,351,130.4 

40000 2 01,6 33.8 7 98.366.2 5,323.82 7 .I 400.00 2 03.080 2 7 96.91 9.8 5.3 51 E06 8 

LATITUDE 48"0?'30" LATITUDE -68"'22'30" 
WestofC.M. EntoiC.M. WestoiC.M. EaslofC.M. 

1\). E E N A •. E E N 

v;:- ~ C!II·Ooo.o 5 oo.ooo.o ~:H:·:~; ~ ~~ 5 C!~·ooo.o 5 Olj.ooo.o ~:~~;:~:;; 4 90,6 97.8 50 9.302.2 4 90,7 413.0 5 09.257.0 
1500 4 81,395.6 5 I 8.6 04 4 5.3 30.004 9 1500 4 81,486.1 518.513.9 5.357,192.5 
2230 4 72.093.5 527.9065 ';.330,042 7 2230 4 72.229.2 5 27,7 70.8 5.357.830.3 

3000 1162,7913 5:57.208.7 5.3 30.095.6 3000 4 62.972.2 53 7.027.8 5,357.883 1 
3730 4 5 3,4 892 54 6.5 I 0.8 5,330,163.6 3730 453.715.3 5 416.2841 7 5.35U51.0 
4500 4 4 4,1 87.1 5 55.812.9 5.3 30,2416.7 4500 4 44.4158.5 5 55.5 41 5 S.358C'34.1 
5230 4 34885 0 5 65.1 15.0 5.3 30.344.9 5230 .. 35.201 6 564,7984 5.3 58.132 2 

10000 4 2 5.5 82.9 57 4.417.1 5.3 30.458 3 10000 41 2'5.944.8 5741,0552 5.3 58.2 415.4 
0730 416.2809 583,719.1 5,3 30.586 7 0730 4 I 6.6 88.0 58 3.312 0 5.358.373 8 
1500 4 06.979.0 5 93,021.0 5,3 30.730 3 1500 4 07.4 31.3 5 92,568.7 5.358.! I 7.2 
2230 3 97.6 77.0 6 02.323.0 5,3 30.88 9.0 2230 3 98.1 74.6 601,8254 5.3 58.f 75.7 

3000 3 88.375.2 6 I 1,624.8 5.331,062 8 3000 3 88,918.0 6 1 1,082.0 5,358F49 4 
3730 ~ 7 9,0 73 4 620.926.6 5.331,251.7 3730 3 7 9.6" .5 6 2 0.~~8 5 5.:559.('~8.1 
4500 369.7716 630.228.4 '5.3 31.455 8 4500 3 70,4 05.0 6.2 9,5 95.0 5.:559.4!42 0 
5230 360,469.9 6 39.530.1 '>.-' 31,6 75.0 5230 361.148.6 6 38.8 51 4 5.359460 9 

2 0000 351,1683 648.8317 5,331,909.3 20000 3 51,8 92.2 6 48.107.8 5,3 59.E 95.0 
0730 3 41,866.8 6 58.133.2 5,332,158.7 0730 3 42.636.0 657.364.0 5,359.N4.Z 
1500 3 32.565 3 6 67.434.7 5,332.423.2 1500 3 33.3 79.a 6 66,620.2 '5,360.<'08 5 
2230 3 23.264.0 6 76.7 36.0 5. 3 32,70 2 .9 2230 324.123.7 6 75.876.3 5.:560.-'a7.9 

3000 3 13.962.7 6 86.037 3 5.332.997.7 3000 314.867.7 6a5.1323 5.3 60.782 • 
3730 3 04.661 5 6 95.33a 5 5,333,307.7 3730 3 05.61 1.9 6 94,3a8.1 5.361,092.0 
4500 2 95.3 60.4 7 OA,6 39.6 '5.333,632 8 4500 2 96.356.1 7 03.6113.9 5.361,416 a 
5230 2 86.059.5 7 I 3,9 40.5 5.3 33.973.0 5230 287.100.4 7 12,899.6 5.361.7567 

30000 z 76.758 6 7 2 3,2 41.4 5.3 34,328 4 30000 2 77,844.9 7 22.155.1 '5.362,111 7 
0130 2 6 7.4 57.9 732.5422 5.334.698 9 0730 2 68.589.5 7 31,410.5 5.!162.481 9 
1500 258.1572 741,8428 5.335.084 6 1500 z 59.334.2 7 40,665.8 '5,3 62.!'6 7.2 
2230 z 4a.856.7 751,143.3 5.3 35.4 8'5 4 2230 2 50,079.1 149.920.9 5.3 63,<'6 7 6 

3000 2 39.556 4 7 60,4 43 6 5.:5 35.90 I 4 3000 z 40,824.1 759.175.9 5.36:5,(8:5.1 
37 30 2 30.256.1 769.7439 5.3 36.332 5 3730 2 31,569.2 768.430 a '5,364.113 9 
4500 2 20.9 56.0 7 79.044.0 5.~36.778 8 4500 2 22.314.5 7 77.6 85.5 5.364.!'59.7 
5230 Z I 1,656.1 7 8 8.3 4 3 9 5,337.240 3 52 30 2 I 3.060.0 7 8 6.9 4 o.o '5,365.CI20 7 

40000 z 02.356 3 7 97.6 43 7 5.337.716 9 40000 2 03.8056 796.194.4 5365-'968 

GRID COORDINATES FOR 7.5 MINYI'£ INTERSECTIONS 
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ing a transforming map to convert meridians and paralle]s on one 
sphere to equivalent meridians and parallels on a sphere r1tated to 
place the equator of one along the chosen central meridian of the other. 
Such a transforming map may be the equatorial aspect of the 
Stereographic or other azimuthal projection, drawn twice to the same 
scale on transparencies. The transparencies may then be superimposed 
at 90° angles and the points compared. 

In an age of computers, it is much more satisfactor:r to use 
mathematical formulas. The rectangular coordinates for the 
Transverse Mercator applied to the sphere (Thomas, 1952, p.6): 

X= 112Rk0 In [(1 +B)/(1-B)] (8-1) 

or 

x=Rko arctanh B (8-2) 
y=Rk0 {arctan [tan ¢/cos (A-Ao)]-c/>o} (8-3) 
k = ko/(1-B 2

)
112 (8-4) 

where 

B=cos cJ> sin (A-Ao) 

(note: If B= ± 1, xis infinite) 

(8-5) 

and k0 is the scale factor along the central meridian Ao. The orisin of the 
coordinates is at (c/>o, A0). The Yaxis lies along the central meridian Ao, y 
increasing northerly, and the X axis is perpendicular, through c/>o at Ao, 
x increasing easterly. 

The inverse formulas for (c/>, A) in terms of (x, y): 

cp=arcsin [sinD/cosh (x/Rk0)] 

A= Ao + arctan [sinh (x/Rk0)/cos D] 

where 

D = yi(Rk0 ) + c/>o, using radians 

(8-6) 
(8-7) 

(8-8) 

Rectangular coordinates for the sphere are shown in table 10. Only 
one octant (quadrant of a hemisphere) needs to be listed, since all other 
octants are identical except for sign change. 

FORMULAS FOR THE ELLIPSOID 

For the ellipsoidal form, the most practical form of the equr.tions is a 
set of series approximations which converge rapidly in a zon~ extend­
ing 3° to 4°of longitude from the central meridian. Beyond this, the 
series have insufficient terms for the accuracy required. Coordinate 
axes are the same as they are for the spherical formulas above. The for-
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mu1as below are only slightly modified from those presented in stand­
ard references (Army, 1973, p. 5-7; Thomas, 1952, p. 2-3). 

X= koN[A + (1- T + C)A 3/6 + (5- 18T + p. + 72C- 58e'2)A 5/120] (8-9) 
y=k0(M -Mo+N tan¢ [A2/2+(5- T+ 9C+4C2) 

A 4/24 + (61- 58T + P. + 600C- 330e'2)A 6/720]} (8-10) 
k = k0[1 + (1 + C)A 2/2 + (5- 4T + 42C + 130- 28e'2) A 4/24 

+ (61-148T+16P.)A6/720] (8-11) 

where k0 =scale on central meridian (e.g., 0.9996 for the UTM projec­
tion) 

e'2 = e2/(1- e2) 
N = a/(1- e2 sin2 ct> )112 

T=tan2¢ 
C=e'2 cos2 ¢ 
A =cos ¢ (A- Ao), with A and Ao in radians 
M = a[(1- e2/4- 3e4/64- 5e6/256- ... ) cp- (3e2/8 + 3e4/32 

+45e6/1024+ ... ) sin 2ct>+(15e4/256+45e6/1024 
+ ... ) sin 4cp- (35&/3072 + ... ) sin 6ct> + ... ] 

(8-12) 
(4-20) 
(8-13) 
(8-14) 
(8-15) 

(3-21) 

with ¢ in radians. M is the true distance along the central meridian 
from the Equator to ¢. See equation (3-22) for a simplification for the 
Clarke 1866 ellipsoid. 

M0 =M calculated for cl>o, the latitude crossing the central meridian Ao, 
at the origin of the x, y coordinates. 

Note: If ct>= ± 7f'l2, all equations should be omitted except (3-21), from 
which M and M0 are calculated. Then x=O, y=k0(M -M0), k=k0 • 

Equation (8-11) fork may also be written as a function of x and cp: 

(8-16) 

, These formulas are somewhat more precise than those used to co~pute 
the State Plane Coordinate tables, which were adapted to use desk 
calculators of 30-40 years ago. 

For the inverse formulas (Army, 1973, p. 6, 7, 46; Thomas, 1952, p. 
2-3): 

¢=c/>.-(N1 tan cJ>./R1)[D2/2-(5+3T. + 10C.-4C1
2-9e'2)D4/24 

+(61 +90Tt +298Ct +45T1
2 -252e'2 -3C1

2)D6/720] (8-17) 
A=Ao+[D -(1 +2T. +C.)D3/6+(5-2Cl +28Tl 

-3C1
2 +8e'2 +24Tl)D5/120]/cos cl>t (8-18) 

where cp1 is the "footpoint latitude" or the latitude at the central merid­
ian which has the same y coordinate as that of the point (ct>, >-.). 
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It may be found from equation (3-26): 

<1>1 = p. + (3e1/2- 27 e13/32 + ... ) sin 2p. + (21e12/16 
-55e1432- ... ) sin 4p.+(151e1

3/96+ ... ) sin 6p.+ ... (3-26) 

where 
el = [1- (1- e2)1'2]/[1 + (1- e2)1'2] 

and, in a rearrangement of (3-20) and (3-21), 

p. =MI[a(1- e2/4- 3e4/64- 5e6/256- ... )] 

while 

(3-24) 

(8-19) 

(8-20) 

with Mo calculated from equation (3-21) or (3-22) for the given c/>o. 
From <1>1, other terms below are calculated for use in equations (8-17) 

and (8-18). (If c/>1 = ± 1r/2, (8-12), (8-21) through (8-25), (8-17) and 
(8-18) are omitted, but <t> = ± 90°, taking the sign of y, while A is indeter­
minate, and may be called Ao. Also, k=ko.) 

ff2 = e2/(1- e2) 
c1 =.e2COS2<I>t 
T1 =tan2¢, 
N1 = a/(1- e2sin2¢~)" 2 

R, = a(1- e2)/(1- e2sin2<t>1)312 

D=xi(N,ko) 

"MODIFIED TRANSVERSE MERCATOR" PROJECTIO.IY 

(8-12) 
(8-21) 
(8-22) 
(8-23) 
(8-24) 
(8-25) 

In 1972, the USGS devised a projection specifically for the revision of 
a 1954 map of Alaska. The projection was drawn to a scale of 
1:2,000,000 and published at 1:2,500,000 (map "E") and 1:1,584,000 
(map "B"). Graphically prepared by adapting coordinates for the 
Universal Transverse Mercator projection, it is identified as a 
"Modified Transverse Mercator" projection. It resembles the 
Transverse Mercator in a very limited manner and cannot be con­
sidered a cylindrical projection. It approximates an Equidistant Conic 
projection for the ellipsoid in actual construction. Because of the pro­
jection name, it is listed here. The projection was also used h 1974 for a 
base map of the Aleutian-Bering Sea Region publisl,~d at the 
1:2,500,000 scale. 

The basis for the name is clear from an unpublished 1972 description 
of the projection, in which it is also stressed that the "latitudinal lines are 
parallel" and the "longitudinal lines are straight." The computations 

"were taken from the AMS Technical Manual #21 (Universal Transverse Mercator) based 
on the Clarke 1866 Spheroid.*** The projection was started from a N-S ce'ltral construc­
tion line of the 153° longitude which is also the centerline of Zone 5 from tlr-> UTM tables. 
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TABLE 10.-Transverse Mercator p'rojection:RActangular coordinates for the sphere 

[Radius of the Earth is I .0 unit. Longitude measured from central meridian. y coordinate is in parenthe>ces under x 
coordinate. Origin of rectangular coordinates at Equator and central meridian. x increases east; y incre'lses north. 
One octant of globe is given; other octants are symmetrical] 

~· L 
oo 10° 20° 30° 40° 

goo -------------- 0.0000 0.0000 0.0000 0.0000 0.0000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .00000 .03016 .o5g46 .08704 .1120g 
(1.3g626) (1.3g886) (1.4065g) (1.41g26) (1.43653) 

70 --------------- .00000 .o5g46 .11752 .17271 .2234g 
(1.22173) (1.22662) (1.24125) (1.26545) (1.2g888) 

60 --------------- .00000 .08704 .17271 .25541 .33320 
(1.04720) (1.05380) (1.07370) (1.10715) (1.15438) 

50 --------------- .00000 .112og .2234g .33320 .43g43 
( .87266) ( .8801g) ( .go311) ( .g423g) ( .ggg51) 

40 --------------- .00000 .13382 .26826 .40360 .53g23 
( .6g813) ( .70568) ( .728g1) ( .76g61) ( .83088) 

30 --------------- .00000 .15153 .30535 .46360 .62800 
( .52360) ( .53025) ( .550g4) ( .58800) ( .64585) 

20 --------------- .00000 .16465 .33320 .50g87 .6gg46 
( .34g07) ( .35401) ( .36g54) ( .3g786) ( .44355) 

10 --------------- .00000 .17271 .35051 .53g23 .74644 
( .17453) ( .17717) ( .1854g) ( .20086) ( .22624) 

0 --------------- .00000 .17543 .35638 .54g31 .762g1 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

TABLE 10.- Transverse Mercator projection: Rectangular coordinates for the 
sphere- Continued 

~· 50° 60° 70° 80° f'f)o 
. 

goo -------------- 0.0000 0.0000 0.0000 0.0000 0.0000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .13382 .15153 .16465 .17271 .17543 
(1.457g4) (1.48286) (1.51056) (1.5401g) (1.57080) 

70 --------------- .26826 .30535 .33320 .35051 .35638 
(1.340g7) (1.3g078) (1.446g5) (1.50768) (1.57080) 

60 --------------- .40360 .46360 .50g87 .53g23 .54g31 
(1.21544) (1.28g76) (1.37584) (1.47087) (1.57080) 

50 --------------- .53g23 .62800 .6gg46 .74644 .762g1 
(1.07616) (1.17355) (1.2g132) (1.42611) (1.57080) 

40 --------------- .67281 .7988g .go733 .98310 1.01068 
( .g1711) (1.03341) (1.18375) (1.36673) (1.57080) 

30 --------------- .7g889 .97296 1.13817 1.26658 1.316g6 
( .73182) ( .85707) (1.035gg) (1.27864) (1.57080) 

20 --------------- .go733 1.13817 1.38g32 1.6254g 1.73542 
( .51522) ( .62g23) ( .81648) (1.12564) (1.57080) 

10 --------------- .g8310 1.26658 1.6254g 2.08g7o 2.A3625 
( .26773) ( .33g04) ( .47601) ( .7g305) (1.57080) 

0 --------------- 1.01068 1.316g6 1.73542 2.43625 
( .00000) ( .00000) ( .00000) ( .00000) Inf. 
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TABLE 11.- Universal Transverse Mercator projection: Location of points with given 
scale factor 

[ x coordinates in meters at various latitudes. Based on inversion of equation (8-16), using Clarke 1f~6 ellipsoid. Values 
are on or to right of central meridian (x= 500,000 m). For coordinates left of central meridian, subtract values of x 
from 1,000,000 m. Latitude is north or south] 

Lat. 
Scale factor 

0.9996 0.9998 1.0000 1.0002 1.000-1 1.0006 

goo ----------- 500,000 627,946 6g0,943 721,609 755,g92 7g6,096 
70 ----------- 500,000 627,g71 6go,g36 721,47g 755,741 7g5,927 
60 ----------- 500,000 627,755 6g0,673 721,27g 755,510 7g5,66g 
50 ----------- 500,000 627,613 6g0,472 721,032 755,22'1 7g5,352 
40 ----------- 500,000 627,463 6g0,260 720,772 754,923 7g5,015 
30 ----------- 500,000 627,322 6g0,060 720,52g 754,643 784,700 
20 ----------- 500,000 627,207 679,g9g 720,329 754,414 784,443 
10 ----------- 500,000 627,132 679,792 720,199 754,264 7g4,276 
0 ----------- 500,000 627,106 679,755 720,154 754,212 7g4,21g 

Along this line each even degree latitude was plotted from book values. At the plotted 
point for the 64 ° latitude, a perpendicular to the construction line (153°) was plotted. 
From the center construction line for each degree east and west for 4 o (the limits of book 
value of Zone #5) the curvature of latitude was plotted. From this 64 o latitude, each 2° 
latitude north to 70° and south to 54 o was constructed parallel to the 64 ° latitude line. 
Each degree of longitude was plotted on the 5go and 6go latitude line. Through cor­
responding degrees of longitude along these two lines of latitude a straight line (line of 
longitude) was constructed and projected to the limits of the map. This gave a small pro­
jection go in width and approximately 1go in length. This projection was repeated east 
and west until a projection of some 72° in width was attained." 

For transferring data to and from the Alaska maps, it was necessary 
to determine projection formulas for computer programing. Since it 
appeared to be unnecessarily complicated to derive formul~.s based on 
the above construction, it was decided to test empirical formulas with 
actual coordinates. After careful measurements of coordinates for 
graticule intersections were made in 1979 on the stable-base map, it 
was determined that the parallels very closely approximate concentric 
circular arcs, spaced in proportion to their true distances on the ellip­
soid, while the meridians are nearly equidistant straight lines radiating 
from the center of the circular arcs. Two parallels have a scale equal to 
that along the meridians. The Equidistant Conic projection for the 
ellipsoid with two standard parallels was then applied to these coor­
dinates as the closest approximation among projections with available 
formulas. After various trial values for scale and standard parallels 
were tested, the empirical formulas below (equations (8-26) through 
(8-32)) were obtained. These agree with measured values vrithin 0.005 
inch at mapping scale for 44 out of 58 measurements made on the map 
and within 0.01 inch for 54 of them. 
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FORMULAS FOR THE "MODIFIED TRANSVERSE MERCATOR" PROJECTION 

The "Modified Transverse Mercator" projection was found to b8 most 
closely equivalent to an Equidistant Conic projection for the Clarke 
1866 ellipsoid, with the scale along the meridians reduced to 0. 9J92 of 
true scale and the standard parallels at lat. 66.09° and 53.50° N. (also 
at 0.9992 scale factor). For the Alaska Map "E" at 1:2,500,000, using 
long. 150° W. as the central meridian and lat. 58° N. as the latitude of 
the origin on the central meridian, the general formulas (Snyder, 
1978a, p. 378) reduce with the above parameters to the followin~, giv­
ing x and y in meters at the map scale. The Y axis lies along the central 
meridian, y increasing northerly, and the X axis is perpendicular at the 
origin, x increasing easterly. 

For the forward formulas: 

X= p sin 8 
y = 1. 5616640- p cos () 

where 

8° = 0.8625111(A 0 + 150°) 
p = 4.1320402- 0. 04441727 cp o + 0. 0064816 sin 2cp 

For the inverse formulas: 

where 

A o =(110.8625111) arctan [x/(1.5616640-y)]-150° 
c/> 0 =(4.1320402+0.0064816 sin 2cp-p)/0.04441727 

p = [x2 +(1.5616640- y)2)112 

(8-26) 
(8-27) 

(8-28) 
(8-29) 

(8-30) 
(8-31) 

(8-32) 

For Alaska Map "B" at a scale of 1:1,584,000, the same formul2.s may 
be used, except that x andy are (2,500/1,584) times the values obtained 
from (8-26) and (8-27). For the inverse formulas, the given x and y 
must be divided by (2,500/1,584) before insertion into (8-30) and (8-32). 

The equation for cp, (8-31), involves iteration by successive su':lstitu­
tion. If an initial cp of 60 o is inserted into the right side, cp on t'le feft 
may be calculated and substituted into the right in place of the pr~vious 
trial cp. Recalculations continue until the change in cp is less than a 
preset convergence. If A as calculated is less than -180°, it shcnld be 
added to 360° and labeled East Longitude. 

Formulas to adjust x and y for the map inset of the Aleutian Islands 
are omitted here, but the coordinates above are rotated 
counterclockwise 29.79° and transposed +0.798982 m for x and 
+0,347600 m for y. 



9. OBLIQUE MERCATOR PROJECTION 

SUMMARY 

• Cylindrical (oblique). 
• Conformal. 
• Two meridians 180° apart are straight lines. 
• Other meridians and parallels are complex curves. 
• Scale on the spherkal form is true along chosen central line, a great circle at an oblique 

angle, or along two straight lines parallel to central line. The scale on the ellipsoidal 
form is similar, but varies slightly from this pattern. 

• Scale becomes infinite 90° from the central line. 
• Used for grids on maps of the Alaska panhandle, for mapping in Switzerland, 

Madagascar, and Borneo and for atlas maps of areas with greater extent in an 
oblique direction 

• Developed 1900-50 by Rosenmund, Laborde, Hotine, and others. 

HISTORY 

There are several geographical regions such as the Alask8 panhandle 
centered along lines which are neither meridians nor parallels, but 
which may be taken as great circle routes passing through the region. 
If conformality is desired in such cases, the Oblique Mercator is a pro­
jection which should be considered. 

The historical origin of the Oblique Mercator projection d':les not ap­
pear to be sharply defined, although it is a logical generalization of the 
regular and Transverse Mercator projections. Apparently, Posenmund 
(1903) made the earliest published reference, when he devis~d an ellip­
soidal form which is used for topographic mapping of Switzerland. The 
projection was not mentioned in the detailed article on "Map Projec­
tions" in the 1911 Encyclopaedia Britannica (Close and Clarl·e, 1911) or 
in Hinks' brief text (1912). Laborde applied the Oblique Mercator to the 
ellipsoid for the topographic mapping of Madagascar in 1928 (Young, 
1930; Laborde, 1928). H. J. Andrews (1935, 1938) proposed the 
spherical forms for maps of the United States and Eurasia. Hinks 
presented seven world maps on the Oblique Mercator, with poles 
located in several different positions, and a consequent variety in the 
regions shown more satisfactorily (Hinks, 1940, 1941). 

A study of conformal projections of the ellipsoid by British geodesist 
Martin Hotine (1898-1968), published in 1946-47, is the b:tsis of the 
U.S. use of the ellipsoidal Oblique Mercator, which Hotine called the 
"rectified skew orthomorphic" (Hotine, 194 7, p. 66-67). The Hotine ap­
proach has limitations, as discussed below, but it provides closed for­
mulas which have been adapted for U.S. mapping of suitable zones. 

73 
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One of its limitations is overcome by a recent series form of tl' ~ ellip­
soidal Oblique Mercator (Snyder, 1979a, p. 74), but other limitations 
result instead. This later form resulted from development of f<'-..mulas 
for the continuous mapping of satellite images, using the Space Oblique 
Mercator projection (to be discussed later). 

While Hotine projected the ellipsoid conformally onto an "aposphere" 
of constant total curvature and thence to a plane, Laborde and also 
J. H. Cole (1943, p. 16-30) projected the ellipsoid onto a "conformal 
sphere," using conformal latitudes (described earlier) to mr~e the 
spi1ere conformal with respect to the ellipsoid, then plotted the 
spherical Oblique Mercator from this intermediate sphere. Rosen­
round's system for Switzerland is a more complex double projection 
through a conformal sphere (Rosenmund, 1903; Bolliger, 1967:, 

FEATURES 

The Oblique Mercator for the sphere is equivalent to a regular Mer­
cator projection which has been altered by wrapping a cylinder around 
the sphere so that it touches the surface along the great circ1~ path 
chosen for the central line, instead of along the Earth's Equator. A set 
of transformed meridians and parallels relative to the great circle may 
be plotted bearing the same relationship to the rectangular cooriinates 
for the Oblique Mercator projection, as the geographic meridir.ns and 
parallels bear to the regular Mercator. It is, therefore, possible to con­
vert the geographic meridians and parallels to the transformed values 
and then to use the regular Mercator equations, substituting the 
transformed values in place of the geographic values. This is the pro­
cedure for the sphere, although combined formulas are given below, 
but it becomes much more complicated for the ellipsoid. The ad'Tent of 
present-day computers and programmable pocket calculatorr make 
these calculations feasible for sphere or ellipsoid. 

The resulting Oblique Mercator map of the world (fig. 12) thus 
resembles the regular Mercator with the landmasses rotated so that 
the poles and Equator are no longer in their usual positions. Instead, 
two points 90° away from the chosen great circle path through the 
center of the map are at infinite distance off the map. Normally, the 
Oblique Mercator is used only to show the region near the central line 
and for a relatively short portion of the central line. Under these condi­
tions, it looks similar to maps of the same area using other projE'I'~tions, 
except that careful scale measurements will show differences. 

It should be remembered that the regular Mercator is in fact a 
limiting form of the Oblique Mercator with the Equator as the central 
line, while the Transverse Mercator is another limiting form of the 
Oblique with a meridian as the central line. As with these limiting 
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FIGURE 12.-Oblique Mercator projection with the center of projection at lat. 45 ° N. on the central 
meridian. A straight line through the point and, in this example, perpendicular to the central me­
ridian is true to scale. The projection is conformal and has been used for regions lying along a line 
oblique to meridians. 
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forms, the scale along the central line of the Oblique Mercator may be 
reduced to balance the scale throughout the map. 

USAGE 

The Oblique Mercator projection is used in the spherical form for a 
few atlas maps. For example, the National Geographic Society uses it 
for atlas and sheet maps of Hawaii, the West Indies, and New Zealand. 
In the ellipsoidal form it was used, as mentioned above, by Rosenmund 
for Switzerland and Laborde for Madagascar. Hotine used it for 
Malaya and Borneo and Cole for Italy. It is used in the Hotine form by 
the USGS for grid marks on zone 1 (the panhandle) of Alaska, using 
the State Plane Coordinate System as adapted to this projec~ion by 
Erwin Schmid of the former Coast and Geodetic Survey. 

More recently, the Hotine form was adapted by John B. Rowland 
(USGS) for mapping Landsat satellite imagery in two sets of five 
discontinuous zones from north to south (table 12). The central line of 
the latter is only a close approximation to the satellite grounitrack, 
which does not follow a great circle route on the Earth; instead, it 
follows a path of constantly changing curvature. Until the 
mathematical implementation of the Space Oblique Mercator (SOM) 
projection, the Hotine Oblique Mercator (HOM) was probably tr~ most 
suitable projection available for mapping Landsat type data. In addi­
tion to Landsat, the HOM projection has been used to cast Heat Capaci­
ty Mapping Mission (HCMM) imagery since 1978. NOAA (National 
Oceanic and Atmospheric Administration) has also cast some v'eather 
satellite imagery on the HOM to make it compatible with Lan<:is,at in 
the polar regions which are beyond Landsat coverage (above lat. 82°). 

The parameters for a given map according to the Oblique Mercator 
projection may be selected in various ways. If the projection is to be 
used for the map of a smaller region, two points located near th~ limits 
of the region may be selected to lie upon the central line, and various 
constants may be calculated from the latitude and longitude of each of 
the two points. A second approach is to choose a central point for the 
map and an azimuth for the central line, which is made to pass through 
the central point. A third approach, more applicable to the m~.o of a 
large portion of the Earth's surface, treated as spherical, is to c~oose a 
location on the original sphere of the pole for a transformed sphere 
with the central line as the equator. Formulas are given for each of 
these approaches, for sphere and ellipsoid. 

FORMULAS FOR THE SPHERE 

Starting with the forward equations, for rectangular coordinates in 
terms of latitude and longitude: 
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TABLE 12.-Hotine Oblique Mercator projection parameters used for Landsa.t 1, 2, and 3 
imagery 

HOM Limiting Central Central A~imuth 
zone latitudes latitude longitude' ('{axis 

1 ---------- 48°N-81 °N 67.0983°N 81.9700°W 24.7708181° 
2 ----------- 23°N-48°N 36.0000°N 99.2750°W 14.3394883° 
3 --------~- 23°S-23°N 0.0003°N 108.5069°W 13 001443° 
4--------- 23° S-48°8 36.0000°8 117.7388°W 14.33948832° 
5 ---------- 48°8-81°8 67.0983°8 135.0438°W 24.7708181° 
6 ---------- 48°8-81°8 67.0983°8 85.1220°E -24.7708181° 
7 ---------- 23° S-48°8 36.0000°8 67.8170°E -14.33948832° 
8 ---------- 23°S-23°N 0.0003°N 58.5851 °E -13.001443° 
9 ---------- 23°N-48°N 36.0000°N 49.3532°E -14.33948832° 

10 ---------- 48°N-81 °N 67.0983°N 32.0482°E - 24.7708181° 

'For path 31. For other path numbers p, the central longitude is decreased (west is negative) by (36('" /25l)x (p- 31). 

Note: These parameters are used with equations given under Alternate B of ellipsoidal Oblique Me.-cator formulas, 
with <Po the central latitude, l\. the central longitude, and u, the azimuth of axis east of north. Scale facbr kn at center is 
1.0. 

1. Given two points to lie upon the central line, with latitudes and 
longitudes (c/>~,A..) and (c/>2,:\2) and longitude increasing ea~terly and 
relative to Greenwich. The pole of the oblique transformatior at (cf>p,A.P) 
may be calculated as follows: 

Ap =arctan [(cos ct>. sin c/>2 cos A..- sin c/>1 cos c/>2 cos :\2)/ 

(sin c/> 1 cos f/>2 sin :\2 - cos c/>1 sin c/>1 sin :\1)] (9-1) 
cf>p =arctan [-cos (:\P- A..)ltan ct>.] (9-2) 

The Fortran ATAN2 function or its equivalent should be used with 
equation (9-1), but not with (9-2). The other pole is heated at 
( -c/>p,Ap± r). Using the positive (northern) value of cf>p, the following 
formulas give the rectangular coordinates for point ( c/>,A.), with k0 the 
scale factor along the central line: 

or 

x=Rko arctan([tan cf> cos cf>p +sin cf>p sin (A- A.o)]/cos (:\- A.o)) 
y= 1hRkoln[(1 +A)/(1-A)] 

y = Rko arctanh A 
k= koi(1-A2)t12 

where 

A =sin cf>p sin c/>- cos cf>pcos c/> sin (:\- A.o) 

(9-3) 

(9-4) 

(9-4a) 
(9-5) 

(9-6) 

With these formulas, the origin of rectangular coordinates Fo,s at 

(9-6a) 
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and the X axis lies along the central line, x increasing easterl:T. The 
transformed poles are y equals infinity. 
2. Given a central point (c/>c, Ac) with longitude increasing easterly and 
relative to Greenwich, and azimuth {3 east of north of the central line 
through (cJ>),), the pole of the oblique transformation at (c/JP, A) may be 
calculated as follows: 

c/>p =arcsin (cos cl>c sin {3) 
Ap =arctan [- cos{3/(- sin cl>c sin /3)] + Ac 

(9-7) 
(9-8) 

These values of cJ>P and AP may then be used in equations (9-3) through 
(9-6) as before. 
3. For an extensive map, c/>p and Ap may be arbitrarily chosen by eye to 
give the pole for a central line passing through a desired portior of the 
globe. These values may then be directly used in equations (9-3) 
through (9-6) without intermediate calculation. 

For the inverse formulas, equations {9-1) and (9-2) or (9-7) an-i (9-8) 
must first be used to establish the pole of the oblique transformation, if 
it is not known already. Then, 

cJ> =arcsin [sin cJ>P tanh (y/Rko) +cos cJ>P sin (x/Rko)/cosh (y!Rko)] (9-9) 
A= Ao +arctan {Lsin cpp sin (x/Rk0)- cos cpp sinh (y/Rk0)]/cos (x/Rko)} (9-10) 

FORMULAS FOR THE ELLIPSOID 

These are the formulas provided by Hotine, slightly altered to use a 
positive eastern longitude (he used positive western longituie), to 
simplify calculations of hyperbolic functions, and to use symbc1s con­
sistent with those of this bulletin. The central line is a geodesic, or the 
shortest route on an ellipsoid, corresponding to a great circle route on 
the sphere. 

It is customary to provide rectangular coordinates for the He tine in 
terms either of (u, v) or (x,y). The (u, v) coordinates are similar in con­
cept to the (x,y) calculated for the foregoing spherical formulas, with u 
corresponding to x for the spherical formulas, increasing easterh· from 
the origin along the central line, but v corresponds to - y for the 
spherical formulas, so that v increases southerly in a direction r~rpen­
dicular to the central line. For the Hotine, x and y are calculatei from 
(u,v) as "rectified" coordinates with theY axis following the meridian 
passing through the center point, and increasing northerly as usual, 
while the X axis lies east and west through the same point. The X and Y 
axes thus lie in directions like those of the Transverse Mercator, but 
the scale-factor relationships remain those of the Oblique Mercator. 

The normal origin for (u,v) coordinates in the Hotine Obliqu~ Mer­
cator is approximately at the intersection of the central line with the 
Earth's Equator. Actually it occurs at the crossing of the central line 
with the equator of the "aposphere," and is, thus, a rather academic 
location. The "aposphere" is a surface with a constant "total" cur<rature 
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based on the curvature along the meridian and perpendicular thereto 
on the ellipsoid at the chosen central point for the projectio:rt. The ellip­
soid is conformally projected onto this aposphere, then to a sphere, 
then to a plane. As a result, the Hotine is perfectly conformal, but the 
scale along the central line is true only at the chosen central point along 
that line or along a relatively flat elliptiCally shaped line approximately 
centered on that point, if the scale of the central point i~· arbitrarily 
reduced to balance scale over the map. The variation in scale along the 
central line is extremely small for a map extending less than 45 ° in arc, 
which includes most existing usage of the Hotine. A longer central line 
suggests the use of a different set of formulas, available as a limiting 
form of the Space Oblique Mercator projection. On Rosenmund's 
(1903), Laborde's (1928), and Cole's (1943) versions of the ellipsoidal 
Oblique Mercator, the central line is a great circle arc on the in­
termediate conformal sphere, not a geodesic. As on Hotine's version, 
this central line is not quite true to scale except at one or two chosen 
points. 

The projection constants may be established for the Hotine in one of 
two ways, as they were for the spherical form. Two desired points, 
widely separated on the map, may be made to fall on the central line of 
the projection, or the central line may be given a desired azimuth 
through a selected central point. Taking these approaches in order: 

Alternate A, with the central line passing through two given points. 
Given: 

a and e for the reference ellipsoid. 
ko = scale factor at the selected center of the map, lying or the central 

line. 
c/Jo =latitude of selected center of the map. 
(c/J,, At)=latitude and longitude (east of Greenwich is positive) of the 

first point which is to lie on the central line. 
( c/J2, A2) =latitude and longitude of the second point whicl· is to lie on 

the central line. 
( ¢, A)= latitude and longitude of the point for which the coordinates 

are desired. 

There are limitations to the use of variables in these formulas: To 
avoid indeterminates and division by zero, ¢ 0 or cp, cannot be ± 1r/2, ¢ 1 

cannot be zero or equal to c/J2 (although c/J2 may be zero), and ¢ 2 cannot 
be -1r/2. Neither c/Jo, ¢,,nor c/J2 should be ± 1r/2 in any case, since this 
would cause the central line to pass through the pole, fo"' which the 
Transverse Mercator or polar Stereographic would probably be a more 
suitable choice. A change of 10-7 radian in variables from these special 
values will permit calculation of an otherwise unsatisfactory condition. 

It is also necessary to place both (cp,, A,) and (¢2, A2) on th~ ascending 
portion, or both on the descending portion, of the central line, relative 
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to the Earth's Equator. That is, the central line should not pass through 
a maximum or minimum between these two points. 

If e is zero, the Hotine formulas give coordinates for the spl,~rical 
Oblique Mercator. 

Because of the involved nature of the Hotine formulas, they are given 
here in an order suitable for calculation, and in a form eliminating the 
use of hyperbolic functions as given by Hotine in favor of single calcula­
tions of exponential functions to save computer time. The correrDond­
ing Hotine equations are given later for comparison. 

B = [1 + e2 cos4 cp0 /(1- e2))1'2 

A= aBko(1- e2
)

1121(1- e2 sin2 cp0 ) 

to= tan {'n-/4- cJ>o/2)/[(1- e sin cp0)/(1 + e sin cp0 )]"
12 

t, =same as (9-13), using cp 1 in place of cp0 • 

t2 =same as (9-13), using cp2 in place of cp0 • 

D =B(1- e2
)

1121[cos cl>o(1- e2 sin2cp0)
112] 

(9-11) 
(9-12) 
(9-13) 

(9-14) 

If cl>o = 0, D may calculate to slightly less than 1.0 and create a problem 
in the next step. If D 2 < 1, it should be made 1. 

E = [D ± (D2 -1)112]t0
8

, taking the sign of cp0 

H=t, 8 

L=t2B 
F=EIH 
G=(F-1/F)/2 
J = (E2

- LH)/(E2 + LH) 
P= (L -H)I(L +H) 
Ao = 112(A. + A2)- arctan {J tan [B(A,- Al)/2]/P}/B 
'Yo= arctan {sin [B(A.- Ao)]/GJ 
ac = arcsin [D sin 'Yo] 

(9-15) 
(9-16) 
(9-17) 
(9-18) 
(9-19) 
(9-20) 
(9-21) 
(9-22) 
(9-23) 
(9-24) 

To prevent problems when straddling the 180th meridian with A1 and 
A2, before calculating (9-22), if (A.- A1) < - 180°, subtract 360° fr0m A2. 
If (A1 -A2)> 180°, add 360° to A2. Also adjust Ao and (>-.1 -Ao) to fall be­
tween ± 180° by adding or subtracting 360°. The Fortran ATAN2 
function is not to be used for equations (9-22) and (9-23). The above 
equations (9-11) through (9-24) provide constants for a given map and 
do not involve a specific point (cp,>-.). Angle ac is the azimuth of tl'~ cen­
tral line as it crosses latitude cf>o, measured east of north. For pdnt (cp, 
A), calculate the following: 

t =same as equation (9-13), but using cp in place of cf>o. 

If cp = ± 1r/2, do not calculate t, but go instead to (9-30). 
Q=~~ ~~~ 
S=(Q-1/Q)/2 (9-26) 
T=(Q+ 1/Q)/2 (9-27) 
V =sin [B(>-.- >-.o)] (9-28) 
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U = (- V cos 'Yo+ S sin -y0)/T (9-29) 
V=A In [(1- U)/(1 + U)]/2B (9-30) 

Note: If U = ± 1, v is infinite; if cJ> = ± 1r/2, v =(AlB) In tan ( 1rl 4 +-y0/2) 

u=A arctan {(S cos 'Yo+ V sin -y0)/cos [B(>..- }..0 )])/B (9-31) 

Note: If cos [B(}..-}..0)]=0, U=AB(}..-}..0 ). If c/>= ±7r/2, U=A¢/B. 

Care should be taken that (>..- }..0) has 360° added or subtracted, if the 
180th meridian falls between, since multiplication by B eliminates 
automatic correction with the sin or cos function. 

The scale factor: 

k=A cos (Bu/A)(1- e2 sin 2¢)112/{a cos¢ cos [B(>..- A0)]} (9-32) 

If "rectified" coordinates (x, y) are desired, with the origin at a 
distance (xo,Yo) from the origin of the (u,v) coordinates, relative to the 
(X, Y) axes (see fig. 13): 

X= V COS ac + U sin ac + Xo 

y = u cos ac- v sin ac +Yo 
(9-33) 
(9-34) 

The formulas given by Hotine and essentially repeated in Thomas 
(1952, p. 7-9), modified for positive east longitude, u and v increasing 
in the directions shown in figure 13, and symbols consistent with the 
above, relate to the foregoing formulas as follows: 3 

Equivalent to (9-11): 

,p = e2/(1- e2
) 

B = (1 + ff2 COS 4¢ 0)'/z 

Equivalent to (9-12): 

R'o = a(1- e2)/(1- e2 sin 2¢0)3' 2 

No= a/(1- e2 sin 2¢0)1' 2 

A =Bko(R'oNo)lf2 

Other formulas: 

ro =No cos c/>o 
~n =In {tan (7r/4 + ¢)2)[(1- e sin cPn)/(1 + e sin cPn)]e12

} 

Note: ~n is equivalent to ( -ln tn) using equation (9-13). 

C= ± arccosh (Air0)-B~o 

Note: Cis equivalent to ln E, where E is found from equation (9-15); D, 
from (9-14), is (Afro). 

tan [IhB(>-.1 + >..2)- B>..o] = 
tan (lhB(}..l ->..2)] tanh (112B(~~ +~2)+C] 

tanh [ 112B(~~- ~2)] 

'llotirw ust•s positiVl' Wl·st longrtude, .r corresponding to 11 here, and y corresponding to -t• here. Thomas uses 
positivl' west longitwll'. yeorrespondmg to 11 here, and .17 corresponding to - '' here. In calculations of Alaska zone 1, 
Wl•st longitude is positive, hut 11 and I' agret' with u and t•. respel'tively, here. 
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Meridian of u,v origin 
Yaxis 

