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PREFACE TO SECOND EDITION

This study of map projections is intended to be useful to both the
reader interested in the philosophy or history of the projections and the
reader desiring the mathematics. Under each of the sixteen projections
described, the nonmathematical phases are presented first, without in-
terruption by formulas. They are followed by the formulas ¢nd tables,
which the first type of reader may skip entirely to pass to the non-
mathematical discussion of the next projection. Even with the mathe-
matics, there are almost no derivations, very little calculus, and no
complex variables or matrices. The emphasis is on describing the
characteristics of the projection and how it is used.

This bulletin is also designed so that the user can turn dire~tly to the
desired projection, without reading any other section, in order to study
the projection under consideration. However, the list of syrbols may
be needed in any case, and the random-access feature will be enhanced
by a general understanding of the concepts of projections and distor-
tion. As a result of this intent, there is some repetition which will be ap-
parent as the book is read sequentially.

Many of the formulas and much of the history and general discussion
are adapted from a source manuscript I prepared shortly before joining
the U.S. Geological Survey. The relationship of the projections to the
Survey has been incorporated as a result of the generous cooperation of
several Survey personnel. These include Alden P. Colvocoresses,
William J. Jones, Clark H. Cramer, Marlys K. Brownlee, Tau Rho
Alpha, Raymond M. Batson, William H. Chapman, Atef A. Elassal,
Douglas M. Kinney (ret.), George Y. G. Lee, Jack P. Minta (ret.), and
John F. Waananen. Joel L. Morrison of the University of Wiscon-
sin/Madison and Allen J. Pope of the National Ocean Survey also made
many helpful comments.

Many of the inverse formulas, and a few others, have been derived in
conjunction with this study. Many of the formulas may be found in
other sources; however, many, especially inverse formulas, are fre-
quently omitted or are included in more cumbersome form elsewhere.
All formulas adapted from other sources have been tested for accuracy.

For the more complicated projections, equations are given in the
order of usage. Otherwise, major equations are given first, followed by
subordinate equations. When an equation has been given previously, it
is repeated with the original equation number, to avoid the need to leaf
back and forth. A compromise in this philosophy is the placing of
numerical examples in appendix A. It was felt that placing these with
the formulas would only add to the difficulty of reading through the
mathematical sections.
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The need for a working manual of this type has led to an unervectedly
early exhausting of the supply of the first edition of this bulletin. In
this new edition there are minor revisions and corrections noted to
date. These primarily consist of corrections to equations (15-10) on
p. 129 and (20-22) on p. 204 and replacement of the inverse van der
Grinten algorithm on p. 215-216 with that developed by Rubincam.
The former algorithm is also accurate, but very cumbersome. In addi-
tion, historical notes have been corrected on p. 23, 144, anc 219.

Further corrections and comments by users are most welcome. It is
hoped that this study provides a practical reference for those concerned
with map projections.

John P. Snyder

Reston, Va.
May 1983
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SYMBOLS

If a symbol is not listed here, it is used only briefly and identified near
the formulas in which it is given.

Az=azimuth, as an angle measured clockwise from the north.
a=equatorial radius or semimajor axis of the ellipsoid of
reference.
b=polar radius or semiminor axis of the ellipsoid of reference.
=a(l-f)=a(l-e?).
c=great circle distance, as an arc of a circle.
e=eccentricity of the ellipsoid.
=(1-b¥a?)2,
f=1flattening of the ellipsoid.
h=relative scale factor along a meridian of longitude.
k=relative scale factor along a parallel of latitude.
n=cone constant on conic projections, or the ratio of the angle be-
tween meridians to the true angle, called [ in scme other
references. .
R=radius of the sphere, either actual or that corresponding to
scale of the map.
S =surface area.
z=rectangular coordinate: distance to the right of th- vertical
line (Y axis) passing through the origin or center of a projec-
tion (if negative, it is distance to the left). In practice, a “false”
x or “false easting” is frequently added to all values of x to
eliminate negative numbers.
y=rectangular coordinate: distance above the horizontal line (X
axis) passing through the origin or center of a projection (if
negative, it is distance below). In practice, a “false”  or “false
northing” is frequently added to all values of y to eliminate
negative numbers.
z=angular distance from North Pole of latitude ¢, or (97° - ¢), or
colatitude.
z,=angular distance from North Pole of latitude ¢,, or (90° - ¢,).
z,=angular distance from North Pole of latitude ¢,, or (90° —¢,).
In=natural logarithm, or logarithm to base e, where e=2.71828.
6 =angle measured counterclockwise from the central meridian,
rotating about the center of the latitude circles on a conic or
polar azimuthal projection, or beginning due south. rotating
about the center of projection of an oblique or equatorial
azimuthal projection.
¢ = angle of intersection between meridian and parallel.

X1



XII MAP PROJECTIONS USED BY THE USGS

Symbols—Continued

A =longitude east of Greenwich (for longitude west of Greenwich,
use a minus sign).

Mo=longitude east of Greenwich of the central meridian of the
map, or of the origin of the rectangular coordinates (for west
longitude, use a minus sign). If ¢, is a pole, )\, is the longitude
of the meridian extending down on the map from th< North
Pole or up from the South Pole.

N =transformed longitude measured east along tran~formed
equator from the north crossing of the Earth’s lquator,
when graticule is rotated on the Earth.

p=radius of latitude circle on conic or polar azimuthal projec-
tion, or radius from center on any azimuthal projec‘ion.

¢=north geodetic or geographic latitude (if latitude is south,
apply a minus sign).

¢o=middle latitude, or latitude chosen as the origin of rectangu-
lar coordinates for a projection.

¢'=transformed latitude relative to the new poles and equator
when the graticule is rotated on the globe.

¢1, ¢,=standard parallels of latitude for projections with two stand-
ard parallels. These are true to scale and free of angular
distortion.
¢, (without ¢,)=single standard parallel on cylindrical or conic projec-
tions; latitude of central point on azimuthal projections.
w=maximum angular deformation at a given point on a projec-
tion,

. All angles are assumed to be in radians, unless the degree symbol (°) is used.
2. Unless there is a note to the contrary, and if the expression for which the arctan is sought has a numerator over a
denominator, the formulas in which arctan is required (usually to obtain a longitude) are so arranged that the For-
tran ATANZ function should be used. For hand calculators and computers with the arctan function but not ATAN2,
the following conditions must be added to the limitations listed with the formulas:

For arctan (4/B), the arctan is normally given as an angle between —90° and +90°, or between — #/2 and + /2. If
B is negative, add + 180° or + « to the initial arctan, where the + takes the sign of A, or if A is zer, the + arbi-
trarily takes a + sign. If B is zero, the arctan is +90° or + /2, taking the sign of A. Conditions not resolved by the
ATAN2 function, but requiring adjustment for almost any program, are as follows:

(1) If A and B are both zero, the arctan is indeterminate, but may normally be given an arbitrary value of 0 or of \,,
depending on the projection, and
(2) If A or B is infinite, the arctan is +90° (or + x/2) or 0, respectively, the sign depending on other conditions.

In any case, the final longitude should be adjusted, if necessary, so that it is an angle between - 18C° (or - x) and

+180° (or + ). This is done by adding or subtracting multiples of 360° (or 27) as required.

-

o«

. Where division is involved, most equations are given in the form A = B/C rather than A = E This facilitates iype-

setting, and it also is a convenient form for conversion to Fortran programing.



AGS
GRS
HOM
IMC
IMW
IUGG
NASA
NGS
SOM
SPCS
UPS
USC&GS
USGS
UTM
WGS

ACRONYMS

American Geographical Society

Geodetic Reference System

Hotine (form of ellipsoidal) Oblique Mercato*
International Map Committee

International Map of the World

International Union of Geodesy and Geophysics
National Aeronautics and Space Administration
National Geographic Society

Space Oblique Mercator

State Plane Coordinate System

Universal Polar Stereographic

United States Coast and Geodetic Survey
United States Geological Survey

Universal Transverse Mercator

World Geodetic System

Some acronyms are not listed, since the full name is used throughout this bulletin.
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MAP PROJECTIONS
USED BY THE
U.S. GEOLOGICAL SURVEY

By JouN P. SNYDER

ABSTRACT

After decades of using only one map projection, the Polyconic, for its mapping pro-
gram, the U.S. Geological Survey (USGS) now uses sixteen of the more comron map pro-
jections for its published maps. For larger scale maps, including topographic quadrangles
and the State Base Map Series, conformal projections such as the Transve-se Mercator
and the Lambert Conformal Conic are used. On these, the shapes of smll areas are
shown correctly, but scale is correct only along one or two lines. Equal-arez. projections,
especially the Albers Equal-Area Conic, and equidistant projections which have correct
scale along many lines appear in the National Atlas. Other projections, such as the Miller
Cylindrical and the Van der Grinten, are chosen occasionally for convenienc?, sometimes
making use of existing base maps prepared by others. Some projections treat the Earth
only as a sphere, others as either ellipsoid or sphere.

The USGS has also conceived and designed several new projections, including the
Space Oblique Mercator, the first map projection designed to permit manping of the
Earth continuously from a satellite with low distortion. The mapping of extraterrestrial
bodies has resulted in the use of standard projections in completely new settings.

With increased computerization, it is important to realize that rectangular coordinates
for all these projections may be mathematically calculated with formulas which would
have seemed too complicated in the past, but which now may be programed routinely, if
clearly delineated with numerical examples. A discussion of appearance. usage, and
history is given together with both forward and inverse equations for each projection in-
volved.

INTRODUCTION

The subject of map projections, either generally or specif -ally, has
been discussed in thousands of papers and books dating at least from
the time of the Greek astronomer Claudius Ptolemy (about A.D.150),
and projections are known to have been in use some three centuries
earlier. Most of the widely used projections date from the 16th to 19th
centuries, but scores of variations have been developed duriny the 20th
century. Within the past 10 years, there have been several ne v publica-
tions of widely varying depth and quality devoted exclusivaly to the

1



2 MAP PROJECTIONS USED BY THE USGS

subject (Alpha and Gerin, 1978; Hilliard and others, 1978; Le=, 1976;
Maling, 1973; McDonnell, 1979; Pearson, 1977; Rahman, 1974;
Richardus and Adler, 1972; Wray, 1974). In 1979, the USGS published
Maps for America, a book-length description of its maps (Thompson,
1979).

In spite of all this literature, there has been no definitive single
publication on map projections used by the USGS, the agency r2sponsi-
ble for administering the National Mapping Program. The US'GS has
relied on map projection treatises published by the former Coast and
Geodetic Survey (now the National Ocean Survey). These publications
do not include sufficient detail for all the major projections usel by the
USGS. A widely used and outstanding treatise of the Coast and Geo-
detic Survey (Deetz and Adams, 1934), last revised in 1945, only
touches upon the Transverse Mercator, now a commonly used projec-
tion for preparing maps. Other projections such as the Bipolar Oblique
Conic Conformal, the Miller Cylindrical, and the Van der Grinten, were
just being developed, or, if older, were seldom used in 1945. Deetz and
Adams predated the extensive use of the computer and pocket
calculator, and, instead, offered extensive tables for plotting projec-
tions with specific parameters.

Another classic treatise from the Coast and Geodetic Survey was
written by Thomas (1952) and is exclusively devoted to the five major
conformal projections. It emphasizes derivations with a summary of
formulas and of the history of these projections, and is directed toward
the skilled technical user. Omitted are tables, graticules, or numerical
examples.

In this bulletin, the author undertakes to describe each projection
which has been used by the USGS sufficiently to permit the skilled
mathematically oriented cartographer to use the projection in detail.
The descriptions are also arranged so as to enable a lay pevson in-
terested in the subject to learn as much as desired about the principles
of these projections without being overwhelmed by mathematical
detail. Deetz and Adams’ work sets an excellent example in this com-
bined approach.

Since this study is limited to map projections used by the USGS,
several map projections frequently seen in atlases and geography texts
have been omitted. The general formulas and concepts are usef'1l, how-
ever, in studying these other projections. Many tables of rectanyular or
polar coordinates have been included for conceptual purposes. For
values between points, formulas should be used, rather than interpola-
tion. Other tables list definitive parameters for use in formulas.

The USGS, soon after its official inception in 1879, apparently chose
the Polyconic projection for its mapping program. This projection is
simple to construct and had been promoted by the Survey of th= Coast,
as it was then called, since Ferdinand Rudolph Hassler’s leadership of



INTRODUCTION 3

the early 1800’s. The first published USGS topographic “quadrangles,”
or maps bounded by two meridians and two parallels, did not carry a
projection name, but identification as “Polyconic projection” was added
to later editions. Tables of coordinates published by the USGS ap-
peared by 1904, and the Polyconic was the only projection mentioned
by Beaman (1928, p. 167).

Mappers in the Coast and Geodetic Survey, influenced in turn by
military and civilian mappers of Europe, established the S'tate Plane
Coordinate System in the 1930’s. This system involved tte Lambert
Conformal Conic projection for States of larger east-west extension
and the Transverse Mercator for States which were longer from north
to south. In the late 1950’s, the USGS began changing guadrangles
from the Polyconic to the projection used in the State Plane Coordinate
System for the principal State on the map. The USGS also edopted the
Lambert for its series of State base maps.

As the variety of maps issued by the USGS increased, a broad range
of projections became important: The Polar Stereographic for the map
of Antarctica, the Lambert Azimuthal Equal-Area for maps of the
Pacific Ocean, and the Albers Equal-Area Conic for National Atlas
(USGS, 1970) maps of the United States. Several other projections
have been used for other maps in the National Atlas, for tectonic maps,
and for grids in the panhandle of Alaska. The mapping of extra-
terrestrial bodies, such as the Moon, Mars, and Mercury, involves old
projections in a completely new setting. The most recent projection
promoted by the USGS and perhaps the first to be originatec within the
USGS is the Space Oblique Mercator for continuous mapping using ar-
tificial satellite imagery (Snyder, 1981).

It is hoped that this study will assist readers to understanc better not
only the basis for maps issued by the USGS, but also the principles and
formulas for computerization, preparation of new maps, and trans-
ferring of data between maps prepared on different projections.






MAP PROJECTIONS —GENERAL CONCEPT®
1. CHARACTERISTICS OF MAP PROJECTIONS

The general purpose of map projections and the basic problems en-
countered have been discussed often and well in various bnoks on car-
tography and map projections. (Robinson, Sale, and Mor-ison, 1978;
Steers, 1970; and Greenhood, 1964, are among recent editions of
earlier standard references.) It is necessary to mention th< concepts,
but to do so concisely, although there are some interpretations and for-
mulas that appear to be unique.

For almost 500 years, it has been conclusively established that the
Earth is essentially a sphere, although there were a number of intellec-
tuals nearly 2,000 years earlier who were convinced of this. Even to the
scholars who considered the Earth flat, the skies appeared hemispheri-
cal, however. It was established at an early date that attempts to
prepare a flat map of a surface curving in all directions leads to distor-
tion of one form or another.

A map projection is a device for producing all or part of a round body
on a flat sheet. Since this cannot be done without distortion, the car-
tographer must choose the characteristic which is to be shown ac-
curately at the expense of others, or a compromise of several char-
acteristics. There is literally an infinite number of ways ir which this
can be done, and several hundred projections have beer published,
most of which are rarely used novelties. Most projections may be
infinitely varied by choosing different points on the Earth as the center
or as a starting point.

It cannot be said that there is one “best” projection for mapping. It is
even risky to claim that one has found the “best” projection for a given
application, unless the parameters chosen are artificially constricting.
Even a carefully constructed globe is not the best map for rrost applica-
tions because its scale is by necessity too small. A straightedge cannot
be satisfactorily used for measurement of distance, and it is awkward
to use in general.

The characteristics normally considered in choosing a map projection
are as follows:

1. Area. Many map projections are designed to be equal-avea, so that
a coin, for example, on one part of the map covers exactly the same
area of the actual Earth as the same coin on any other part of the map.
Shapes, angles, and scale must be distorted on most parts of such a
map, but there are usually some parts of an equal-area map which are
designed to retain these characteristics correctly, or very nearly so.

5



6 MAP PROJECTIONS USED BY THE USGS

Less common terms used for equal-area projections are equivalent,
homolographic, or homalographic (from the Greek homalos or homos
(“same”) and graphos (“write”)); authalic (from the Greek autos (“s~me”)
and aslos (“area”)), and equiareal.

2. Shape. Many of the most common and most important projections
are conformal or orthomorphic (from the Greek orthos or “straight” and
morphe or “shape”), in that normally the shape of every small featwe of
the map is shown correctly. (On a conformal map of the entire Earth
there are usually one or more “singular” points at which shape is still
distorted.) A large landmass must still be shown distorted in shape,
even though its small features are shaped correctly. An important
result of conformality is that relative angles at each point are correct,
and the local scale in every direction around any one point is con<tant.
Consequently, meridians intersect parallels at right (90°) angles on a
conformal projection, just as they do on the Earth. Areas are generally
enlarged or reduced throughout the map, but they are relativel;" cor-
rect along certain lines, depending on the projection. Nearly all large-
scale maps of the Geological Survey and other mapping agencies
throughout the world are now prepared on a conformal projection.

3. Scale. No map projection shows scale correctly throughout the
map, but there are usually one or more lines on the map along which
the scale remains true. By choosing the locations of these lines proper-
ly, the scale errors elsewhere may be minimized, although some errors
may still be large, depending on the size of the area being mapped and
the projection. Some projections show true scale between one cr two
points and every other point on the map, or along every meridian. They
are called “equidistant” projections.

4. Direction. While conformal maps give the relative local dire~tions
correctly at any given point, there is one frequently used group of map
projections, called azimuthal (or zenithal), on which the directions or
azimuths of all points on the map are shown correctly with resp=ct to
the center. One of these projections is also equal-area, another iv con-
formal, and another is equidistant. There are also projections on which
directions from two points are correct, or on which directions from all
points to one or two selected points are correct, but these are rarely
used.

5. Special characteristics. Several map projections provide svecial
characteristics that no other projection provides. On the Mercator pro-
jection, all rhumb lines, or lines of constant direction, are shown as
straight lines. On the Gnomonic projection, all great circle paths—the
shortest routes between points on a sphere—are shown as straight
lines. On the Stereographic, all small circles, as well as great circles,
are shown as circles on the map. Some newer projections are specially
designed for satellite mapping. Less useful but mathematically intrigu-
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ing projections have been designed to fit the sphere conformally into a
square, an ellipse, a triangle, or some other geometric figure.

6. Method of construction. In the days before ready access to com-
puters and plotters, ease of construction was of greater importance.
With the advent of computers and even pocket calculators. very com-
plicated formulas can be handled almost as routinely as simple projec-
tions in the past.

While the above features should ordinarily be considered in choosing
a map projection, they are not so obvious in recognizing a projection. In
fact, if the region shown on a map is not much larger thar the United
States, for example, even a trained eye cannot often distinguish
whether the map is equal-area or conformal. It is necessary to make
measurements to detect small differences in spacing or location of
meridians and parallels, or to make other tests. The type of construc-
tion of the map projection is more easily recognized with e:"perience, if
the projection falls into one of the common categories.

There are three types of developable! surfaces onto which most of the
map projections used by the USGS are at least partially geometrically
projected. They are the cylinder, the cone, and the plane. Actually all
three are variations of the cone. A cylinder is a limiting form of a cone
with an increasingly sharp point or apex. As the cone beccmes flatter,
its limit is a plane.

If a cylinder is wrapped around the globe representing the Earth, so
that its surface touches the Equator throughout its circumference, the
meridians of longitude may be projected onto the cylinder as equidis-
tant straight lines perpendicular to the Equator, and the parallels of
latitude marked as lines parallel to the Equator, around the cir-
cumference of the cylinder and mathematically spaced for certain
characteristics. When the cylinder is cut along some meridian and
unrolled, a cylindrical projection with straight meridians and straight
parallels results (see fig. 1). The Mercator projection is the best-known
example.

If a cone is placed over the globe, with its peak or apex along the
polar axis of the Earth and with the surface of the cone touching the
globe along some particular parallel of latitude, a conic (or conical) pro-
jection can be produced. This time the meridians are projected onto the
cone as equidistant straight lines radiating from the ap=x, and the
parallels are marked as lines around the circumference of the cone in
planes perpendicular to the Earth’s axis, spaced for the desired
characteristics. When the cone is cut along a meridian, unrolled, and
laid flat, the meridians remain straight radiating lines, but the parallels
are now circular arcs centered on the apex. The angles between meri-
dians are shown smaller than the true angles.

! A developable surface is one that can be transformed to a plane without distortion,



8 MAP PROJECTIONS USED BY THE USGS

z

Regular Cylindrical Regular Coric

Polar Azimuthal
(plane)

Cylindrical

Oblique Azimuthal
{plane)

FiGURE 1.-Projection of the Earth onto the three major surfaces. In a few cases, pro-
jection is geometric, but in most cases the projection is mathematical to achi=ve certain
features.
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A plane tangent to one of the Earth’s poles is the basis for polar
azimuthal projections. In this case, the group of projections is named
for the function, not the plane, since all common tangent-nlane projec-
tions of the sphere are azimuthal. The meridians are projected as
straight lines radiating from a point, but they are spaced at their true
angles instead of the smaller angles of the conic proj=ctions. The
parallels of latitude are complete circles, centered on the pole. On some
important azimuthal projections, such as the Stereographic (for the
sphere), the parallels are geometrically projected from a common point
of perspective; on others, such as the Azimuthal Equidistant, they are
nonperspective.

The concepts outlined above may be modified in two ways, which still
provide cylindrical, conic, or azimuthal projections (although the
azimuthals retain this property precisely only for the sphere).

(1) The cylinder or cone may be secant to or cut the globe at two
parallels instead of being tangent to just one. This conceptually pro-
vides two standard parallels; but for most conic projections this con-
struction is not geometrically correct. The plane may likewise cut
through the globe at any parallel instead of touching a pcle.

(2) The axis of the cylinder or cone can have a direction diferent from
that of the Earth’s axis, while the plane may be tangent to a point other
than a pole (fig. 1). This type of modification leads to impor*ant oblique,
transverse, and equatorial projections, in which most meridians and
parallels are no longer straight lines or arcs of circles. What were
standard parallels in the normal orientation now become standard lines
not following parallels of latitude.

Some other projections used by the USGS resemble one ¢~ another of
these categories only in some respects. The Sinusoidal projection is
called pseudocylindrical because its latitude lines are parallel and
straight, but its meridians are curved. The Polyconic proje<tion is pro-
jected onto cones tangent to each parallel of latitude, so tte meridians
are curved, not straight. Still others are more remotely relsted to cylin-
drical, conic, or azimuthal projections, if at all.






2. LONGITUDE AND LATITUDE

To identify the location of points on the Earth, a graticule or network
of longitude and latitude lines has been superimposed on the surface.
They are commonly referred to as meridians and parallels, respective-
ly. Given the North and South Poles, which are approximately the ends
of the axis about which the Earth rotates, and the Equator, an im-
aginary line halfway between the two poles, the parallels of latitude are
formed by circles surrounding the Earth and in planes parallel with
that of the Equator. If circles are drawn equally spaced alcng the sur-
face of the sphere, with 90 spaces from the Equator to each pole, each
space is called a degree of latitude. The circles are numbered from 0° at
the Equator to 90° North and South at the respective poles. Each
degree is subdivided into 60 minutes and each minute into 60 seconds of
arc.

Meridians of longitude are formed with a series of imaginary lines, all
intersecting at both the North and South Poles, and crossing each
parallel of latitude at right angles, but striking the Equato* at various
points. If the Equator is equally divided into 360 parts, and a meridian
passes through each mark, 360 degrees of longitude re-~ult. These
degrees are also divided into minutes and seconds. While the length of
a degree of latitude is always the same on a sphere, the lengths of
degrees of longitude vary with the latitude (see fig. 2). At the Equator
on the sphere, they are the same length as the degree of I~titude, but
elsewhere they are shorter.

There is only one location for the Equator and poles which serve as
references for counting degrees of latitude, but there is no natural
origin from which to count degrees of longitude, since all meridians are
identical in shape and size. It, thus, becomes necessary to choose ar-
bitrarily one meridian as the starting point, or prime meridian. There
have been many prime meridians in the course of history, swayed by
national pride and international influence. Eighteenth-centiry maps of
the American colonies often show longitude from London or
Philadelphia. During the 19th century, boundaries of new States were
described with longitudes west of a meridian through Washington,
D.C., 77°03'02.3" west of the Greenwich (England) Prime Meridian,

‘which was increasingly referenced on 19th century maps (Van Zandt,

1976, p. 3). In 1884, the International Meridian Conference, meeting in

Washington, agreed to adopt the “meridian passing through the center

of the transit instrument at the Observatory of Greenwich as the initial

meridian for longitude,” resolving that “from this meridian longitude
11
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shall be counted in two directions up to 180 degrees, east longitude be-
ing plus and west longitude minus ” (Brown, 1949, p. 297).

When constructing meridians on a map projection, the central merid-
ian, usually a straight line, is frequently taken to be the starting point
or 0° longitude for calculation purposes. When the map is completed
with labels, the meridians are marked with respect to the Greenwich
Prime Meridian. The formulas in this bulletin are arranged so that
Greenwich longitude may be used directly.

The concept of latitudes and longitudes was originated early in
recorded history by Greek and Egyptian scientists, especiall~ the
Greek astronomer Hipparchus (2nd century, B.C.). Claudius Ptnlemy
further formalized the concept (Brown, 1949, p. 50, 52, 68).