Uaxis 

origin of (u,v) 
u:O,v:O v 

t ~ -~ --~(<t>,)t) 
( <t>., A I ) / I 

/ I 
_,...t.---_,.F----/-.:;.~----+--Earth Equator on ap~$phere 

- -,....- - ---~- -Earth Equator on ellipsoid 

ly 
I Xo 

~~~=::::::::=~--~~---..L....,..X axis 
origin 
of(x,y) 
X:O 
Y=O 

Vaxis 

FIGURE 13.-Coordinate system for the Hotine Oblique Mercator projecticn. 

The tanh in the numerator is J from equation (9-20), while the tanh in 
the denominator is P from (9-21). The entire equation is equivalent to 
(9-22). 

tan 'Yo= sin [B(A.1- A.o)]/sinh (Bt/;1 +C) 

This equation is equivalent to (9-23), the sinh being equivalent to G 
from (9-19). 

tanh (Bv/Ak0)={cos 'Yo sin [B(A.-A.0)]-sin 'Yo sinh (Bt/;+C))/cosh (Bt/;+C) 

This equation is equivalent to (9-30), with S the sinh function ani T the 
cosh function. 

tan (Bu/Ako)={COS')'o sinh (B~+C)+sin 'Yo sin [B(A.-A.o)]}/cos [B(A.-A.o)] 

This equation is equivalent to (9-31). 
Alternate B. The following equations provide constants for the 

Hotine Oblique Mercator projection to fit a given central po~nt and 
azimuth of the central line through the central point. Given: a, e, ko, cf>o, 
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and (c/>, A) as for alternate A, but instead of (cl>t, At) and (ct>2, A2), Ac and ac 
are given, 

where 

(c/>o, Ac)=latitude and longitude (east of Greenwich is positiv~), respec­
tively, of the selected center of the map, falling C''l the cen­
tral line. 

ac =angle of azimuth east of north, for the central line a~ it passes 
through the center of the map ( cl>o, Ac). 

Limitations: cl>o cannot be zero or ± 1rl2, and the central line cannot be 
at a maximum or minimum latitude at c/>o. If e = 0, these for~ulas also 
give coordinates for the spherical Oblique Mercator. As witl' alternate 
A, these formulas are given in the order of calculation and are 
modified to minimize exponential computations. Several of t~ese equa­
tions are the same as some of the equations for alternate A: 

B = [1 + e2 cos4 c/>o/(1- e2))1'2 (9-11) 
A = aBko (1- e2)112/(1- e sin2 cl>o) (9-12) 
to= tan( 7r/4- c/>o/2)/[(1- e sin cl>o)/(1 + e sin c/>o)]e12 (9-13) 
D =B(1- e2

)
1121[ cos cl>o {1- e2 sin2 cl>o)112] {9-14) 

If c/>o=O, D may calculate to slightly less than 1.0 and create a problem 
in the next step. If D 2 < 1, it should be made 1. 

F=D±(D2-1)112, taking the sign of c/>0 

E=Fto8 

G=(F-1/F)/2 
'Yo= arcsin (sin a)D) 
Ao = Ac- [arcsin (G tan 'Yo)]/B 

(9-35) 
(9-36) 
(9-19) 
(9-37) 
(9-38) 

The values of u and v for center point (c/>o, Ac) may be calculated directly 
at this point: 

u(<P •• ~> = ±(AlB) arctan [(D2 -1)1
'

2/cos ac], taking the sign of c/>o. (9-39) 
V(q,.,>.,)=O 

These are the constants for a given map. Equations (9-2F) through 
(9-32) for alternate A may now be used in order, following calculation 
of the above constants. 

The inverse equations for the Hotine Oblique Mercator prc.;ection on 
the ellipsoid may be shown with few additional formulas. To determine 
c1> and A from x andy, or from u and v, the same parameters of the map 
must be given, except for c1> and A, and the constants of th~ map are 
found from the above equations (9-11) through (9-24) for alternate A 
or (9-11) through (9-38) for alternate B. Then, if X andy are given in 
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accordance with the definitions for the forward equations, the:r must 
first be converted to (u, v): 

V=(X-Xo) cos Ole- (Y-Yo) sin Ole 
U=(Y-Yo) cos Ot.e+(X-Xo) sin Ole 

(9-40) 
(9-41) 

If (u, v) are given, or calculated as just above, the following steps are 
performed in order: 

Q' = e-(Bv/A) (9-42) 

where e = 2. 71828 ... , the base of natural logarithms 

S' = (Q' -1/Q')/2 (9-43) 
(9-44) 
(9-45) 
(9-46) 

T' = (Q' + 1/Q')/2 
V' =sin (Bu/A) 
U =(V'cos 'Yo+S' sin 'Yo)IT' 

t= (E/[(1 + U)/(1- U))1' 2l 118 (9-47) 

But if U = ± 1, cJ> = ± 90°, taking the sign of U, A may be called Ao, and 
equations (7 -9) and (9-48) below are omitted. 

cJ> = 1r/2 -2 arctan (t[(1- e sin cJ>)/(1 +e sin cJ>)]e' 2 l (7-9) 

Equation (7-9) is solved by iteration, using cJ> =(7r/2- 2 arctan t) as the 
first trial cJ> on the right side, and using the successive calculatio'1s of cJ> 

on the left side as successive values of cJ> on the right side, until the 
change in cJ> is less than a chosen convergence value. 

A=Ao-arctan [(S' cos 'Yo- V' sin 'Yo)/cos (Bu/A)]IB (9-48) 

Since the arctan (found as the ATAN2 function) is divided by B, it is 
necessary to add or subtract 360° properly, before the division. 

To avoid the iteration, the series (3-5) may be used with (7-13) in 
place of (7-9): 

c/>=x+(e2/2+5e4/24+e6/12+ ... ) sin 2x+(7e4/48+29e6/240+ ... ) 
sin 4x + (7 e6/120 + . . . ) sin 6x + . . . (3-5) 

where 

x = 1r/2- 2 arctan t (7-13) 

The equivalent inverse equations as given by Hotine are as follows, 
following the calculation of constants using the same formulas a" those 
given in his forward equations: 

tan [B(A-Ao)]=[sin 'Yo sin (Bu/A)+cos 'Yo sinh (Bv/A)]/cos (B~·lA) 
tanh (B~+C)=[cos 'Yo sin (Bu/A)-sin 'Yo sinh (Bv/A)]/cosh (BdA) 



10. MILLER CYLINDRICAL PROJECTION 

SUMMARY 

• Neither equal-area nor conformal. 
• Used only in spherical form. 
• Cylindrical. 
• Meridians and parallels are straight lines, intersecting at right angles. 
• Meridians are equidistant; parallels spaced farther apart away from Equator. 
• Poles shown as lines. 
• Compromise between Mercator and other cylindrical projections. 
• Used for world maps. 
• Presented by Miller in 1942. 

HISTORY AND FEATURES 

The need for a world map which avoids some of the scale exaggera­
tion of the Mercator projection has led to some commonly U"ed cylin­
drical modifications, as well as to other modifications whicl:t are not 
cylindrical. The earliest common cylindrical example was developed by 
Rev. James Gall of Edinburgh about 1855 (Gall, 1885, p. 119-123). His 
meridians are equally spaced, but the parallels are spaced at increasing 
intervals away from the Equator. The parallels of latitude ar~~ actually 
projected onto a cylinder wrapped about the sphere, but cutting it at 
lats. 45 o N. and S., the point of perspective being a point on the 
Equator opposite the meridian being projected. It is used in several 
British atlases, but seldom in the United States. Gall's projection is 
neither conformal nor equal-area, but has a blend of various features. 
Unlike the Mercator, Gall's shows the poles as lines running f~ross the 
top and bottom of the map. 

What might be called the American version of Gall's projection is the 
Miller Cylindrical projection (fig. 14), presented in 1942 b:T Osborn 
Maitland Miller (1897-1979) of the American GeographicaJ Society, 
New York (Miller, 1942). Born in Perth, Scotland, and ed'Icated in 
Scotland and England, Miller came to the Society in 1922. There he 
developed several improved surveying and mapping techniques. An ex­
pert in aerial photography, he developed techniques for converting 
high-altitude photographs into maps. He led or joined several expedi­
tions of explorers and advised leaders of others. He retired in 1968, 
having been best known to cartographers for several map pr~1jections, 
including the Bipolar Oblique Conic Conformal, the Prolated 
Stereographic, and especially his Cylindrical projection. 

Miller had been asked by S. Whittemore Boggs, Geograpl,~r of the 
U.S. Department of State, to study further alternative:~ to the 
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Mercator, Gall's, and other cylindrical world maps. In his pres~ntation, 
Miller listed four proposals, but the one he preferred, and the one used, 
i8 a fairly simple mathematical modification of the Mercator projection. 
Like Gall's, it shows visible straight lines for the poles, inc':"easingly 
spaced parallels away from the Equator, equidistant meridians, and is 
not equal-area, equidistant along meridians, nor conformal. "\V"hile the 
standard parallels, or lines true to scale and free of distortion, on Gall's 
are at lats. 45° N. and S., on the Miller only the Equator is standard. 
Unlike Gall's, Miller's is not a perspective projection. 

The Miller Cylindrical projection is used for world mar~ and in 
several atlases, including the National Atlas of the Unitl3d States 
(USGS, 1970, p. 330-331). 

As Miller (1942) stated, "the practical problem considered here is to 
find a system of spacing the parallels of latitude such that an a~ceptable 
balance is reached between shape and area distortion. By an 'accept­
able' balance is meant one which to the uncritical eye does no~ obvious­
ly depart from the familiar shapes of the land areas as depicted by the 
Mercator projection but which reduces areal distortion as far as possi­
ble under these conditions * * *. After some experimenting, the 
[Modified Mercator (b)] was judged to be the most suitabl~ for Mr. 
Boggs's purpose * * *." 

FORMULAS FOR THE SPHERE 

Miller's spacings of parallels from the Equator are the same as if the 
Mercator spacings were calculated for 0.8 times the respective 
latitudes, with the result divided by 0.8. As a result, the S"1acing of 
parallels near the Equator is very close to the Mercator arrangement. 

The forward formulas, then, are as follows: 

X=R("A-"Ao) 
y=R[ln tan (1r/4 + 0.4cJ>)]/0.8 

or 

y=R[arctanh (sin 0.8cJ>)]/0.8 

The scale factor, using equations (4-2) and (4-3), 

h=sec 0.8cJ> 
k=seccJ> 

The maximum angular deformation w, from equation ( 4-9), 

sin 112w=(cos 0.8c/>-cos cJ>)/(cos 0.8cJ>+cos c/>) 

(10-1) 
(10-2) 

(10-2a) 

(10-3) 
(10-4) 

(10-5) 

The X axis lies along the Equator, x increasing easterly. The Y axis lies 
along the central meridian "Ao, y increasing northerly. If () - "Ao) lies 
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outside the range of ± 180°, 360° should be added or subtracted so that 
it will fall inside the range. The inverse equations are easily derived 
from equations (10-1) through (10-2a): 

<P = 2.5 arctan e(o.sytR>- S1r/8 

or 

<P =arcsin [tanh (0.8y/R)]/0.8 

where e is 2. 71828 ... , the base of natural logarithms. 

'A='Ao+x!R 

(10-6) 

(10-6a) 

(10-7) 

Rectangular coordinates are given in table 13. There is no l'~sis for 
an ellipsoidal equivalent, since the projection is used for maps of the en­
tire Earth and not for local areas at large scale. 

TABLE 13. -Miller Cylindrical projection: Rectangular coordinates 

90° --------------
85 ---------------
80 ---------------
75 ---------------
70 ---------------
65 ---------------
60 ---------------
55 ---------------
50 ---------------
45 ---------------
40 ---------------
35 ---------------
30 ---------------
25 ---------------
20 ---------------
15 ---------------
10 ---------------
5 ---------------
0 ---------------

y 

2.30341 
2.04742 
1.83239 
1.64620 
1.48131 
1.33270 
1.19683 
1.07113 

.95364 

.84284 

.73754 

.63674 

.53962 

.44547 

.35369 

.26373 

.17510 

.08734 

.00000 

[Radius of sphere= 1.0] 

h 

3.23607 
2.66947 
2.28117 
2.00000 
1.78829 
1.62427 
1.49448 
1.39016 
1.30541 
1.23607 
1.17918 
1.13257 
1.09464 
1.06418 
1.04030 
1.02234 
1.00983 
1.00244 
1.00000 

X ---------------- 0.017 453 (A 0 - Xc, 
0

) 

Note: x, y=rectangular coordinates. 
<1> =geodetic latitude. 

(>. o- >.. 0 ) =geodetic longitude, measured east from origin in degrees. 
h =scale factor along meridian. 
k =scale factor along parallel. 
w =maximum angular deformation, degrees. 

k 

Infinite 
11.47371 

5.75877 
3.86370 
2.92380 
2.36620 
2.00000 
1.74345 
1.55572 
1.41421 
1.30541 
1.22077 
1.15470 
1.10338 
1.06418 
1.03528 
1.01543 
1.00382 
1.00000 

w 

180.00° 
77.00 
51.26 
37.06 
27.89 
21.43 
16.64 
12.95 
10.04 
7.71 
5.82 
4.30 
3.06 
2.07 
1.30 

.72 

.32 

.08 

.00 

Origin of coordinates at intersection of Equator with>.,. X axis increases east, Y axis increases north. For southern 
(negative) <1>, reverse sign of y. 



• Cylindrical. 

11. EQUIDISTANT CYLINDRICAL PROJECTION 

SUMMARY 

• Neither equal-area nor conformal. 
• Meridians and parallels are equidistant straight lines, intersecting at right angles. 
• Poles shown as lines. 
• Used for world or regional maps. 
• Very simple construction. 
• Used only in spherical form. 
• Presented by Eratosthenes (B.C.) or Marinus (A.D. 100). 

HISTORY AND FEATURES 

While the Equidistant Cylindrical projection is listed last among the 
cylindricals because of its limited use by the USGS and generally 
limited value, it is probably the simplest of all map projecti0ns to con­
struct and one of the oldest. The meridians and paralhls are all 
equidistant straight parallel lines, the two sets crossing at ri:-rht angles. 

The projection originated probably with Eratosthenes (275?-195? 
B.C.), the scientist and geographer noted for his fairly accurate 
measure of the size of the Earth. Claudius Ptolemy credited Marin us of 
Tyre with the invention about A.D. 100 stating that, whr~ Marinus 
had previously evaluated existing projections, the latter had chosen "a 
manner of representing the distances which gives the worst results of 
all." Only the parallel of Rhodes (lat. 36° N.) was made true to scale on 
the world map, which meant that the meridians were spac(ld at about 
four-fifths of the spacing of the parallels for the same degr9e interval 
(Keuning, 1955, p. 13). 

Ptolemy approved the use of the projection for maps of smaller areas, 
however, with spacing of meridians to provide correct scale along the 
central parallel. All the Greek manuscript maps for the Geographia, 
dating from the 13th century, use the Ptolemy modi:ficathn. It was 
used for some maps until the eighteenth century, but is now used 
primarily for a few maps on which distortion is considered less impor­
tant than the ease of displaying special information. The projection is 
given a variety of names such as Equidistant Cylindrical, Rectangular, 
La Carte Parallelogrammatique, Die Rechteckige Plattkarte, and 
Equirectangular (Steers, 1970, p. 135-136). It was called the projection 
of Marinus by Nordenskiold (1889). 
If the Equator is made the standard parallel, true to scale and free of 

distortion, the meridians are spaced at the same distan~es as the 
parallels, and the graticule appears square. This form is often called the 
Plate Carree or the Simple Cylindrical projection. 

89 
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The USGS uses the Equidistant Cylindrical projection for indeY maps 
of the conterminous United States, with insets of Alaska, Hawr.ii, and 
various islands on the same projection. One is entitled "Topographic 
Mapping Status and Progress of Operations {71/2- and 15-minute 
series)," at an approximate scale of 1:5,000,000. Another shows the 
status of intermediate-scale quadrangle mapping. Neither the scale nor 
the projection is marked, to avoid implying that the maps are suitable 
for normal geographic information. Meridian spacing is about four­
fifths of the spacing of parallels, by coincidence the same as that chosen 
by Marin us. The Alaska inset is shown at about half the scale an1 with 
a change in spacing ratios. Individual States are shown by the UFr;s on 
other index maps using the same projection and spacing ratic to in­
dicate the status of aerial photography. 

The projection was chosen largely for ease in computerized plotting. 
While the boundaries on the base map may be as difficult to plot on this 
projection as on the others, the base map needs to be prepare1 only 
once. Overlays of digital information, which may then be prirted in 
straight lines, may be easily updated without the use of cartographic 
and photographic skills. The 4:5 spacing ratio is a convenience based on 
computer line and character spacing and is not an attempt to achieve a 
particular standard parallel, which happens to fall near lat. 37° N. 

FORMULAS FOR THE SPHERE 

The formulas for rectangular coordinates are almost as simple to use 
as the geometric construction. Given R, Ao, c/>1, A, and cp for the fcrward 
solution, x and-Y are found thus: 

X=R (A-Ao) COS c/>1 
y=Rc/> 
h=1 
k =cos cl>t/cos cp 

(11-1) 
(11-2) 
(11-3) 
(11-4) 

The X axis coincides with the Equator, with x increasing easterly, while 
theY axis follows the central meridian Ao, y increasing northerly. It is 
necessary to adjust (A.- Ao), if it is beyond the range ± 180 °, by adding or 
subtracting 360°. The standard parallel is c/>1 (also - cl>t). For the i"lverse 
formulas, given R, Ao, cp., x, and y, to find cp and A.: 

cJ>=yiR 
A.= Ao + xi(R cos cl>t) 

(11-5) 
(11-6) 

Numerical examples are omitted in the appendix, due to simplicity. It 
must be remembered, as usual, that angles above are given in radians. 



CONIC MAP PROJECTIONS 

Cylindrical projections are used primarily for complete world maps, 
or for maps along narrow strips of a great circle arc, such as the 
Equator, a meridian, or an oblique great circle. To show a region for 
which the greatest extent is from east to west in the temperate zones, 
conic projections are usually preferable to cylindrical projections. 

Normal conic projections are distinguished by the use of arcs of con­
centric circles for parallels of latitude and equally spaced straight radii 
of these circles for meridians. The angles between the meridians on the 
map are smaller than the actual differences in longitude. T~·e circular 
arcs may or may not be equally spaced, depending on the projection. 
The Polyconic projection and oblique conic projections have character­
istics different from these. 

The name "conic" originates from the fact that the more e:1ementary 
conic projections may be derived by placing a cone on the tor of a globe 
representing the Earth, the apex or tip in line with the r.xis of the 
globe, and the sides of the cone touching or tangent to the globe along a 
specified "standard" latitude which is true to scale and with'lut distor­
tion (see fig. 1). Meridians are drawn on the cone from the apex to 
the points at which the corresponding meridians on the glob~ cross the 
standard parallel. Other parallels are then drawn as arcs centered on 
the apex in a manner depending on the projection. If the cone is cut 
along one meridian and unrolled, a conic projection results. A secant 
cone results if the cone cuts the globe at two specified parallels. Meri­
dians and parallels can be marked on the secant cone sonewhat as 
above, but this will not result in any of the common conic projections 
with two standard parallels. They are derived from vario•:ts desired 
scale relationships instead, and the spacing of the meridians as well as 
the parallels is not the same as the projection onto a secant cone. 

There are three important classes of conic projections: tJ·~ equidis­
tant (or simple), the conformal, and the equal-area. The Equidistant 
Conic, with parallels equidistantly spaced, originated in a ruiimentary 
form with Claudius Ptolemy. It eventually developed into commonly 
used present-day forms which have one or two standarc parallels 
selected for the area being shown. It is neither conformal nor equal­
area, but north-south scale along all meridians is correct, ard the pro­
jection can be a satisfactory compromise for errors in shape, scale, and 
area, especially when the map covers a small area. It is prirrarily used 
in the spherical form, although the ellipsoidal form is available and 
useful. The USGS uses the Equidistant Conic in an approximate form 
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for a map of Alaska, identified as a "Modified Transverse Mercator" 
projection, and also in the limiting equatorial form: the Equidistant 
Cylindrical. Both are described earlier. 

The Lambert Conformal Conic projection with two standard parallels 
is used frequently for large- and small-scale maps. The paralhls are 
more closely spaced near the center of the map. The Lambert has also 
been used slightly in the oblique form. The Albers Equal-Arer. Conic 
with two standard parallels is used for sectional maps of the U.S. and 
for maps of the conterminous United States. The Albers parallels are 
spaced more closely near the north and south edges of the map. There 
are some conic projections, such as perspective conics, which do not fall 
into any of these three categories, but they are rarely used. 

The useful conic projections may be geometrically constructed only in 
a limited sense, using polar coordinates which must be calc'llated. 
After a location is chosen, usually off the final map, for the cente .... of the 
circular arcs which will represent parallels of latitude, meridians are 
constructed as straight lines radiating from this center and spaced 
from each other at an angle equal to the product of the cone constant 
times the difference in longitude. For example, if a 10° grat~n.ule is 
planned, and the cone constant is 0.65, the meridian lines are sp~ced at 
10° times 0.65 or 6.5°. Each parallel of latitude may then be drawn as 
a circular arc with a radius previously calculated from formulas for the 
particular conic projection. 



• Conic. 

12. ALBERS EQUAL-AREA CONIC PROJECTION 

SUMMARY 

• Equal-Area. 
• Parallels are unequally spaced arcs of concentric circles, more closely spaced at the 

north and south edges of the map. 
• Meridians are equally spaced radii of the same circles, cutting parall ~ls at right 

angles. 
• There is no distortion in scale or shape along two standard parallels, rormally, or 

along just one. 
• Poles are arcs of circles. 
• Used for equal-area maps of regions with predominant east-west expanse, especially 

the conterminous United States. 
• Presented by Albers in 1805. 

HISTORY 

One of the most commonly used projections for maps of the conter­
minous United States is the equal-area form of the conic projen.tion, us­
ing two standard parallels. This projection was first pres~nted by 
Heinrich Christian Albers (1773-1833), a native of Liineburg, Ger­
many, in a German periodical of 1805 (Albers, 1805; Bona~ker and 
Anliker, 1930). The Albers projection was used for a German map of 
Europe in 1817, but it was promoted for maps of the United States in 
the early part of the twentieth century by Oscar S. Adams of the Coast 
and Geodetic Survey as "an equal-area representation that is a.s good as 
any other and in many respects superior to all others" (Adams, 1927, 
p. 1). 

FEATURES AND USAGE 

The Albers is the projection exclusively used by the USGP for sec­
tional maps of all 50 States of the United States in the National Atlas 
of 1970, and for other U.S. maps at scales of 1:2,500,000 anc smaller. 
The latter maps include the base maps of the United States issued in 
1961, 1967, and 1972, the Tectonic Map of the United States (1962), 
and the Geologic Map of the United States (1974), all at 1:Z,500,000. 
The USGS has also prepared a U.S. base map at 1:3,168,000 (1 inch=50 
miles). 

Like other normal conics, the Albers Equal-Area Conic rrojection 
(fig. 15) has concentric arcs of circles for parallels and equally spaced 
radii as meridians. The parallels are not equally spaced, but they are 
farthest apart in the latitudes between the standard parallels and 
closer together to the north and south. The pole is not the center of the 
circles, but is normally an arc itself. 
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FIGURE 15.-Albers Equal-Area Conic projection, with standard parallels 20° G.nd 60° N. 
This illustration includes all of North America to show the change in spacing of the 
parallels. When used for maps of the 48 conterminous States standard parallels 
are 29.5° and 45.5° N. 

If the pole is taken as one of the two standard parallels, the Albers 
formulas reduce to a limiting form of the projection called L2.mbert's 
Equal-Area Conic (not discussed here, and not to be confused with his 
Conformal Conic, to be discussed later). If the pole is the only standard 
parallel, the Albers formulas simplify to provide the polar aspect of the 
Lambert Azimuthal Equal-Area (discussed later). In both of these 
limiting cases, the pole is a point. If the Equator is the one standard 
parallel, the projection becomes Lambert's Cylindrical Equal-Area (not 
discussed), but the formulas must be modified. None of these extreme 
cases applies to the normal use of the Albers, with standard parallels in 
the temperate zones, such as usage for the United States. 

Scale along the parallels is too small between the standard parallels 
and too large beyond them. The scale along the meridians is just. the op­
posite, and in fact the scale factor along meridians is the reciprocal of 
the scale factor along parallels, to maintain equal area. 

To map a given region, standard parallels should be selected to 
minimize variations in scale. Not only are standard parallels correct in 
scale along the parallel; they are correct in every direction. Thus, there 
is no angular distortion, and conformality exists along these standard 
parallels, even on an equal-area projection. They may be on opposite 
sides of, but not equidistant from the Equator. Deetz and Adams (1934, 
p. 79, 91) recommended in general that standard parallels be placed 
one-sixth of the ·displayed length of the central meridian f 4 om the 
northern and southern limits of the map. Hinks (1912, p. 87) suggested 
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one-seventh instead of one-sixth. Others have suggested selecting 
standard parallels of conics so that the maximum scale error (1 minus 
the scale factor) in the region between them is equal and opposite in 
sign to the error at the upper and lower parallels, or so that the scale 
factor at the middle parallel is the reciprocal of that at the limiting 
parallels. Zinger in 1916 and Kavraisky in 1934 chose standard 
parallels so that least-square errors in linear scale were minirral for the 
actual land or country being displayed on the map. This involved 
weighting each latitude in accordance with the land it contains (Maling, 
1960, p. 263-266). 

The standard parallels chosen by Adams for Albers maps of the con­
terminous United States are lats. 29.5° and 45.5° N. These parallels 
provide "for a scale error slightly less than 1 per cent in the center of 
the map, with a maximum of 11/4 per cent along the northern and 
southern borders." (Deetz and Adams, 1934, p. 91). For maps of 
Alaska, the chosen standard parallels are lats. 55° and 65° N., and for 
Hawaii, lats. 8 o and 18 o N. In the latter case, both parallels ar~~ south of 
the islands, but they were chosen to include maps of the more southerly 
Canal Zone and especially the Philippine Islands. These parallels apply 
to all maps prepared by the USGS on the Albers projection, originally 
using Adams's published tables of coordinates for the Clarke 1 866 ellip­
soid (Adams, 1927). 

Without measuring the spacing of parallels along a meridian, it is 
almost impossible to distinguish an unlabeled Albers map of the United 
States from other conic forms. It is only when the projection is extend­
ed considerably north and south, well beyond the standard parallels, 
that the difference is apparent without scaling. 

Since meridians intersect parallels at right angles, it may at first 
seem that there is no angular distortion. However, scale yariations 
along the meridians cause some angular distortion for any all gle other 
than that between the meridian and parallel, except at the standard 
parallels. 

FORMULAS FOR THE SPHERE 

The Albers Equal-Area Conic projection may be constructed with 
only one standard parallel, but it is nearly always used with two. The 
forward formulas for the sphere are as follows, to obtain rectangular or 
polar coordinates, given R, c/>1, c/>2, c/>o, Ao, ¢, and A: 

where 

X=p sin 0 
Y= p0 - p cos 0 

p =R(C- 2n sin ¢) 112/n 
O=n{A-Ao) 

(12-1) 
(12-2) 

(12-3) 
(12-4) 
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Po =R(C- 2n sin ~0) 112/n (12-3a) 
C = cos2 ~. + 2n sin ~ 1 (12-5) 
n =(sin ~1 +sin ~2)/2 (12-6) 

~o, Ao = the latitude and longitude, respectively, 
for the origin of the rectangular coor­
dinates. 

~1, </>2 =standard parallels. 

The Y axis lies along the central meridian Ao, y increasing ncrtherly. 
The X axis intersects perpendicularly at ~0, x increasing easterly. If 
(A- Ao) exceeds the range ± 180°, 360° should be added or subtracted to 
place 1t within the range. Constants n, C, and Po apply to tre entire 
map, and thus need to be calculated only once. If only one standard 
parallel </>1 is desired (or if~. = ~2), n =sin ~ •. By contrast, a geometrical­
ly secant cone requires a cone constant n of sin 112(~ 1 + ¢ 2), slightly but 
distinctly different from equation (12-6). If the projection is c1esigned 
primarily for the Northern Hemisphere, nand p are positive. For the 
Southen Hemisphere, they are negative. The scale along the merid­
ians, using equation (4-4), 

h =cos ~/(C- 2n sin~ )112 (12-7) 

If equation ( 4-5) is used, k will be found to be the reciprocal of h, satis­
fying the requirement for an equal-area projection when meridians and 
parallels intersect at right angles. The maximum angular defo-rmation 
may be calculated from equation ( 4-9). It may be seen from equation 
(12-7), and indeed from equations ( 4-4) and ( 4-5), that distortion is 
strictly a function of latitude, and not of longitude. This is tru~ of any 
regular conic projection. 

For the inverse formulas for the sphere, given R, ¢ 1, ~2, ~0 , A,1, x, and 
y: n, C and p0 are calculated from equations (12-6), (12-5), and (12-3a), 
respectively. Then, 

where 

~=arcsin {[C-(pn/R)2]/(2n)} 
A=Ao+Oin 

p = [xz + (po _ y)2)ll2 
O=arctan [xl(po-Y)] 

(12-8) 
(12-9) 

(12-10) 
(12-11) 

Note: to use the ATAN2 Fortran function, if n is negative, reverse the 
signs of x, y, and Po (given a negative sign by equation (12-3a)) before 
inserting them in equation (12-11). 

FORMULAS FOR THE ELLIPSOID 

The formulas displayed by Adams and most other writers de2~ribing 
the ellipsoidal form include series, but the equations may be exnressed 
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in closed forms which are suitable for programing, and involve no 
numerical integration or iteration in the forward form. Nearly all 
published maps of the United States based on the Albers m:e the ellip­
soidal form because of the use of tables for the original htse maps. 
(Adams, 1927, p. 1-7; Deetz and Adams, 1934, p. 93-9~; Snyder, 
1979a, p. 71). Given a, e, c/> 1, c/>1, c/>0 , Ao, c/>, and A: 

where 

X= p sin() 
y= p0 - p cos 8 

(12-1) 
(12-2) 

P = a(C -nq)1'1/n (12-12) 
8 = n(A- Ao) (12-4) 

p0 =a( C- nq0)111/n (12-12a) 
C=m1

1 +nq1 (12-13) 
n=(m~1 -m11)/(q1-q1) (12-14) 
m =cos cf>/(1- e2 sin1 cf> )111 (12-15) 

q=(1-e1){sin ¢/(1-e1 sin1¢)-[11(2e)] ln[(1-e sin ¢)/(1+e sin¢)]) (3-12) 

with the same subscripts 1, 2, or none applied tom and cJ> in equation 
(12-15), and 0, 1, 2, or none applied to q and cJ> in equation (3-12), as re­
quired by equations (12-12), (12-12a), (12-13), (12-14), and (12-17). As 
with the spherical case, p and n are negative, if the projection is 
centered in the Southern Hemisphere. For the scale factor, modifying 
(4-25): 

k=pnlam 
=(C-nq)1121m 

h= llk 

(12-16) 
(12-17) 
(12-18) 

While many ellipsoidal equations apply to the sphere if e is made zero, 
equation (3-12) becomes indeterminate. Actually, if e=O, q=2 sin¢. 
The axes and limitations on (A- Ao) are the same as those st2.ted for the 
spherical formulas. Here, too, constants n, C, and po need to be deter­
mined just once for the entire map. 

For the inverse formulas for the ellipsoid, given, a, e, ¢., c/>1, cl>o, Ao, x, 
andy: n, C, and p0 are calculated from equations (12-14), (12-13), and 
(12-12a), respectively. Then, 

cP = cP + (1- e1 sin
2 
¢)2 [_q__ sin cJ> +-1-ln ( 1- e sin cJ> )] (3_16) 

2 cos ct> 1 - e2 1 - e2 sin 2 cJ> 2e 1 + e sin cJ> 

where 

A= Ao + 8/n (12-9) 

q= (C- p1n 11a2)/n 
p = [ x1 + (po _ y)2]tt1 
()=arctan [xl(p 0 -y)] 

(12-19) 
(12-10) 
(12-11) 
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To use the Fortran ATAN2 function, if n is negative, reverse the signs 
of x, y. and Po before insertion into equation (12-11). Equation (3-16) 
involves iteration by first trying <!>=arcsin (q/2) on the right side, 
calculating <f> on the left side, substituting this new <f> on the rig:tt side, 
etc., until the change in <f> is negligible. If 

q = ± { 1-[(1- e2)/2e] ln [(1- e)/(1 + e)]J (12-20) 

iteration does not converge, but <f> = ± 90°, taking the sign of q. 
Instead of the iteration, a series may be used for the invers8 ellip­

soidal formulas: 

<f>=fj+(e2/3+31e4/180+517e6/5040+ ... ) sin 2{j+(23e4/360 
+ 251e6/3780+ ... ) sin 4fj+(761~/45360+ ... ) sin 6/j+ ... (3-18) 

where {j, the authalic latitude, adapting equations (3-11) and (3-12), is 
found thus: 

{j =arcsin (q/(1- [(1- e2)/2e] ln [(1- e)/(1 +e)]}) (12-21) 

but q is still found from equation (12-19). Equations (12-9), (12-10), 
and (12-11) also apply unchanged. 

Polar coordinates for the Albers Equal-Area Conic are given for both 
the spherical and ellipsoidal forms, using standard parallels of lat. 
29.5° ai).d 45.5° N. (table 14). A graticule extended to the North Pole is 
shown in figure 15. 
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TABLE 14. -Albers Equal-Area Conic projection: Polar coordinat3s 

[Standard parallels: 29.5°, 45.5° N] 

Projection for sphere (R= 6,370,997 m) Projection for Clarke 1866 ellipsoid 
(n= 0.6028370) {a=6,378,206.4 m} {n=0.6029035} 

Lat. p h k p h k 

52° --- 6,693,511 0.97207 1.02874 6,713,781 0.97217 1.02863 
51 ---- 6,801,923 .97779 1.02271 6,822,266 .97788 1.02263 
50 ---- 6,910,941 .98296 1.01733 6,931,335 .98303 1.01727 
49 ---- 7,020,505 .98760 1.01255 7,040,929 .98765 1.01251 
48 ---- 7,130,555 .99173 1.00834 7,150,989 .99177 1.00830 
47 ---- 7,241,038 .99538 1.00464 7,261,460 .99540 1.00462 
46 ---- 7,351,901 .99857 1.00143 7,372,290 .99858 1.00143 
45.5 -- 7,407,459 1.00000 1.00000 7,427,824 1.00000 1.00000 
45 ---- 7,463,094 1.00132 .99868 7,483,429 1.00132 .99869 
44 ---- 7,574,570 1.00365 .99636 7,594,829 1.00364 .99637 
43 ---- 7,686,282 1.00558 .99445 7,706,445 1.00556 .99447 
42 ---- 7' 798' 186 1.00713 .99292 7,818,233 1.00710 .99295 
41 ---- 7,910,244 1.00832 .99175 7,930,153 1.00828 .99178 
40 ---- 8,022,413 1.00915 .99093 8,042,164 1.00911 .99097 
39 ---- 8,134,656 1.00965 .99044 8,154,230 1.00961 .99048 
38 ---- 8,246,937 1.00983 .99027 8,266,313 1.00978 .99031 
37 ---- 8,359,220 1.00970 .99040 8,378,379 1.00965 .99044 
36 ---- 8,471,472 1.00927 .99082 8,490,394 1.00923 .99086 
35 ---- 8,583,660 1.00855 .99152 8,602,328 1.00852 .99155 
34 ---- 8,695,753 1.00757 .99249 8,714,149 1.00753 .99252 
33 ---- 8,807 '723 1.00632 .99372 8,825,828 1.00629 .99375 
32 ---- 8,919,539 1.00481 .99521 8,937,337 1.00479 .99523 
31 ---- 9,031,175 1.00306 .99694 9,048,649 1.00305 .99696 
30 ---- 9,142,602 1.00108 .99892 9,159,737 1.00107 .99893 
29.5 -- 9,198,229 1.00000 1.00000 9,215,189 1.00000 1.00000 
29 ---- 9,253,796 .99887 1.00114 9,270,575 .99887 1.00113 
28 ---- 9,364,731 .99643 1.00358 9,381,141 .99645 1.00357 
27 ---- 9,475,383 .99378 1.00626 9,491,411 .99381 1.00623 
26 ---- 9,585, 731 .99093 1.00915 9,601,361 .99097 1.00911 
25 ---- 9,695,749 .98787 1.01227 9,710,969 .98793 1.01222 
24 ---- 9,805,417 .98463 1.01561 9,820,216 .98470 1.01554 
23 ---- 9,914, 713 .98119 1.01917 9,929,080 .98128 1.01908 
22 ____ 10,023,616 .97757 1.02294 10,037,541 .97768 1.02283 

Note: p =radius of latitude circle, meters. 
h= scale factor along meridians. 
k =scale factor along parallels. 
R =assumed radius of sphere. 
a= assumed semimajor axis of ellipsoid. 
n= cone constant, or ratio of angle between meridians on map to true angle. 





13. LAMBERT CONFORMAL CONIC PROJECTIOl'T 

SUMMARY 
• Conic. 
• Conformal. 
• Parallels are unequally spaced arcs of concentric circles, more cloEP.ly spaced near 

the center of the map. 
• Meridians are equally spaced radii of the same circles, thereby cut~ing parallels at 

right angles. 
• Scale is true along two standard parallels, normally, or along just one. 
• Pole in same hemisphere as standard parallels is a point; other pok is at infinity. 
• Used for maps of countries and regions with predominant east-west, expanse. 
• Presented by Lambert in 1772. 

HISTORY 

The Lambert Conformal Conic projection (fig. 16) was almost com­
pletely overlooked between its introduction and its revival by France 
for battle maps of the First World War. It was the first new projection 
which Johann Heinrich Lambert presented in his Beitrii{te (Lambert, 
1772), the publication which contained his Transverf~ Mercator 
described previously. In some atlases, particularly British, the Lambert 
Conformal Conic is called the "Conical Orthomorphic" projection. 

Lambert developed the regular Conformal Conic as the oblique 
aspect of a family containing the previously known polar Stereographic 
and regular Mercator projections. As he stated, "Stereographic repre­
sentations of the spherical surface, as well as Mercator's nautical 
charts, have the peculiarity that all angles maintain the sizes that they 
have on the surface of the globe. This yields the greatest si'llilarity that 
any plane figure can have with one drawn on the surface of a sphere. 
The question has not been asked whether this property occurs only in 
the two methods of representation mentioned or whether these two 
representations, so different in appearances, can be made to approach 
each other through intermediate stages. * * * if there are stages inter­
mediate to these two representations, they must be sought by allowing 
the angle of intersection of the meridians to be arbitrarly larger or 
smaller than its value on the surface of the sphere. This is the way in 
which I shall now proceed" (Lambert, 1772, p. 28, translation by 
Tobler). Lambert then developed the mathematics for both the 
spherical and ellipsoidal forms for two standard parallels and included 
a small map of Europe as an example (Lambert, 1772, p. 28-38, 87-89). 

FEATURES 

Many of the comments concerning the appearance of the Albers and 
the selection of its standard parallels apply to the Lambert Conformal 
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FIGURE 16.-Lambert Conformal Conic projection, with standard parallels 20° and 60° 
N. North America is illustrated here to show the change in spacing-of the pa"'allels. 
When used for maps of the conterminous United States or individual States, standard 
parallels are 33° and 45° N. 
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Conic when an area the size of the conterminous UnitM States or 
smaller is considered. As stated before, the spacing of the parallels 
must be measured to distinguish among the various conic projections 
for such an area. If the projection is extended toward either pole and 
the Equator, as on a map of North America, the differences become 
more obvious. Although meridians are equally spaced radii of the con­
centric circular arcs representing parallels of latitude, the parallels 
become further apart as the distance from the central parallels in­
creases. Conformality fails at each pole, as in the case of the regular 
Mercator. The pole in the same hemisphere as the standard parallels is 
shown on the Lambert Conformal Conic as a point. The ot}'o.r pole is at 
infinity. Straight lines between points approximate great circle arcs for 
maps of moderate coverage, but only the Gnomonic projection 
rigorously has this feature and then only for the sphere. (Tr~ Gnomonic 
is not discussed in detail.) 

Two parallels may be made standard or true to scale, as well as con­
formal. It is also possible to have just one standard parallel. Since there 
is no angular distortion at any parallel (except at the poles), it is possi­
ble to change the standard parallels to just one, or to another pair, just 
by changing the scale applied to the existing map and calculating a pair 
of standard parallels fitting the new scale. This is not true of the 
Albers, on which only the original standard parallels ar~ free from 
angular distortion. 

The scale is too small between the standard parallels and too large 
beyond them. This applies to the scale along meridians, as well as along 
parallels, or in any other direction, since they are equal at any given 
point. Thus, in the State Plane Coordinate Systems (SPCt') for States 
using the Lambert, the choice of standard parallels has the effect of 
reducing the scale of the central parallel by an amount whieh cannot be 
expressed simply in exact form, while the scale for the central meridian 
of a map using the Transverse Mercator is normally reduc~~d by a sim­
ple fraction. 

USAGE 

After the reappearance of the Lambert Conformal Coni~ in France 
during the First World War, the Coast and Geodetic Survey im­
mediately began publishing tables for the projection (De~tz, 1918a, 
1918b). It was only a couple of decades before the Lambert Conformal 
Conic was adopted as the official projection for the SPCS for States of 
predominantly east-west expanse. The prototype was the North 
Carolina Coordinate System, established in 1933. Within a year or so, 
similar systems were devised for many other State;;-, while a 
Transverse Mercator system was prepared for the remaining States. 
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One or more zones is involved in the system for each State (see table 8) 
(Mitchell and Simmons, 1945, p. vi). In addition, the Lambert is used 
for the Aleutian Islands of Alaska, Long Island in New York, and 
northwestern Florida, although the Transverse Mercator (and Oblique 
Mercator in one case) is used for the rest of each of these Stat~~s. 

The Lambert Conformal Conic is used for the 1:1,000,001-scale 
regional world aeronautical charts, the 1:500,000-scale sectional aero­
nautical charts, and 1:500,000-scale State base maps (all48 contiguous 
States4 have the same standard parallels of lat. 33° and 45° ~T., and 
thus match). Also cast on the Lambert are most of the 1:24,001-scale 
71fz-minute quadrangles prepared after 1957 which lie in zor~s for 
which the Lambert is the base for the SPCS. In the latter case, the 
standard parallels for the zone are used, rather than para1neters 
designed for the individual quadrangles. Thus, all quadrangler for a 
given zone may be mosaicked exactly. (The projection used pre,.riously 
was the Polyconic, and some recent quadrangles are being produced to 
the Universal Transverse Mercator projection.) 

The Lambert Conformal Conic has also been adopted as the official 
topographic projection for some other countries. It appears in T';,e Na­
tional Atlas (USGS, 1970, p. 116) for a map of hurricane pattern~ in the 
North Atlantic, and the Lambert is used by the USGS for a map of the 
United States showing all 50 States in their true relative positiors. The 
latter map is at scales of both 1:6,000,000 and 1:10,000,000, with stand­
ard parallels 37° and 65° N. 

In 1962, the projection for the International Map of the Wor~d at a 
scale of 1:1,000,000 was changed from a modified Polyconic to the 
Lambert Conformal Conic between lats. 84° N. and 80° S. The polar 
Stereographic projection is used in the remaining areas. The sheets are 
generally 6° of longitude wide by 4° of latitude high. The st2ndard 
parallels are placed at one-sixth and five-sixths of the latitude spacing 
for each zone of 4 o latitude, and the reference ellipsoid is the Interna­
tional (United Nations, 1963, p. 9-27). This specification haf been 
subsequently used by the USGS in constructing several maps for the 
IMW series. 

Perhaps the most recent new topographic use for the Lamber+. Con­
formal Conic projection by the USGS is for middle latitudes of the 
1:1,000,000-scale geologic series of the Moon and for some of the maps 
of Mercury, Mars, and Jupiter's satellites Ganymede and Callisto (see 
table 15). 

•For Hawaii, the standard parallels are lats. 20°40' and 23°20' N.; the corresponding base map was not prepared 
for Alaska. 
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FORMULAS FOR THE SPHERE 

For the projection as normally used, with two standard pr.rallels, the 
equations for the sphere may be written as follows: Given R, cf>h c/>z, c/>o, 
Ao, c/>, and A: 

X= p sin() 
Y= po-p cos() 

where 

(12-1) 
(12-2) 

p=RF/tan" (rl4+ct>l2) (13-1) 
8=n(A-Ao) (12-4) 

p0 =RF/tan" (r/4+cf>0/2) (13-1a) 
F =cos c/>1 tan" ( r/4 + c/>1/2)/n (13-2) 
n=In (cos c/>1/cos c/>1)/ln[tan (r/4+cl>z/2)/tan (r/4+cf>1/2)] (13-3) 

cl>o, Ao =the latitude and longitude for the origin of the rectangular co-
ordinates. 

c/>11 c/>z =standard parallels. 

The Y axis lies along the central meridian Ao, y increasing northerly; 
the X axis intersects perpendicularly at cp0 , x increasing easterly. If 
(A- Ao) exceeds the range ± 180°, 360° should be added or rnbtracted. 
Constants n, F, and p0 need to be determined only once for the entire 
map. 

If only one standard parallel c/>1 is desired, n = sin c/l1. The scale along 
meridians or parallels, using equations ( 4-4) or ( 4-5), 

k= h= cos c/>1 tan"(r/4+ c/>1/2)/[ cos q, tan"(r/4 + cf>/2)] (13-4) 

The maximum angular deformation w = 0, since the projectio'l is confor­
mal. As with the other regular conics, k is strictly a function of latitude. 
For a projection centered in the Southern Hemisphere, n and p are 
negative. 

For the inverse formulas for the sphere, given R, c/l11 c/>z, cf>c, Ao, x, and 
y: n, F, and Po are calculated from equations (13-3), (13-2), and (13-1a), 
respectively. Then, 

cp = 2 arctan (RF/ p )1
'"- 1r/2 

A=81n+Ao 

where 

p = ± [x2 +(p0 -y)2
]

112
, taking the sign of n 

()=arctan [ xl(po- y)] 

(13-5) 
(12-9) 

(12-10) 
(12-11) 

The Fortran ATAN2 function does not apply to equation (13-5), but 
when it is used for equation (12-11), and n is negative, the signs of x, y, 
and Po (negative from equation (13-1a)) must be reversed before inser-



TABLE 15.-Lambert Conformal Conic Projection:Usedfor extraterrestrial mapping 

[From Batson, 1973; Davies and Batson, 1975; Batson and others, 1980; Batson, private commun., 1981] 

Body' Scale1 Range in Lat. Adjacent Projections4 Overlap Matching Parallels Comments 
(Standard Parallels)3 with (scale)5 

Moon -------- 1:1,000,000 16° to 48° N. & S. Mercator oo 16° Quadrangles 
(21 °20', 42°40') (1:1,021,000) 20° to 30° long. 

x 16° lat. 
Lambert Conformal Conic oo none 

48° to 64° N. & S. Lambert Conformal Conic oo none Do. 
(53°20', 74°40') ---------------------

Mercury ______ 1:5,000,000 20° to 70° N. & S. Mercator 50 22.5° Quadrangles 
(28°, 62°) (1:4,619,000) 90° long. x 50° lat. 

(1:4, 765,000) Polar Stereographic 50 67.5° 
(1:4,568,000) 

Mars --------- 1:5,000,000 30° to 65° N. & S. Mercator oo 30° Quadrangles 
(35.83°' 59.17°) (1 :4,336,000) 60° long. x 35° lat. 

(1:4,441,000) Polar Stereographic oo 65° 
(1:4,306,000) 

Quadrangles 1:2,000,000 30° to 65° N. & S. Mercator oo 30° 
(35.83°' 59.17°) (1:1,953,000) 22.5° lo~g. 

x 17.5° lat. 
Polar Stereographic oo 65° (between 30° & 

(1:1,939,000) 47.5° lat). 
30° long.x 17.5° 

lat. 
(between 4 7.5 o & 

65° lat.). 

Galilean satellites of Jupiter 

Ganymede} 1:5,000,000 21° to 66° N. & S. Mercator 10 21.3° Quadrangles 
(30°, 58°) (1 :4, 780,000) 90° long. x 45 o lat. 

Callisto , Polar Stereographic 10 65.2° 
(1:4, 769,000) 

1Taken as sphere, except for Mars (ellipsoid). See table 2. 
2Scale at equator of Mercator zones (Mercury and Mars), at standard parallels (Moon, Ganymede, and Callisto and 1:2,000,000 Mars), also at pole of polar Stereographic (Ganymede and Callisto). 
•scale also given if other than that in second column. 
•First projection named is toward equator, second is toward pole. 
•Matching parallels are both N. & S. 
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tion into the equation. If p = 0, equation (13-5) involves division by zero, 
but <P is ± 90°, taking the sign of n. 

The standard parallels normally used for maps of the corterminous 
United States are lats. 33 o and 45 ° N., which give approxi:-nately the 
least overall error within those boundaries. The ellipsoidal fr~m is used 
for such maps, based on the Clarke 1866 ellipsoid (Adams, 1918). 

The standard parallels of 33° and 45° were selected by the USGS 
because of the existing tables by Adams (1918), but Adams chose them 
to provide a maximum scale error between latitudes 30.5° and 47.5° of 
one-half of 1 percent. A maximum scale error of 2.5 percent occurs in 
southernmost Florida (Deetz and Adams, 1934, p. 80). Othe':' standard 
parallels would reduce the maximum scale error for the United States, 
but at the expense of accuracy in the center of the map. 

FORMULAS FOR THE ELLIPSOID 

The ellipsoidal formulas are essential when applying the Lambert 
Conformal Conic to mapping at a scale of 1:100,000 or larger and im­
portant at scales of 1:5,000,000. Given a, e, <Ph </>1, cf>o, Ao, cp, and A: 

where 

X= p sin() 
Y = Po- p COS 8 
k= pnl(am) 

= m,tnf(mt,n) 

p=aFtn 
8=n(A-Ao) 

p0 =aFton 
n = (ln m1 -In m1)/(ln t, -In tz) 

m= cos cp/(1- e1 sin1 cp)111 

t =tan ( 1rl4- cp/2)/[(1- e sin cp )/(1 + e sin cp )]en 
F=m,l(nt1n) 

(12-1) 
(12-2) 

(12-16) 
(13-6) 

(13-7) 
(12-4) 

(13-7a) 
(13-8) 

(12-15) 
(13-9) 

(13-10) 

with the same subscripts 1, 2, or none applied tom and <Pin equation 
(12-15), and 0, 1, 2, or none applied to t and <P in equation (If -9), as re­
quired by equations (13-6), (13-7), and (13-8). As with othe~ conics, a 
negative n and p result for projections centered in the Southern 
Hemisphere. If cp = ± 90°, p is zero for the same sign as n and infinite 
for the opposite sign. If</>.= <Pz, for the Lambert with a single standard 
parallel, equation (13-8) is indeterminate, but n= sin ¢ •. C.'igin and 
orientation of axes for x and y are the same as those for the spherical 
form. Constants n, F, and Po may be determined just once for the entire 
map. 

When the above equations for the ellipsoidal form are used~ they give 
values of n and p slightly different from those in the accepted tables of 
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coordinates for a map of the United States, according to the Lambert 
Conformal Conic projection. The discrepancy is 35-50 m in th ~ radius 
and 0.0000035 inn. The rectangular coordinates are correspondingly 
affected. The discrepancy is less significant when·it is realized that the 
radius is measured to the pole, and that the distance from the 50th 
parallel to the 25th parallel on the map at full scale is only 12 m out of 
2,800,000 or 0.0004 percent. For calculating convenience 60 ye~.rs ago, 
the tables were, in effect, calculated using instead of equation (13-9), 

t = tan ( r/ 4- c/J,/2) (13-9a) 

where c/J11 is the geocentric latitude, or, as shown earlier, 

cP11 =arctan [(1- e2)tan c/J] (3-28) 

In conventional terminology, the t of equation (13-9) is usually written 
as tan 1/2Z, where Z is the colatitude of the conformallatitud~ x (see 
equation (3-1)). 

For the existing tables, then, c/J11 , the geocentric latitude, was used for 
convenience in place of x, the conformal latitude (Adams, 1918, p. 
6-9, 34). A comparison of series equations (3-3) and (3-30), or of the 
corresponding columns in table 3, shows that the two al1xiliary 
latitudes x and c/J11 are numerically very nearly the same. 

There may be much smaller discrepancies found between com-riinates 
as calculated on modern computers and those listed in tables for the 
SPCS. This is due to the slightly reduced (but sufficient) accuracv of the 
desk calculators of 30-40 years ago and the adaptation of formulas to 
be more easily utilized by them. 

The inverse formulas for ellipsoidal coordinates, given a, e, c/J., c/J2, c/Jo, 
~' c/J, and h: n, F, and Po are calculated from equations (13-8), (13-10), 
(13-7a), respectively. Then, 

where 

c/J= r/2- 2 arctan {t[(1- e sin c/J)/(1 + e sin c/J)]•12} (7-9) 

t = (p/ aF)l!n 

p = ± [x2 -(p0 - y)2
]

112
, taking the sign of n. 

h=81n+A.o 
8 =arctan [x/(p 0 - y)] 

(13-11) 
(12-10) 
(12-9) 

(12-11) 

As with the spherical formulas, the Fortran ATAN2 function cl'les not 
apply to equation (7-9), but for equation (12-11), if n is negative, the 
signs of x, y, and p0 must be reversed. 

Equation (7-9) involves rapidly converging iteration: Calculate t 
from (13-11). Then, assuming an initial trial c/J equal to (?r/2-2 arctan t) 
in the right side of equation (7-9), calculate cfJ on the le~t side. 
Substitute the calculated c/J into the right side, calculate a new</>, etc., 
until <P does not change significantly from the preceding trial value of c/J. 
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To avoid iteration, series (3-5) may be used with (7 -13) in place of 
(7-9): 

<1> = x + ( e212 + 5e4/24 + e6/12 + ... ) sin 2x + (7 e-4/48 + 29e6/240 + ... ) 
sin 4x + (7e6/120 + ... ) sin 6x +. . . (3-5) 

where 

x = 1fl2- 2 arctan t (7-13) 

If rectangular coordinates for maps based on the tables u~·1ng geocen­
tric latitude are to be converted to latitude and longitude, the inverse 
formulas are the same as those above, except that equation (13-9a) is 
used instead of (13-9) for calculations leading to n, F, and p 0 , and equa­
tion (7 -9), or (3-5) and (7 -13), is replaced with the following~ which does 
not involve iteration: 

cp = arctan [tan cfl/(1- e2
)] (13-13) 

where 

cp, = 1fl2- 2 arctan t (13-14) 

and t is calculated from equation (13-11). 
Polar coordinates for the Lambert Conformal Conic a:re given for 

both the spherical and ellipsoidal forms, using standard parallels of 33° 
and 45° N. (table 16). The data based on the geocentric latitude are 
given for comparison. A graticule extended to the North Pole is shown 
in figure 16. 





14. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION 

SUMMARY 

• Two oblique conic projections, side-by-side, but with poles 104 o apart. 
• Conformal. 
• Meridians and parallels are complex curves, intersecting at right angles. 
• Scale is true along two standard transformed parallels on each conic projection, 

neither of these lines following any geographical meridian or paralle1
• 

• Very small deviation from conformality, where the two conic projecticns join. 
• Specially developed for a map of the Americas. 
• Used only in spherical form. 
• Presented by Miller and Briesemeister in 1941. 

HISTORY 

A "tailor-made" projection is one designed for a certain geographical 
area. 0. M. Miller used the term for some projections which he 
developed for the American Geographical Society (AGS) or for their 
clients. The Bipolar Oblique Conic Conformal projection, developed 
with William A. Briesemeister, was presented in 1941 and designed 
specifically for a map of North and South America con~tructed in 
several sheets by the AGS at a scale of 1:5,000,000 (Miller, 1941). 

It is an adaptation of the Lambert Conformal Conic projection to 
minimize scale error over the two continents by accommoiating the 
fact that North America tends to curve toward the east as on~ proceeds 
from north to south, while South America tends to curve in the op­
posite direction. Because of the relatively small scale of th~ map, the 
Earth was treated as a sphere. To construct the map, a great circle arc 
104 ° long was selected to cut through Central America from southwest 
to northeast, beginning at lat. 20° S. and long. 110° W. and ter­
minating at lat. 45° N. and the resulting longitude of about 19°59'36" 
w. 

The former point is used as the pole and as the center of tr-:~.nsformed 
parallels of latitude for an Oblique Conformal Conic proj€.ction with 
two standard parallels (at polar distances of 31 o and 73°) for all the 
land in the Americas southeast of the 104 o great circle arc. The latter 
point serves as the pole and center of parallels for an identical projec­
tion for all land northwest of the same arc. The inner and outer stand­
ard parallels of the northwest portion of the map, thus, are tangent to 
the outer and inner standard parallels, respectively, of the southeast 
portion, touching at the dividing line (104 o- 31 o = 73°). 

111 



TABLE 16.-Lambert Conformal Conic projection:Polar coordinates 
~ 

[Standard parallels: 33• and 45° N.) ~ 
~ 

Projection for Clarke 1866 elliEsoid {a=6,378,206.4 m} 
Projection for sphere (R = 6,370,997 m) Conformal lat. 1 Geocentric lat.1 

{n=0.6304777} {n = 0.6304965} (n= 0.6305000) 
Lat. p k k1 p k k1 p 

52° ------------------------ 6,359,534 1.02222 1.04494 6,379,530 1.02215 1.04480 
51 ------------------------- 6,472,954 1.01787 1.03606 6,493,008 1.01781 1.03595 6,492,973 a:: 
50 ------------------------- ~.585,914 1.01394 1.02807 6,606,007 1.01389 1.02798 6,605,970 > 49 _________________________ 

6,698,458 1.01040 1.02091 6,718,571 1.01037 1.02084 6,718,537 """0 

48 ------------------------- 6,810,631 1.00725 1.01456 6,830,746 1.00723 1.01451 6,830,708 ~ 

47 ------------------------- 6,922,475 1.00448 1.00898 6,942,573 1.00446 1.00894 6,942,534 ~ 
0 46 _________________________ 

7,034,030 1.00206 1.00413 7,054,092 1.00206 1.00412 7,054,052 ~ 

45 ------------------------- 7,145,336 1.00000 1.00000 7,165,344 1.00000 1.00000 7,165,303 tr.l 
0 

44 ------------------------- 7,256,432 .99828 .99656 7,276,367 .99828 .99657 7,276,330 1-3 

43 ------------------------- 7,367,355 .99689 .99379 7,387,198 .99690 .99381 7,387,158 -0 
42 ------------------------- 7,478,142 .99582 .99167 7,497,873 .99584 .99170 7,497,833 z 
41 ------------------------- 7,588,828 .99508 .99018 7,608,429 .99510 .99022 7,608,384 w 

40 ------------------------- 7,699,449 .99464 .98932 7,718,900 .99467 .98936 7,718,857 c::: 
39 ------------------------- 7,810,038 .99452 .98907 7,829,321 .99454 .98911 7,829,278 w 

tr.l 38 _________________________ 
7,920,631 .99470 .98942 7,939,726 .99472 .98946 7,939,680 t::l 

37 ------------------------- 8,031,259 .99517 .99036 8,050,148 .99519 .99040 8,050,107 
~ 36 ------------------------- 8,141,957 .99594 .99190 8,160,619 .99596 .99193 8,160,581 

35 ------------------------- 8,252,757 .99700 .99402 8,271,174 .9970.2 .99404 8,271,129 1-3 
34 ------------------------- 8,363,692 .99836 .99672 8,381,843 .99836 .99673 8,381,798 t:I:: 
33 ------------------------- 8,474,793 1.00000 1.00000 8,492,660 1.00000 1.00000 8,492,614 tr.l 

32 ------------------------- 8,586,092 1.00193 1.00386 8,603,656 1.00192 1.00385 8,603,610 c::: 
31 ------------------------- 8,697,622 1.00415 1.00831 8,714,863 1.00413 1.00827 8,714,820 w 30 _________________________ 

8,809,415 1.00665 1.01335 8,826,313 1.00662 1.01328 8,826,267 C".:l w 
29 ------------------------- 8,921,502 1.00944 1.01897 8,938,038 1.00940 1.01888 8,937,986 

28 ------------------------- 9,033,915 1.01252 1.02520 9,050,070 1.01246 1.02507 9,050,021 

27 ------------------------- 9,146,686 1.01589 1.03203 9,162,440 1.01581 1.03186 9,162,396 26 _________________________ 
9,259,848 1.01954 1.03947 9,275,181 1.01944 1.03927 9,275,132 

25 ------------------------- 9,373,433 1.02349 1.04754 9,388,326 1.02337 1.04729 9,388,277 

24 ------------------------- 9,487,474 1.02774 1.05625 9,501,906 1.02759 1.05595 9,501,859 

23 ------------------------- 9,602,003 1.03228 1.06560 9,615,955 1.03211 1.06525 9,615,911 

22 ------------------------- 9,717,054 1.03712 1.07563 9,730,506 1.03692 1.07521 9,730,456 

'Based on rigorous equations using conformal latitude. k' =scale factor (areal). 
'Based on geocentric latitude as given in Adams (1918, p. 34) and Deetz and Adams (1934, p. 84). a-assumed semimajor axis of ellipsoid. 

Notes: p • radius of latitude circles, meters. R-assumed radius of sphere. 

k·scale factor (linear). n- cone constant, or ratio of angle between meridians on map to true angle. 
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The scale of the map was then increased by about 3.5 percent, so that 
the linear scale error along the central parallels (at a polar distance of 
52°, halfway between 31 o and 73°) is equal and opposite in sign (- 3.5 
percent) to the scale error along the two standard parallels (now + 3.5 
percent) which are at the normal map limits. Under these conditions, 
transformed parallels at polar distances of about 36.34 o and 66.58° are 
true to scale and are actually the standard transformed parallels. 

The use of the Oblique Conformal Conic projection was n':lt original 
with 1\iiller and Briesemeister. The concept involves the shifting of the 
graticule of meridians and parallels for the regular Lambert Conformal 
Conic so that the pole of the projection is no longer at the pole of the 
Earth. This is the same principle as the transformation for the Oblique 
Mercator projection. The bipolar concept is unique, however, and it has 
apparently not been used for any other maps. 

FEATURES AND USAGE 

The Geological Survey has used the North American po~.ion of the 
map for the Geologic Map (1965), the Basement Map (1967), the 
Geothermal Map, and the Metallogenic Map, all retaining the original 
scale of 1:5,000,000. The Tectonic Map of North America (1969) is 
generally based on the Bipolar Oblique Conic Conformal, but there are 
modifications near the edges. An oblique conic projection abcut a single 
transformed pole would suffice for either one of the continents alone, 
but the AGS map served as an available base map at an appropriate 
scale. In 1979, the USGS decided to replace this projectio:"l with the 
Transverse Mercator for a map of North America. 

The projection is conformal, and each of the two conic projections has 
all the characteristics of the Lambert Conformal Conic proj~ction, ex­
cept for the important difference in location of the pole, and a very nar­
row band near the center. While meridians and parallels on the oblique 
projection intersect at right angles because the map is conformal, the 
parallels are not arcs of circles, and the meridians are not straight, ex­
cept for the peripheral meridian from each transformed role to the 
nearest normal pole. 

The scale is constant along each circular arc centered on the 
transformed pole for the conic projection of the particular portion of 
the map. Thus, the two lines at a scale factor of 1.035, th~.t is, both 
pairs of the official standard transformed parallels, are map"led as cir­
cular arcs forming the letter "S." The 104 o great circle arc separating 
the two oblique conic projections is a straight line on the map, and all 
other straight lines radiating from the poles for the respective conic 
projections are transformed meridians and are therefore great circle 
routes. These straight lines are not normally shown on tre finished 
map. 
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At the juncture of the two conic projections, along the 104: o axis, 
there is actually a slight mathematical discontinuity at every p<:lint ex­
cept for the two points at which the transformed parallels of polar 
distance 31 o and 73° meet. If the conic projections are strictly fol­
lowed, there is a maximum discrepancy of 1.6 mm at the 1:5,000,000 
scale at the midpoint of this axis, halfway between the poles or l'~tween 
the intersections of the axis with the 31 o and 73° tram·formed 
parallels. In other words, a meridian approaching the axis fr0m the 
south is shifted up to 1. 6 mm along the axis as it crosses. Al')ng the 
axis, but beyond the portion between the lines of true scale, the 
discrepancy increases markedly, until it is over 240 mm at the 
transformed poles. These latter areas are beyond the needed range of 
the map and are not shown, just as the polar areas of the regular 
Lambert Conformal Conic are normally omitted. This would r0t hap­
pen if the Oblique Equidistant Conic projection were used. 

The discontinuity was resolved by connecting the two arcs with a 
straight line tangent to both, a convenience which leaves the small in­
termediate area slightly nonconformal. This adjustment is inchded in 
the formulas below. 

FORMULAS FOR THE SPHERE 

The original map was prepared by the American Geographical Socie­
ty, in an era when automatic plotters and easy computation of coordi­
nates were not yet present. Map coordinates were determined by con­
verting the geographical coordinates of a given graticule inter()ection 
to the transformed latitude and longitude based on the poles of the pro­
jection, then to polar coordinates according to the conformal projec­
tion, and finally to rectangular coordinates relative to the ~·elected 
origin. 

The following formulas combine these steps in a form which may be 
programed for the computer. First, various constants are cahulated 
from the above parameters, applying to the entire map. Since only one 
map is involved, the numerical values are inserted in formulas, except 
where the numbers are transcendental and are referred to by s~rmbols. 

If the southwest pole is at point A, the northeast pole is at r0int B, 
and the center point on the axis is C, 

AB= -110° +arccos ([cos 104°- sin ( -20°) sin 45°]/ 
[cos (- 20°) cos 45°]) (14-1) 

= -19°59'36" long., the longitude of B (negative is west long.) 
n= (In sin 31 o -In sin 73°)/[ln tan (31 o /2)-ln tan (73° /2)] (14-2) 

= 0.63056, the cone constant for both conic projections 
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F 0 =R sin 31 °/[n tan" (31 °/2)] (14-3) 
= 1.83376 R, where R is the radius of the globe at the scale of the 

map. For the 1:5,000,000 map, R was taken as 6,371,221 m, 
the radius of a sphere having a volume equal to that of the In­
ternational ellipsoid. 

ko=2/[1+nF0 tan" 26°/(R sin 52°)] (14-4) 
= 1.03462, the scale factor by which the coordinates are multiplied 

to balance the errors 
F=k0 F 0 (14-5) 

= 1.89725 R, a convenient constant 
AzAs=arccos {[cos (-20°) sin 45°-sin (-20°) cos 45° cos 

(As+ 110°)]/sin 104 °} (14-6) 
= 46.78203°, the azimuth east of north of B from A 

AzsA=arccos ([cos 45° sin (-20°)-sin 45° cos (-20°) cos 
(As+ 110°)]/sin 104 °} (14-7) 

= 104.42834 o, the azimuth west of north of A from B 
T =tan" (31 ° /2) +tan" (73° /2) (14-8) 

= 1.27247, a convenient constant 
Pc= 112FT (14-9) 

= 1.20709 R, the radius of the center point of the axis from either 
pole 

Zc = 2 arctan (T/2)11" (14-10) 
= 52.03888°, the polar distance of the center point from either 

pole 

Note that zc would be exactly 52°, if there were no discontinuity at the 
axis. The values of cl>c, Ac, and Azc are calculated as if no adjustment 
were made at the axis due to the discontinuity. Their use is completely 
arbitrary and only affects positions of the arbitrary X and Y axes, not 
the map itself. The adjustment is included in formulas for a given point. 

cl>c= arcsin [sin (- 20°) cos Zc+ cos (- 20°) sin Zc cosAzAB] (14-11) 
= 17°16'28" N. lat., the latitude of the center point, on the 

southern-cone side of the axis 
Ac= arcsin (sin Zc sinAzAslcos cJ>c}-110° (14-12) 

= -73°00'27" long., the longitude of the center point, on the 
southern-cone side of the axis 

Azc= arcsin [cos (- 20°) sinAzAslcos cl>c] (14-13) 
= 45.81997°, the azimuth east of north of the axis at the center 

point, relative to meridian Ac on the southern-cone side of the 
axis 

The remaining equations are given in the order used, for calculating 
rectangular coordinates for various values of latitude cJ> and longitude A 
(measured east from Greenwich, or with a minus sign for the western 
values used here). It must be established first whether po~nt (c/>, A) is 
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north or south of the axis, to determine which conic projection is in­
volved. With these formulas, it is done by comparing the azi1mth of 
point (q,, A) with the azimuth of the axis, all as viewed from B: 

Zs =arccos [sin 45 ° sin cP +cos 45 ° cos cP cos (As- A)] 
=polar distance of (cf>, A) from pole B 

Azs =arctan {sin (As- A)/[ cos 45 ° tan cP- sin 45 ° cos (As- A)]l 
=azimuth of (q,, A) west of north, viewed from B 

(14-14) 

(14-15) 

If Azs is greater than AzsA (from equation (14-7)), go to equation 
(14-23). Otherwise proceed to equation (14-16) for the projection from 
pole B. 

ps=Ftann1f2Zs (14-16) 
k= psni(R sin Zs) (14-17) 

=scale factor at point (cJ>, A), disregarding small adjustme:'lt near 
axis 

a= arccos {[tann1f2zs + tann1f2(104 °- Zs)]IT} (14-18) 

If In (AzsA -Azs)l is less than a, 

ps' = Pslcos [a-n(AzsA -Azs)] (14-19) 

If the above expression is equal to or greater than a, 

I 
Ps = Ps· (14-20) 

Then 

x' = ps' sin [n (AzsA -Azs)] (14-21) 
y' = ps' cos [n (AzsA -Azs)]- p., (14-22) 

using constants from equations (14-2), (14-3), (14-7), and (14-9) for 
rectangular coordinates relative to the axis. To change to nonskewed 
rectangular coordinates, go to equations (14-32) and (14-33). The 
following formulas give coordinates for the projection from p')le A. 

ZA =arccos [sin (- 20°) sin cP +cos (- 20°) cos cP cos (A+ 110°)] (14-23) 
=polar distance of (cf>, A) from pole A 

AzA =arctan {sin (A+ 110°)/[cos (- 20°) tan cf>- sin (- 20°) cos (A+ 110°)]} 
(14-24) 

=azimuth of (cJ>, A) east of north, viewed from A 
PA =Ftann1f2zA 
k= pAn/R sin zA =scale factor at point (cf>, A) 
a= arccos ([tann1f2zA + tann1f2(104 °- zA)]IT} 

If In (AzAB-AzA)I is less than a, 

PA' = pA/cos [a+ n (AzAs- AzA)] 

(14-25) 
(14-26) 
(14-27) 

(14-28) 
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If the above expression is equal to or greater than a, 

(14-29) 

Then 

x' = pA' sin [n(AzAs-AzA)J (14-30) 
y' =- pA' cos [n (AzAs-AzA)]+ p., (14-31) 
X= -x' cosAzc-Y sinAzc (14-32) 
Y= -y' cosAzc+x' sinAzc (14-33) 

where the center point at (<Pc, A.,) is approximately the origi, of (x, y) 
coordinates, the Y axis increasing due north and the X axif due east 
from the origin. (The meridian and parallel actually crossing the origin 
are shifted by about 3' of arc, due to the adjustment at the axis, but 
their actual values do not affect the calculations here.) 

For the inverse formulas for the Bipolar Oblique Conic Conformal, 
the constants for the map must first be calculated from equations 
(14-1}-(14-13). Given x and y coordinates based on the ab':lve axes, 
they are then converted to the skew coordinates: 

x'= -xcosAzc+Y sinAzc (14-34) 
?/= -xsinAzc-ycosAzc (14-35) 

If x' is equal to or greater than zero, go to equation (14-36). If x' is 
negative, go to equation (14-45). 

Ps' = [x'2 + (pc + y')l)112 
Azs' =arctan [x'/(pc +y')) 

Let 

(14-36) 
(14-37) 

Ps = Ps1 (14-38) 
Z8 = 2 arctan (p8 /F) 11

" (14-39) 
a=arccos ([tannlf2Z8 +tan"1/2(104° -z8 )]/T} (14-40) 

If IAzs'l is equal to or greater than a, go to equation (14-42). If IAzs'l is 
less than a, calculate 

p8 = p8 ' COS (a-Azs 1 (14-41) 

and use this value to recalculate equations (14-39), (14-40), and 
(14-41), repeating until Ps found in (14-41) changes by less than a pre­
determined convergence. Then, 

Az8 =AZ8~ -Azs'ln 

Using Azs and the final value of Z8 , 

<P =arcsin (sin 45 ° cos Zs +cos 45 ° sin Zs cosAzs) 
A= A8 -arctan (sinAzs/[cos 45°/tan Z8 - sin 45° cosAzs]J 

(14-42) 

(14-43) 
(14-44) 
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The remaining equations are for the southern cone only (negative x'): 

PA' = [ x'l + (pc _ y')2)1!2 
Azl= arctan [x'/(pc-y')] 

Let 

(14-45) 
(14-46) 

PA = PA1 (14-4 7) 
zA = 2 arctan (pAIF) 11n (14-48) 
a= arccos ([tannlf2ZA + tann1f2(104 °- zA)]/T} (14-49) 

If IAzA'I is equal to or greater than a, go to equation (14-51). If IAzA'I is 
less than a, calculate 

PA = pA' cos (a+AzA') (14-50) 

and use this value to recalculate equations (14-48), (14-49), and 
(14-50), repeating until PA found in equation (14-50) change~ by less 
than a predetermined convergence. Then, 

AzA =AzAB-AzA'In (14-51) 

Using AzA and the final value of zA, 

cJ>= arcsin [sin (- 20°) cos zA +cos 20° sin zA cosAzA] (14-52) 
A= arctan {sin AzAI[ cos (- 20°)/tan zA- sin (- 20°) cos AzA]} -110° 

(14-53) 

Equations (14-17) or (14-26) may be used for calculating k afte':' cJ> and A 
are determined. 

A table of rectangular coordinates is given in table 17, based on a 
radius R of 1.0, while a graticule is shown in figure 17. 
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FIGURE 17. -Bipolar Oblique Conic Conformal projection used for various geologic maps. 
The American Geographical Society, under 0. M. Miller, prepared the base map used 
by the USGS. (Prepared by Tau Rho Alpha.) 



TABLE 17.-Bipolar Oblique Conic Conformal projection:Rectangular coordinates 

[R = 1.0. y coordinates in parentheses below x coordinates. Solid line separates the portions formed from the two transformed poles. Origin at approximately lat. 17° 15' N ., long. 73°0~' W ., with Y axis 
due north at that point only] 

Lat. W. Long. 

90° --------

80 ---------

70 ---------

60 - --------

50 ----- ----

40 ---------

30 ---------

20 ---------

10 ---------

170° 

- 0.14576 
(1.24309) 

- .31273 
(1.21904) 

- .48092 
(1.19421) 

- .65416 
(1.16623) 

- .83656 
(1.13260) 

160° 

-0.30608 
(1.19057) 

- .46705 
(1.13725) 

- .63138 
(1.07999) 

- .80200 
(1.01551) 

0 _________ beyond arbitrary map limits 

-10 

- 20 

- 30 ---------

-40 

-50 

- 60 

- 70 _________ beyond arbitrary map limits 

-80 

- 90 ---------

150° 

--
--

- 0.29464 
(1.16367) 

- .44372 
(1.08381) 

- .59444 
(1.00006) 

- .74851 
( .90886) 

• Adjustment to x aild y made for discontinuity near axis .of conic projections. 

140° 130° 

- 0.27876 - 0.25892 
(1.13914) (1.11769) 

- .41182 - .37243 
(1.03535) ( .99311) 

- .54518 - .48559 
( .92849) ( .86677) 

- .67943 - .59806 
( .81512) ( .73570) 

- .81523 - .70964 
( .69140) ( .59654) 

- .81990 
( .44545) 

120° 

-0.23569 
(1.09992) 

- .32673 
( .95806) 

- .41763 
( .81589) 

- .50739 
( .67112) 

- .59515 
( .52100) 

- .67999 
( .36240) 

- .76061 
( .19177) 

- .83496 
( .00499) 

110° 

-0.20973 
(1.08634) 

- .27593 
( .93098) 

- .34310 
( .77644) 

- .40985 
( .62133) 

- .47485 
( .46360) 

- .53678 
( .30074) 

- .59421 
( .12988) 

- .64522 
(- .05222) 
- .68704 
(- .24918) 
- .72338 
(- .47150) 
- .86567 * 
(- .84124) 
- .55209 

( - 1.10271) 
- .37784 

( -1.24800) 
- .23054 

( -1.37082) 
- .09524 

( -1.48363) 
.03504 

( - 1.59227) 
.16491 

( - 1.70055) 
.29823 

( -1.81171) 

100° 

-0.18175 
(1.07737) 

- .22126 
( .91246) 

- .26359 
( .74880) 

- .30732 
( .58603) 

- .35078 
( .42294) 

- .39231 
( .25766) 

- .43026 
( .08782) 

- .46280 
(- .08930) 
- .48758 
(- .27670) 
- .50751* 
(- .48360 
- .48812 
(-.73406) 
- .38781 
(- .96476) 
- .26583 

( -1.14111) 
- .14798 

( -1.28862) 
- .03499 

( -1.42268) 
.07542 

( - 1.55124) 
.18569 

( - 1.67949) 

~ 
t...:l 
0 

s::: 
> 
"'0 

"'0 
~ 
0 
~ 
tzj 
0 
~ ....... 
0 z 
UJ 

e 
UJ 
tzj 
t::1 
t:l:l 
~ 

~ 
~ 
tzj 

e 
UJ 
CJ 
UJ 



TABLE 17.-Bipolar Oblique Conic Conformal projection: Rectangular coordinates- Continued 

Lat. W. Long. goo 80° 70° 60° 50° 40° 30° 20° 100 

90° ------------------ -0.14576 
(1.24309) 

80 ------------------- - .15254 -0.12293 -0.09378 -0.06599 -0.04047 - 0.01809 0.00033 0.01411 0.02275 
(1.07330) (1.07432) (1.08048) (1.09170) (1.10774) (1.12816) (1.15236) (1.17955) (1.20877) 

70 ------------------- - .16395 - .10525 .04651 .01074 .06470 .11317 .15365 .18369 .20152 
( .90301) ( .90303) ( .91292) ( .93301) ( .96349) (1.00421) (1.05436) (1.11215) (1.17478) 

60 ------------------- - .18043 - .09477 - .00767 .07976 .16594 .24806 .32065 .37468 .40201 
( .73324) ( .73013) ( .74005) ( .76403) ( .80369) ( .86133) ( .93920) (1.03623) (1.14388) 

50 ------------------- - .20109 - .09192 .01990 .13461 .25295 .37631 .50548 .62083 .64638 
( .56481) ( .55749) ( .56421) ( .58582) ( .62443) ( .68480) ( .77907) ( .93836) (1.13342) 

40 ------------------- - .22411 - .09519 .03637 .17183 .31377 .46682 * .64259 * 
( .39765) ( .38660) ( .38903) ( .40460) ( .43354) ( .47595) ( .54614) 

30 ------------------- - .24741 - .10203 .04468 .19431 .34922 .51120 .68326 -- C":l 
( .23065) ( .21759) ( .21675) ( .22664) ( .24602) ( .27522) ( .31537) 0 z 

20 ------------------- - .26899 - .10979 .04816 * .20770 .37167 .54280 .72518 (=5 
( .06192) ( .04921) ( .04683 ( .05280) ( .06603) ( .08551) ( .11131) s= 

10 ------------------- - .28689 - .11634 * .05000 .21614 .38494 .56021 .74645 > (- .11090) (- .12083) (- .12223) ( - .11773) (- .10970) (- .09944) (- .08790) '1j 

0 ------------------- - .29905 * - .11920 .05292 .22166 .39129 .56601 .75029 -- '1j 
( - .29059) ( - .29390) (- .29122) ( - .28661) ( __:_ .28234) (- .28009) (- .28151) -- ~ 

0 
- 10 ------------------- - .29984 - .11376 .05921 .22626 .39254 .56225 .73941 -- <:....; 

(- .48267) (- .47202) ( - .46189) (- .45503) (- .45295) (- .45710) (- .46938) -- tr:l 
C":l 

-20 ------------------- - .27575 - .09495 .07161 .23171 .39016 .55057 .71601 -- ~ 
( - .68590) (- .65440) (- .63424) (- .62366) (- .62240) (- .63119) (- .65175) 0 

- 30 ------------------- - .21865 - .05954 .09194 .23925 .38524 .53215 .68181 -- z 
(- .88430) (- .83575) (- .80677) (- .79252) (- .79127) (- .80304) (- .82907) U'1 

- 40 ------------------- - .13981 - .00990 .12002 .24931 .37838 .50784 .63813 
(-1.06299) (-1.01016) ( - .97740) (- .96122) ( - .95992) (- .97320) (-1.00184) 

- 50 ------------------- - .05346 .04829 .15387 .26134 .36964 .47806 .58591 
( - 1.22345) ( -1.17590) ( -1.14498) ( -1.12947) ( - 1.12858) ( -1.14214) ( -1.17057) 

-60 ------------------- .03430 .11029 .19081 .27404 .35849 .44283 .52574 
( -1.37283) ( -1.33514) ( -1.31002) ( -1.29749) ( - 1.29753) ( -1.31019) ( -1.33568) 

-70 ------------------- .12196 .17341 .22844 .28571 .34391 .40173 .45785 beyond 
(-1.51739) (-1.49156) (-1.47435) (-1.46615) (-1.46721) (-1.47764) (-1.49748) arbitrary 

-80 ------------------- .20970 .23631 .26481 .29445 .32443 .35394 .38215 map limits 
( -1.66218) ( -1.64908) ( -1.64057) ( -1.63693) ( -1.63831) ( -1.64474) ( -1.65615) 

-90 ------------------- .29823 -- -- -- -- 1-" 
t-J (- 1.81171) -- -- 1-" 





15. POL YCONIC PROJECTION 

SUMMARY 

• Neither conformal nor equal-area. 
• Parallels of latitude (except for Equator) are arcs of circles, but are not concentric. 
• Central meridian and Equator are straight lines; all other meridians are complex 

curves. 
• Scale is true along each parallel and along the central meridian, but no parallel is 

"standard." 
• Free of distortion only along the central meridian. 
• Used almost exclusively in slightly modified form for large-scale mapping in the U.S. 

until the 1950's. 
• Was apparently originated about 1820 by Hassler. 

HISTORY 

Shortly before 1820, Ferdinand Rudolph Hassler (fig. 18) began to 
promote the Polyconic projection, which was to become a standard for 
much of the official mapping of the United States (Deetz and Adams, 
1934, p. 58-60). 

Born in Switzerland in 1770, Hassler arrived in the United States in 
1805 and was hired 2 years later as the first head of the Survey of the 
Coast. He was forced to wait until 1811 for funds and equipment, 
meanwhile teaching to maintain income. After funds were granted, he 
spent 4 years in Europe securing equipment. Surveying began in 1816, 
but Congress, dissatisfied with the progress, took the Survey frorn ~us 
control in 1818. The work only foundered. It was returned to Hassler, 
now superintendent, in 1832. Hassler died in Philadelphia in 1843 as a 
result of exposure after a fall, trying to save his instruments in a severe 
wind and hailstorm, but he had firmly established what later became 
the U.S. Coast and Geodetic Survey (Wraight and Roberts, 1957) and is 
now the National Ocean Survey. 

The Polyconic projection, usually called the American Polyconic in 
Europe, achieved its name because the curvature of the circular arc for 
each parallel on the map is the same as it would be following the unroll­
ing of a cone which had been wrapped around the globe tangent to the 
particular parallel of latitude, with the parallel traced onto the cone. 
Thus, there are many ("poly-") cones involved, rather than the single 
cone of each regular conic projection. As Hassler himself described the 
principles, "[ t ]his distribution of the projection, in an assemblage of sec­
tions of surfaces of successive cones, tangents to or cutting a regular 
succession of parallels, and upon regularly changing central meridians, 
appeared to me the only one applicable to the coast of the United 
States" (Hassler, 1825, p. 407-408). 

123 
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FIGURE 18.-Ferdinand Rudolph Hassler (1770-1843), first Superintendent of the U.S. 
Coast Survey and presumed inventor of the Polyconic projection. As a result of his 
promotion of its use, it became the projection exclusively used for USGS topographic 
quadrangles for about 70 years. 

The term "polyconic" is also applied generically by some writers to 
other projections on which parallels are shown as circular arcs. Most 
commonly, the term applies to the specific projection described here. 

FEATURES 

The Polyconic projection (fig. 19) is neither equal-area nor conformal. 
Along the central meridian, however, it is both distortion free and true 
to scale. Each parallel is true to scale, but the meridians are lengthened 



FIGURE 19.-North America on a Polyconic projection grid, central meridian long. 100° W., using a 10° interval. The parallels are arcs of 
circles which are not concentric, but have radii equal to the radius of curvature of the parallel at the Earth's surface. The meridians are 
complex curves formed by connecting points marked off along the parallels at their true distances. Used by the USGS for topographic 
quadrangle maps. 

1--l 
t:-:l 
01 
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by various amounts to cross each parallel at the correct position along 
the parallel, so that no parallel is standard in the sense of having con­
formality (or correct angles), except at the central meridian. Near the 
central meridian, which is the case with 11f2-minute quairangles, 
distortion is extremely small. The Polyconic projection is universal in 
that tables of rectangular coordinates may be used for any Polyconic 
projection of the same ellipsoid by merely applying the proper scale and 
central meridian. U.S. Coast and Geodetic Survey Special Publication 
No.5 (1900) replaced tables published in 1884 and was often reprinted 
because of the universality of the projection (the Clarke 18~<) is the 
reference ellipsoid). Polyconic quadrangle maps prepared to the same 
scale and for the same central meridian and ellipsoid will fit exactly 
from north to south. Since they are drawn in practice with straight 
meridians, they also fit east to west, but discrepancies will ac~~.umulate 
if mosaicking is attempted in both directions. 

The parallels are all circular arcs, with the centers of the a res lying 
along an extension of the straight central meridian, but these arcs are 
not concentric. Instead, as noted earlier, the radius of each arc is that 
of the circle developed from a cone tangent to the sphere or er:osoid at 
the latitude. For the sphere, each parallel has a radius proportional to 
the cotangent of the latitude. For the ellipsoid, the radius is slirrhtly dif­
ferent. The Equator is a straight line in either case. Along th~ central 
meridian, the parallels are spaced at their true intervals. For the 
sphere, they are therefore equidistant. Each parallel is marked off for 
meridians equidistantly and true to scale. The points so marked are 
connected by the curved meridians. 

USAGE 

As geodetic and coastal surveying began in earnest during the 19th 
century, the Polyconic projection became a standard, especially for 
quadrangles. The name of the projection appears on a later r~print of 
one of the first published USGS topographic quadrangles, ¥Thich ap­
peared in 1886. In 1904, the USGS published tables of rectangular 
coordinates extracted from an 1884 Coast and Geodetic Surve:T report. 
They were called "coordinates of curvature," but were actudly coor­
dinates for the Polyconic projection, although the latter term was not 
used (Gannett, 1904, p. 37 -48). 

As a 1928 USGS bulletin of topographic instructions stated (Beaman, 
1928, p. 163): 

"The topographic engineer needs a projection which is simple in construction, which can 
be used to represent small areas on any part of the globe, and which, for each small area 
to which it is applied, preserves shapes, areas, distances, and azimuths in their true rela­
tion to the surface of the earth. The polyconic projection meets all these needs and was 
adopted for the standard topographic map of the United States, in wh:~h the 1° 
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quadrangle is the largest unit * * * and the 15' quadrangle is th?. average 
unit. * * * Misuse of this projection in attempts to spread it over large areas- that is, to 
construct a single map of a large area- has developed serious errors and gros~ exaggera­
tion of details. For example, the polyconic projection is not at all suitable for a single­
sheet map of the United States or of a large State, although it has been so employed." 

When coordinate plotters and published tables for the SU'.te Plane 
Coordinate System (SPCS) became available in the late 1f.:JO's, the 
USGS ceased using the Polyconic for new maps, in favor of the 
Transverse Mercator or Lambert Conformal Conic projecthns used 
with the SPCS for the area involved. Some of the qurrirangles 
prepared on one or the other of these projections have continued to 
carry the Polyconic designation, however. 

The Polyconic projection was also used for the Progressiv~ Military 
Grid for military mapping of the U.S., until its replacement by the 
Universal Transverse Mercator grid. There were seven zones, A-G, 
with central meridians every go west from long. 73° W. (zon€ A), each 
zone having an origin at lat. 40°30' N. on the central meridian with 
coordinates X= 1,000,000 yards, y=2,000,000 yards (Deetz and Adams, 
1934, p. 87-90). Some USGS quadrangles of the 1930's and 1940's 
display tick marks according to this grid in yards, and many 
quadrangles then prepared by the Army Map Service and sold by the 
USGS show a complete grid pattern. 

While quadrangles based on the Polyconic provide low-~istortion 
mapping of the local areas, the inability to mosaic these quadrangles in 
all directions without gaps makes them less satisfactory for a larger 
region. Quadrangles based on the SPCS may be mosaicked over an en­
tire zone, at the expense of increased distortion. 

For an individual quadrangle 7112 or 15 minutes of latitude or 
longitude on a side, the distance of the quadrangle from th~ central 
meridian of a Transverse Mercator zone or from the standard parallels 
of a Lambert Conformal Conic zone of the SPCS has much more effect 
than the type of projection upon the variation in measurement of 
distances on quadrangles based on the various projections. If the cen­
tral meridians or standard parallels of the SPCS zones fall on the 
quadrangle, a change of projection from Polyconic to Transverse Mer­
cator or Lambert Conformal Conic results in a difference of less than 
0.001 mm in the measurement of the 700-800 mm diagonals of a 
7112-minute quadrangle. If the quadrangle is near the edge of a zone, the 
discrepancy between measurements of diagonals on two maps of the 
same quadrangle, one using the Transverse Mercator or Laml'~rt Con­
formal Conic projection and the other using the Polyconic, can reach 
about 0.05 mm. These differences are exceeded by variations in expan­
sion and contraction of paper maps, so that these matl,~matical 
discrepancies apply only to comparisons of stable-base maps. 
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Before the Lambert became the projection for the 1:500,('00 State 
base map series, the Polyconic was used, but the details are unclear. 
The Polyconic has also been used for maps of the United State-~; but, as 
stated above, the distortion is excessive at the east and wert coasts, 
and most current maps are drawn to either the Lambert or Albers Con­
ic projections. 

GEOMETRIC CONSTRUCTION 

Because of the simplicity of construction using universal tables with 
which the central meridian and each parallel may be marked off at true 
distances, the Polyconic projection was favored long after theoretically 
better projections became known in geodetic circles. 

The Polyconic projection must be constructed with curved rneridians 
and parallels if it is used for single-sheet maps of areas with east-west 
extent of several degrees. Then, however, the inherent distortion is ex­
cessive, and a different projection should be considered. For accurate 
topographic work, the coverage must remain so small that tl'a. merid­
ians and parallels may ironically but satisfactorily be drawn as straight­
line segments. Official USGS instructions of 1928 declared tl·~.t 

"* "' * in actual practice on projections of small quadrangles, the parallels are not drawn 
as arcs of circles, but their intersections with the meridians are plotted fro:-n the com­
puted x and y values, and the sections of the parallels between adjacent mt:.ridians are 
drawn as straight lines. In polyconic projections of quadrangles of 1° or sm~ller merid­
ians may be drawn as straight lines, and in large-scale projections of small qua <l.rangles in 
low latitudes both meridians and parallels may be drawn as straight lines. For example, 
the curvature of the parallels of a projection of a 15' quadrangle on a scale of 1:48,000 in 
latitudes from 0° to 30° is so small that it can not be plotted, and for a 71J2' qurdrangle on 
a scale of 1:31,680 or larger the curvature can not be plotted at any latitude" 

(Beaman, 1928, p. 167). This instruction is essentially repeated in the 
1964 edition (USGS, 1964, p. 12-13). The formulas given b~low are 
based on curved meridians. 

FORMULAS FOR THE SPHERE 

The principles stated above lead to the following forward formulas 
for rectangular coordinates for the spherical form of the Polyc:onic pro­
jection, using radians: 

If t/> is 0, 

If¢ is not 0, 

X=R(A-Ao) 
y=-Rt/>o 

E=(A-Ao) sin t/> 
x=R cot tf> sinE 
y = R [ 4>- t/>0 +cot t/> (1- cos E)] 

(7-1) 
(15-1) 

(15-2) 
(15-3) 
(15-4) 
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where c/>0 is an arbitrary latitude (frequently the Equator) chosen for· 
the origin of the rectangular coordinates at its intersection with Ao, the 
central meridian. As with other conics and the Transversi'?. Mercator, 
the Y axis coincides with the central meridian, y increasing northerly, 
and the X axis intersects perpendicularly at cp0 , x increasing easterly. If 
(A- Ao) exceeds the range ± 180 °, 360 ° must be added or subtracted to 
place it within the range. For the scale factor h along the meridians, 
(Adams, 1919, p. 144-147): 

h= (1- cos2 cp cos E)/(sin2 cp cos D) (15-5) 

where 

D =arctan [(E- sin E)/(sec2 cp- cos E)] (15-6) 

If cp is 0, this is indeterminate, but h is then [1 +(A- Ao)2/2]. In all cases, 
the scale factor k along any parallel is 1.0. 

The inverse formulas for the sphere are given here in th~ form of a 
Newton-Raphson approximation, which converges to any desired ac­
curacy after several iterations, except that if IA-Aol >90°, a rarely 
used range, this iteration does not converge, and if y = - Rcp0 , it is in­
determinate. In the latter case, however, 

c/>=0 
A=xiR+Ao 

Otherwise, if y :f.: - Rc/>0 , calculations are made in this order: 

A=c/>o+YIR 
B=x2/R2 +A2 

(7-5) 

(15-7) 
(15-8) 

Using an initial value of cp, =A, c/>,+1 is found from equation (15-9), 

cp,+l = cp,- [A( cp, tan cp, + 1)- cp,- 112( cp, 2 +B) tan cp,.]/ 
[(c/>, -A)/tan cp, -1] (15-9) 

The new trial value of cp,.+l is successively substituted in plac~ of cp,., un­
til c/>,+1 differs from ¢, by less than a predetermined convergence limit. 
Then cp = c/>,.+1 as finally determined. 

A= [arcsin (x tan ¢/R)Jisin¢ + Ao (15-10) 

If cp = ± 90°, equation (15-10) is indeterminate, but A may be given any 
value, such as Ao· 

FORMULAS FOR THE ELLIPSOID 

The forward formulas for the ellipsoidal form of the Polyconic projec­
tion are only a little more complicated than those for the sp},~re. These 
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formulas are theoretically exact. They are adapted from formulas 
given by the Coast and Geodetic Survey (1946, p. 4): 

If cp is zero: 

x=a (A-Ao) 
y=-Mo 

If cp is not zero: 

E=(A-Ac,) sin cp 
x=N cot cp sinE 
y=M -Mo+N cot cp (1- cos E) 

where 

(7-6) 
(15-11) 

(15-2) 
(15-12) 
(15-13) 

M =a[(1-e214- 3e4164- 5e6/256- ... ) cp-(3e2/8+ 3e4/32+45~/1024 
+ ... ) sin 2c/>+(15e4/256+ 45e6/1024+ ... ) sin 4cp- (35~/:'()72 
+ ... ) sin 6c/>+ ... ] (3-21) 

N = a/(1- e2 sin2cp )112 
( 4-20) 

and Mo is found from equation (3-21) by using c/>o for cp and Mo forM, 
with c/>o the latitude of the origin of rectangular coordinates at its in­
tersection with central meridian Ac,. See the spherical formulas for the 
orientation of axes. The value of (A- Ac,) must be adjusted by adcing or 
subtracting 360°, if necessary to fall within the range of ± 18(] o. For 
scale factor h along the meridians (k= 1.0 along the parallels): 

If cp is zero, 

h = [M + 112 (A- Ac,)2]/(1- el) 

If cp is not zero (Adams, 1919, p. 144-146), 

h= [1-el+ 2 (1- e2 sin2 cp) sin2 1/zE/tan2 cp]/[(1- e2
) cosD] 

where 

(15-14) 

(15-15) 

D= arctan {(E -sinE)/[sec2 cp-cosE -el sin2 cp/(1-el sin2 cp)]} (15-16) 
M = 1-:- el/4- 3e4/64- 5~/256- ... -2 (3e2/8 + 3e4132 + 45e6/1024 

+ ... ) cos 2¢+ 4 (15e4/256+ 45e6/1024 + ... ) cos 4cp- 6 
(35e6/ 3072 + ... ) cos 6cp + . . . . (15-17) 

As with the inverse spherical formulas, the inverse ellipsoidal for­
mulas are given in a Newton-Raphson form, converging to any desired 
degree of accuracy after several iterations. As before, if I A- Ac,l > 90°, 
this iteration does not converge, but the projection should not t~ used 
in that range in any case. The formulas may be calculated in the follow­
ing order, given a, e, c/>o, Ac,, x, and y. First Mo is calculated from equa­
tion (3-21) above, as in the forward case, with c/>o for cp and Mo f1r M. 

If y = - Mo, the iteration is not applicable, but 

c/>=0 
A=xla+Ac, (7-12) 
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If y ::1= - Mo, the calculation is as follows: 

A=(Mo+Y)Ia 
B=x2/a2 +A2 
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(15-18) 
(15-19) 

Using an initial value of cl>n =A, the following calculations are made: 

C = (1- e2 sin2 cl>n)112 tan cl>n (15-20) 

ThenMn andMn' are found from equations (3-21) and (15-17) above, us­
ing cf>n for cp, Mn forM, andMn' forM. LetMa=Mn/a. 

cl>n+l = cl>n- [A(CM" + 1)-M" -lf2(Ma2 +B)C]I[e2 sin 2c~>n (Ma 2 +1? -2AM")I 
4C +(A -Ma) (CMn'- 2/sin 2cpn)-Mn'] (15-21) 

Each value of cl>n+t is substituted in place of cl>n, and C, Mn, I~fn', and cf>n+t 
are recalculated from equations (15-20), (3-21), (15-17), f.nd (15-21), 
respectively. This process is repeated until cl>n+t varies fron cl>n by less 
than a predetermined convergence value. Then cp equals tl· ~ final cf>n+t· 

A= [arcsin (xC/a)]/sin cp+ Ao (15-22) 

using the C calculated for the last cf>n from equation (15-20). If cp = ± 90°, 
A. is indeterminate, but may be given any value. 

Table 18lists rectangular coordinates for a band 3° on either side of 
the central meridian for the ellipsoid extending from lat. 23° to 50° N. 
Figure 19 shows the graticule applied to a map of North America. 

TABLE 18.-Polyconic Projection:Rectangular coordinates/or the Clarke 1866 ellipsoid 

[y coordinates in parentheses under x coordinates. Italic indicates h] 

Long. A oo 10 20 30 

Lat. t/J 

50 ° --------- 0 71,696 143,379 215,037 
(5,540,628) (5,541,107) (5,542,545) (5,544,941) 

1.000000 1.000063 1.000252 1.000568 
49 ---------- 0 73,172 146,331 219,465 

(5,429,409) (5,429,890) (5,431,336) (5,433, 7 45) 
1.000000 1.000066 1.000263 1.000592 

48 ---------- 0 74,626 149,239 223,827 
(5,318,209) (5,318,693) (5,320,144) (5,322,564) 

1.000000 1.000068 1.000274 1.000616 
4 7 ---------- 0 76,056 152,100 228,119 

(5,207,028) (5,207,514) (5,208,970) (f .211,397) 
1.000000 1.000071 1.000284 1.000640 

46 ---------- 0 77,464 154,915 . 232,342 
(5,095,868) (5,096,354) (5,097,813) (f 100,244) 

1.000000 1.000074 1.000295 1.000664 
45 ---------- 0 78,847 157,682 236,493 

(4,984, 727) (4,985,214) (4,986,673) (4,989,106) 
1.000000 1.000076 1.000306 1.000688 

44 ---------- 0 80,207 160,401 240,572 
(4,873,606) (4,874,092) (4,875,551) (4,877,982) 

1.000000 1.000079 1.000316 1.000712 
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TABLE 18. -Polyconic Projection: Rectangular coordinates for the Clarke 1866' 
ellipsoid- Continued 

Long.>. oo 10 20 30 

Lat.~ 

43 ° --------- 0 81,541 163,071 244,578 
(4,762,505) (4,762,990) (4,764,446) (4,766,872) 

1.000000 1.000082 1.000327 1.000736 

42 ---------- 0 82,851 165,691 248,508 
(4,651,423) (4,651,907) (4,653,358) (4,655,777) 

1.000000 1.000084 1.000338 1.000760 
41 __________ 0 84,136 168,260 252,363 

(4,540,361) (4,540,843) (4,542,288) (4,544,696) 
1.000000 1.000087 1.000348 1.000784 

40 ---------- 0 85,394 170,778 256,140 
(4,429,319) (4,429,798) (4,431,235) (4,433,630) 

1.000000 1.000090 1.000359 1.000808 

39 ---------- 0 86,627 173,243 259,839 
(4,318,296) (4,318,772) (4,320,199) (4,322,577) 

1.000000 1.000092 1.000369 1.000831 

38 ---------- 0 87,833 175,656 263,458 
(4,207,292) (4,207,764) (4,209,180) (4,211,539) 

1.000000 1.000095 1.000380 1.000855 

37---------- 0 89,012 178,015 266,997 
(4,096,308) (4,096,775) (4,098,178) (4,100,515) 

1.000000 1.000098 1.000390 1.000878 

36 ---------- 0 90,164 180,319 270,455 
(3,985,342) (3,985,805) (3,987,192) (3,989,504) 

1.000000 1.000100 1.000400 1.000901 

35 ---------- 0 91,289 182,568 273,830 
(3,87 4,395) (3,87 4,852) (3,876,223) (3,878 .507) 

1.000000 1.000103 1.000411 1.000924 

34 ---------- 0 92,385 184,762 277,121 
(3,763,467) (3, 763,918) (3, 765,270) (3,767,524) 

1.000000 1.000105 1.000421 1.0(1()946 

33 ---------- 0 93,454 186,899 280,328 
(3,652,557) (3,653,001) (3,654,333) (3,656 .554) 

1.000000 1.000108 1.000431 1.000969 

32 ---------- 0 94,494 188,980 288,449 
(3,541,665) (3,542,102) (3,543,413) (3,545.597) 

1.000000 1.000110 1.000440 1.0(1()991 
31 __________ 0 95,505 191,002 286,484 

(3,430,790) (3,431,220) (3,432,507) (3,434~653) 

1.000000 1.000112 1.000450 1.0(1.1012 

30 ---------- 0 96,487 192,967 289,432 
(3,319,933) (3,320,354) (3,321,617) (3,323. 722) 

1.000000 1.000115 1.000459 1.001033 

29 ---------- 0 97,440 194,872 292,291 
(3,209,093) (3,209,506) (3,210,742) (3,212,803) 

1.000000 1.000117 1.000468 1.001054 

28 ---------- 0 98,363 196,719 295,062 
(3,098,270) (3,098,673) (3,099,882) (3,101,897) 

1.000000 1.000119 1.000477 1.0(11074 
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TABLE 18.-Poly conic Projection: Rectangular coordinates for the C'a,rke 1866 
ellipsoid- Continued 

Long. >. oo 10 20 go 

Lat. 4> 

27° --------- 0 99,256 198,505 297,742 
(2,987,463) (2,987 ,856) (2,989,036) (2,991,002) 

1.000000 1.000122 1.000486 1.001094 

26 ---------- 0 100,119 200,231 300,332 
(2,876,672) (2,877,055) (2,878,204) (2,880,119) 

1.000000 1.000124 1.000495 1.001113 

25 ---------- 0 100,951 201,896 302,831 
(2, 765,896) (2, 766,269) (2,767,386) (2,769,247) 

1.000000 1.000126 1.000503 1.001132 

24 ---------- 0 101,753 203,500 305,237 
(2,655,136) (2,655,497) (2,656,580) (2,658,386) 

1.000000 1.000128 1.000511 1.001150 

23 ---------- 0 102,523 205,042 307,551 
(2,544,390) (2,544, 739) (2,545,788) (2,547,536) 

1.000000 1.000130 1.000519 1.001168 

Note: x, y=rectangular coordinates, meters; origin at <f>=O, >.=0. Y axis increasing north. 
h= scale factor along meridian. 
k=scale factor along parallel= 1.0. 
A= longitude east of central meridian. For longitude west of central meridian revers'~ sign of x. 

MODIFIED POLYCONIC FOR THE INTERNATIONAL MAP OF T"IE WORLD 

A modified Polyconic projection was devised by Lallemand of France 
and in 1909 adopted by the International Map Committee (JMC) in Lon­
don as the basis for the 1:1,000,000-scale International Map of the 
World (IMW) series. Used for sheets 6 o of longitude by 4 o of latitude 
between lats. 60° N. and 60° S., 12° of longitude by 4 o of latitude be­
tween lats. 60° and 76° N. or S., and 24° by 4° between lats. 76° and 
84° N. or S., the projection differs from the ordinary Polyconic in two 
principal features: All meridians are straight, and there are two merid­
ians (2° east and west of the central meridian on sheets b~tween lats. 
60° N. & S.) that are made true to scale. Between lats. 60° & 76° N. 
and S., the meridians 4 ° east and west are true to scale, and between 
76° & 84 °, the true-scale meridians are 8° from the central meridian 
(United Nations, 1963, p. 22-23; Lallemand, 1911, p. 559). 

The top and bottom parallels of each sheet are nonconcertric circular 
arcs constructed with radii of N cot cp, where N = a/(1- e2 sin2 c/>) 112

• 

These radii are the same as the radii on the regular Polyconic for the 
ellipsoid, and the arcs of these two parallels are marked off true to 
scale for the straight meridians. The two parallels, however, are spaced 
from each other according to the true scale along the tFo standard 
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meridians, not according to the scale along the central meridian, which 
is slightly reduced. The approximately 440 mm true length of th~ cen­
tral meridian at the map scale is thereby reduced by 0.270 to 0.076 mm, 
depending on the latitude of the sheet. Other parallels of lat. ¢ are cir­
cular arcs with radii N cot ¢, intersecting the meridians which are true 
to scale at the correct points. The parallels strike other meridians at 
geometrically fixed locations which slightly deviate from the true scale 
on meridians as well as parallels. 

With this modified Polyconic, as with USGS quadrangles baEed on 
the rectified Polyconic, adjacent sheets exactly fit together not only 
north to south~ but east to west. There is still a gap when mosaicking in 
all directions, in that there is a gap between each diagonal sheet and 
either one or the other adjacent sheet. 

In 1962, a U.N. conference on the IMW adopted the Lambert Con­
formal Conic and Polar Stereographic projections to replace the 
modified Polyconic (United Nations, 1963, p. 9-10). The USGS has 
prepared a number of sheets for the IMW series over the years accord­
ing to the projection officially in use at the time. 
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A third very important group of map projections, some of which have 
been known for 2,000 years, consists of five major azimuthal (or 
zenithal) projections and various less-common forms. While cylindrical 
and conic projections are related to cylinders and coil es wrapped 
around the globe representing the Earth, the azimuthal projections are 
formed onto a plane which is usually tangent to the globe at either pole, 
the Equator, or any intermediate point. These variations are called the 
polar, equatorial (or meridian or meridional), and oblique (or horizon) 
aspects, respectively. Some azimuthals are true perspective projec­
tions; others are not. Although perspective cylindrical and conic projec­
tions are much less used than those which are not perE·nective, the 
perspective azimuthals are frequently used and have valu:tble proper­
ties. Complications arise when the ellipsoid is involved, but it is used 
only in special applications that are discussed below. 

As stated earlier, azimuthal projections are characterized by the fact 
that the direction, or azimuth, from the center of the rrojection to 
every other point on the map is shown correctly. In addition, on the 
spherical forms, all great circles passing through the center of the pro­
jection are shown as straight lines. Therefore, the shortest route from 
this center to any other point is shown as a straight line. Ttis fact made 
some of these projections especially popular for maps a'"l flight and 
radio transmission became commonplace. 

The five principal azimuthals are as follows: 
(1) Orthographic. A true perspective, in which the Earth is projected 

from an infinite distance onto a plane. The map looks like a globe, 
thus stressing the roundness of the Earth. 

(2) Stereographic. A true perspective in the spherical fo:--m, with the 
point of perspective on the surface of the sphere at a point exactly 
opposite the point of tangency for the plane, or opposite the 
center of the projection, even if the plane is secant. This projec­
tion is conformal for sphere or ellipsoid, but the ellips')idal form is 
not truly perspective. 

(3) Gnomonic. A true perspective, with the Earth projected from the 
center onto the tangent plane. All great circles, not merely those 
passing through the center, are shown as straight lines on the 
spherical form. Since the Gnomonic projection has n':lt been used 
by the USGS, it is not discussed in detail. 

(4) Lambert Azimuthal Equal-Area. Not a true perspective. Areas are 
correct, and the overall scale variation is less than t\at found on 
the major perspective azimuthals. 

135 
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(5) Azimuthal Equidistant. Not a true perspective. Distances from 
the center of the projection to any other point are shown cc~rect­
ly. Overall scale variation is moderate compared to the pe•spec­
tive azimuthals. 

A sixth azimuthal projection of increasing interest in the space age is 
the general vertical perspective (resembling the Orthographic), pro­
jecting the Earth from any point in space, such as a satellite, onto a 
tangent or secant plane. It is used primarily in derivations and pictorial 
representations and has not been used by the Geological Surv~y for 
published maps. Therefore, it is not discussed in this bulletin. 

As a group, the azimuthals have unique esthetic qualities while re­
maining functional. There is a unity and roundness of the Earth on 
each (except perhaps the Gnomonic) which is not as apparent on cylin­
drical and conic projections. 

The simplest forms of the azimuthal projections are the polar aEpects, 
in which all meridians are shown as straight lines radiating at the;r true 
angles from the center, while parallels of latitude are circles, concen­
tric about the pole. The difference is in the spacing of the parallels. 
Table 19lists for all five of the above azimuthals the radius of eve..,.y 10° 
of latitude on a sphere of radius 1.0 unit, centered on the NorU Pole. 
Scale factors and maximum angular deformation are also shown. The 
distortion is the same for the oblique and equatorial aspects at the same 
angular distance from the center of the projection, except that h and k 
are along and perpendicular to, respectively, radii from the center, not 
necessarily along meridians or parallels. 

There are two principal drawbacks to the azimuthals. First, th~y are 
more difficult to construct than the cylindricals and the conics, except 
for the polar aspects. This drawback was more applicable, howe"rer, in 
the days before computers and plotters, but it is still more difficult to 
prepare a map having complex curves between plotted coordinates 
than it is to draw the entire graticule with circles and straight lines. 
Nevertheless, an increased use of azimuthal projections in atlases and 
for other published maps may be expected. 

Secondly, most azimuthal maps do not have standard parallels or 
standard meridians. Each map. has only one standard point: the center 
(except for the Stereographic, which may have a-standard circle). Thus, 
the azimuthals are suitable for minimizing distortion in a somewhat cir­
cular region such as Antarctica, but not for an area with predominant 
length in one direction. 
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TABLE 19.-Comparison of major azimuthal projections: Radius, scale factors, max­
imum angular distortion/or projection of sphere with radius 1.0, North Polar aspect 

Lat. Orthographic 
Radius h k w 

90° ----------------------------80 ____________________________ _ 
70 ____________________________ _ 
60 ____________________________ _ 
50 ____________________________ _ 
40 ____________________________ _ 
30 ____________________________ _ 
20 ____________________________ _ 
10 ____________________________ _ 
o ____________________________ _ 

- 10 -----------------------------
- 20 -----------------------------
- 30 -----------------------------

0.00000 
.17365 
.34202 
.50000 
.64279 
.76604 
.86603 
.93969 
.98481 

1.00000 

1.00000 
.98481 
.93969 
.86603 
.76604 
.64279 
.50000 
.34202 
.17365 
.00000 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.000° 
.877 

3.563 
8.234 

15.23 
25.12 
38.94 
58.72 
89.51 

180.0 

- 40 ----------------------------- (beyond limits of map) 
- 50 -----------------------------
- 60 -----------------------------
- 70 ------------------------------
- 80 -----------------------------
- 90 -----------------------------

Lat. 

90° -----------------------------------80 ___________________________________ _ 
70 ___________________________________ _ 
60 ___________________________________ _ 
50 ___________________________________ _ 
40 ___________________________________ _ 
30 ___________________________________ _ 
20 ___________________________________ _ 
10 ___________________________________ _ 
o ___________________________________ _ 