Because calculations relating latitude and longitude to positions of
points on a given map can become quite involved, rectangular grids
have been developed for the use of surveyors. In this way, each point
may be designated merely by its distance from two perpendicular axes
on the flat map.



3. THE DATUM AND THE EARTH AS AN ELLIPSOID

For many maps, including nearly all maps in commercial atlases, it
may be assumed that the Earth is a sphere. Actually, it is more nearly
an oblate ellipsoid of revolution, also called an oblate spher»id. This is
an ellipse rotated about its shorter axis. The flattening of the ellipse for
the Ea. th is only about one part in three hundred; but it is safficient to
become a necessary part of calculations in plotting accurate maps
at a scale of 1:100,000 or larger, and 1s significant even for
1:5,000,000-scale maps of the United States, affecting plotted shapes
by up to %5 percent. On small-scale maps, including single-sheet world
maps, the oblateness is negligible. Formulas for both the sphere and
ellipsoid will be discussed in this bulletin wherever the projection is
used in both forms.

The Earth is not an exact ellipsoid, and deviations from this shape
are continually evaluated. For map projections, however, tt'= problem
has been confined to selecting constants for the ellipsoidal shape and
size and has not generally been extended to incorporating the much
smaller deviations from this shape, except that different reference
ellipsoids are used for the mapping of different regions of the Earth.

An official shape of the ellipsoid was defined in 1924, wher the Inter-
national Union of Geodesy and Geophys1cs (IUGG) adopted a flattening
of exactly 1 part in 297 and a semimajor axis (or equatorial radlus) of
exactly 6,378,388 m. The radius of the Earth along the pclar axis is
then 1/297 less than 6,378,388, or approximately 6,356,911.¢ m. This is
called the International ellipsoid and is based on Johr Fillmore
Hayford’s calculations in 1909 from U.S. Coast and Geode‘ic Survey
measurements made entirely within the United States (Brown, 1949, p.
293; Hayford, 1909). This ellipsoid was not adopted for use in North

America.
There are over a dozen other principal ellipsoids, however, which are

still used by one or more countries (table 1). The different ¢“mensions
do not only result from varying accuracy in the geodetic measurements
(the measurements of locations on the Earth), but the curvature of the
Earth’s surface is not uniform due to irregularities in the gravity field.

Until recently, ellipsoids were only fitted to the Earth’s sh~pe over a
particular country or continent. The polar axis of the reference ellip-
soid for such a region, therefore, normally does not coincid= with the
axis of the actual Earth, although it is made parallel. The same applies
to the two equatorial planes. The discrepancy between centers is usual-
ly a few hundred meters at most. Only satellite-determined coordinate

13
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N.Pole

£ Uator |

Longitude
Latitude

FIGURE 2.—Meridians and parallels on the sphere.

systems, such as the WGS 72 mentioned below, are considered g=ocen-
tric. Ellipsoids for the latter systems represent the entire Earth more
accurately than ellipsoids determined from ground measuremerts, but
they do not generally give the “best fit” for a particular region.

The reference ellipsoid is used with an “initial point” of reference on
the surface to produce a datum, the name given to a swmooth
mathematical surface that closely fits the mean sea-level smurface
throughout the area of interest. The “initial point” is assigned a
latitude, longitude, and elevation above the ellipsoid. Once a dztum is
adopted, it provides the surface to which ground control measurements
are referred. The latitude and longitude of all the control points in a
given area are then computed relative to the adopted ellipsoid snd the
adopted “initial point.” The projection equations of large-scale maps
must use the same ellipsoid parameters as those used to define tl = local
datum; otherwise, the projections will be inconsistent with the ground
control.
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TABLE 1.-Some Official Ellipsoids in use Throughout the Wovld!

Equatorial  Polar Radius  Flattening

Name Date Radius, q, b, meters f Use
meters

GRS 19802 ________1980 6,378,137* 6,356,752.3 1/298.257 Newly adopted

WGS 728 __________ 1972 6,378,135* 6,356,750.5 1/298.26 NASA

Australian _________1965 6,378,160* 6,356,774.7 1/298.25* Australia

Krasovsky ________ 1940 6,378,245* 6,356,863.0 1/298.3* Soviet Urion

Internatl _________ 1924 . R

Hayford __________1909 }6,37 8,388* 6,356,911.9 1/297 Remainder of the
world. T

Clarke ____________1880 6,378,249.1  6,356,514.9 1/293.46**  Most of Africa; France

Clarke ____________ 1866 6,378,206.4* 6,356,583.8*  1/294.98 North Amrerica; Philip-
pines.

Airy __ 1849 6,377,563.4 6,356,256.9 1/299.832**  Great Brizain

Bessel ____________ 1841 6,377,397.2 6,356,079.0 1/299.156**  Central E “rope; Chile;
Indonesia.

Everest ___________ 1830 6,377,276.3  6,356,075.4 1/300.80**  India; Burma; Paki-
stan; Afghan.; Thai-
land; ete.

Values are shown to accuracy in excess significant figures, to reduce computational confusion.

1 Maling, 1978, p. 7; Thomas, 1970, p. 84; Army, 1973, p. 4, endmap; Colvocoresses, 1969, p. 33; World Geodetic,
1974.

2 Geodetic Reference System. Ellipsoid derived from adopted model of Earth,

2 World Geodetic System. Ellipsoid derived from adopted model of Earth.

* Taken as exact values. The third number (where two are asterisked) is derived using the follcwing relationships:
b=a(1-f); f=1-bla. Where only one is asterisked (for 1972 and 1980), certain physical constants rot shown are taken
as exact, but f as shown is the adopted value.

** Derived from a and b, which are rounded off as shown after conversions from lengths in feet.

t Other than regions listed elsewhere in column, or some smaller areas.

“The first official geodetic datum in the United States w=s the New
England Datum, adopted in 1879. It was based on surveys in the
eastern and northeastern states and referenced to the Clarl-e Spheroid
of 1866, with triangulation station Principio, in Maryland, as the
origin. The first transcontinental arc of triangulation was completed in
1899, connecting independent surveys along the Pacific Coast. In the
intervening years, other surveys were extended to the Gulf of Mexico.
The New England Datum was thus extended to the south and west
without major readjustment of the surveys in the east. In 191, this ex-
panded network was officially designated the United States Standard
Datum, and triangulation station Meades Ranch, in Kansas, was the
origin. In 1913, after the geodetic organizations of Canada and Mexico
formally agreed to base their triangulation networks on the United
States network, the datum was renamed the North American Datum.

“By the mid-1920’s, the problems of adjusting new surveys to fit into
the existing network were acute. Therefore, during the 5-year period
1927-1932 all available primary data were adjusted into a system now
known as the North American 1927 Datum.*** The coordinates of
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station Meades Ranch were not changed but the revised coordirates of
the network comprised the North American 1927 Datum ” (National
Academy of Sciences, 1971, p. 7).

The ellipsoid adopted for use in North America is the result of the
1866 evaluation by the British geodesist Alexander Ross Clarke using
measurements made by others of meridian arcs in western E-irope,
Russia, India, South Africa, and Peru (Clarke and Helmert, 1911, p.
807-808). This resulted in an adopted equatorial radius of 6,378,206.4
m and a polar radius of 6,356,583.8 m, or an approximate flattening of
1/294.9787. Since Clarke is also known for an 1880 revision used in
Africa, the Clarke 1866 ellipsoid is identified with the year.

Satellite tracking data have provided geodesists witk new
measurements to define the best Earth-fitting ellipsoid and for r-lating
existing coordinate systems to the Earth’s center of mass. The I »fense
Mapping Agency’s efforts produced the World Geodetic System 1966
(WGS 66), followed by a more recent evaluation (1972) producing the
WGS 72. The polar axis of the Clarke 1866 ellipsoid, as used with the
North American 1927 Datum, is calculated to be 159 m from that of
WGS 72. The equatorial planes are 176 m apart (World Geodetic
System Committee, 1974, p. 30).

Work is underway at the National Geodetic Survey to replace the
North American 1927 Datum. The new datum, expected to be called
“North American Datum 1983,” will be Earth-centered based on
satellite tracking data. The IUGG early in 1980 adopted a new model of
the Earth called the Geodetic Reference System (GRS) 1980, from
which is derived an ellipsoid very similar to that for the WGS 72; it is
expected that this ellipsoid will be adopted for the new North American
datum.

For the mapping of other planets and natural satellites, only I'fars is
treated as an ellipsoid. The Moon, Mercury, Venus, and the satellites of
Jupiter and Saturn are taken as spheres (table 2).

In most map projection formulas, some form of the eccentricity e is
used, rather than the flattening f. The relationship is as follows:

e2=2f-f2, or f=1-(1-¢2)"?
For the Clarke 1866, 2 is 0.006768658.

AUXILIARY LATITUDES

By definition, the geographic or geodetic latitude, which is ncvmally
the latitude referred to for a point on the Earth, is the angle which a
line perpendicular to the surface of the ellipsoid at the given point
makes with the plane of the Equator. It is slightly greater in magnitude
than the geocentric latitude, except at the Equator and poles, where it
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TABLE 2.-Official figures for extraterrestrial mapping

[(From Batson, 1973, p. 4433; 1976, p. 59; 1979; Davies and Batson, 1975, p. 2420; Pettengill, 198C; Batson, Private
commun., 1981.) Radius of Moon chosen so that all elevations are positive. Radius of Mars is based on a level of 6.1
millibar atmospheric pressure; Mars has both positive and negative elevations]

Equatorial
Body radius a*
(kilometers)
Earth’'s Moon 1,738.0
Mercury 2,439.0
Venus 6,051.4
Mars 3,393.4*
Galilean satellites of Jupiter
Io 1,816
Europa 1,563
Ganymede 2,638
Callisto 2,410
Satellites of Saturn
Mimas 195
Enceladus 250
Tethys 525
Dione 560
Rhea 765
Hyperion 155
Iapetus 720

* Above bodies are taken as spheres except for Mars, an ellipsoid with eccentricity e of
0.101929. Flattening f=1-(1-e?)"2,

is equal. The geocentric latitude is the angle made by a I'ne to the
center of the ellipsoid with the equatorial plane.

Formulas for the spherical form of a given map projection may be
adapted for use with the ellipsoid by substitution of one of various “aux-
iliary latitudes” in place of the geodetic latitude. Oscar S. Adams (1921)
derived or presented five substitute latitudes. In using them, the ellip-
soidal Earth is, in effect, first transformed to a sphere under certain
restraints such as conformality or equal area, and the sphere is then
projected onto a plane. If the proper auxiliary latitudes are chosen, the
sphere may have either true areas, true distances in certain directions,
or conformality, relative to the ellipsoid. Spherical map projection for-
mulas may then le used for the ellipsoid solely with the substitution of
the approp: "ite auxiliary latitudes.

It shoula he made clear that this substitution will generall~ not give
the projection in its preferred form. For example, using the conformal
latitude (defined below) in the spherical Transverse Mercator equations
will give a true ellipsoidal, conformal Transverse Mercato, but the
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central meridian cannot be true to scale. More involved formulas are
necessary, since uniform scale on the central meridian is a stardard re-
quirement for this projection as commonly used in the ellipsoic'al form.
For the regular Mercator, on the other hand, simple substitution of the
conformal latitude is sufficient to obtain both conformality and an
Equator of correct scale for the ellipsoid.

Adams gave formulas for all these auxiliary latitudes in closed or ex-
act form, as well as in series, except for the authalic (equal-area)
latitude, which could also have been given in closed form. Both forms
are given below. In finding the auxiliary latitude from the geodetic
latitude, the closed form may be more useful for computer programs.
For the inverse cases, to find geodetic from auxiliary latitudes, most
closed forms require iteration, so that the series form is probshly pre-
ferable. The series form shows more readily the amount of deviation
from the geodetic latitude ¢. The formulas given later for the individual
ellipsoidal projections incorporate these formulas as needed, so there is
no need to refer back to these for computation, but the various aux-
iliary latitudes are grouped together here for comparison.

The conformal latitude x, giving a sphere which is truly conformal in
accordance with the ellipsoid (Adams, 1921, p. 18, 84),

x =2 arctan {tan (/4 + ¢/2) [(1 - sin ¢)/(1+e¢ sin ¢)]'*} - 7/2 (3-1)
=¢—(€2/2+5¢4/24 + 38132 + . . .)sin 2¢ +(5€4/48 + 7es/80+ . . .)
sin 4¢—(13¢5/480+ .. . )sin6op+ . . . (3-2)
with x and ¢ in radians. In seconds of arc for the Clarke 1866 ellipsoid,
x=6—700.04"sin 2¢ +0.99sin 4¢ (3-3)

The inverse formula, for ¢ in terms of x, may be a rapid iteration of
an exact rearrangement of (3-1), successively placing the value of ¢
calculated on the left side into the right side of (3-4) for the next
calculation, using x as the first trial . When ¢ changes by les~ than a
desired convergence value, iteration is stopped.

¢ =2 arctan {tan (x/4 + x/2)[(1 + ¢ sin ¢)/(1 — e sin ¢)]*'?} — /2 (3-4)

The inverse formula may also be written as a series, without iteration
(Adams, 1921, p. 85):

d=x+(€2/2+5e4/24 +€5/12+ . . . )sin 2x +(Te4/48 + 29¢5/240+ . . .)

sin 4y +(7¢5/120+ . ..)sin6x+ ... (3-5)
or, for the Clarke 1866 ellipsoid, in seconds,
¢ =x+1700.04" sin 2x +1.39” sin 4x (3-6)

Adams referred to x as the isometric latitude, but this name is now ap-
plied to y, a separate very nonlinear function of ¢, which is directly pro-
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portional to the spacing of parallels of latitude from the Equator on the
ellipsoidal Mercator projection. It is also useful for other conformal
projections:

v=In{tan(x/4+ ¢/2) [(1 - e sin ¢)/(1 + ¢ sin ¢)]*/*} 3-7)
Because of the rapid variation from ¢, y is not given heve in series
form. By comparing equations (3-1) and (3-7), it may be seen, however,
that

¥=Intan (z/4+x/2) (3-8)

so that x may be determined from the series in (3-2) and converted to y
with (8-8), although there is no particular advantage over using (3-7).

For the inverse of (3-7), to find ¢ in terms of y, the choice is between
iteration of a closed equation (3-10) and use of series (3-5) with a sim-
ple inverse of (3-8):

x =2 arctan e¥— x/2 : (3-9)

where e is the base of natural logarithms, 2.71828.
For the iteration, apply the principle of successive subst*ution used
in (3-4) to the following, with (2 arctan e¥ - x/2) as the first trial ¢:

¢ =2 arctan {e¥[(1 + ¢ sin ¢)/(1 — e sin ¢)]*/?} - 7/2 (3-10)

Note that e and ¢ are not the same.

The authalic latitude 8, on a sphere having the same surface area as
the ellipsoid, provides a sphere which is truly equal-area (authalic),
relative to the ellipsoid:

B=arcsin (¢/q,) (8-11)
where
g=(1-¢* {sin ¢/(1 - e? sin? ¢) — (1/(2¢)) In [(1 - e sin ¢)/(1 + e sin ¢)]} (3-12)

and g, is g evaluated for a ¢ of 90°. The radius R, of the sphere having
the same surface area as the ellipsoid is calculated as follows:

R, = a(qp/Z)uz (3—13)

where a is the semimajor axis of the ellipsoid. For the Clarke 1866, R, is
6,370,997.2 m.
The equivalent series for 8 (Adams, 1921, p. 85)

B=—(e2/3+31¢4/180+59¢5/560 + . . . )sin 2+ (17¢4/360 + 61611260+ . . .)
sin 4¢ - (383¢5/45360+ . . .)sin 6o+ . . . (3-14)

where 8 and ¢ are in radians. For the Clarke 1866 ellipsoid, the formula
in seconds of are is:

B=¢—467.01" sin 2¢ +0.45” sin 4¢ (3-15)
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For ¢ in terms of 8, an iterative inverse of (3-12) may be used with
the inverse of (3-11):

_ . (1-esin?¢)l [ ¢ sin ¢ l-esing ] 5
o=¢+ 2 cos ¢ 1-e¢ 1-¢ sm2¢ Ze l+esin ¢ (8-16)
where g=g¢, sin 3 3-17)

g, is found from (3-12) for a ¢ of 90°, and the first trial ¢ is arcs*n (¢/2),
used on the right side of (8-16) for the calculation of ¢ on the left side,
which is then used on the right side until the change is less than a
preset limit. (Equation (8-16) is derived from equation (3-12) using a
standard Newton-Raphson iteration.)

To find ¢ from 8 with a series:

¢ =B+(¢%/3+31e4/180+517¢4/5040+ . . . ) sin 28
+(23¢4/360 +251¢8/3780 + . . . ) sin 4B (3-18)
+(761¢5/45360+ . ..) sin 68+ . ..

or, for the Clarke 1866 ellipsoid, in seconds,
¢=8+467.01"sin 28+ 0.61” sin 48 (3-19)

The rectifying latitude u, giving a sphere with correct distances along
the meridians, requires a series in any case (or a numerical inteoration
which is not shown).

p=7M/2M, (3-20)

where M =af(1 - €2/4— 3¢4/64— 5¢5/256 — . . . )¢~ (3¢2/8 + 3¢4/32
+4565/1024+ . . . ) sin 2¢ +(15¢4/256 +45¢5/1024+ . . . ) sin
4¢—(35¢/3072+ ... )sin 6o+ . .. | (3-21)

and M, is M evaluated for a ¢ of 90°, for which all sine terms d-op out.
M is the distance along the meridian from the Equator to lat'tude ¢.
For the Clarke 1866 ellipsoid, the constants simplify to

M=111132.0894¢"° - 16216.94 sin 2¢ + 17.21 sin 4¢ - 0.02 sin 6¢ (3-22)

The first coefficient in (3-21) has been multiplied by #/180 to use ¢ in
degrees. To use y properly, the radius R,, of the sphere must b~ 2M,/x
for correct scale. For the Clarke 1866 ellipsoid, R,, is 6,367,39¢.7 m. A
series combining (3-20) and (3-21) is given by Adams (1921, . 125):

p=0—(3e;/2-9¢,3/16 + . . . ) sin 2¢ +(15¢,2/16 — 15¢,4/32+ . . .)
sin 4¢ —(35¢,3/48— .. .)sin6gp+ . . . (3-23)

where er=[1-(1-e2)"2)/[1+(1-e2)"7] (3-24)

and p and ¢ are given in radians. For the Clarke 1866 ellip~oid, in
seconds,
p=¢-525.33" sin 2¢ +0.56” sin 4¢ (3-25)
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The inverse of equations (3-23) or (3-25), for ¢ in terms of 4, given M,
will be found useful for several map projections to avoid iteration, since
a series is required in any case (Adams, 1921, p. 128).

d=pu+(36,/2-27¢,3132+ . ..) sin 2u+(21¢,2/16 - 55€,4/32+ . . .)
sin 4 +(151€,3/96— . .. )sin6u+ ... (3-26)

where ¢, is found from equation (8-24) and x from (3-20), but M is
given, not calculated from (3-21). For the Clarke 1866 ellipsoid, in
seconds of arc,

¢=p+525.33” sin 2 +0.78” sin 4 (3-27)

The remaining auxiliary latitudes listed by Adams (1921, p. 84) are
more useful for derivation than in substitutions for projections:

The geocentric latitude ¢, referred to in the first paragravoh in this
section is simply as follows:

¢,= arctan [(1-¢?) tan ¢] (3-28)
As a series,
@, = — €5 Sin 2¢ +(€,%/2) sin 4¢ — (€,%/3) sin 6+ . . . (3-29)

where ¢, and ¢ are in radians and e, =e?/(2-e?). For the Clarke 1866
ellipsoid, in seconds of are,

$,=¢—700.44" sin 2¢ + 1.19” sin 4¢ (3-30)

The reduced or parametric latitude n of a point on the ellip=nid is the
latitude on a sphere of radius a for which the parallel has the same
radius as the parallel of geodetic latitude ¢ on the ellipsoid tk~ough the
given point;

g=arctan [(1 - €?)"/2 tan ¢) (3-31)
As a series,
n=0— e, Sin 2¢ +(€,%/2) sin 4¢ — (¢,%/3) sin 66 + . . . (3-32)

where e, is found from equation (3-24), and  and ¢ are in radians. For
the Clarke 1866 ellipsoid, using seconds-of arc,

n=¢-350.22" sin 2¢ + 0.30” sin 4¢ (3-33)

The inverses of equations (3-28) and (3-31) for ¢ in terms of greocentric
or reduced latitudes are relatively easily derived and are noniterative.
The inverses of series equations (3-29), (3-30), (8-32), and (3-33) are
therefore omitted. Table 3 lists the correction for these auxiliary
latitudes for each 5° of geodetic latitude.
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TABLE 3. —Corrections for auxiliary latitudes on the Clarke 1866 ellipsoid

[Corrections are given, rather than actual values. For example, if the geodetic latitude is 50° N., the conformal latitude
is 50° - 11'29.7"= 49°48'30.3" N. For southern latitudes, the corrections are the same, disregarding the sign of the
latitude. That is, the conformal latitude for a ¢ of lat.50° S. is 49°48'30.3" S. From Adams, 1921}

Geodetic Conformal Authalic Rectifying Geocentric Pirametric
(®) (x-9¢) B-9) (u-¢) ($.-0) (n-¢)

90° ________ 0'00.0" 0'00.0” 0'00.0" 0'00.0" 0'00.0”
8% - 2019 -121.2 -131.4 - 2020 -100.9
80 - 400.1 -240.0 ~-300.0 - 400.3 -200.0
% - 5509 -353.9 -423.1 - 5513 -255.4
0 - 731.0 -500.6 -538.2 - 7314 -345.4
65 - 857.2 -5568.2 -643.0 - 857.7 -428.6
60 ________ -1007.1 -644.8 -735.4 -1007.6 -503.6
56 -1058.5 -719.1 -814.0 -1058.9 -529.3
50 . ___ -1129.7 -740.1 -837.56 -1130.2 -545.0
45 -1140.0 -747.0 -845.3 -1140.5 -550.2
40 -1129.1 -739.8 -837.2 -1129.4 -544.8
3 -1057.2 -718.6 -813.3 -1057.4 -528.9
30 -1005.4 -644.1 -734.5 -1005.6 -503.0
25 - 855.3 -557.3 -641.9 — 855.4 -428.0
20 ________ - 729.0 -459.7 -537.1 - 729.1 -344.8
15 - 549.2 -353.1 -4222 - 549.2 -254.9
10 . __ - 358.8 -239.4 -259.3 - 358.8 -159.6
> - 201.2 -120.9 -131.0 - 201.2 -100.7

0 000.0 000.0 000.0 000.0 000.0




4. SCALE VARIATION AND ANGULAR DISTORTION

Since no map projection maintains correct scale throughout, it is im-
portant to determine the extent to which it varies on a map. On a world
map, qualitative distortion is evident to an eye familiar with maps,
noting the extent to which landmasses are improperly sized or out of
shape, and the extent to which meridians and parallels do not intersect
at right angles, or are not spaced uniformly along a given meridian or
given parallel. On maps of countries or even of continents. distortion
may not be evident to the eye, but becomes apparent upon careful
measurement and analysis.

TISSOT’S INDICATRIX

In 1859 and 1881, Tissot published a classic analysis of the distortion
which occurs on a map projection (Tissot, 1881; Adams. 1919, p.
153-163; Maling, 1973, p. 64-67). The intersection of any t~o lines on
the Earth is represented on the flat map with an intersection at the
same or a different angle. At almost every point on the Eartl. thereisa
right angle intersection of two lines in some direction (not necessarily a
meridian and a parallel) which are also shown at right angles on the
map. All the other intersections at that point on the Earth will not in-
tersect at the same angle on the map, unless the map is conformal. The
greatest deviation from the correct angle is called w, the maximum
angular deformation. For a conformal map, w is zero.

Tissot showed this relationship graphically with a special ellipse of
distortion called an indicatrix. An infinitely small circle on the Earth
projects as an infinitely small, but perfect, ellipse on any map projec-
tion. If the projection is conformal, the ellipse is a circle, an ellipse of
zero eccentricity. Otherwise, the ellipse has a major axis and minor axis
which are directly related to the scale distortion and to the maximum
angular deformation.

In figure 3, the left-hand drawing shows a circle representing the
infinitely small circular element, crossed by a meridian X and parallel ¢
on the Earth. The right-hand drawing shows this same element as it
may appear on a typical map projection. For general purposes, the map
is assumed to be neither conformal nor equal-area. The meridian and
parallel may no longer intersect at right angles, but there is a pair of
axes which intersect at right angles on both Earth (AB and CD) and
map (A'B' and C'D'). There is also a pair of axes which intersect at right
angles on the Earth (EF" and GH), but at an angle on the map (E"F” and
G'H’) farthest from a right angle. The latter case has the maximum
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(A)

FicURE 3.-Tissot's Indicatrix. An infinitely small circle on the Earth (A) appes*s as an
ellipse on a typical map (B). On a conformal map, (B) is a circle of the sam= or of a
different size.

angular deformation w. The orientation of these axes is such that
u+u'=90°, or, for small distortions, the lines fall about halfway be-
tween A'B’ and C'D'. The orientation is of much less interest than the
size of the deformation. If a and b, the major and minor semiaxes of the
indicatrix, are known, then

sin (w/2)=|a—b|/(a+b) 4-1)

If lines \ and ¢ coincide with a and b, in either order, as in cylindrical
and conic projections, the calculation is relatively simple, using equa-
tions (4-2) through (4-6) given below.