- 10 ------------------------------------
- 20 ------------------------------------
- 30 ------------------------------------
- 40 ------------------------------------
- 50 ------------------------------------
- 60 ------------------------------------
- 70 ------------------------------------
- 80 ------------------------------------
- 90 ------------------------------------

Stereographi(> 
Radius k* 

0.00000 
.17498 
.35263 
.53590 
.72794 
.93262 

1.15470 
1.40042 
1.67820 
2.00000 
2.38351 
2.85630 
3.46410 
4.28901 
5.49495 
7.46410 

11.3426 
22.8601 

1.00000 
1.00765 
1.03109 
1.07180 
1.13247 
1.21744 
1.33333 
1.49029 
1.70409 
2.00000 
2.42028 
3,03961 
4.00000 
5,59891 
8,54863 

14.9282 
33,1634 

131.646 
00 
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TABLE 19.-Comparison of major azimuthal projections: Radius, scale fact,Jrs, max­
imum angular distortion for projection of sphere with radius 1.0, North Polar 
aspect- Continued 

Lat. Gnomonic 
Radius 

90°------------------------ 0.00000 
80 ------------------------- .17633 
70 ------------------------- .36397 
60 ------------------------- .57735 
50------------------------- .83910 
40------------------------- 1.19175 
30 ------------------------- 1. 73205 
20 ------------------------- 2. 7 4 7 48 
10 ------------------------- 5. 67128 

0 ------------------------- 00 

-10-------------------------
- 20 -------------------------
- 30 -------------------------

h 

1.00000 
1.03109 
1.13247 
1.33333 
1.70409 
2.42028 
4.00000 
8.54863 
33.1634 

00 

-40 ------------------------- (beyond limits of map) 
- 50 -------------------------
- 60 -------------------------
- 70 -------------------------
- 80 -------------------------
- 90 --------------------------

k 

1.00000 
1.01543 
1.06418 
1.15470 
1.30541 
1.55572 
2.00000 
2.92380 
5.75877 

00 

w 

0.000° 
.877 

3.563 
8.234 

15.23 
25.12 
38.94 
58.72 
8t'.51 

Lat. 
Lambert Azimuthal Equal-Area 

90° ----------------------
80 -----------------------
70 -----------------------
60 -----------------------
50 -----------------------
40 -----------------------
30 -----------------------
20 -----------------------
10 -----------------------
0 ----------------------­

-10 -----------------------
-20 -----------------------
-30 -----------------------
-40 -----------------------
-50 -----------------------
-60 -----------------------
-70 -----------------------
-80 -----------------------
-90 -----------------------

Radius h k w 

0.00000 
.17431 
.34730 
.51764 
.68404 
.84524 

1.00000 
1.14715 
1.28558 
1.41421 
1.53209 
1.63830 
1.73205 
1.81262 
1.87939 
1.93185 
1.96962 
1.99239 
2.00000 

1.00000 
.99619 
.98481 
.96593 
.93969 
.90631 
.86603 
.81915 
.76604 
.70711 
.64279 
.57358 
.50000 
.42262 
.~4202 
.25882 
.17365 
.08716 
.00000 

1.00000 
1.00382 
1.01543 
1.03528 
1.06418 
1.10338 
1.15470 
1.22077 
1.30541 
1.41421 
1.55572 
1.74345 
2.00000 
2.36620 
2.92380 
3.86370 
5.75877 

11.4737 
00 

0.000° 
.437 

1.754 
3.972 
7.123 

11.25 
16.43 
22.71 
30.19 
38.94 
4!'.07 
60.65 
73.74 
8r 36 

10.;1..5 
12r..o 
140.6 
160.1 
180.0 
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TABLE 19.-Comparison of major azimuthal projections: Radius, scale factors, max­
imum angular distortion for projection of sphere with radius 1.0, North Polar 
aspect- Continued 

Lat. 

goo ----------------------
80 -----------------------
70 -----------------------
60 -----------------------
60 -----------------------
40 -----------------------
30 -----------------------
20 -----------------------
10 -----------------------
0 ----------------------­

-10 -----------------------
-20 -----------------------
-30 -----------------------
-40 -----------------------
- 50 ------------------------
-60 -----------------------
-70 -----------------------
-80 -----------------------
-90 -----------------------

Radius 

0.00000 
.17453 
.34907 
.52360 
.69813 
.87266 

1.04720 
1.22173 
1.39626 
1.57080 
1.74533 
1.91986 
2.09440 
2.26893 
2.44346 
2.61799 
2.79253 
2.96706 
3.14159 

Radius= radius of circle showing given latitude. 

w=maximum angular deformation. 
h =scale factor along meridian of longitude. 
k =scale factor along parallel of latitude. 

• For Stereographic, h-k and w=O. 

Azimuthal Equidistant 
h k 

1.0 1.00000 
1.0 1.00510 
1.0 1.02060 
1.0 1.04720 
1.0 1.08610 
1.0 1.13918 
1.0 1.20920 
1.0 1.30014 
1.0 1.41780 
1.0 1.57080 
1.0 1.77225 
1.0 2.04307 
1.0 2.41840 
1.0 2.96188 
1.0 3.80135 
1.0 5.23599 
1.0 8.16480 
1.0 17.0866 
1.0 00 

w 

0.000° 
.291 

1.168 
2.642 
4.731 
7.461 

10.87 
15.00 
19.90 
25.66 
32.35 
40.09 
49.03 
59.36 
71.39 
85.57 

102.8 
125.6 
180.0 





16. ORTHOGRAPHIC PROJECTION 

SUMMARY 

• Azimuthal. 
• All meridians and parallels are ellipses, circles, or straight lines. 
• Neither conformal nor equal-area. 
• Closely !"esembles a globe in appearance, since it is a perspective rrojection from 

infinite distance. 
• Only one hemisphere can be shown at a time. 
• Much distortion near the edge of the hemisphere shown. 
• No distortion at the center only. 
• Directions from the center are true. 
• Radial scale factor decreases as distance increases from the center. 
• Scale in the direction of the lines of latitude is true in the polar aspect. 
• Used chiefly for pictorial views. 
• Used only in the spherical form. 
• Known by Egyptians and Greeks 2,000 years ago. 

HISTORY 

To the layman, the best known perspective azimuthal projection is 
the Orthographic, although it is the least useful for measurements. 
While its distortion in shape and area is quite severe near the edges, 
and only one hemisphere may be shown on a single mar:' the eye is 
much more willing to forgive this distortion than to forgivf~ that of the 
Mercator projection because the Orthographic projectior makes the 
map look very much like a globe appears, especially in the oblique 
aspect. 

The Egyptians were probably aware of the Orthographic projection, 
and Hipparchus of Greece (2nd century B.C.) used the equatorial aspect 
for astronomical calculations. Its early name was "analem1na," a name 
also used by Ptolemy, but it was replaced by "orthographic" in 1613 by 
Francois d' Aiguillon of Antwerp. While it was also used by Indians and 
Arabs for astronomical purposes, it is not known to have b~en used for 
world maps older than 16th-century works by Albr~cht Dfirer 
(1471-1528), the German artist and cartographer, who prt'rlared polar 
and equatorial versions (Keuning, 1955, p. 6). 

FEATURES 

The point of perspective for the Orthographic projectior is at an in­
finite distance, so that the meridians and parallels are projected onto 
the tangent plane with parallel projection lines. All meridians and 
parallels are shown as ellipses, circles, or straight lines. 
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As on all polar azimuthal projections, the meridians of the polar Or­
thographic projection appear as straight lines radiating from the pole 
at their true angles, while the parallels of latitude are complete circles 
centered about the pole. On the Orthographic, the parallels are spaced 
most widely near the pole, and the spacing decreases to zero at the 
Equator, which is the circle marking the edge of the map (figL 20, 
21A). As a result, the land shapes near the pole are prominent, while 
lands near the Equator are compressed so that they can hard':T be 
recognized. In spite of the fact that the scale along the meridians varies 
from the correct value at the pole to zero at the Equator, the scale 
along every parallel is true. 

The equatorial aspect of the Orthographic projection has as its C~'~nter 
some point on the Earth's Equator. Here, all the parallels of latitude in­
cluding the Equator are seen edge-on; thus, they appear as str~.ight 
parallel lines (fig. 21B). The meridians, which are shaped like circl~s on 
the sphere, are projected onto the map at various inclinations to the 
lines of perspective. The central meridian, seen edge-on, is a straight 
line. The meridian 90° from the central meridian is shown as a circle 
marking the limit of the equatorial aspect. This circle is equidistantly 
marked with parallels of latitude. Other meridians are ellipses of e~cen­
tricities ranging from zero (the bounding circle) to 1.0 (the central 
meridian). 
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FIGURE 20.- Geometric projection of the parallels of the polar Orthographic projection. 

FIGURE 21.-0rthographic projection. (A) Polar aspect. (B) Equatorial aspect, approxi- A. 
mately the view of the Moon, Mars, and other outer planets as seen from the Earth. 19" 
(C) Oblique aspect, centered at lat. 40° N., giving the classic globelike view. 
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The oblique Orthographic projection, with its center somew}' ~re be­
tween the Equator and a pole, gives the classic globelike appe~.rance; 
and in fact an oblique view, with its center near but not on the Equator 
or pole, is often preferred to the equatorial or polar aspect for rictorial 
purposes. On the oblique Orthographic, the only straight line is the cen­
tral meridian, if it is actually portrayed. All parallels of latitude are 
ellipses with the same eccentricity (fig. 21C). Some of these ellir<;\es are 
shown completely and some only partially, while some cannot be shown 
at all. All other meridians are also ellipses of varying eccentricities. No 
meridian appears as a circle on the oblique aspect. 

The intersection of any given meridian and parallel is shown on an 
Orthographic projection at the same distance from the central merid­
ian, regardless of whether the aspect is oblique, polar, or equ:.ttorial, 
provided the same central meridian and the same scale are mair~ained. 
Scale and distortion, as on all azimuthal projections, change orly with 
the distance from the center. The center of projection has no dist,ortion, 
but the outer regions are compressed, even though the scale is true 
along all circles drawn about the center. (These circles are not "stand­
ard" lines because the scale is true only in the direction followec by the 
line.) 

USAGE 

The Orthographic projection seldom appears in atlases, excE'~t as a 
globe in relief without meridians and parallels. When it does appear, 
it provides a striking view. Richard Edes Harrison has used the. Ortho­
graphic for several maps in an atlas of the 1940's partially based on 
this projection. Frank Debenham (1958) used photographerl relief 
globes extensively in The Global Atlas, and Rand MeN ally has done 
likewise in their world atlases since 1960. The USGS has used it occa­
sionally as a frontispiece or end map (USGS, 1970; Thompson, 1979), 
but it also provided a base for definitive maps of voyages of discovery 
across the North Atlantic (USGS, 1970, p. 133). 

It became especially popular during the Second World War when 
there was stress on the global nature of the conflict. With som~ space 
flights of the 1960's, the first photographs of the Earth frmn space 
renewed consciousness of the Orthographic concept. 

GEOMETRIC CONSTRUCTION 

The three aspects of the Orthographic projection may be graphically 
constructed with an adaptation of the draftsman's technique sh':lwn by 
Raisz (1962, p. 180). Referring to figure 22, circle A is drawn for the 
polar aspect, with meridians marked at true angles. Perpendiculars are 
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dropped from the intersections of the outer circle with the meridians 
onto the horizontal meridian EE. This determines the rz.dii of the 
parallels of latitude, which may then be drawn about the center. 

For the equatorial aspect, circle C is drawn with the same radius as 
A, circle B is drawn like half of circle A, and the outer cir~le of Cis 
equidistantly marked to locate intersections of parallels with that cir­
cle. Parallels of latitude are drawn as straight lines, with th~ Equator 
midway. Parallels are shown tilted merely for use with obliaue projec­
tion circle D. Points at intersections of parallels with other meridians 
of B are then projected onto the corresponding parallels of latitude on 
C, and the new points connected for the meridians of C. By tilting 
graticule C at an angle c/> 1 equal to the central latitude of the desired 
oblique aspect, the corresponding points of circles A and C may be pro­
jected vertically and horizontally, respectively, onto circleD to provide 
intersections for meridians and parallels. 

FORMULAS FOR THE SPHERE 

To understand the mathematical concept of the Orthographc projec­
tion, it is helpful to think in terms of polar coordinates p ani (): 

p=R sine 
B= 1r-Az= 180° -Az 

(16-1) 
(16-2) 

where c is· the angular distance of the given point from the center of 
projection. Az is the azimuth east of north, and() is the polar c1ordinate 
east of south. The distance from the center of a point on an Or­
thographic map projection is thus proportional to the sine of the 
angular distance from the center on the sphere. Applying equations 
(5-3), (5-4), and (5-5) for great circle distance c and azimuth Az in 
terms of latitude and longitude, and equations for rectangular coor­
dinates in terms of polar coordinates, the equations for re,~tangular 
coordinates for the oblique Orthographic projection reduce to the 
following, given R, c/>11 Ao, cp, and :A: 

x=R cos cJ> sin (:A- Ao) 
y=R [cos c/>1 sin cp- sin c/>1 cos cp cos (:A- Ao)] 
hf=COS C 

= sin c/>1 sin cJ> +cos c/>1 cos cJ> cos (:A- Ao) 
k'= 1.0 

(16-3) 
(16-4) 

(16-5) 

where c/>1 and Ao are the latitude and longitude, respective~y, of the 
center point and origin of the projection, h! is the scale factc r along a 
line radiating from the center, and k' is the scale factor in a direction 
perpendicular to a line radiating from the center. TheY axis coincides 
with the central meridian Ao, y increasing northerly. All the parallels 
are ellipses of eccentricity cos c/>1• 
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For the north polar Orthographic, letting c/1 1 = 90°, x is still found 
from (16-3), but 

Y= -R cos c/1 cos (>-.->.o) 
h= sin c/1 

In polar coordinates, 
p =R COSc/J 
0=>-.->.o 

(16-6) 
(16-7) 

(16-8) 
(16-9) 

For the south polar Orthographic, with c/1 1 = - 90°, x does not change, 
but 

y = R cos c/1 cos (>-.- >.o) 
h= -sin c/1 

For polar coordinates, p is found from (16-8), but 

0=71"-A+Ao 

(16-10) 
(16-11) 

(16-12) 

For the equatorial Orthographic, letting c/1 1 = 0, x still does not change 
from (16-3), but 

y=R sin c/1 (16-13) 

In automatically computing a general set of coordinates for a com­
plete Orthographic map, the distance c from the center should be 
calculated for each intersection of latitude and longitude to determine 
whether it exceeds 90° and therefore whether the point is b~yond the 
range of the map. More directly, using equation (5-3), 

cos c =sin c/1. sin c/1 +cos c/1. cos c/1 cos(>-.- >.o) (5-3) 

if cos c is zero or positive, the point is to be plotted. If cos c is negative, 
the point is not to be plotted. 

For the inverse formulas for the sphere, to find c/1 and }.., given R, c/1., 
Ao, x, andy: 

c/1 =arcsin [cos c sin c/1 1 + (y sin c cos c/1 1/ p )] (16-14) 

But if p = 0, c/1 = c/J •• 
If c~J. is not ± 90°, 

>-.=>.o+ arctan [x sin c/(p cos c/1 1 cos c-y sin cPt sin c)] (16-15) 
If c/1. is 90°, 

>-.=>.o+arctan [xl( -y)] (16-16) 

>-.=>.o+arctan (xly) (16-17) 
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Note that, while the ratio [x/( -y)] in (16-16) is numerically the same as 
(- xly), the necessary quadrant adjustment is different when using the 
Fortran ATAN2 function or its equivalent. 

In equations (16-14) and (16-15), 

P = (x2 + y2)1'2 
c =arcsin (p/R) 

(16-18) 
(16-19) 

Simplification for inverse equations for the polar and eq'Iatorial 
aspects is obtained by giving c/> 1 values of ± 90° and 0°, respE'r!tively. 
They are not given in detail here. 

Tables 20 and 21list rectangular coordinates for the equato~ial and 
oblique aspects, respectively, for a 10° graticule with a sphere of radius 
R = 1.0. For the oblique example, c/> 1 = 40°. 

TABLE 20.-0rthographic projection: Rectangular coordinates for equatorial aspect 

Long. oo 10° 20° 30° 40° 

Lat. y X 

90° --- 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 ---- .9848 .0000 .0302 .0594 .0868 .1116 
70 ---- .9397 .0000 .0594 .1170 .1710 .2198 
60 ---- .8660 .0000 .0868 .1710 .2500 .3214 
50 ---- .7660 .0000 .1116 .2198 .3214 .4132 
40 ---- .6428 .0000 .1330 .2620 .3830 .4924 
30 ---- .5000 .0000 .1504 .2962 .4330 .5567 
20 ---- .3420 .0000 .1632 .3214 .4698 .6040 
10 ---- .1736 .0000 .1710 .3368 .4924 .6330 
0 ---- .0000 .0000 .1736 .3420 .5000 .6428 

Long. 50° 60° 70° 80° goo 

Lat. X 

goo --- 0.0000 0.0000 0.0000 0.0000 0.0000 
80 ---- .1330 .1504 .1632 .1710 .1736 
70 ---- .2620 .2962 .3214 .3368 .3420 
60 ---- .3830 .4330 .4698 .4924 .5000 
50 ---- .49.24 .5567 .6040 .6330 .6428 
40 ---- .5868 .6634 .7198 .7544 .7660 
30 ---- .6634 .7500 .8138 .8529 .8660 
20 ---- .7198 .8138 .8830 .9254 .9397 
10 ---- .7544 .8529 .9254 .9698 .9848 
0 ---- .7660 .8660 .9397 .9848 1.0000 

Radius of sphere= 1.0 
Origin: (x, y)=O at (lat., long.)=O. Y axis increases north. Other quadrants of hemisphere are symll'~trical. 
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TABLE 21. -Orthographic projection: Rectangular coordinates for oblique asp1ct centered 
at lat. 1,.0° N. 

[The circle bounding the hemisphere mah has the same coordinates as the).= 90° circle on the equatorial Orthographic 
projection. The radius oft e sphere= 1.0. y coordinate in parentheses under x coordinate] 

~ 
oo 100 20° 30° 40° 

. 

90° ------------ 0.0000 0.0000 0.0000 0.0000 0.0000 
( .7660) ( .7660) ( .7660) ( .7660) ( .7660) 

80 ------------ .0000 .0302 .0594 .0868 .1116 
.6428) .6445) .6495) .6577) .6689) 

70 ------------ .0000 .0594 .1170 .1710 .2198 
.5000) .5033) .5133) .5295) .5514) 

60 ------------ .0000 .0868 .1710 .2500 .3214 
.3420) .3469) .3614) .3851) .4172) 

50 ------------ .0000 .1116 .2198 .3214 .4132 
.1736) .1799) .1986) .2290) .2703) 

40 ------------ .0000 .1330 .2620 .3830 .4924 
.0000) .0075) .0297) .0660) .1152) 

30 ------------ .0000 .1504 .2962 .4330 .5567 
(- .1736) (- .1652) (- .1401) (- .0991) ( -.0434) 

20 ------------ .0000 .1632 .3214 .4698 .6040 
(- .3420) ( -.3328) ( -.3056) ( -.2611) ( -.2007) 

10 ------------ .0000 .1710 .3368 .4924 .6330 
(- .5000) (- .4904) ( -.4618) (- .4152) ( -.3519) 

0 ------------ .0000 .1736 .3420 .5000 .6428 
(- .6428) (- .6330) ( -.6040) ( -.5567) (- .4924) 

-10 ------------ .0000 .1710 .3368 .4924 .6330 
(- .7660) (- .7564) (- .7279) (-.6812) (- .6179) 

-20 ------------ .0000 .1632 .3214 .4698 .6040 
(- .8660) ( -.8568) ( -.8296) (- .7851) (- .7247) 

-30 ------------ .0000 .1504 .2962 .4330 .5567 
(- .9397) (- .9312) (- .9061) (- .8651) ( -.8095) 

-40 ------------ .0000 .1330 .2620 .3830 .4924 
( -.9848) ( -.9773) ( -.9551) ( -.9188) ( -.8696) 

-50 ------------ .0000 
( -1.0000) 

Origin: (x, y)= 0 at (lat., long.) =(40°, 0). Y axis increases north. Coordinates shown for central meridian().= 0) 
and meridians east of central meridian. For meridians west (negative), reverse signs of meridians a"'l.d of x. 
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TABLE 21. -Orthographic projection: Rectangular coordinates for nhlique aspPct centered 
at lat. 40° N. -Continued 

~ 50° 60° 70° 80° 90° 
. 

goo ------------ 0.0000 0.0000 0.0000 0.0000 0.0000 
( .7660) ( .7660) ( .7660) ( .7660) ( .7660) 

80 ------------ .1330 .1504 .1632 .1710 .1736 
.6827) .6986) ( .7162) ( .7350) .7544) 

70 ------------ .2620 .2962 .3214 .3368 .3420 

60 
.5785) .6099) .6447) .6817) .7198) 

------------ .3830 .4330 .4698 .4924 .5000 
.4568) .5027) .5535) .6076) .6634) 

50 ------------ .4924 .5567 .6040 .6330 .6428 
.3212) .3802) .4455) .5151) .5868) 

40 ------------ .5868 .6634 .7198 .7544 .7660 
.1759) .2462) .3240) .4069) .4924) 

30 ------------ .6634 .7500 .8138 .8529 .8660 
.0252) .1047) .1926) .2864) .3830) 

20 ------------ .7198 .8138 .8830 .9254 .9397 
(- .1263) (- .0400) .0554) .1571) .2620) 

10 ------------ .7544 .8529 .9254 .9698 .9848 
(- .2739) (- .1835) (- .0835) .0231) ( .1330) 

0 ------------ .7660 .8660 .9397 .9848 1.0000 
{- .4132) {- .3214) (- .2198) (-.1116) ( .0000) 

-10 ------------ .7544 .8529 .9254 .9698 
(- .5399) (- .4495) (- .3495) (- .2429) 

-20 ------------ .7198 .8138 .8830 

-30 
(- .6503) (- .5640) (- .4686) 

------------ .6634 .7500 
(- .7408) (- .6614) 

-40 ------------

TABLE 21.-0rthographic projection: Rectangular coordinates for oblique a.spect centered 
at lat. 40° N. -Continued 

~ 100° 110° 120° 130° 140° 
Lat. 

90° -------------- 0.0000 0.0000 0.0000 0.0000 0.0000 
( .7660) ( .7660) ( .7660) ( .7660) ( .7660) 

80 --------------- .1710 .1632 .1504 1330 .1116 
.7738) .7926) ( .8102) .8262) ( .8399) 

70 --------------- .3368 .3214 .2962 .2620 .2198 
.7580) .7950) .8298) .8612) .8883) 

60 --------------- .4924 .4698 .4330 .3830 .3214 
.7192) .7733) .8241) .8700) .9096) 

50 --------------- .6330 .6040 .5567 .4924 .4132 
.6586) .7281) .7934) .Rf:i24) .9033) 

40 --------------- .7544 .7198 .6634 f:i868 
.5779) .6608) .7386) 8089) 

30 --------------- .8529 .8138 

20 ---------------
.4797) .5734) 
.9254 
.3669) 
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TABLE 21.- Orthographic projection: Rectangular coordinates for oblique aspect centered 
at lat. 1,0° N. -Continued 

~ 150° 160° 170° 180° 
. 

90° -------------- 0.0000 0.0000 0.0000 0.0000 
( .7660) ( .7660) ( .7660) ( .7660) 

80 --------------- .0868 .0594 .0302 .0000 
( .8511) ( .8593) ( .8643) ( .8660) 

70 --------------- .1710 .1170 .0594 .0000 
( .9102) ( .9264) ( .9364) ( .9397) 

60 --------------- .2500 .1710 .0868 .0000 
( .9417) ( .9654) ( .9799) ( .9848) 

50 --------------- .3214 .2198 .1116 .0000 

40 ---------------
( .9446) ( .9751) ( .9937) (1.0000) 





17. STEREOGRAPHIC PROJECTION 

SUMMARY 

• Azimuthal. 
• Conformal. 
• The central meridian and a particular parallel (if shown) are straight lir«!s. 
• All meridians on the polar aspect and the Equator on the equatorizl aspect are 

straight lines. 
• All other meridians and parallels are shown as arcs of circles. 
• A perspective projection for the sphere. 
• Directions from the center of the projection are true (except on ellipsoidz I oblique and 

equatorial aspects). 
• Scale increases away from the center of the projection. 
• Point opposite the center of the projection cannot be plotted. 
• Used for polar maps and miscellaneous special maps. 
• Apparently invented by Hipparchus (2nd century B.C.). 

HISTORY 

The Stereographic projection was probably known in its polar form 
to the Egyptians, while Hipparchus was apparently the firs~. Greek to 
use it. He is generally considered its inventor. Ptolemy referl""ed to it as 
"Planisphaerum," a name used into the 16th century. The name 
"Stereographic" was assigned to it by Fran~ois d' Aiguillon in 1613. The 
polar Stereographic was exclusively used for star maps untH perhaps 
1507, when the earliest-known use for a map of the world w~-~ made by 
Walther Ludd (Gaultier Lud) of St. Die, Lorraine. 

The oblique aspect was used by Theon of Alexandria in tr~ 4th cen­
tury for maps of the sky, but it was not proposed for geograp'lical maps 
until Stabius and Werner discussed it together with their cordiform 
(heart-shaped) projections in the early 16th century. Th~ earliest­
known world maps were included in a 1583 atlas by Jacques de Vaulx 
(c. 1555-97). The two hemispheres were centered on Paris and its op­
posite point, respectively. 

The equatorial Stereographic originated with the Arabs,, and was 
used by the Arab astronomer Ibn-el-Zarkali (1029-87) of Tohdo for an 
astrolabe. It became a basis for world maps in the early 16th century, 
with the earliest known examples by Jean Roze (or Rotz}, a 1' lorman, in 
1542. After Rumold (the son of Gerhardus) Mercator's nse of the 
equatorial Stereographic for the world maps of the atlas of 1595, it 
became very popular among cartographers (Keuning, 195Fi, p. 7-9; 
Nordenskiold, 1889, p. 90, 92-93). 

153 
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FEATURES 

Like the Orthographic, the S tereographic projection is a true 
perspective in its spherical form. It is the only known true per;;"Dective 
projection of any kind that is also conformal. Its point of proj<'?.ction is 
on the surface of the sphere at a point just opposite the point of tangen­
cy of the plane or the center point of the projection (fig. 23). Thus, if the 
North Pole is the center of the map, the projection is from tl'·'?. South 
Pole. All of one hemisphere can be comfortably shown, but it is impossi­
ble to show both hemispheres in their entirety from one center. The 
point on the sphere opposite the center of the map projects at an in­
finite distance in the plane of the map. 

' " " ' ' " ' ' ' ' '~~~+-~~~~~-r~---* 

S.Pole 

FIGURE 23.-Geometric ·projection of the polar Stereographic projectio,-. 

The polar aspect somewhat resembles other polar azimuthrls, with 
straight radiating meridians and concentric circles for parallels (fig. 
24A). The parallels are spaced at increasingly wide distances, the far­
ther the latitude is from the pole (the Orthographic has the opposite 
feature). 

In the equatorial and oblique aspects, the distinctive appearance of 
the Stereographic becomes more evident: All meridians and rvallels, 
except for two, are shown as circles, and the meridians inter"~ct the 
parallels at right angles (figs. 24B, C). The central meridian i~ shown 
straight, as is the parallel of the same numerical value, but opposite in 
sign to the central parallel. For example, if lat. 40° N. is the central 
parallel, then lat. 40° S. is shown as a straight line. For the ec'Iatorial 
aspect with lat. 0° as the central parallel, the Equator, which is of 
course also its own negative counterpart, is shown straight. (For the 
polar aspect, this has no meaning since the opposite pole cr.nnot be 
shown.) Circles for parallels are centered along the central meridian; 

FIGURE 24.- Stereographic projection. (A) polar aspect; the most common scientific 
projection for polar areas of Earth, Moon, and the planets, since it is conf'lrmal. (B) A. 
equatorial aspect; often used in the 16th and 17th centuries for maps of hel"'ispheres. .,­
(C) oblique aspect; centered on lat. 40° N. The Stereographic is the only geometric 
projection of the sphere which is conformal. 
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circles for meridians are centered along the straight parallel. The me­
ridian 90° from the central meridian on the equatorial aspect i~ shown 
as a circle bounding the hemisphere. This circle is centered on the pro­
jection center and is equidistantly marked for parallels of latitude. 

As an azimuthal projection, directions from the center are shown cor­
rectly in the spherical form. In the ellipsoidal form, only tl:~ polar 
aspect is truly azimuthal, but it is not perspective, in order to retain 
conformality. The oblique and equatorial aspects of the ellipsoidal 
Stereographic, in order to be conformal, are neither azimuthal nor 
perspective. As with other azimuthal projections, there is no di<:'t.ortion 
at the center, which may be made the "standard point" true to scale in 
all directions. Because of the conformality of the projection, a 
Stereographic map may be given, instead of a "standard :point," a 
"standard circle" (or "standard parallel" in the polar aspect) with an ap­
propriate radius from the center, balancing the scale error thr~1ughout 
the map. (On the ellipsoidal oblique or equatorial aspects, the lines of 
constant scale are not perfect circles.) This cannot be done with non­
conformal azimuthal projections. In fact, 0. M. Miller (1953) took the 
standard circle a step further and modified the s:...,herical 
Stereographic to produce a standard oval better suited for a combined 
map of Europe and Africa. This projection is called Miller's Prolated 
Stereographic. 

USAGE 

While the oblique aspect of the Stereographic projection 11 as been 
recently used in the spherical form by the USGS for circular maps of 
portions of the Moon, Mars, and Mercury, generally center~d on a 
basin, the USGS has most often used the Stereographic in the polar 
aspect and ellipsoidal form for maps of Antarctica. For 1:500,000 
sketch maps, the standard parallel is 71° S.; for its 1:250,0l)0-scale 
series between 80° and the South Pole, the standard parallel i~ 80°14' 
S. The Universal Transverse Mercator (UTM) grid employs the UPS 
(Universal Polar Stereographic) projection from the North Po~e to lat. 
84 ° N., and from the South Pole to lat. 80° S. For the UPS, the scale at 
each pole is reduced to 0.994, resulting in a standard parallel of about 
81 °07' N. or S. 

In 1962, a United Nations conference changed the polar pC'..-tion of 
the International Map of the World (at a scale of 1:1,000,000) from a 
modified Polyconic to the polar Stereographic. This has consequently 
affected IMW sheets drawn by the USGS. North of lat. 84 oN. or south 
of lat. 80° S., it is used "with scale matching that of the I"odified 
Polyconic Projection or the Lambert Conformal Conic Projection at 
Latitudes 84 ° N. and 80° S." (United Nations, 1963, p. lO). The 
reference ellipsoid for all these polar Stereographic projections is the 
International of 1924. 



TABLE 22.-Polar Stereographic projection: Usedfor extraterrestial mapping 
[From Batson, 1973; Davies and Batson, 1975; Batson and others, 1980; Batson, private commun., 1981] 

---------------------- ----Range in hiL-
Body' Scale' N. or S. 

(scale at pole) 
AdJacent 

proJections 
Overlap Ma~t~nfslJ!~Iel Comments 

Mercury -------------------- 1:15,000,000 55° to r.t,le Mercator 
--y----5so------------

at Equator (1:9,17 ,000) (1:8,388,000) 
1:5,000,000 r1~~-~~rJ&) LambE-rt Conformal 5. 67.5° 

at Equator. Conic. (1:4,568,000) 
Mars----------------------- 1:25,000,000 f1~ ~iA!9.'00o> Mercator to• so• 

at Equator. (1:12,549,000) 
1:15,000,000 f1~;JofJJoo) Mercator 20 56° 

at Equator. (1:8,418,000) 
1·5,000,000 r1~~-~~00) Lambert Conformal o• 65° 

at Equator. Conic. ( 1 :4,306,000) 
1:1,000,000 } 65° to pole -- -- -- ~r:_a~e~m 1:250,000 (varies) 

on a side. 
1:2,000.000 r1~;}:3rdoo, Lambert Conformal o• 65° Quadrangles 

Conic. (1:1,939,000) 45° long. x 13° 
lat. (betwet>n 65° 
& 78° lat.). 

Semicircles 180° 
long. x 12° lat. 
(between 78° lat 
& pole). 

---- -------------------------~~-------
Galilean satellites of Jupiter 
----------------------------

lo ----------------------- rffi~.~ r1~~i.~&?.looo) Mercator 
20 56° 

at Equator. (1:13,980,000) 
Europa ------------------- 1:15,000,000 ff~.~~r.doo) Mercator 20 56° 

at Equator. (1:8,388,000) 
Ganymede ---------------- 1:5,000,000 f1~~-~~f.doo) Mercator 5• 45° 

(lo & Europa). (1:4,268,000) 
Callisto ------------------- 1:5,000,000 rf~.~~r.doo) Lambert Conformal 10 65.2° 

(Ganymede & Conic. (1:4,769,000) 
Callisto). 

Satellites of Saturn 

Mimas, Enceladus, 
Hyperion ---------------- 1:5,000,000 f1~;-~~r.'doo) Mercator 20 56° 

at Equator. ( 1:2, 796,000) 
Tethys, Dione, Rhea, 

Iapetus ----------------- 1:10,000,000 r~~;j~f.O'~o) Mercator 20 56° 
at Equator. (1:5,592,000) 

1 Taken as s~here, except for Mars (ellipsoid). See table 2. 
z Equator refers to Mercator zone. Scales of 1:1,000,000 and 1:250,000 (Mars) occur at central parallel of qlladrangle. Scale of 

1:5,000,000 for satellites occurs at pole of Stereographic projection. Scale of 1:2,000,000 occurs at standard paralle1.s of Lambert Con­
formal Conic projection. 

a Matching pariillels are both N. & S. 
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~he Astrogeology Center of the Geological Survey at Flagstaff, 
Ar1z., has been using the polar Stereographic for the mapping· of polar 
areas of Mars, Mercury, and satellites of Jupiter and Saturn at various 
scales (see table 22). 

The USGS is preparing a geologic map of the Arctic regions, using as 
a base an American Geographical Society map of the Arctic at a scale 
of 1:5,000,000. Drawn to the Stereographic projection, th~ map is 
based on a sphere having a radius which gives it the same volume as the 
International ellipsoid, and lat. 71 o N. is made the standard parallel. 

FORMULAS FOR THE SPHERE 

Mathematically, a point at a given angular distance from tl'~ chosen 
center point on the sphere is plotted on the Stereographic :projection 
at a distance from the center proportional to the trigonometric tangent 
of half that angular distance, and at its true. azimuth, or, if the central 
scale factor is 1, 

p = 2R tan 1f2 c 
8= r-Az= 180° -Az 
k= sec2112 c 

(17-1) 
(16-2) 

(17-1a) 

where cis the angular distance from the center, Az is the azirnuth east 
of north (see equations (5-3) through (5-6)), and (} is the pc lar coor­
dinate east of south. Combining with standard equations, the formulas 
for rectangular coordinates of the oblique Stereographic proje~tion are 
found to be as follows, given R, k0 , cPIJ Ao, c/>, and A: 

x = Rk cos cJ> sin (A- Ao) 
y = Rk [cos c/>1 sin c1>- sin c/>1 cos c1> cos (A- Ao)] 

where 

k = 2kof[1 +sin cPt sin cJ> +cos c/>1 cos cJ> cos (A- Ao)] 

(17-2) 
(17-3) 

(17-4) 

and ( cPtJ Ao) are the latitude and longitude of the center, which is also the 
origin. Since this is a conformal projection, k is the scale factor in all 
directions, based on a central scale factor of k0 , normally 1.0, r•1t which 
may be reduced. The Y axis coincides with the central meridian Ao, y in­
creasing northerly and x, easterly. 

If cJ> = - c/> 0 and A= Ao ± 180°, the point cannot be plotted. Geo"lletrical­
ly, it is the point from which projection takes place. 
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For the north polar Stereographic, with c/> 1 = 90°, these simplify to 

x = 2R k0 tan ( 1r/4- cj>/2) sin(>-.- Ao) 
y = - 2R ko tan ( rr/4- cj>/2) cos (A- >-.o) 
k = 2k0/(1 + sin cf>) 
p = 2R k0 tan ( 1rl4- cj>/2) 
O=A-Ao 

For the south polar Stereographic with cf>, = -90°, 

x = 2R k0 tan ( 1r/4 + cj>/2) sin(>-.- Ao) 
y = 2R k0 tan ( 1r/4 + cj>/2) cos(>-.- Ao) 
k = 2k0/(1- sin cf>) 
p = 2R k0 tan (7r/4 + cp/2) 
0=7r-A+Ao 

(17-5) 
(17-6) 
(17-7) 
(17-8) 
(16-9) 

(17-9) 
(17-10) 
(17-11) 
(17-12) 
(16-12) 

For the equatorial aspect, letting c/> 1 = 0, xis found from (17-2), but 

y =R k sin cf> (17-13) 
k = 2 k0/[1 +COS cf> COS (A- Ao)] (17-14) 

Fo-r the inverse fo·nnulas for the sphere, given R, k0 , c/> 11 A0 , x, and y: 

cp =arcsin [cos c sin cf>, + (y sin c cos cf> 1/ p )] 

but if p=O, cf>=cf> 1 • 

If </J 1 is not ±90°: 

A= Ao+ arctan [x sin c/(p cos cf> 1 cos c-y sin c/> 1 sin c)] 

If c/> 1 is 90°: 

A= Ao +arctan [x/(- y)] 

If </J 1 is -90°: 

A= Ao +arctan (xly) 

In equations (16-14) and (16-15), 

P = (x2 + y2y12 
c = 2 arctan lp/(2Rko)] 

(16-14) 

(16-15) 

(16-16) 

(16-17) 

(16-18) 
(17-15) 

The similarity of formulas for Orthographic, Stereographic, and 
other azimuthals n1ay be noted. The equations for It (k for the 
Stereographic, It= 1.0 for the Orthographic) and the inverse care the 
only differences in forward or inverse formulas for the sphere. The for­
mulas are repeated for convenience, unless shown only a few lines 
earlier. 
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Table 23 lists rectangular coordinates for the equatorial aspe~t for a 
10° graticule with a sphere of radius R= 1.0. 

Following are equations for the centers and radii of the circles 
representing the meridians and parallels of the oblique Stereographic 
in the spherical form: 

Circles for meridians: 

Centers: x = - 2R kof[ cos c/>1 tan(>.- >.o)] 
Y= -2R ko tan c/>1 

Radii: p = 2R k0 /[ cos c/>1 sin(>.- >.o)] 

Circles for parallels of latitude: 

Centers: x = 0 
y=2R k0 cos cp1/(sin c/>1 +sin cp) 

Radii: p = 2R k0 cos ¢/(sin c/>1 +sin cJ>) 

(17-16) 
(17-17) 
(17-18) 

(17-19} 
(17-20) 

Reduction to the polar and equatorial aspects may be made b~r letting 
c/>1 = ± 90° or 0°, respectively. 

To use a "standard circle" for the spherical Stereographic projection, 
such that the scale error is a minimum (based on least squares) over the 
apparent area of the map, the circle has an angular distance c from the 
center, where 

c = 2 arccos (1/k)112 

k = tan2 1/2(3/( -ln cos 2 112(3) 
(17-21) 
(17-22) 

and (3 is the great circle distance of the circular limit of the regi')n being 
mapped stereographically. The calculation is only slightly dif'!'~~rent if 
minimum error is based on the true area of the map: 

(17-23) 

In either case, c of the standard circle is approximately (315, 

FORMULAS FOR THE ELLIPSOID 

As noted above, the ellipsoidal forms of the Stereographic p•ojection 
are nonperspective, in order to preserve conformality. The obHque and 
equatorial aspects are also slightly nonazimuthal for the same reason. 
The formulas result from replacing geodetic latitude cJ> in the spherical 
equations with conformal latitude x (see equation (3-1)), followed by a 
small adjustment to the scale at the center of projection (Thom::ts, 1952, 
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TABLE 23. -Stereographic projection: Rectangular coordinates for equa,torial aspect 
(sphere) 

[One hemisphere; y coordinate in parentheses under x coordinate] 

~ 
oo 100 20° 30° 40° 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(2.00000) (2.00000) (2.00000) (2.00000) (2.00000) 

80 --------------- .00000 .05150 .10212 .15095 .19703 
(1.67820) (1.68198) (1.69331) (1.71214) (1.73837) 

70 --------------- .00000 .08885 .17705 .26386 .34841 
(1.40042) (1.40586) (1.42227) (1.44992) (1.48921) 

60 --------------- .00000 .11635 .23269 .34892 .46477 
(1.15470) (1.16058) (1.17839) (1.20868) (1.25237) 

50 --------------- .00000 .13670 .27412 .41292 .55371 
( .93262) ( .93819) ( .95515) ( .98421) (1.02659) 

40 --------------- .00000 .15164 .30468 .46053 .62062 
( .72794) ( .73277) ( .74749) ( .77285) ( .81016) 

30 --------------- .00000 .16233 .32661 .49487 .66931 
( .53590) ( .53970) ( .55133) ( .57143) ( .60117) 

20 --------------- .00000 .16950 .34136 .51808 .70241 
{ .35265) ( .35527) ( .36327) ( .37713) ( .39773) 

10 --------------- .00000 .17363 .34987 .53150 .72164 
( .17498) ( .17631) ( .18037) ( .18744) ( .19796) 

0 --------------- .00000 .17498 .35265 .53590 .72794 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

TABLE 23.-Stereographic projection: Rectangular coordinates for eq'UC'torial aspect 
(sphere)- Continued 

~ 50° 60° 70° 80° 90° 
. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 

80 ---------------
(2.00000) (2.00000) (2.00000) (2.00000) (2.00000) 

.23933 .27674 .30806 .33201 .34730 

70 ---------------
(1.77184) (1.81227) (1.85920) (1.91196) (1.96962) 

.42957 .50588 .57547 .63588 .68404 

60 ---------------
(1.54067) (1.60493) (1.68256) (1.77402) (1.87939) 

.57972 .69282 .80246 .90613 1.00000 

50 ---------------
(1.31078) (1.38564) (1.47911) (1.59368) (1.73205) 

.69688 .84255 .99033 1.13892 1.28558 

40 ---------------
(1.08415) (1.15945) (1.25597) (1.37825) (1.53209) 

.78641 .95937 1.14080 1.33167 1.53209 

30 ---------------
( .86141) ( .92954) (1.01868) (1.13464) (1.28558) 

.85235 1.04675 1.25567 1.48275 1.73205 

20 ---------------
( .64240) ( .69783) ( .77149) ( .86928) (1.00000) 

.89755 1.10732 1.33650 1.59119 1.87939 

10 ---------------
( .42645) ( .46538) ( .51767) ( .58808) ( .68404) 

.92394 1.14295 1.38450 1.65643 1.96962 

0 ---------------
( .21267) ( .23271) ( .25979) ( .29658) ( .34730) 

.93262 1.15470 1.40042 1.67820 2.00000 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

Radius of sphere= 1.0. 
Origin: (x, y)=O at (lat., long.)=O. Y axis increases north. Other quadrants of hemisphere are symmetrical. 
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p. 14-15, 128-139). The general forward formulas for the oblique 
aspect are as follows; given a, e, k0 , t/>11 ~' q,, and A: 

where 

x =A cos x sin (A-~) 
y=A [cos Xt sin x-sin X1 cos x cos (A-~)] 
k=A cosxl(am) 

A= 2 a komt/{ cos Xt [1 +sin Xt sin x 
+ cos X1 cos X cos (A-~)]} 

x=2 arctan {tan (7r/4+tj>/2)[(1-e sin q,)/(1+e sin q,)]ei2J 
-11"/2 

m =cos q,/(1- e2 sin2tf> y12 

(17-24) 
(17-25) 
(17-26) 

(17-27) 

(3-1) 
(12-15) 

and Xt and m1 are x and m, respectively, calculated using tf>t, the central 
latitude, in place of q,, while ko is the scale factor at the center (no~ally 
1.0). The origin of x andy coordinates occurs at the center (t/>11 ~) .. the Y 
axis coinciding with the central meridian ~' and y increasing northerly 
and x, easterly. The scale factor is actually ko along a near-circle pass­
ing through the origin, except for polar and equatorial aspects, where it 
occurs only at the central point. The radius of this near-circle is almost 
0.4 ° at midlatitudes, and its center is along the central meridirm, ap­
proaching the Equator from t/> 1 • The scale factor at the center of the cir­
cle is within 0.00001less than ko. 

In the equatorial aspect, with the substitution of tf>t = 0 (thE.refore 
Xt = 0), x is still found from (17-24) and k from (17-26), 

but 

y=A sinx 
A= 2ako/[1 +cos x cos (A-~)] 

(17-28) 
(17-29) 

For the north polar aspect, substitution of t/> 1 = 90° (the,..efore 
X1 = 90°) into equations (17 -27) and (12-15) leads to an indeter1ninate 
A. To avoid this problem, the polar equations may take the form 

where 

X= p sin(A-~) 
Y= -p COS(A-~) 
k= pi( am) 

p = 2 a k0 t/[(1 + e~lu) (1- e~l-e)Jh 

t= tan (11"/4- q,/2)/[(1- e sin q,)/(1 +e sin t/>)]612 

C7-30) 
(J 7-31) 
C7-32) 

(17-33) 
(13-9) 
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Equation (17 -33) applies only if true scale or known scale factor k0 is to 
occur at the pole. For true scale along the circle representing latitude 

cPc' 
p =amc t!tc (17-34) 

Then the scale at the pole is 

kp = 1/2 me [(1 + eY1 +e> (1- eY1-e>J12I(a tc) (17-35) 

In equations (17 -34) and (17 -35), me and tc are found from equations 
(12-15) and (13-9), respectively, substituting cl>c in place of¢. 

For the south polar aspect, the equations for the north polar aspect 
may be used, but the signs of x, y, cl>c' cJ>, A, and Ao must be rev,.~rsed to be 
used in the equations. 

For the inverse formulas for the ellipsoid, the oblique and equatorial 
aspects (where c/>1 is not ± 90°) may be solved as follows, given a, e, ko, 
¢., Ao, x, and y: 

where 

¢=2 arctan [tan (?rl4+x/2)[(1+e sin ¢)/(1-e sin c/>)]e12} 

-?r/2 
A= Ao+ arctan [x sin cj(p cos X1 cos ce -y sin X1 sin C

8
)] 

x= arcsin [cos C8 sin Xt +(y sin C8 cos Xt/p)] 

but if p=O, x=x1· 
P = (x:z + y:z)lh 
C8= 2 arctan [p cos Xt/(2 a k0 m1)] 

(3-4) 
(17-36) 

(17-37) 

(16-18) 
(17-38) 

and m1 is found from equation (12-15) above, using ¢ 1 in place of¢. 
Equation (3-4) involves iteration, using x as the first trial cJ> in the right­
hand side, solving for a new trial cJ> on the left side, substituti1.g into the 
right side, etc., until cJ> changes by less than a preset converg-~nce (such 
as 10-9 radians). Conformal latitude X1 is found from (3-1), using c/>1 for 
cJ>. The factor ce is not the true angular distance, as it is in tha. spherical 
case, but it is a convenient expression similar in nature to c, used to find 
c1> and}... 

To avoid the iteration of (3-4), this series may be used ins~ead: 

c/>=x+(e212+5e 4/24+e 6/12+ ... ) sin 2x 
+(7e 4/48+29e 6/240+ ... ) sin 4x+(7e 6/120+ ... ) 
sin 6x + . . . (3-5) 

The inverse equations for the north polar ellipsoidal Ste:--eographic 
are as follows; given a, e, cl>c' ko (if cl>c = 90°), Ao, x, and y: 

c1> = 1r/2- 2 arctan {t[(1- e sin ¢)/(1 + e sin ¢)]812} 

A=Ao+arctan [x/( -y)] 
(7-9) 

(16-16) 
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Equation (7 -9) for cp also involves iteration. For the first trial, ( 1r/2- 2 
arctan t) is substituted for cp in the right side, and the procedure for 
solving equation (3-4) just above is followed. 

If cf>c (the latitude of true scale) is 90°, 

t= p[(1 +e~l+e) (1-e~l-e>J12/(2a ko) (17-39) 

If cf>c is not 90°, 

t=pt/(amc) 

In either case, 

P =(x2+yl)lf2 

(17-40) 

(16-18) 

and tc and me are found from equations (13-9) and (12-15), respe~tively, 
listed with the forward equations, using cf>c in place of cp. Scale factor k 
is found from equation (17-26) or (17-32) above, for the cp fouiJd from 
equation (3-4), (3-5), or (7 -9), depending on the aspect. 

To avoid iteration, series (3-5) above may be used in place of (7 -9), 

where 

x = 1r/2- 2 arctan t (7-13) 

Inverse equations for the south polar aspect are the same as tl' 'lSe for 
the north polar aspect, but the signs of x, y, Xo, cf>c, cp, and A nust be 
reversed. 

Polar coordinates for the ellipsoidal form of the polar Stereosraphic 
are given in table 24, using the International ellipsoid and a central 
scale factor of 1.0. 
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TABLE 24.-Ellipsoidal polar Stereographic projection: Polar coo'rdinates 
(International ellipsoid; central scale factor= 1.0) 

Latitude Radius, meters 

90° -------------------------------89 _______________________________ _ 
88 _______________________________ _ 

87 --------------------------------86 _______________________________ _ 
85 _______________________________ _ 
84 _______________________________ _ 
83 _______________________________ _ 
82 _______________________________ _ 
81 _______________________________ _ 
80 _______________________________ _ 
79 _______________________________ _ 
78 _______________________________ _ 

77 --------------------------------76 _______________________________ _ 
75 _______________________________ _ 

74 --------------------------------
73 --------------------------------
72 --------------------------------
71 --------------------------------70 _______________________________ _ 
69 _______________________________ _ 
68 _______________________________ _ 

67 ------------------------------~-66 _______________________________ _ 
65 _______________________________ _ 
64 _______________________________ _ 
63 _______________________________ _ 
62 _______________________________ _ 

61 --------------------------------60 _______________________________ _ 

0.0 
111,702.7 
223,421.7 
335,173.4 
446,974.1 
558,840.1 
670,788.1 
782,834.3 
894,995.4 

1,007,287.9 
1,119,728.7 
1,232,334.4 
1,345,122.0 
1,458,108.4 
1,571,310.9 
1,684,746.8 
1, 798,433.4 
1,912,388.4 
2,026,629.5 
2,141,174.8 
2,256,042.3 
2,371,250.5 
2,486,818.0 
2,602,763.6 
2, 719,106.4 
2,835,865.8 
2,953,061.4 
3,070, 713.2 
3,188,841.4 
3,307,466.7 
3,426,609.9 

k, s<~ale factor 

1.000000 
1.000076 
1.000305 
1.000686 
1.001219 
1.001906 
1.002746 
1.003741 
1.004889 
1.006193 
1.007653 
1.009270 
1.011045 
1.012979 
1.015073 
1.017328 
1.019746 
1.022329 
1.025077 
1.027993 
1.031078 
1.034335 
1.037765 
1.041370 
1.045154 
1.049117 
1.053264 
1.057595 
1.062115 
1.066826 
1.071732 
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18. LAMBERT AZIMUTHAL EQUAL-AREA PROJECTI9N 

SUMMARY 

• Azimuthal. 
• Equal-Area. 
• All meridians in the polar aspect, the central meridian in other arnects, and the 

Equator in the equatorial aspect are straight lines. 
• The outer meridian of a hemisphere in the equatorial aspect (for the sphere) and the 

parallels in the polar aspect (sphere or ellipsoid) are circles. 
• All other meridians and parallels are complex curves. 
• Not a perspective projection. 
• Scale decreases radially as the distance increases from the center, the only point with­

out distortion. 
• Scale increases in the direction perpendicular to radii as the distance increases from 

the center. 
• Directions from the center are true for the sphere and the polar ellipmidal forms. 
• Point opposite the center is shown as a circle surrounding the map (fer the sphere). 
• Used for maps of continents and hemispheres. 
• Presented by Lambert in 1772. 

HISTORY 

The last major projection presented by Johann Heinrich Lambert in 
his 1772 Beitrage was his azimuthal equal-area projectio'1 (Lambert, 
1772, p. 75-78). His name is usually applied to the projecticn in modern 
references, but it is occasionally called merely the Ar.imuthal (or 
Zenithal) Equal-Area projection. Not only is it equal-ar~a, with, of 
course, the azimuthal property showing true directions from the center 
of the projection, but its scale at a given distance from the c~nter varies 
less from the scale at the center than the scale of any of the other major 
azimuthals (see table 19). 

Lambert discussed the polar and equatorial aspects of th~ Azimuthal 
Equal-Area projection, but the oblique aspect is just as p'lpular now. 
The polar aspect was apparently independently derived by De Lorgna 
in Italy in 1789, and the latter was called the originator in a publication 
a century later (USC&GS, 1882, p. 290). G. A. Ginsburg p:--oposed two 
modifications of the general Lambert Azimuthal projectio'1 in 1949 to 
reduce the angular distortion at the expense of creating a flight distor­
tion in area (Maling, 1960, p. 206). 

FEATURES 

The Lambert Azimuthal Equal-Area projection is not a perspective 
projection. It may be called a "synthetic" azimuthal in thr.t it was de­
rived for the specific purpose of maintaining equal area. Tr~ ellipsoidal 
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form maintains equal area, but it is not quite azimuthal except in the 
polar aspect, so the name for the general ellipsoidal form is a slight 
misnomer, although it looks like the spherical azimuthal form and has 
most of its other characteristics. 

The polar aspect (fig. 25A), like that of the Orthographh and 
Stereographic, has circles for parallels of latitude, all centered about 
the North or South Pole, and straight equally spaced radii of these 
circles for meridians. The difference is, once again, in the spacing of 
the parallels. For the Lambert, the spacing between the parallels 
gradually decreases with increasing distance from the pole. Tf~e op­
posite pole, not visible on either the Orthographic or Stereographic, 
may be shown on the Lambert as a large circle surrounding thE: map, 
almost half again as far as the Equator from the center. Normally, the 
projection is not shown beyond one hemisphere (or beyond the Eouator 
in the polar aspect). 

The equatorial aspect (fig. 25B) has, like the other azimutllals, a 
straight Equator and straight central meridian, with a circle repr~sent­
ing the 90th meridian east and west of the central meridian. Unlike 
those for the Orthographic and Stereographic, the remaining merid­
ians and parallels are uncommon complex curves. The chief visual 
distinguishing characteristic is that the spacing of the meridians near 
the 90th meridian and of the parallels near the poles is about 0. 7 of the 
spacing at .the center of the projection, or moderately less to tha. eye. 
The parallels of latitude look considerably like circular arcs, E:xcept 
near the 90th meridians, where they exhibit a noticeable turn toward 
the nearest pole. 

The oblique aspect (fig. 25C) of the Lambert Azimuthal Equal-Area 
resembles the Orthographic to some extent, until it is seer that 
crowding is far less pronounced as the distance from the center in­
creases. Aside from the straight central meridian, all meridians and 
parallels are complex curves, not ellipses. 

In both the equatorial and oblique aspects, the point opposite the 
center may be shown as a circle surrounding the map, correspond~"'lg to 
the opposite pole in the polar aspect. Except for the advantage of show­
ing the entire Earth in an equal-area projection from one point, the 
distortion is so great beyond the inner hemisphere that for world maps 
the Earth should be shown as two separate hemispherical map~, the 
second map centered on the point opposite the center of the first map. 

FIGURE 25.- Lambert Azimuthal Equal-Area projection. (A) polar aspect showing one &. 
hemisphere; the entire globe may be included in a circle of 1.41 times the dianeter of ~ 
the Equator. (B) equatorial aspect; frequently used in atlases for maps of the Eastern 
and Western hemispheres. (C) oblique aspect; centered on lat. 40° N. 
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USAGE 

The spherical form in all three aspects of the Lambert Azimuthal 
Equal-Area projection has appeared in recent commercial atlrses for 
Eastern and Western Hemispheres (replacing the long-used Globular 
projection) and for maps of oceans and most of the continents and polar 
regions. 

The polar aspect appears in the National Atlas (USGS, 1970, p. 
148-149) for maps delineating north and south polar expeditions, at a 
scale of 1:39,000,000. It is used at a scale of 1:20,000,000 for the Arctic 
Region as an inset on the 1978 USGS Map of Prospective Hydrocarbon 
Provinces of the World. 

The USGS has prepared six base maps of the Pacific Ocear on the 
spherical form of the Lambert Azimuthal Equal-Area. Four sections, at 
1:10,000,000, have centers at 35° N., 150° E.; 35° N., 135° W.; 35° S., 
135° E.; and 40° S., 100° W. The Pacific-Antarctic region, at a larger 
scale, is centered at 20° S. and 165° W., while a Pacific Basin map at 
1:20,000,000 is centered at the Equator and 160° W. The bar~ maps 
have been used for individual geographic, geologic, tectonic, minerals, 
and energy maps. The USGS has also cooperated with the National 
Geographic Society in revising maps of the entire Moon draw:~ to the 
spherical form of the equatorial Lambert Azimuthal Equal-Ar,.~a. 

GEOMETRIC CONSTRUCTION 

The polar aspect (for the sphere) may be drawn with a simple 
geometric construction: In figure 26, if angle AOR is the latitud~ cp and 
P is the pole at the center, PA is the radius of that latitude on tl' ~ polar 
map. The oblique and equatorial aspects have no direct geometic con­
struction. They may be prepared indirectly by using other azimuthal 
projections (Harrison, 1943), but it is now simpler to plot autom-:~.tically 
or manually from rectangular coordinates which are generated by a 
relatively simple computer program. The formulas are given b~low. 

FORMULAS FOR THE SPHERE 

On the Lambert Azimuthal Equal-Area projection for the sphere, a 
point at a given angular distance from the center of projection is plot­
ted at a distance from the center proportional to the sine of half that 
angular distance, and at its true azimuth, or 

p =2R sin 1/2 c 
8= 1r-Az= 180° -Az 
h'= cos 112 c 
It= sec 112 c 

(18-1) 
(16-2) 

(18-1a) 
(18-1b) 
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FIGURE 26.- Geometric construction of polar Lambert Azimuthal Eqrlal­
Area projection. 
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where cis the angular distance from the center, Az is the azimuth east 
of north (see equations (5-3) through (5-6)), and fJ is the poJar coor­
dinate east of south. The term lC is the scale factor in a direction 
perpendicular to the radius from the center of the map, not a long the 
parallel, except in the polar case. The scale factor: hf in the dirr~ction of 
the radius equals 1//C. After combining with standard equati0ns, the 
formulas for rectangular coordinates for the oblique Lambert 
Azimuthal Equal-Area projection may be written as follows, given R, 
cp., Ac,, cp, and X: 

x=R lC cos cJ> sin (X-Ac,) 
y=R lC [cos cp1 sin cp- sin cp1 cos cJ> cos (X-Ac,)] 

where 

lC = {2/[1 +sin cp1 sin cJ> +cos cp1 cos cJ> cos (X- Ac,)]f12 

(18-2) 
(18-3) 

(18-4) 

and (cp., Ac,) are latitude and longitude of the projection center and 
origin. The Y axis coincides with the central meridian Ac,, y in ~reasing 
northerly. For the point opposite the center, at latitude - cl>1 and 
longitude Ao± 180°, these formulas give indeterminants. This point, if 
the map is to cover the entire sphere, is plotted as a circle of radius 2R. 

For the north polar Lambert Azimuthal Equal-Area, with cp1 = 90°, 
since lC is k for the polar aspect, these formulas simplify to 

x = 2R sin ( r/4- cp/2) sin (X- Ac,) 
Y= -2R sin(r/4-cp/2)cos(X-Ac,) 
k= sec (r/4-q,/2) 
k= 1/k=cos(r/4-cp/2) 

or, using polar coordinates, 

p = 2R sin ( r/ 4- cp/2) 
8=X-Ac, 

For the south polar aspect, with cp, = - 90°, 

X= 2R cos (r/4-cp/2) sin (X-Ac,) 

or 

y = 2R cos ( r/4- ¢/2) cos (X- Ac,) 
k= 1/sin(r/4-cp/2) 
k= sin ( r/4- cp/2) 

p =2R cos (r/4-cp/2) 
8=1r-X+Ac, 

(18-5) 
(18-6) 
(18-7) 
(18-8) 

(18-9) 
(16-9) 

(18-10) 
(18-11) 
(18-12) 
(18-13) 

(18-14) 
(16-12) 

For the equatorial aspect, letting ¢ 1 = 0, x is found from (18-2), but 

y=R lC sin cJ> (18-15) 
and 

lC = {2/[1 +cos cp cos (X- Ac,)])lla (18-16) 
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The maximum angular deformation w for any of these aspects, de­
rived from equations ( 4-7) through ( 4-9), and from the fact that h! = 1/~ 
for equal-area maps: 

(18-17) 

For the inverse formulas for the sphere, given R, cp., ~' x, and y: 
cf> =arcsin [cos c sin c/>1 + (y sin c cos ¢1/ p)] (16-14) 

But if p=O, cf>=c/>1· 
If c/>1 is not ± 90°: 

'h=~+arctan [x sin c/(p cos c/>1 cos c-y sin f/>1 sin c)] 

If c/>1 is 90°: 

'h=~+arctan [x/( -y)] 

If c/>1 is -90°: 

'h =~+arctan (xly) 

In equations (16-14) and (16-15), 

p =(Xl+yl)lh 

c= 2 arcsin [p/(2R)] 

(16-15) 

(16-16) 

(16-17) 

(16-18) 

(18-18) 

It may again be noted that several of the above forward and inverse 
equations apply to the other azimuthals. 

Table 25 lists rectangular coordinates for the equatorial aspect for a 
10° graticule with a sphere of radius R = 1.0. 

FORMULAS FOR THE ELLIPSOID 

As noted above, the ellipsoidal oblique aspect of the Lambert 
Azimuthal Equal-Area projection is slightly nonazimuthal in order to 
preserve equality of area. To date, the USGS has not ur~d the ellip­
soidal form in any aspect. The formulas are analogous to the spherical 
equations, but involve replacing the geodetic latitude q, Y·ith authalic 
latitude {3 (see equation (3-11)). In order to achieve correc~ scale in all 
directions at the center of projection, that is, to make the center a 
"standard point," a slight adjustment using Dis also ne~essary. The 
general forward formulas for the oblique aspect are as follows, given a, 
e, c/>1, ~' cf>, and 'h: 

x=B D cos {3 sin ('h- Ao) 
Y= (BID) [cos {31 sin {3- sin {31 cos {3 cos (A-~)] 

(18-19) 
(18-20) 
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TABLE 25.-Lamhert Azimuthal Equal-Area projection: Rectangular coordinates for 
equatorial aspect (sphere) 

[One hemisphere; y coordinate in parentheses under x coordinate] 

~ 
oo 100 20° 30° 4C 0 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 o.oo;oo 
(1.41421) (1.41421) (1.41421) (1.41421) (1.41421) 

80 --------------- .00000 .03941 .07788 .11448 .14~30 
(1.28558) (1.28702) (1.29135) (1.29851) (1.30"42) 

70 --------------- .00000 .07264 .14391 .21242 .27~76 

(1.14715) (1.14938) (1.15607) (1.16725) (1.18;!96) 

60 --------------- .00000 .10051 .19948 .29535 .38~49 

(1.00000) (1.00254) (1.01021) (1.02311) (1.04143) 

50 --------------- .00000 .12353 .24549 .36430 .47"31 
( .84524) ( .84776) ( .85539) ( .86830) ( .88~80) 

40 --------------- .00000 .14203 .28254 .41999 .55?.81 
( .68404) ( .68631) ( .69317) ( .70483) ( .72164) 

30 --------------- .00000 .15624 .31103 .46291 .61040 
( .51764) ( .51947) ( .52504) ( .53452) ( .54~26) 

20 --------------- .00000 .16631 .33123 .49337 .65136 
( .34730) ( .34858) ( .35248) ( .35915) ( .36~83) 

10 --------------- .00000 .17231 .34329 .51158 .67588 
( .17431) ( .17497) ( .17698) ( .18041) ( .18640) 

0 --------------- .00000 .17431 .34730 .51764 .68404 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

Radius of sphere= 1.0. 
Origin: (x, y)=O at (lat., long.)=O. Y axis increases north. Other quadrants of hemisphere are symmetrical. 

where 

B =Rq {2/[1 +sin {j1 sin {j +cos {j1 cos {j cos (A- Ac,)]}v2 

D =a m1 I(Rq cos /j1) 

R = a(q /2)112 
q P, 

{j = arcsin ( ql qP) 
q = (1- e2

) {sin (j>/(1- e1 sin2 4>)- [1/(2 e)] ln 
[(1- e sin 4>)/(1 + e sin 4>)]} 

m= cos (j>/(1- & sin2 4>Y/2 

(18-21) 
(18-22) 

(3-13) 
(3-11) 

(3-12) 
(12-15) 

and /j1 is found from (3-11), using q1 for q, while q1 and q are found 
from (3-12) using (j> 1 and 90°, respectively, for (j>, and m1 is lfound from 
(12-15), calculated for (j> 1 • The origin occurs at (4>1, Ac,), theY axis coin­
ciding with the central meridian Ac,, andy increasing northerly. For the 
equatorial aspect, the equations simplify as follows: 

x =a cos {j sin (A- Ac,)[2/[1 +cos {j cos (A- Ac,)]f12 

y=(R/Ia) sin {3 [2/[1 +cos {j cos (A- Ac,)Jr12 

(18-23) 
(18-24) 

For the polar aspects, D is indeterminate using equations abov~, but 
the following equations may be used instead. For the north polar 
aspect, {j> 1 = 90°, 
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TABLE 25.-Lambert Azimuthal Equal-Area projection: Rectangular coordinates for 
equatorial aspect (sphere)- Continued 

~ 50° 60° 70° goo 90° 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.41421) (1.41421) (1.41421) (1.41421) (1.41421) 

80 --------------- .17843 .20400 .22420 .23828 .24558 
(1.32096) (1.33594) (1.35313) (1.37219) (1.39273) 

70 --------------- .33548 .38709 .43006 .46280 .48369 
(1.20323) (1.22806) (1.25741) (1.29114) (1.32893) 

60 --------------- .47122 .54772 .61403 .66797 .70711 
(1.06544) (1.09545) (1.13179) (1.17481) (1.22474) 

50 --------------- .58579 .68485 .77342 .84909 .90904 
( .91132) ( .94244) ( .98088) (1.02752) (1.08335) 

40 --------------- .67933 .79778 .90620 1.00231 1.08335 
( .74411) ( .77298) ( .80919) ( .85401) ( .90904) 

30 --------------- .75197 .88604 1.01087 1.12454 1.22474 
( .56674) ( .59069) ( .62108) ( .65927) ( .70711) 

20 --------------- .80380 .94928 1.08635 1.21347 1.32893 
( .38191) ( .39896) ( .42078) ( .44848) ( .48369) 

10 --------------- .83488 .98731 1.13192 1.26747 1.39273 
( .19217) ( .20102) ( .21240) ( .22694) ( .24558) 

0 --------------- .84524 1.00000 1.14715 1.28558 1.41421 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

x = p sin (A- Ao) (17-30) 
Y=- p cos (A- Ao) (17-31) 
k= pi( am) (17-32) 

where 

p = a(qp- q)¥2 (18-25) 

and qP and q are found from (3-12) as before and m from (12-15) above. 
Since the meridians and parallels intersect at right angles, and this is 
an equal-area projection, h = 1/ k. 

For the south polar aspect, (c/>1 =- 90°), equations (17-30) and (17-32) 
remain the same, but 

y = p cos (A- Ao) (18-26) 

and 

(18-27) 
For the inverse formulas for the ellipsoid, the oblique and equatorial 

aspects (where c/> 1 is not ± 90°) may be solved as follows, given a, e, cp1 , 

Ao, x, andy. 

c/>=c/>+ (1-e
2 

sin
2 

cp)
2 [~q- sin~ +_!_ ln (1-e s~n c/>)] (3_16) 

2 cos cp 1- e2 1- e2 sm2 cp 2e 1 + e Sin cp 

A= Ao +arctan [x sin cj(D p cos {3 1 cos ce- D 2y sin {3 1 since)] (18-28) 
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where 

q= qp [cos ce sin {31 + (Dy since cos {3 11 p)] 

but if p = 0, q= qP sin {31 

(18-29) 

P = [(x/D)2 + (Dy)2f'2 
ce= 2 arcsin (p/2 Rq) 

(18-30) 
(18-31) 

and D, Rq~ q , and {31 are found from equations (18-22), (3-13), (3-12), 
(3-11), and (12-15), as in the forward equations above. The fac1;or ce is 
not the true angular distance, as c is in the ~pherical case, but it is a 
convenient number similar in nature to c, used to find cp and A. Equa­
tion (3-16) requires iteration by successive substitution, using arcsin 
( q/2) as the first trial cp on the right side, calculating cp on the l€ft side, 
substituting this new cp on the right side, etc., until the change. in cp is 
negligible. If, in equation (18-29), 

q= ± {1- [(1- e2)/(2 e)] ln [{1- e)/(1 +e)]} (12-20) 

the iteration does not converge, but cp = ± 90°, taking the sign c f q. 
To avoid the iteration, equations (3-16), (18-29), and (12-20) may be 

replaced with the series 

cp=f3+(e213+31e 4/180+517e 6/5040+ ... ) sin 2 {3 
+(23~/360+251~/3780+ 0. 0) sin 4 {3+(761e6/45360+ 0. 0) 
sin 6 {3 + .. 0 (3-18) 

where {3, the authalic latitude, is found thus: 

{3= arcsin [cos ce sin {31 +(Dy since cos {3 1/p)] (18-32) 

Equations (18-28), (18-30), and (18-31) still apply. In (18-32), if p = 0, 
{3={3.0 

The inverse formulas for the polar aspects involve relatively simple 
transformations of above equations (17-30), (17-31), and (18-25), ex­
cept that cp is found from the iterative equation (3-16), listed just above, 
in which q is calculated as follows: 

q = ± [ qP- (pi a)2] (18-33) 

taking the sign of cp1 o The series (3-18) may be used instead for cp, 
where 

{3 = ±arcsin (1- p2
/[ a 2[1- ((1- e2)/(2 e)) 

ln ((1- e)/(1 +e))]]} 

taking the sign of cp1• In any case, 

p=(X2+y2yh 

(18-34) 

(16-18) 
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while 

A=Ao+arctan [xl( -y)] 

for the north polar case, and 

}.. = Ao +arctan (x/y) 

for the south polar case. 
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(16-16) 

(16-17) 

Table 26 lists polar coordinates for the ellipsoidal polar as:'1ect of the 
Lambert Azimuthal Equal-Area, using the International elliosoid. 

TABLE 26.-Ellipsoidal polar Lambert Azimuthal Equal-Area projection (International 
ellipsoid) 

Latitude 

90° --------------------
89 ---------------------88 ____________________ _ 

8 7 ---------------------
86 ---------------------
85 ---------------------
84 ---------------------
83 ---------------------
82 ---------------------
81 ---------------------80 ____________________ _ 

79 ---------------------
78 ---------------------
77 ---------------------
76 ---------------------
7 5 ---------------------
7 4 ---------------------
73 ---------------------
72 ---------------------
71 ---------------------
70 ---------------------

h = scale factor along meridian. 
k = scale factor along parallel. 

Radius, meters 

0.0 
111,698.4 
223,387.7 
335,058.5 
446,701.8 
558,308.3 
669,868.8 
781,374.2 
892,815.4 

1,004,183.1 
1,115,468.3 
1,226,661.9 
1,337,754.7 
1,448,737.6 
1,559,601.7 
1,670,337.9 
1,780,937.2 
1,891,390.6 
2,001,689.2 
2,111,824.0 
2,221,786.2 

h 

1.000000 
.999962 
.999848 
.999657 
.999391 
.999048 
.998630 
.998135 
.997564 
.996918 
.996195 
.995397 
.994522 
.993573 
.992547 
.991446 
.990270 
.989018 
.987691 
.986289 
.984812 

k 

1.000000 
1.000038 
1.000152 
1.000343 
1.000610 
1.000953 
1.001372 
1.001869 
1.002442 
1.003092 
1.003820 
1.004625 
1.005508 
1.006469 
1.007509 
1.008628 
1.009826 
1.011104 
1.012462 
1.013902 
1.015422 





19. AZIMUTHAL EQUIDISTANT PROJECTION 

SUMMARY 

• Azimuthal. 
• Distances measured from the center are true. 
• Distances not measured along radii from the center are not correct. 
• The center of projection is the only point without distortion. 
• Directions from the center are true (except on some oblique and equatcrial ellipsoidal 

forms). 
• Neither equal-area nor conformal. 
• All meridians on the polar aspect, the central meridian on other aspects, and the 

Equator on the equatorial aspect are straight lines. 
• Parallels on the polar projection are circles spaced at true intervals (equidistant for 

the sphere). 
• The outer meridian of a hemisphere on the equatorial aspect (for the sph::re) is a circle. 
• All other meridians and parallels are complex curves. 
• Not a perspective projection. 
• Point opposite the center is shown as a circle (for the sphere) surrounding the map. 
• Used in the polar aspect for world maps and maps of polar hemisphere.s. 
• Used in the oblique aspect for atlas maps of continents and world maps for aviation 

and radio use. 
• Known for many centuries in the polar aspect. 

HISTORY 

While the Orthographic is probably the most familiar aziJnuthal pro­
jection, the Azimuthal Equidistant, especially in its polar form, has 
found its way into many atlases with the coming of the air age for maps 
of the Northern and Southern Hemispheres or for world maps. The 
simplicity of the polar aspect for the sphere, with equally spaced merid­
ians and equidistant concentric circles for parallels of latitude, has 
made it easier to understand than most other projections. 'P1e primary 
feature, showing distances and directions correctly from 0'1e point on 
the Earth's surface, is also easily accepted. In addition, its linear scale 
distortion is moderate and falls between that of equal-area and con­
formal projections. 

Like the Orthographic, Stereographic, and Gnomonic projections, 
the Azimuthal Equidistant was apparently used centuries before the 
15th-century surge in scientific mapmaking. It is believed that Egyp­
tians used the polar aspect for star charts, but the old€:st existing 
celestial map on the projection was prepared in 1426 by Cor~ad of Dyf­
fenbach. It was also used in principle for small areas by mariners from 
earliest times in order to chart coasts, using distances anc directions 
obtained at sea. 

179 
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The first clear examples of the use of the Azimuthal Equidi~tant for 
polar maps of the Earth are those included by Gerhardus Mer~ator as 
insets on his 1569 world map, which introduced his famous cylindrical 
projection. As Northern and Southern Hemispheres, the projection ap­
peared in a manuscript of about 1510 by the Swiss Henricus Loritus, 
usually called Glareanus (1488-1563), and by several others in the next 
few decades (Keuning, 1955, p. 4-5). Guillaume Postel is given credit in 
France for its origin, although he did not use it until 1581. Antonio 
Cagnoli even gave the projection his name as originator in 179':? (Deetz 
and Adams, 1934, p. 163; Steers, 1970, p. 234). Philippe Hatt developed 
ellipsoidal versions of the oblique aspect which are used by the French 
and the Greeks for coastal or topographic mapping. 

Two projections with similar names are called the Tvro-Point 
Azimuthal and the Two-Point Equidistant projections. Both were 
developed about 1920 independently by Maurer (1919) of Germ~ny and 
Close (1921) of England. The first projection (rarely used) is 
geometrically a tilting of the Gnomonic projection to proV.de true 
azimuths from either of two chosen points instead of from j'lSt one. 
Like the Gnomonic, it shows all great circle arcs as straight lines and is 
limited to one hemisphere. The Two-Point Equidistant has received 
moderate use and interest, and shows true distances, but not true 
azimuths, from either of two chosen points to any other point on the 
map, which may be extended to show the entire world (Close, 1934). 

The Chamberlin Trimetric projection is an approximate "thr~e-point 
equidistant" projection, constructed so that distances frmn three 
chosen points to any other point on the map are approximately correct. 
The latter distances cannot be exactly true, but the projection ic;; a com­
promise which the National Geographic Society uses as a stand~rd pro­
jection for maps of most continents. This projection was geomo.trically 
constructed by the Society, of which Wellman Chamberlin (1908-76) 
was chief cartographer for many years. 

An ellipsoidal adaptation of the Two-Point Equidistant was made by 
Jay K. Donald of American Telephone and Telegraph Company in 1956 
to develop a grid still used by the Bell Telephone syst~m for 
establishing the distance component of long distance rates. Still 
another approach is Bomford's modification of the Azimuthal Equidis­
tant, in which the usual circles of constant scale factor perpendicular to 
the radius from the center are made ovals to give a better avera1e scale 
factor on a map with a rectangular border (Lewis and Campbe1l, 1951, 
p. 7, 12-15). 

FEATURES 

The Azimuthal Equidistant projection, like the Lambert Arjmuthal 
Equal-Area, is not a perspective projection, but in the spheric::-.l form, 
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and in some of the ellipsoidal forms, it has the azimuthal ch~racteristic 
that all directions or azimuths are correct when measur~d from the 
center of the projection. As its special feature, all distance~ are at true 
scale when measured between this center and any other point on the 
map. 

The polar aspect (fig. 27A), like other polar azimuthals, has circles for 
parallels of latitude, all centered about the North or South Pole, and 
equally spaced radii of these circles for meridians. The IJ ~.rallels are, 
however, spaced equidistantly on the spherical form (or according to 
actual parallel spacings on the ellipsoid). A world map can extend to the 
opposite pole, but distortion becomes infinite. Even thoug1. the map is 
finite, the point for the opposite pole is shown as a circle twice the 
radius of the mapped Equator, thus giving an infinite scale factor along 
that circle. Likewise, the countries of the outer hemisphere are visibly 
increasingly distorted as the distance from the center incr~ases, while 
the inner hemisphere has little enough distortion to aJ: 1'1ear rather 
satisfactory to the eye, although the east-west scale along the Equator 
is almost 60 percent greater than the scale at the center. 

As on other azimuthals, there is no distortion at the center of the pro­
jection and, as on azimuthals other than the Stereographic, the scale 
cannot be reduced at the center to provide a standard circle of no 
distortion elsewhere. It is possible to use an average scale C'ver the map 
involved to minimize variations in scale error in any direction, but this 
defeats the main purpose of the projection, that of providing true 
distance from the center. Therefore, the scale at the proje~tion center 
should be used for any Azimuthal Equidistant map. 

The equatorial aspect (fig. 27B) is least used of the thre~ Azimuthal 
Equidistant aspects, primarily because there are no cities along the 
Equator from which distances in all directions have been of much in­
terest to map users. Its potential use as a map of the Eastern or 
Western Hemisphere was usually supplanted first by th~ equatorial 
Stereographic projection, later by the Globular projE'etion (both 
graticules drawn entirely with arcs of circles and straight lines), and 
now by the equatorial Lambert Azimuthal Equal-Area. 

For the equatorial Azimuthal Equidistant projection of the sphere, 
the only straight lines are the central meridian and the Equator. The 
outer circle for one hemisphere (the meridian 90° east ancl west of the 
central meridian) is equidistantly marked off for the paralle:ls, as it is on 
other azimuthals. The other meridians and parallels are corplex curves 
constructed to maintain the correct distances and azimuths from the 
center. The parallels cross the central meridian at their t:rue equidis­
tant spacings, and the meridians cross the Equator equidi<:'t.antly. The 
map can be extended, like the polar aspect, to include a much-distorted 
second hemisphere on the same center. 
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The oblique Azimuthal Equidistant projection (fig. 27C) rather 
resembles the oblique Lambert Azimuthal Equal-Area when corfined 
to the inner hemisphere centered on any chosen point between Equator 
and pole. Except for the straight central meridian, the graticule con­
sists of complex curves, positioned to maintain true distance and 
azimuth from the center. When the outer hemisphere is included, the 
difference between the Equidistant and the Lambert becomes more 
pronounced, and while distortion is as extreme as in other aspects, the 
distances and directions of the features from the center now outweigh 
the distortion for many applications. 

USAGE 

The polar aspect of the Azimuthal Equidistant has regularly ap­
peared in commercial atlases issued during the past century f.s the 
most common projection for maps of the north and south polar areas. It 
is used for polar insets on Van der Grinten-projection world maps 
published by the National Geographic Society and used as base maps 
(including the insets) by USGS. The polar Azimuthal Equidistant pro­
jection is also normally used when a hemisphere or complete s:nhere 
centered on the North or South Pole is to be shown. The oblique f.spect 
has been used for maps of the world centered on important cit~o.s or 
sites and occasionally for maps of continents. Nearly all these maps 
use the spherical form of the projection. 

The USGS has used the Azimuthal Equidistant projection in both 
spherical and ellipsoidal form. An oblique spherical version of the 
Earth centered at lat. 40° N., long. 100° W., appears in the National 
Atlas (USGS, 1970, p. 329). At a scale of 1:175,000,000, it does not 
show meridians and parallels, but shows circles at 1,000-mile intervals 
from the center. The ellipsoidal oblique aspect is used for the plane 
coordinate projection system in approximate form for Guam and in 
nearly rigorous form for islands in Micronesia. 

GEOMETRIC CONSTRUCTION 

The polar Azimuthal Equidistant is among the easiest projections to 
construct geometrically, since the parallels of latitude are equally 
spaced in the spherical case and the meridians are drawn at thei~ true 
angles. There are no direct geometric constructions for the oblique and 
equatorial aspects. Like the Lambert Azimuthal Equal-Area, the:r may 
be prepared indirectly by using other azimuthal projections (Harrison, 
1943), but automatic computer plotting or manual plotting of 

FIGURE 27.-Azimuthal Equidistant projection. (A) Polar aspect extending to the South._ 
Pole; commonly used in atlases for polar maps. (B) Equatorial aspect. (C) Oblique .,­
aspect centered on lat. 40° N. Distance from the center is true to scale. 
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calculated rectangular coordinates is the most suitable meanr now 
available. 

FORMULAS FOR THE SPHERE 

On the Azimuthal Equidistant projection for the sphere, a given point 
is plotted at a distance from the center of the map proportional to the 
distance on the sphere and at its true azimuth, or 

p=Rc 
8= 1r-Az= 180° -Az 

(19-1) 
(16-2) 

where cis the angular distance from the center, Az is the azimuth east 
of north (see equations (5-3) through (5-6}), and 8 is the polar coor­
dinate east of south. For 1C and h:, see equation (19-2) and the state­
ment below. Combining various equations, the rectangular coord:nates 
for the oblique Azimuthal Equidistant projection are found as fc llows, 
given R, <Ph Ao, </>, and A: 

x = R 1C cos <1> sin (A- Ao) 
y = R 1C [cos </>1 sin <1>- sin </>1 cos <1> cos (A- Ao)] 

where 

(18-2) 
(18-3) 

1C = c/sin c (19-2) 
cos c = sin </>1 sin <1> +cos </>1 cos q, cos (A- Ao) (5-3) 

and ( </>1, Ao) are latitude and longitude of the center of projectk'1 and 
origin. The Y axis coincides with the central meridian Ao, anc1 y in­
creases northerly. If cos C= 1, equation (19-2) is indeterminate, but 
IC= 1, and x=y=O. If cos C= -1, the point opposite the center (-<Ph he> 
± 180°) is indicated; it is plotted as a circle of radius 1rR. The ter'tllC is 
the scale factor in a direction perpendicular to the radius from the 
center of the map, not along the parallel, except in the polar cas~. The 
scale factor h: in the direction of the radius is 1.0. 

For the north polar aspect, with <J>1 = 90°, 

x=R(7r/2-</>) sin (A- Ao) 
y = - R ( 1r/2- </>) cos (A- Ao) 
k= (1rl2- q,)/cos q, 
h=l.O 
p =R(1r/2- </>) 
8=A-Ao 

For the south polar aspect, with <J> 1 = - 90°, 

x=R(7ri2+<P) sin (A- Ao) 
y = R( 1r/2 + <1>) cos (A- Ao) 
k= (1r/2 + q,)/cos q, 
h=l.O 
p =R (7rl2+</>) 
8= 7r-A+Ao 

(19-3) 
(19-4) 
(19-5) 

(19-6) 
(16-9) 

(19-7) 
(19-8) 
(19-9) 

(:'.9-10) 
(l6-12) 



AZIMUTHAL MAP PROJECTIONS 185 

For the equatorial aspect, with ¢1 = 0, xis found from (18-2) and It from 
(19-2), but 

y=R lC sin¢ (19-11) 

and 

cos C= cos¢ cos (A- Ao) (19-12) 

The maximum angular deformation w for any of these aspects, using 
equations (4-7) through (4-9), since h!= 1.0: 

sin 1hw =(It -1)/(/t + 1) 
= (c- sin c)/(c+ sin c) 

(19-13) 
(19-14) 

For the inverse formulas for the sphere, given R, t/J1 , Xo, x, 8 nd y: 

t/J=arcsin [cos c sin ¢1 +(y sin c cos ¢ 1/p)] (16-14) 

But if p=O, ¢=¢~. 
If ¢ 1 is not ± 90°: 

A= Xo +arctan [x sin c!( p cos ¢ 1 cos c- y sin ¢ 1 sin c)] 

If ¢ 1 is 90°: 

A= Xo +arctan [x/(- y)] 

If ¢ 1 is -90°: 

A= Xo +arctan (x/y) 

In equations (16-14) and (16-15), 

P =(x2+Y2rlz 
C=piR 

(16-15) 

(16-16) 

(16-17) 

(16-18) 
(19-15) 

Except for (19-15), the above inverse formulas are the same as those 
for the other azimuthals, and (19-2) is the only change from previous 
azimuthals among the general (oblique) formulas (18-2) through (5-3) 
for the forward calculations as listed above. 

Table 27 shows rectangular coordinates for the equatorial aspect for 
a 10° graticule with a sphere of radius R = 1.0. 

FORMULAS FOR THE ELLIPSOID 

The formulas for the polar aspect of the ellipsoidal Azimuthal 
Equidistant projection are relatively simple and are theoretically ac­
curate for a map of the entire world. However, such a use is un­
necessary because the errors of the sphere versus the ellipsoid become 
insignificant when compared to the basic errors of projection. The 
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TABLE 27. -Azimuthal Equidistant projection: Rectangular coordinates for equatorial 
aspect (sphere) 

[One hemisphere; R= 1. y coordinates in parentheses under x coordinates] 

~ 
oo 100 20° 30° 40° 

. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 c.ooooo 

80 ---------------
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

.00000 .04281 .08469 .12469 .16188 

70 ------------
(1.39626) (1.39829) (1.40434) (1.41435) (1.42823) 

.00000 .07741 .15362 .22740 .29744 

60 ----~~--------
(1.22173) (1.22481) (1.23407) (1.24956) (1.27137) 

.00000 .10534 .20955 .31145 .40976 

50 ---------------
(1.04720) (1.05068) (1.06119) (1.07891) (1.10415) 

.00000 .12765 .25441 .37931 .50127 

40 ---------------
( .87266) ( .87609) ( .88647) ( .90408) ( .92938) 

.00000 .14511 .28959 .43276 .57386 

30 ---------------
( .69813) ( .70119) ( .71046) ( .72626) ( .74912) 

.00000 .15822 .31607 .47314 .62896 

20 ---------------
( .52360) ( .52606) ( .53355) ( .54634) ( .56493) 

.00000 .16736 .33454 .50137 .66762 

10 ---------------
( .34907) ( .35079) ( .35601) ( .36497) ( .37803) 

.00000 .17275 .34546 .51807 .69054 

0 ---------------
( .17453) ( .17541) ( .17810) ( .18270) ( .18943) 

.00000 .17453 .34907 .52360 .69813 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

TABLE 27.-Azimuthal Equidistant projection: Rectangular coordinates for e~-;uatorial 
aspect (sphere)- Continued 

~ 50° 60° 70° 80° 90° 
. 

90° -------------- 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080) 

80 --------------- .19529 .22399 .24706 .26358 .27277 
(1.44581) (1.46686) (1.49104) (1.51792) (1.54693) 

70 --------------- .36234 .42056 .47039 .50997 .53724 
(1.29957) (1.33423) (1.37533) (1.42273) (1.47607) 

60 --------------- .50301 .58948 .66711 .73343 .78540 
(1.13733) (1.17896) (1.22963) (1.28993) (1.36035) 

50 --------------- .61904 .73106 .83535 .92935 1.00969 
( .96306) (1.00602) (1.05942) (1.12464) (1.20330) 

40 --------------- .71195 .84583 .97392 1.09409 1.20330 
( .77984) ( .81953) ( .86967) ( .93221) (1.00969) 

30 --------------- .78296 .93436 1.08215 1.22487 1.36035 
( .59010) ( .62291) ( .66488) ( .71809) ( .78540) 

20 --------------- .83301 .99719 1.15965 1.31964 1.47607 
( .39579) ( .41910) ( .44916) ( .48772) ( .53724) 

10 --------------- .86278 1.03472 1.20620 1.37704 1.54693 
( .19859) ( .21067) ( .22634) ( .24656) ( .27277) 

0 --------------- .87266 1.04720 1.22173 1.39626 1.57080 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

Radius of sphere -1.0. 
Origin: (x, y)•O at (lat., long.)•O. Y axis increases north. Other quadrants of hemisphere are symmetlical. 
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polar form is truly azimuthal as well as equidistant. Given a, e, q,., he,, q,, 
and)., for the north polar aspect, c/> 1 =90°: 

where 

x = p sin (). - Ac,) 
y = - p cos ().-he,) 
k= p/(am) 

(17-30) 
(17-31) 
(17-32) 

p=Mp-M (19-16) 
M =a [(1- e 2/4- 3e 4/64- 5e 6/256- ... )cf>- (3e 2/8 + 3e 4/32 

+ 45e 6/1024 + ... ) sin 2 q, + (15e 4/256 + 45e 6/1024 + ... ) 
sin 4 q,- (35e 6/3072 + ... ) sin 6 q, + ... ] (3-21) 

with MP the value of M for a q, of 90°, 
and m= cos q,/(1- e2 sin2 q,)lf2 (12-15) 

For the south polar aspect, the equations for the north polar aspect 
apply, except that equations (17-31) and (19-16) become 

Y= p cos().- he,) 
p=Mp+M 

(18-23) 
(19-17) 

The origin falls at the pole in either case, and the Y axis follows the cen­
tral meridian ~. For the north polar aspect, ~ is shown below the pole, 
and y increases along he, toward the pole. For the south pola1· aspect, he, 
is shown above the pole, and y increases along he, away frorr the pole. 

Table 28 lists polar coordinates for the ellipsoidal aspect of the 
Azimuthal Equidistant, using the International ellipsoid. 

TABLE 28. -Ellipsoidal Azimuthal Equidistant projection (lnternationcl ellipsoid)­
Polar Aspect 

Latitude 

90° --------------------
89 ---------------------
88 ---------------------
87 ---------------------86 ____________________ _ 

85 ---------------------
84 ---------------------
83 ---------------------
82 ---------------------81 ____________________ _ 

80 ---------------------
79 ---------------------
78 ---------------------
77 ---------------------
76 ---------------------
75 ---------------------
7 4 ---------------------
73 ---------------------
72 ---------------------71 ____________________ _ 

70 ---------------------

h = scale factor along meridian. 
k = scale factor along parallel. 

Radius, meters 

0.0 
111,699.8 
223,399.0 
335,096.8 
446,792.5 
558,485.4 
670,175.0 
781,860.4 
893,541.0 

1,005,216.2 
1,116,885.2 
1,228,547.5 
1,340,202.4 
1,451,849.2 
1,563,487.4 
1,675,116.3 
1,786,735.3 
1,898,343.8 
2,009,941.3 
2,121,527.1 
2,233,100.9 

h 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

k 

1.000000 
1.000051 
1.000203 
1.000457 
1.000813 
1.001270 
1.001830 
1.002492 
1.003256 
1.004124 
1.005095 
1.006169 
1.007348 
1.008631 
1.010019 
1.011513 
1.013113 
1.014821 
1.016636 
1.018560 
1.020594 
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For the oblique and equatorial aspects of the ellipsoidal Azimuthal 
Equidistant, both nearly rigorous and approximate sets of formulas 
have been derived. For mapping of Guam, the National Geodetic 
Survey and the USGS use an approximation to the ellipsoidal oblique 
Azimuthal Equidistant called the "Guam projection." It is described by 
Claire (1968, p. 52-53) as follows (changing his symbols to match those 
in this publication): 

"The plane coordinates of the geodetic stations on Guam were obtained by first com­
puting the geodetic distances [c] and azimuths [Az] of all points from the origin by inverse 
computations. The coordinates were then computed by the equations: [x=c sin Az and 
y=c cos Az]. This really gives a true azimuthal equidistant projection. The equations 
given here are simpler, however, than those for a geodetic inverse computatio"l, and the 
resulting coordinates computed using them will not be significantly different f-om those 
computed rigidly by inverse computation. This is the reason it is called an ap:->roximate 
azimuthal equidistant projection." 

The formulas for the Guam projection are equivalent to the following: 

x=a(A-Ao) cos cp/(l-e2 sin2cJ>r12 

y=M -M1 +X2 tan cp (1- e2 sin2 cp)'12/(2a) 
(19-18) 
(19-19) 

where M and M 1 are found from equation (3-21) for cp and cp1 • Actually, 
the original formulas are given in terms of seconds of re~tifying 
latitude and geodetic latitude and longitude, but they may be written as 
above. The x coordinate is thus taken as the distance along the parallel, 
and y is the distance along the central meridian Ao with adjustment for 
curvature of the parallel. The origin occurs at (cp., Ao), theY axis coin­
cides with the central meridian, andy increases northerly. 

For Guam, c/> 1 = 13°28'20.87887" N. lat. and Ao= 144°44'55.50254" E. 
long., with 50,000 m added to both x and y to eliminate n~gative 
numbers. The Clarke 1866 ellipsoid is used. 

A more complicated and more accurate approach to the oblique ellip­
soidal Azimuthal Equidistant projection is used for plane coordinates of 
various individual islands of Micronesia. In this form, the true distance 
and azimuth of any point on the island or in nearby waters are 
measured from the origin chosen for the island and along the normal 
section or plane containing the perpendicular to the surface of the ellip­
soid at the origin. This is not exactly the same as the shortest or 
geodesic distance between the points, but the difference is ne~ligible 
(Bomford, 1971, p. 125). This distance and azimuth are plotted on the 
map. The projection is, therefore, equidistant and azimuthal with 
respect to the center and appears to satisfy all the requirementr~ for an 
ellipsoidal Azimuthal Equidistant projection, although it is descr;bed as 
a "modified" form. The origin is assigned large-enough values of x andy 
to prevent negative readings. 
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The formulas for calculation of this distance and azimuth have been 
published in various forms, depending on the maximum distance in­
volved. The projection system for Micronesia makes use of "Clarke's 
best formula" and Robbins's inverse of this. These are considered 
suitable for lines up to 800 km in length. The formulas below, rear­
ranged slightly from Robbins's formulas as given in Bomford (1971, p. 
136-137), are extended to produce rectangular coordinates. No itera­
tion is required. They are listed in the order of use, given a central 
point at lat. ~11 long. Ao, coordinates X0 and Yo of the central point, the Y 
axis along the central meridian Ao, y increasing northerl;T, ellipsoidal 
parameters a and e, and ~ and A. 

To find x andy: 

N. = a/(1- e2 sin2 ~S12 

N = a/(1- e2 sin2 ~ )'12 

1/; =arctan [(1- e2)tan ~ + e2 N 1 sin ~.I(N cos~)] 
Az= arctan {sin (A- Ao)/[cos ~~tan 1/;- sin~~ cos (A- Ao)]} 

(4-20a) 
(4-20) 

(19-20) 
(19-21) 

The ATAN2 Fortran function should be used with equation (19-21), 
but it is not applicable to (19-20). 

If sin Az=O, 

s= ± arcsin(cos¢1 sin,P-sin~1 cos,P) 

taking the sign of cos Az. 
If sin Az=1=0, 

s= arcsin [sin (A- Ao) cos ,PisinAz] 

In either case, 

G = e sin ~1/(1- e2
}'

12 

H = e cos ~1 cos Az/(1- e2
)'12 

c = N 1 s{ 1- s2H 2(1- H 2)/6 + ( s3/8)GH(1- 2H2
) 

+(s4/120)[H2{4-7H2)- 3G2{1-7H2)] 

- (s5/48)GH} 
X= c sinAz+X0 

Y=CCOSAZ+Yo 

(19-22) 

(19-22a) 

(19-23) 
(19-24) 

(19-25) 
(19-26) 
(19-27) 

where c is the geodetic distance, and Az is azimuth east of north. 
Table 29 shows the parameters for the various islands 1napped with 

this projection. 
Inverse formulas for the polar ellipsoidal aspect, given tr.., e, ~11 Ao, x, 

andy: 

~=p.+(3e1/2-27 eU32) sin 2p.+(21 ef/16-55 et/32) r1n 
4p. + (151 e:f96) sin 6p. + . . . (3-26) 



TABLE 29.-Plane coordinate systems for Micronesia: Clarke 1866 ellipsoid 

9!.1 Xo 
Group Islands Station at Origin LatN. Long E. 

Caroline Islands-------- y:fa Yap Secor 9° 32' 48.898" 138° 10'07.084" 
P au Arakabesan Is. 7°21'04.3996" 134 °27'01.6015" 
Po nape Distad (USE) 6°57'54.2725" 158°12'33.4772" 
Truk Atoll Truk Secor RM 1 7°27'22.3600" 151 °50'17.8530" 

Mariana Islands -------- Saipan Saipan 15°11'05.6830" 145 ° 44'29 .9720" 
Rota Astro 14 °07'58.8608" 145°08'03.2275" 

Marshall Islands -------- Majuro Atoll Dalap 7°05'14.0" 171 °22'34.5" 

x,, Yo= rectangular coordinates of ct>nter of projection. 
q,,, llo =geodetic coordinates of center of projection. 

Meters 
Xo Yo 

39,987.92 60,022.98 
50,000.00 150,000.00 
80,122.82 80,747.24 
60,000.00 70,000.00 
28,657.52 67,199.99 

5,000.00 5,000.00 
85,000.00 40,000.00 

"'"""' cc 
0 

~ ., 
~ 
t;a 
C"l 

~ rn 
c::: rn 
t.:t:j 
I:' 

~ 
t-3 g; 
c::: rn 
~ 



where 

and 
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e.= [1- (1- e1Y12 ]/[1 + (1- e2r'2 1 
p. =MI[ a (1- e214- 3e 4/64- 5e 6/256- ... )] 

M = MP- p for the north polar case, 

M = p-MP for the south polar case. 

191 

(3-24) 
(8-19) 

(19-28) 

(19-29) 

Equation (3- 21), listed with the forward equations, is usAd to find MP 
for ¢=90°. For either case, 

p = (x2 + yl)lh (16-18) 

For longitude, for the north polar case, 

A=Ao+arctan [x/( -y)] 

For the south polar case, 

}.. = Ao +arctan (x/y) 

(16-16) 

(16-17) 

Inverse formulas for the Guam projection (Claire, 1968, p. 53) involve 
an iteration of two equations, which may be rearranged ~nd rewritten 
in the following form consistent with the above formulas. Given a, e, c/> 1, 

Ao, x, and y, M 1 is calculated for c/> 1 from (3-21), given with forward 
equations. (If false northings and eastings are included in x and y, they 
must be subtracted first.) 

Then, first assuming cJ> = cJ>., 

(19-30) 

Using this M, p. is calculated from (8-19) and inserted into the right side 
of (3-26) to solve for a new cJ> on the left side. This is inserted into 
(19-30), a new M is found, and it is resubstituted into (8-19), p. into 
(3-26), etc., until cf> on the left side of (3-26) changes b? less than a 
chosen convergence figure, for a final cJ>. Then 

A=Ao+X (1-& sin2 cf>)lh/(a cos cJ>) (19-31) 

The inverse Guam formulas arbitrarily stop at three iterations, which 
are sufficient for the small area. 

For the Micronesia version of the ellipsoidal Azimuthal Equidistant 
projection, the inverse formulas given below are "Clarl·e's best for­
mula," as given in Bomford (1971, p. 133) and do not involve iteration. 
They have also been rearranged to begin with rectangular coordinates, 
but they are also suitable for finding latitude and longitude accurately 
for a point at any given distance c (up to about 800 km) ani azimuthAz 
(east of north) from the center, if equations (19-32) and (19-33) are 
deleted. In order of use, given a, e, central point at lat. ¢., long. Ao, 
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rectangular coordinates of center x0 , y0 , and x and y for another point, 
to find <P and A: 

c = [(x- Xo)2 + (y- Yo)l)V2 
Az =arctan [(x- Xo)l(y- Yo)] 
N1 = a/(1- e1 sin1 <PStz 
A = - e1 cos1 <j} 1 cos1 Az/(1- e1) 

B = 3e1 (1-A) sin <P 1 cos <P1 cosAz/(1- e1
) 

D=c!Nl 
E=D-A (l+A)D3/6-B(1+3A)D4/24 
F= 1-AE1/2-BE3/6 
~=arcsin (sin <Pt cos E +cos <j} 1 sinE cos Az) 
A= Ao +arcsin (sin Az sinE/cos~) 
<P =arctan [(1- e1F sin <j}1/sin ~)tan ~/(1- e1

)] 

(1~-32) 

(19-33) 
(4-20a) 
(19-34) 
(19-35) 
(19-36) 
(19-37) 
(19-38) 
(19-39) 
(19-40) 
(19-41) 

The ATAN2 function of Fortran, or equivalent, should be used in equa­
tion (19-33), but not (19-41). 



SPACE MAP PROJECTIONS 

One of the most recent developments in map projectiors has been 
that involving a time factor, relating a mapping satellite revolving in an 
orbit about a rotating Earth. With the advent of automated continuous 
mapping in the near future, the static projections previously available 
are not sufficient to provide the accuracy merited by the imagery, 
without frequent readjustment of projection parameters and discon­
tinuity at each adjustment. Projections appropriate for such satellite 
mapping are much more complicated mathematically, but, once de­
rived, can be handled by computer. 

Several such space map projections have been conceived, and all but 
one have been mathematically developed. The Space Oblique Mercator 
projection, suitable for mapping imagery from Landzat and other ver­
tically scanning satellites, is described below. The Space 01lique Con­
formal Conic is a still more complex projection, currently only in 
conception, but for which mathematical development will he required 
when satellite side-looking imagery has been developed to an extent 
sufficient to encourage its use. Satellite-tracking projections are 
simpler, but are less important and are not discussed her~ (Snyder, 
1981a). 

20. SPACE OBLIQUE MERCATOR PROJECTION 

SUMMARY 
• Modified cylindrical projection with map surface defined by satellite orbit. 
• Designed especially for continuous mapping of satellite imagery. 
• Basically conformal, especially in region of satellite scanning. 
• Groundtrack of satellite, a curved line on the globe, is shown as a curv~d line on the 

map and is continuously true to scale as orbiting continues. 
• All meridians and parallels are curved lines, except meridian at each polar approach. 
• Recommended only for a relatively narrow band along the groundtrack. 
• Developed 1973-79 by Colvocoresses, Snyder, and Junkins. 

HISTORY 

The launching of an Earth-sensing satellite by the National 
Aeronautics and Space Administration in 1972 led to a new era of map­
ping on a continuous basis from space. This satellite, first called 
ERTS-1 and renamed Landsat-1 in 1975, was followed by two others, 
all of which circled the Earth in a nearly circular orbit incrned about 
99° to the Equator and scanning a swath about 185 km (oficially 100 
nautical miles) wide from an altitude of about 919 km. A fo~1rth Land­
sat has somewhat different orbital parameters. 

193 
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Continuous mapping of this band required a new map proj~ction. 
Although conformal mapping was desired, the normal choir~, the 
Oblique Mercator projection, is unsatisfactory for two reasons. First, 
the Earth is rotating at the same time the satellite is moving in an orbit 
which lies in a plane almost at a right angle to the plane of the Eouator, 
with the double-motion effect producing a curved groundtrack, rather 
than one formed by the intersection of the Earth's surface with a plane 
passing through the center of the Earth. Second, the only available 
Oblique Mercator projections for the ellipsoid are for limited coverage 
near the chosen central point. · 

What was needed was a map projection on which the groundtr~.ck re­
mained true-to-scale throughout its course. This course does not, in the 
case of Landsat, return to the same point for 251 revolutions. It was 
also felt necessary that conformality be closely maintained within the 
range of the swath mapped by the satellite. 

Alden P. Colvocoresses of the Geological Survey was the first to 
realize not only that such a projection was needed, but also that it was 
mathematically feasible. He defined it geometrically (Colvoco:--esses, 
1974) and immediately began to appeal for the development of for­
mulas. The following formulas resulted from the writer's response to 
Colvocoresses' appeal made at a geodetic conference at The Ohio State 
University in 1976. While the formulas were derived (1977-79) for 
Landsat, they are applicable to any satellite orbiting the Earth in a cir­
cular or elliptical orbit and at any inclination. Less complete fo:--mulas 
were also developed in 1977 by John L. Junkins, then of the University 
of Virginia. The following formulas are limited to nearly circular orbits. 
A complete derivation for orbits of any ellipticity is given by Snyder 
(1981) and another summary by Snyder (1978b). 

FEATURES AND USAGE 

The Space Oblique Mercator (SOM) projection visually differ;;- from 
the Oblique Mercator projection in that the central line (the ground­
track of the orbiting satellite) is slightly curved, rather than st:-:-aight. 
For Landsat, this groundtrack appears as a nearly sinusoidal curve 
crossing the X axis at an angle of about 8°. The scanlines, perpen­
dicular to the orbit in space, are slightly skewed with respect to the 
perpendicular to the groundtrack when plotted on the sphere or ellip­
soid. Due to Earth rotation, the scanlines on the Earth (or m~p) in­
tersect the groundtrack at about 86° near the Equator, but at 90° 
when the groundtrack makes its closest approach to either pole:. With 
the curved groundtrack, the scanlines generally are skewed with 
respect to the X and Y axes, inclined about 4 o to the Y axis at the 
Equator, and not at all at the polar approaches. 
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The Landsat orbit intersects the plane of the Equator at an inclina­
tion of about 99°, measured as the angle between the direction of 
satellite revolution and the direction of Earth rotation. Thus the 
groundtrack reaches limits of about lat. 81 oN. and S. (180° minus 99°). 
The 185-km swath scanned by Landsat, about 0.83° on eitl,~r side of 
the groundtrack, leads to complete coverage of the Earth from about 
lat. 82° N. to 82° S. in the course of the 251 revolution<:', With a 
nominal altitude of about 919 km, the time of one revolution is 103.267 
minutes, and the orbit is designed to complete the 251 revolutions in 
exactly 18 days. 

As on the normal Oblique Mercator, all meridians and parallels are 
curved lines, except for the meridian crossed by the groundtrack at 
each polar approach. While the straight meridians are 180° apart on 
the normal Oblique Mercator, they are about 167° apart Oil the SOM 
for Landsat, since the Earth advances about 26° in longitud~ for each 
revolution of the satellite. 

As developed, the SOM is not perfectly conformal for either the 
sphere or ellipsoid, although the error is negligible within the scanning 
range for either. Along the ground track, scale in the direction of the 
ground track is correct for sphere or ellipsoid, while conformzlity is cor­
rect for the sphere and within 0.0005 percent of correct for the ellip­
soid. At 1 o away from the groundtrack, the Tissot Indicatrix (the 
ellipse of distortion) is flattened a maximum of 0.001 percent for the 
sphere and a maximum of 0.006 percent for the ellipsoid (this would be 
zero if conformal). The scale 1 o away from the groundtrack averages 
0.015 percent greater than that at the groundtrack, a valu~ which is 
fundamental to projection. As a result of the slight nonconformality, 
the scale 1 o away from the groundtrack on the ellipsoid then varies 
from 0.012 to 0.018 percent more than the scale along the groundtrack. 

A prototype version of the SOM was used by NASA with a geometric 
analogy proposed by Colvocoresses (1974) while he was SE'~king the 
more rigorous mathematical development. This consisted b1tsically of 
moving an obliquely tangent cylinder back and forth on the sphere so 
that a circle around it which would normally be tangent shifted to 
follow the groundtrack. This is suitable near the Equator but leads to 
errors of about 0.1 percent near the poles, even for the spher~~. In 1977, 
John B. Rowland of the USGS applied the Hotine Oblique Mercator 
(described previously) to Landsat 1, 2, and 3 orbits in five stationary 
zones, with smaller but significant errors (up to twice the S~'~ale varia­
tion of the SOM) resulting from the fact that the groundtrr~k cannot 
follow the straight central line of the HOM. In addition, there are 
discontinuities at the zone changes. This was done to fill the void 
resulting from the lack of SOM formulas. 
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FIGURE 28.- Two orbits of the Space Oblique Mercator projection, shown for Landsat. Designed for a narrow band along groundtrack, 
which remains true to scale. Note the change in longitude at a given latitude along the groundtrack, with successive orbits. 
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FIGURE 29.- One quadrant of the Space Oblique Mercator projection. An "enlargement" of part of figure 28, beginning at the North Pole. 
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As of this writing, the final SOM development has not rep]aced the 
HOM programing for Landsat mapping, but this is expected in the near 
future. The projection is included here because of its potential use and 
the fact that it was developed wholly within or under the supervision of 
the USGS. Figures 28 and 29 show the SOM extended to tFo orbits 
with a 30° graticule and for one-fourth of an orbit with a 10° graticule, 
respectively. The progressive advance of meridians may be seen in 
figure 28. Both views are for Landsat constants. 

FORMULAS FOR THE SPHERE 

Both iteration and numerical integration are involved in the formulas 
as presented for sphere or ellipsoid. The iteration is quite rapid (three 
to five iterations required for ten-place accuracy), and the nurr~rical in­
tegration is greatly simplified by the use of rapidly converging Fourier 
series. The coefficients for the Fourier series may be calculz.ted once 
for a given satellite orbit. [Some formulas below are slightly simplified 
from those first published (Snyder, 1978b).J 

For the forward equations, for the sphere and circular orbit, to find 
(x, y) for a given(¢, A), it is necessary to be given R, i, P1 , Pu Ac,, ¢,and 
A, where 

R =the radius of the globe at the scale of the map. 
i =angle of inclination between the plane of the Earth's Equator 

and the plane of the satellite orbit, measured counterclockwise 
from the Equator to the orbital plane at the ascend~ng node 
(99.092° for Landsat). 

P1 =time required for revolution of the satellite (103.267 min for 
Landsat). 

P1 =length of Earth's rotation with respect to the r"'"ecessed 
ascending node. For Landsat, the satellite orbit is Sun­
synchronous; that is, it is always the same with respE'~t to the 
Sun, equating P 1 to the solar day (1,440 min). The ascending 
node is the point on the satellite orbit at which the satellite 
crosses the Earth's equatorial plane in a northerly direction. 

'Ao =the geodetic longitude of the ascending node at time t = 0. 
(¢, A)=geodetic latitude and longitude of point to be p~0tted on 

map. 
t =time elapsed since the satellite crossed the ascending node for 

the orbit considered to be the initial one. This may be the cur­
rent orbit or any earlier one, as long as the proper A., is used. 

First, various constants applying to the entire map for all the satellite's 
orbits should be calculated a single time: 

B= (2/7r)Joll"'• [(H -81)1(1 +S1r12]d A' 
An= [4/(7rn)Jiow'•[(H -81)1(1 +Szrtzl cos n A' d A' 

for n=2 and 4 only. 

(20-1) 
(20-2) 
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en= [4(H + 1)/(rn)]fo"''· [S/(1 +S2)Vz] cos n 'A' d 'A' (20-3) 

for n= 1 and 3 only. 
For calculating AnJ B, and enJ numerical integration using S!mpson's 

rule is recommended, with 9° intervals in 'A' (sufficient for ten-T)lace ac­
curacy). The terms shown are sufficient for seven-place accuracy, am­
ple for the sphere. For HandS in equations (20-1) through (21-3): 

H = 1-(P2/P1) cos i 
S =(Pl/Pt) sin i cos 'A' 

(20-4) 
(20-5) 

To find x andy, with the X axis passing through each asceniing and 
descending node (wherever the groundtrack crosses the Equator), x in­
creasing in the direction of satellite motion, and the Y axiE· passing 
through the ascending node for time t = 0: 

xl R = B'A' + A2 sin 2'A' + A 4 sin 4'A' + . . . 
- [S/(1 +S2)Vz] ln tan (r/4 + (j>'/2) 

y!R =c. sin 'A'+ e3 sin 3'A' + ... 
+ [1/(1 +82

)'
12] ln tan (r/4 + (j>'/2) 

(20-6) 

(20-7) 

where B, An, and Cn and constants calculated above, Sis calculated 
from (20-5) for each point, and 

'A' = arctan (cos i tan 'At + sin i tan (j>/ cos 'At) 
'At= 'A- 'Ao + (P2/P1) 'A' 
(j>' = arcsin (cos i sin (jJ - sin i cos (jJ sin 'At) 
'Ao= 128.87° ~(360°/251)p (Landsat 1, 2, 3 only) 

(20-8) 
(20-9) 

(20-10) 
(20-11) 

p =path number of Landsat orbit for which the ascending node 
occurs at timet= 0. This ascending node is prior to the start of 
the path, so that the path extends from 1/4 orbit past tris node 
to 5

/ 4 orbit past it. 
'A'= "transformed longitude," the angular distance along the 

ground track, measured from the initial ascending node ( t = 0), 
and directly proportional to t for a circular orbit, or 'A'= 360° 
t/P2. 

'At= a "satellite-apparent" longitude, the longitude relative to 
'Ao seen by the satellite if the Earth were stationary. 

(j>'="transformed latitude," the angular distance from the ground­
track, positive to the left of the satellite as it proceeds along the 
orbit. 

Finding 'A' from equations (20-8) and (20-9) involves iteration per­
formed in the following manner: After selecting (jJ and 'A, the 'A' of the 
nearest polar approach, 'An', is used as the first trial 'A' on the ri ~ht side 
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of (20-9); Xt is calculated and substituted into (20-8) to find a new X'. A 
quadrant adjustment (see below) is applied to X', since the computer 
normally calculates arctan as an angle between - 90° and go(l, and this 
X' is used as the next trial X' in (20-g), etc., until X' changes by lo.ss than a 
chosen convergence factor. The ~alue of XP' may be determined as 
follows, for any number of revolutiOns: 

Xp' = go 0 
X ( 4 N + 2 ± 1) (20-12) 

where N is the number of orbits completed at the last ascending node 
before the satellite passes the nearest pole, and the ± takeE' minus in 
the Northern Hemisphere and plus in the Southern (eithE''t" for the 
Equator). Thus, if only the first path number past the ascending node is 
involved, XP' is goo for the first quadrant (North Pole to Equator), 270° 
for the second and third quadrants (Equator to South Pole to Equator), 
and 450° for the fourth quadrant (Equator to North Fole). For 
quadrant adjustment to X' calculated from (20-8), the Fortran ATAN2 
or its equivalent should not be used. Instead, X' should be increased by 
Xp' minus the following factor: goo times sin XP' times ± 1 (taking the 
sign of cos Xt, where Xt =X-'Ao+(P.JP1)X ').If cos Xtp is zero, the final X' 