Scale distortion is most often calculated as the ratio of the scale along
the meridian or along the parallel at a given point to the scele at a
standard point or along a standard line, which is made true to scale.
These ratios are called “scale factors.” That along the meridian is called
h and along the parallel, k. The term “scale error” is frequently applied
to (h-1) and (k-1). If the meridians and parallels intersect ¢t right
angles, coinciding with a and b in figure 3, the scale factor in any other
direction at such a point will fall between 2 and k. Angle w may be
calculated from equation (4-1), substituting # and % in place of @ and b.
In general, however, the computation of w is much more comp'icated,
but is important for knowing the extent of the angular disfortion
throughout the map.

The formulas are given here to calculate &, k, and w; but the fcrmulas
for h and k are applied specifically to all projections for which they are
deemed useful as the projection formulas are given later. Formulas for
w for specific projections have generally been omitted.

Another term occasionally used in practical map projection znalysis
is “convergence” or “grid declination.” This is the angle betwe=n true
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north and grid north (or direction of the Y axis). For regular cylindrical
projections this is zero, for regular conic and polar azimuth-l projec-
tions it is a simple function of longitude, and for other projections it
may be determined from the projection formulas by calculus as the
slope of the meridian (dy/dx) at a given latitude. It is used primarily by
surveyors for fieldwork with topographic maps. It has been decided not
to discuss convergence further in this bulletin.

DISTORTION FOR PROJECTIONS OF THE SPHERE

The formulas for distortion are simplest when applied to regular
cylindrical, conic (or conical), and polar azimuthal projections of the
sphere. On each of these types of projections, scale is solely ¢. function
of the latitude.

Given the formulas for rectangular coordinates x and y of any cylin-
drical projection as functions solely of longitude X and latitude ¢,
respectively,

h=dyl(Rdo) (4-2)
k=dx/(R cos ¢d\) (4-3)

Given the formulas for polar coordinates p and 8 of any coric projec-
tion as functions solely of ¢ and \, respectively, where » is the cone con-
stant or ratio of 8 to (A—\o),

h=—dp/(Rd¢) (4-4)
k=np/(R cos ¢) (4-5)

Given the formulas for polar coordinates p and @ of any polar
azimuthal projection as funections solely of ¢ and A, respectiv:ly, equa-
tions (4-4) and (4-5) apply, with n equal to 1.0:

h=-dpl(Rdg) (4-4)
k=p/(R cos ) (4-6)

Equations (4-4) and (4-6) may be adapted to any azimuthal projec-
tion centered on a point other than the pole. In this case /' is the scale
factor in the direction of a straight line radiating from the center, and
k' is the scale factor in a direction perpendicular to the radiatir< line, all
at an angular distance ¢ from the center:

K = dpl(Rde) (4-7)
¥ = p/(R sin ¢) (4-8)

An analogous relationship applies to scale factors on oblique cylindrical
and conic projections.
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Line of True Scale
Central Meridian

| Scale_error

Lambert Conformal Conic Projection

-Figure 4.—Distortion patterns on common conformal map projections. The T -ansverse
Mercator and the Stereographic are shown with reduction in scale along the central
meridian or at the center of projection, respectively. If there is no reducticn, there is
a single line of true scale along the central meridian on the Transverse Mercator
and only a point of true scale at the center of the Stereographic. The ill“strations
are conceptual rather than precise, since each base map projection is ar identical
conic.
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~

Ehlique STereographic P}ojectionl

FIGURE 4.—Continued.

For any of the pairs of equations from (4-2) through (4-8), the max-
imum angular deformation w at any given point is calculated simply, as
stated above,

sin Yew = |h—k|/(h+k) (4-9)

where |h-k| signifies the absolute value of (A - k), or the positive value
without regard to sign. For equations (4-7) and (4-8), #' and &’ are used
in (4-9) instead of h and k, respectively. In figure 4, distortion patterns
are shown for three conformal projections of the United States, choos-
ing arbitrary lines of true scale.

For the general case, including all map projections of the sohere, rec-
tangular coordinates x and y are often both functions of both ¢ and A,
so they must be partially differentiated with respect to both ¢ and X,
holding X and ¢, respectively, constant. Then,

h=(1/R)[(3x/d¢)* +(3y/d¢)*]"* (4-10)
k=[1/(R cos ¢)] [(3x/ON)* + (3y/aN)*]' /2 (4-11)
a'=(h?+k*+ 2Rk sin §')*/2 (4-12)
b' =(h*+ k*~ 2hk sin 6')'/2 (4-13)

where cos 0'=[(3y/0¢) (dy/ON) + (02/d¢) (3x/dN)/(hk cos ¢) (4-14)
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¢' is the angle at which a given meridian and parallel intersect, and o'
and &' are convenient terms. The maximum and minimum scale factors
a and b, at a given point, may be calculated thus:

a=(a+b)2 (4-12a)
b=(a'-b)/2 (4-13a)
Equation (4-1) simplifies as follows for the general case:
sin (w/2)="b'/a’ (4-1a)
The areal scale factor s:
s=hksin ¢’ (4-15)

For special cases:

(1) s=hk if meridians and parallels intersect at right angles (¢=90°);
(2) h=k and w=0 if the map is conformal;

(3) h=1/k on an equal-area map if meridians and parallels intersect at
right angles.?

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID

The derivation of the above formuias for the sphere utilizes the basic
formulas for the length of a given spacing (usually 1° or 1 radian) along
a given meridian or a given parallel. The following formulas give the
length of a radian of latitude (L,) and of longitude (L,) for the sphere:

L,=R (4-16)
L,=Rcos¢ (4-17)

where R is the radius of the sphere. For the length of 1° of latitude or
longitude, these values are multiplied by #/180.

The radius of curvature on a sphere is the same in all directions. On
the ellipsoid, the radius of curvature varies at each point and in each
direction along a given meridian, except at the poles. The radius of cur-
vature R’ in the plane of the meridian is calculated as follows:

R'=o(1-e?)/(1 - e sin’¢)* (4-18)

The length of a radian of latitude is defined as the circumference of a
circle of this radius, divided by 2=, or the radius itself. Thus,

L,=a(1-¢)/(1-¢*sin?¢p)*? (4-19)

For the radius of curvature N of the ellipsoid in a plane perpendicular
to the meridian and also perpendicular to a plane tangent to the sur-
face,

* Maling (1973, p. 49-81) has helpful derivations of these equations in less condensed forms. There are typographical
errors in several of the equations in Maling, but these may be detected by following the derivation closely.
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N=al(1-e*sin*p)'/? (4-20)

Radius N is also the length of the perpendicular to the surface from the
surface to the polar axis. The length of a radian of longitude is found, as,
in equation (4-17), by multiplying N by cos ¢, or

Ly, =a cos ¢/(1 - e? sin?p)V/? (4-21)

The lengths of 1° of latitude and 1° of longitude for the Clarke 1866
and the International ellipsoids are given in table 4. They are found
from equations (4-19) and (4-21), multiplied by #/180 to convert to
lengths for 1°.

When these formulas are applied to equations (4-2) through (4-6),
the values of & and k for the ellipsoidal forms of the projections are
found to be as follows:

For cylindrical projections:

h=dyl(R'do)

=(1-e*sin?p)*’2 dy/[a(1 — e*)de] (4-22)
k= dx/(N cos ¢d\)
=(1-¢?sin? ¢)'/2 da/(a cos ¢ dN) (4-23)

TABLE 4.~ Lengths, in meters, of 1° of latitude and longitude on two ellipsoids of reference

Latitude Clarke 1866 ellipsoid International (Hayford) ellipsoid
(@) 1° lat. 1° long. 1° lat. 1° long.
90° 111,699.4 0.0 111,700.0 0.0
8 111,690.7 9,735.0 111,691.4 9,735.0
80 111,665.0 19,394.4 111,665.8 19,394.5
[ R 111,622.9 28,903.3 111,624.0 28,903.5
0 111,565.9 38,188.2 111,567.4 38,188.5
66 111,495.7 47,1775 111,497.7 47,177.9
60 _______________ 111,414.5 55,802.2 111,417.1 55,802.8
5 111,324.8 63,996.4 111,327.9 63,997.3
5 111,229.3 71,698.1 111,233.1 71,699.2
5 111,130.9 78,849.2 111,135.4 78,850.5
40 111,032.7 85,396.1 111,037.8 85,397.7
3 110,937.6 91,290.3 110,943.3 91,292.2
30 110,848.5 96,488.2 110,854.8 96,490.4
2 110,768.0 100,951.9 110,774.9 100,954.3
20 110,698.7 104,648.7 110,706.0 104,651.4
s 110,642.5 107,551.9 110,650.2 107,5564.8
10 110,601.1 109,640.7 110,609.1 109,643.7
5 110,575.7 110,899.9 110,583.9 110,903.1

o e 110,567.2 111,320.7 110,575.5 111,323.9
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For conic projections:

h=—dp/(R'd¢)
= —(1-¢€*sin’¢)*? dp/[o(1 - *)dp] (4-24)
k=np/(N cos ¢)
=np(1 - €*sin’¢)"’*/(a cos ¢) (4-25)
For polar azimuthal projections:
h=—(1-¢*sin’¢)*? dp/[af1 - e*)de] (4-24)
k=p(1-e*sin’¢)""*/(a cos ¢) (4-26)

Equations (4-7) and (4-8) do not have ellipsoidal equivalents. Equa-
tion (4-9) remains the same for equations (4-22) through (4-2€):

sin Yew = |h—k|/(h+k) (4-9)

For the general projection of the ellipsoid, equations (4-10) and
(4-11) are similarly modified:

h=[(0x/d0)? +(3y/d9)?]" (1 - € sin’p) */[a(1 - €?)] 4-27)
ko= [(9x/0N)* + (By/aN)] /(1 - ¢ sin’p)'/(a cos ¢) (4-28)

Equations (4-12) through (4-15), (4-12a), (4-13a), and (4-1a), listed
for the sphere, apply without change.

Specific calculations are shown during the discussion of individual
projections.

The importance of using the ellipsoid instead of the sphere for design-
ing a projection may be quantitatively evaluated by determining the
ratio or product of some of the elementary relationships. The ratio of
the differential length of a radian of latitude along a meridian on the
sphere to that on the ellipsoid is found by dividing equation (4-16) by
equation (4-19), or

C..=R(1-¢sin? ) */[a(1 - ¢?)] (4-29)

A related ratio for the length of a radian of longitude along a parallel on
the sphere to that on the ellipsoid is found by dividing equatior (4-17)
by equation (4-21), or

C,=R(1-¢€*sin*¢)""*a (4-30)

From these, the local shape factor C, may be found as the ratio of
(4-29) to (4-30):

C,=C,/C,=(1-¢*sin? ¢)/(1-¢?) (4-31)
and the area factor C, is their product:
C.=C,C,=R*1-e¢*sin? ¢)/[a*(1 -¢?)] (4-32)
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If h and k are calculated for the spherical version of a map projection,
the actual scale factors on the spherical version relative to th = ellipsoid
may be determined by multiplying # by C,. and k by C,. For normal
cylindrical and conic projections and polar azimuthal proje~tions, the
conformality or shape factor may be taken as A/k (not the same as w)
multiplied by C,, and the area scale factor 4k may be multiglied by C..

Except for C,, which is independent of R/a, R must be given an ar-
bitrary value such as R, (see equation (3-13)), R (see second sentence
following equation (3-22)), or another reasonable balance between the
major and minor semiaxes a and b of the ellipsoid. Using R, and the
Clarke 1866 ellipsoid, table 5 shows the magnitude of these corrections.
Thus, a conformal projection based on the sphere has the correct shape
at the poles for the ellipsoid, but the shape is about %s of 1 percent
(0.00681) in error near the Equator (that is, Tissot’s Indic~trix is an
ellipse with minor axis about %s of 1 percent shorter than the major axis
at the Equator when the spherical form is compared to the ellipsoid).

A map extending over a large area will have a scale variation of
several percent, which far outweighs the significance of the less-than-1-
percent variation between sphere and ellipsoid. A map of a small area,
such as a large-scale detailed topographic map, or even a narrow strip
map, has a small-enough intrinsic scale variation to make the ellipsoidal
correction a significant factor in accurate mapping; e.g., a 7.5-min
quadrangle normally has an intrinsic scale variation of 0.0002 percent
or less.

TABLE 5. - Ellipsoidal correction factors to apply to spherical projections bazed on Clarke

1866 ellipsoid

Lat. (N&S) c,* C, C. C.*
90 0.99548 0.99548 1.00000 0.99099
75 99617 99571 1.00046 99189
60 .99803 .99633 1.00170 .99437
45 1.00058 99718 1.00341 99775
0 1.00313 .99802 1.00511 1.00114
15 1.00499 .99864 1.00636 1.00363

0 e 1.00568 .99887 1.00681 1.00454
Multiply by** h k hik hk

* C,.=1.0 for 48.24° lat. and C,=1.0 for 85.32° lat. Values of C,, C,, and C, are based on a radius of 6,370,997 m for
the sphere used in the spherical map projection.
** h=scale factor along meridian.

k=scale factor along parallel of latitude.

For normal cylindrical and conic projections and polar azimuthal projections:

hik=shape factor.

hk=area scale factor.

For example, if, on a spherical Albers Equal-Area Conic map projection based on sphere of radius 6,370,997 m,
h=1.00182 and k=0.99868 at lat. 46° N., this map has an area scale factor of 1.00132 x 0.99868 x (.99775 = 0.99775,
relative to the correct area scale for the Clarke 1966 ellipsoid. If the ellipsoidal Albers were used, th's factor would be
1.0.






5. TRANSFORMATION OF MAP GRATICULES

As discussed later, several map projections have been sdapted to
showing some part of the Earth for which the lines of true scele have an
orientation or location different from that intended by the inventor of
the basic projection. This is equivalent to moving or transfcrming the
graticule of meridians and parallels on the Earth so that the “north
pole” of the graticule assumes a position different from that of the true
North Pole of the Earth. The projection for the sphere may be plotted
using the original formulas or graphical construction, but applying
them to the new graticule orientation. The actual merilians and
parallels may then be plotted by noting their relationship on the sphere
to the new graticule, and landforms drawn with respect to the actual
geographical coordinates as usual.

In effect, this procedure was used in the past in an often entirely
graphical manner. It required considerable care to avoid cumulative er-
rors resulting from the double plotting of graticules. With computers
and programmable hand calculators, it now can be a relatively routine
matter to calculate directly the rectangular coordinates of the actual
graticule in the transformed positions or, with an automatic plotter, to
obtain the transformed map directly from the computer.

The transformation most notably has been applied to the azimuthal
and cylindrical projections, but in a few cases it has been used with
conic, pseudocylindrical, and other projections. While it is fairly
straightforward to apply a suitable transformation to the sphere, trans-
formation is much more difficult on the ellipsoid because of the con-
stantly changing curvature. Transformation has been applied to the
ellipsoid, however, in important cases under certain limiting condi-
tions.

If either true pole is at the center of an azimuthal map projection, the
projection is called the polar aspect. If a point on the Equator is made
the center, the projection is called the equatorial or, less often, merid-
1an or meridional aspect. If some other point is central, the projection
is the obligue or, occasionally, horizon aspect.

For cylindrical and most other projections, such transformations are
called transverse or oblique, depending on the angle of rotation. In
transverse projections, the true poles of the Earth lie on the equator of
the basic projection, and the poles of the projection lie on the Equator
of the Earth. Therefore,one meridian of the true Earth lies along the
equator of the basic projection. The Transverse Mercator projection is
the best-known example and is related to the regular Mercator in this
manner. For oblique cylindrical projections, the true poles of the Earth
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lie somewhere between the poles and the equator of the basic projec-
tion. Stated another way, the equator of the basic projection is drawn
along some great circle route other than the Equator or a meridian of
the Earth for the oblique cylindrical aspect. The Oblique Mercator is
the most common example. Further subdivisions of these aspects have
been made; for example, the transverse aspect may be first transverse,
second transverse, or transverse oblique, depending on the positions of
the true poles along the equator of the basic projection (Wray, 1974).
This has no significance in a transverse cylindrical projection, since the
appearance of the map does not change, but for pseudocylindrical pro-
jections such as the Sinusoidal, it makes a difference, if the additional
nomenclature is desired.

To determine formulas for the transformation of the sphere, two
basic laws of spherical trigonometry are used. Referring to the spheri-
cal triangle in figure 5, with three points having angles A, B, and C on
the sphere, and three great circle arcs a, b, and ¢ connecting them, the
Law of Sines declares that

sin A/sin a=sin B/sin b=sin C/sin ¢ (5-1)
while by the Law of Cosines,
cosc=cos beosa+sinbsinacosC . (5-2)

If C is placed at the North Pole, it becomes the angle between two
meridians extending to A and B. If A is taken as the starting pint on
the sphere, and B the second point, ¢ is the great circle distance be-
tween them, and angle A is the azimuth Az east of north which point B
bears to point A. When latitude ¢, and longitude \, are used fcr point
A, and ¢ and \ are used for point B, equation (5-2) becomes the follow-
ing for great circle distance:

€OS ¢=sin ¢, sin ¢ +cos ¢, cos ¢ cos (A —\o) (5-3)

While (5-3) is the standard and simplest form of this equation, it is
not accurate for values of ¢ very close to zero. For such cases, the equa-
tion may be rearranged as follows:

sin ¢={cos? ¢ sin* (A — \o) +[COs ¢, sin ¢ —sin ¢, cos ¢ cos (A —Ag)]}/ (5-3a)

This equation is unsatisfactory when ¢ is close to 90° or is greater
than 90°. For general purposes, the still longer tangent form is sug-
gested, for which simplification is not very helpful:

tan ¢ =sin c/cos ¢ (5-3b)

where sin ¢ and cos ¢ are found from (5-3a) and (5-3), respectively, and
quadrant adjustment is made as described under the list of symbols.
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Equation (5-1) becomes the following for the azimuth:
sin Az=sin (A —\o) cos ¢/sin ¢ (5-4)
or, with some rearrangement,
cos Az=[cos ¢, sin ¢ —sin ¢, cos ¢ cos (A\—Ao)}/sin ¢ (5-5)
or, eliminating c,
tan Az=cos ¢ sin (A —\o)/[cos ¢, sin ¢ —sin ¢, cos ¢ cos (A —ho)] (5-6)

Either of the three equations (5-4) through (5-6) may be used for the
azimuth, depending on the form of equation preferred. Equation (5-6)
is usually preferred, since it avoids the inaccuracies of finding an arcsin
near 90° or an arccos near 0°. Quadrant adjustment as described under
the list of symbols should be employed.

Applying these relationships to transformations, without showing
some intermediate derivations, formulas (5-7) through (5-10) are ob-
tained. To place the North Pole of the sphere at a latitude « on a merid-
ian @ east of the central meridian (\' = 0) of the basic projec*ion (see fig.
6), the transformed latitude ¢' and transformed longitude X' on the
basic projection which correspond to latitude ¢ and longitide \ of the
spherical Earth may be calculated as follows, letting the central merid-
ian )\, correspond with N =g3:

sin ¢'=sin « sin ¢ — cos a €os ¢ cos (A=) 6-7)
sin (V' — 8) = cos ¢ sin (A= \o)/cos ¢’ (5-8)
or cos (\' - B)=[sin a cos ¢ cos (A —\,) + cos « sin ¢]/cos ¢' (5-9)

or
tan (\'-B)=cos ¢ sin (\—\o)/[sin a cos ¢ cos (A=)
+€0S o Sin ¢] (6-10)

Equation (5-10) is generally preferable to (5-8) or (5-9) for the reasons
stated after equation (5-6).

These are general formulas for the oblique transformation. (For
azimuthal projections, 8 may always be taken as zero. Othe~ values of 8
merely have the effect of rotating the X and Y axes witho1t changing
the projection.)

The inverse forms of these equations are similar in app=arance. To
find the geographic coordinates in terms of the transformed coor-
dinates,

sin ¢ =sin « sin ¢’ + cos « cos ¢’ cos (' - 8) (5-11)

sin (\—\o)=cos ¢' sin ('~ 8)/cos ¢ (5-12)
or cos (A\—\o)=[sin & cos ¢’ cos (N~ B)~cos a sin ¢')/cos¢  (5-13)

tan (A —\o)=cos ¢' sin (\'—B)/[sin « cos ¢' cos (\'—f)
— oS ¢ Sin ¢'] (5-14)
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FIGURE 5. - Spherical triangle.

with equation (5-14) usually preferable to (5-12) and (5-13) for the
same reasons as those given for (5-6).

If «=0, the formulas simplify considerably for the transverse or
equatorial aspects. It is then more convenient to have central meridian
Ao coincide with the equator of the basic projection rather than with its
meridian B. This may be accomplished by replacing (A\—Xo) with
(A —No—90°) and simplifying.

If 3=0, so that the true North Pole is placed at (W =0, ¢'=0):

Sin ¢'= —cos ¢ sin (A—\,) (5-15)

cos N =sin ¢/[1 - cos? ¢ sin?(A— \o)]*/ (5-16)
or tan N = —cos (A—\o)/tan ¢ (6-17)
If 3=90°, placing the true North Pole at (\'=90°, ¢'=0):

sin ¢'= —cos ¢ sin(A—X\,) (5-15)

cos N'=cos ¢ cos (\—\o)/[1 — cos? ¢ sinz (A —\o)]*/ (5-18)
or tan N'=tan ¢/cos (\—\o) (5-19)

The inverse equations (5-11) through (5-14) may be similarly al*ered.
As stated earlier, these formulas may be directly incorporated into
the formulas for the rectangular coordinates x and y of the basi~ map
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¢' = -90°

FIGURE 6. —Rotation of a graticule for transformation of projection. Dashed lines show
actual longitudes and latitudes (A and ¢). Solid lines show the transformed longitudes
and latitudes (V' and ¢) from which rectangular coordinates (x and y) ¢re determined
according to map projection used.

projection for a direct computer or calculator output. In some other
cases, especially in the past, it may be easier to calculate the transverse
or oblique projection coordinates by first calculating ¢’ and N for each
point to be plotted (such general tables have been prepared), and then
calculating the rectangular coordinates by inserting ¢’ and )’ one by one
into the basic projection formulas. In still other cases, a graphical
method has been used.

While these formulas, or their equivalents, will be incorporated into
the formulas given later for individual oblique and transverse projec-
tions, the concept should help interrelate the various aspe~ts or types
of centers of a given projection. The extension of these con-epts to the
ellipsoid is much more involved technically and in some cases requires
approximation. General discussion of this is omitted here.






6. CLASSIFICATION OF MAP PROJECTIONS

Because of the hundreds of map projections already published and
the seemingly infinite number which are theoretically pcssible, con-
siderable attention has been given to classification of projections so
that the user is not overwhelmed by the numbers and the variety. One
obvious type of classification has already been implied in this work:
division of map projections into those which are (1) equal-area, (2) con-
formal, (3) equidistant, (4) azimuthal, and (5) miscellaneous. This is an
unsatisfactory approach because of overlapping and because so many
then fall into the “miscellaneous” category.

The most popular classification, which is partially uved in this
bulletin, is division by type of construction: (1) cylindrical, (2) conic, (3)
azimuthal, (4) pseudocylindrical, (5) pseudoconical, and (6) miscellane-
ous. Each of these divisions may be subdivided, especially the latter.
This type of classification is often easier to distinguish, but i* is far from
ideal. Since nearly all projections used by the USGS fall into the first
three categories, and a fourth category called “space map projections”
is introduced, the “miscellaneous” category is limited to two projections
in this bulletin,

Interest has been shown in some other forms of classification which
are more suitable for extensive treatises. In 1962, Waldo R. Tobler pro-
vided a simple but all-inclusive proposal which has aroused considerable
interest (Tobler, 1962; Maling, 1973, p. 98-104; Maurer, 1935, p. v-vii).
Tobler’s classification involves eight categories, four for rectangular
and four for polar coordinates. For the rectangular coordinates,
category A includes all projections in which both x and y vary with both
latitude ¢ and longitude \, category B includes all in which y varies with
both ¢ and \ while x is only a function of \, C includes those projections
in which z varies with both ¢ and X while y varies only with ¢, and D is
for those in which z is only a function of X\ and y only of ¢. There are
very few published projections in category B, but C is usually called
pseudocylindrical, D is cylindrical, and A includes nearly all the rest
which do not fit the polar coordinate categories.

Tobler’s categories A to D for polar coordinates are respectively the
same as those for rectangular, except that radius p is reed for y and
angle 8 is read for x. The regular conic and azimuthal projections fall in-
to category D, and the pseudoconical (such as Bonne’s) into C. Category
A may have a few projections like A (rectangular) for whick polar coor-
dinates are more convenient than rectangular. There are no well-
known projections in B (polar).
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Hans Maurer’s detailed map projection treatise of 1935 introduced a
“Linnaean” classification with five families (“true-circular”, “straight-
symmetrical,” “curved-symmetrical,” “less regular,” and “combination
grids,” to quote a translation) subdivided into branches, subbrenches,
classes, groups, and orders (Maurer, 1935). As Maling says, Maurer’s
system “is only useful to the advanced student of the subject,” but
Maurer attempts for map projections what Linnaeus, the Swedish
botanist, accomplished for plants and animals in the eighteenth century
(Maling, 1973, p. 98). Other approaches have been taken by Lee (1944)
and by Goussinsky (1951).

The individual projections used by the USGS are discussed below.



CYLINDRICAL MAP PROJECTIONS

The map projection best known by name is certainl’ the Mer-
cator —one of the cylindricals. Perhaps easiest to draw, if simple tables
are on hand, the regular cylindrical .projections consist of meridians
which are equidistant parallel straight lines, crossed at right angles by
straight parallel lines of latitude, generally not equidi~tant. Geo-
metrically, cylindrical projections can be partially developed by unroll-
ing a cylinder which has been wrapped around a globe representing the
Earth, touching at the Equator, and on which meridians have been pro-
jected from the center of the globe (fig. 1). The latitudes can also be
perspectively projected onto the cylinder for some projections (such as
the Cylindrical Equal-Area and Gall’s), but not on those which are
discussed in this bulletin. When the cylinder is wrapped around the
globe in a different direction, so that it is no longer tangent along the
Equator, an oblique or transverse projection results, and neither the
meridians nor the parallels will generally be straight lines.
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7. MERCATOR PROJECTION
SUMMARY

Cylindrical.

Conformal.

Meridians are equally spaced straight lines.

Parallels are unequally spaced straight lines, closest near the Equator, cutting
meridians at right angles.

Scale is true along the Equator, or along two parallels equidistant from the Equator.

Loxodromes (rhumb lines) are straight lines.

Not perspective.

Poles are at infinity; great distortion of area in polar regions.

Used for navigation.

Presented by Mercator in 1569.

HISTORY

The well-known Mercator projection was perhaps the first projection
to be regularly identified when atlases of over a century ago gradually
began to name projections used, a practice now fairly commonplace.
While the projection was apparently used by Erhard Etzlaub of Nurem-
burg (1462-1532) on a small map on the cover of some sundials con-
structed in 1511 and 1513, the principle remained obscure until Gerhar-
dus Mercator (1512-94) independently developed it and presented it
in 1569 on a large world map of 21 sheets totaling about 1.3 by 2 m
(Keuning, 1955, p. 17-18).

Mercator, born at Rupelmonde in Flanders, was probably originally
named Gerhard Cremer (or Kremer), but he always used the latinized
form. To his contemporaries and to later scholars, he is better known
for his skills in map and globe making, for being the first to use the
term “atlas” to describe a collection of maps in a volume, for his
calligraphy, and for first naming North America as such on a map in
1538. To the world at large, his name is identified chiefly with his pro-
jection, which he specifically developed to aid navigation. His 1569 map
is entitled “Nova et Aucta Orbis Terrae Descriptio ad Usum Navigan-
tium Emendate Accommodata (A new and enlarged description of the
Earth with corrections for use in navigation).” He described in Latin
the nature of the projection in a large panel covering much of his por-
trayal of North America:

“** > In this mapping of the world we have [desired] to spread out
the surface of the globe into a plane that the places shall everywhere be
properly located, not only with respect to their true direction and
distance, one from another, but also in accordance with their due
longitude and latitude; and further, that the shape of the lands, as they
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FIGURE 7.—-Gerhardus Mercator (1512-94). The inventor of the most famous map pro-
jection, which is the prototype for conformal mapping.
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appear on the globe, shall be preserved as far as possible. For this there
was needed a new arrangement and placing of meridians, so that they
shall become parallels, for the maps hitherto produced by geographers
are, on account of the curving and the bending of the mevidians, un-
suitable for navigation* * * Taking all this into consideration, we have
somewhat increased the degrees of latitude toward each pole, in pro-
portion to the increase of the parallels beyond the ratio they really have
to the equator. ” (Fite and Freeman, 1926, p. 77-78).

Mercator probably determined the spacing graphically, since tables
of secants had not been invented. Edward Wright (ca. 1558-1615) of
England later developed the mathematics of the projection and in 1599
published tables of cumulative secants, thereby indicating the spacing
from the Equator (Keuning, 1955, p. 18).

FEATURES AND USAGE

The meridians of longitude of the Mercator projection are vertical
parallel equally spaced lines, cut at right angles by horizontal straight
parallels which are increasingly spaced toward each pole so that confor-
mality exists (fig. 8). The spacing of parallels at a given latitude on the
sphere is proportional to the secant of the latitude.

The major navigational feature of the projection is founc in the fact
that a sailing route between two points is shown as a straight line, if the
direction or azimuth of the ship remains constant with respect to north.
This kind of route is called a loxodrome or rhumb line an is usually
longer than the great circle path (which is the shortest possi™'e route on
the sphere). It is the same length as a great circle only if it follows the
Equator or a meridian.

The great distortion of area on the Mercator projection cf the Earth
leads to mistaken concepts when it is the chief basis of world maps seen
by students in school. The classic comparison of areas is between
Greenland and South America. Greenland appears larger, although it is
only one-eighth the size of South America. Furthermore, the North and
South Poles cannot be shown, since they are at infinite distance from
other parallels on the projection, giving a student an impression they
are inaccessible (which of course they seemed to explorers long after
the time of Mercator). The last fifty years have seen an increased em-
phasis on the use of other projections for world maps in published
atlases.

Nevertheless, the Mercator projection is fundamental in the develop-
ment of map projections, especially those which are conformal. It re-
mains a standard navigational tool. It is also especially suitehle for con-
formal maps of equatorial regions. The USGS has recently used it as an
inset of the Hawaiian Islands on the 1:500,000-scale base map of
Hawaii, for a Bathymetric Map of the Northeast Equatorial Pacific
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Ocean (although the projection is not stated) and for a Tectonic Map of
the Indonesia region, the latter two both in 1978 and at a scale of
1:5,000,000.

The first detailed map of an entire planet other than the Earth was
issued in 1972 at a scale of 1:25,000,000 by the USGS Center of Astro-
geology, Flagstaff, Ariz., following imaging of Mars by Mariner 9.
Maps of Mars at other scales have followed. The mapping of the planet
Mercury followed the flybys of Mariner 10 in 1974. Beginning in the
late 1960’s, geology of the visible side of the Moon was maoped by the
USGS in quadrangle fashion at a scale of 1:1,000,000. The four Galilean
satellites of Jupiter and several satellites of Saturn are being mapped
following the Voyager missions of 1979-81. For all these bodies, the
Mercator projection has been used to map equatorial portions, but
coverage extends in some cases to lats. 65° N. and S. (Se= table 6.)

The cloudy atmosphere of Venus, circled by the Pionee* Venus Or-
biter beginning in late 1978, is delaying more precise mapping of that
planet, but the Mercator projection alone has been used to show
altitudes based on radar reflectivity over about 93 percent of the sur-
face.

FORMULAS FOR THE SPHERE

There is no suitable geometrical construction of the Mercator projec-
tion. For the sphere, the formulas for rectangular coordinates are as
follows:

=R A=\ (7-1)
y=R In tan (/4 + ¢/2) (7-2)
or ¥ =R arctanh (sin ¢) (7-2a)

where R is the radius of the sphere at the scale of the mav as drawn,
and ¢ and \ are given in radians. The X axis lies along the Equator, x in-
creasing easterly. The Y axis lies along the central meridian \,, ¥ in-
creasing northerly. If (A —)\,) lies outside the range +180°, 360° should
be added or subtracted so it will fall inside the range. To use ¢ and X in
degrees,

x=7mR (\° —)s)/180° (7-1a)
y=RIntan (45° + ¢°/2) (7-2b)
or y=R arctanh (sin ¢) (7-2c¢)

Equations (7-2a) and (7-2c¢) may be more convenient to use than
(7-2) or (7-2b), if hyperbolic functions are standard to the computer or
calculator. Note that if ¢ is +#/2 or +90°, y is infinite. For scale fac-
tors, application of equations (4-2), (4-3), and (4-9) to (7-1) and (7-2) or



TABLE 6.—Mercator Projection: Used for extraterrestrial mapping

[From Batson, 1973; Davies and Batson, 1975; Batson and others, 1980; Pettengill, 1980; Batson, private commun., 1981]

Matching Parallel

Body* Scale? Range inlat.  Adjacent Projection Overlap with (scale)? Comments
Moon ___________ 1:1,000,000 16°S.-16°N.  Lambert Conformal Conic 0° 16° Quadrangles
(geologic series) (1:1,021,000) 20° long. x 16° lat.
Mercury . ___ 1:15,000,000 57°8.-57°N.  Polar Stereographic 2° 56° —
(1:8,388,000)
1:5,000,000 25°S.-25°N.  Lambert Conformal Conic 5° 22.5° Quadrangles
(1:4,619,000) 72° long. x 50° lat.
Venus __________ 1:50,000,000 65°S.-78°N.  none — - -
Mars ___________ 1:25,000,000 65°S.-65°N.  Polar Stereographic 10° ° -
(1:12,549,000)
1:15,000,000 57°S.-57°N.  Polar Stereographic 2° 56° -
(1:8,418,000)
1:5,000,000 30°S.-30°N. Lambert Conformal Conic 0° 30° Quadrangles
(1:4,336,000)  45° long. x 30° lat.
1:2,000,000 30°S.-30°N.  Lambert Conformal Conic 0° 30° Quadrangles

(1:1,953,000)

22.5° long, x 15° lat.
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Galilean satellites of Jupiter

Io 1:25,000,000 57°S.-57°N.  Polar Stereographic 2° 56° -—
(1:13,980,000)

Europa 1:15,000,000 57°S.-57°N.  Polar Stereographic 2° 56° -
(1:8,388,000)

Ganymede 1:5,000,000 50°S.-50°N.  Polar Stereographic 5° 45° Quadrangles

(Io & Europa) . (1:4,268,000)  180° long. x 100° lat.
Callisto 1:5,000,000 22°S.-22°N.  Lambert Conformal Conic 1° 21.3° Quadrangles
(Ganymede & Callisto) (1:4,780,000) 72° long. x 44° lat.
Satellites of Saturn

gﬂﬁi dus} 1:5,000,000 57°8.~-57°N.  Polar Stereographic 2° 1o ?gg 000 -

Hyperion (1:2,796,000)

Tethys

Dione 1:10,000,000 57°S.-57°N.  Polar Stereographic 2° 56° -—

Rhea (1:5,592,000)

Tapetus

t Taken as sphere, except for Mars (ellipsoid). See table 2.

2 Scale at equator, except for Moon (at 11°00'45” N. & S.), Io and Europa 1:5,000,000 (at 34°04' N. & S. and pole of Stereographic), Ganymede and Callisto 1:5,000,000 (at 13°00’ N. & S. and pole of

Stereographic), and Mars 1:2,000,000 (at 27°29' N. & S. and standard parallels of Lambert Conformal Cenic).

* Some scales revised from those previously published, per communications from Batson, 1979. Matching parallels are both N. & S.

SNOLLDArodd dVI TVOIHANITAD
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(7-2a), gives results consistent with the conformal feature of the Mer-
cator projection:

h=k=sec ¢=1/cos ¢ - (7-3)

w=0

Normally, for conformal projections, the use of 4 (the scale factor
along a meridian) is omitted, and k (the scale factor along a parallel) is
used for the scale factor in any direction. The areal scale factor for con-
formal projections is k* or sec? ¢ for the Mercator in spherical form.

The inverse formulas for the sphere, to obtain ¢ and \ from rectangu-
lar coordinates, are as follows:

¢=7/2-2 arctan (e7’?) (7-4)
A=2/R+) (7-5)
Here e=2.7182818, the base of natural logarithms, not eccentricity.
These and subsequent formulas are given only in radians, as stated

earlier, unless the degree symbol is used. Numerical examples (see Ap-
pendix A) are given in degrees, showing conversion.

FORMULAS FOR THE ELLIPSOID

For the ellipsoid, the corresponding equations for the Mercator are
only a little more involved:

z=a (A=) (7-6)
_ 1-esin e/2 _
y=aln [tan(vr/4+¢/2) (————i"—“e sne ] (7-7)

where a is the equatorial radius of the ellipsoid, and e is its eccentricity.
Comparing equation (3-7), it is seen that y=ay. From equatiors (4-22)
and (4-23), it may be found that

h=k=(1-¢?sin? ¢)""*/cos ¢ (7-8)

and of course w=0. The areal scale factor is k2. The derivation of these
equations is shown in Thomas (1952, p. 1,"2, 85-90).

The X and Y axes are oriented as they are for the spherical fcvmulas,
and (A —),) should be similarly adjusted. Thomas also provides a series
equivalent to equation (7-7), slightly modified here for consistency:

ya=Intan (x/4+¢/2)—(e*+e*/4+¢/8+ . . .)sin¢
+(e*/12+¢5/16+ .. .)sin3 ¢—(¢/80+ .. .)sinbop+ ... (7-Ta)

The inverse formulas for the ellipsoid require rapidly converging
iteration, if the closed forms of the equations for finding ¢ are used:

¢=n/2-2 arctan {t [(1-e sin ¢)/(1 + ¢ sin ¢)]*'3} (7-9)
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where t=e’¢ (7-10)
e is the base of natural logarithms, 2.71828 . . .,
and the first trial ¢ = #/2-2 arctan ¢ (7-11)

Inserting the first trial ¢ in the right side of equation (7-9), ¢ on the left
side is calculated. This becomes the new trial ¢, which is used on the
right side. The process is repeated until the change in ¢ is less than a
chosen convergence factor depending on the accuracy desir2d. This ¢ is
then the final value. For },

A=2/a+ N, (7-12)

The scale factor is calculated from equation (7-8), using th= calculated

To avoid the iteration, the series (3-5) may be used with (7-13) in
place of (7-9):

d=x+(€¥2+5e424+¢512+ . . .) sin 2x+(T€448 +29¢5/240 + . . )
sin 4y + (7¢5/120+ .. ) sin6x+ . .. (3-5)

where x=n/2-2 arctan ¢ (7-13)

Rectangular coordinates for each 5° of latitude are given in table 7,
for both the sphere and the Clarke 1866 ellipsoid, assuming R and a are
both 1.0. It should be noted that k for the sphere applies only to the
sphere. The spherical projection is not conformal with resvect to the
ellipsoidal Earth, although the variation is negligible for a map with an
equatorial scale of 1:15,000,000 or smaller.

MERCATOR PROJECTION WITH ANOTHER STANDARD PARALLEL

The above formulas are based on making the Equator of the Earth
true to scale on the map. Thus, the Equator may be called the standard
parallel. It is also possible to have, instead, another parallel (actually
two) as standard, with true scale. For the Mercator, the map will look
exactly the same; only the scale will be different. If latitude ¢, is made
standard (the opposite latitude —¢, is also standard), the above for-
ward formulas are adapted by multiplying the right side of equations
(7-1) through (7-3) for the sphere, including the alternate forms, by cos
¢,. For the ellipsoid, the right sides of equations (7-6), (7-7), (7-8), and
(7-T7a) are multiplied by cos ¢,/(1-¢? sin? ¢,)"/2. For inverse equations,
divide z and y by the same values before use in equations (7-4) and
(7-5) or (7-10) and (7-12). Such a projection is most commonly used for
a navigational map of part of an ocean, such as the North Atlantic
Ocean, but the USGS has used it for equatorial quadrangles of some ex-
traterrestrial bodies as described in table 6.
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TABLE 7.~ Mercator projection: Rectangular coordinates

Latitude Sphere (R=1) Clarke 1866 ellipsoid (a=1)
(¢) Y k y k
90°_ Infinite Infinite Infinite Irfinite
8% 3.13130 11.47371 3.12454 11.43511
80 2.43625 5.75877 2.42957 5.73984
7 2.02759 3.86370 2.02104 3.85148
0 1.73542 2.92380 1.72904 2.91505
65 1.50645 2.36620 1.50031 2.35961
60 ______ 1.31696 2.00000 1.31109 1.99492
bb 1.15423 1.74345 1.14868 1.73948
50 1.01068 1.55572 1.00549 1.55263
5 .88137 1.41421 .87658 1.41182
40 76291 1.30541 75855 1.30358
35 .65284 1.22077 64895 1.21941
30 .54931 1.15470 .54592 1.15372
25 .45088 1.10338 .44801 1.10271
20 .35638 1.06418 .35406 1.06376
5 .26484 1.03528 .26309 1.03504
0 .17543 1.01543 17425 1.01532
5 .08738 1.00382 .08679 1.00379
o .00000 1.00000 .00000 1.00000
x 0.017453 (A\—Xo) 0.017453 (A=Xo)

Note: x, y=rectangular coordinates.
¢ = geodetic latitude.
(A —\o)= geodetic longitude, measured east from origin in degrees.
k=scale factor, relative to scale at Equator.
R =radius of sphere at scale of map.
a=equatorial radius of ellipsoid at scale of map.
If atitude is negative (south), reverse sign of y.



8. TRANSVERSE MERCATOR PROJECTION
SUMMARY

e (Cylindrical (transverse).

¢ Conformal.

e Central meridian, each meridian 90° from central meridian, and Equator are
straight lines.

e Other meridians and parallels are complex curves.

e Scale is true along central meridian, or along two straight lines equidistant from and
parallel to central meridian. (These lines are only approximately straight for the
ellipsoid.)

o Scale becomes infinite 90° from central meridian.

e Used extensively for quadrangle maps at scales from 1:24,000 to 1:250,000.

e Presented by Lambert in 1772.

HISTORY

Since the regular Mercator projection has little error close to the
Equator (the scale 10° away is only 1.5 percent larger than the scale at
the Equator), it has been found very useful in the transverse form, with
the equator of the projection rotated 90° to coincide with the desired
central meridian. This is equivalent to wrapping the cylinder around a
sphere or ellipsoid representing the Earth so that it touches the central
meridian throughout its length, instead of following the Equator of the
Earth. The central meridian can then be made true to scale, no matter
how far north and south the map extends, and regions near it are
mapped with low distortion. Like the regular Mercator, the map is
conformal.

The Transverse Mercator projection in its spherical form was invented
by the prolific Alsatian mathematician and cartographer Johann
Heinrich Lambert (1728-77). It was the third of six new projections
which he described in 1772 in his classic Beitrdge (Lambert, 1772). At
the same time, he also described what are now called the Lambert Con-
formal Conic and the Lambert Azimuthal Equal-Area, both of which
will be discussed subsequently; others are omitted here. He described
the Transverse Mercator as a conformal adaptation of the Sinusoidal
projection, then commonly in use (Lambert, 1772, p. 57-58). Lambert’s
derivation was followed with a table of coordinates and a map of the
Americas drawn according to the projection.

Little use has been made of the Transverse Mercator for single maps
of continental areas. While Lambert only indirectly discussed its ellip-
soidal form, mathematician Carl Friedrich Gauss (1777-1855) analyzed
it further in 1822, and L. Kriiger published studies in 1912 and 1919 pro-
viding formulas suitable for calculation relative to the ellipsoid. It is,
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FIGURE 9.—Johann Heinrich Lambert (1728-77). Inventor of the Transverse Mercator,
the Conformal Conic, the Azimuthal Equal-Area, and other important projections, as
well as outstanding developments in mathematics, astronomy, and physics.

therefore, sometimes called the Gauss conformal or the Gauss-Kriiger
projection in Europe, but Transverse Mercator, a term first applied by
the French map projection compiler Germain, is the name normally
used in the United States (Thomas, 1952, p. 91-92; Germain, 18657, p.
347).

Until recently, the Transverse Mercator projection was not precisely
applied to the ellipsoid for the entire Earth. Ellipsoidal formulas were
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limited to series for relatively narrow bands of about +4 ° longitude.
In 1945, E. H. Thompson, (and in 1962, L. P. Lee) presented exact or
closed formulas permitting calculation of coordinates for the full ellip-
soid, although elliptic functions, and therefore lengthy series,
numerical integrations,and (or) iterations, are involved (Lee, 1976, p.
92-101; Snyder, 1979a, p. 73; Dozier, 1980).

The formulas for the complete ellipsoid are interesting academically,
but they are practical only within a band between 4° of long'tude and
some 10° to 15° of arc distance on either side of the central meridian,
because of the much more significant scale errors fundamental to any
projection covering a larger area.

FEATURES

The meridians and parallels of the Transverse Mercator are no
longer the straight lines they are on the regular Mercator, except for
the Earth’s Equator, the central meridian, and each meridian 90° away
from the central meridian. Other meridians and parallels are complex
curves.

The spherical form is conformal, as is the parent projection, and scale
error is only a function of the distance from the central meridian, just
as it is only a function of the distance from the Equator on th= regular
Mercator. The ellipsoidal form is also exactly conformal, but its scale
error is slightly affected by factors other than the distance alone from
the central meridian (Lee, 1976, p. 98).

The scale along the central meridian may be made true to scale, or
deliberately reduced to a slightly smaller constant scale so that the
mean scale of the entire map is more nearly correct. There are also
forms of the ellipsoidal Transverse Mercator on which the central merid-
ian is not held at a constant scale, but these forms are not. used in
practice (Lee, 1976, p. 100-101). If the central meridian is maoped at a
reduced scale, two straight lines parallel to it and equally spa~ed from
it, one on either side, become true to scale on the sphere. These lines
are not perfectly straight on the ellipsoidal form.

With the scale along the central meridian remaining constant, the
Transverse Mercator is an excellent projection for lands extending
predominantly north and south.

USAGE

The Transverse Mercator projection (spherical or ellipsoidal) was not
described by Close and Clarke in their generally detailed article in the
1911 Encyclopaedia Britannica because it was “seldom used” (Close
and Clarke, 1911, p. 663). Deetz and Adams (1934) favorably referred
to it several times, but as a slightly used projection.
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The spherical form of the Transverse Mercator has been used by the
USGS only recently. In 1979, this projection was chosen for a hase map
of North America at a scale of 1:5,000,000 to replace the Bipolar
Oblique Conic Conformal projection previously used for tectonic and
other geologic maps. The scale factor along the central meridian, long.
100° W., is reduced to 0.926. The radius of the Earth is taken at
6,371,204 m, with approximately the same surface area as the Interna-
tional ellipsoid, placing the two straight lines of true design scale 2,343
km on each side of the central meridian.

While its use in the spherical form is limited, the ellipsoidal form of
the Transverse Mercator is probably used more than any other one pro-
jection for geodetic mapping.

In the United States, it is the projection used in the State Plane Coor-
dinate System (SPCS) for States with predominant north-south extent.
(The Lambert Conformal Conic is used for the others, excep* for the
panhandle of Alaska, which is prepared on the Oblique Mercator.
Alaska, Florida, and New York use both the Transverse Mercator and
the Lambert Conformal Conic for different zones.) Except for narrow
States, such as Delaware, New Hampshire, and New Jersey, z1l States
using the Transverse Mercator are divided into two to eight zones, each
with its own central meridian, along which the scale is slightly reduced to
balance the scale throughout the map. Each zone is designed to main-
tain scale distortion within 1 part in 10,000.

In addition to latitude and longitude as the basic frame of reference,
the corresponding rectangular grid coordinates in feet are used to
designate locations (Mitchell and Simmons, 1945). The paramsters for
each State are given in table 8. All are based on the Clarke 1846 ellip-
soid. It is important to note that, for the metric conversion to feet using
this coordinate system, 1 m equals exactly 39.37 in., not the current
standard accepted by the National Bureau of Standards in 1959, in
which 1 in. equals exactly 2.54 cm. Surveyors continue to fcllow the
former conversion for consistency. The difference is only two partsin a
million, but it is enough to cause confusion, if it is not accourted for.