is Xp'· Thus, tbe adder t~ the arctan is oop for the quadrant bet:ween the 
ascending node and the start of the path, and 180°, 180°, 360°, and 
360°, respectively, for the four quadrants of the first path. 

The closed forms of equations (20-6) and (20-7) are as follows: 

x/R = {~, [(H -82)/(1 +S2r12]d X'- [S/(1 +S2r12J 
fn tan (7rl4+¢'/2) 

y/R = (H + 1) J~' [S/(1 +S2)lf2]d X'+ [11(1 +S2r12] 

In tan (7r/4 + ¢'/2) 

(20-6a) 

(20-7a) 

Since these involve numerical integration for each point, the series 
forms, limiting numerical integration to once per satellite, are distinct­
ly preferable. These are Fourier series, and equations (20-2) and (20-3) 
normally require integration from 0 to 21r, without the multip1ier 4, but 
the symmetry of the circular orbit permits the simplification as shown 
for the nonzero coefficients. 

For inverse formulas for the sphere, given R, i, P2, P11 'Ao, x, andy, 
with <P and X required: Constants B, AnJ CnJ and Xo must be ealculated 
from (20-1) through (20-3) and (20-11) just as they were for the for­
ward equations. 
Then, 

X= arctan [(cos i sin X'- sin i tan ¢')/c~s X']-(P2/P1) X' +Xo (20-13) 
<P = arcsin (cos i sin <P' + sin i cos <P' sin X') (20-14) 
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where the ATAN2 function of Fortran is useful for (20-13), except that 
it may be necessary to add or subtract 360° to place A bet·veen long. 
180° E. (+)and 180° W. (- ), and 

A'=[x!R+8y!R-A1 sin 2 ).'-A4 sin 4 ~-8(C1 sin).' 
+ C3 sin 3 A')]/B 

ln tan(TI4+¢'/2)=(1+82r1z(y/R-C1 sin~-CJ sin3).1 
(20-15) 
(20-16) 

Equation (20-15) is iterated by trying almost any A' (preferably xi(BR)) 
in the right side, solving for A' on the left and using the neYT ).' for the 
next trial, etc., until there is no significant change between successive 
trial values. Equation (20-16) uses the final).' calculated from (20-15). 

The closed form of equation (20-15) given below involves repeated 
numerical integration as well as iteration, making its use dmost pro­
hibitive: 

(x+8y)IR = J~· [(H -82)/(1 +82)lfz]d A' 
+8 (H + 1)J~· [8/(1 +81rlz]d A' (20-15a) 

The following closed form of (20-16) requires the use of the last in­
tegral calculated from (20-15a): 

In tan (T/4+¢'/2)= (1 +82
)

112 {(y/R)-(H + 1)! / [8/(1 +81
)

112]dA'} (20-16a) 

The original published forms of these equations include several other 
Fourier coefficient calculations which slightly save computer time when 
continuous mapping is involved. The resulting equations are more com­
plicated, so they are omitted here for simplicity. The above: equations 
are as accurate and only slightly less efficient. 

The values of coefficients for Landsat (PiP1 = 18/251; i= 9~.092°) are 
listed here for convenience: 

A2 = -0.0018820 
A4= 0.0000007 
B= 1.0075654142 for A' in radians 

0.0175853339 for A' in degrees 
cl = o.1421597 
C3 = -0.0000296 

It is also of interest to determine values of cp, A, or A' along the 
groundtrack, given any one of the three (as well as P1, P1, i, and >.o). 
Given cp, 

A' = arcsin (sin cpl sin i) 
X.= arctan [(cos i sin X.')/ cos A']- (P1/P1) A'+ >.o 

(20-17) 
(20-18) 

If cJ> is given for a descending part of the orbit (daylight on Landsat), 
subtract A' from the A' of the nearest descending node (180°, 540°, ... ). 
If the orbit is ascending, add X.' to the A' of the nearest ascerding node 
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(0°, 360°, ... ). For a given path, only 180° and 360°, respectively, are 
involved. 
Given~' 

~'=arctan (tan ~/cos i) (20-19) 
A,=~-'Ao+(Pz/P1) ~' (20-9) 
q, =arcsin (sin i sin A') (20-20) 

Given ~', equations (20-18) and (20-20) may be used for ~ and q,, 
respectively. Equations (20-6) and (20-7), with q,' = 0, convert these 
values to x andy. Equations (20-19) and (20-9) require joint iteration, 
using the same procedure as that for the pair of equations (21-8) and 
(20-9) given earlier. The ~ calculated from equation (20-18) should have 
the same quadrant adjustment as that described for (20-13). 

The formulas for scale factors h and k and maximum angul ':l,f defor­
mation w are so lengthy that they are not given here. They are available 
in Snyder (1981). Table 30 lists these values as calculated for the 
spherical SOM using Landsat constants. 

TABLE 30.-Scale factors for the spherical Space Oblique Mercator pro}ection u!'ling Land-
sat 1, 2, and 3 constants 

)..' 
41'= 10 41'=-10 

k k "'0 m., h k "'0 

0° ---- 1.000154 1.000151 0.0006 1.000152 1.000154 1.000151 0.0006 
5 ----- 1.000153 1.000151 .0006 1.000151 1.000154 1.000151 .0006 

10 ----- 1.000153 1.000151 .0006 1.000151 1.000155 1.000151 .0006 
15 ----- 1.000153 1.000151 .0006 1.000150 1.000155 1.000151 .0006 
20 ----- 1.000152 1.000151 .0006 1.000150 1.000156 1.000151 .0006 
25 ----- 1.000152 1.000151 .0006 1.000150 1.000156 1.000151 .0006 
30 ----- 1.000152 1.000151 .0005 1.000149 1.000156 1.000151 .0005 
35 ----- 1.000152 1.000150 .0005 1.000149 1.000156 1.000151 .0005 
40 ----- 1.000152 1.000150 .0005 1.000150 1.000156 1.000151 .0005 
45 ----- 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0005 
50 ----- 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0004 
55 ----- 1.000152 1.000150 .0004 1.000150 1.000155 1.000151 .0004 
60 ----- 1.000153 1.000151 .0003 1.000151 l.OU0155 1.000151 .0003 
65 ----- 1.000153 1.000151 .0003 1.000151 1.000155 1.000151 .0003 
70 ----- 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 .0002 
75 ----- 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 .0002 
80 ----- 1.000153 1.000151 .0001 1.000152 1.000153 1.000152 .0001 
85 ----- 1.000153 1.000152 .0001 1.000152 1.000153 1.000152 .0001 
90 ----- 1.000152 1.000151 .0001 1.000152 1.000152 1.000152 .0000 

Notes: >.'=angular position along ground track, from ascending node. 
oil'=angular distance away from groundtrack, positive in direction away from North Pole. 
h= scale factor along meridian of longitude. 
k = scale factor along parallel of latitude. 
w =maximum angular deformation. 

m.,= scale factor along line of constant oil'. 
m., =scale factor along line of constant }..'. 

=sec oil', or 1.000152 at oil'= 1°. 
If .P'=0°, h, k, and m.,=l.O, while w=O. 

m., 

1.000152 
1.000152 
1.000153 
1.000153 
1.000154 
1.000154 
1.000154 
1.000154 
1.000154 
1.000154 
1.000154 
1.000154 
1.000154 
1.000153 
1.000153 
1.000153 
1.000153 
1.000152 
1.000152 
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FORMULAS FOR THE ELLIPSOID 

Since the SOM is intended to be used only for the rrapping of 
relatively narrow strips, it is highly recommended that the ellipsoidal 
form be used to take advantage of the high accuracy of scalE: available, 
especially as the imagery is further developed and used for more 
precise measurement. In addition to the normal modificati 'lns to the 
above spherical formulas for ellipsoidal equivalents, an add::tional ele­
ment is introduced by the fact that Landsat is designed to sc8.n vertical­
ly, rather than in a geocentric direction. Therefore, "pseudotrans­
formed" latitude (j>" and longitude }.." have been introduced. T'--~y relate 
to a geocentric groundtrack for an orbit in a plane through the center 
of the Earth. The regular transformed coordinates (j>' and }..' are related 
to the actual vertical groundtrack. The two groundtracks are only a 
maximum of 0.008° apart, although a lengthwise displacement of 
0.028° for a given position may occur. 

In addition, the following formulas accommodate a slight eilipticity in 
the satellite orbit. They provide a true-to-scale groundtrack £1r an orbit 
of any eccentricity, if the orbital motion follows Kepler's laws for two­
bodied systems, but the areas scanned by the satellite as she ·wn on the 
map are distorted beyond the accuracy desired if the eccentricity of the 
orbit exceeds about 0.05, well above the maximum reported eccentrici­
ty of Landsat orbits (about 0.002). For greater eccentricities, more 
complex formulas (Snyder, 1981) are recommended. If the orbital ec­
centricity is made zero, these formulas readily reduce to thos~ for a cir­
cular orbit. If the eccentricity of the ellipsoid is made zero, the formulas 
further reduce to the spherical formulas above. These forn1ulas vary 
slightly, but not significantly, from those previously publishei. In prac­
tice, the coordinates for each picture element (pixel) should not be 
calculated because of computer time required. Linear interpolation be­
tween occasional calculated points can be developed with ad~quate ac­
curacy. 

For the forward formulas, given a, e, i, P2, Pu ~'a!, e, -y, (j>, and 'A., 
find x and y. As with the spherical formulas, the X axis passes through 
each ascending and descending node, x increasing in the direction of 
satellite motion, and the Y axis intersects perpendicularly at the 
ascending node for the time t=O. Defining terms, 

a, e= semimajor axis and eccentricity of ellipsoid, respectivE'1y (as for 
other ellipsoidal projections). 

a', e = semimajor axis and eccentricity of satellite orbit, resp~ctively. 
-y = longitude of the perigee relative to the ascending node (for a 

circular orbit, with e = 0, 1' is not involved). 
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i, P 1, P 1, Ao, cp, A are as defined for the spherical SOM formulr~. For 
constants applying to the entire map: 

B.= [1/(27r)JI:[(HJ -Sl)/(Jl +Sl)t'2]dA" 

B2=[11(27r)]f ~1r[S(H +J)/{J2+S2)112]dA" 

An= [11(7rn)]i:[(HJ -S1)/(J1 +82)1
'
2] cos nA"dA" 

A~=[11(7rn)]i:[(HJ -S2)/(J2+S2)1'2] sin nA"dA" 
en= [1/(7rn)]i:[S(H +J)I(J2 +82)1'2] cos nA"dA" 
C'n = [1/(7rn)]i:[S(H +J)I(J2 +82)1'2] sin nA"dA" 
J =(1-e2

)
3 

W = [(1- e2 cos1 i)2/{1- e2)1
] -1 

Q = & sin2 i/(1- e1
) 

T = & sin1 i (2- e1)/(1- e1)1 

H. =B.I(B11+B12)tn 
s. =B1/(B11+B11)111 
in=(ll1r)!:cp" sin nA'dA' 
j,. = {l/7r}!:cp" cos nA'dA' 

mn=(1/7r}!:(A" -A~ sin nA'dA' 
m~=(117r}!;1r(A" -A~ cos nA'dA' 

(20-21) 

(20-22) 
(20-23) 

(20-24) 

(20-25) 

(20-26) 
(20-27) 
(20-28) 
(20-29) 
(20-30) 
(20-31) 
(20-32) 
(20-33) 

(20-34) 

(20-35) 
(20-36) 

where cp" and A" are determined in these last four equations for the 
ground track as functions of A', from equations (20-40a), (20-60), 
(20-59), (20-58), (20-61), and (20-45) through (20-49). 

To calculate An, A~, Bn1 en, and a,., the following functions, Yarying 
with A", are used: 

S = (PiP.)L' sin i cos A" {(1 + T sin1 A")/[(1 + W sin1 A") 
(1 + Q sin1 A")]} 111 (20-37) 

H= . . PiP. cost [ 
1+Qsin1A" ] 1

'
1 [ 1+ Wsin1A" , ·] 

1+ w Sln1 A" (1+Q Sin1 A")1 ( )L 

L' = (1- e cos E')1/{1- e1)111 

E' = 2 arctan {tan 1/2(A"- -y) [(1- e)/(1 + e)]111) 

(20-38) 

(20-39) 
(20-40) 

These constants may be determined from numerical integraf,')n, us­
ing Simpson's rule with 9° intervals. For noncircular orbits, i'ltegra­
tion must occur through the 360° or 21r cycle, as indicated. Many more 
terms are needed than for circular orbits. 

For circular orbits, A~, B1, 0,., An if n is odd, en if n is even, Su in', mn', 
in if n is even, and mn if n is odd are all zero, while H 1 and L' are both 
1.0. Numerical integration for the nonzero values of all the rer:~aining 
coefficients for circular orbits may be carried out from 0 to 1r/2, multi­
plying the result by 4. 
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To find x and y from cp and A.: 

xla=xH1 +y'Sl 
yla=y'H~-xSt 

where 
n n n 
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(20-41) 
(20-42) 

x = B1A." +];. An sin nA."-];. A~ cos nA." +];. A~- [S/(J2 + 8 2
)

112
] ( 20_43) 

In tan ( 1rl 4 + cp" /2) 
n n n 

y'=l?}"+~ Cn sin nA."-~ C'n cos nA."+~ C,.+[JI(J2+S2)1'2] (20-44) 

In tah \ 1rl 4 + cp" /2) 

A."= arctan [cos i tan A.,+ (1- e2
) sin i tan cp/cos A,] 

A.,= A.- Ao +(PiP 1) (L + 'Y) 
L=E'-e' sinE' 
E' = 2 arctan {tan 112 (A."- 'Y) [(1- e')/(1 + e')]1'2} 
cp" =arcsin ([(1- e2

) cos i sin cp- sin i cos cp sin A.,]/ 
(1- e2sin2 c/>) 112

} 

>-.o= 128.87° -(360°/251)p (Landsat 1, 2, 3 only) 

(20-45) 
(20-46) 
(20-47) 
(20-48) 

(20-49) 
(20-11) 

Function E' is called the "eccentric anomaly'' along the orbit, and L is 
the "mean anomaly" or mean longitude of the satellite measur~d from 
perigee and directly proportional to time. 

Equations (20-45) through (20-48) are solved by special iteration as 
described for equations (20-8) and (20-9) in the spherical form1.das, ex­
cept that A." replaces A.', and each trial A." is placed in (20-48), fro~ which 
E' is calculated, then L from (20-4 7), A., from (20-46), and another trial 
A." from (20-45). This cycle is repeated until A." changes by less than the 
selected convergence. The last value of A., found is then used in (20-49) 
to find cp". 

For circular orbits, in calculating x and y from cp and A., equations 
(20-41), (20-42), (20-47), and (20-48) may be eliminated, and equations 
(20-43) and (20-44) may be rewritten as follows: 

xla=BtA."+A2 sin 2A."+A4 sin 4A."+ ... -[S/(J2 +S2
)

112
] 

In tan ( 1rl 4 + cp" /2) 
yla= C1 sin A."+ C3 sin 3A." + ... + [JI(J2 +82

)
112

] 

In tan ( 1rl 4 + cp" /2) 

(20-43a) 

(20-44a) 

Also, for circular orbits, (L + 'Y) in (20-46) is replaced by A.", and the two 
equations (20-45) and (20-46) are iterated together as were (20-8) and 
(20-9). Equation (20-49) is unchanged. For both circular and non­
circular orbits, equation (20-37) is used to find S for the giv~n A." in 
equations (20-43), (20-44), (20-43a), and (20-44a). 
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The closed forms of equations (20-43) and (20-44) are given below, 
but the repeated numerical integration necessitates replacem~nt by the 
series forms. 

x = I 0X"[(HJ _ 82)/(J2 + 82)112] dA" _ [8/(J2 + 82)112] 
In tan (7r/4+ ¢"/2) 

y' = I 0X"[8(H + J)/(J2 + 82)112] d>.." + [J/(J2 + 82)112] 
In tan ( 1rl 4 + ¢" /2) 

(20-43b) 

(20-44b) 

While the above equations are sufficient for plotting a graticule ac­
cording to the SOM projection, it is also desirable to relate th~se points 
to the true vertical ground track. To find ¢" and >.." in terms of¢' and >..', 
the shift between these two sets of coordinates is so sllall it is 
equivalent to an adjustment, requiring only small Fourier cc ~fficients, 
and very lengthy calculations if they are not used. The use of Fourier 
series is therefore highly recommended, although the one-time calcula­
tion of coefficients is more difficult than the foregoing calculation of An, 
Bn, and Cn. 

n n n 

¢" = ¢' + E jn sin n>..' + E j"' cos n>..'- E jn' 
n=l n=l n=l 
n n n 

'A"='A'+E m" sinn'A'+E m'" cosn>..'-E m~ 
n~ n~ n~ 

(20-50) 

(20-51) 

For the circular orbit, as outlined in discussing other Fourier con­
stants, 

¢"=¢'+jt sin'A'+j3 sin3'A'+ ... 
'A"='A'+m2 sin 2'A'+m4 sin 4>..'+ ... 

For >..' in terms of time t from the initial ascending node, 

'A'= 'Y + 2 arctan {(tan 112 E1 [(1 + e')/(1- e')]1'2} 
E' = e sinE'+ Lo + 21rt/P 2 
Lo=E~-e sinE~ 
E~ = -2 arctan (tan 1/2-y [(1- e')/(1 + e)]t'2} 

(20-50a) 
(20-51a) 

(20-52) 
(20-53) 
(20-54) 
(20-55) 

Equation (20-53) requires iteration, converging rapidly by suhstituting 
an initial trial E'=L0 +27rtiP2 in the right side, finding a new E' on the 
left, substituting it on the right, etc., until sufficient convergence oc­
curs. For a circular orbit, >..' is merely 21rt/P2 • 

The equations for functions of the satellite groundtrack, both for­
ward and inverse, are given here, since some are used in calculating j" 
and mn as well. In any case a, e, i, P2, PH 'Ao, a', e, and 'Y must be given. 
For >..' and >.., if ¢ is given: 

>..'=arcsin (sin ¢.fsin i) 
¢. = ¢- arcsin {a& sin ¢ cos ¢/[Ro (1- e2 sin2 ¢ )112]} 
Ro=a! (1-e cosE1 
E' = 2 arctan {tan 112 (>..' --y) [(1-e)/(1 +e)]112J 

(20-56) 
(20-57) 
(20-58) 

(20-40a) 
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where c/>11 is the geocentric latitude of the point geocentrically under the 
satellite, not the geocentric latitude corresponding to the vertical 
ground track latitude cp, and Ro is the radius vector to the satellite from 
the center of the Earth. 

These equations are solved as a group by iteration, inserting a trial 
'A'= arcsin (sin cp/sin i) in (20-40a), solving (20-58), (20-57), and (20-56) 
for a new 'A', etc. Each trial 'A' must be adjusted for quadrant .. , If the 
satellite is traveling north, add 360° times the number of orbits com­
pleted at the nearest ascending node (0, 1, 2, etc.). If traveling south, 
subtract 'A' from 360° times the number of orbits completec1 at the 
nearest descending node (1/2, 3/2, 5/2, etc.). For 'A, 

'A = arctan [ (cos i sin 'A')/ cos 'A'] - (P ziP 1)(£ + 'Y) + 'Ao 
L = E'- e sinE' 

using the 'A' and E' finally found just above. 

(20-59) 
(20-60) 

For a circular orbit, equations (20-58), (20-40a), and (20-60) are 
eliminated. Ro becomes the radius of the orbit (7,294,690 m for Land­
sat), and (L + 'Y) in (20-59) is replaced with 'A'. Iteration is eliminated as 
well. 

If 'A of a point along the groundtrack is given, to find 'A' and cp, 

'A'= arctan (tan 'A,/ cos i) 
'At ='A- 'Ao+ (P1/P1) (L +-y) 

(20-19) 
(20-46) 

and L is found from (20-60) and (20-40a) above. The four equat!'lns are 
iterated as a group, as above, but the first trial 'A' and the quadrant ad­
justments should follow the procedures listed for equation (20.-8). 

cp =arcsin (sin i sin 'A')+ arcsin { ae1 sin cp cos cp/ 
[Ro (1- e1 sin1 cp )111]) (20-61) 

where Ro is determined from (20-58) and (20-40a), using the 'A' deter­
mined just above. Iteration is involved in (20-61), beginning with a trial 
cp of arcsin (sin i sin 'A'). 

For a circular orbit, only equations (20-19), (20-46), and (20-61) are 
involved, using 'A' in place of (L + 'Y) in (20-46) and using the. orbital 
radius for R0 • Iteration remains for calculations of both 'A' and cp. 

If 'A' of a point along the groundtrack is given, cp is found from 
(20-61), (20-58), and (20-40a); while 'A is found from (20-59), (20-60), 
and (20-40a). For the circular orbit, (20-61) is sufficient for cp, and 
(20-59) provides 'A if 'A' is substituted for (L + 'Y ). Only (20-61) requires 
iteration for these calculations, whether the orbit is circular or non­
circular. 

Inverse formulas for the ellipsoidal form of the SOM projection, with 
an orbit of 0.05 eccentricity or less, follow: Given a, e, i, P1, P 1, 'Ao, a', e, 
-y, x, andy, to find cp and 'A, the general Fourier and other constants are 
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first determined as described at the beginning of the forvrard equa­
tions. Then 

A=A,-(P/Pt) (L +y)+Ao 

where 

(20-62) 

A,= arctan (VI cos A.") (20-63) 
V = {[1- sin2 cJ>"/(1- e2)] cos i sin A"- sin i sin cJ>" [(1 + Q sin2 A.") 

(1- sin2 cJ>")- U sin2 c/>"]112}1[1- sin2 4>" (1 + U)] (20-64) 
U = e2 cos2 i/( 1- e2) (20-65) 

while L is found from (20-60), E' from (20-48), and A" and cJ>" from 
(20-68) and (20-69) below. 

cJ> =arctan {(tan A" cos A,- cos i sin A,)/[(1- e2) sin i]} 

If i = 0, equation (20-66) is indeterminate, but 

(20-66) 

cJ> =arcsin {sin cJ>"/[(1- e2)2 + e2 sin2 c/>"]112) (20-67) 

No iteration is involved in equations (20-62) through (20-67), and the 
ATAN2 function of Fortran should be used with (20-63), but not 
(20-66), adding or subtracting 360° to or from A if necessary in (20-62) 
to place it between longs. 180° E. and W. For the circular orb~t, (20-48) 
and (20-60) do not apply, and (L + 'Y) in (20-62) is replaced with A" 
Other equations remain the same. 

Iteration is required to find A" from x and y: 
n n n 

A"= {x' + (SIJ) y'- .E [An+ (SIJ)Cn] sin n A."+ .E [A~+ (S/J)c,] r.os nA"- .E 
n=1 n=l n=1 

[A~+ (S/J)C,]J/[B1 + (SIJ)B2 ] (20-68) 

using equations (20-37), (20-70), (20-71), and various const<.nts. Itera­
tion involves substitution of a trial A"= x'IB1 in the right side:, finding a 
new A." on the left side, etc. 

For cJ>", the A." just calculated is used in the following equation: 

In tan (7rl4+cJ>"/2)=(1+S2/J2)112(y'-B2 A."-E en sin n A."+E 
n=1 n=l 

where 

x' = (xla) H1- (yla)St 
y' = (y/a) H1 + (xla)St 

C'n cos n A."- E C'n) 
n=1 

(20-69) 

(20-70) 
(20-71) 

For the circular orbit, equations (20-70) and (20-71) are eliminated, 
and (20-68) and (20-69) are rewritten thus: 

A."=[xla+(SIJ)(yla)-A2 sin 2 A"-A4 sin 4 A." 
- (S/J)(Ct sin A"+ CJ sin 3 A.")]/B1 (20-68a) 
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(20-69a) 

The first is solved by iteration just as (20-68), using an initial>.."= xlaB1. 
The closed forms of equations (20-68), (20-69), (20-68a), and 

(20-69a) involve both iteration and repeated numerical integration and 
are impractical: 

'J! + (SIJ)y' = I f[(HJ _ sz)J(Jz + sz)tll]d >.." 
+ (S/J) Ins<n +J)I(J2 +S2

)
112Jd >.." (20-68b) 

ln tan ('n·/4 + ¢"/2) = [1 + (S/J)2
]

112[y'- I~" [S(H +J)I 
(J2 + S2) 112]d >.."} (20-69b) 

(For the circular orbit, 'J! andy' are replaced by (x/a) and (y!a), respec­
tively.) 

For ¢' and >: in terms of cJ>" and >..", the same Fourier series developed 
for equations (20-50) and (20-51) may be used with reversal of signs, 
since the correction is so small. That is, 

¢' = <!>"- E j,. sin n >.."- E l,. cos n >.." + E l,. (20-72) 
n=l n=l n=l 

>..' = >.."- E m,. sin n >.."- t m',. cos n >.." + E m',. 
n=l n=l n=l 

(20-73) 

Equations (20-72) and (20-73) are, of course, not the exact inverses of 
(20-50) and (20-51), although the correct coefficients may 1:-~ derived 
by an analogous numerical integration in terms of >..", rather than >..'. 
The inverse values of ¢' and >..' from (20-72) and (20-73) z.re within 
0.000003° and 0.000009°, respectively, of the true inverses of (20-50) 
and (20-51) for the Landsat orbit. 

For the circular orbit, as before, equations (20-72) an-i (20-73) 
simplify to the following: 

<!>' = ¢"-J1 sin >.."- j3 sin 3 >.."- . . . 
>..' = >:'- m2 sin 2 >.."- m4 sin 4 >.."- ... 

(20-72a) 
(20-73a) 

The following values of Fourier coefficients for the ellips<''dal SOM 
are listed for Landsat orbits, using the Clarke 1866 ellipsoid 
(a= 6,378,206.4 m and e1 = 0.00676866) and a circular orbit 
(R=7,294,690 m, i=99.092°, P 2/P1 =18/251): 

B1 = 1.005798138 for >.." in radians 
= 0.0175544891 for>.." in degrees 

A 1 = - 0.0010979201 
A4= -0.0000012928 
A6 = - 0.0000000021 
cl = o.1434409899 
C3= 0.0000285091 
C5 = -0.0000000011 
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J·· = 0.00855567 for cp" and cp' in degrees 
J~ = 0.00081784 " 
is= - 0.00000263 " 
~ = - 0.02384005 for >.." and >..' in degrees 
m4 = 0.00010606 " 
m6 = 0.00000019 " 

Additional Fourier constants have been developed in the published 
literature for other functions of circular orbits. They add to t~e com­
plication of the equations, but not to the accuracy, and only slirrhtly to 
continuous mapping efficiency. For noncircular orbits, too many terms 
are needed to justify their use on functions not otherwise requir:ng con­
tinuous integration. Therefore, they are omitted here. A further 
simplification from published formulas is the elimination of a function 
F, which nearly cancels out in the range involved in imaging. 

As in the spherical form of the SOM, the formulas for scale factors h 
and k and maximum angular deformation w are too lengthy to include 
here, although they are given by Snyder (1981). Table 31 presents these 
values for Landsat constants for the scanning range required. 

TABLE 31.-Scale factors for the ellipsoidal Space Oblique Mercator project·:()n using 
Landsat 1, 2, and 3 constants 

'A" .P" h k wo 8:'1 1/2 w 

oo -------------- 10 1.000154 1.000151 0.0006 0.000005 
0 1.000000 1.000000 .0000 .000000 

-1 1.000154 1.000151 .0006 .000005 

15 --------------- 1 1.000161 1.000151 .0022 .000019 
0 1.000000 1.000000 .0001 .000000 

-1 1.000147 1.000151 .0011 .000010 

30 --------------- 1 1.000167 1.000150 .0033 .000029 
0 1.000000 1.000000 .0001 .000001 

-1 1.000142 1.000150 .0025 .000021 

45 --------------- 1 1.000172 1.000150 .0036 .000031 
0 .999999 1.000000 .0001 .000001 

-1 1.000138 1.000150 .0031 .000027 

60 --------------- 1 1.000174 1.000150 .0031 .000027 
0 .999999 1.000000 .0002 .000001 

-1 1.000136 1.000150 .0028 .000025 

75 --------------- 1 1.000174 1.000152 .0019 .000016 
0 .999999 1.000000 .0001 .000000 

-1 1.000135 1.000150 .0019 .000016 

90 --------------- 1 1.000170 1.000156 .0008 .000007 
0 .999999 1.000000 .0000 .000000 

-1 1.000133 1.000151 .0010 .000009 

Notes: 'A"= angular position along ~eocentric groundtrack, from ascendin~ node. 
tJ>"= anEiar aistance away rom ~eocentric groundtrack, positive m direction away from North Pole. 
h= sc e factor along meridian o longitude. 
k= scale factor along parallel of latitude. 
w= maximum angular deformation. 

sin Vzw= maximum variation of scale factors from true conformal values. 
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Only two map projections described in this study cannot b~ satis­
factorily placed in one of the four categories previously listed. If this 
study included many of the projections not used by the USGS, several 
additional categories would be shown, and those projections di~cussed 
below would be placed with similar projections and' probably r~~moved 
from the "miscellaneous" classification. 

21. VAN DER GRINTEN PROJECTION 

SUMMARY 

• Neither equal-area nor conformal. 
• Shows entire globe enclosed in a circle. 
• Central meridian and Equator are straight lines. 
• All other meridians and parallels are arcs of circles. 
• A curved modification of the Mercator projection, with great distortion in the polar 

areas. 
• Equator is true to scale. 
• Used for world maps. 
• Used only in the spherical form. 
• Presented by van der Grinten in 1904. 

HISTORY, FEATURES, AND USAGE 

In a 1904 issue of a German geographical journal, Alphons J. van der 
Grinten (1852-?) of Chicago presented four projections showing the en­
tire Earth. Aside from having a straight Equator and central meridian, 
three of the projections consist of arcs of circles for meridig.ns and 
parallels; the other projection has straight-line parallels. The projec-

, tions are neither conformal nor equal-area (van der Grinten, 1904; 
1905). They were patented in the United States by van der Grinten in 
1904. 

The best-known Vander Grinten projection, his first (fig. 30), shows 
the world in a circle and was invented in 1898. It is designed fo:-:- use in 
the spherical form only. There are no special features to preserve in an 
ellipsoidal form. It has been used by the National Geographic Society 
for their standard world map since 1943, printed at various scaJes and 
with the central meridian either through America or along the Green­
wich meridian; this use has prompted others to employ the projection. 
The USGS has used one of the National Geographic maps as a r~se for 
a four-sheet set of maps of World Subsea Mineral Resources, 1970, one 
at a scale of 1:60,000,000 and three at 1:39,283,200 (a scale usee by the 
National Geographic), and for three smaller maps in the National Atlas 

~11 



FIGURE 30.-Vander Grinten projection. A projection resembling the Mercator, but not conformal. Used by 
the USGS for special world maps, modifying a base map prepared by the National Geographic Society. 
This illustration is prepared by computer. 
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(USGS, 1970, p. 150-151, 332-335). All the USGS maps ha-rre a central 
meridian of long. 85° W., passing through the United States. 

Van der Grinten emphasized that this projection blends tr~ Mercator 
appearance with the curves of the Mollweide, an equal-arer. projection 
devised in 1805 and showing the world in an ellipse. He included a 
simple graphical construction and limited formulas sl''lWing the 
mathematical coordinates along the central meridian, the E~uator, and 
the outer (180th) meridian. The meridians are equally space:<! along the 
Equator, but the spacing between the parallels increases w:~h latitude, 
so that the 75th parallels are shown about halfway between the 
Equator and the respective poles. Because of the polar exaggerations, 
most published maps using the Van der Grinten projection do not 
extend farther into the polar regions than the northern shores of 
Greenland and the outer rim of Antarctica. 

The National Geographic Society prepared the base map graphically. 
General mathematical formulas have been published in rr~cent years 
and are only useful with computers, since they are fairly complex for 
such a simply drawn projection (O'Keefe and Greenberg, 1977; Snyder, 
1979b). 

GEOMETRIC CONSTRUCTION 

The meridians are circular arcs equally spaced on the Equator and 
joined at the poles. For parallels, referring to figure 31, semicircle CDB 
is drawn centered at A. Diagonal CD is drawn. Point E is marked so 
that the ratio of EA to AD is the same as the ratio of the lati~ude to 90°. 

D 

FIGURE 31. -Geometric construction of the Van der Grinter 
projection. 

B 
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Line FE is drawn parallel to CB, and FB and GB are connected. At H, 
the intersection of GB and AD, JHL is drawn parallel to CB. A c~rcular 
arc, representing the parallel of latitude, is then drawn througl' JKL. 

FORMULAS FOR THE SPHERE 

The general formulas published are in two forms. Both sets giv~ iden­
tical results, but the 1979 formulas are somewhat shorter and are given 
here with some rearrangement and addition of new inverse equations. 
For the forward calculations, given R, Ao, cp, and A (giving tru~ scale 
along the Equator), to find x andy: 

X=± rR [A(G-P2)+[A2(G-P2
)

2 -(P2 +A2)(G2 -P2))1'2}/(P2 +A2
) (21-1) 

taking the sign of (A-Ao). Note that (A-Ao) must fall between +180° 
and -180°; if necessary, 360° must be added or subtracted. The X axis 
lies along the Equator, x increasing easterly, while theY axis coincides 
with the central meridian Ao· 

y= ±rR{ PQ-A[(A 2 + l)(P2 +A2)-Q2
]
112 }/(P2 +A 2) 

taking the sign of cp, 

where 
A= 1/2lri(A- Ao)- (A- Ao)l 1rl 
G=cos 8/(sin 8+cos 8-1) 
P= G(2/sin 8-1) 
8 = arcsin l2cp/ 1r I 
Q=A2+G 

(21-2) 

(21-3) 
(21-4) 
(21-5) 
(21-6) 
(21-6a) 

But if cp = 0 or A= Ao, these equations are indeterminant. In that case, if 
c/>=0, 

(21-7) 

and 

x=O 

and 

y = ± rR tan (8/2) (21-8) 

taking the sign of cp. It may be noted that absolute values (syml''ll I I> 
are used in several cases. The origin is at the center (c/>=0, A=X"). 

For the inverse equations, given R, Ao, x, and y, to find cp and A: 
Because of the complications involved, the equations are given in the 
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order of use. This is closely based upon a recent, non-ite~ative algo­
rithm by Rubincam (1981): 

X=xl(-rrR) (21-9) 

Y=yl(-rrR) (21-10) 

(21-11) 

(21-12) 

(21-13) 

(21-14) 

(21-15) 

(21-16) 

(21-17) 

4>= ±-rr[ -m1 cos (()1 +-rr/3)-ci3cal (21-18) 

taking the sign of y. 

(21-19) 

but if X=O, equation (21-19) is indeterminate. Then 

A.=A.o (21-20) 

The formulas for scale factors are quite lengthy and are n'lt included 
here. Rectangular coordinates are given in table 32 for a map of the 
world with unit radius of the outer circle, or R=ll-rr. The longitude is 
measured from the central meridian. Only one quadrant of the map is 
given, but the map is symmetrical about both X and Y ar:es. 
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TABLE 32.- Vander Grinten projection: Rectangular coordinates 

(y-coordinate in parentheses under x-coordinate] 

~ oo 100 20° 30° 40° 
L . 

90° ........ 0.00000 0.00000 0.00000 0.00000 0.01000 
(1.00000) (1.00000) (1.00000) (1.00000) (1.01000) 

80 ......... .00000 .03491 .06982 .10473 .13963 
( .60961) ( .61020) ( .61196) ( .61490) ( .61902) 

70 ......... .00000 .04289 .08581 .12878 .17184 
( .47759) ( .47806) ( .47948) ( .48184) ( .4~517) 

60 ......... ' .00000 .04746 .09495 .14252 .19020 
( .38197) ( .38231) ( .38336) ( .38511) ( .3~756) 

50 ......... .00000 .05045 .10094 .15149 .2/1215 
( .30334) ( .30358) ( .30430) ( .30551) ( .3"1721) 

40 ......... .00000 .05251 .10504 .15764 .2.1031 
( .23444) ( .23459) ( .23505) ( .23582) ( .2.3690) 

30 ......... .00000 .05392 .10787 .16185 .2.1588 
( .17157) ( .17166) ( .17192) ( .17235) ( .17295) 

20 ......... .00000 .05485 .10972 .16460 .2.1951 
( .11252) ( .11256) ( .11267) ( .11286) ( .11313) 

10 ......... .00000 .05538 .11077 .16616 .2.2156 
( .05573) ( .05574) ( .05577) ( .05581) ( .(]5588) 

0 ......... .00000 .05556 .11111 .16667 .2.2222 
( .00000) ( .00000) ( .00000) ( .00000) ( .(~000) 

TABLE 32.- Vander Grinten projection: Rectangular coordinates-Continued 

~ Lat. 
50° 60° 70° goo 90° 

90° ........ 0.00000 0.00000 0.00000 0.00000 0.00000 
(1.00000) (1.00000) (1.00000) (1.00000) (1.00000) 

80 ......... .17450 .20932 .24403 .27859 .31293 
( .62435) ( .63088) ( .63863) ( .64760) ( .65778) 

70 ......... .21498 .25821 .30152 .34488 .38827 
( .48946) ( .49473) ( .50100) ( .50828) ( .51657) 

60 ......... .23800 .28594 .33403 .38225 .43059 
( .39073) ( .39462) ( .39925) ( .40462) ( .41074) 

50 ......... .25293 .30385 .35492 .40614 .45750 
( .30940) ( .31208) ( .31527) ( .31897) ( .32319) 

40 ......... .26308 .31596 .36897 .42210 .47535 
( .23829) ( .24000) ( .24202) ( .24436) ( .24703) 

30 ......... .26998 .32415 .37841 .43275 .48718 
( .17373) ( .17468) ( .17581) ( .17711) ( .17860) 

20 ......... .27445 .32944 .38446 .43953 .49464 
( .11347) ( .11389) ( .11439) ( .11497) ( .11562) 

10 ......... .27697 .33239 .38782 .44327 .49872 
( .05597) ( .05607) ( .05620) ( .05634) ( .05650) 

0 ......... .27778 .33333 .38889 .. 44444 .50000 
( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 
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TABLE 32.- Vander Grinten projection: Rectangular coordinates-Continued 

~ 100° 110° 120° 130° 140° . 
90° ........ 0.00000 0.00000 0.00000 0.00000 0.00000 

(1.00000) (1.00000) (1.00000) (1.00000) (1.00000) 
80 ......... .34699 .38069 .41394 .44668 .47882 

( .66917) ( .68174) ( .69548) ( .71035) ( .72631) 
70 ......... .43163 .47493 .51810 .56110 .60385 

( .52588) ( .53621) ( .54756) ( .55992) ( .57328) 
60 ......... .47903 .52754 .57608 .62463 .67313 

( .41762) ( .42525) ( .43366) ( .44282) ( .45275) 
50 ......... .50899 .56059 .61228 .66404 .71585 

( .32792) ( .33317) ( .33894) ( .34524) ( .35207) 
40 ......... .52871 .58218 .63575 .68939 .74310 

( .25001) ( .25333) ( .25697) ( .26094) ( .26523) 
30 ......... .54168 .59626 .65091 .70562 .76038 

( .18026) ( .18209) ( .18411) ( .18631) ( .18869) 
20 ......... .54979 .60499 .66022 .71548 .77077 

( .11635) ( .11716) ( .11804) ( .11901) ( .12005) 
10 ......... .55419 .60967 .66516 .72066 .77617 

( .05668) ( .05688) ( .05710) ( .05734) ( .05760) 
0 ......... .55555 .61111 .66667 .72222 .77778 

( .00000) ( .00000) ( .00000) ( .00000) ( .00000) 

TABLE 32.-Vander Grinten projection: Rectangular coordinates-Continued 

~ 150° 160° 170° 180° 
Lat. 

90° ......... 0.00000 0.00000 0.00000 0.00000 
(1.00000) (1.00000) (1.00000) (1.00000) 

80 .......... .51028 .54101 .57093 .60000 
( .74331) ( .76130) ( .78021) ( .80000) 

70 .......... .64631 .68843 .73013 .77139 
( .58762) ( .60293) ( .61919) ( .63636) 

60 .......... .72156 .76988 .81804 .86603 
( .46344) ( .47488) ( .48707) ( .50000) 

50 .......... .76768 .81951 .87132 .92308 
( .35942) ( .36729) ( .37569) ( .38462) 

40 .......... .79686 .85066 .90448 .95831 
( .26986) ( .27482) ( .28010) ( .28571) 

30 .......... .81518 .87003 .92490 .97980 
( .19125) ( .19398) ( .19690) ( .20000) 

20 .......... .82609 .88143 .93678 .99216 
( .12117) ( .12237) ( .12365) ( .12500) 

10 .......... .83168 .88721 .94274 .99827 
( .05788) ( .05817) ( .05849) ( .05882) 

0 .......... .83333 .88889 .94444 1.00000 
( .00000) ( .00000) ( .00000) ( .00000) 

Radius of map = 1.0. Radius of sphere = 11 .... 
Origin: (x, y) = 0 at (lat, long) = 0. Y axis increases north. One quadrant given. Other qt•adrants of world 

map are symmetrical. 





22. SINUSOIDAL PROJECTION 

SUMMARY 

• Pseudocylindrical projection. 
• Equal-area. 
• Central meridian is a straight line; all other meridians are shown as sinusoidal 

curves. 
• Parallels are equally spaced straight lines. 
• Scale is true along central meridian and all parallels. 
• Used for world maps with single central meridian or in interrupt~d form with 

several central meridians. 
• Used for maps of South America and Mrica. 
• Used since the mid-16th century. 

HISTORY 

There is an almost endless number of possible projections with 
horizontal straight lines for parallels of latitude and curve 1 lines for 
meridians. They are sometimes called pseudocylindrical because of 
their partial similarity to cylindrical projections. Scores of such projec­
tions have been presented, purporting various special advantages, 
although several are strikingly similar to other members of the group 
(Snyder, 1977). While there were rudimentary projections with 
straight parallels used as early as the 2nd century B.C. by Hipparchus, 
the first such projection still used for scientific mapping of th ~ sphere is 
the Sinusoidal. 

This projection (fig. 32), used for world maps as well as maps of con­
ti~ents and other regions, especially those bordering the E~·~1ator, has 
been given many names after various presumed originator~:' but it is 
most frequently called by the named used here. Among the first to 
show the Sinusoidal projection was Jean Cossin of Dieppe, who used 
it for a world map of 1570. In addition, it was used by Jodocus Hondius 
for maps of South America and Mrica in some of his editions of Mer­
cator's atlases of 1606-1609. This is probably the basis for one of the 
names of the projection: The Mercator Equal-Area. Nicolas Sanson 
(1600-67) of France used it in about 1650 for maps of continonts, while 
John Flamsteed (1646-1719) of England later used it for rt,ar maps. 
Thus, the name usanson-Flamsteed" has often been appPed to the 
Sinusoidal projection, even though they were not the originators 
(Keuning, 1955, p. 24; Deetz and Adams, 1934, p. 161). 

While maps ofNortli America are no longer drawn to the f:nusoidal, 
South America and Mrica are still shown on this projectior in recent 
Rand MeN ally atlases. 

219 



FIGURE 32.- Interrupted SinusOOdal projection .as used by the USGS. although extended to the noles, which would hP- "hown ~$J !'0int"l. {Fr()m n~~t~ 
and Adams, 1934.) 
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FEATURES AND USAGE 

The simplicity of construction, either graphically or mathematically, 
combined with the useful features obtained, make the Sill usoidal pro­
jection not only popular to use, but a popular object of stuiy for inter­
ruptions, transformations, and combination with other pr,1jections. 

On the normal Sinusoidal projection, the parallels of latitude are 
equally spaced straight parallel lines, and the central m~ridian is a 
straight line crossing the parallels perpendicularly. The Equator is 
marked off from the central meridian equidistantly for mer::dians at the 
same scale as the latitude markings on the central meridian, so the 
Equator for a complete world map is twice as long as the ce'l.tral merid­
ian. The other parallels of latitude are also marked off for 1neridians in 
proportion to the true distances from the central meridian. The merid­
ians connect these markings from pole to pole. Since the spacings on 
the parallels are proportional to the cosine of the latitude, and since 
parallels are equally spaced, the meridians form curves which may be 
called cosine, sine, or sinusoidal curves; hence, the name. 

Areas are shown correctly. There is no distortion along the Equator 
and central meridian, but distortion becomes pronounc('d near the 
outer meridians, especially in the polar regions. 

Because of this distortion, J. Paul Goode (1862-1932) of The Univer­
sity of Chicago developed an interrupted form of the Sinusoidal with 
several meridians chosen as central meridians without distc rtion and a 
limited expanse east and west for each section. The central meridians 
may be different for Northern and Southern Hemispheres and may be 
selected to minimize distortion of continents or of ocez.ns instead. 
Ultimately, Goode combined the portion of the interrupted Sinusoidal 
projection between about lats. 40° N. and S. with the portions of the 
Mollweide or Homolographic projection (mentioned earlier) not in this 
zone, to produce the Homolosine projection used in Rand McNally's 
Goode's Atlas (Goode, 1925). 

In 1927, the Sinusoidal was shown interrupted in three Eymmetrical 
segments in the Nordisk Viirlds Atlas, Stockholm, serving as the base 
for the Sinusoidal as shown in Deetz and Adams (1934, p. 1f1). It is this 
interrupted form which served in turn as the base for a thr~e-sheet set 
by the USGS in 1978 at a scale of 1:20,000,000, entitled Map of 
Prospective Hydrocarbon Provinces of the World. With i:r:terruptions 
occurring at longs. 160° W., 20° W., and 60° E., and the three central 
meridians equidistant from these limits, the sheets show (1) North and 
South America; (2) Europe, West Asia, and Africa; and (3) East Asia, 
Australia, and the Pacific; respectively. The maps extend pole to pole, 
but no data are shown for Antarctica. An inset of the Arctic region at 
the same scale is drawn to the polar Lambert Azimuthal Equal-Area 
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projection. A similar map is being prepared by the USGS sb owing 
sedimentary basins of the world. 

The Sinusoidal projection is normally used in the spherical form~ ade­
quate for the usual small-scale usage. The ellipsoidal form may b~ made 
by spacing parallels along the central meridian(s) true to scale for the 
ellipsoid (equation (3-21)) and meridians along each parallel ale·o true 
to scale (equation (4-21)). The projection remains equal-area, while the 
parallels are not quite equally spaced, and the meridians are no longer 
perfect sinusoids. 

FORMULASFORTHESPHERE 

The formulas for the Sinusoidal projection are perhaps the si1nplest 
of those for any projection described in this bulletin, except for the 
Equidistant Cylindrical. For the forward case, given R, Ac,, ¢, ani X., to 
find x andy: 

X=R(X.-Ac,) cos <I> 

y=R<P 
h= [1 +(X.-Ac,)1 sin1 </>] 111 

k=l.O 
8' =arcsin (1/h) 
w = 2 arctan 11/z(X.- Ac,) sin <I> I 

(22-1) 
(22-2) 
(22-3) 

(22-4) 
(22-5) 

where 8' is the angle of intersection of a given meridian and p~.rallel 
(see equation (4-14)), and h, k, and w are other distortion factors as 
previously used. The X axis coincides with the Equator, with x increas­
ing easterly, while the Y axis follows the central meridian Ac,, y increas­
ing northerly. It is necessary to adjust (A- Xo), if it falls outside the 
range ± 180°, by adding or subtracting 360°. For the interrupted form, 
values of x are calculated for each section with respect to its own cen­
tral meridian Ac,. 

In equations (22-1) through (22-5), radians must be used, or q. and A 
in degrees must be multiplied by 1rll80°. 

For the inverse formulas, given R, Ac,, x, andy, to find <1> and X.: 

<J>=yiR 
X.='Ao+xiR cos cp 

(22-6) 
(22-7) 

but if <1> = ± 1r/2, equation (22-7) is indeterminate, and X. may be given an 
arbitrary value such as Ao. 
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APPENDIX A 

NUMERICAL EXAMPLES 

The numerical examples which follow should aid in the use of the 
many formulas in this study of map projections. Single examples are 
given for equations for forward and inverse functions of t~e projec­
tions, both spherical and ellipsoidal, when both are given. They are 
given in the order the projections are given. The order of equations 
used is based on the order of calculation, even though the equations 
may be originally listed in a somewhat different order. In scme cases, 
the last digit may vary from check calculations, due to round:ng off, or 
the lack of it. 

AUXILIARY LATITUDES (SEE P. 16-22) 

For all the examples under this heading, the Clarke 1866 ellipsoid is 
used: a is not needed here, e1=0.00676866, or e=0.082271g. Auxiliary 
latitudes will be calculated for geodetic latitude c/>=40°: 

Conformal latitude, using closed equation (3-1): 

x=2 arctan {tan(45° +40°/2)[(1-0.082271g sin 40°)/(1 +0.08~271g 
sin 40o)]o.o8117191lJ _goo 

= 2 arctan {2.144506g [0.8gg5456]0 ·0411360}-goo 
=2 arctan (2.1351882)-goo 
=2x64.g042g61 o -goo 
= 3g.8085g22 ° = 3g 0 48'30.g" 

Using series equation (3-2}, obtaining x first in radians: 

x=40° x 11'1180° -(0.00676866/2 + 5 x0.006768661/24+3 xO.OCf-)768663/ 
32) X sin (2 X 40°) + (5 X 0.006768661/48 + 7 X 0.006768663/8('} X sin 
( 4 X 40°)- (13 X 0.006768663/480) sin (6 X 40°) 

=0.6g81317-(0.0033g3g)xO.g848078+(0.0000048)x0.342C201 
- (.0000000) X (- 0.8660254) 

=0.6g47g10 radian 
= 0.6g4 7g10 X 180° f1r = 3g.8085g23° 

For inverse calculations, using closed equation (3-4) with iteration 
and given x=3g.8085g22°, find cp: 
First trial: 

</>=2 arctan (tan (45° +3g.8085g22°/2) [(1 +0.082271g sin 3g.~'185g22°)/ 
(1- 0.082271g sin 3g.8085g22°)]0·08117191l)- goo 

= 2 arctan (2.1351882 [1.1112023]0 ·0411360)- goo 
= 129.9992366°-90° 
= 3g. 9gg2366 ° 
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Second trial: 

~=2 arctan {2.1351882 [(1+0.0822719 sin 39.9992366°)/(1-0.0°22719 
sin 39.9992366°)]0

·
0411360

}-90° 
=2 arctan (2.1445068)-90° 
=39.9999970° 

The third trial gives ~=40.0000000°, also given by the fourth trial. 
Using series equation (3-5): 

~ = 39.8085922° X 11"/180° + (0.00676866/2 + 5 X 0.006768662/24 
+ 0.006768663/12) sin (2 x 39.8085922°) + (7 x 0.006768662/48 + 29 
X 0.006768663/240) sin (4 X 39.8085922°) + (7 X 0.006768663/120) 
sin (6x39.8085922°) 

= 0.6947910 +(0.0033939)x 0.9836256 +(0.0000067) x 0.3545461 
+(O.OOOOOOO)x( -0.8558300) 

=0.6981317 radian 
= 0.6981317 X 180° /11" = 40.0000000° 

Isometric latitude, using equation (3-7): 

1P=ln {tan (45° +40°/2) [(1-0.0822719 sin 40°)/(1 +0.0822719 
sin 40o)]o.o82271912J 

= ln (2.1351882) 
=0.7585548 

Using equation (3-8) with the value of x resulting from the ak'0ve ex­
amples: 

1P=ln tan (45° +39.8085923°/2) 
= ln tan 64.9042962 ° 
=0.7585548 

For inverse calculations, using equation (3-9) with 1P = 0. 75855-t8: 

X= 2 arctan eo.7s8ss48- 90o 
=2 arctan (2.1351882)-90° 
= 39.8085922° 

From this value of x, ~ may be found from (3-4) or (3-5) ae· shown 
above. 

Using iterative equation (3-10), with 1P = 0. 7585548, to find ¢: 
First trial: 

~=2 arctan eo.7s8ss48_90o 
= 39.8085922°, as just above. 

Second trial: 

~ =2 arctan {e0
·
7585548 [(1 +0.0822719 sin 39.8085922°)/(1-0.0822719 

sin 39.8085922o)]o.o82271912J- 90o 
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=2 arctan (2.1351882x 1.0043469)-90° 
= 39.9992365 ° 

Third trial: 

227 

cp =2 arctan {e0 ·
7585548 [(1 +0.0822719 sin 39.9992365°)/(1-0.0822719 

sin 39.9992365°)]0
•
081171911

}-90° 
= 39.9999970° 

Fourth trial, substituting 39.9999970° in place of 39.99923~'5°: 

cp = 40.0000000 °, also given by fifth trial. 

Authalic latitude, using equations (3-11) and (3-12): 

q=(1-0.00676866) {sin 40°/(1-0.00676866 sin1 40°)-
[1/(2 x 0.0822719)] ln [(1- 0.0822719 sin 40°)/(1 + 0.0822719 sin 
40°)]} 

= 0.9932313 (0.6445903- 6.077 4117 ln 0.8995456) 
=1.2792602 

qp = (1- 0.00676866) {sin 90° /(1- 0.00676866 sin1 90°)- [1/ 
(2 x 0.0822719)] ln [(1- 0.0822719 sin 90°)/(1 + 0.0822719 sin 90°)]} 

=1.9954814 
{3 =arcsin (1.2792602/1.9954814) 

=arcsin 0.6410785 
=39.8722878° =39°52'20.2" 

Determining {3 from series equation (3-14) involves the same pattern 
as the example for equation (3-5) given above. 

For inverse calculations, using equation (3-17) with iter<:\.tive equa­
tion (3-16), given {3=39.8722878°, and qp=1.9954814 as determined 
above: 

q= 1.9954814 sin 39.8722878° 
= 1.2792602 

First trial: 

cp =arcsin (1.2792602/2) 
=39.762435° 

Second trial: 

c/>=39.7642435° +(180°/11') {[(1-0.00676866 sin1 39.7642435°}1/(2 cos 
39.7642435 °)] [1.2792602/(1- 0.00676866)- sin 39.7642435 ° I 
(1-0.00676866 sin1 39.7642435°) 
+ [1/(2 x 0.0822719)] ln [(1- 0.0822719 Ein 39. 7642435°)/ 
(1 + 0.0822719 sin 39. 7642435°)]]} 

= 39.9996014 ° 
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Third trial, substituting 39.9996014 o in place of 39.7642435°, 

c/> = 39.9999992° 

Fourth trial gives the same result. 
Finding cJ> from {3 by series equation (3-18) involves the same pattern 

as the example for equation (3-5) given above. 
Rectifying latitude, using equations (3-20) and (3-21): 

M = a[(1- 0.00676866/4-3 x 0.006768662/64-5 x 0.006768663/256>x 40° 
X 1r/180°- (3 X 0.00676866/8 + 3 X 0.006768662/32 + 45 X 0.006768663/ 

1024) sin (2 X 40°) + (15 X 0.006768662/256 + 45 X 0.006768663/1024) 
sin (4x 40°)- (35 x 0.006768663/3072) sin (6x 40°)] 

= a[0.9983057 x 0.6981317- 0.0025426 sin 80° + 0.0000027 sin 160° 
- 0. 0000000 sin 240°] 

= 0.6944458a 
Mp = 1.5681349a, using 90° in place of 40° in the above example:. 

p. = 90° x 0.6944458a/1.5681349a 
= 39.8563451° = 39° 51'22.8" 

Calculation of p. from series (3-23), and the inverse cJ> from (3-26), is 
similar to the example for equation (3-2) except that e1 is used rather 
than e. From equation (3-24), 

e1 = [1- (1- 0.00676866)112]/[1 + (1- 0.00676866)1n] 
= 0.001697916 

Geocentric latitude, using equation (3-28), 

c/>11 = arctan [(1- 0.00676866) tan 40°] 
= 39.8085032° = 39° 48'30.6" 

Reduced latitude, using equation (3-31), 

71 =arctan [(1- 0.00676866)112 tan 40°] 
= 39.9042229° = 39° 54'15.2" 

Series examples for c/>11 and 71 follow the pattern of (3-2) and (3-23). 

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID (SEE P. 28-31) 

Radius of curvature and length of degrees, using the Clarke 1866 
ellipsoid at lat. 40° N.: 
From equation ( 4-18), 

R' = 6378206.4 (1- 0.00676866)/(1- 0.00676866 sin2 40°)3
'

2 

=6,361,703.0 m 

From equation (4-19), using the figure just c,alculated, 

L.= 6361703.0 1rll80° = 111,032.7 m, the length of 1° of latitnde at 
lat. 40° N. 
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From equation ( 4-20), 

N = 6378206.4/(1- 0.00676866 sin2 40°)112 

= 6,387,143.9 m 

From equation (4-21), 

L" = [6378206.4 cos 40° /(1- 0.00676866 sin2 40°)112
] ,./180° 

= 85,396.1 m, the length of 1° of longitude at lat. 40° ~r. 
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MERCATOR PROJECTION (SPHERE)-FORWARD EQUATIONS (SEf' P. 47, 50) 

Given: Radius of sphere: R = 1. 0 unit 
Central meridian: Ao= 180° W. long. 

Point: cp = 35 ° N. lat. 
A=75° W. long. 

Find: x, y, k. 
Using equations (7-1) through (7-3), 

x= 1rX l.Ox [( -75°)-( -180°)]/180° = 1.8325957 units 
Y= l.Oxln tan (45° +35°/2)= l.Oxln tan (62.5°) 

= ln 1.9209821 = 0.6528366 unit 

or 

y= l.Oxarctanh (sin 35°)=arctanh 0.5735764 
=0.6528366 unit 

h=k=sec 35° = 1/cos 35° = 1/0.8191520= 1.2207746 

MERCATOR PROJECTION (SPHERE)- INVERSE EQUATIONS (SEEP. 50) 

Inversing forward example: 
Given: R, Ao for forward example 

x = 1.8325957 units 
y = 0. 6528366 unit 

Find: cp, :h 

Using equations (7 -4) and (7 -5), 

q, =goo- 2 arctan ( e-o.6s28366tl.o) 
=90° -2 arctan (0.5205670)=90° -2x27.5° =35° 
= 35° N. lat, since the sign is"+." 

A=(1.8325957/l.O)x 180°/7r+( -180°) 
= 105°-180° = -75° = 75° W. long., since the sign is"-." 

The scale factor may then be determined as in equation (7 -3) using the 
newly calculated cp. 
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MERCATOR PROJECTION (ELLIPSOID)-FORWARD EQUATIONS (SF:E P. 50) 

Gi~en: Clarke 1866 ellipsoid: a= 6378206.4 m 
e'- = 0.00676866 

or e= 0.0822719 
Central meridian: Ac,= 180° W. long. 

Find: x, y, k 

Point: cp = 35 ° N. lat. 
>-.= 75° W. long. 

Using equations (7 -6) through (7 -8), 

X= 6378206.4x [( -75°)-( -180°)] x 1r/180° = 11688673.7 m 
y=6378206.4ln [tan (45o+ 35o12) (1-0.0822719 s~n 35°)o.o82U19''-] 

1+0.0822719 Sin 35° 
= 6378206.4 In [1.9209821 x 0.9961223] 
= 6378206.4 In 1.9135331 = 4,139,145.6 m 

k=(1-0.00676866 sin'- 35°)112/cos 35° 
= 1.2194146 

MERCATOR PROJECTION (ELLIPSOID)-INVERSE EQUATIONS (SEEP. 50-51) 

Inversing forward example: 

Given: a, e; Ac, for forward example 
x= 11688673.7 m 
y=4139145.6 m 

Find:¢,}.. 

Using equation (7-10), 

t = e-4139145.6/6378206.4 = 0.5225935 

From equation (7-11), the first trial ¢=90° -2 arctan 0.52?.5935= 
34.8174484°. Using this value on the right side of equation (7-9), 

¢=90° -2 arctan (0.5225935[(1-0.0822719 sin 34.8174484°)/C 
+0.0822719 sin 34.8174484 °)]0·0822719''-J 

= 34.9991687° 

Replacing 34.8174484 ° with 34.9991687° for the second trial, recalcu­
lation using (7 -9) gives cp = 34.9999969°. The third tria 1 gives 
¢=35.0000006°, which does not change (to 7 places) with recaknlation. 
If it were not for rounding-off errors in the values of x and y, cp vrould be 
35° N. lat. 

For.}.., using equation (7-12), 

>-.=(11688673. 7/6378206.4)x 180°/7r+( -180°) 
= -75.0000001° = 75.0000001° W. long. 
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Using equations (7-13) and (3-5) instead, to find cp, 

x = 90° -2 arctan 0.5225935 
= 90°-55.1825516° 
= 34.817 4484 ° 
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using t as calculated above from (7-10). Using (3-5), xis inse:--ted as in 
the example given above for inverse auxiliary latitude x: 

cJ> = 35.0000006 ° 

TRANSVERSE MERCATOR (SPHERE)-FORWARD EQUATIONS (SEEP. 64, 67) 

Given: Radius of sphere: R= 1.0 unit 
Origin: c/Jo = 0 

Ao=75° W. long. 
Central scale factor: ko= 1.0 

Point: c/J=40°30' N. lat. 
A= 73°30' W. long. 

Find: x, y, k 

Using equation (8-5), 

B=cos 40.5° sin [(-73.5°)-(-75°)] 
=cos 40.5° sin 1.5° = 0.0199051 

From equation (8-1), 

x = 112 x 1.0 x 1.0 In [(1 + 0.0199051)/(1- 0.0199051)]. 
= 0.0199077 unit 

From equation (8-3), 

y= LOx 1.0 (arctan [tan 40.5°/cos 1.5°]-0} 
= 40.5096980° 1rll80° = 0. 7070276 unit 

From equation (8-4), 

k = 1.0/(1- 0.01990512
}

112 = 1.0001982 

TRANSVERSE MERCATOR (SPHERE)- INVERSE EQUATIONS (SEE P. 67) 

Inversing forward example: 

Given: R, c/Jo, Ao, ko for forward example 
X= 0.0199077 unit 
y = 0. 7070276 unit 

Find: cp, A 
Using equation (8-8}, 

D = 0. 7070276/(1.0 x 1.0)+ 0 = 0. 7070276 radian 
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For the hyperbolic functions of (x/Rko), the relationships 

sinh x = (ex- e-")/2 
and 

cosh x = ( e" + e-")/2 

are recalled if the function is not directly available on a given computer 
or calculator. In this case, 

sinh (x/Rko) =sinh [0.0199077/(1.0 x 1.0)] 
= ( eo.o199o11 _ e-o.o199071)/2 
=0.0199090 

cosh (x/Rko) = ( eo.o199077 + e-o.o199077)/2 
=1.0001982 

From equation (8-6), with D in radians, not degrees, 

cp =arcsin (sin 0. 7070276/1.0001982) =arcsin (0.6495767/1.0001982) 
=40.4999995° N. lat. 

From equation (8-7), 

A= -75° + arctan [0.0199090/ cos 0.7070276] 
= -75° + arctan 0.0261859 = -75° + 1.4999961 = -73.50000f~0 

= 73.5000039° W. long. 