Beginning with the late 1950’s, the Transverse Mercator projection
was used by the USGS for nearly all new quadrangles (maps normally
bounded by meridians and parallels) covering those States using the
TM Plane Coordinates, but the central meridian and scale fector are
those of the SPCS zone. Thus, all quadrangles for a given zone may be
mosaicked exactly. Beginning in 1977, many USGS maps have been
produced on the Universal Transverse Mercator projection (se= below).
Prior to the late 1950’s, the Polyconic projection was used. The change
in projection was facilitated by the use of high-precision rectangular-
coordinate plotting machines. Some maps produced on the Transverse
Mercator projection system during this transition period are identified
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FIGURE 10.—The Transverse Mercator projection. While the regular Mercator
has constant scale along the Equator, the Transverse Mercator has con-
stant scale along any chosen central meridian. This projection is cnfor-
mal and is often used to show regions with greater north-south extent.

as being prepared according to the Polyconic projection. £'nce most
quadrangles cover only 7% minutes (at a scale of 1:24,(70) or 15
minutes (at 1:62,500) of latitude and longitude, the difference between
the Polyconic and the Transverse Mercator for such a small area is
much more significant due to the change of central meridian than due
to the change of projection. The difference is still slight and is detailed
later under the discussion of the Polyconic projection. The Transverse
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TaBLE 8.~ U.S. State plane coordinate systems

[T indicates Transverse Mercator; L, Lambert Conformal Conic; H, Hotine Oblique Mercator. Modified slightly and up-
dated from Mitchell and Simmons, 1945, p. 46-47}

Area Projection  Zones Area Projection Zones
Alabama ________ T 2 Montana __._____ L 3
Alaska __________ T 8 Nebraska ________ L 2

L 1 Nevada _________ T 3
H 1 New Hampshire __ T 1
Arizona _________ T 3 New Jersey ______ T 1
Arkansas _._______ L 2 New Mexico ______ T 3
California _______ L 7 New York ______ T 3
Colorado —__.____ L 3 L 1
Connecticut —_____ L 1 North Carolina ___ L 1
Delaware ________ T 1 North Dakota ____ L 2
Florida __________ T 2 Ohio ____________ L 2
L 1 Oklahoma _______ L 2
Georgia _________ T 2 Oregon . ______ L 2
Hawaii __________ T 5 Pennsylvania _____ L 2
Idaho —__________ T 3 Puerto Rico &
Illiqois __________ T 2 Virgin Islands __ L 2
Indiana _________ T 2 Rhode Island _____ T 1
Iowa o L 2 Samoa, . ____ L 1
Kansas __________ L 2 South Carolina ___ L 2
Kentucky —_______ L 2 South Dakota ____ L 2
Louisiana _______ L 3 Tennessee _______ L 1
Maine _________ T 2 Texas . ______ L 5
Maryland ________ L 1 Utah____ L 3
M?ssgchusetts —_— L 2 Vermont ________ T 1
Michigan! Virginia _________ L 2
obsolete _______ T 3 Washington ______ L 2
current ________ L 3 West Virginia .___ L 2
Minnesota ... L 3 Wisconsin _______ L 3
Mississippi ——————— T 2 Wyoming —_______ T 4
Missouri . _.___ T 3
Transverse Mercator projection
Zone Central meridian Secale reduction? Origin® (la*itude)
Alabama
Bast _____ 85°50' W. 1:25,000 30°30° N.
West 87 30 1:15,000 30 00
Alaskat
2 142 00 1:10,000 54 00
8 146 00 1:10,000 54 00
4 e 150 00 1:10,000 54 00
S 154 00 1:10,000 54 00
6 e 158 00 1:10,000 54 00
[ 162 00 1:10,000 54 00
8 e 166 00 1:10,000 54 00
| 170 00 1:10,000 54 00
Arizona
Bast _______ 110 10 1:10,000 31 00
Central _____ 111 55 1:10,000 31 00
West ______ 113 45 1:15,000 31 00
Delaware ______ 75 25 1:200,000 38 00
Florida*
East _._____ 81 00 1:17,000 24 20
West 82 00 1:17,000 24 20
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TaBLE 8. - U.S. State plane coordinate systems— Continued

Transverse Mercator projection —Continued

Zone Central meridian Scale reduction? Origin® (latitude)

Georgia

Bast _______ 82°10' W. 1:10,000 30°00" N.

West _______ 84 10 1:10,000 30 00
Hawaii

1 155 30 1:30,000 18 50

2 156 40 1:30,000 20 20

8 158 00 1:100,000 21 10

4 __________ 159 30 1:100,000 21 50

5 160 10 0 21 40
Idaho

East _______ 112' 10 1:19,000 41 40

Central _____ 114 00 1:19,000 41 40

West _______ 115 45 1:15,000 41 40
Illinois

East _______ 88 20 1:40,000 36 40

West —______ 90 10 1:17,000 36 40
Indiana

East _______ 85 40 1:30,000 37 30

West _______ 87 05 1:30,000 37 30
Maine

East _______ 68 30 1:10,000 43 50

West _______ 70 10 1:30,000 42 50
Michigan (old)*

East _______ 83 40 1:17,500 41 30

Central _____ 85 45 1:11,000 41 30

West _______ 88 45 1:11,000 41 30
Mississippi

East _______ 88 50 1:25,000 29 40

West _______ 90 20 1:17,000 30 30
Missouri

East _______ 90 30 1:15,000 35 50

Central _____ 92 30 1:15,000 35 50

West _______ 94 30 1:17,000 3¢ 10
Nevada

East _______ 115 35 1:10,000 34 45

Central _____ 116 40 1:10,000 34 45

West _______ 118 35 1:10,000 34 45
New Hampshire _ 71 40 1:30,000 42, 30
New Jersey _____ 74 40 1:40,000 32 50
New Mexico

East _______ 104 20 1:11,000 31 00

Central _____ 106 15 1:10,000 31 00

West _______ 107 50 1:12,000 31 00
New York*

East _______ 74 20 1:30,000 40 00

Central _____ 76 35 1:16,000 40 00

West _______ 78 35 1:16,000 40 00
Rhode Island ____ 71 30 1:160,000 41 05
Vermont _______ 72 30 1:28,000 42 30
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TABLE 8.-U.S. State plane coordinate systems— Continued

Transverse Mercator projection — Continued

Zone Central meridian Scale reduction? Origin3 (Ietitude)
Wyoming
East _______ 105°10° W. 1:17,000 40°40' N.
East Central 107 20 1:17,000 40 40
West Central 108 45 1:17,000 40 40
West _______ 110 05 1:17,000 40 40

Lambert Conformal Conic projection

Origin®
Zone Standard parallels Long. Lat.

Alaskat

10 51°50' N. 53°50' N. 176°00’ W.52  51°00' N.
Arkansas

North _________ 34 56 36 14 92 00 34 20

South _________ 33 18 34 46 92 00 32 40
California

r 40 00 41 40 122 00 39 20

m 38 20 39 50 122 00 37 40

m_____ 37 04 38 26 120 30 36 30

v___ 36 00 37 15 119 00 35 20

v 34 02 35 28 118 00 33 30

VI 32 47 33 53 116 15 32 10

VII 33 52 34 25 118 20 34 08%
Colorado

North _________ 39 43 40 47 105 30 39 20

Central ________ 38 27 39 45 105 30 37 50

South _________ 37 14 38 26 105 30 36 40
Connecticut _______ 41 12 41 52 72 45 40 50
Florida*

North _________ 29 35 30 45 84 30 29 00
Towa

North _________ 42 04 43 16 93 30 41 30

South _________ 40 37 41 47 93 30 40 00
Kansas

North _________ 38 43 39 47 98 00 38 20

South _________ 37 16 38 34 98 30 36 40
Kentucky

North _________ 37 58 38 58 84 15 37 30

South _________ 36 44 37 56 85 45 36 20
Louisiana

North _________ 31 10 32 40 92 30 30 40

South _________ 29 18 30 42 91 20 28 40

Offshore _______ 26 10 27 50 91 20 25 40
Maryland _________ 38 18 39 27 77 00 37 50%
Massachusetts

Mainland ______ 41 43 42 41 71 30 41 00™

Island _________ 41 17 41 29 70 30 41 00™
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Lambert Conformal Conic projection —Continued

Origin®
Zone Standard parallels Long. Lat.
Michigan (current)*

North _________ 45°29' N. 47°05' N. 87°00' W. 44°47 N.

Central ________ 44 11 45 42 84 20 43 19

South _________ 42 06 43 40 84 20 41 30
Minnesota

North _________ 47 02 48 38 93 06 46 30

Central ________ 45 37 47 03 94 15 45 00

South _________ 43 47 45 13 94 00 43 00
Montana

North _________ 47 51 48 43 109 30 47 00

Central ________ 46 27 47 53 109 30 45 50

South _________ 44 52 46 24 109 30 44 00
Nebraska

North _________ 41 51 42 49 100 00 41 20

South _________ 40 17 41 43 99 30 39 40
New York?

Long Island ____ 40 40 41 02 74 00 40 30°f
North Carolina _____ 34 20 36 10 79 00 33 45
North Dakota

North _________ 47 26 48 44 100 30 47 00

South _.________ 46 11 47 29 100 30 45 40
Ohio

North _________ 40 26 41 42 82 30 39 40

South _________ 38 44 40 02 82 30 38 00
Oklahoma

North _________ 35 34 36 46 98 00 35 00

South _________ 33 56 35 14 98 00 33 20
Oregon

North _________ 44 20 46 00 120 30 43 40

South _________ 42 20 44 00 120 30 41 40
Pennsylvania

North _________ 40 53 41 57 77 45 40 10

South _________ 39 56 40 58 77 45 39 20
Puerto Rico and

Virgin Islands

1 18 02 18 26 66 26 17 505

2 (St. Croix) ____ 18 02 18 26 66 26 17 50° &
Samoa ____________ 14°16' S. (single) 170 00°h R
South Carolina

North _________ 33°46' N. 34 58 81 00 33 00

South _________ 32 20 33 40 81 00 31 50
South Dakota

North _________ 44 25 45 41 100 00 43 50

South _________ 42 50 44 24 100 20 42 20
Tennessee ________ 35 15 36 25 86 00 34 40°
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TaBLE 8.-U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection—Continued

s . g
Zone Standard parallels Long. Origin Lat.

Texas

North _________ 34°39' N. 36°11" N. 101°30" W. 34°00' N.

Northcentral ___ 32 08 33 58 97 30 31 40

Central ________ 30 07 31 53 100 20 29 40

South central ___ 28 23 30 17 99 00 27 50

South .________ 26 10 27 50 98 30 25 40
Utah

North _________ 40 43 41 47 111 30 40 20

Central ________ 39 01 40 39 111 30 38 20

South _________ 37 13 38 21 111 30 36 40
Virginia

North _________ 3802 39 12 78 30 37 40

South _________ 36 46 37 58 78 30 36 20
Washington

North _________ 47 30 48 44 120 50 47 00

South _________ 45 50 47 20 120 30 45 20
West Virginia

North —________ 39 00 40 15 79 30 38 30

South _________ 37 29 38 53 81 00 37 00
Wisconsin

North _________ 45 34 46 46 90 00 45 10

Central ________ 44 15 45 30 90 00 43 50

South _________ 42 44 44 04 90 00 42 00

Hotine Oblique Mercator projection
Center of projection Azimuth of Scalet
Zone Long. Lat. central line recduction

Alaskat

1 . _  133°40'W. 57°00' N. arctan (—3%4) 1:10,000

Note.— All these systems are based on the Clarke 1866 ellipsoid.

IThe major and minor axes of the ellipsoid are taken at exactly 1.0000382 times those of the C'arke 1866, for
Michigan only. This incorporates an average elevation throughout the State of about 800 ft, with limited variation.

2Along the central meridian.

3At origin, x=>500,000 ft, y=0 ft, except for Alaska zone 7, xr=700,000 ft; Alaska zone 9, x=600,000 ft; and New
Jersey, ¥=2,000,000 ft,

*Additional zones listed in this table under other projection(s).

SAt origin, x=2,000,000 ft, y=0 ft, except (a) £= 3,000,000 ft, (b) x=4,186,692.58, y=4,160,926.74 ft, (c) x=800,000
ft, (d) x=600,000 ft, (e} x =200,000 ft, (f) y=100,000 ft, (g) x=500,000 ft, (h) £=500,000 ft, y=0, but radius to lat. of
origin = - 82,000,000 ft.

SAt central point,
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Mercator is used in many other countries for official topographic map-
ping as well. The Ordnance Survey of Great Britain began switching
from a Transverse Equidistant Cylindrical (the Cassini-Soldner) to the
Transverse Mercator about 1920.

The use of the Transverse Mercator for quadrangle maps has been
recently extended by the USGS to include the planets Mercury and
Mars. Although other projections are used at smaller scales,
quadrangles at scales of 1:1,000,000 and 1:250,000, and covering areas
from 200 to 800 km on a side, are drawn to the ellipsoidal T -ansverse
Mercator between lats. 65° N. and S. on Mars, and to the spherical
Transverse Mercator for any latitudes on Mercury. The sc~le factor
along the central meridian is made 1.0 in all cases.

In addition to its own series of larger-scale quadrangle maps, the
Army Map Service used the Transverse Mercator for two other major
mapping operations: (1) a series of 1:250,000-scale quadrangle maps
covering the entire country, and (2) as the geometric bas’s for the
Universal Transverse Mercator (UTM) grid.

The entire area of the United States has been mapped since the
1940’s in sections 2° of longitude (between even-numbered meridians,
but in 3° sections in Alaska} by 1° of latitude (between each full degree)
at a scale of 1:250,000, with the UTM grid superimposed and with some
variations in map boundaries at coastlines. These maps were drawn
with reference to their own central meridians, not the cent-al merid-
ians of the UTM zones (see below), although the 0.9996 certral scale
factor was employed. The central meridian of about one-third of the
maps coincides with the central meridian of the zone, but it does not for
about two-thirds, the “wing” sheets, which therefore do not perfectly
match the center sheets. The USGS has assumed publicatior and revi-
sion of this series and is casting new maps using the corre-t central
meridians.

Transverse Mercator quadrangle maps fit continuously ir a north-
south direction, provided they are prepared at the same scale, with the
same central meridian, and for the same ellipsoid. They do not fit ex-
actly from east to west, if they have their own central reridians;
although quadrangles and other maps properly constructed at the same
scale, using the SPCS or UTM projection, fit in all directions within the
same zone.

UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator (UTM) projection and grid were
adopted by the U.S. Army in 1947 for designating rectangnlar coor-
dinates on large-scale military maps of the entire world. Th> UTM is
the ellipsoidal Transverse Mercator to which specific parameters, such
as central meridians, have been applied. The Earth, betweer lats. 84°
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N. and 80° S., is divided into 60 zones each generally 6° wide in
longitude. Bounding meridians are evenly divisible by 6°, and zones are
numbered from 1 to 60 proceeding east from the 180th meridian from
Greenwich with minor exceptions. There are letter designations from
south to north (see fig. 11). Thus, Washington, D.C., is in grid zone
188, a designation covering a quadrangle from long. 72° to 78° W. and
from lat. 32° to 40° N. Each of these quadrangles is further suhdivided
into grid squares 100,000 meters on a side with double-letter designa-
tions, including partial squares at the grid boundaries. From lat. 84° N.
and 80° S. to the respective poles, the Universal Polar Stereographic
(UPS) projection is used instead.

As with the SPCS, each geographic location in the UTM projection is
given x and y coordinates, but in meters, not feet, according to the
Transverse Mercator projection, using the meridian halfway between
the two bounding meridians as the central meridian, and reducing its
scale to 0.9996 of true scale (a 1:2,500 reduction). The reduction was
chosen to minimize scale variation in a given zone; the variation
reaches 1 part in 1,000 from true scale at the Equator. The USGS, for
civilian mapping, uses only the zone number and the # and y coor-
dinates, which are sufficient to define a point, if the ellipsoid and the
hemisphere (north or south) are known; the 100,000-m square iden-
tification is not essential. The lines of true scale are approximately
parallel to and approximately 180 km east and west of the central merid-
ian. Between them, the scale is too small; beyond them, it is tco great.
In the Northern Hemisphere, the Equator at the central mevidian is
considered the origin, with an x coordinate of 500,000 m and a y of 0.
For the Southern Hemisphere, the same point is the origin, but, while
2 remains 500,000 m, y is 10,000,000 m. In each case, numbers increase
toward the east and north. Negative coordinates are thus avoided
(Army, 1973, p. 7, endmap). A page of coordinates for the UTM projec-
tion is shown in table 9.

The ellipsoidal Earth is used throughout the UTM projection system,
but the reference ellipsoid changes with the particular region of the
Earth. For all land under United States jurisdiction, the Clarke 1866
ellipsoid is used for the map projection. For the UTM grid superim-
posed on the map of Hawaii, however, the International ellipsoid is
used. The Geological Survey uses the UTM graticule and grid for its
1:250,000- and larger-scale maps of Alaska, and applies the UTM grid
lines or tick marks to its quadrangles and State base maps for the other
States, although they are generally drawn with different projections or
parameters.

FORMULAS FOR THE SPHERE

A partially geometric construction of the Transverse Mercator for
the sphere involves constructing a regular Mercator projection and us-
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TABLE 9.~ Universal Transverse Mercator grid coordinates

METERS

U.T.M. GRID COORDINATES * CLARKE 1866 SPHEROID
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ing a transforming map to convert meridians and parallels on one
sphere to equivalent meridians and parallels on a sphere rotated to
place the equator of one along the chosen central meridian of the other.
Such a transforming map may be the equatorial aspect of the
Stereographic or other azimuthal projection, drawn twice to the same
scale on transparencies. The transparencies may then be superimposed
at 90° angles and the points compared.

In an age of computers, it is much more satisfactory to use
mathematical formulas. The rectangular coordinates for the
Transverse Mercator applied to the sphere (Thomas, 1952, p.6):

@="%Rk, In [(1+B)/(1-B)] (8-1)
or
x=Rk, arctanh B (8-2)
y=Rk, {arctan [tan ¢/cos (\—\o)] — B0} (8-3)
k=Fko/(1- B2 (8-4)
where
B=cos ¢ sin (A—\,) (8-5)

(note: If B= +1, z is infinite)

and k, is the scale factor along the central meridian .. The orizin of the
coordinates is at (¢, \o). The Y axis lies along the central meridian \,, ¥
increasing northerly, and the X axis is perpendicular, through ¢, at \,,
x increasing easterly.

The inverse formulas for (¢, N) in terms of (x, ¥):

¢ =arcsin [sin D/cosh («/Rk,)] (8-6)

A=Xo + arctan [sinh (2/Rk,)/cos D] 8-7
where

D =y/Rky)+ ¢o, using radians (8-8)

Rectangular coordinates for the sphere are shown in table 10. Only
one octant (quadrant of a hemisphere) needs to be listed, since all other
octants are identical except for sign change.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, the most practical form of the equetions is a
set of series approximations which converge rapidly in a zon< extend-
ing 3° to 4°of longitude from the central meridian. Beyond this, the
series have insufficient terms for the accuracy required. Coordinate
axes are the same as they are for the spherical formulas above. The for-
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mulas below are only slightly modified from those presented in stand-
ard references (Army, 1973, p. 5-7; Thomas, 1952, p. 2-3).

x=koN[A +(1-T+C)A3%/6 +(5- 18T + T2 + 72C - 58¢2)A5/120] (8-9)
Y=kotM—-M,+N tan ¢ [A2/2+(5-T+ 9C+4C?)

A*/24 +(61~ 58T+ T2 + 600C - 330¢2)A%/720]} (8-10)
k=ko[1+(1+C)A2/2+(5-4T +42C +13C?-28¢2) A%/24
+ (61-148T+16T2)A%/720] (8-11)

where k,=scale on central meridian (e.g., 0.9996 for the UTM projec-
tion)

2= ¢2(1 - ¢?) (8-12)
N=a/(1-e¢? sin? ¢)!/2 (4-20)
T=tan2¢ (8-13)
C=¢%cos2¢ (8-14)
A =cos ¢ (\—\o), with \ and )\, in radians (8-15)

M=af(1-¢*4-3¢*/64-5¢%256 . . .) ¢ —(3€*8 +3¢*/32
+45e%/1024 + . . .) sin 2¢ +(15€*/256 + 45¢5/1024
+ ...)sin 4¢—(35€4/3072+. ..) sin 6o+ . . .] (3-21)

with ¢ in radians. M is the true distance along the central meridian
from the Equator to ¢. See equation (3-22) for a simplification for the
Clarke 1866 ellipsoid.

M, =M calculated for ¢,, the latitude crossing the central meridian \,,
at the origin of the #, ¥ coordinates.

Note: If ¢ = + #/2, all equations should be omitted except (3-21), from
which M and M, are calculated. Then =0, y=ko(M - M,), k=k,.
Equation (8-11) for £ may also be written as a function of x and ¢:

F=ko[1+(1+€2 cos? ¢)az/(2k2,N2)] (8-16)

These formulas are somewhat more precise than those used to compute
the State Plane Coordinate tables, which were adapted to use desk
calculators of 30-40 years ago.

For the tnverse formulas (Army, 1973, p. 6, 7, 46; Thomas, 1952, p.
2-3):

=6, —(N; tan ¢,/R,)[D?2—(5+3T, +10C, - 4C,2 - 9¢2)D*/24
+(61+907, +298C, + 45T,* - 252¢* — 3C,2)D*/720] (8-17)

A=Xo+[D-(1+2T,+C)D%6+(5-2C, + 28T,
—3C,2+8¢*+24T,)D*%120)/cos ¢, (8-18)

where ¢, is the “footpoint latitude” or the latitude at the central merid-
ian which has the same y coordinate as that of the point (¢, ).
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It may be found from equation (3-26):

bi=p+(36,/2—27¢,3/32+. . . ) sin 2u+(21¢,2/16
-556,%32- .. .) sin 4p+(151e,3/96+ .. .)sin 6p+ ... (3-26)

where
er=[1-(1-e2?)[1+(1-e2)"] (3-24)
and, in a rearrangement of (3-20) and (3-21),
p=M/[a(1 - e?/4 — 3e4/64 - 5¢5/256 — . . .)] (8-19)
while
M=M,+ylk, (8-20)

with M, calculated from equation (3-21) or (3-22) for the given ¢,.

From ¢,, other terms below are calculated for use in equations (8-17)
and (8-18). (If ¢,=+/2, (8-12), (8-21) through (8-25), (8-17) and
(8-18) are omitted, but ¢ = + 90°, taking the sign of y, while X is indeter-
minate, and may be called \,. Also, k=k,.)

¢2=e?(1—e2) (8-12)
C, = ¢2cos*p, (8-21)
T, =tané, (8-22)
N, =al(1-esinzg,)’ (8-23)
Ry =a(1-e?)/(1-e2sin2g,)* (8-24)
D =x/(N ko) (8-25)

“MODIFIED TRANSVERSE MERCATOR” PROJECTION

In 1972, the USGS devised a projection specifically for the revision of
a 1954 map of Alaska. The projection was drawn to a scale of
1:2,000,000 and published at 1:2,500,000 (map “E”) and 1:1,584,000
(map “B”). Graphically prepared by adapting coordinates for the
Universal Transverse Mercator projection, it is identified as a
“Modified Transverse Mercator” projection. It resembles the
Transverse Mercator in a very limited manner and cannot be con-
sidered a cylindrical projection. It approximates an Equidistant Conic
projection for the ellipsoid in actual construction. Because of the pro-
jection name, it is listed here. The projection was also used in 1974 for a
base map of the Aleutian-Bering Sea Region publisted at the
1:2,500,000 scale.

The basis for the name is clear from an unpublished 1972 description
of the projection, in which it is also stressed that the “latitudinal lines are
parallel” and the “longitudinal lines are straight.” The computations

“were taken from the AMS Technical Manual #21 (Universal Transverse Mercator) based
on the Clarke 1866 Spheroid.*** The projection was started from a N-S central construc-
tion line of the 153° longitude which is also the centerline of Zone 5 from th= UTM tables.
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TABLE 10. - Transverse Mercator projection:Rectangular coordinates for the sphere
[Radius of the Earth is 1.0 unit. Longitude measured from central meridian. y coordinate is in parentheses under x

coordinate. Origin of rectangular coordinates at Equator and central meridian. r increases east; y increases north.
One octant of globe is given; other octants are symmetrical}

Long. o o ° ° °
m 0 10 20 30 40

90° ______________ 0.0000 0.0000 0.0000 0.0000 0.0000
(1.57080)  (1.57080)  (1.57080)  (1.57080)  (1.57080)
80 o __ .00000 .03016 05946 .08704 11209
(1.39626)  (1.39886)  (1.40659)  (1.41926)  (1.43653)
70 .00000 .05946 11752 17271 22349
(1.22173)  (1.22662)  (1.24125)  (1.26545)  (1.29888)
60 o ____ .00000 .08704 17271 25541 33320
(1.04720)  (1.05380)  (1.07370)  (1.10715)  (1.15438)
50 ———__________  .00000 11209 22349 133320 43943
(.87266) ( .88019) ( .90311)  ( .94239)  ( .99951)
40 .00000 .13382 26826 .40360 53923
(.69813) ( .70568) ( .72891) ( .76961)  ( .83088)
80 _____________  .00000 15153 30535 46360 62800
(.52360) ( .53025) ( .55094) ( .58800) ( .64585)
20 . .00000 .16465 33320 50987 69946
(.34907) ( .35401) ( .36954) ( .39786) ( .44355)
0 .00000 17271 35051 53923 74644
(.17453)  ( .17717)  ( .18549)  ( .20086)  ( .22624)
0 .00000 17543 35638 54931 76291

(.00000)  ( .00000)  ( .00000) ( .00000) ( .00000)

TABLE 10.-Transverse Mercator projection: Rectangular coordinates for the
sphere— Continued

LOng. o o o o ane
Laone 50 60 70 80 )

90° 0.0000 0.0000 0.0000 0.0000 0.0000
(157080)  (1.57080)  (1.57080)  (1.57080)  (1.57080)
80 .13382 15153 .16465 17271 17543
(1.45794)  (1.48286) (1.51056)  (1.54019)  (1.57080)
0 26826 30535 133320 35051 .35638
(1.34097)  (1.39078)  (1.44695)  (1.50768)  (1.57080)
60 o ___ 40360 46360 50987 53923 54931
(1.21544)  (1.28976)  (1.37584)  (1.47087)  (1.57080)
50 53923 62800 69946 74644 76291
(1.07616)  (1.17355)  (1.29132)  (1.42611)  (1.57080)
0 67281 79889 90733 98310  1.01068
( .91711) (1.03341) (1.18375) (1.36673)  (1.57080)
30 79889 97296  1.13817  1.26658  1.31696
(.73182) ( .85707) (1.03599)  (1.27864)  (1.57080)
20 —____________ 90733 113817  1.38932  1.62549  1.73542
( .51522) ( .62923) ( .81648) (1.12564)  (1.57080)
10 98310  1.26658  1.62549 208970  2.43625
(.26773) ( .33904) ( .47601) ( .79305)  (1.57080)
0 o 1.01068  1.31696  1.73542  2.43625

(.00000)  ( .00000)  ( .00000)  ( .00000) Inf.
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TaBLE 11.-Universal Transverse Mercator projection: Location of points with given
scale factor

[x coordinates in meters at various latitudes. Based on inversion of equation (8-16), using Clarke 1£466 ellipsoid. Values
are on or to right of central meridian (x=500,000 m). For coordinates left of central meridian, subtract values of x
from 1,000,000 m. Latitude is north or south]

Scale factor

Lat. 0.9996  0.9998  1.0000  1.0002  1.0004  1.0006

80° ___________ 500,000 627,946 680,943 721,609 1755892 786,096
0 500,000 627,871 680,836 721,478 755,741 785,927
60 _________ 500,000 627,755 680,673 721,278 755510 785,668
50 500,000 627,613 680,472 721,082 755,223 785,352
40 500,000 627,463 680,260 720,772 754,925 785,015
30 ___________ 500,000 627,322 680,060 720,528 754,643 784,700
20 ___________ 500,000 627,207 679,898 720,329 754,414 784,443
10 500,000 627,132 679,792 720,199 754,261 784,276
0 500,000 627,106 679,755 720,154 754,212 784,218

Along this line each even degree latitude was plotted from book values. At the plotted
point for the 64° latitude, a perpendicular to the construction line (153°) was plotted.
From the center construction line for each degree east and west for 4° (the limits of book
value of Zone #5) the curvature of latitude was plotted. From this 64° latitude, each 2°
latitude north to 70° and south to 54° was constructed parallel to the 64° latitude line.
Each degree of longitude was plotted on the 58° and 68° latitude line. Through cor-
responding degrees of longitude along these two lines of latitude a straight line (line of
longitude) was constructed and projected to the limits of the map. This gave a small pro-
jection 8° in width and approximately 18° in length. This projection was repeated east
and west until a projection of some 72° in width was attained.”