If more decimals were supplied with the x and y calculated from the 
forward equations, the cf> and A here would agree more exactly with the 
original values. 

TRANSVERSE MERCATOR (ELLIPSOID)- FORWARD EQUATIONS (SEF P. 67-68) 

Given: Clarke 1866 ellipsoid: a= 6378206.4 m 
e1 = 0.00676866 

Origin (UTM Zone 18): cf>o = 0 
A0=75° W. long. 

Central scale factor: ko=0.9996 
Point: c/>=40°30' N. lat. 

A=73°30' W. long. 

Find: x, y, k 

Using equations (8-12) through (8-15) in order, 

e'1 = 0.00676866/(1-0.00676866) = 0.0068148 
N = 6378206.4/(1- 0.00676866 sin1 40.5 °)111 = 6387330.5 m 
T = tan1 40.5 <~ = 0. 7294538 
C=0.0068148 cos1 40.5° =0.0039404 
A =(cos 40°30~x[( -73.5°)-( -75°)] 1rll80° =0.0199074 
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Instead of equation (3-21), we may use (3-22) for the Clar~e 1866: 

M=111132.0894x(40.5°)-16216.94 sin (2x40.5°)+17.21 sin 
(4x40.5°)-0.02 sin (6x40.5°) 

=4,484,837.67 m 
Mo= 111132.0894x0° -16216.94 sin (2x0°)+ 17.21 sin (4x0°)-0.02 

sin (6x0°) 
•0.00 m 

Equations (8-9) and (8-10) may now be used: 

x = o.9996 x 6387830.5 x [0.019907 4 + (1- o. 7294538 + o.oor(\404) 
X 0.019907 43/6 + (5 -18 X 0. 7294538 + 0. 72945382 + 72 X 0.0039404 
-58 X 0.0068148) X 0.019907 41/120] 

= 127,106.5 m 
y= 0.9996 X (4484837. 7-0 + 6387330.5 X 0.8540807 X [0.01!\90742/2 

+(5-0.7294538+9x0.0039404+4x0.00394042)x0.01990744/24 
+(61- 58 X 0. 7294538 + 0. 72945382 + 600 X 0.0039404-330 
X 0.0068148) X 0.019907 46/720]} 

= 4,484,124.4 m 

These values agree exactly with the UTM tabular values, except that 
500,000.0 m must be added to x for ''false eastings." To calculate k, us­
ing equation (8-11), 

k=0.9996x[l+(l+0.0039404)x0.01990742/2+(5-4x0.7294538+42 
x0.0039404+13x0.00894042 -28x0.0068148)x0.01990744/24 
+(61-148x0.7294538+ 16x 0. 72945382)x0.0199074 6/720] 

=0.9997989 

Using equation (8-16) instead, 

k=0.9996x[l +(1 +0.0068148 cos2 40.5°)X 127106.52/(2x0.99962 

X 6387330.52
)] 

=0.9997989 

TRANSVERSE MERCATOR (ELLIPSOID)- INVERSE EQUATIONS (SEEP. 68-69) 

lnversing forward example: 

Given: Clarke 1866 ellipsoid: a= 6378206.4 m 
62 =0.00676866 

Origin (UTM Zone 18): cl>o = 0 
Ao=75° W. long. 

Central scale factor: ko= 0.9996 
Point: X= 127106.5 m 

y=4484124.4 m 
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Find: cp, A 

Calculating Mo from equation (3-22), 

M0 =111132.089x0°-16216.9 sin (2x0°)+17.2 sin (4x0°)-0.02 sin 
(6x0°) 

=0 

From equation (8-12), 

lfl= 0.00676866/(1- 0.00676866)= 0.0068148 

Using equation (8-20), 

M=0+4484124.4/0.9996=4485918.8 m 

From equation (3-24), 

e1 = [1- (1- 0.00676866)112]/[1 + (1- 0.00676866)112
] 

= 0.001697916 

From equation (8-19), 

p.= 4485918.8/[6378206.4 X (1- 0.00676866/4-3 X 0.006768662/64 
- 5 X 0.006768663/256)] 

= 0. 7045135 radian 

From equation (3-26), using p. in radians, 

c/>1 = 0. 7045135 + (3 x 0.001697916/2- 27 x 0.0016979163/32) sin 
(2 X 0. 7045135)+ (21 X 0.0016979162/16-55 X 0.00169791(~4/32) 
sin (4x0.7045135)+(151x0.0016979163/96) sin (6x0.7045135) 

= 0. 7070283 radian 
= 0. 7070283 x 180° 17r 
= 40.5097362° 

Now equations (8-21) through (8-25) may be used: 

c1 = 0.0068148 COS2 40.5097362° = 0.0039393 
T1 = tan2 40.5097362° = 0. 7299560 
N1 = 6378206.4/(1- 0.00676866 sin2 40.5097362°)112 

= 6387334.2 m 
R1 = 6378206.4 x (1- 0.00676866)/(1- 0.00676866 sin2 40.5097362°)312 

= 6,362,271.4 m 
D1 = 127106.5/(6387334.2 X 0.9996) = 0.0199077 

Returning to equation (8-17), 

cp = 40.5097362°- (6387334.2 X 0.85437 46/6362271.4) X [0.01991772/2 
- (5 X 3 X 0. 7299560 + 10 X 0.0039393-4 X 0.00393932

- 9 
x0.0068148)x0.01990774/24+(61+90x0.7299560+298 
X 0.0039393 + 45 X 0. 72995602 -252 X 0.0068148-3 
x 0.00393932)x 0.01990776/720] x 180° /r 

= 40.5000000° = 40°30' N. lat. 
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From equation (8-18), 

A= -75° + {[0.0199077 -(1 + 2x0. 7299560+0.0039393)x 0.01990. 
-/6 
+(5-2 X 0.0039393 + 28 X 0. 7299560-3 X 0.00393932 + 8 
x 0.0068148 + 24 x 0. 72995602) x 0.01990775/120]/cos 
40.5097362°} X 180° f1r 

= -75° + 1.5000000° = -73.5° = 73°30' W. long. 
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OBLIQUE MERCATOR (SPHERE)- FORWARD EQUATIONS (SEEP. 76-78) 

Given: Radius of sphere: R = 1.0 unit 
Central scale factor: k0 = 1.0 

Central line through: c/> 1 = 45 ° N. lat. 
c/>2=0° lat. 

Find: x, y, k 

A1 =0° long. 
A2=90° W. long. 

Point: c/> = 30° S. lat. 
A= 120° E. long. 

Using equation (9-1), 

Ap=arctan {[cos 45° sin 0° cos 0°-sin 45° cos 0° cos (-90")]/ 
[sin 45° cos 0° sin ( -90°)-cos 45° sin 0° sin 0°] 

=arctan {[0-0]/[ -0.7071068-0]} =0° 

Since the denominator is negative, add or subtract 180° (the r,1merator 
has neither sign, but it doesn't rnatter). Thus; 

Ap = oo + 180° = 180° 

From equation (9-2); 

c/>,=arctan [-cos (180° -0°)/tan 45°] 
=arctan [ +1/0.7071068]=45° 

The other pole is then at cf> = - 45 °, A= 0°. From equation (f-6a), 

A.o = 180° + 90° = 270°, equivalent to 270°- 360° or -90°. 

From equation (9-6), 

A= sin 45 ° sin (- 30°)- cos 45 ° cos (- 30°) sin [120° - (- 9~ 0 )] 

=0.7071068x( -0.5)-0.7071068x0.8660254x( -0.5) 
= -0.0473672 

From equation (9-3), 

X= -l.Oxl.O arctan [tan (-30°) cos 45°/cos (120°+90°)+sin 45° 
tan (120° + 90°)] 

=0.7214592 
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Since cos (120° +90°) is negative, subtract 1r, or X= -2.420133f units 
From equation (9-4), 

y= 1/2xl.Oxl.O ln [(1-0.0473672)/(1+0.0473672)] 
= -0.0474026 unit 

From equation (9-5), 

k= 1.0/[1- (- 0.0473672}1]112 = 1.0011237 

If the parameters are given in terms of a central point (for eqnations 
(9-7) and (9-8), we shall assume certain artificial parameters 
(calculated with different formulas) which give the same pole as above: 

Given: Radius of sphere: R = 1.0 unit 
Central scale factor: ko= 1.0 

Azimuth of central line: {3 = 48.8062990° east of north 
Center: cl>c = 20° N. lat. 

Ac:=68.6557771 ° W. long. 

Using equation (9-7), 

c/>p=arcsin (cos 20° sin 48.8062990°) 
=45.0° N. lat. 

From equation (9-8), 

~p =arctan [-cos 48.8062990° /(-sin 20° sin 48.8062990°)] 
- 68.6557771° 

=00 

Since the denominator of the argument of arctan is negative, add 
-180° to Ap., using "-" since the numerator is "-": 

~p= 180° W.long. 

OBLIQUE MERCATOR (SPHERE)- INVERSE EQUATIONS (SEE P. 78) 

Inversing forward example: 

Given: Radius of sphere: R= 1.0 unit 
Central scale factor: ko •1. 0 

Central line through: '4> 1 = 45 ° N. lat. 
c/>2=0° lat. 
~1=0° long. 
~2=90° W.long. 

Find: q,, ~ 

Point: X= -2.4201335 units 
y= -0.0474026 unit 
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First, cpp and Ap are determined, exactly as for the forward e:rample, 
so that Ao again is - 90 °, and cpp = 45 °. Determining hyperboli ~ func­
tions, if not readily available, 

y!Rk0 = -0.0747026/(l.Ox 1.0)= -0.0474026 
e-0 ·

0474026 = 0.9537034 
sinh (y/Rk0)=(0.9537034-1/0.9537034)/2 

= -0.0474203 
cosh (y/Rk0)=(0.9537034+ 1/0.9537034)/2 

= 1.0011237 
tanh (y/Rk0)=(0.9537034-1/0.9537034)/(0.9537034+ 1/0.953703-1) 

= -0.0473671 

From equation (9-9), 

<j}=arcsin {sin 45°x(-0.047g671)+cos 45° sin 
[(- 2.4201gg5f(1.0 X 1.0)) X 180° f1r]/1.00112g7 

=arcsin (- 0.5000000) 
= -goo= goo S. lat. 

From equation (9-10), 

A= -90° +arctan {[sin 45° sin [ -2.4201gg5x 180°/(rx 1.0 
x 1.0)]- cos 45 ° x (- 0.04 7 420g)]/cos[- 2.4201gg5 
X 180°/(7rX l.Ox 1.0)]} 

= -90° +g0.0000041 ° 
= -59.9999959° 

but the main denominator is - 0. 7508428, which is negative, wNle the 
numerator is also negative. Therefore, add (- 180°) to A, so 
A=-59.9999959°-180°=-2g9.9999959°=240° W. long.=120° E. 
long. 

OBLIQUE MERCATOR (HOTINE ELLIPSOID)-FORWARD EQUATIONS 
(SEE P. 78-83) 

For Alternate A: 

Given: Clarke 1866 ellipsoid: a= 6g78206.4 m 
e2 =0.00676866 

or e=0.0822719 
Central scale factor: k0 =0.9996 

Center: <j}0 =40° N. lat. 
Central line through: cp1 =47°30' N. lat. 

A1 = 122°18' W. long. (Seattle, Wash.) 
<j}1 =25°42' N. lat. 
A2 = 80°12' W. long. (Miami, Fla.) 

False coordinates: x0 = 4,000,000.0 m 
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Find: x, y, k 

Yo=500,000.0 m 
Point: c/)=40°48' N. lat. 

A=74°00' W. long. (New York City) 

Following equations (9-11) through (9-24) in order: 

B = [1 + 0.00676866 cos4 40° /(1- 0.00676866)]1/l 
= 1.0011727 

A=6378206.4xl.0011727x0.9996x(1-0.00676866)112/(1-0.Qi1676866 
sin2 40°) 

= 6,379,333.2 m 
t0 =tan (45° -40°/2)/[(1-0.0822719 sin 40°)/(1+0.0822719 sin 

400)]0.0822719/l 

=0.4683428 
t1 =tan (45°- 47.5° /2)/[(1- 0.0822719 sin 47.5°)/(1 + 0.0822719 

sin 4 7.5 o)]o.o822719/2 
=0.3908266 

t2 =tan (45°- 25.7° /2)/[1- 0.0822719 sin 25. 7°)/(1 + 0.0822719 
sin 25. 7o)]o.o822719/2 

=0.6303639 
D = 1.0011727 x (1- 0.00676866)112/[ cos 40° x (1- 0.00676866 sin2 

400)112] 
= 1.3043327 

E = [1.3043327 + (1.30433272-1)112] X 0.4683428l.001l727 

=1.0021857 

using the "+" sign, since cPo is north or positive. 

H = 0.39082661.0011127 = 0.3903963 
L = 0.63036391.0011727 = 0.6300229 
F= 1.0021857/0.3903963=2.5670986 
G=(2.5670986-1/2.5670986)/2= 1.0887769 
J = (1.00218572- 0.6300229 X 0.3903963)/(1.00218572 + 0.6300229 

X 0.3903963)= 0.6065716 
p = (0.6300229- 0.3903963)/(0.6300229 + 0.3903963) 

=0.2348315 
Ac,=l/2((-122.3°)+(-80.2°)]-arctan (0.6065716 tan [1.0011727 

X ( -122.3° + 80.2°)/2]/0.2348315)/1.0011727 
= -101.25°- arctan (- 0.9953887)/1.0011727 
= - 56.4349628 ° 

-y0 = ~ctan {sin [1.0011727 x ( -122.3° + 56.4349628°)]/1.0887769} 
= -39.9858829° 

a.,= arcsin [1.30~3327 sin (- 39.9858829°)] 
= -56.9466070° 
These are constants for the map. For the given cP and A, following 

equations (9-25) through (9-34) in order: 
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t= tan ( 45°-40.8° /2)/[(1- 0.0822719 sin 40.8°)/(1 + 0.0822719 sin 
40.80)]0.0822719/2 

=0.4598671 
Q= 1.0021857/0.4598671LOOlt7l7 = 2.1812805 
s = (2.1812805 -1/2.1812805)/2 = 0.8614171 
T = (2.1812805 + 1/2.1812805)/2 = 1.3198634 
V =sin [1.0011727 x ( -74 ° + 56.4349628°)] 

= - 0.3021309 
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U = [0.3021309 cos (- 39.9858829°)+ 0.8614171 sin (- 39.~858~29°)]/ 
1.3198634 

= - 0.2440041 
V= 6379333.2 In [(1 + 0.2440041)/(1- 0.2440041)]/(2 x 1.0011727) 

= 1,586,767.3 m 
U= [[6379333.2 arctan ([0.8614171 cos (- 39.9858829°) 

+ (- 0.3021309) sin (- 39.9858829°)]/cos [1.0011727 x ( -7 4 ° 
+ 56.4349628°)]}/1.0011727]] X 71"/180° 

= 4,655,443. 7 m 

Note: Since cos [1.0011727x( -74° +56.4349628°)]=0.9532664, which 
is positive, no correction is needed to the arctan in the equatio~ for u. 
The (11"/180°) is inserted, if arctan is calculated in degrees. 

k= 6379333.2 cos [1.0011727x4655443.7x 180°/(7rX 6379333.2)] 
x (1- 0.00676866 sin2 40.8°)l12/(6378206.4 cos 40.8° cos 
[1.0011727 X ( -74 ° + 56.4349628°)]} 

= 1.0307554 
x= 1586767.3 cos (- 56.9466070°) + 4655443.7 sin (- 56.9466070°) 

+4000000 
= 963,436.1 m 

y=4655443.7 cos (- 56.9466070°)-1586767.3 sin (- 56.9466070°) 
+500000 

= 4,369,142.8 m 

For Alternate B (forward): 

Given: Clarke 1866 ellipsoid: a= 6378206.4 m 
e2 = 0.00676866 

or e= 0.0822719 
Central scale factor: ko = 1.0 

Center: c/>0 = 36 ° N. lat. 
Ac=77.7610558° W. long. 

Azimuth of central line: ac= 14.3394883° east of north 
Point: c/>=38°48'33.166" N. lat. 

= 38.8092128° 
A= 76°52'14.863" W. long. 

. = -76.870795R 0 

Fmd: u, v (example uses center of Zone 2, Path 16, Landsat mapping, 
with Hotine Oblique Mercator). 
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U;:;ing equations (9-11) through (9-39) in order, 

B = [1 + 0.00676866 cos4 36° /(1- 0.00676866)]1H 

=t0014586 
A= 63780206.4 X 1.0014586 X 1.0 X (1- 0.00676866}112/(1- 0.00~76866 

sin2 36°)= 6,380, 777,0 m 
t0=tan (45° -36°/2)/[(1-0.0822719 sin 36°)/(1+0.0822719 sin 

360)]0.0812719/2 
=0.5115582 

D = 1.0014586 x (1- 0.00676866}112/[cos 36° 
x (1- 0.00676866 sin2 36°)1'2] 

= 1.2351194 
F= 1.2351194+(1.2351194~ -1}112 = 1.9600471 

using the "+ " sign since cp0 is north or positive. 

E = 1.9600471 X 0,51155821.0014586 = 1.0016984 
G=(l.9600471--1/1.9600471)/2= 0. 7249276 
'Yo= arcsin [(sin 14.3394883°)/1.2351194] 

= 11.5673996° 
Ap= ~ 77.7610558°- [arcsin (0. 7249276 tan 11.5673996Q)]/1.0114586 

= -86.2814800° 
U<36o, _ 77.76 ... a)=+ (6380777.0/1,0014586) arctan [(1.23511942-1)1n/ 

COS 14.3394883°] X 11'/180° 
=4,092,868.9 m -

Note: The 11"1180° is inserted, if arctan is calculated in degrf~S. These 
are constants for the map. The calculations of u, v, x, andy for (q,, >..) 
follow the same steps as the numerical example for equaticns (9-25) 
through (9-34) for alternate A. For (/) = 38.8092128° and 
>.. = -76.8707953 o, it is found tb~t 

U= 4,414,439.0 m 
v = - 2.356.3 m 

OBLIQUE MERCATOR (HOTINE ELLIPSOID)- INVERSE EQUAT ... 4)NS 
(SEE P. 83-84) 

The above example for alternate A will be inverted, first using equa­
tions (9-11) through (9-24}, then using equations (9-40) through (9-48). 
Since no new equations are involved for inverse alternate B, -an exam­
ple of the latter will be omitted. As stated with the inverse e1uations, 
the constants for the map are chosen as in the forward exan1ples. 
Inversing forward example for alternate A: 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

or e= 0.0822719 
Central scale factor: ko = 0.9996 

Center: c/>0 = 40° N. lat. 
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Center line through: cf>1 = 4 7° 30' N. lat. 

Find: q,, A 

A1 = 1~2°18' W. long. 
cP2 = 25°42' N. lat. 
A2=80°12' W. long. 

False coordinates: X0 =4,000,000.0 m 
Yo= 500,000.0 m 

Point: x = 963,436.1 m 
y=4,369,142.8 m 
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Using equations (9-11) through (9-24) in order, again gives the follow­
ing constants: 

B=1.0011727 
A= 6,379,333.2 m 
E = 1.0021857 
Ao = - 56.4349628° 
'Yo= -39.9858829° 
O:c = - 56.9466070° 

Following equations (9-40) through (9-48) in order: 

v=(963436.1-40ooooo.o) cos ( -56.9466070°)-(4369142.r 
- 500000.0) sin (- 56.9466070°) 

= 1,586, 767.3 m 
U=(4369142.8- 500000.0) COS ( -56.9466070°)+(963436.1 

- 4000000.0) sin (- 56.9466070°) 
= 4,655,443. 7 m 

Q' = e-C1.0011727x1586767.3/6379333.2) 
= e-0.2490273 

=0.7795587 
S' = (0. 7795587-110. 7795587)/2 = - 0.2516092 
T' = (0. 7795587 + 1/0. 7795587)/2 = 1.0311679 
V =sin [(1.0011727x 4655443. 7/6379333.2)x 180°/r] 

=sin 41.8617535° = 0.6673356 
U' = [0.6673356 cos (- 39.9858829°)- 0.2516092 sin (- 39.9858829°)]/ 

1.0311679 
=0.6526562 

t= (1.0021857/[(1 + 0.6526562)/(1- 0.6526562)]112]111
·
0011727 

=0.4598671 

The first trial q, for equation (7-9) is 

f/>=90° -2 arctan (0.4598671)=40.6077096° 

Calculating a new trial q,: 

<P = 90°-2 arctan {0.4598671 x [(1- 0.0822719 sin 40.6077096°)/ 
(1 + 0.0822719 sin 40.6077096°)]0·082271912) 

= 40.7992509° 
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Substituting 40.7992509° in place of 40.6077096° and recalculating,, 
q, = 40.7999971°. Using this q, for the third trial, q, = 40.8000000°. The 
next trial gives the same value of q,. Thus, 

4>=40.8° =40°48' N. lat. 
A= -56.4349628°- arctan {[- 0.2516092 cos (- 39.9858829°) 

-0.6673356 sin (- 39.9858829°)]/cos [(1.0011727 
x 4655443.7/6379333.2)x 180°/11"]} /1.0011727 

= -74.0000000°=74°00' W. long. 

Using series equation (3-5) with (7 -13), to avoid iteration of (7 -9), 
and beginning with equation (7 -13), 

x = 90°-2 arctan 0.4598671 
=40.6077096° 

Since equation (3-5) is used in an example under Auxiliary latitudes, 
the calculation will not be shown here. 

MILLER CYLINDRICAL (SPHERE)- FORWARD EQUATIONS (SEEP. 87-88) 

Given: Radius of sphere: R= 1.0 unit 
Central meridian: Xo = 0° long. 

Point: q, = 50° N. lat. 
A=75° W. long. 

Find x, y, h, k 

Using equations (10-1) through (10-5) in order, 

X= 1.0 X [ -75°- 0°] X 11"/180° 

or 

= - 1.3089969 units 
y=l.Ox[ln tan (45°+0.4x50°)]/0.8 

=(In tan 65°)/0.8 
= 0.9536371 unit 

y= 1.0 x {arctanh [sin (0.8x 50°)]}/0.8 
=arctanh 0.6427876/0.8 
= 0.9536371 unit 

h= sec (0.8x 50°)= 1/cos 40° = 1.3054073 
k =sec 50° = 1/cos 50° = 1.5557238 

sin 112w =(cos 40°- cos 50°)/(cos 40° +cos 50°) 
=0.0874887 

w= 10.0382962° 

MILLER CYLINDRICAL (SPHERE)- INVERSE EQUATIONS (SEE P. 88) 

Inversing forward example: 

Given: R, Xo for forward example 



X= -1.3089969 units 
y= 0.9536371 unit 

APPENDIXES 

Find:¢,~ 

Using equations (10-6) and (10-7), 

or 

¢ = 2.5 arctan e< 0 · 8 ,.0 · 95363711 .. 0 >- (5?r/8) x 180° l1r 
= 2.5 arctan e0

·
7629096 -1.9634954 x 180° l1r 

= 2.5 arctan (2.1445069)-1.9634954x 180°/?r 
= 2.5 X 65.0000006°-112.5000000° 
= 50.0000015° = 50° N. lat. 

¢=arcsin [tanh (0.8 x 0.9536371/1.0)]/0.8 
=(arcsin 0.6427876)/0.8 
= 50.0000015° = 50° N. lat. 

~ = 0°- (1.3089969/1.0) X 180° /1r 
=0°-74.9999978°=75° W.long. 

ALBERS CONICAL EQUAL-AREA (SPHERE)-FORWARD EQUATIONS 
(SEE P. 95-96) 

Given: Radius of sphere: R = 1.0 unit 
Standard parallels: ¢ 1 =29°30' N. lat. 

c/>2 = 45°30' N. lat. 
Origin: ¢0 = 23 ° N. lat. 

~=96° W. long. 
Point: ¢=35° N. lat. 

~=75° W. long. 
Find: p, 0, x, y, k, h, w 

From equation (12-6), 

n= (sin 29.5° +sin 45.5°)/2 
=0.6028370 

From equation (12-5), 

C=cos2 29.5° +2x0.6028370 sin 29.5° 
= 1.3512213 

From equations (12-3) and (12-3a), 

p = 1.0 x (1.3512213- 2 x 0.6028370 sin 35°)112/0.6028370 
= 1.3473026 units 

Po= 1.0 x (1.3512213- 2 x 0.6028370 sin 23°)112/0.6028370 
= 1.5562263 units 

From equation (12-4), 

0= 0.6028370 X (( -75°)- (- 96°)] 
= 12.6595771° 

243 
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From equation (12-1), 

X= 1.3473026 sin 12.6595771° 
= 0.2952720 unit 

From equation (12-2), 

y= 1.5562263-1.3473026 cos 12.6595771 o 

= 0.241677 4 unit 
From equation (12-7), 

and 

h=cos 35°/(1.3512213-2x0.6028370 sin 35°)112 

= 1.0085547 

k= 1/1.0085547 = 0.9915178 

From equation ( 4-9), 

sin 112w= 11.0085547- 0.9~151781/(1.0085547 +0.9915178) 
w=0.9761189° 

ALBERS CONICAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS (f!~E P. 96) 

Inversing forward example: 

Given: R, ck_~~ c/>2, cf>o, Ao for forward example 
x = 0.2952720 unit 
y=0.2416774 unit 

Find: p, 8, cp, A 

As in the forward example, from equation (12-6), 

n= (sin 29.5° +sin 45.5°)/2 
=0.6028370 

From equation (12-5), 

C=cos2 29.5° +2x0.6028370 sin 29.5° 
= 1.3512213 

From equation (12-3a), 

po= l.Ox(l.3512213-2x0.6028370 sin 23°)112/0.6028370 
= 1.5562263 units 

From equation (12-10), 

p = [0.29527202 + (1.5562263- 0.241677 4)2
]

112 

= 1.3473026 units 
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From equation (12-11), 

8 =arctan [0.2952720/(1.5562263- 0.241677 4)] 
= 12.6595766°. SincP the denominator is positive, there is no 

adjustment to 8. 

From equation (12-8), 

cJ> =arcsin {[1.3512213- (1.34 73026 x 0.6028370/1.0)2]/ 

(2 X 0.6028370)} 
=arcsin 0.5735764 
=35.0000007°=35° N. lat. 

From equation (12-9), 

>..= 12.6595766°/0.6028370 + (- 96°) 
= 20.9999992- 96 ° 
= -75.0000008° = 75° W. long. 

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS 
(SEE P. 96-97) 

Given: Clarke 1866 ellipsoid: a= 6378206.4 m 
e2 = 0.00676866 

or e=0.0822719 
Standard parallels: ¢ 1 =29°30' N. lat. 

¢ 2 =45°30' N. lat. 
Origin: ¢ 0 = 23 ° N. lat. 

>..o=96° W. long. 
Point: cJ> = 35 o N. lat. 

>..=75° W. long. 

Find: p,8, ~ ~ ~ ~ w 

From equation (12-15), 

m1 =cos 29.5° /(1- 0.00676866 sin2 29.5°)112 

=0.8710708 
m2 =cos 45.5° /(1- 0.00676866 sin2 45.5°)112 

=0.7021191 

From equation (3-12), 

q1 =(1-0.00676866) {sin 29.5°/(1-0.00676866 sin2 29.5c) 
- [1/(2 x 0.0822719)] ln [(1- 0.0822719 sin 29.5°)/ 
(1 + 0.0822719 sin 29.5°)]} 

=0.9792529 
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Using the same formula for q2 (with ¢2 instead of ¢ 1), 

q2 = 1.4201080 

Using the same formula for q0 (with ¢0 instead of ¢ 1), 

q0 = 0. 7767080 

From equation (12-14), 

n= (0.87107082
- 0. 70211912)/(1.4201080- 0.9792529) 

=0.6029035 

From equation (12-13), 

C = 0.87107082 + 0.6029035 X 0.9792529 
= 1.3491594 

From equation (12-12a), 

p0 = 6378206.4 X (1.3491594- 0.6029035 X 0. 7767080)112/0.6029035 
=9,929,079.6 m 

These are the constants for the map. For ¢=35° N. lat. and A=75° 
W. long.: Using equation (3-12), but with¢ in place of¢., 

q= 1.1410831 

From equation (12-12), 

p = 6378206.4 X (1.3491594- 0.6029035 X 1.1410831)112/0.6029035 
= 8,602,328.2 m 

From equation (12-4), 

8 = 0.6029035 X ( -75°- (- 96°)] = 12.6609735° 

From equation (12-1), 

X=8602328.2 sin 12.6609735° = 1,885,472.7 m 

From equation (12-2), 

y= 9929079.6-8602328.2 cos 12.6609735° 
= 1,535,925.0 m 

From equation (12-15), 

m =cos 35 ° /(1- 0. 00676866 sin2 35 °)112 

=0.8200656 

From equation (12-16), 

k = 8602328.2 X 0.6029035/(6378206.4 X 0.8200656) 
=0.9915546 



From equation (12-18), 

h= 110.9915546= 1.0085173 

From equation ( 4-9), 

APPENDIXES 

sin 1/zw= 11.0085173- 0.99155461/(1.0085173 + 0.9915546) 
w= 0.9718678° 
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ALBERS CONICAL EQUAL-AREA (ELLIPSOID)- INVERSE EQUATIONS 
(SEE P. 97 -98) 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: a= 6378206.4 m 
e2 = 0.00676866 

or e= 0.0822719 
Standard parallel: ¢ 1 = 29°30' N. lat. 

<1>2 = 45°30' N. lat. 

Find: p, 0, ¢, A 

Origin: <Po= 23 ° N. lat. 
Ao=96° W. long. 

Point: X= 1,885,472.7 m 
y= 1,535,925.0 m 

The same constants n, C, p0 are calculated with the same equations as 
those used for the forward example. For the particular point: 

From equation (12-10), 

p = [18854 72.72 + (9929079.6 -1535925.0)2
]

112 

= 8,602,328.3 m 

From equation (12-11), 

()=arctan [18854 72.7 /(9929079.6- 1535925.0)] 
=arctan 0.2246441 
= 12.6609733°. The denominator is positive; therefore() if not 

adjusted. From equation (12-19), 
q= [1.3491594- (8602328.3 X 0.6029035/6378206.4)2]/0.6029035 

= 1.1410831 

Using for the first trial <t> the arcsin of (1.141083112), or 34.7879983°, 
calculate a new <t> from equation (12-19), 

<t>= 34.7879983° + [(1- 0.00676866 sin2 34. 7879983°)2/(2 cos 
34.7879983°)] x {1.1410831/(1- 0.00676866)- sin 34.7879983° I 
(1-0.00676866 sin2 34.7879983°)+[1/(2x0.0822719)] In 
[(1- 0.0822719 sin 34. 7879983°)/(1 + 0.0822719 sin 
34. 7879983°)]} X 180° f1r 

= 34.9997335 ° 
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Note that 180°/r is included to convert to degrees. Replacing 
34.7879983° by 34.9997335° for the second trial, the calculation using 
equation (12-19) now provides a third cJ> of 35.0000015°. A ro.calcula­
tion with this value results in no change to seven decimal places. (This 
does not give exactly 35° due to rounding-off errors in x andy.) Thus, 

c/>=35.0000015° N. lat. 

For the longitude use equation (12-9), 

X=( -96°)+ 12.6609733°/0.6029035 
= -75.0000003° or 75.0000003° W. long. 

For scale factors, we revert to the forward example, since cJ> r.nd X are 
now known. 

Series equation (3-18) may be used to avoid the iteration alY)Ve. Be­
ginning with equation (12-21), 

{3 =arcsin [1.1410831/(1- [(1- 0.00676866)/(2 x 0.0822719)] In 
[(1- 0.0822719)/(1 + 0.0822719)]}] 

= 34.8781793° 

An example is not shown for equation (3-18), since it is similar to the 
example for (3-5). 

LAMBERT CONFORMAL CONIC (SPHERE)-FORWARD EQUATI0NS 
(SEEP. 105) 

Given: ·Radius of sphere: R = 1.0 unit 
Standard parallels: c/>1 = 33° N. lat. 

c/>2 = 45° N. lat. 
Origin: c/>0 = 23 ° N. lat. 

Ao=96° W. long. 
Point: cJ> = 35 o N. lat. 

Find: p, (), x, y, k 

From equation (13-3), 

X= 75° W. long. 

n=ln (cos 33°/cos 45°)/ln [tan (45° +45°/2)/tan (45° +33°/2)] 
=0.6304777 

From equation (13-2), 

F=[cos 33° tan°·6304777 (45° +33°/2)]/0.6304777 
= 1. 9550002 units 

From equation (13-1a), 

Po= 1. 0 x 1. 9550002/tan°·6304777 
( 45 ° + 23 ° /2) 

= 1.5071429 units 



APPENDIXES 249 

The above constants apply to the map generally. For the specific cp 
and}.., using equation (13-1), 

p = 1. 0 x 1. 9550002/tan°·6304777 
( 45 o + 35 o /2) 

= 1.2953636 units 

From equation (12-4), 

0=0.6304777x[( -75°)-( -96°)] 
= 13.2400316° 

From equations (12-1) and (12-2), 

X= 1.29531336 sin 13.2400316° 
= 0.2966785 unit 

Y= 1.5071429-1.2953636 cos 13.2400316° 
= 0.2462112 unit 

From equation (13-4), 

k =cos 33 o tan°·6304777 ( 45 o + 33 ° /2)/[ cos 35 ° tan°·6304777 
( 45 o 

+ 35°/2)] 
=0.9970040 

or from equation ( 4-5), 

k=0.6304777x 1.2953636/(1.0 cos 35°) 
=0.9970040 

LAMBERT CONFORMAL CONIC (SPHERE)-INVERSE EQUATIONS 
(SEE P. 105, 107) 

Inversing forward example: 

Given: R, cp11 cp2 , c/Jo, >..a for forward example 
x = 0.2966785 unit 
Y= 0.2462112 unit 

Find: p, 0, cp, }.. 

After calculating n, F, and p0 as in the forward example, obtaining the 
same values, equation (12-10) is used: 

p = [0.29667852 + (1.5071429- 0.2462112)2)lll 

= 1.2953636 units 

From equation (12-11), 

0 =arctan [0.2966785/(1.5071429- 0.2462112)] 
= 13.2400329°. Since the denominator is positive, 0 is not 

adjusted. 

From equation (12-9), 

>..= 13.2400329°/0.6304777 +(- 96°) 
= -74.9999981°=74.9999981° W.long. 
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From equation (13-5), 

¢ = 2 arctan (1.0 x 1.9550002/1.2953636)110·6304777 - 90° 
= 34.9999974 o N. lat. 

LAMBERT CONFORMAL CONIC (ELLIPSOID)- FORWARD EQUAT~ONS 
(SEE P. 107-108) 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

or e=0.0822719 
Standard parallels: ¢1 =33° N. lat. 

¢2=45° N. lat. 
Origin: ¢0=23° N. lat. 

A.o= 96° W. long. 
Point: ¢ = 35 o N. lat. 

Find: p, 0, x, y, k 
A= 75° W. long. 

From equation (12-15), 

m1 =cos 33° /(1- 0.00676866 sin2 33°)112 

=0.8395138 
m2 =cos 45° /(1- 0.00676866 sin2 45°)112 

=0.7083064 

From equation (13-9), 

t1=tan (45°-33°/2)/[(1-0.0822719 sin 33°)/(1+0.0822719 sin 
330)]0.0822719/2 

=0.5449623 
t2 = 0.4162031, using above with 45° in place of 33°. 
t0 = 0.6636390, using above with 23° in place of 33°. 

From equation (13-8), 

n= ln (0.8395138/0. 7083064)/ln (0.5449623/0.4162031) 
=0.6304965 

From equation (13-10), 

F = 0.8395138/(0.6304965 X 0.5449623°·6304965) 
= 1.9523837 

From equation (13-7a), 

Po= 6378206.4x 1.9523837x 0.6636390°·6304965 

= 9,615,955.2 m 

The above are constants for the map. For the specific ¢, A, using 
equation (13-9), 

t= 0.5225935, using above calculation with 35° in place of 33°. 
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From equation (13-7), 

p = 6378206.4 X 1.9523837 X 0.5225935°·6304965 

=8,271,173.9 m 

From equation (12-4), 

8=0.6304965x[ -75° -( -96°)]= 13.2404256° 

From equations (12-1) and (12-2), 

X= 8271173.9 sin 13.2404256° 
= 1,894,410.9 m 

y = 9615955.2-8271173.9 cos 13.2404256° 
= 1,564,649.5 m 

From equations (12-15) and (12-16), 

m=cos 35°/(1-0.00676866 sin2 35°)112 

=0.8200656 
k = 8271173.9 X 0.6304965/(6378206.4 X 0.8200656) 

=0.9970171 

LAMBERT CONFORMAL CONIC (ELLIPSOID)-INVERSE EQUATIONS 
(SEE P. 108-109) 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2=0.00676866 

or e= 0.0822719 
Standard parallels: l/>1 =33° N. lat. 

l/>2=45o N. lat. 
Origin: l/>0 = 23 ° N. lat. 

Ao=96° W. long. 
Point: X= 1,894,410.9 m 

y=1,564,649.5 m 

251 

The map constants n, F, and p0 are calculated as in the for,vard exam­
ple, obtaining the same values. Then, from equation (12-10), 

p = [1894410.92 + (9615955.2 -1564649.5)2]112 

= 8,271,173.8 m 

From equation (12-11), 

8 =arctan [1894410.9/(9615955.2 -1564649.5)] 
= 13.2404257°. The denominator is positive; therefore 8 is not 

adjusted. 

From equation (13-11), 

t= (8271173.8/(6378206.4 X 1.9523837)]1
'

0
·
63

0
4965 

=0.5225935 
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To use equation (7-9), an initial trial cJ> is found as follows: 

cJ> = 90°- 2 arctan 0.5225935 
= 34.817 4484 ° 

Inserting this into the right side of equation (7 -9), 

c/>=90° -2 arctan (0.5225935x[(l-0.0822719 sin 34.8174484°)/ 
(1 + 0.0822719 sin 34.8174484 °)]0 ·0822719/1 

= 34.9991687° 

Replacing 34.8174484 o with 34.9991687° for the second trial, a cJ> of 
34.9999969° is obtained. Recalculation with the new c/J results in 
c/J = 35.0000006°, which does not change to 7 decimals with a fourth 
trial. (This is not exactly 35 °, due to rounding-off errors.) Therefore, 

c/J=35.0000006° N. lat. 

From equation (12-9), 

= 13.2404257°/0.6304965+( -96°) 
= -75.0000013° = 75.0000013° W. long. 

Examples using equations (3-5) and (7 -13) are omitted he"""e, since 
comparable examples for these equations have been given above. 

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)-FORWARD EQUATIONS 
(SEEP. 114-117) 

This example will illustrate equations (14-11) through (14-23), 
assuming prior calculation of the constants from equatior\3 (14-1) 
through (14-13). 

Given: Radius of sphere: R = 6,370,997 m 
Point: c/J=40° N. lat. 

A=90° W. long. 

Find: x, y, k 

From equation (14-14), 

Zs= arccos (sin 45° sin 40° +cos 45° cos 40° cos [( -19°59'3~'~ 
-( -90°)]} 

=50.22875° 

From equation (14-15), 

A Zs = arctan (sin (- 19 ° 59'36" + 90 ° )/[cos 45 ° tan 40 ° - sin 45 ° cos 
( -19° 59'36'' + 90°)]} 

=69.48856° 
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Since 69.48856° is less than 104.42834°, proceed to equation (14-16). 

From equations (14-16) through (14-22), 

p8 = 1.89725 x 6370997 tan°· 63056 (112 x 50.22875 °) 
= 7,496,100 m 

k= 7,496,100 x 0.63056/(6370997 sin 50.22875°) 
=0.96527 

a= arccos {[tan°·63056 (112 x 50.22875 °) + tan°· 63056 112(104 o 

- 50.22875°)]/1.2724 7) 
= 1.88279° 

n(AzsA -Az8 )= 0.63056x (104.42834 °- 69.48856°)= 22.03163° 

This is greater than a, so ps' = Ps· 

x = 7,496,100 sin [0.63056 (104.42834 o- 69.48855°)] 
= 2,811,900 m 

y' = 7,496,100 cos [0.63056 (104.42834 °- 69.48855°)] 
-1.20709 X 6,370,997 

= -741,670 m 

From equations (14-32) and (14-33), 

X= -2,811,900 cos 45.81997° +741670 sin 45.81997° 
= -1,427,800 m 

y=741,670 cos 45.81997° +2811900 sin 45.81997° 
=2,533,500 m 

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)-INVERSE EQUATIONS 
(SEE P. 117-118) 

Inversing the forward example: 

Given: Radius of sphere: R = 6,370,997 m 

Find:¢, A. 

Point: X= -1,427,800 m 
y = 2,533,500 m 

From equations (14-34) and (14-35), 

x = - (- 1,427,800) cos 45.81997° + 2,533,500 sin 45.81997° 
= 2,811,900 m 

y' = - (- 1,427,800) sin 45.81997°-2,533,500 cos 45.81997° 
= -741,670 m 

Since xis positive, go to equations (14-36) through (14-44) in order: 

p~ = [2,811,9002 + (1.20709 X 6,370,997-7 41,670)2
]

112 

= 7,496,100 m 
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A~=arctan [2,811,900/(1.20709x 6,370,997 -741,670)] 
= 22.03150° (The denominator is positive, so there is no 

quadrant correction.) 
Ps=7,496,100 m 
Zs= 2 arctan [7,496,100/(1.89725x 6,370,997)]110·63056 

=50.22873° 
a= arccos {[tan°·63056 

( 1/2 x 50.22873°) 
+ tan°·63056 112(104 °- 50.22873°)]/ 1.2724 7} 

= 1.88279° 

Since Az~ is greater than a, go to equation (14-42). 

Azs= 104.42834°-22.03150°/0.63056 
=69.48876° 

cJ>=arcsin (sin 45° cos 50.22873° +cos 45° sin 50.22873° c1s 
69.48876°) 

= 39.99987° or 40° N. lat., if rounding off had not 
accumulated errors. 

A= ( -19° 59'36")- arctan {sin 69.48876° /[cos 45 o /tan 50.22-:-~73° 
-sin 45° cos 69.48876°]} 

= -89.99987° or 90° W. long., if rounding off had not 
accumulated errors. 

POLYCONIC (SPHERE)-FORWARD EQUATIONS (SEEP. 128-129) 

Given: Radius of sphere: 
Origin: 

Point: 

Find: x, y, h 

R=l.O unit 
c/>0 =30° N. lat. 
Ao=96° W. long. 
cJ>=40° N. lat. 
A=75° W. long. 

From equations (15-2) through (15-4), 

E = (- 75 ° + 96 o) sin 40° 
= 13.4985398 ° 

x= 1.0 cot 40° sin 13.4985398° 
= 0.2781798 unit 

y = 1.0 x [ 40° x 11'/180°- 30° x 11'1180° +cot 40° (1- cos 13.49~5398°)] 
= 0.207 4541 unit 
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From equations (15-6) and (15-5), 

D =arctan [(13.4985398° x r/180°- sin 13.4985398°)/(sec2 40°­
cos 13.4985398°)] 

= 0.17018327° 
h = (1- cos2 40° cos 13.4985398°)/sin2 40° cos 0.17018327-:~ 

= 1.0392385 

POLYCONIC (SPHERE)- INVERSE EQUATIONS (SEE P. 12~~ 

Inversing the forward example: 

Given: Radius of sphere: R= 1.0 unit 
Origin: q,0 =30° N. lat. 

~=96° W.long. 

Find: q,, A 

Point: x= 0.2781798 unit 
y=0.2074541 unit 

Since y ::1: -1.0 X 30° X r/180°, use equations (15-7) and (15-8): 

A= 30° X r/180° + 0.2074541/1.0 
=0.7310529 

B = 0.27817982/1.02 + 0. 73105292 

=0.6118223 
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Assuming an initial q," =A= 0. 7310529 radians, it is simplest to work 
with equation (15-9) in radians: 

q,n+t = 0. 7310529- (0. 7310529 X (0. 7310529 tan 0. 7310529 + 1) 
- 0.7310529- 1/2(0.73105292 +0.6118223) tan 0.731052~]/ 
[(0. 7310529-0. 7310529)/tan 0. 7310529 -1] 

= 0.6963533 radian 

Using 0. 6963533 in place of 0. 7310529 (except that the boldfar~ retains 
the value of A) a new q,n+t of 0.6981266 radian is obtainei. Again 
substituting this value, 0.6981317 radian is obtained. The fourth itera­
tion results in the same answer to seven decimal places. Therefore, 

q,=0.6981317x180°IT=40.0000004° or 40° N. lat. 
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From equation (15-10), 

A=[arcsin (0.2781798 tan 40°/1.0)]/sin 40° +( -96°) 
= -75.0000014° =75° W. long. 

POLYCONIC (ELLIPSOID)-FORWARD EQUATIONS (SEEP. 129-130) 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

Origin: t/>0 =30° N. lat. 
Ao=96° W. long. 

Point: t/>=40° N. lat. 
A=75° W. long. 

Find: x, y, h 
From equation (3-21), 

M = 6,378,206.4 X [(1- 0.00676866/4-3 X 0.006768662/64 
- 5 X 0.006768663/256) X 40° X 1r 180°- (3 X 0.00676866/r 
+ 3 X 0.006768662/32 + 45 X 0.006768663/1024) 
sin (2 X 40°) + (15 X 0.006768662/256 + 45 X 0.006768663/1024) 
sin (4x40°)-(35x0.006768663/3072) sin (6x40°)] 

= 4,429,318.9 m 

Using 30 o in place of 40 o, 

Mo=3,319,933.3 m 

From equation ( 4-20), 

N = 6,378,206.4/(1- 0.00676866 sin2 40°)112 

=6,387,143.9 ttl 

From equations (15-2), (15-12), and (15-13), 

E=( -75° +96°) sin 40° 
= 13.4985398° 

x=6,387,143.9 cot 40° sin 13.4985398° 
= 1, 776,77 4.5 m 

y=4,429,318.9-3,319,933.3+6,387,143.9 cot 40° 
(1- cos 13.4985398 °) 

= 1,319,657.8 m 

To calculate scale factor h, from equations (15-16) and (15-1f), 

D =arctan {(13.4985398° x 1r/180°- sin 13.4985398°)/[sec2 40° 
-cos 13.4985398°-0.00676866 sin2 40°/(1-0.00676866 
sin2 40°)]) 

=0.1708380522° 
h = [1- 0.00676866 + 2(1- 0.00676866 sin2 40°) sin2 

1/2(13.4985398°)/tan2 40°]/(1-0.00676866) cos 0.1708fQI)522° 
=1.0393954 
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POLYCONIC (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 130-131) 

Inversing the forward example: 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 

Find: 4>,). 

e1 =0.00676866 
Origin: 4>o=30° N. lat. 

~=96° W. long. 
Point: x=1,776,774.5 m 

y= 1,319,657.8 m 
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First calculating Mo from equation (3-21), as in the forward example, 

Mo = 3,319,933.3 m 

Since y:I=M0 , from equations (15-18) and (15-19), 

A= (3,319,933.3 + 1,319,657.8)/6,378,206.4 
=0.7274131 

B = 1, 776,77 4.51/6,378,206.41 + 0. 727 41311 

=0.6067309 

Assuming an initial value of 4>, = 0. 727 4131 radian, the following 
calculations are made in radians from equations (15-2C ), (3-21), 
(15-17), and (15-21): 

C=(l-0.00676866 sin1 0.7274131)111 tan 0.7274131 
=0.8889365 

M,=4,615,626.1 m 
M, = 1-0.00676866/4-3 X 0.006768661/64- 5 X 0.006768663/256 

-2 X (3 X 0.00676866/8 + 3 X 0.006768661/32 + 45 
X 0.006768663/1024) COS (2 X 0. 727 4131) + 4 X (15 
x0.006768661/256+45x0.006768663/1024) cos (4 
X 0. 727 4131)- 6 X (35 X 0.006768663/3072) COS (6 
X 0. 727 4131) 

=0.9977068 
M,. = 4,615,626.1/6,378,206.4 = 0. 7236558 

4>n+l = 0. 727 4131- [0. 727 4131 X (0.8889365 X 0. 7236558 + 1) 
- 0. 7236558 - 112(0. 72365581 + 0.6067309) X 0.888936f]/ 
[0.00676866 sin (2 x 0. 727 4131) x (0. 72365581 + 0.6067309 
-2 xO. 7274131 x 0.7236558)/(4 x0.8889365) 
+(0. 7274131- 0.7236558)x(0.8889365 x 0.9977068 
- 2/sin (2x0.7274131))-0.9977068] 

=0.6967280 radian 

Substitution of 0.6967280 in place of 0. 727 4131 in equation~ (15-20), 
(3-21), (15-17), and (15-21), except for boldface values, which are A, 
not 4>,, a new 4>,+1 of 0.6981286 is obtained. Using this in place of the. 
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previous value results in a third cp,.1 of 0.6981317, which is unchanged 
by recalculation to seven decimals. Thus, 

c/>=0.6981317x 180°111"=40.0000005° =40° N. lat. 

From equation (15-22), using the finally calculated C of 0.837~255, 

~=[arcsin (1,776,774.5x0.8379255/6,378,206.4)]/sin 40° +( -96°) 
= -75° =75° W. long. 

ORTHOGRAPHIC (SPHERE)-FORWARD EQUATIONS (SEEP. 146-147) 

Given: Radius of sphere: R = 1.0 unit 
Center: c/>1 =40° N. lat. 

~ = 100° W. long. 
Point: c/>=30° N. lat. 

~= 110° W. long. 
Find: x, y 
In general calculations, to determine whether this point is beyc nd view­
ing, using equation (5-3), 

cos c=sin 40° sin 30°+cos 40° cos 30° cos (-110°+100°) 
=0.9747290 

Since this is positive, the point is within view. 
Using equations (16-3) and (16-4), 

X= 1.0 cos 30° sin ( -110° + 100°) 
= -0.1503837 

y= 1.0 [cos 40° sin 30° -sin 40° cos 30° cos ( -110° + 100°)] 
= -0.1651911 

Examples of other forward equations are omitted, since th~ oblique 
case applies generally. 

ORTHOGRAPHIC (SPHERE)-INVERSE EQUATIONS (SEEP. 147) 

Inversing forward example: 

Given: Radius of sphere: R = 1.0 unit 
Center: q,. =40° N. lat. 

~o= 100° W. long. 

Find: cp, ~ 

Point: X= -0.1503837 unit 
Y= -0.1651911 unit 

Using equations (16-18) and (16-19), 

p =[( -0.1503837)2 +( -0.1651911)2)112 

=0.2233906 
c=arcsin (0.2233906/1.0) 

= 12.9082572° 
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Using equations (16-14) and (16-15), 

ct>=arcsin [cos 12.9082572° sin 40° +( -0.1651911 sin 
12.9082572° cos 40°/0.22gg906)] 

=g0.0000007°, or gooN. lat. if rounding off did not oc~ur. 
A= -100° +arctan [ -0.150g8g7 sin 12.9082572°/(0.22gg'~06 

cos 40° cos 12.9082572° +0.1651911 sin 40° sin 
12. 9082572°)] 

= -100° +arctan [ -o.ogg594g/0.1905228] 
= -100° + (- 9.9999964 °) 
= -109.9999964 °, or 110° W. long. if rounding off did not 

occur. 
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Since the denominator of the argument of arctan is positive, no adjust­
ment for quadrant is necessary. 

STEREOGRAPHIC (SPHERE)-FORWARD EQUATIONS (SEEP. 158-159) 

Given: Radius of sphere: R = 1.0 unit 
Center: cJ>1 = 40° N. lat. 

Ao= 100° W. long. 
Central scale factor: k0 = 1.0 

Point: ct>=goo N. lat. 
A=75° W. long. 

Find: x, y, k 
Using equations (17-4), (17-2), and (17-g) in order, 

k=2xl.0/[1+sin 40° sin goo+cos 40° cos goo cos (-75°+100°)] 
= 1.0402go4 

X= 1.0x 1.0402g04 cos goo sin ( -75° + 100°) 
= o.g807224 unit 

y= l.Ox 1.0402g04 [cos 40° sin goo -sin 40° cos goo cos 
( -75° + 100°)] 

= -0.126g802 unit 

Examples of other forward equations are omitted, since the above 
equations are general. 

STEREOGRAPHIC (SPHERE)-INVERSE EQUATIONS (SEEP. 159) 

Inversing forward example: 

Given: Radius of sphere: 
Center: 

Central scale factor: 
Point: 

R=l.O unit 
cl>1 = 40° N. lat. 
Ao= 100° W. long. 
k0 = 1.0 
x = o.g807224 unit 
y = - 0.126g802 unit 



260 MAP PROJECTIONS USED BY THE USGS 

Find:~' A 
Using equations (16-18) and (17-15), 

p = [0.38072242 + (- 0.1263802)2]112 = 0.4011502 units 
c=2 arctan [0.4011502/(2x l.Ox 1.0)] 

= 22.6832261° 

Using equations (16-14) and (16-15), 

~=arcsin [cos 22.6832261 o sin 40° +( -0.1263802) 
sin 22.6832261 o cos 40° /0.4011502] 

=arcsin 0.5000000=30° =30° N. lat. 
A= - 100° +arctan [0.3807224 sin 22.6832261 o /(0.4011502 

cos 40° cos 22.6832261 o + 0.1263802 sin 40° sin 22.6832261 °)] 
= -100° +arctan (0.1468202/0.3148570) 
= -100° + 25.0000013° 
= -74.9999987° =75° W. long. 

except for effect of rounding-off input data. Since the denomjnator of 
the argument of arctan is positive, no quadrant adjustment is 
necessary. If it were negative, 180° should be added. 

STEREOGRAPHIC (ELLIPSOID)-FORWARD EQUATIONS (SEEP. 160, 162-163) 

Oblique aspect: 

Given: Clarke 1866 ellipsoid: 

or 
Center: 

Central scale factor: 
Point: 

Find: x, y, k 
From equation (3-1 ), 

a= 6,378,206.4 m 
e2 = 0.00676866 
e = 0.0822719 

~~ =40° N. lat. 
>.o= 100° W. long. 
k0=0.9999 
~=30° N. lat. 
A=90° W. long. 

Xt =2 arctan {tan (45° +40°/2) [(1-0.0822719 sin 40°)/ 
(1 + 0.0822719 sin 40o)]o.o822719/2}- 90o 

= 2 arctan 2.1351882-90° 
= 39.8085922° 

x = 2 arctan {tan (45° + ::\0° /2)[(1- 0.0822719 sin 30°)/ 
(1 + 0.0822719 sin 30°)]0·0822719'2}- 90° 

= 2 arctan 1. 7261956- 90° 
= 29.8318339° 
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From equation (12-15), 

m 1 =cos 40° /(1- 0.00676866 sin2 40°)112 

=0.7671179 
m=cos 30°/(1-0.00676866 sin2 30°)112 

=0.8667591 

From equation (17 -27), 

A= 2 X 6,378,206.4 X 0.9999 X 0. 7671179/{ cos 39.8085922° 
[1 x sin 39.8085922° sin 29.8318339° +cos 39.8085922° 
cos 29.8318339° cos (- 90° + 100°)]} 

= 6,450,107.7 m 

From equations (17 -24), (17 -25), and (17 -26), 

X= 6,450,107. 7 cos 29.8318339° sin (- 90° + 100°) 
= 971,630.8 m 

y= 6,450,107. 7 [cos 39.8085922° sin 29.8318339° 
-sin 39.8085922° cos 29.8318339° cos ( -90° + 100°)] 

= -1,063,049.3 m 
k= 6,450,107.7 cos 29.8318339°/[6,378,206.4x 0.8667591} 

= 1.0121248 

Polar aspect with known k0: 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

or e= 0.0819919 
Center: South Pole c/>1 = 90° S. lat. 
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Ao = 100° W. long. (meridian along 
pos. Y axis) 

Central scale factor: ko = 0.994 
Point: c/>=75° S. lat. 

X= 150° E. long. 

Find: x, y, k 
Since this is the south polar aspect, for calculations change signs of x, 

y, cp, X, and Ao (4>c is not used): Ao= 100° E.long., Q>= 75° N.lat., X= 150° 
W. long. Using equations (13-9) and (17-33), 

t=tan(45° -75°/2)/[(1-0.0819919 sin 75°)/(1+0.0819919 sin 
75 0)]0.0819919/2 

=0.1325120 
p = 2 X 6,378,388.0 X 0.994 X 0.1325120/((1 + 0.0819919)£t+O.Oq199191 

X (1- 0.0819919)£1-0.08199191)112 
= 1,674,638.5 m 
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Using equations (17-30) and (17-31), changing signs of x andy for the 
south polar aspect, 

X= -1,674,638.5 sin ( -150° -100°) 
= -1,573,645.4 m 

Y= + 1,674,638.5 cos ( -150° -100°) 
= -572,760.1 m 

From equation (12-15), 

m= cos 75° /(1- 0.00672267 sin2 75°)112 

=0.2596346 

From equation (17-32), 

k = 1,67 4,638.5/(6,378,388 X 0.2596346) 
= 1.0112245 

Polar aspect with known cf>e not at the pole: 
Given: International ellipsoid: a= 6,378,388.0 m 

&=0.00672267 
or e= 0.0819919 

Standard parallel: cf>e = 71° S. lat. 
'Ao= 100 W. long. (meridian along 

pos. Y axis) 
Point: cp = 75 ° S. lat. 

A= 150° E. long. 

Find: x, y, k 
Since cf>e is southern, for calculations change signs of x, y, cf>e, cp, A, and 

'Ao: cf>e=71° N.lat., c/>=75° N.lat., A=150° W.long., Ao=100" E. long. 
Using equation (13-9), t for 75° has been calculated in the r~eceding 
ex;ample, or 

t = 0.1325120 

For te, substitute 71° in place of 75 ° in (13-9), and 

te = 0.1684118 

From equation (12-15), 

me=COS 71 °/(1-0.00672267 sin2 71 °)112 

=0.3265509 

From equation (17-34), 

p = 6,378,388.0 X 0.3265509 X 0.1325120/0.1684118 
= 1,638,869.6 m 
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Equations (17-30), (17-31), and (17-32) are used as in the ~receding 
south polar example, changing signs of x and y. 

X= -1,638,869.6 sin ( -150° -100°) 
= -1,540,033.6 m 

y= + 1,638,869.6 cos ( -150° -100°) 
= - 560,526.4 m 

k = 1,638,869.6/(6,378,388.0 X 0.2596346) 
=0.9896255 

where m is calculated in the preceding example. 

STEREOGRAPHIC (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 163-164) 

Oblique aspect (inversing forward example): 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
& = 0.00676866 

or e=0.0822719 
Center: cp1 =40° N. lat. 

Ao= 100° W. long. 
Center scale factor: k0 =0.9999 

Point: x= 971,630.8 m 
y= -1,063,049.3 m 

Find: cp, X 
From equation (12-15), 

m. =cos 40° /(1- 0.00676866 sin1 40°)111 

=0.7671179 

From equation (3-1), as in the forward oblique example, 

Xt = 39.808592.2 t) 

From equations (16-18) and (17 -S8), 

p = [971,630.81 + ( -1,063,049.3)1
)11

1 

= 1,440,187.6 m 
c.=2 arctan [1,440,187.6 cos 39.8085922°/(2x6,378,206.4 

X 0.9999 X 0. 7671179)) 
= 12.9018251° 

From equation (17-37), 

x=arcsin [cos 12.9018251° sin 39.8085922° 
+( -1,063,049.3 sin 12.9018251° cos 39.8085922°/1,440,187.6)] 

= 29.8318337° 
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Using x as the first trial cp in equation (3-4), 

cp = 2 arctan (tan (45° + 29.8318337° /2) x [(1 + 0.0822719 
sin 29.8318337°)/(1- 0.0822719 sin 29.8318337°)]0

·
082271912

} 

-90° 
= 29.9991438° 

Using this new trial value in the same equation for cp, not for x, 
cp=2 arctan (tan (45° +29.8318337°/2)x[(1+0.0822719 

sin 29.9991438°)/(1- 0.0822719 sin 29.9991438°)]0
·
082271912

} 

-90° 
= 29.9999953 ° 

Repeating with 29.9999953° in place of 29.9991438°, the next trial cp is 

cp = 29.9999997° 

The next trial calculation produces the same cp to seven d~cimals. 
Therefore, this is cp. 

Using equation (17 -36), 

A= -100° +arctan [971,630.8 sin 12.9018251 o I 
(1,440,187.6 cos 39.8085922° cos 12.9018251° 
+ 1,063,049.3 sin 39.8085922° sin 12.9018251 °)] 

= -100° +arctan (216,946.9/1,230,366.8) 
= -100° + 10.0000000° 
= -90.0000000° =90° W. long. 

Since the denominator of the arctan argument is positive, no quadrant 
adjustment is necessary. If it were negative, it would be nece~sary to 
add or subtract 180°, whichever would place the final A between + 180° 
and -180°. 

Instead of the iterative equation (3-4), series equation (3-5) may be 
used: 

cp = 29.8318337° X 1r/180° + (0.00676866/2 + 5 X 0.006768662/24 
+ 0.006768663/12) sin (2 x 29.8318337°) + (7 x 0.0067686€2/48 
+29x0.006768663/240) sin (4x29.8318337°)+(7 
x 0.006768663/120) sin (6 x 29.8318337°) 

= 0.5235988 radian 
= 29.9999997° 

Polar aspect with known ko (inversing forward example): 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

or e=0.0819919 
Center: South Pole cp1 = 90° S. lat. 

Ao = 100° W. long. (meridian along 
pos. Y axis) 
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Central scale factor: 
Point: 

k0 =0.994 
x= -1,573,645.4 m 
y= -572,760.1 m 
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Since this is the south polar aspect, change signs as stated in text: 
For calculation, use cl>c=90°, ~=100° E. long., x=1,573,645.4 m, 
Y= 572,760.1 m. From equations (16-18) and (17-39), 

p = (1,573,645.42 + 572, 760.12
)

112 

= 1,674,638.5 m 
t = 1,67 4,638.5 X [(1 + 0.0819919)P•0 ·081991

9 l 

(1- 0.0819919)1 1- 0 ·08199191)112/(2 X 6,378,388.0 X 0.994) 
=0.1325120 

To iterate with equation (7 -9), use as the first trial ¢, 

¢=90° -2 arctan 0.1325120 
= 74.9031975° 

Substituting in (7 -9), 

¢=90° -2 arctan (0.1325120x[(1-0.0819919 sin 74.903]975°)/ 
(1 + 0.0819919 sin 74.9031975°)]0 ·0 8 19919'2} 

= 74.9999546° 

Using this second trial¢ in the same equation instead of 74.9031975°, 

cp = 74.9999986°. 

The third trial gives the same value to seven places, so, since the sign of 
¢must be reversed for the south polar aspect, 

cp = -74.9999986°, = 75° S. lat. (disregarding effects of rounding 
off). 

If the series equation (3-5) is used instead of (7 -9), x is first found from 
(7-13): 

x = 90°-2 arctan 0.1325120 
= 74.9031975° 

Substituting this into (3-5), after converting x to radians fo~ the first 
term, cp is found in radians and is converted to degrees, then given a 
reversal of sign for the south polar aspect, giving the same re2ult as the 
iteration. 

From equation (16-16), 

~= + 100° +arctan [1,573,645.4/( -572,760.1)] 
= 100° +( -69.9999995°) 
= 30.0000005° 
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However, since the denominator of the argument of arctan is ne~ative, 
180° must be added to A (added, not substracted, since the numerator is 
positive), then the sign of A must be changed for the south polar aspect: 

A= -(30.0000005° + 180°) 
=- 210.0000005° 

To place this between + 180° and - 180°, add 360°, so 

A=+ 149.9999995° or 150° E. long., disregarding effects of 
rounding off. 

Polar aspect with known tPc not at the pole (inversing £1rward 
example): 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

or e= 0.0819919 
Standard parallel: tPc = 71° S. lat. 

Find: cp, A 

A.o= 100° W. long. (meridian along 
pos. Y axis) 

Point: x= -1,540,033.6 m 
y= -560,526.4 m 

Since this is south polar, change signs as stated in text: For calcula­
tion, cbc=71° N.lat., A.o=100° E. long., X=1,540,033.6, y=56l.526.4. 
From equations (13-9) and (12-15), as calculated in the corresJ:onding 
forward example, 

tc=tan (45° -71 °/2)/[(1-0.0819919 sin 71 °)/ 
(1 + 0.0819919 sin 71 °)]0 ·081991912 

=0.1684118 
me= cos 71° /(1- 0.00672267 sin2 71 °)112 

=0.3265509 

From equations (16-18) and (17-40), 

p = (1,540,033.62 + 560,526.42)11 2 

= 1,638,869.5 m 
t= 1,638,869.5 X 0.1684118/(6,378,388.0 X 0.3265509) 
=0.1325120 

For the first trial cp in equation (7-9), 

cp = 90 ° - 2 arctan 0.1325120 
= 74.903197° 
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Substituting in (7 -9), 

cf>=90° -2 arctan {0.1325120 [{1-0.0819919 sin 74.903197°)/ 
(1 + 0.0819919 sin 7 4.903197°)]o.os19919/2} 

= 74.9999586° 

Replacing 74.903197° with 74.9999586°, the next trial cf> i~· 

<I>= 75.0000026° 
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The next iteration results in the same cf> to seven places, S'l changing 
signs, 

cf> = -75.0000026° = 75° S. lat., disregarding effects of r'lunding 
off. 

The use of series equation (3-5) with (7 -13) to avoid iteration follows 
the same procedure as the preceding example. For A, equation (16-16) 
is used, calculating with reversed signs: 

A=+ 100° +arctan [1,540,033.6/(- 560,526.4)] 
= 100° + (- 69.9999997°) 
= 30.0000003° 

Since the denominator in the argument for arctan is negative, add 
180°: 

A= 210.0000003° 

Now subtract 360° to place A between + 180° and -180°: 

A= -149.9999997° 

Finally, reverse the sign to account for the south polar asp~ct: 

A=+ 149.9999997° = 150° E. long., disregarding rounding off in 
the input. 

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)-FORWARD EQUATIONS 
(SEEP. 170, 172-173) 

Given: Radius of sphere: 
Center: 

Point: 

Find: x, y 
Using equation (18-4), 

R=3.0 units 
c/>1 = 40° N. lat. 
Ao = 100° W. long. 

cf> = 20° S. lat. 
A= 100° E. long. 
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k' = {2/[1 +sin 40° sin (- 20°) +cos 40° cos (- 20°) cos 
(100° + 100°)])112 

=4.3912175 

Using equations (18-2) and (18-3), 

X= 3.0x 4.3912175 cos (- 20°) sin (100° + 100°) 
= - 4.2339303 units 

y = 3.0 x 4.3912175 [cos 40° sin (- 20°)- sin 40° cos (- 20°) 
cos (100° + 100°)] 

= 4.0257775 units 

Examples for the polar and equatorial reductions, equations (18-5) 
through (18-16), are omitted, since the above general equations give 
the same results. 

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS 
(SEEP. 173) 

Inversing forward example: 

Given: Radius of sphere: 
Center: 

Point: 

Find: cp, A 

R=3.0 units 
cpl = 40° N. lat. 
Ao = 100° W. long. 
x = - 4.2339303 units 
Y= 4.0257775 units 

Using equations (16-18) and (18-18), 

p = [(- 4.2339303)2 + 4.02577752
]

112 

= 5.8423497 units 
C= 2 arcsin [5.8423497/(2 x 3.0)] 

= 153.6733917° 

From equation (16-14), 

cp=arcsin [cos 153.6733917° sin 40°+4.0257775 
sin 153.6733917° cos 40° /5.8423497] 

= -19.9999993° = 20° S. lat., disregarding rounding-off effects. 

From equation (16-15), 

A= -100° +arctan [ -4.2339303 sin 153.6733917°/ 
(5.8423497 cos 40° cos 153.6733917° 
-4.0257775 sin 40° sin 153.6733917°)] 

= -100° +arctan [ -1.8776951/( -5.1589246)] 
= -100° +20.0000005° 
= -79.9999995 ° 

Since the denominator of the argument of arctan is negative, ad1180°: 
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A= 100.0000005° = 100° E. long., disregarding rounding-off 
effects. 

In polar spherical cases, the calculation of A from equations (16-16) or 
(16-17) is simpler than the above, but the quadrant adjustment follows 
the same rules. 

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS 
(SEE P. 173-175) 

Oblique aspect: 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

or e= 0.0822719 
Center: ¢ 1 = 40° N. lat. 

Ao= 100° W. long. 
Point: ¢=30° N. lat. 

A= 110° W. long. 

Find: x, y 
Using equation (3-12), 

q=(l- 0.00676866) {sin 30° /(1- 0.00676866 sin2 30°)- [11 
(2 x 0.0822719)] In [(1- 0.0822719 sin 30°)/ 
(1 + 0.0822719 sin 30°)]} 

=0.9943535 

Inserting ¢ 1 = 40° in place of 30° in the same equation, 

q1 = 1.2792602 

Inserting 90° in place of 30°, 

qp= 1.9954814 

Using equation (3-11), 

{3 =arcsin (0.9943535/1.9954814) 
= 29.8877622° 

{31 =arcsin (1.2792602/1.9954814) 
=39.8722878° 

Using equation (3-13), 

Rq = 6,378,206.4 X (1.9954814/2)112 

= 6,370,997.2 m 

Using equation (12-15), 

m1 =cos 40° /(1- 0.00676866 sin2 40°)112 

=0.7671179 
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Using equations (1g-21) and (1g-22), 

B= 6,370,997.2 x {2/[1 +sin 39_g722g7go sin 29.gg77622° 
+cos 39.g722g7go cos 29.gg77622° cos ( -110° + 100°)]}112 

= 6,411,606.1 m 
D = 6,37g,206.4 X 0. 7671179/(6,370,997 .2 cos 39.g722g7g0

) 

= 1.0006653 

Using equations (1g-19) and (1g-20), 

X= 6,411,606.1 x 1.0006653 cos 29.gg77622° sin ( -110° + 100°) 
= -965,932.1 m 

y=(6,411,606.1/1.0006653)[cos 39_g722g7go sin 29.gg77622° 
-sin 39_g722g7go cos 29.gg77622° cos ( -110° + 100°)] 

= -1,056,g14.9 m 

Polar aspect: 

Given: International ellipsoid: a= 6,37g,3gg_o m 
e'- = 0.00672267 

or e=o.og19919 
Center: North Pole .P1 =90° N. lat. 

Ao= 100° W. long. (meridian ahng 
neg. Yaxis) 

Point: .P=goo N. lat. 
A=5° E. long. 

Find: q,, A, h, k 
From equation (3-12), 

q=(1-0.00672267) {sin goo/(1-0.00672267 sin1 goo) 
- [1/(2 x O.og19919)] In [(1- O.Og19919 sin goo)/ 
(1 + o.og19919 sin goo)]} 

=1.96492g3 

Using the same equation with 90° in place of goo, 

qp = 1.9955122 

From equation (12-15), 

m=cos goo/(1-0.00672267 sin1 go 0
) 111 

=0.1742171 

Using equations (1g-25), (17-30), (17-31), and (17-32), 

p = 6,37g,3gg.0 X (1.9955122 -1.96492g3)111 

= 1,115,46g.3 m 
X= 1,115,46g.3 sin (5°+ 100°) 

= 1,077,459.7 m 
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y= -1,115,468.3 cos (5°+ 100°) 
=288,704.5 m 

k = 1, 115,468.3/(6,378,388.0 X 0.17 42171) 
=1.0038193 

h= 1/1.0038193=0.9961952 
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LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)-INVERSE F~UATIONS 
(SEEP. 175-177) 

Oblique aspect (inversing forward example): 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

Find: ct>, A 

or e=0.0822719 
Center: cf>t=40° N. lat. 

Ao= 100° W. long. 
Point: X= -965,932.1 m 

y= -1,056,814.9 m 

Since these are the same map parameters as those used in the forward 
example, calculations of map constants not affected by cf> arri A are not 