For transferring data to and from the Alaska maps, it was necessary
to determine projection formulas for computer programing. Since it
appeared to be unnecessarily complicated to derive formul~s based on
the above construction, it was decided to test empirical formulas with
actual coordinates. After careful measurements of coordinates for
graticule intersections were made in 1979 on the stable-base map, it
was determined that the parallels very closely approximate concentric
circular arcs, spaced in proportion to their true distances on the ellip-
soid, while the meridians are nearly equidistant straight lines radiating
from the center of the circular arcs. Two parallels have a scale equal to
that along the meridians. The Equidistant Conic projection for the
ellipsoid with two standard parallels was then applied to these coor-
dinates as the closest approximation among projections with available
formulas. After various trial values for scale and standard parallels
were tested, the empirical formulas below (equations (8-26) through
(8-32)) were obtained. These agree with measured values vrithin 0.005
inch at mapping scale for 44 out of 58 measurements made on the map
and within 0.01 inch for 54 of them.
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FORMULAS FOR THE “MODIFIED TRANSVERSE MERCATOR” PROJECTION

The “Modified Transverse Mercator” projection was found to be most
closely equivalent to an Equidistant Conic projection for the Clarke
1866 ellipsoid, with the scale along the meridians reduced to 0.9292 of
true scale and the standard parallels at lat. 66.09° and 53.50° N. (also
at 0.9992 scale factor). For the Alaska Map “E” at 1:2,500,000, using
long. 150° W. as the central meridian and lat. 58° N. as the latitude of
the origin on the central meridian, the general formulas (Snyder,
1978a, p. 378) reduce with the above parameters to the following, giv-
ing  and y in meters at the map scale. The Y axis lies along the central
meridian, y increasing northerly, and the X axis is perpendicular at the
origin, z increasing easterly.

For the forward formulas:

Z=p sing (8-26)

y¥=1.5616640-p cos § (8-27)
where

6°=0.8625111(\° + 150°) (8-28)

p=4.1320402-0.04441727¢° + 0.0064816 sin 2¢ (8-29)
For the inverse formulas:

A°=(1/0.8625111) arctan [«/(1.5616640 —)]-150°  (8-30)
¢° =(4.1320402 + 0.0064816 sin 2¢ — p)/0.04441727  (8-31)

where
p =[22+(1.5616640 —y)?*]'/ (8-32)

For Alaska Map “B” at a scale of 1:1,584,000, the same formulas may
be used, except that x and y are (2,500/1,584) times the values obtained
from (8-26) and (8-27). For the inverse formulas, the given x and y
must be divided by (2,500/1,584) before insertion into (8-30) and (8-32).

The equation for ¢, (8-31), involves iteration by successive substitu-
tion. If an initial ¢ of 60° is inserted into the right side, ¢ on the left
may be calculated and substituted into the right in place of the pravious
trial ¢. Recalculations continue until the change in ¢ is less than a
preset convergence. If \ as calculated is less than —180°, it shcmld be
added to 360° and labeled East Longitude.

Formulas to adjust « and y for the map inset of the Aleutian Islands
are omitted here, but the coordinates above are rotated
counterclockwise 29.79° and transposed +0.798982 m for x and
+0,347600 m for y.



9. OBLIQUE MERCATOR PROJECTION
SUMMARY

¢ Cylindrical (oblique).

* Conformal.

¢ Two meridians 180° apart are straight lines.

¢ Other meridians and parallels are complex curves.

¢ Scale on the spherical form is true along chosen central line, a great circle at an oblique
angle, or along two straight lines parallel to central line. The scale on the ellipsoidal
form is similar, but varies slightly from this pattern.

¢ Scale becomes infinite 90° from the central line.

* Used for grids on maps of the Alaska panhandle, for mapping in Switzerland,
Madagascar, and Borneo and for atlas maps of areas with greater extent in an
oblique direction

* Developed 1900-50 by Rosenmund, Laborde, Hotine, and others.

HISTORY

There are several geographical regions such as the Alasks panhandle
centered along lines which are neither meridians nor parallels, but
which may be taken as great circle routes passing through the region.
If conformality is desired in such cases, the Oblique Mercator is a pro-
jection which should be considered.

The historical origin of the Oblique Mercator projection does not ap-
pear to be sharply defined, although it is a logical generalization of the
regular and Transverse Mercator projections. Apparently, Posenmund
(1903) made the earliest published reference, when he devisad an ellip-
soidal form which is used for topographic mapping of Switzerland. The
projection was not mentioned in the detailed article on “Map Projec-
tions” in the 1911 E'ncyclopaedia Britannica (Close and Clarl-e, 1911) or
in Hinks’ brief text (1912). Laborde applied the Oblique Mercator to the
ellipsoid for the topographic mapping of Madagascar in 1928 (Young,
1930; Laborde, 1928). H. J. Andrews (1935, 1938) proposed the
spherical forms for maps of the United States and Eurasia. Hinks
presented seven world maps on the Oblique Mercator, with poles
located in several different positions, and a consequent variety in the
regions shown more satisfactorily (Hinks, 1940, 1941).

A study of conformal projections of the ellipsoid by British geodesist
Martin Hotine (1898-1968), published in 1946-47, is the basis of the
U.S. use of the ellipsoidal Oblique Mercator, which Hotine called the
“rectified skew orthomorphic” (Hotine, 1947, p. 66-67). The Hotine ap-
proach has limitations, as discussed below, but it provides closed for-
mulas which have been adapted for U.S. mapping of suitable zones.

73
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One of its limitations is overcome by a recent series form of tl = ellip-
soidal Oblique Mercator (Snyder, 1979a, p. 74), but other limitations
result instead. This later form resulted from development of fcrmulas
for the continuous mapping of satellite images, using the Space Oblique
Mercator projection (to be discussed later).

While Hotine projected the ellipsoid conformally onto an “aposphere”
of constant total curvature and thence to a plane, Laborde and also
J. H. Cole (1943, p. 16-30) projected the ellipsoid onto a “conformal
sphere,” using conformal latitudes (described earlier) to meke the
spnere conformal with respect to the ellipsoid, then plotted the
spherical Oblique Mercator from this intermediate sphere. Rosen-
mund’s system for Switzerland is a more complex double projection
through a conformal sphere (Rosenmund, 1908; Bolliger, 1967 .

FEATURES

The Oblique Mercator for the sphere is equivalent to a regular Mer-
cator projection which has been altered by wrapping a cylinder around
the sphere so that it touches the surface along the great circ'= path
chosen for the central line, instead of along the Earth’s Equator. A set
of transformed meridians and parallels relative to the great circle may
be plotted bearing the same relationship to the rectangular coorlinates
for the Oblique Mercator projection, as the geographic meridiens and
parallels bear to the regular Mercator. It is, therefore, possible to con-
vert the geographic meridians and parallels to the transformed values
and then to use the regular Mercator equations, substituting the
transformed values in place of the geographic values. This is the pro-
cedure for the sphere, although combined formulas are given below,
but it becomes much more complicated for the ellipsoid. The ad-ent of
present-day computers and programmable pocket calculators make
these calculations feasible for sphere or ellipsoid.

The resulting Oblique Mercator map of the world (fig. 12) thus
resembles the regular Mercator with the landmasses rotated so that
the poles and Equator are no longer in their usual positions. Instead,
two points 90° away from the chosen great circle path through the
center of the map are at infinite distance off the map. Normally, the
Oblique Mercator is used only to show the region near the central line
and for a relatively short portion of the central line. Under these condi-
tions, it looks similar to maps of the same area using other projections,
except that careful scale measurements will show differences.

It should be remembered that the regular Mercator is in fact a
limiting form of the Oblique Mercator with the Equator as the central
line, while the Transverse Mercator is another limiting form of the
Oblique with a meridian as the central line. As with these limiting



FiGURE 12.-Oblique Mercator projection with the center of projection at lat. 45° N. on the central
meridian. A straight line through the point and, in this example, perpendicular to the central me-
ridian is true to scale. The projection is conformal and has been used for regions lying along a line
oblique to meridians.
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forms, the scale along the central line of the Oblique Mercator may be
reduced to balance the scale throughout the map.

USAGE

The Oblique Mercator projection is used in the spherical form for a
few atlas maps. For example, the National Geographic Society uses it
for atlas and sheet maps of Hawaii, the West Indies, and New Zealand.
In the ellipsoidal form it was used, as mentioned above, by Rosenmund
for Switzerland and Laborde for Madagascar. Hotine used it for
Malaya and Borneo and Cole for Italy. It is used in the Hotine form by
the USGS for grid marks on zone 1 (the panhandle) of Alaska, using
the State Plane Coordinate System as adapted to this projection by
Erwin Schmid of the former Coast and Geodetic Survey.

More recently, the Hotine form was adapted by John B. Rowland
(USGS) for mapping Landsat satellite imagery in two sets of five
discontinuous zones from north to south (table 12). The central line of
the latter is only a close approximation to the satellite grountrack,
which does not follow a great circle route on the Earth; instead, it
follows a path of constantly changing curvature. Until the
mathematical implementation of the Space Oblique Mercator (SOM)
projection, the Hotine Oblique Mercator (HOM) was probably the most
suitable projection available for mapping Landsat type data. In addi-
tion to Landsat, the HOM projection has been used to cast Heat Capaci-
ty Mapping Mission (HCMM) imagery since 1978. NOAA (National
Oceanic and Atmospheric Administration) has also cast some weather
satellite imagery on the HOM to make it compatible with Landsat in
the polar regions which are beyond Landsat coverage (above lat. 82°).

The parameters for a given map according to the Oblique Mercator
projection may be selected in various ways. If the projection is to be
used for the map of a smaller region, two points located near th= limits
of the region may be selected to lie upon the central line, and various
constants may be calculated from the latitude and longitude of each of
the two points. A second approach is to choose a central point for the
map and an azimuth for the central line, which is made to pass through
the central point. A third approach, more applicable to the m=v of a
large portion of the Earth’s surface, treated as spherical, is to choose a
location on the original sphere of the pole for a transformed sphere
with the central line as the equator. Formulas are given for each of
these approaches, for sphere and ellipsoid.

FORMULAS FOR THE SPHERE

Starting with the forward equations, for rectangular coordinates in
terms of latitude and longitude:
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TABLE 12. —Hotine Oblique Mercator projection parameters used for Landsat 1, 2, and 3

imagery
HOM Limiting Central Central Azimuth
zone latitudes latitude longitude' of axis
1 48°N-81°N 67.0983°N 81.9700°W 24.7708181°
2 23°N-48°N 36.0000°N 99.2750°W 14.3394883°
3 _________ 23°8-23°N 0.0003°N 108.5069°W 13 001443°
4 23°8-48°S 36.0000°S 117.7388°W 14.33948832°
s 48°8-81°S 67.0983°S 135.0438°W 24.7708181°
6 48°S-81°S 67.0983°S 85.1220°E -24.7708181°
. 23°85-48°S 36.0000°S 67.8170°E ~14.33948832°
8 23°S-23°N 0.0003°N 58.5851°E -13.001443°
[ 23°N-48°N 36.0000°N 49.3532°E —-14.33948832°
10 48°N-81°N 67.0983°N 32.0482°E —-24.7708181°

1For path 31. For other path numbers p, the central longitude is decreased (west is negative) by (360°/251)x (p - 31).
Note: These parameters are used with equations given under Alternate B of ellipsoidal Oblique Me~cator formulas,
with oo the central latitude, \, the central longitude, and «, the azimuth of axis east of north. Scale factor k, at center is
1.0.

1. Given two points to lie upon the central line, with latitudes and
longitudes (¢:,\) and (¢2,)2) and longitude increasing easterly and

relative to Greenwich. The pole of the oblique transformatior at (¢ p,)\,)
may be calculated as follows:

N\.=arctan [(cos ¢, sin ¢, cos \,—sin ¢, cos ¢, cos \,)/
(sin ¢, cos ¢, sin \, — cos ¢, sin ¢, sin \,)] 9-1)
¢,=arctan [ - cos (\,— \)/tan ¢,] (9-2)

The Fortran ATAN2 function or its equivalent should be used with
equation (9-1), but not with (9-2). The other pole is located at
(- .\, £ 7). Using the positive (northern) value of ¢,, the following
formulas give the rectangular coordinates for point (¢,\), with k, the
scale factor along the central line:

z=Rk, arctan{[tan ¢ cos ¢,+sin ¢, sin (\=\o)[/cos(A=Xo)}  (9-3)

y="2RkoIn[(1+A)/(1-A4)] (9-4)
or
y =Rk, arctanh A (9-4a)
k=ky(1-A2)y2 (9-5)
where
A =sin ¢, SN ¢ — oS ¢,C08 ¢ SIN (A — o) (9-6)

With these formulas, the origin of rectangular coordinates I'es at

¢o = 0
No=\,+7/2 (9-62)
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and the X axis lies along the central line, « increasing easterl:". The
transformed poles are y equals infinity.

2. Given a central point (¢., \.) with longitude increasing easterly and
relative to Greenwich, and azimuth 8 east of north of the central line
through (¢,,\ ), the pole of the oblique transformation at (CIDN ,) may be
calculated as follows:

¢,=arcsin (cos ¢. sin §) 9-7)
N\, =arctan[ - cosB/(—-sin ¢, sin B)]+\. (9-8)
These values of ¢, and \, may then be used in equations (9-3) through
(9-6) as before.
3. For an extensive map, ¢, and \, may be arbitrarily chosen by eye to
give the pole for a central line passing through a desired portior of the
globe. These values may then be directly used in equations (9-3)
through (9-6) without intermediate calculation.

For the inverse formulas, equations (9-1) and (9-2) or (9-7) and (9-8)
must first be used to establish the pole of the oblique transformation, if
it is not known already. Then,

¢ =arcsin [sin ¢, tanh (y/Rk,) + cos ¢, sin (x/Rko)/cosh (y/Rk.)] (9-9)
A=\, +arctan [[sm ¢, sin (x/Rk,) - cos ¢, sinh (y/Rk,)}/cos (x/Ek,)} (9-10)

FORMULAS FOR THE ELLIPSOID

These are the formulas provided by Hotine, slightly altered to use a
positive eastern longitude (he used positive western longitude), to
simplify calculations of hyperbolic functions, and to use symbc's con-
sistent with those of this bulletin. The central line is a geodesic, or the
shortest route on an ellipsoid, corresponding to a great circle route on
the sphere.

It is customary to provide rectangular coordinates for the Hctine in
terms either of (u,v) or (x,y). The (u,v) coordinates are similar in con-
cept to the (z,y) calculated for the foregoing spherical formulas, with
corresponding to x for the spherical formulas, increasing easter]v from
the origin along the central line, but v corresponds to -y for the
spherical formulas, so that » increases southerly in a direction perpen-
dicular to the central line. For the Hotine, 2 and y are calculated from
(u,v) as “rectified” coordinates with the Y axis following the meridian
passing through the center point, and increasing northerly as usual,
while the X axis lies east and west through the same point. The X and Y’
axes thus lie in directions like those of the Transverse Mercator, but
the scale-factor relationships remain those of the Oblique Mercator.

The normal origin for (u,v) coordinates in the Hotine Oblique Mer-
cator is approximately at the intersection of the central line with the
Earth’s Equator. Actually it occurs at the crossing of the central line
with the equator of the “aposphere,” and is, thus, a rather academic
location. The “aposphere” is a surface with a constant “total” curvature
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based on the curvature along the meridian and perpendicular thereto
on the ellipsoid at the chosen central point for the projection. The ellip-
soid is conformally projected onto this aposphere, then to a sphere,
then to a plane. As a result, the Hotine is perfectly conformal, but the
scale along the central line is true only at the chosen central point along
that line or along a relatively flat elliptically shaped line approximately
centered on that point, if the scale of the central point is arbitrarily
reduced to balance scale over the map. The variation in scale along the
central line is extremely small for a map extending less than 45° in are,
which includes most existing usage of the Hotine. A longer central line
suggests the use of a different set of formulas, available as a limiting
form of the Space Oblique Mercator projection. On Rosenmund’s
(1903), Laborde’s (1928), and Cole’s (1943) versions of the ellipsoidal
Oblique Mercator, the central line is a great circle arc on the in-
termediate conformal sphere, not a geodesic. As on Hotine’s version,
this central line is not quite true to scale except at one or two chosen
points.

The projection constants may be established for the Hotine in one of
two ways, as they were for the spherical form. Two desired points,
widely separated on the map, may be made to fall on the central line of
the projection, or the central line may be given a desired azimuth
through a selected central point. Taking these approaches in order:

Alternate A, with the central line passing through two given points.
Given:

a and e for the reference ellipsoid.
ko =scale factor at the selected center of the map, lying or the central
line.

¢o=latitude of selected center of the map.

(91, \i)=latitude and longitude (east of Greenwich is positive) of the
first point which is to lie on the central line.

(¢2, \;)=latitude and longitude of the second point whicl is to lie on
the central line.

(¢, M) =latitude and longitude of the point for which the coordinates

are desired.

There are limitations to the use of variables in these formulas: To
avoid indeterminates and division by zero, ¢, or ¢, cannot be + #/2, ¢,
cannot be zero or equal to ¢, (although ¢, may be zero), and ¢, cannot
be —x/2. Neither ¢o, ¢,,nor ¢, should be +#/2 in any case, since this
would cause the central line to pass through the pole, for which the
Transverse Mercator or polar Stereographic would probably be a more
suitable choice. A change of 10" radian in variables from these special
values will permit calculation of an otherwise unsatisfactory condition.

It is also necessary to place both (¢,, \\) and (¢2, A;) on th= ascending
portion, or both on the descending portion, of the central line, relative
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to the Earth’s Equator. That is, the central line should not pass through
a maximum or minimum between these two points.

If e is zero, the Hotine formulas give coordinates for the spherical
Oblique Mercator.

Because of the involved nature of the Hotine formulas, they are given
here in an order suitable for calculation, and in a form eliminating the
use of hyperbolic functions as given by Hotine in favor of single calcula-
tions of exponential functions to save computer time. The corresnond-
ing Hotine equations are given later for comparison.

B=[1+¢? cos® ¢o/(1-¢?)]"'? (9-11)
A =aBky1-¢€*"*(1-¢* sin? ¢,) (9-12)
to=tan (w/4 - ¢o/2)/[(1-e sin ¢o)/(1+e sin ¢o)]*'? (9-13)

t,=same as (9-13), using ¢, in place of ¢,.
t2=same as (9-13), using ¢, in place of ¢,.
D =B(1-e?)"?/[cos ¢o(1 —€* sin’ep,)*/?] (9-14)

If ¢ =0, D may calculate to slightly less than 1.0 and create a problem
in the next step. If D?< 1, it should be made 1.

E=[D+(D*-1)"?)t?, taking the sign of ¢, (9-15)
Het5 (9-16)
L=t" (9-17)
F=E/H (9-18)
G=F-1F)2 (9-19)
J=(E*-LH)/(E*+LH) (9-20)
P=(L-HW(L+H) (9-21)
o= Y2(\; + \;)—arctan {J tan [B(\, — \,)/2)/P}/B (9-22)
Yo=arctan {sin [B(\, - \o)J/G} (9-23)
a.=arcsin [D sin o) (9-24)

To prevent problems when straddling the 180th meridian with A, and
)2, before calculating (9-22), if (\—\;)< - 180°, subtract 360° from \,.
If (\ —X;)>180°, add 360° to A,. Also adjust Ao and (A, —=X,) to fall be-
tween +180° by adding or subtracting 360°. The Fortran ATAN2
function is not to be used for equations (9-22) and (9-23). The above
equations (9-11) through (9-24) provide constants for a given map and
do not involve a specific point (¢,\). Angle «. is the azimuth of th= cen-
tral line as it crosses latitude ¢,, measured east of north. For pcint (¢,
M), calculate the following:

t=same as equation (9-13), but using ¢ in place of ¢s.
If = + /2, do not calculate ¢, but go instead to (9-30).

Q=EIt (9-25)
S=(Q-1/Q)2 (9-26)
T=(Q+1/Q)/2 (9-27)

V=sin [BO\—\o)] (9-28)
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U=(-Vcosy,+S sinvy,)/T (9-29)
v=A In[1-U)(1+U))/2B (9-30)
Note: If U= 11, v is infinite; if ¢= + /2, v=(A/B) In tan (z/4 F,/2)
u=A arctan {(S cos y,+ V sin v,)/cos [B(\— \o)]}/B (9-31)

Note: If cos [BA—=N\o)]=0, u=AB\-\o). If o= +7/2, u=A¢/B.

Care should be taken that (A\—\,) has 860° added or subtracted, if the
180th meridian falls between, since multiplication by B eliminates
automatic correction with the sin or cos function.

The scale factor:

k=A cos (Bu/AX1 - 2 sin 2¢)*/?/{a cos ¢ cos [B(\— o))} (9-32)
If “rectified” coordinates (x, y) are desired, with the origin at a

distance (2o,%.) from the origin of the (u,v) coordinates, relative to the
(X,Y) axes (see fig. 13):

£=v COS o, + U SiN cr. + %o (9-33)
Y=1u%COS a.— ¥ Sin . + Yo (9-34)

The formulas given by Hotine and essentially repeated in Thomas
(1952, p. 7-9), modified for positive east longitude, » and v increasing
in the directions shown in figure 13, and symbols consistent with the
above, relate to the foregoing formulas as follows:*

Equivalent to (9-11):

d*=eX(1-¢?)
B=(1+¢€" cos “¢,)"

Equivalent to (9-12):

R'o=a(1-e)/(1-e? sin 2¢,)*'?
Ny=a/(1-¢* sin 2¢,)/?
A =Blky(R'No)*

Other formulas:

70 =N, COS ¢
V.=In {tan (7/4+¢./2)[(1-e sin ¢,)/(1 +e sin ¢,)]*'?}

Note: . is equivalent to (-In t,) using equation (9-13).
C= tarccosh (A/7)-Bys

Note: C is equivalent to In E, where F is found from equation (9-15); D,
from (9-14), is (A/r.).

tan [2B(\,—\;)] tanh [Y2B(¥, +y.)+C]
tanh [Y2B(y: - ¥»)]

tan [YaB(\, +\;) — Bho]=

‘Hotine uses positive west longitude, & corresponding to « here, and y corresponding to — ¢ here. Thomas uses
positive west longitude, y corresponding to u here, and x corresponding to - » here. In caleulations of Alaska zone 1,
west longitude is positive, but « and ¢ agree with « and v, respectively, here.
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Meridian of u,v origin

t Earth Equator on ap~sphere
———————— — — Earth Equator on ellipsoid
Yo 4 :Y
|
-~ L »-x axis
origin
of (x,y) .
x=0 Vaxis
y=0

FiGURE 13.—Coordinate system for the Hotine Oblique Mercator projecticn.

The tanh in the numerator is J from equation (9-20), while the tanh in
the denominator is P from (9-21). The entire equation is equivalent to
(9-22).

tan y,=sin [B(\, - \o)}/sinh (By, + C)

This equation is equivalent to (9-23), the sinh being equivalent to G
from (9-19).

tanh (Bv/Ak,)={cos v, sin [B(\—\,)] - sin v, sinh (By + C)}/cosh (By +C)

This equation is equivalent to (9~-30), with S the sinh function and T the
cosh function.

tan (Bu/Ak,)={cosy, sinh (B, +C)+sin v, sin [B(\—\o)]}/cos [B(A—No)]

This equation is equivalent tc (9-31).

Alternate B. The following equations provide constants for the
Hotine Oblique Mercator projection to fit a given central point and
azimuth of the central line through the central point. Given: a, ¢, ko, ¢o,
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and (¢, N) as for alternate A, but instead of (¢,, \s) and (¢2, \2), . and .
are given,

where

(#0, \)=latitude and longitude (east of Greenwich is positiv=), respec-
tively, of the selected center of the map, falling cn the cen-
tral line.

a.=angle of azimuth east of north, for the central line a« it passes
through the center of the map (¢o, \.).