repeated here. 

qp= 1.9954814 
P1 = 39.8722878° 
R,=6,370,997.2 m 
D = 1.0006653 

Using equations (18-30), (18-31), and (18-29), 

p = ([ -965,932.1/1.0006653]2 +[1.0006653x( -1,056,814.9)]2 )112 

= 1,431,827.1 m 
c.=2 arcsin [1,431,827.1/(2x6,370,997.2)] 

= 12.9039908° 
q= 1.9954814 [cos 12.9039908° sin 39.8722878° 

+ 1.0006653x( -1,056,814.9) sin 12.9039908° 
cos 39.8722878°/1,431,827.1] 

=0.9943535 

For the first trial cf> in equation (3-16), 

cf> =arcsin (0.9943535/2) 
= 29.8133914 ° 
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Substituting into equation (3-16), 

rJ> = 29.8133914 ° + [(1- 0.00676866 sin2 29.8133914 °)2
/ 

(2 COS 29.8133914 °)) X {0.9943535/(1- 0.00676866) 
-sin 29.8133914 ° /(1- 0.00676866 sin2 29.8133914) 
+ [1/(2 x 0.0822719)] ln [(1- 0.0822719 
sin 29.8133914 °)/(1 + 0.0822719 sin 29.8133914 °)]} x 180c I 'If 

= 29.9998293 ° 

Substituting 29.9998293° in place of 29.8133914 ° in the same e~·uation, 
the new trial rJ> is found to be 

rJ> = 30.0000002 ° 

The next iteration results in no change to seven decimal places; 
therefore, 

<t>=30° N. lat. 

Using equation (18-28), 

A= -100° +arctan {- 965,932.1 sin 12.9039908°/[1.0006653 
X 1,431,827.1 COS 39.8722878° COS 12.9039908° 
-1.00066532 ( -1,056,814.9) sin 39.8722878° 
sin 12.9039908 °]} 

= -100° +arctan (- 215, 710.0/1,223,352.4) 
= -100°-9.9999999° 
= -109.9999999° = 110° W. long. 

Since the denominator of the argument for arctan is positive, no 
quadrant adjustment is necessary. 

Polar aspect (inversing forward example): 

Given: International ellipsoid: a= 6,378,388.0 m 
e2 = 0.00672267 

Find:</>,}.. 

or e= 0.0~19919 
Center: North Pole <f> 1 =90° N. lat. 

>.o = 100° W. long. (meridian along 
neg. Y axis) 

Point: X= 1,077,459. 7 m 
y=288,704.5 m 

First qp is found to be 1.9955122 from equation (3-12), as in the cor­
responding forward example for the polar aspect. From e~·uations 
(16-18) and (16-33), 

p = (1,077 ,459. 72 + 288, 704.52
)

112 

= 1,115,468.4 m 
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q= + [1.9955122- (1,115,468.4/6,378,388.0)2] 

= 1.9649283 
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Iterative equation (3-16) may be used to find cp. The first trial cp is 

cp = arcsin (1. 9649283/2) 
= 79.2542275° 

When this is used in equation (3-16) as in the oblique inve:-:-se example, 
the next trial cp is found to be 

cp = 79 0 97 44304 ° 

Using this value instead, the next trial is 

cp= 79.9999713° 

and the next, 

cp = 80.0000036 ° 

The next value is the same, so 

cp = 80° N. lat. 

From equation (16-16), 

A= -100°+arctan [1,077,459.7/(-288,704.5)] 
= -174.9999978° 

Since the denominator of the argument for arctan is ne:trative, add 
180°, or 

A=5.0000022°=5° E. long. 

AZIMUTHAL EQUIDISTANT (SPHERE)-FORWARD EQUATIONS 
(SEE P. 184-185) 

Given: Radius of sphere: 
Center: 

Point: 

Find: x, y 

R=3.0 units 
c/>1 = 40° N. lat. 
Ao = 100° W. long. 
cp = 20° S. lat. 
A= 100° E. long. 

Using equations (5-3) and (19-2), 

COS C=Sin 40° sin ( -20°)+COS 40° COS ( -20°) COS (100° + 100°) 
= - 0.8962806 

C= 153.6733925° 
k' =(153.6733925° x T/180°)/sin 153.6733925° 

=6.0477621 
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Using equations (18-2) and (18-3), 

x = 3.0 x 6.04 77621 cos (- 20°) sin (100° + 100°) 
= - 5.8311398 units 

y=3.0x6.0477621 [cos 40° sin (-20°)-sin 40° cos (-20°) 
cos (100° + 100°)] 

= 5.5444634 units 

Since the above equations are general, examples of other forward for­
mulas are not given. 

AZIMUTHAL EQUIDISTANT (SPHERE)- INVERSE EQUATIONS (SEEP. 185) 

Inversing forward example: 

Given: Radius of sphere: 
Center: 

Point: 

Find: 4>, A 

R=3.0 units 
cl>1 = 40° N. lat. 
Ao= 100° W. long. 
X= -5.8311398 units 
y = 5. 5444634 units 

Using equations (16-18) and (19-15), 

p = [(- 5.8311398)2 + 5.54446342] 112 

= 8.0463200 units 
C= 8.0463200/3.0 

= 2.6821067 radians 
= 2.6821067 X 180° f1r= 153.6733925° 

Using equation (16-14), 

¢=arcsin (cos 153.6733925° sin 40° +5.5444634 sin 
153.6733925° cos 40°/8.0463200) 

= -19.9999999° 
= 20° S. lat., disregarding effects of rounding off. 

Using equation (16-15), 

A= -100° +arctan [( -5.8311398) sin 153.6733925°/(8.046f?.OO 
cos 40° cos 153.6733925°-5.5444634 sin 40° 
sin 153.6733925°)] 

= -100° +arctan [( -2.5860374)/( -7.1050794)] 
= -100° -arctan 0.3639702 
= -80.0000001° 

but since the denominator of the argument of arctan is negative, add or 
subtract 180°, whichever places the final result between + 181° and 
-180°: 
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A= - go.0000001 o + 1goo 
= 99.9999999° 
= 100° E. long., disregarding effects of rounding- of~. 

AZIMUTHAL EQUIDISTANT (ELLIPSOID)-FORWARD EQUATIONS 
(SEE P. 185-189) 

Polar aspect: 

Given: International ellipsoid: a= 6,37g,3gg.o m 
e2 = 0.00672267 

Center: North Pole cp1 = 90° N. lat. 
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At,= 100° W.long. (meridi~n along 
neg. Y axis) 

Point: cp=goo N. lat. 
A= 5° E. long. 

Find: x, y, k 
Using equation (3-21), 

M=6,37g,3gg.Ox[(l-0.00672267/4-3x0.006722672/64 -5 
X 0.006722673/256) X 80° X 1r/1g0o- (3 X 0.00672267/? 
+ 3 x 0.006722672/32 + 45 x 0.006722673/1024) sin (2 x goo) 
+ (15 x 0.006722672/256 + 45 x 0.006722673/1024) sin (4 x goo) 
- (35 x 0.006722673/3072) sin (6 x goo)] 

= g,gg5,403.1 m 

Using the same equation (3-21), but with 90° in place of 8~0 , 

Mp = 10,002,2gg.3 m 

Using equation (12-15), 

m= cos goo /(1- 0.00672267 sin2 go0
) 112 

=0.1742171 

Using equations (19-16), (17-30), (17-31), and (17-32), 

p = 10,002,2gg.3-g,ggs,403.1 
= 1,116,gg5.2 m 

X= 1,116,8g5.2 sin (5°+ 100°) 
= 1,07g,g2g.3 m 

Y= -1,116,gg5.2 cos (5°+ 100°) 
= 2g9,071.2 m 

k= 1,116,gg5.2/(6,37g,3gg.ox 0.1742171) 
= 1.0050946 
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Oblique aspect (Guam projection): 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

Center: (j> 1 = 13°28'20.87887" N. lat. 
Ac,= 144°44'55.50254" E. long. 

False origin: X0 = 50,000 m 
y0 =50,000 m 

Point: (j>= 13°20'20.53846" N. lat. 
A= 144°38'07.19265" E. long. 

Find: x, y 
Using equation (19-18), after converting angles to degreer and 
decimals: ((j>. = 13.472466353°, Ao= 144.748750706°, (j> = 13.33903r461 °, 
A= 144.635331292°), 

x=[6,378,206.4 x(144.635331292° -144.748750706°) 
cos 13.339038461 °/(1-0.00676866 sin2 13.339038461 °)112

} 

xr/180° 
= -12,287.52 m 

Since 50,000 m is added to the origin for the Guam projection, 

X= -12,287.52 +50,000.0 
= 37,712.48 m 

From equation (3-21), 

M = 6,378,206.4 X [(1- 0.00676866/4-3 X 0.006768662/64-5 
X 0.006768663/256) X 13.339038461° X r/180°- (3 
X 0.00676866/8 + 3 X 0.006768662/32 + 45 X 0.006768663

/ 

1024) sin (2 x 13.339038461 °) + (15 x 0.006768662/256 
+ 45 x 0.006768663/1024) sin (4 x 13.339038461 °) 
- (35 x 0.006768663/3072) sin (6 x 13.339038461 °}] 

= 1,475,127.96 m 

Substituting (j> 1 = 13.472466353° in place of 13.339038461° in the same 
equation, 

M. = 1,489,888. 76 m 

Using equation (19-19), and using the x without false origin, 

y= 1,475,127.96-1,489,888.76+( -12,287.52)2 tan 13.339038461 o 

x (1- 0.00676866 sin2 13.339038461 °)112/(2 x 6,378,206.4) 
= -14,758.00 m 

Adding 50,000 meters for the false origin, 
y=35,242.00 m 
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Oblique aspect (Micronesia form): 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e1 =0.00676866 

Center: Saipan Island t/>1 = 15°11'05.6830" N. lat. 
~= 145°44'29.9720" E. long. 

False origin: Xo=28,657.52 m 
Yo=67,199.99 m 

Point: Station Petosukara tf>= 15°14'47.4930" N. lat. 

Find:':"', y 
A= 145°47'34.9080" E. long. 

First convert angles to degrees and decimals: 

t/>1 = 15.18491194 ° 
~= 145.7416589° 
t/> = 15.24652583 ° 
A= 145.7930300° 

From equations (4-20a), (4-20), (19-20), and (19-21) in ord~r, 

N1 = 6,378,206.4/(1- 0.00676866 x sin1 15.18491194 °)111 

= 6,379,687.9 m 
N = 6,378,206.4/(1- 0.00676866 x sin1 15.24652583°)111 

= 6,379,699. 7 m 
,Y=arctan [(1-0.00676866) tan 15.24652583° 

+0.00676866 x 6379687.9 sin 15.18491194°/ 
(6,379,699. 7 X COS 15.24652583°)) 

= 15.2461374° 

Az=arctan {sin (145.79303° -145.7416589°)/ 
[cos 15.18491194 o x tan 15.2461374 o 

-sin 15.18491194° x cos (145.79303° -145.741658f 0 )]J 
=38.9881345° 

Since sin Az :1: 0, from equation (19-22a), 

s=arcsin [sin (145.79303° -145.7416589°) x cos 15.2461374°/ 
sin 38.9881345°] 

=0.001374913 radians, since sis used only in radians. 

From equations (19-23) through (19-27) in order, 

G = 0.00676866111 sin 15.18491194 ° /(1- 0.00676866)1
/l 

= 0.02162319 
H=0.00676866111 cos 15.18491194° cos 38.9881345°/ 

(1-0.00676866)112 

= 0.06192519 
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C= 6,379,687.9 X 0.001374913 X (1-0.0013749132 X 0.06192f192 

X (1- 0.061925192)/6 + (0.00137 49133/8) X 0.02162319 
X 0.06192519 X (1- 2 X 0.061925192

) + (0.00137 49134/120) 
X (0.061925192 X ( 4-7 X 0.061925192

)- 3 X 0.021623192 

X (1-7 X 0.061925192
))- (0.00137 49135/48) X 0.02162319 

X 0.06192519} 
=8,771.52 m 

X=8,771.52x sin 38.9881345° +28,657.52 
= 34,176.20 m 

y=8,771.52x cos 38.9881345° +67,199.99 
=74,017.88 m 

AZIMUTHAL EQUIDISTANT (ELLIPSOID)- INVERSE EQUATIO~S 
(SEE P. 189-192) 

Polar aspect (inversing forward example): 

Given: International ellipsoid: a=6,378,388.0 m 
e2 = 0.00672267 

Center: North Pole f/> 1 =90° N. lat. 

Find: q,, X 

Ao = 100° W. long. (meridian along 
neg. Y axis) 

Point: X= 1,078,828.3 m 
y=289,071.2 m 

Using equation (3-21), as in the corresponding forward example, 

Mp = 10,002,288.3 m 

Using equations (16-18), (19-28), and (8-19), 

p = (1,078,828.32 + 289,071.22
)

112 

= 1,116,885.2 m 
M = 10,002,288.3-1,116,885.2 

= 8,885,403.1 m 
p.=8,885,403.1/[6,378,388.0x(1-0.00672267/4-3x0.006722672/64 

-5 X 0.006722673/256)) 
= 1.3953965 radians 
= 1.3953965x 180°/r=79.9503324° 

Using equations (3-24) and (3-26), 

e. =[1-(1-0.00672267)112]/[1 +(1-0.00672267)112
] 

=0.0016863 
q, = 1.3953965 radians+ (3 x 0.0016863/2-27 x 0.0016863' /3'i.' 

sin (2 x 79.9503324 °) + (21 x 0.00168632/16-55 
x0.00168634/32) sin (4x79.9503324°)+(151 
x 0.00168633/96) sin (6 x 79.9503324 °) 
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= 1.3962634 radians 
= 1.3962634 x 180°/r= 79.9999999° 
= 80° N. lat., rounding off. 

Using equation (16-16), 

>-= -100° +arctan [1,078,828.3/( -289,071.2)] 
= -100° -74.9999986° + 180° 
= 5.0000014 ° 
=5° E. long., rounding off. 
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The 180° is added because the denominator in the argument for arctan 
is negative. 

Oblique aspect (Guam projection, inversing forward examr1e): 

Given: Clarke 1866 ellipsoid: a=6,378,206.4 m 
e2 = 0.00676866 

Center: c/>1 = 13.472466353° N. lat 
>.o=144.748750706° E.lo'lg. 

False origin: Xo=50,000 m 
Yo=50,000 m 

Find: c/>,). 

Point: x=37,712.48 m 
y=35,242.00 m 

First subtract 50,000 m from x andy to relate them to actual projection 
origin: x=-12,287.52 m, Y=-14,758.00 m. Calculation of M. from 
equation (3-21) is exactly the same as in the forward exan1ple, or 

M. = 1,489,888. 76 m 

From equation (19-30), the first trial M is found from rn assumed 
cP =ct>.: 

M = 1,489,888.76+( -14,758.00)-( -12,287.52)2 tan 13.472466353° 
x (1- 0.00676866 sin2 13.472466353°)112/(2 x 6,378,206.4) 

= 1,475,127.92 m 

Using equation (8-19) and the above trial M, 

p.= 1,475,127.92/[6,378,206.4x(1- 0.00676866/4-3 x 0.~'>6768662/ 
64-5 X 0.006768663/256)] 

= 0.2316688 radian 

Using equation (3-24), 

e.= [1- (1- 0.00676866)112]/[1 + (1- 0.00676866)112] 

=0.0016979 
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Using equation (3-26) in radians, although it could be converted to 
degrees, 

cp = 0.2316688 + (3 X 0.0016979/2-27 X 0.00169793/32) 
sin (2 x 0.2316688) + (21 x 0.00169791/16-55 
x 0.00169794/32) sin ( 4 x 0.2316688) + (151 
x0.00169793/96) sin (6x0.2316688) 

= 0.2328101 radian 
= 0.2328101 X 180°/7r= 13.3390381° 

If this new trial value of cp is used in place of c/>1 in equation (19-30), a 
new value of M is found: 

M=1,475,127.95 m 

This in turn, used in (8-19), gives 

p. = 0. 2316688 radian 

and from (3-26) 

cp = 13.3390384 ° 

The third trial, through the above equations and starting with this 
value of cp, produces no change to seven decimal places. Thus, this is the 
final value of cp. Converting to degrees, minutes, and seconds, 

cp = 13°20'20.538" N. lat. 

Using equation (19-31) for longitude, 

A= 144.748750706° +[( -12,287.52)x(1-0.00676866 
sin1 13.3390384 °)111/(6,378,206.4 cos 13.3390384 °)] x 180c l1r 

= 144.6353313° 
= 144 °38'07.193" E. long. 

Oblique aspect (Micronesia form, inversing forward example): 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

Center: Saipan Island c/>1 = 15.18491194 ° N. lat. 

Find: c/>, A 

Ao=145.7416589° E. long. 
False origin: X0 =28,657.52 m 

Yo=67,199.99 m 
Point: x = 34,176.20 m 

y=74,017.88 m 

From equations (19-32) through (19-41) in order, 

C= ((34,176.20-28,657.52)1 +(74,017.88 -67,199.99)1)111 

=8,771.51 m 
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Az =arctan [(34, 176.20- 28,657.52)/(7 4,017.88- 67,199.99)] 
=38.9881292° 

N1 = 6,378,206.4/(1- 0.00676866 sin2 15.18491194 °)112 

=6,379,687.9 m 
A= -0.00676866 cos2 15.18491194° cos2 38.9881292°/ 

(1- 0.00676866) 
= -0.003834730 

B=3x0.00676866x(l+0.003834730) sin 15.18491194° cos 
15.18491194° X COS 38.9881292°/(1-0.00676866) 

= 0.004032465 
D = 8, 771.51/6,379,687.9 

= 0.00137 4913 
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E = 0.00137 4913 + 0.003834 730 X (1- 0.003834 730) X 0.00137 49133/6 
-0.004032465 X (1- 3 X 0.003834 730) X 0.00137 49134/24 

= 0.00137 4913. This is in radians for use in equation (19-38). 

For use as degrees in equations (19-39) and (19-40), 

E= 0.001374913 X 180°11r=0.07877669° 
F = 1 + 0.003834 730 X 0.00137 49132/2-0.004032465 

X 0.0013749133/6 
= 1.000000004 

,P=arcsin (sin 15.18491194° cos 0.07877669° + cos 15.18491194° 
x sin 0.07877669° cos 38.9881292°) 

= 15.246137 4 ° 
A= 145.7416589° + arcsin (sin 38.9881292° sin 0.07877f~9°/ 

cos 15.246137 4 °) 
= 145.7 416589° + 0.0513711° 
= 145.7930300° 
= 145°47'34.908" E. long. 

cJ>=arctan [(1-0.00676866xl.000000004 sin 15.184911g4°/ sin 
15.246137 4 °) x tan 15.246137 4 ° /(1- 0.00676866)] 

= 15.2465258° 
= 15°14'47.493" N. lat. 

SPACE OBLIQUE MERCATOR (SPHERE)-FORWARD EQUATIONS 
(SEEP. 198-200) 

Given: Radius of sphere: R=6,370,997.0 m 
Landsat orbit: i=99.092° 

PiP1 = 18/251 
Path= 15 

Point: q, = 40° N. lat. 
A= 73° W. long. 

Find: x, y for point taken during daylight northern (first) q·.tadrant of 
orbit. 
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Assuming that this is only one of several points to be located, the 
Fourier constants should first be calculated. Simpson's rule may be 
written as follows, using A.' as the main variable: 

If 

F= I!f(A.')dA' 

a close approximation of the integral is 

F = (~A.' /3)[{ ('A~)+ 4f ('A~ + .:l'A ~ + 2/ ('A~ + 2~A.') + 4f (~ + 3~A.') 
+ 2/ (~ + 4~A.') + ... + 4f ('A~- ~X')+ f ('AD] 

where f ('A~ is calculated for X' equal to a, and for A.' at each eqmll inter­
val.:lX' until X'=b. The valuesf(X~ are alternately multiplied by 4 and 2 
as the formula indicates, except for the two end values, and all the 
resulting values are added and multiplied by one-third of the interval. 
The interval.:lX' must be chosen so there is an even number of ill tervals. 

Applying this rule to equation (20-1) with the suggested 9° interval 
in A.', the function f (A.')= (H-8 2)/(1 + 8 2) 112 is calculated for a A.' o-t 0 °, 9 °, 
18°, 27°, 36°, ... , 81 o, and 90°, with ten 9° intervals. The cal~ulation 
for A.'= 9° is as follows, using equations (20-4) and (20-5): 

H= 1-(18/251) cos 99.092° 
= 1.0113321 

S = (18/251) sin 99.092° cos 9° 
=0.0699403 

/(A.')= (1.0113321- 0.06994032)/(1 + 0.06994032)
112 

= 1.0039879 

To calculate B, the following table may be figuratively p:":'epared, 
although a computer or calculator program would normally be used in­
stead (H is a constant): 

)..' s f('A1 Multiplier Surmation 

oo -------------- 0.0708121 1.0038042 x1= 1.(038042 

9 --------------- .0699403 1.0039879 x4= 4.059516 

18 --------------- .0673463 1.0045212 x2= 2.('090423 

27 --------------- .0630941 1.0053522 x4= 4.(\214087 

36 --------------- .0572882 1.0064001 x2= 2.(\128001 

45 --------------- .0500717 1.0075627 x4= 4.(\302507 

54 --------------- .0416223 1.0087263 x2= 2.0174526 

63 --------------- .0321480 1.0097770 x4= 4.0391079 

72 --------------- .0218822 1.0106114 x2= 2.0212227 

81 --------------- .0110775 1.0111474 x4= 4.0445895 

90 --------------- .0000000 1.0113321 x1= 1.0113321 

Total = 30.2269624 
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To convert to B, again referring to equation (20-1) and remaining in 
degrees for the final multipliers, since they cancel, 

B = (2/180°) X (9° /3) X 30.2269624 
= 1.0075654 

This is the Fourier coefficient B for equation (20-6) with 'A' in radians. 
To use 'A' in degrees, multiply B by r/180°: 

B = 1.0075654 x r/180 
=0.017585334 

Calculations of A .. and c .. are similar, except that the calculations of 
the function involve an additional trigonometric term at eac.h step. For 
example, to calculate C3 for 'A'= 9°, using equation (20-3) and the S 
found above from equation (20-5), 

./{'A~= [S/(1 + 81
)

111
] cos 3'A' 

= [0.0699403/(1 + 0.06994031) 111] COS (3 X 9°) 
= 0.06216542 

The sums for A .. corresponding to 30.2269624 forB are as follows: 

for A1:- 0.0564594 
for A4 : 0.000041208 

To convert to the desired constants, 

A 1 = [ 4/(180° X 2)] X (9° /3) X (- 0.0564594) 
= -0.00188198 

A 4 = [4/(180° x 4)] x(9° /3)x (0.000041208) 
= 0. 0000006868 

The sums for C .. : 

for C1 : 1.0601909 
for C3:- 0.0006626541 

To convert, 

C1 = [ 4 X (1.0113321 + 1)/(180° X 1)] X (9° /3) X (1.0601909) 
=0.1421597 

C3 = [4X (1.0113321 + 1)/(180° X 3)] X (9°/3)x(- 0.0006626541) 
= -0.0000296182 

These constants, rounded to seven decimal places except forB, will 
be used below: 

Using equation (20-11), 

Ao = 128.87° - (3.90° /251) X 15 
= 107.36° 
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To solve equations (20-8) and (20-9) by iteration, determine }..'p from 
equation (20-12) and the discussion following the equation, with N = 0: 

}..'p=90° x(4x0+2-1) 
=90° 

Then 'At = -73°-107.36° +(18/251)x 90° 
p • 

= -173.9058167° 
cos 'At =- 0.9943487 

p 

Using }..'p as the first trial value of}..' in equation (20-9), usir~ extra 
decimal places for illustration: 

'At= -73°-107.36° +(18/251)x 90° 
= -173.9058167°, as before. 

Using equation (20-8), 

}..'=arctan [cos 99.092° tan (-173.9058167°) +sin 99.092(' 
tan 40° /cos ( -173.9058167°)] 

= -40.36910525° 

For quadrant correction, from the discussion following equation 
(20-12), using the sign of cos 'At as calculated above, 

p 

}..' = -40.36910525° + 90°-90° sin 90° x ( -1) 
= -40.36910525° + 180° 
= 139.6308947° 

This is the next trial}..'. Using equation (20-9), 

'At= -73°-107.36° +(18/251)x 139.6308947° 
= -170.3466291° 

Substituting this value of 'Ar in place of -173.9058167° in equation 
(20-8), 

}..' = - 40.9362858° 

The same quadrant adjustment applies: 

}..' = -40.9362858° + 180° 
= 139.0637142° 

Substituting this in equation (20-9), 

At= -170.3873034° 

and from equation (20-8), 

}..' = 139.0707998° 



From the 4th iteration, 

At= -170.3867952° 
A'= 139.0707113° 

From the 5th iteration, 

At= -170.3868016° 
A'= 139.0707124 o 

From the 6th iteration, 

At= -170.3868015° 
A'= 139.0707124 o 
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Since A' has not changed to seven decimal places, the last it.eration is 
taken as the final value. Using equation (20-10), with the final value of 

A" 
<P' = arcsin [cos 99.092 o sin 40 o - sin 99.092° cos 40 ° sin 

( -170.3868015°)] 
= 1.4179606° 

From equation (20-5), 

8=(18/251) sin 99.092° cos 139.0707124° 
= -0.0534999 

From equations (20-6) and (20-7), 

X= 6,370,997x {0.017585334x 139.0707124° +( -0.0018821) 
sin (2x 139.0707124°)+0.0000007 sin (4x 139.070712-:1,0

) 

- [- 0.0534999/(1 + (- 0.0534999)2) 112] In tan 
( 45 ° + 1.4179606 ° /2)} 

= 15,601,233.74 m 
y= 6,370,997x{0.1421597 sin 139.0707124° +( -0.000029~) 

sin (3 x 139.0707124 °) + [1/(1 + (- 0.0534999)2) 112] 

In tan ( 45 o + 1.4179606 o /2)} 
= 750,650.37 m 

SPACE OBLIQUE MERCATOR (SPHERE)- INVERSE EQUATIONS 
(SEE P. 200-202) 

Inversing forward example: 

Given: Radius of sphere: R=6,370,997.0 m 
Landsat orbit: i= 99.092° 

P21P1 = 18/251 
Path=15 
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Point: 

Find: cp, A 

x= 15,601,233.74 m 
y=750,650.37 m 

Constants A1 , A 4 , B, C11 C3 , and Ao are calculated exactly and have the 
same values as in the forward example above. To solve equation (20-15) 
by iteration, the first trial A' is x/BR, using the value of B for A' in 
degrees in this example: 

A'= 15,601,233. 74/(0.017585334 X 6370997.0) 
= 139.2518341° 

Using equation (20-5) to findS for this trial A', 

S = (18/251) sin 99.092° cos 139.2518341° 
= -0.0536463 

Inserting these values in the right side of equation (20-15), 

A'= {15,601,233.74/6,370,997.0+(- 0.0536463) 
x 750,650.37/6,370,997.0- (- 0.0018820) sin (2 x 139.2f18341 °) 
-0.0000007 sin (4x 139.2518341 °)-(- 0.0536463) 
x [0.1421597 sin 139.2518341 o + (- 0.0000296) 
sin (3 x 139.2518341 °)]}/0.017585334 

= 139.0695675° 

Substituting this new trial value of A' in (20-5) for a newS, then both in 
(20-15) for a new A', the next trial value is 

A'= 139.0707197° 
The fourth value is 

A'= 139.0707124 o 

and the fifth does not change to seven decimal places. Therefo~e, this A' 
is the final value. The corresponding S last calculated from (20-5) is 

S = (18/251) sin 99.092° cos 139.0707124 o 

= -0.0534999 

Using equation (20-16), 

ln tan (45° +cJ>'/2)=[1 +( -0.0534999)2
]

112 x[750650.37/ 
6370997.0-0.1421597 sin 139.0707124° 
- (- 0.0000296) sin (3 x 139.0707124 °)] 

=0.02475061 

tan (45o +cJ>'/2)=eo.ol47so6t 
=1.0250594 

45 ° + cp' /2 =arctan 1. 0250594 
=45. 7089803° 

c!>'=2x(45.7089803° -45°) 
= 1.4179606° 
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Using equation (20-13), 

~=arctan [(cos 99.092° sin 139.0707124°- sin 99.092° 
tan 1.4179606 °)/cos 139.0707124 °]- (18/251) 
139.0707124 ° + 107.36° 

=arctan [ -0.1279654/( -0.7555187)]+97.3868015° 
=9.6131985° +97.3868015° 
= 107.0000000° 
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Since the denominator of the argument of arctan is negativ~, and the 
numerator is negative, 180° must be subtracted from~' or 

~= 107.0000000°-180° = -73.0000000° 
= 73° W. long. 

Using equation (20-14), 

4> =arcsin (cos 99.092 ° sin 1.4179606 ° + sin 99.092 ° 
cos 1.4179606° sin 139.0707124 °) 

= 40.0000000° 
=40° N. lat. 

For groundtrack calculations, equations (20-17) through (20-20) are 
used, given the same Landsat parameters as above for R, i, P1/P., and 
path 15, with ~o= 107.36°, and 4>=40° S. lat. on the daylight (descend­
ing) part of the orbit. Using equation (20-17), 

~,=arcsin [sin (- 40°)/sin 99.092°] 
= -40.6145062° 

To adjust for quadrant, subtract from 180°, which is the ~, of the 
descending node: 

~'= 180° -( -40.6145062°) 
= 220.6145062° 

Using equation (20-18), 

~=arctan [(cos 99.092° sin 220.6145062°)/cos 220.6145062°] 
-(18/251)x220.6145062° + 107.36° 

=arctan [0.1028658/( -0.7591065)] + 91.5390394° 
= 83.8219462° 

Since the denominator of the argument for arctan is negative, add 
180°, but 360° must be then subtracted to place ~ between -+ 180° and 
-180°: 

~ = 83.8219462 + 180°- 360° 
= - 96.1780538 ° 
= 96°10'40.99" W. long. 

If~ is given instead, with the above ~ used for the example, equations 
(20-19) and (20-9) are iterated together using the same type of initial 
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trial 'A' as that used in the forward example for equations (20·-8) and 
(20-9). In this case, as described following equation (20-12), 'A'p is 270°, 
but this is only known from the final results. If 'A'p = 90° is choe·en, the 
same answer will be obtained, since there is considerable overlap in ac­
tual regions for which two adjacent 'A'p's may be used. If 'A'p = 450° is 
chosen, the 'A' calculated will be about 487.9°, or the position on the 
next orbit for this 'A. Using 'A'p = 270° and the equation for Atp fo11owing 
equation (20-12), 

'Arp= -96.1780538°-107.36° +(18/251)x270° 
= -184.1755040° 

for which the cosine is negative. From equation (20-9), the first trial At 
is the same as Atp· From equation (20-19), 

'A'= arctan [tan ( -184.1755040°)/cos 99.092°] 
= 24.7970120° 

For quadrant adjustment, using the procedure following (20-12), 

'A'= 24.7970120 + 270°- 90° sin 270° x ( -1) 
= 204.7970120° 

where the ( -1) takes the sign of cos Atp• 

Substituting this as the trial 'A' in (20-9), 

At= -96.1780538°-107.36° +(18/251)x204.7970120° 
= -188.8514155° 

Substituting this in place of -184.1755040° in (20-19), 

'A'= 44.5812628° 

but with the same quadrant adjustment as before, 

'A'= 224.5812628° 

Repeating the iteration, successive values of 'A' are 

'A'= 219.5419815 °, then 
= 220.8989682°, then 
= 220.5386678°, then 
= 220.6346973°, then 
= 220.6091287°, then 
= 220.6159384 °, etc. 

After a total of about 16 iterations, a value which does not ch~.nge to 
seven decimal places is obtained: 

'A'= 220.6145063° 
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Using equation (20-20), 

f/>=arcsin (sin 99.092° sin 220.6145063°) 
= -40.0000000° 
=40° S. lat. 

SPACE OBLIQUE MERCATOR (ELLIPSOID)-FORWARD EQUAT~0NS 
(SEE P. 203-207) 

While equations are given for orbits of small eccentricity, th~ calcula­
tions are so lengthy that examples will only be given for the circular 
Landsat orbit, thus eliminating or simplifying several of the equations 
given in the text. 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 = 0.00676866 

Landsat orbit: i= 99.092° 
P2/P1 = 18/251 

Ro=7,294,690.0 m 
Path=15 

Point: 4> = 40° N. lat. 
A=73° W. long. 

Find: x, y for point taken during daylight northern (first) qu~.drant of 
orbit. 

The calculation of Fourier constants for the map follows the same 
basic procedure as that given for the forward example for the spherical 
form, except for greater complications in computing each swp for the 
Simpson's numerical integration. The formula for Simpson's rule (see 
above) is not repeated here, but an example of calculation of e. function 
f (A'1 for constant A2 at A"= 18 ° is given below, as represented in equa­
tion (20-23). 

f (A")= [ (HJ-S2)/(J2 + 8 2
)

112
] cos 2A" 

Using equations (20-27) through (20-30) in order, 

J =(1-0.00676866)3 

=0.9798312 
W =[(1-0.00676866 cos2 99.092°)2/(1-0.00676866)2]-1 

=0.0133334 
Q = 0.00676866 sin2 99.092° /(1- 0.00676866) 

=0.0066446 
T=0.00676866 sin2 99.092° x (2-0.00676866)/(1-0.00676866)2 

=0.0133345 
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Using equations (20-37) and (20-38), remembering that L' = 1.0 for the 
circular orbit (as can be readily determined from (20-39) wit}' e = 0), 

8=(18/251) x 1.0 sin 99.092° cos 18° x[(1 +0.0133345 
sin1 18°)/(1 + 0.0133334 sin1 18°) (1 + 0.0066446 sin1 18('))111 

=0.0673250 
H = [(1 + 0.0066446 sin1 18°)/(1 + 0.0133334 sin1 18°)]111 

x [(1+0.0133334 sin1 18°)/(1+0.0066446 sin1 18°)1 

- (18/251) X 1.0 COS 99.092°] 
= 1.0110133 

Calculating the function j{'A.'~ as given above, 
j{)..")= ((1.0110133 X 0.9798312- 0.06732501)/(0.97983121 

+ 0.06732501
)

111
] COS (2 X 18°) 

=0.8122693 

In tabular form, using 9° intervals in )..", the calculation of A 1 proceeds 
as follows, integrating only to 90° for the circular orbit: 

'A" H s f('A") Multiplier Srmmation 

0° _________ 1.0113321 0.0708121 1.0035971 x1= 1.0035971 
9 __________ 1.0112504 0.0699346 0.9545807 x4= 3.8183229 

18 __________ 1.0110133 0.0673250 0.8122693 x2= 1.6245386 
27 __________ 1.0106439 0.0630509 0.5904356 x4= 2.3617425 
36 ---------- 1.0101782 0.0572226 0.3106003 x2= 0.6212007 
45 ---------- 1.0096617 0.0499888 0.0000000 x4= 0.0000000 
54 __________ 1.0091450 0.0415321 -0.3110197 x2= -0.6220394 
63 __________ 1.0086787 0.0320636 -0.5919529 x4= -2.3678116 
72 __________ 1.0083085 0.0218167 -0.8151437 x2= -1.6302874 
81 ---------- 1.0080708 0.0110417 -0.9585531 x4= -3.8342122 
90 ---------- 1.0079888 0.0000000 -1.0079888 x1= -1.0079888 

Total= -0.0329376 

To convert to A 1 , referring to equation (20-23), but multiplying by 4 
because of the single-quadrant integration, 

A1 =[41(180° x2)]x(9°/3)x( -0.0329376) 
= -0.0010979 

Similar calculations of A 4 , B 1 , c., and C3 lead to the values given in 
the text following equation (20-73a): 

B 1 = 0.0175544891 for ).." in degrees 
A4 = -0.0000013 
c.= 0.1434410 
C3 =0.0000285 

Since the calculations of j" and m" are not necessary for calculation of 
x andy from cp and 'A., or the inverse, and are also lengthy, they will be 
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omitted in these examples. The examples given will, however4
, assist in 

the understanding of the text concerning their calculations. The other 
general constant needed is~, determined from (20-11), as in the for­
ward spherical formulas and example: 

~ = 128.87° - (360° /251) X 15 
= 107.36° 

For coordinates of the specific point, equations (20-45) ari (20-46) 
are iterated together, replacing (L +-y) with 'A" in (20-46) for tl'~ circular 
orbit. Except for the additional factor of (1- e1) in (20-45), the pro­
cedure is identical to the forward spherical example for solvng (20-8) 
and (20-9). The calculations of "A'p and the first trial A, are idertical with 
that example since <1> and 'A have been made the same. The sign of cos A,p 
is also negative. 

A1p=90° 
'A,= -173.9058167° 

Using equation (20-45), 

"A"=arctan [cos 99.092° tan ( -173.9058167°)+(1-0.0067~~66) 
sin 99.092° tan 40°/cos ( -173.9058167°)] 

= -40.1810005° 

For quadrant correction, 

'A"= -40.1810005°+90°-90° sin 90°X(-1) 
= 139.8189995° 

Successive iterations give 

(2) 'A,= -170.3331395° 
'A"= 139.2478915° 

(3) 'A,= -170.3740954° 
'A"= 139.2550483° 

(4) 'A,= -170.3735822° 
'A"= 139.2549587° 

(5) 'A,= -170.3735886° 
'A"= 139.2549598° 

(6) 'A,= -170.3735885° 
'A"= 139.2549598° 

These last values do not change within seven decimal places in subse­
quent iterations. 

Using equation (20-49) with the final value of A,, 

</>"=arcsin {[(1- 0.00676866) cos 99.092° sin 40°- sin 99.092° 
cos 40° sin ( -170.3735885°)]/(1- 0.00676866 
sin2 40°)112} 

= 1.4692784 ° 
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From equation (20-37), using 139.2549598° in place of 18° in th~ exam­
ple for calculation of Fourier constants, 

S= -0.0535730 

From equations (20-43a) and (20-44a), 

X= 6,378,206.4 X {0.0175544891 X 139.2549598° + (- 0.0010979) 
sin (2x 139.2549598°)+( -0.0000013) sin (4x 139.25495fqo) 
- [ -0.0535730/(0.97983122 +(- 0.0535730)2

)l'
2

] ln tan (45° 
+ 1.4692784 ° /2)} 

= 15,607,700.94 m 
y = 6,378,206.4x {0.1434410 sin 139.2549598° + 0.0000285 

sin (3 x 139.2549598°) + [0.9798312/(0.97983122 

+( -0.0535730)2) 112] ln tan (45° + 1.4692784°/2)} 
= 760,636.33 m 

For calculation of positions along the groundtrack for a circular or­
bit, these examples use the same basic Landsat parameters as those in 
the preceding example, except that ¢ = 40° S. lat. on the daylight 
(descending) part of the orbit. To find A', cpll is first calculated from 
equation (20-57): 

c/>g=( -40°)-arcsin (6,378,206.4x0.00676866 sin ( -40°) coF 
(- 40°)/[7 ,294,690.0 x (1- 0.00676866 sin2 

(- 40°))1
'

2
] 

= -40° -( -0.1672042°) 
= -39.8327958° 

From equation (20-56), 

A'= arcsin [sin (- 39.8327958°)/sin 99.092°] 
= -40.4436361° 

To adjust for quadrant, since the satellite is traveling south, subtract 
from 1/z x 360°: 

A1 = 180°-(- 40.4436361 °) 
= 220.4436361° 

Using equation (20-59), replacing (L + 'Y) with A' for the circular orbit, 

A= arctan [(cos 99.092° sin 220.4436361 °)/cos 220.4436361 °] 
-(18/251)x220.4436361 o + 107.36° 

=arctan [0.1025077/( -0.7610445)]+91.5512930° 
= 83.8800995 ° 

Since the denominator of the argument for arctan is negat:ve, add 
180°, but 360° must also be subtracted to place A between + 180° and 
-180°: 

A= 83.8800995° + 180°-360° 
=- 96.1199005° 
=96°07'11.64" W. long. 
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If A is given instead, with the above A used in the exampl€, equations 
(20-19) and (20-46) are iterated together, with A' in place of (L +-y) in 
the latter for the circular orbit. The technique is the same as that used 
previously for solving (20-8) and (20-9) in the forward sphe-.oical exam­
ple. See also the discussion for the corresponding spherical ground­
track example, using equations (20-19) and (20-9), near the end of the 
inverse example. Since the formulas for the circular orbit ar~ the same 
for ellipsoid or sphere for this particular calculation, the various itera­
tions are not shown here. With A= -96.1199005°, A' is found to be 
220.4436361 o. To find the corresponding cJ> from equation (20-61), a 
trial cJ>=arcsin (sin 99.092° sin 220.4436361°)= -39.8327;lfi8° is in­
serted: 

cJ> =arcsin (sin 99.092° sin 220.4436361 °) 
+ arcsin {6,378,206.4 x 0.00676866 sin (- 39.832795F0

) 

COS (- 39.8327958°)/(7,294,690.0 X (1- 0.00676866 
sin2 

(- 39.8327958°))1
'

2
]) 

= -39.9998234° 

Substituting -39.9998234 o in place of -39.8327958° in the same equa­
tion, a new value of cJ> is obtained: 

cJ>= -39.9999998° 

With the next iteration, 

cJ>= -40.0000000° 

which does not change to seven decimal places. Thus, 

c/>=40° S. lat. 

SPACE OBLIQUE MERCATOR (ELLIPSOID)-INVERSE EQUATIONS 
(SEE P. 207-210) 

This example is limited to the circular Landsat orbit, using the 
parameters of the forward example. 

Inversing forward example: 

Given: Clarke 1866 ellipsoid: a= 6,378,206.4 m 
e2 =0.00676866 

Landsat orbit: i=99.092° 
PiP1 = 18/251 

R0 =7,294,690.0 m 
Path= 15 (thus Ao= 107.36° as in 

forward example) 
Point: x= 15,607,700.94 m 

y=760,636.33 m 
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Find: cp, A 
All constants J, W, Q, T, A"' B., and C"' as calculated in the forward 

example, must be calculated or otherwise provided for use for inverse 
calculations. 

To find A" from equation (20-68a) by iteration, the procedure is iden­
tical to that given for (20-15) in the inverse spherical example, except 
for the use of different constants. For the initial A" =xlaB11 

A"= 15,607, 700.94/(6,378,206.4 X 0.0175544891) 
= 139.3965968° 

Using equation (20-37) to findS for this value of A", 

S = (18/251) x 1.0 sin 99.092° cos 139.3965968° x [(1 + 0.0133~45 
sin2 139.3965968°)/(1 + 0.0133334 sin2 139.3965968°)(1 
+ 0.0066446 sin2 139.3965968°)]112 

= -0.0536874 

Inserting these values into (20-68a}, 

A"= {15,607, 700.94/6,378,206.4+ (- 0.0536874/0.9798312) 
x(760,636.33/6,378,206.4)-( -0.0010979) sin (2 
x 139.3965968°)-( -0.0000013) sin (4x 139.3965968°) 
-( -0.0536874/0.9798312)x[0.1434410 sin 139.3965968° 
+ 0.0000285 sin (3 x 139.3965968°)]}/0.0175544891 

= 139.2539963° 

Substituting this new trial value of A" into (20-37) for a newS, then 
both into (20-68a), the next trial value is 

A"= 139.2549663° 

and the fourth trial value is 

A"= 139.2549597° 

The fifth trial value is 

A"= 139.2549598° 

which does not change with another iteration to seven decimal places. 
Therefore, this is the final value of A". The correspondini!· S last 
calculated from (20-37) using this value of A" is -0.0535730. Using 
equation (20-69a), 

ln tan (45° +cp"/2)=[1 +( -0.0535730}2/0.97983122
]

112 

x [760,636.33/6,378,206.4- 0.1434410 sin 
139.2549598°-0.0000285 sin (3 x 139.2549598°)] 

=0.0256466 
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tan ( 45 o + cl>" /2) = eo.o2s6466 
= 1.0259783 

45 ° + cl>" /2 =arctan 1. 0259783 
=45.7346392° 

cp" = 2 X ( 45.7346392 ° - 45 °) 
= 1.4692784 ° 

Using equations (20-65), (20-64), and (20-63) in order, 

U = 0.00676866 cos2 99.092° /(1- 0.00676866) 
=0.0001702 

V = {[1- sin2 1.4692784 ° /(1- 0.00676866)] cos 99.092° 
sin 139.2549598°- sin 99.092° sin 1.4692784 ° 
x [(1 + 0.0066446 sin2 139.2549598°) x (1- sin2 1.46927,<")d: 0 ) 

-0.0001702 sin2 1.4692784 °)112}1 
[1- sin2 1.4692784 ° (1 + 0.0001702)] 

= -0.1285013 
A,=arctan ( -0.1285013/cos 139.2549598°) 

=arctan [ -0.1285013/( -0.7576215)] 
=9.6264115° 
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Since the denominator of the argument for arctan is negative, and the 
numerator is negative, subtract 180 °: 

A,= 9.6264115° -180° 
= -170.3735885° 

Using equation (20-62), with A" in place of (L +"f) for the circ·1lar orbit, 

A= -170.3735885° -(18/251)x 139.2549598° + 107.36° 
= -73.0000000° 
=73° W. long. 

Using equation (20-66), 

cJ> =arctan {[tan 139.2549598° cos ( -170.3735885 °) 
-cos 99.092° sin ( -170.3735885°)]/[(1-0.00676866) 
sin 99.092°]} 

= 40.0000000° 
=40° W. lat. 

VANDER GRINTEN (SPHERE)-FORWARD EQUATIONS (SEEP. 214) 

Given: Radius of sphere: 
Central meridian: 

Point: 

R=l.O unit 
Ao=85° W. long. 

cJ> = 50° S. lat. 
A= 160° W. long. 
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Find: x, y 
From equations (21-6), (21-3), (21-4), (21-5), and (21-6a) in o ... der, 

8=arcsin l2x( -50°)/180° I 
=arcsin 0.5555556 
= 33.7 489886 ° 

A= 1/21180° /[( -160°)- (- 85 °)]- [( -160°)- (- 85 °)]/180° I 
= 1!2! - 2.4oooooo-<- 0.4166667) 1 
=0.9916667 

G=cos 33.7489886°/(sin 33.7489886° +cos 33.7489886° -1) 
=2.1483315 

P=2.1483315x(2/sin 33.7489886° -1) 
=5.5856618 

Q=0.99166672 +2.1483315=3.1317342 

From equation (21-1), 

X= -7r X 1.0 X {0.9916667 X (2.1483315- 5.58566182
) 

+ (0.99166672 X (2.1483315- 5.58566182
)

2 

- (5.58566182 + 0.99166672
) X (2.14833152

- 5.58566182
)]

112
)/ 

(5.58566182 + 0.99166672
) 

= -1.1954154 units 

taking the initial "-" sign because (A- Ac,) is negative. Note that r is not 
converted to 180° here, since there is no angle in degrees to o~set it. 
From equation (21-2), 

y= -r X 1.0 X { 5.5856618 X 3.1317342-0.9916667 
x [(0.99166672 + 1)x (5.58566182 +0.99166672

) 

-3.13173422
]
112 }/(5.58566182 +0.99166672

) 

= -0.9960733 units, taking the initial"-" sign because cf> is 
negative. 

VANDER GRINTEN (SPHERE)- INVERSE EQUATIONS (SEE P. 214-216) 

lnversing forward example: 
Given: Radius of sphere: 

Central meridian: 
Point: 

Find: c/>, A 

R=l.O unit 
Ao=85° W. long. 
X= -1.1954154 units 
y= -0.9960733 unit 

Using equations (21-9) through (21-19) in order, 

X=-1.1954154/(rx 1.0) 
= -0.3805125 

Y = -0.9960733/(rx 1.0) 
= -0.3170600 

c1 = -0.3170600x[1 +( -0.3805125)2 +( -0.3170600)2
] 

= -0.3948401 
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c2=-0.3948401-2x( -0.3170600)2+( -0.3805125)2 

= -0.4511044 
c3= -2x( -0.3948401)+ 1 +2 x( -0.3170600)2 

+[( -0.3805125)2+( -0.3170600)2]2 

=2.0509147 
d=( -0.3170600)2/2.050914 7 +[2 X( -0.4511044)3/2.050~14 73 

-9x( -0.3948401)x( -0.4511044)/2.05091472]/27 
=0.0341124 

a1 =[ -0.3948401-( -0.4511044)2/(3x2.0509147)]!2.050!'147 
= -0.2086455 

m1 =2 x(0.2086455/3)112 

=0.5274409 
01 =(113) arccos [3 x0.0341124/( -0.2086455 x0.527440~)J 

=(113) arccos ( -0.9299322) 
=52.8080831 ° 

ct>=-180°X[ -0.5274409x cos (52.8080831 °+60°) 
-( -0.4511044)/(3 x2.0509147)] 

297 

=-50°=50° s. lat., taking the initial u_, sign because y is 
negative. 

}..=180 ° X { ( -0.3805125)2+( -0.3170600)2-1 + 
[1 +2 X(( -0.3805125)2-( -0.3170600)2) 
+(( -0.3805125)2+( -0.3170600)2)2)1 12 }/ 
[2x( -0.3805125)]+( -85 °) 

=-160°=160° W. long. 

SINUSOIDAL (SPHERE)-FORWARD EQUATIONS (SFE P. 222) 

Given: Radius of sphere: R = 1.0 unit 
Central meridian: >-.o=90° W. long. 

Find: x, y, h, k, ()', w 

Point: c/>=50° S. lat. 
>-.=75° W. long. 

From equations (22-1) through (22-5) in order, 

X= LOx[ -75° -( -90°)]xcos ( -50°)X?rl180° 
=0.1682814 unit 

Y = 1.0 X (- 50°) X ?r/180° 
= -0.8726646 unit 

h={1+[ -75° -( -90°)]2x(?r/180°)2xsin2 ( -50°))112 

= 1.0199119 
k=l.O 
()'=arcsin (111.0199119) 

= 78.6597719° 
w = 2 arctan 1112[ -75 o-(- 90°)] x ( ?r/180°) x sin (- 50°) I 

= 11.4523842° 
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SINUSOIDAL (SPHERE)-INVERSE EQUATIONS (SEE P. 2~2) 

lnversing forward example: 

Given: Radius of sphere: 
Central meridian: 

Point: 

Find: c/>, A 

R=l.O unit 
Ao=90° W. long. 
x=0.1682814 unit 
y= -0.8726646 unit 

From equations (22-6) and (22-7), 
c/> = (- 0.8726646/1.0) X 180° /1r 

= -49.9999985° 
= 50° S. lat. rounding off. 

A= -90° +[0.1682814/(l.Oxcos ( -49.9999985°)]x180°/7r 
= -75.0000007° 
=75° W. long. 
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NOTES FOR NUMERICAL EXAMPLES 





APPENDIXB 

USE OF MAP PROJECTIONS BY U.S. GEOLOGICAL SURVEY -SUMMARY 
Note: This list is not exhaustive. For further details, see text. 

Class, Projection Maps 

Cylindrical 
Mercator ------------------- Northeast Equatorial Pacific 

Indonesia (Tectonic) 
Other planets and satellites 

Transverse Mercator--------- 7112' and 15' quadrang1a.s for 
22 States 

North America 
Universal Transverse Mercator 1° lat. x 2° long. quF1rangles 

of U.S. metric quadrangles and 
County maps. 

"Modified Transverse Mercator" Alaska 
Oblique Mercator------------ Grids in southeast 

Alaska 
Landsat Satellite Ima~ery 

Miller Cylindrical ------------ World 
Equidistant Cylindrical ------- United States and State Index 

Maps 

Conic 

Albers Equal-Area Conic------ United States and seri:ions 
Lambert Conformal Conic ----- 7112' and 15' quadrang~~s for 

32 States 

Bipolar Oblique Conic 

Quadrangles for Puerto Rico, 
Virgin Islands, and Samoa 

State Base Maps 
Quadrangles for International 

Map of the World 
Other planets and satellites 

Conformal ---------------- North America (Geolcrric) 
Polyconic ------------------- Quadrangles for all States 
Modified Polyconic ----------- Quadrangles for International 

Map of the World 
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Azimuthal 

Orthographic (oblique)-------- Pictorial views of Earth 
or portions 

Stereographic (oblique) ------- Other planets and satellites 
(polar)--------- Antarctica 

Arctic regions 
Other planets and satellites 

Lambert Azimuthal Equal-Area 
(oblique) ------------------ Pacific Ocean 
(polar) -------------------- Arctic regions (Hydrocarbon 

Provinces) 
North and South Polar regions 

(polar expeditions) 
Azimuthal Equidistant (oblique) World 

Space 

Quadrangles for Guam and 
Micronesia 

Space Oblique Mercator------- Satellite image mapping 

Miscellaneous 
Van der Grin ten ------------- World (Subsea Mineral 

Resources, misc.) 
Sinusoidal (interrupted) ------- World (Hydrocarbon Provir~es) 
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Extraterrestrial mapping ___________ 3, 17 

Lambert Conformal Conic projectfon __ 106, 
301 

Mercator projection _______ 48-4'\ 51, 301 
Stereographic projection, oblique _156, 302 

polar --------------------157, 302 
Transverse Mercator projection _______ 63 

F 

Flamsteed, J ---------------------219 
Fourierseries ____________ l98, 200,206,209 
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projection ____ 76, 77,194, 195,301 
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geodetic _______ XII, 7, 9, 11-12, 14, 16, 17 
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standard 

See parallels, standard 
See also specific projection 

geographic 
See latitude, geodetic 

isometric _______________ 18-19, 226-227 
parametric or reduced _______ _21, 22, 228 
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Loritus, H -------------------------180 Loxodromes _____________________ 43, 45 
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Madagascar, maps of ______________ 73, 76 

Malaya, maps of -----------------------76 
Map projections -----------1-40, 301-302 

See also specific projection 

Maps for America -----------------------2 
Marinus of Tyre ------------------------89 
Mars, maps of -------------------------3 

Lambert Conformal Conic 
projection ______________ 104, 106 

Mercator projection _____________ 47, 48 
reference ellipsoid ______________ 16, 17 
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Mars, maps of- Continued 
Stereographic projection ____ 156, 157, 158 
Transverse Mercator projection ______ 63 

Maurer, H ________________________ 40, 180 

Meades Ranch, Kans ____________________ 15 
Mercator, G ________________ 43, 44, 180, 219 

Mercator, R --------------------------153 
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sphere __________________ 47,49,229 

history _________________________ 43-45 
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See Oblique Mercator projection 
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Transverse 
See Transverse Mercator proj£~tion 
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in extraterrestrial mapping __ .;l8-49, 51 
with another standard parallel _________ 51 

Mercury, maps of ----------------------3 
Lambert Conformal Conic 

projection ______________ 104,106 

Mercator projection ------------4 7, 48 
reference sphere ________________ 16, 17 
Stereographic projection ___ 156, 157, 158 
Transverse Mercator projection ______ 63 
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central _______________ xn, 12, 55, 58-60 

See also specific projection prime ____________________________ 11 

Meridian aspect of projection ________ 33, 135 

Meridians 
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Meridional aspect of projection _______ 33, 135 

Metallogenic Map ---------------------113 
Metric conversion ----------------------56 
Micronesia, mapping of ___ 182, 188, 189, 190, 
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Miller, 0. M ___________ 85, 87, 111, 113, 156 
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156,301 
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Mollweide projection _______________ 213, 221 

Moon, maps of Earth's ------------------3 
Lambert Azimuthal Equal-Area 

projection _________________ 170 
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Lambert Conformal Conic pro-
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jection ________________ 104, 106 
Mercator projection ______________ 47, 48 
reference sphere _________________ 16, 17 
Stereographic projection ____________ 156 
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National Aeronautics and Space Administration 
(NASA) _______________ 193, 195 

National Atlas ____ 8, 87, 93, 104, 170, 182, 211 
National Bureau of Standards ____________ 56 
National Geodetic Survey ____________ 16, 188 

See also United States Coast and Geodetic 
Survey 

National Geographic Society _76, 170, 180, 211, 
213 

National Mapping Program ---------------2 
National Ocean Survey -------------------2 

See also United States Coast and Geodetic 
Survey 

National Oceanic and Atmospheric Adminis-
tration (NOAA) --------------76 

New England Datum ___________________ 15 
New Zealand, maps of ___________________ 76 
Newton-Raphson iteration ___ 20, 129, 130, 216 
Nrmiisk Viirlds Atlas __________________ 221 
North America, ellipsoid ______________ 13, 16 

maps of ______________ 111, 113, 219, 301 

naming ---------------------------43 
North American Datum ______________ 15, 16 
Northing, false ________________________ XI 
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Oblique Conformal Conic projection __ 111, 113 
See also Bipolar Oblique Conic Conformal 

projection 
Oblique Equidistant Conic projection _____ 114 
Oblique Mercator projection _______ 79-81,, 113 

features _____________________ 34,74-76 

formulas, ellipsoid _______ 78-84, 237-242 
sphere ______________ 76-78, 235-237 

history -------------------------73-7 4 
Hotine (HOM), formulas ----------78-84, 

237-242 
use, satellite imagery _____ 76, 77, 194, 

195, 301 
State Plane Coordinate Sys-
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use(otherthanHotine) _______________ 76 

Oblique projections __________ 8, 9, 25, 91, 135 
Azimuthal Equidistant ______________ 183 
Lambert Azimuthal Equal-Area ______ 168 
Orthographic _________________ 143, 144 
Stereographic _____________________ 154 
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transformation __________________ 33, 35 
See also Bipolar Oblique Conic Con­

formal projection, Oblique Confor­
mal Conic projElction, Oblique 
Equidistant Conic projection, Ob­
lique Mercator projection, Space 
Oblique Mercator rrojection 

Ordnance Survey ----------------------63 
Orthographic projection ________ 11,1-151, 179 

coordinates,polar __________________ 137 
rectangular ________________ 148-151 

features ______________ l35,141-144,154 
formulas, sphere _______ 146-147, 258-259 
geometric construction _____ 142, 144-146 
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Orthomorphic projections -----------------6 
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Pacific Ocean, maps of ____ 3, 45, 170, 301, 302 
Parallels, standard ________ X~I, 9, 24, 91, 136 

Albers Equal-Area Conic p~ojection _94-95 
Lambert Conformal Conic 

projection ___________ 60-62, 101, 107 
Mercator projection _________________ 51 
Stereographic projection __________ 156 

Parallels of latitude 
See latitude 

Perspective projections _______ 9, 135, 136, 154 
See also Orthographic projection, 

Stereographic projection 
Plane as basis of projection ____________ 7, 8, 9 

Planets, maps of 
See extraterrestrial mappire; 

Planisphaerum projection _______________ 153 

Plate Carree --------------------------89 
Polar azimuthal projections ______ 33, 135, 136 

Azimuthal Equidistant __ 139, 181, 182, 187 
Lambert Azimuthal Equal-Area __ 138, 168, 

177 
Orthographic _________________ 137, 142 

Stereographic 
See Stereographic proj('ction, Polar 

Polyconic projection _______________ 123-124 
features _________________ 9,91,124-126 
formulas, ellipsoid _____ 129-131, 256-258 

sphere ____________ lr~129, 254-255 
geometric construction _____________ 128 
history _______________________ 123-124 
modified __________ 104, 199-191,, 156, 301 
rectangular coordinates _________ 131-133 
use ___________ 2,3,56,1r4, 126-128,301 

Postel, G ----------------------------180 
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Progressive Military Grid _______________ 127 
Prolated Stereographic projecti~n _____ 85, 156 
Pseudocylindrical projections _______ 9, 39, 219 

transformation __________________ 33, 34 

See also Sinusoidal projection 
Ptolemy, C ____________ 1, 12, 89, 91, 141, 153 
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~rangles _________ 3, 56, 63,157,301,302 
See also State Plane Coordinate System 
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Rand McNally & Co ____________ 144, 219, 221 
Rechteckige Plattkarte, Die ______________ 89 
Rectangular projection __________________ 89 
Rectified skew orthomorphic projection ____ 73 
Rec~glatitude _______ _2Q-21,22, 188,228 

Rhumb lines ----------------------6, 43, 45 
Robbins's geodesic inverse ---------~----189 
Rosenmund, M _______________ 73, 7 4, 76, 79 
Rowland, J. B _____________________ 76, 195 

Roze, J -----------------------------153 

s 
Sanson, N ---------------------------219 
Sanson-Flamsteed projection ____________ 219 
Satellites, imagery from artificial_3, 6, 76, 193, 

See also Landsat 
Satellites, natural, maps of 

See Moon, Jupiter, Saturn 

301, 302 

Satellite-tracking projections ____________ 193 

Saturn satellites, maps of 
Mercator projection ______________ 47, 49 
reference spheres ________________ 16, 17 
Stereographic projection ________ 157, 158 

Scale error --------------------------24 
See also scale factor 

Scale factor -----------------------24, 136 
areal -----------------------28, 30, 50 
calculation _____________________ 23-31 

See also specijw projection 
Scale of maps ---------------------------6 

See also scale factor 

Schmid, E ----------------------------76 
Simple Cylindrical projection _____________ 89 
Simpson's rule ____________________ 199, 282 
Singular points in conformal projections _____ 6 
Sinusoidal projection ____________ 34, 219-222 

features ____________________ 9,220-222 

formulas for sphere _______ 222, 297-298 
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Sinusoidal projection-Continued 
h~tory ________________________ 53,219 

usage ____________________ 221 ~222, 302 
South America, maps of ____________ 111, 219 
Space map projections _________ 193-210, 302 
Space Oblique Conformal Conic projec~on _193 
Space Oblique Mercator projection ______ 3, 79, 

193-210 
features ----------------------194-198 
formulas, ellipsoid _____ 203-210, 289-295 
sphere _______________ 198-202, 281-289 
~tory _______________________ 193-194 
usage _________________ 76, 195,. 198, 302 

Sphere, Earth taken as, scale an1 d~tor-
tion _____________________ 25-28 

formulas for projections 
See specific pro}ection 

Spheroid, oblate 
See ellipsoid 

Stabius, J ---------------------------153 
Standard circle ___________________ 156, 160 

Standard parallels 
See parallels, standard 

State base maps ___________ 64, 104, 128, 301 
State Plane Coordinate System (SPCS) 

using Hotine Oblique Mercato:w projec-
tion ___________ 56, 58, 6.'?, 76, 104 

using Lambert Conformal Cc nic pro-
jection ___ 3, 56, 58, 60-62. 103, 127 

using Transverse Mercator projec­
tion _3, 56, 58-60, 68, 103 104, 127 

Stereographic projection _________ 6'1, 158-16/'i 

coordinates, polar ---~----------137, 165 rectangular ____________________ 161 

features ___________ 6,9,27,135 154-156 
formulas, ellipsoid _____ 156, 160, 162-164, 

260-267 
sphere ____________ 158-160.259-260 

history ___________________________ 153 

Polar ___ 3, 79, 101, 134, 137, 154. 165, 302 
Universal ---------------------156 
See also Stereographic p·ojection: 
features; formulas; history 

Prolated ----------------------85, 156 
use __________________ 156-158 181,302 

in extraterrestrial mapping ___ 156, 157 
Survey of the Coast __________________ 2, 123 
Switzerland, maps of _____________ 73, 74, 76 
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"Tailor-made" projection _______________ 111 
Tectonic maps _________ 3, 47, 56, 93. 113,301 
Theon _______________________________ 153 
Thompson, E. H _______________________ 55 

Tissot, A -----------------------------23 
Tobler, W. R --------------------------39 
"Topographic Mapping Status•••" ________ 90 
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Topographic maps ----------------------25 
See also quadrangles 

Transformation of graticules __________ 33-38 
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