Limitations: ¢, cannot be zero or + /2, and the central line cannot be
at a maximum or minimum latitude at ¢,. If e=0, these formulas also
give coordinates for the spherical Oblique Mercator. As witl alternate
A, these formulas are given in the order of calculation and are
modified to minimize exponential computations. Several of these equa-
tions are the same as some of the equations for alternate A:

B=[1+e*cos* ¢o/(1-€*)]"? (9-11)
A =aBk, (1-¢*)"*(1-esin? ¢o) (9-12)
to=tan(w/4 - ¢o/2)/[(1 - € sin ¢o)/(1 + € sin ¢o)]*'> (9-13)
D=B(1-¢*"*/[cos ¢o (1 — € sin? ¢)'/?] (9-14)

If ¢o=0, D may calculate to slightly less than 1.0 and create a problem
in the next step. If D*< 1, it should be made 1.

F=D +(D?*-1)"?, taking the sign of ¢, (9-35)
E=Ft,* (9-36)
G=(F-1/F)2 (9-19)
vo=arcsin (sin «./D) 9-37)
No=\.—[arcsin (G tan y,))/B (9-38)

The values of % and v for center point (¢o, \.) may be calculated directly
at this point:

U, ny= £ (A/B) arctan [(D*-1)"*/cos o], taking the sign of ¢o. (9-39)

Vg ry=0

These are the constants for a given map. Equations (9-2F) through
(9-32) for alternate A may now be used in order, following calculation
of the above constants.

The inverse equations for the Hotine Oblique Mercator prciection on
the ellipsoid may be shown with few additional formulas. To determine
¢ and N from x and y, or from « and v, the same parameters of the map
must be given, except for ¢ and )\, and the constants of th~ map are
found from the above equations (9-11) through (9-24) for alternate A
or (9-11) through (9-38) for alternate B. Then, if x and y are given in
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accordance with the definitions for the forward equations, ther must
first be converted to (u, v):

v=(2—%o) cOS . — (¥ — Yo) sin e, (9-40)
% =(Y - Yo) COS . + (% — %) Sin . (9-41)

If (u, v) are given, or calculated as just above, the following steps are
performed in order:

Q =e B4 (9-42)
where e=2.71828. . . , the base of natural logarithms

S'=(Q'-1/Q"/2 (9-43)

T'=(Q'+1/Q")/2 (9-44)

V' =sin (Bu/A) (9-45)

U =(V'cos yo+S’ sin y,)/T" (9-46)

t={ENQ+UyQA-1U)) e (9-47)

Butif U= +1, ¢=+90°, taking the sign of U’, A may be called o, and
equations (7-9) and (9-48) below are omitted.

¢ =m/2 -2 arctan {t{(1 - e sin p)/(1 +e sin ¢)]*'3} (7-9)

Equation (7-9) is solved by iteration, using ¢ =(#/2-2 arctan t) as the
first trial ¢ on the right side, and using the successive calculations of ¢
on the left side as successive values of ¢ on the right side, until the
change in ¢ is less than a chosen convergence value.

A=X\o—arctan [(S’ cos y,~ V'sin y,)/cos (Buw/A)/B (9-48)

Since the arctan (found as the ATAN2 function) is divided by B, it is
necessary to add or subtract 360° properly, before the division.

To avoid the iteration, the series (3-5) may be used with (7-13) in
place of (7-9):

d=x+(e/2+5¢*24 +¢%/12+. . . ) sin 2x +(Te*/48 +29¢%/240 +. . .)
sin 4y +(7¢%/120+ . . .) sin 6+ . . . (3-5)
where
x=m/2-2 arctan ¢ (7-13)
The equivalent inverse equations as given by Hotine are as follows,

following the calculation of constants using the same formulas a~ those
given in his forward equations:

tan [B(\-\o)]=[sin v, sin (Bu/A)+cos 7, sinh (Bv/A))/cos (B1/A)
tanh (By +C)=[cos v, sin (Bu/A)-sin v, sinh (Bv/A)}/cosh (Bi/A)



10. MILLER CYLINDRICAL PROJECTION

SUMMARY

¢ Neither equal-area nor conformal.

¢ Used only in spherical form.

e Cylindrical.

e Meridians and parallels are straight lines, intersecting at right angles.
Meridians are equidistant; parallels spaced farther apart away from Equator.
Poles shown as lines.

Compromise between Mercator and other cylindrical projections.

Used for world maps.

Presented by Miller in 1942.

HISTORY AND FEATURES

The need for a world map which avoids some of the scale exaggera-
tion of the Mercator projection has led to some commonly u-ed cylin-
drical modifications, as well as to other modifications which are not
cylindrical. The earliest common cylindrical example was developed by
Rev. James Gall of Edinburgh about 1855 (Gall, 1885, p. 119-123). His
meridians are equally spaced, but the parallels are spaced at increasing
intervals away from the Equator. The parallels of latitude ar= actually
projected onto a cylinder wrapped about the sphere, but cutting it at
lats. 45° N. and S., the point of perspective being a point on the
Equator opposite the meridian being projected. It is used in several
British atlases, but seldom in the United States. Gall’s projection is
neither conformal nor equal-area, but has a blend of various features.
Unlike the Mercator, Gall’s shows the poles as lines running z-ross the
top and bottom of the map.

What might be called the American version of Gall’s projection is the
Miller Cylindrical projection (fig. 14), presented in 1942 by Osborn
Maitland Miller (1897-1979) of the American Geographical Society,
New York (Miller, 1942). Born in Perth, Scotland, and edcated in
Scotland and England, Miller came to the Society in 1922. There he
developed several improved surveying and mapping techniques. An ex-
pert in aerial photography, he developed techniques for converting
high-altitude photographs into maps. He led or joined several expedi-
tions of explorers and advised leaders of others. He retired in 1968,
having been best known to cartographers for several map projections,
including the Bipolar Oblique Conic Conformal, the Prolated
Stereographic, and especially his Cylindrical projection.

Miller had been asked by S. Whittemore Boggs, Geograpl ~r of the
U.S. Department of State, to study further alternatives to the
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Mercator, Gall’s, and other cylindrical world maps. In his presentation,
Miller listed four proposals, but the one he preferred, and the one used,
is a fairly simple mathematical modification of the Mercator projection.
Like Gall’s, it shows visible straight lines for the poles, incveasingly
spaced parallels away from the Equator, equidistant meridians, and is
not equal-area, equidistant along meridians, nor conformal. While the
standard parallels, or lines true to scale and free of distortion, on Gall’s
are at lats. 45° N. and S., on the Miller only the Equator is standard.
Unlike Gall’s, Miller’s is not a perspective projection.

The Miller Cylindrical projection is used for world mags and in
several atlases, including the National Atlas of the United States
(USGS, 1970, p. 330-331).

As Miller (1942) stated, “the practical problem considered here is to
find a system of spacing the parallels of latitude such that an aceptable
balance is reached between shape and area distortion. By an ‘accept-
able’ balance is meant one which to the uncritical eye does no* obvious-
ly depart from the familiar shapes of the land areas as depicted by the
Mercator projection but which reduces areal distortion as far as possi-
ble under these conditions * * *. After some experimenting, the
[Modified Mercator (b)] was judged to be the most suitable for Mr.
Boggs’s purpose * * *.”

FORMULAS FOR THE SPHERE

Miller’s spacings of parallels from the Equator are the same as if the
Mercator spacings were calculated for 0.8 times the respective
latitudes, with the result divided by 0.8. As a result, the snacing of
parallels near the Equator is very close to the Mercator arrangement.

The forward formulas, then, are as follows:

=R\ -\o) (10-1)
y=R[In tan (7/4 + 0.4¢)}/0.8 (10-2)
or
y=R[arctanh (sin 0.8¢4))/0.8 (10-2a)
The scale factor, using equations (4-2) and (4-3),
h=sec 0.8¢ (10-3)
k=seco (10-4)
The maximum angular deformation w, from equation (4-9),
sin Y2w=(cos 0.8¢ - cos ¢)/(cos 0.8¢ + cos ¢) (10-5)

The X axis lies along the Equator, x increasing easterly. The 1" axis lies
along the central meridian )\, y increasing northerly. If (» -\o) lies
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outside the range of +180°, 360° should be added or subtracted so that
it will fall inside the range. The inverse equations are easily derived
from equations (10-1) through (10-2a):

¢=2.5arctan e'*®’® —57/8 (10-6)
or

¢ =aresin [tanh (0.8y/R))/0.8 (10-6a)
where e is 2.71828 . . ., the base of natural logarithms.

A=No+a/R (10-7)

Rectangular coordinates are given in table 13. There is no kasis for
an ellipsoidal equivalent, since the projection is used for maps of the en-
tire Earth and not for local areas at large scale.

TABLE 13.—Miller Cylindrical projection: ~Rectangular coordinates

[Radius of sphere=1.0]

¢ Y h k w
90° 2.30341 3.23607 Infinite 180.00°
8 2.04742 2.66947 11.47371 77.00
80 1.83239 2.28117 5. 75877 51.26
5 e 1.64620 2.00000 3.86370 37.06
0 e 1.48131 1.78829 2.92380 27.89
65 1.33270 1.62427 2.36620 21.43
60 _ 1.19683 1.49448 2.00000 16.64
55 1.07113 1.39016 1.74345 12.95
50 95364 1.30541 1.55572 10.04
5 84284 1.23607 1.41421 771
40 73754 1.17918 1.30541 5.82
3 63674 1.13257 1.22077 4.30
0 .53962 1.09464 1.15470 3.06
25 e 44547 1.06418 1.10338 2.07
20 .35369 1.04030 1.06418 1.30
5 .26373 1.02234 1.03528 72
10 e 17510 1.00983 1.01543 32
S .08734 1.00244 1.00382 .08
o .00000 1.00000 1.00000 .00

L e 0.017453 (A\° = Xo°)

Note: z, y=rectangular coordinates.
¢ =geodetic latitude.
(A\° —Xo°) =geodetic longitude, measured east from origin in degrees.
h=scale factor along meridian.
k=scale factor along parallel.
w=maximum angular deformation, degrees.

Origin of coordinates at intersection of Equator with 5, . X axis increases east, Y axis increases north, For southern
(negative) ¢, reverse sign of y.



11. EQUIDISTANT CYLINDRICAL PROJECTION

SUMMARY
e Cylindrical.
Neither equal-area nor conformal.
Meridians and parallels are equidistant straight lines, intersecting at right angles.
Poles shown as lines.
Used for world or regional maps.
Very simple construction.
e Used only in spherical form.
* Presented by Eratosthenes (B.C.) or Marinus (A.D. 100).

HISTORY AND FEATURES

While the Equidistant Cylindrical projection is listed last among the
cylindricals because of its limited use by the USGS and generally
limited value, it is probably the simplest of all map projections to con-
struct and one of the oldest. The meridians and parallls are all
equidistant straight parallel lines, the two sets crossing at rizht angles.

The projection originated probably with Eratosthenes (2757-195?
B.C.), the scientist and geographer noted for his fairly accurate
measure of the size of the Earth. Claudius Ptolemy credited Marinus of
Tyre with the invention about A.D. 100 stating that, whi's= Marinus
had previously evaluated existing projections, the latter had chosen “a
manner of representing the distances which gives the worst results of
all.” Only the parallel of Rhodes (lat. 36° N.) was made true to scale on
the world map, which meant that the meridians were spaced at about
four-fifths of the spacing of the parallels for the same degr~e interval
(Keuning, 1955, p. 13).

Ptolemy approved the use of the projection for maps of smaller areas,
however, with spacing of meridians to provide correct scale along the
central parallel. All the Greek manuscript maps for the Geographia,
dating from the 13th century, use the Ptolemy modification. It was
used for some maps until the eighteenth century, but is now used
primarily for a few maps on which distortion is considered less impor-
tant than the ease of displaying special information. The projection is
given a variety of names such as Equidistant Cylindrical, Rectangular,
La Carte Parallélogrammatique, Die Rechteckige Plattkarte, and
Equirectangular (Steers, 1970, p. 135-136). It was called the projection
of Marinus by Nordenskiold (1889).

If the Equator is made the standard parallel, true to scale and free of
distortion, the meridians are spaced at the same distan-es as the
parallels, and the graticule appears square. This form is often called the
Plate Carrée or the Simple Cylindrical projection.
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The USGS uses the Equidistant Cylindrical projection for index maps
of the conterminous United States, with insets of Alaska, Hawsii, and
various islands on the same projection. One is entitled “Topographic
Mapping Status and Progress of Operations (7%- and 15-minute
series),” at an approximate scale of 1:5,000,000. Another shows the
status of intermediate-scale quadrangle mapping. Neither the scale nor
the projection is marked, to avoid implying that the maps are suitable
for normal geographic information. Meridian spacing is about four-
fifths of the spacing of parallels, by coincidence the same as that chosen
by Marinus. The Alaska inset is shown at about half the scale and with
a change in spacing ratios. Individual States are shown by the US5S on
other index maps using the same projection and spacing ratic to in-
dicate the status of aerial photography.

The projection was chosen largely for ease in computerized plotting.
While the boundaries on the base map may be as difficult to plot on this
projection as on the others, the base map needs to be prepared only
once. Overlays of digital information, which may then be prirted in
straight lines, may be easily updated without the use of cartographic
and photographic skills. The 4:5 spacing ratio is a convenience based on
computer line and character spacing and is not an attempt to achieve a
particular standard parallel, which happens to fall near lat. 37° N.

FORMULAS FOR THE SPHERE

The formulas for rectangular coordinates are almost as simple to use
as the geometric construction. Given R, \o, ¢4, \, and ¢ for the fcrward
solution, x and .y are found thus:

x=R (\—X\o) COS ¢, (11-1)
y=R¢ (11-2)
h=1 (11-3)
k=cos ¢,/cos ¢ (11-4)

The X axis coincides with the Equator, with « increasing easterly, while
the Y axis follows the central meridian \,, ¥ increasing northerly. It is
necessary to adjust (\—\,), if it is beyond the range +180°, by adding or
subtracting 360°. The standard parallel is ¢, (also —¢,). For the inverse
formulas, given R, \, ¢1, %,and ¥, to find ¢ and \:

¢o=y/R (11-5)
N=No +2/(R cos ¢,) (11-6)

Numerical examples are omitted in the appendix, due to simplicity. It
must be remembered, as usual, that angles above are given in radians.



CONIC MAP PROJECTIONS

Cylindrical projections are used primarily for complete world maps,
or for maps along narrow strips of a great circle arc, such as the
Equator, a meridian, or an oblique great circle. To show a region for
which the greatest extent is from east to west in the temperate zones,
conic projections are usually preferable to cylindrical projections.

Normal conic projections are distinguished by the use of arcs of con-
centric circles for parallels of latitude and equally spaced straight radii
of these circles for meridians. The angles between the meridians on the
map are smaller than the actual differences in longitude. T e circular
arcs may or may not be equally spaced, depending on the projection.
The Polyconic projection and oblique conic projections have character-
istics different from these.

The name “conic” originates from the fact that the more elementary
conic projections may be derived by placing a cone on the tor of a globe
representing the Earth, the apex or tip in line with the axis of the
globe, and the sides of the cone touching or tangent to the globe along a
specified “standard” latitude which is true to scale and without distor-
tion (see fig. 1). Meridians are drawn on the cone from the apex to
the points at which the corresponding meridians on the globe cross the
standard parallel. Other parallels are then drawn as arcs centered on
the apex in a manner depending on the projection. If the cone is cut
along one meridian and unrolled, a conic projection results. A secant
cone results if the cone cuts the globe at two specified parallels. Meri-
dians and parallels can be marked on the secant cone sormewhat as
above, but this will not result in any of the common conic projections
with two standard parallels. They are derived from various desired
scale relationships instead, and the spacing of the meridians as well as
the parallels is not the same as the projection onto a secant cone.

There are three important classes of conic projections: tl' » equidis-
tant (or simple), the conformal, and the equal-area. The Equidistant
Conic, with parallels equidistantly spaced, originated in a rulimentary
form with Claudius Ptolemy. It eventually developed into commonly
used present-day forms which have one or two standarc parallels
selected for the area being shown. It is neither conformal nor equal-
area, but north-south scale along all meridians is correct, ard the pro-
jection can be a satisfactory compromise for errors in shape, scale, and
area, especially when the map covers a small area. It is prirrarily used
in the spherical form, although the ellipsoidal form is available and
useful. The USGS uses the Equidistant Conic in an approximate form
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for a map of Alaska, identified as a “Modified Transverse Mercator”
projection, and also in the limiting equatorial form: the Equidistant
Cylindrical. Both are described earlier.

The Lambert Conformal Conic projection with two standard parallels
is used frequently for large- and small-scale maps. The parall-ls are
more closely spaced near the center of the map. The Lambert has also
been used slightly in the oblique form. The Albers Equal-Ares. Conic
with two standard parallels is used for sectional maps of the U.S. and
for maps of the conterminous United States. The Albers parallels are
spaced more closely near the north and south edges of the map. There
are some conic projections, such as perspective conics, which do not fall
into any of these three categories, but they are rarely used.

The useful conic projections may be geometrically constructed only in
a limited sense, using polar coordinates which must be calculated.
After a location is chosen, usually off the final map, for the centex of the
circular arcs which will represent parallels of latitude, meridians are
constructed as straight lines radiating from this center and spaced
from each other at an angle equal to the product of the cone constant
times the difference in longitude. For example, if a 10° grati-ule is
planned, and the cone constant is 0.65, the meridian lines are spaced at
10° times 0.65 or 6.5°. Each parallel of latitude may then be drawn as
a circular arc with a radius previously calculated from formulas for the
particular conic projection.



12. ALBERS EQUAL-AREA CONIC PROJECTION

SUMMARY

* Conic.
¢ Equal-Area.
¢ Parallels are unequally spaced arcs of concentric circles, more closely spaced at the
north and south edges of the map.
¢ Meridians are equally spaced radii of the same circles, cutting parall=ls at right
angles.
¢ There is no distortion in scale or shape along two standard parallels, rormally, or
along just one.
Poles are arcs of circles.
Used for equal-area maps of regions with predominant east-west expanse, especially
the conterminous United States.
Presented by Albers in 1805.

HISTORY

One of the most commonly used projections for maps of the conter-
minous United States is the equal-area form of the conic proje~tion, us-
ing two standard parallels. This projection was first presented by
Heinrich Christian Albers (1773-1833), a native of Lineburg, Ger-
many, in a German periodical of 1805 (Albers, 1805; Bonacker and
Anliker, 1930). The Albers projection was used for a German map of
Europe in 1817, but it was promoted for maps of the United States in
the early part of the twentieth century by Oscar S. Adams of the Coast
and Geodetic Survey as “an equal-area representation that is as good as
any other and in many respects superior to all others” (Adams, 1927,

p- 1.
FEATURES AND USAGE

The Albers is the projection exclusively used by the USGH for sec-
tional maps of all 50 States of the United States in the National Atlas
of 1970, and for other U.S. maps at scales of 1:2,500,000 anc smaller.
The latter maps include the base maps of the United States issued in
1961, 1967, and 1972, the Tectonic Map of the United States (1962),
and the Geologic Map of the United States (1974), all at 1:2,500,000.
The USGS has also prepared a U.S. base map at 1:3,168,000 (1 inch =50
miles).

Like other normal conics, the Albers Equal-Area Conic projection
(fig. 15) has concentric arcs of circles for parallels and equally spaced
radii as meridians. The parallels are not equally spaced, but they are
farthest apart in the latitudes between the standard parzllels and
closer together to the north and south. The pole is not the center of the
circles, but is normally an arc itself.

93
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FIGURE 15. - Albers Equal-Area Conic projection, with standard parallels 20° znd 60° N.
This illustration includes all of North America to show the change in spacing of the
parallels. When used for maps of the 48 conterminous States standard parallels
are 29.5° and 45.5° N.

If the pole is taken as one of the two standard parallels, the Albers
formulas reduce to a limiting form of the projection called Lzmbert’s
Equal-Area Conic (not discussed here, and not to be confused with his
Conformal Conic, to be discussed later). If the pole is the only standard
parallel, the Albers formulas simplify to provide the polar aspect of the
Lambert Azimuthal Equal-Area (discussed later). In both of these
limiting cases, the pole is a point. If the Equator is the one standard
parallel, the projection becomes Lambert’s Cylindrical Equal-Area (not
discussed), but the formulas must be modified. None of these extreme
cases applies to the normal use of the Albers, with standard parallels in
the temperate zones, such as usage for the United States.

Scale along the parallels is too small between the standard parallels
and too large beyond them. The scale along the meridians is just. the op-
posite, and in fact the scale factor along meridians is the reciprocal of
the scale factor along parallels, to maintain equal area.

To map a given region, standard parallels should be selected to
minimize variations in scale. Not only are standard parallels correct in
scale along the parallel; they are correct in every direction. Thus, there
is no angular distortion, and conformality exists along these standard
parallels, even on an equal-area projection. They may be on opposite
sides of, but not equidistant from the Equator. Deetz and Adams (1934,
p. 79, 91) recommended in general that standard parallels be placed
one-sixth of the displayed length of the central meridian f~om the
northern and southern limits of the map. Hinks (1912, p. 87) suggested
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one-seventh instead of one-sixth. Others have suggested selecting
standard parallels of conics so that the maximum scale error (1 minus
the scale factor) in the region between them is equal and opposite in
sign to the error at the upper and lower parallels, or so that the scale
factor at the middle parallel is the reciprocal of that at the limiting
parallels. Zinger in 1916 and Kavraisky in 1934 chose standard
parallels so that least-square errors in linear scale were minirral for the
actual land or country being displayed on the map. This involved
weighting each latitude in accordance with the land it contains (Maling,
1960, p. 263-266).

The standard parallels chosen by Adams for Albers maps of the con-
terminous United States are lats. 29.5° and 45.5° N. These parallels
provide “for a scale error slightly less than 1 per cent in the center of
the map, with a maximum of 1% per cent along the northern and
southern borders.” (Deetz and Adams, 1934, p. 91). For maps of
Alaska, the chosen standard parallels are lats. 55° and 65° N., and for
Hawaii, lats. 8° and 18° N. In the latter case, both parallels ar= south of
the islands, but they were chosen to include maps of the more southerly
Canal Zone and especially the Philippine Islands. These parallels apply
to all maps prepared by the USGS on the Albers projection, originally
using Adams’s published tables of coordinates for the Clarke 1866 ellip-
soid (Adams, 1927).

Without measuring the spacing of parallels along a meridian, it is
almost impossible to distinguish an unlabeled Albers map of the United
States from other conic forms. It is only when the projection is extend-
ed considerably north and south, well beyond the standard parallels,
that the difference is apparent without scaling.

Since meridians intersect parallels at right angles, it may at first
seem that there is no angular distortion. However, scale variations
along the meridians cause some angular distortion for any angle other
than that between the meridian and parallel, except at the standard
parallels.

FORMULAS FOR THE SPHERE

The Albers Equal-Area Conic projection may be constructed with
only one standard parallel, but it is nearly always used with two. The
forward formulas for the sphere are as follows, to obtain rectangular or
polar coordinates, given R, ¢, ¢z, ¢o, ho, ¢, and \:

x=p sin @ (12-1)

Y=po—p COS @ (12-2)
where

p=R(C-2n sin ¢)""*/n (12-3)

0 ="\ —No) (12-4)
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po=R(C-2n sin ¢o)"*In (12-3a)
C=cos? ¢, +2nsin ¢, (12-5)
n=(sin ¢, +sin ¢,)/2 (12-6)

¢, No=the latitude and longitude, respectively,
for the origin of the rectangular coor-
dinates.

¢, ¢, =standard parallels.

The Y axis lies along the central meridian \,, ¥ increasing ncrtherly.
The X axis intersects perpendicularly at ¢, x increasing easterly. If
(A=) exceeds the range +180°, 360° should be added or subtracted to
place it within the range. Constants n, C, and p, apply to tke entire
map, and thus need to be calculated only once. If only one standard
parallel ¢, is desired (or if ¢, = ¢,), n=sin ¢,. By contrast, a geometrical-
ly secant cone requires a cone constant n of sin Y2(¢, + ¢,), slightly but
distinctly different from equation (12-6). If the projection is cesigned
primarily for the Northern Hemisphere, » and p are positive. For the
Southen Hemisphere, they are negative. The scale along the merid-
ians, using equation (4-4),

h=cos ¢/(C —2n sin ¢)'/? 12-7)

If equation (4-5) is used, k will be found to be the reciprocal of &, satis-
fying the requirement for an equal-area projection when meridians and
parallels intersect at right angles. The maximum angular deformation
may be calculated from equation (4-9). It may be seen from equation
(12-7), and indeed from equations (4-4) and (4-5), that distortion is
strictly a function of latitude, and not of longitude. This is true of any
regular conic projection. ‘

For the inverse formulas for the sphere, given R, ¢,, ¢2, o, A, &, and
y: m, C and p, are calculated from equations (12-6), (12-5), and (12-3a),
respectively. Then,

¢ =arcsin {[C-(pW/R)*)(2n)} (12-8)

A=Xo+0/n (12-9)
where

p=[x*+(po—y)?]"? (12-10)

@=arctan [z/(po— )] (12-11)

Note: to use the ATAN2 Fortran function, if » is negative, reverse the
signs of z, y,and p, (given a negative sign by equation (12-3a)) before
inserting them in equation (12-11).

FORMULAS FOR THE ELLIPSOID

The formulas displayed by Adams and most other writers dereribing
the ellipsoidal form include series, but the equations may be exoressed
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in closed forms which are suitable for programing, and involve no
numerical integration or iteration in the forward form. Nearly all
published maps of the United States based on the Albers use the ellip-
soidal form because of the use of tables for the original kase maps.
(Adams, 1927, p. 1-7; Deetz and Adams, 1934, p. 93-92; Snyder,
1979a, p. 71). Given q, e, ¢,, ¢1, Po, No, ¢, and A:

Zz=p sin 6 (12-1)
Y=po—p COS P (12-2)
where
p=a(C-nq)"*n (12-12)
0=n\-N) (12-4)
po=a(C-ng,)""*In (12-12a)
C=m2+nq, (12-13)
n=(m*-m?)/(g.~q,) (12-14)
m=cos ¢/(1-e* sin? ¢)V/2 (12-15)

g=(1-ed)fsin ¢/(1 - e* sin?¢)—[1/(2¢)] In[(1-e sin ¢)/(1+e sin ¢)]} (8-12)

with the same subscripts 1, 2, or none applied to m and ¢ in equation
(12-15), and 0, 1, 2, or none applied to q and ¢ in equation (3-12), as re-
quired by equations (12-12), (12-12a), (12-13), (12-14), and (12-17). As
with the spherical case, p and n are negative, if the projection is
centered in the Southern Hemisphere. For the scale factor, modifying
(4-25):

k=pn/am (12-16)
=(C-ng)"*/Im 12-17)
h=1/k (12-18)

While many ellipsoidal equations apply to the sphere if e is made zero,
equation (3-12) becomes indeterminate. Actually, if e=0, ¢=2 sin ¢.
The axes and limitations on (A - \,) are the same as those stated for the
spherical formulas. Here, too, constants n, C, and p, need to be deter-
mined just once for the entire map.

For the inverse formulas for the ellipsoid, given, a, €, ¢,, ¢z, do, Mo, &,
and y: n, C, and p, are calculated from equations (12-14), (12-13), and
(12-12a), respectively. Then,

¢=¢+(1—e’sin’¢)2[ g  sing N lln(l—esinqb ] (3-16)

2 cos ¢ 1-¢2 1-e*sin’¢ 2e l+esin ¢
A=Xo+0/n (12-9)
where
g=(C-pn?¥a*)/n (12-19)
p =[2+(po—y)]"? (12-10)

6=arctan [x/(p,—y)] (12-11)
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To use the Fortran ATAN2 function, if # is negative, reverse the signs
of x, ¥, and p, before insertion into equation (12-11). Equation (3-16)
involves iteration by first trying ¢=arcsin (¢/2) on the right side,
calculating ¢ on the left side, substituting this new ¢ on the right side,
ete., until the change in ¢ is negligible. If

g=+{1-{(1-e*)/2e]In[(1-e)/(1+e)}} (12-20)

iteration does not converge, but ¢ = +90°, taking the sign of q.
Instead of the iteration, a series may be used for the inverse ellip-
soidal formulas:

o =0+(e*/3+31¢%180+517¢%5040+ . . . ) sin 28 +(23€*360
+251e8/3780+. . . ) sin 43+ (761¢%/45360+. . . ) sin 68+ ...(3-18)

where 8, the authalic latitude, adapting equations (3-11) and (3-12), is
found thus:

B=arcsin (¢/{1-[(1-e2)/2¢] In [(1-e)/(1+€)]}) (12-21)

but ¢ is still found from equation (12-19). Equations (12-9), (12-10),
and (12-11) also apply unchanged.

Polar coordinates for the Albers Equal-Area Conic are given for both
the spherical and ellipsoidal forms, using standard parallels of lat.
29.5° and 45.5° N. (table 14). A graticule extended to the North Pole is
shown in figure 15.
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TABLE 14.—Albers Equal-Area Conic projection: Polar coordinatss

[Standard parallels: 29.5°, 45.5° N]

Projection for sphere (R=6,370,997 m) Projection for Clarke 1866 ellipsoid

(n=0.6028370) (2=6,378,206.4 m) (n=0.6029035)
Lat. P h k p h k
52° ___ 6,693,511 0.97207 1.02874 6,713,781 0.97217 1.02863
51 ____ 6,801,923 97779 1.02271 6,822,266 97788 1.02263
50 ____ 6,910,941 98296 1.01733 6,931,335 98303 1.01727
49 ____ 7,020,505 98760 1.01255 7,040,929 98765 1.01251
48 ____ 7,130,555 99173 1.00834 7,150,989 99177 1.00830
47 ____ 7,241,038 99538 1.00464 7,261,460 99540 1.00462
46 ____ 7,351,901 .99857 1.00143 7,372,290 99858 1.00143
45,5 __ 7,407,459 1.00000 1.00000 7,427,824 1.00000 1.00000
45 ____ 7,463,094 1.00132 99868 7,483,429 1.00132 99869
44 ____ 7,574,570 1.00365 99636 7,594,829 1.00364 .99637
43 ____ 7,686,282 1.00558 99445 17,706,445 1.00556 99447
42 ____ 7,798,186 1.00713 99292 7,818,233 1.00710 .99295
41 ____ 7,910,244 1.00832 99175 17,930,153 1.00828 99178
40 ____ 8,022,413 1.00915 99093 8,042,164 1.00911 99097
39 ____ 8,134,656 1.00965 .99044 8,154,230 1.00961 .99048
38 ____ 8,246,937 1.00983 99027 8,266,313 1.00978 99031
37 ____ 8,359,220 1.00970 99040 8,378,379 1.00965 99044
36 ____ 8,471,472 1.00927 99082 8,490,394 1.00923 99086
35 ____ 8,583,660 1.00855 99152 8,602,328 1.00852 99155
34 ____ 8,695,753 1.00757 99249 8,714,149 1.00753 .99252
33 ____ 8,807,723 1.00632 99372 8,825,828 1.00629 99375
32 ____ 8,919,539 1.00481 99521 8,937,337 1.00479 99523
31 ___. 9,081,175 1.00306 99694 9,048,649 1.00305 99696
30 ____ 9,142,602 1.00108 99892 9,159,737 1.00107 99893
29.5 _. 9,198,229 1.00000 1.00000 9,215,189 1.00000 1.00000
29 ____ 9,253,796 99887 1.00114 9,270,575 99887 1.00113
28 ____ 9,364,731 99643 1.00358 9,381,141 99645 1.00357
27 ____ 9,475,383 99378 1.00626 9,491,411 99381 1.00623
26 ___.. 9,685,731 99093 1.00915 9,601,361 99097 1.00911
25 ____ 9,695,749 98787 1.01227 9,710,969 98793 1.01222
24 ____ 9,805,417 98463 1.01561 9,820,216 98470 1.01554
23 ____ 9,914,713 98119 1.01917 9,929,080 98128 1.01908
22 __._10,023,616 97757 1.02294 10,037,541 97768 1.02283

Note: p =radius of latitude circle, meters.
h=scale factor along meridians.
k=scale factor along parallels.
R =assumed radius of sphere.
a=assumed semimajor axis of ellipsoid.
n=cone constant, or ratio of angle between meridians on map to true angle.






13. LAMBERT CONFORMAL CONIC PROJECTION

SUMMARY

* Conic,

¢ Conformal.

® Parallels are unequally spaced arcs of concentric circles, more closely spaced near
the center of the map.

* Meridians are equally spaced radii of the same circles, thereby cut‘ing parallels at
right angles.

¢ Scale is true along two standard parallels, normally, or along just one.

¢ Pole in same hemisphere as standard parallels is a point; other pole is at infinity.

¢ Used for maps of countries and regions with predominant east-west expanse.

® Presented by Lambert in 1772.

HISTORY

The Lambert Conformal Conic projection (fig. 16) was almost com-
pletely overlooked between its introduction and its revival by France
for battle maps of the First World War. It was the first new projection
which Johann Heinrich Lambert presented in his Beitrige (Lambert,
1772), the publication which contained his Transverse Mercator
described previously. In some atlases, particularly British, the Lambert
Conformal Conic is called the “Conical Orthomorphic” projection.

Lambert developed the regular Conformal Conic as the oblique
aspect of a family containing the previously known polar Stereographic
and regular Mercator projections. As he stated, “Stereographic repre-
sentations of the spherical surface, as well as Mercator’s nautical
charts, have the peculiarity that all angles maintain the sizes that they
have on the surface of the globe. This yields the greatest similarity that
any plane figure can have with one drawn on the surface of a sphere.
The question has not been asked whether this property occurs only in
the two methods of representation mentioned or whether these two
representations, so different in appearances, can be made to approach
each other through intermediate stages. * * * if there are stages inter-
mediate to these two representations, they must be sought by allowing
the angle of intersection of the meridians to be arbitrar’ly larger or
smaller than its value on the surface of the sphere. This is the way in
which I shall now proceed” (Lambert, 1772, p. 28, translation by
Tobler). Lambert then developed the mathematics for both the
spherical and ellipsoidal forms for two standard parallels and included
a small map of Europe as an example (Lambert, 1772, p. 28-38, 87-89).

FEATURES

Many of the comments concerning the appearance of the Albers and
the selection of its standard parallels apply to the Lambert Conformal
101
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FIGURE 16.—Lambert Conformal Conic projection, with standard parallels 20° and 60°
N. North America is illustrated here to show the change in spacing-of the parallels.
‘When used for maps of the conterminous United States or individual States, standard
parallels are 33° and 45° N.
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Conic when an area the size of the conterminous United States or
smaller is considered. As stated before, the spacing of the parallels
must be measured to distinguish among the various conic projections
for such an area. If the projection is extended toward either pole and
the Equator, as on a map of North America, the differences become
more obvious. Although meridians are equally spaced radii of the con-
centric circular arcs representing parallels of latitude, the parallels
become further apart as the distance from the central parallels in-
creases. Conformality fails at each pole, as in the case of the regular
Mercator. The pole in the same hemisphere as the standard parallels is
shown on the Lambert Conformal Conic as a point. The ot er pole is at
infinity. Straight lines between points approximate great circle arcs for
maps of moderate coverage, but only the Gnomonic projection
rigorously has this feature and then only for the sphere. (Tl Gnomonic
is not discussed in detail.)

Two parallels may be made standard or true to scale, as well as con-
formal. It is also possible to have just one standard parallel. Since there
is no angular distortion at any parallel (except at the poles), it is possi-
ble to change the standard parallels to just one, or to another pair, just
by changing the scale applied to the existing map and calculating a pair
of standard parallels fitting the new scale. This is not true of the
Albers, on which only the original standard parallels ar> free from
angular distortion.

The scale is too small between the standard parallels and too large
beyond them. This applies to the scale along meridians, as well as along
parallels, or in any other direction, since they are equal at any given
point. Thus, in the State Plane Coordinate Systems (SPCt) for States
using the Lambert, the choice of standard parallels has the effect of
reducing the scale of the central parallel by an amount which cannot be
expressed simply in exact form, while the scale for the central meridian
of a map using the Transverse Mercator is normally reduc2d by a sim-
ple fraction.

USAGE

After the reappearance of the Lambert Conformal Coni~ in France
during the First World War, the Coast and Geodetic Survey im-
mediately began publishing tables for the projection (De<tz, 1918a,
1918b). It was only a couple of decades before the Lambert Conformal
Conic was adopted as the official projection for the SPCS for States of
predominantly east-west expanse. The prototype was the North
Carolina Coordinate System, established in 1933. Within a year or so,
similar systems were devised for many other Stater, while a
Transverse Mercator system was prepared for the remaining States.
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One or more zones is involved in the system for each State (see table 8)
(Mitchell and Simmons, 1945, p. vi). In addition, the Lambert is used
for the Aleutian Islands of Alaska, Long Island in New York, and
northwestern Florida, although the Transverse Mercator (and Oblique
Mercator in one case) is used for the rest of each of these States.

The Lambert Conformal Conic is used for the 1:1,000,009-scale
regional world aeronautical charts, the 1:500,000-scale sectional aero-
nautical charts, and 1:500,000-scale State base maps (all 48 contiguous
States* have the same standard parallels of lat. 33° and 45° M., and
thus match). Also cast on the Lambert are most of the 1:24,009-scale
TY2-minute quadrangles prepared after 1957 which lie in zores for
which the Lambert is the base for the SPCS. In the latter case, the
standard parallels for the zone are used, rather than parameters
designed for the individual quadrangles. Thus, all quadrangles for a
given zone may be mosaicked exactly. (The projection used previously
was the Polyconic, and some recent quadrangles are being produced to
the Universal Transverse Mercator projection.)

The Lambert Conformal Conic has also been adopted as the official
topographic projection for some other countries. It appears in T"e Na-
tronal Atlas (USGS, 1970, p. 116) for a map of hurricane patterns in the
North Atlantic, and the Lambert is used by the USGS for a map of the
United States showing all 50 States in their true relative positiors. The
latter map is at scales of both 1:6,000,000 and 1:10,000,000, with stand-
ard parallels 37° and 65° N.

In 1962, the projection for the International Map of the Wor'd at a
scale of 1:1,000,000 was changed from a modified Polyconic to the
Lambert Conformal Conic between lats. 84° N. and 80° S. The polar
Stereographic projection is used in the remaining areas. The sheets are
generally 6° of longitude wide by 4° of latitude high. The standard
parallels are placed at one-sixth and five-sixths of the latitude spacing
for each zone of 4° latitude, and the reference ellipsoid is the Interna-
tional (United Nations, 1963, p. 9-27). This specification has been
subsequently used by the USGS in constructing several maps for the
IMW series.

Perhaps the most recent new topographic use for the Lamber* Con-
formal Conic projection by the USGS is for middle latitudes of the
1:1,000,000-scale geologic series of the Moon and for some of the maps
of Mercury, Mars, and Jupiter’s satellites Ganymede and Callisto (see
table 15).

“For Hawaii, the standard parallels are lats. 20°40' and 23°20' N.; the corresponding base map was not prepared
for Alaska.
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FORMULAS FOR THE SPHERE

For the projection as normally used, with two standard perallels, the
equations for the sphere may be written as follows: Given R, ¢,, ¢z, o,
Mo, ¢, and \:

Z=p sin § (12-1)
Y=po—p COS O (12-2)
where
p=RF/tan" (x/4+ $/2) (13-1)
6=n\—\o) (12-4)
po=RF/tan” (x/4+ ¢o/2) (13-1a)
F'=cos ¢, tan" (x/4+ ¢,/2)/n (13-2)

n=1In (cos ¢,/cos ¢,)In[tan (x/4 + ¢,/2)/tan (x/4+ ¢,/2)] (13-3)
@0, o= the latitude and longitude for the origin of the rectangular co-
ordinates.
o1, ¢, =standard parallels.

The Y axis lies along the central meridian )\,, ¥ increasing northerly;
the X axis intersects perpendicularly at ¢,, « increasing easterly. If
(A—Xo) exceeds the range +180°, 360° should be added or subtracted.
Constants #, F, and p, need to be determined only once for the entire
map.

If only one standard parallel ¢, is desired, n=sin ¢,. The scale along
meridians or parallels, using equations (4-4) or (4-5),

k=h=cos ¢, tan"(x/4+ ¢,/2)/[cos ¢ tan*(x/4 + ¢$/2)] (13-4)

The maximum angular deformation w= 0, since the projection is confor-
mal. As with the other regular conics, % is strictly a function of latitude.
For a projection centered in the Southern Hemisphere, » and p are
negative.

For the inverse formulas for the sphere, given R, ¢,, ¢2, ¢c. ho, %, and
y:n, F', and p, are calculated from equations (13-3), (13-2), and (13-1a),
respectively. Then,

¢ =2 arctan (RF/p)'" - x/2 (13-5)

A=0/n+No (12-9)
where

p=+[2*+(po—y)*]"%, taking the sign of n (12-10)

6= arctan [x/(po—¥)] (12-11)

The Fortran ATAN2 function does not apply to equation (13-5), but
when it is used for equation (12-11), and = is negative, the signs of z, ¥,
and p, (negative from equation (13-1a)) must be reversed before inser-



TABLE 15.—Lambert Conformal Conic Projection: Used for extraterrestrial mapping

[From Batson, 1973; Davies and Batson, 1975; Batson and others, 1980; Batson, private commun., 1981]

Range in Lat. ; s Matching Parallels
Body' Scale? (Standa%d Parallelsy Adjacent Projections* Overlap with % caloy Comments
Moon ________ 1:1,000,000 16° to 48° N. & S. Mercator 0° 16° Quadrangles
(21°20', 42°40') (1:1,021,000)  20° to 30° long.
x 16° lat.
Lambert Conformal Conic 0° none
48° t0 64° N. & S. Lambert Conformal Conic 0° none Do.
(58°2(¢, 74°40") - -
Mercury ______ 1:5,000,000 20° to 70° N. & S. Mercator 5° 22.5° Quadrangles
(28°, 62°) (1:4,619,000)  90° long.x50° lat.
(1:4,765,000) Polar Stereographic 5° 67.5°
(1:4,568,000)
Mars ________ 1:5,000,000 30° to 656° N. & S. Mercator 0° 30° Quadrangles
(35.88°, 59.17°) (1:4,336,000)  60° long.x 35° lat.
(1:4,441,000) Polar Stereographic 0° 65°
(1:4,306,000)
1:2,000,000  30° to 65° N. & S.  Mercator 0° 30° Quadrangles
(35.83°, 59.17°) (1:1,953,000) 22.5° long.
%X 17.5° lat.
Polar Stereographic 0° 65° (between 30° &
(1:1,939,000) 47.5° lat).
30° long.x 17.5°
lat.
(between 47.5° &
65° lat.).
Galilean satellites of Jupiter
Ganymede 1:5,000,000 21° to 66° N. & S. Mercator 1° 21.3° Quadrangles
_ } (30°, 58°) (1:4,780,000)  90° long.x45° lat.
Callisto '/ Polar Stereographic 1° 65.2°
(1:4,769,000)

tTaken as sphere, except for Mars (ellipsoid). See table 2.

2Scale at equator of Mercator zones (Mercury and Mars), at standard parallels (Moon, Ganymede, and Callisto and 1:2,000,000 Mars), also at pole of polar Stereographic (Ganymede and Callisto).

3Scale also given if other than that in second column.
*First projection named is toward equator, second is toward pole.

SMatching parallels are both N. & S.

90T
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tion into the equation. If p =0, equation (13-5) involves division by zero,
but ¢ is +90°, taking the sign of .

The standard parallels normally used for maps of the corterminous
United States are lats. 33° and 45° N., which give approximately the
least overall error within those boundaries. The ellipsoidal fcvm is used
for such maps, based on the Clarke 1866 ellipsoid (Adams, 1918).

The standard parallels of 33° and 45° were selected by the USGS
because of the existing tables by Adams (1918), but Adams chose them
to provide a maximum scale error between latitudes 30.5° and 47.5° of
one-half of 1 percent. A maximum scale error of 2.5 percent occurs in
southernmost Florida (Deetz and Adams, 1934, p. 80). Othe~ standard
parallels would reduce the maximum scale error for the United States,
but at the expense of accuracy in the center of the map.

FORMULAS FOR THE ELLIPSOID

The ellipsoidal formulas are essential when applying the Lambert
Conformal Conic to mapping at a scale of 1:100,000 or larger and im-
portant at scales of 1:5,000,000. Given a, e, ¢,, @2, do, Mo, ¢, and \:

x=p sin @ (12-1)
Y=po—p COS 0 (12-2)
k= pnl(am) (12-16)
=m,t"/(mt,") (13-6)
where

p=aFt" (13-7)
0="m\—N\o) (12-4)
po=0aF'ty" (13-7a)
n=(n m,-1n m,)/(In t,-1In t,) (13-8)
m=cos ¢/(1- e? sin? ¢p)!/? (12-15)
t=tan (w/4- ¢/2)/[[(1-esin ¢)/(1+esin ¢)]*'? (13-9)
F=m,/(nt,”) (13-10)

with the same subscripts 1, 2, or none applied to m and ¢ in equation
(12-15), and 0, 1, 2, or none applied to ¢ and ¢ in equation (1&-9), as re-
quired by equations (13-6), (13-7), and (13-8). As with other conics, a
negative n and p result for projections centered in the Southern
Hemisphere. If ¢ = +90°, p is zero for the same sign as » and infinite
for the opposite sign. If ¢, = ¢,, for the Lambert with a single standard
parallel, equation (13-8) is indeterminate, but n=sin ¢,. Cigin and
orientation of axes for x and ¥ are the same as those for the spherical
form. Constants n, F, and p, may be determined just once for the entire
map.

When the above equations for the ellipsoidal form are used, they give
values of n and p slightly different from those in the accepted tables of
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coordinates for a map of the United States, according to the Lambert
Conformal Conic projection. The discrepancy is 85-50 m in th= radius
and 0.0000035 in %. The rectangular coordinates are correspondingly
affected. The discrepancy is less significant when'it is realized that the
radius is measured to the pole, and that the distance from the 50th
parallel to the 25th parallel on the map at full scale is only 12 m out of
2,800,000 or 0.0004 percent. For calculating convenience 60 ye~rs ago,
the tables were, in effect, calculated using instead of equation (13-9),

t=tan(n/4-¢,/2) (13-9a)
where ¢, is the geocentric latitude, or, as shown earlier,
¢, =arctan [(1-e?)tan ¢] (3-28)

In conventional terminology, the ¢ of equation (13-9) is usually written
as tan Y%Z, where Z is the colatitude of the conformal latitud=+ x (see
equation (3-1)).

For the existing tables, then, ¢,, the geocentric latitude, was used for
convenience in place of x, the conformal latitude (Adams, 1918, p.
6-9, 34). A comparison of series equations (3-3) and (3-30), or of the
corresponding columns in table 3, shows that the two auxiliary
latitudes x and ¢, are numerically very nearly the same.

There may be much smaller discrepancies found between coordinates
as calculated on modern computers and those listed in tables for the
SPCS. This is due to the slightly reduced (but sufficient) accuracv of the
desk calculators of 30-40 years ago and the adaptation of formulas to
be more easily utilized by them.

The inverse formulas for ellipsoidal coordinates, given a, ¢, ¢, @2, ¢o,
Mo, ¢, and \: , F, and p, are calculated from equations (13-8), (13-10),
(13-7a), respectively. Then,

¢=n/2-2 arctan {t{(1-e sin ¢)/(1 +¢ sin ¢)]*'%} (7-9)

where
t=(plaF )/ (13-11)
p= +[**-(po—¥)*]"?, taking the sign of n. (12-10)
A=0/n+X, (12-9)
6=arctan [x/(p, - ¥)] (12-11)

As with the spherical formulas, the Fortran ATAN2 function c'7es not
apply to equation (7-9), but for equation (12-11), if = is negative, the
signs of #, y, and p, must be reversed.

Equation (7-9) involves rapidly converging iteration: Calculate ¢
from (13-11). Then, assuming an initial trial ¢ equal to (x/2-2 arctan ¢)
in the right side of equation (7-9), calculate ¢ on the left side.
Substitute the calculated ¢ into the right side, calculate a new ¢, etc.,
until ¢ does not change significantly from the preceding trial value of ¢.
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To avoid iteration, series (3-5) may be used with (7-13) in place of
(7-9):
d=x+(e*2+5e124 + /12 +. . .) sin 2x +(Te*/48+ 29¢/240 + . . \)
sin 4y +(7¢5/120+. . .) sin 6x +. . . (3-5)

where
x=%/2-2arctant (7-13)

If rectangular coordinates for maps based on the tables using geocen-
tric latitude are to be converted to latitude and longitude, the inverse
formulas are the same as those above, except that equation (13-9a) is
used instead of (13-9) for calculations leading to =, F, and g,, and equa-
tion (7-9), or (3-5) and (7-13), is replaced with the following: which does
not involve iteration:

¢=arctan [tan ¢,/(1-¢?)] (13-13)
where
¢,=7/2-2arctant (13-14)

and ¢ is calculated from equation (13-11).

Polar coordinates for the Lambert Conformal Conic are given for
both the spherical and ellipsoidal forms, using standard parallels of 33°
and 45° N. (table 16). The data based on the geocentric latitude are
given for comparison. A graticule extended to the North Pole is shown
in figure 16.






14. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION

SUMMARY

* Two oblique conic projections, side-by-side, but with poles 104° apart.

¢ Conformal.

¢ Meridians and parallels are complex curves, intersecting at right angles.

¢ Scale is true along two standard transformed parallels on each conic projection,
neither of these lines following any geographical meridian or paralle'.

* Very small deviation from conformality, where the two conic projecticns join.

e Specially developed for a map of the Americas.

» Used only in spherical form.

® Presented by Miller and Briesemeister in 1941.

HISTORY

A “tailor-made” projection is one designed for a certain geographical
area. 0. M. Miller used the term for some projections which he
developed for the American Geographical Society (AGS) or for their
clients. The Bipolar Oblique Conic Conformal projection, developed
with William A. Briesemeister, was presented in 1941 and designed
specifically for a map of North and South America constructed in
several sheets by the AGS at a scale of 1:5,000,000 (Miller, 1941).

It is an adaptation of the Lambert Conformal Conic projection to
minimize scale error over the two continents by accommodating the
fact that North America tends to curve toward the east as one proceeds
from north to south, while South America tends to curve in the op-
posite direction. Because of the relatively small scale of th= map, the
Earth was treated as a sphere. To construct the map, a great circle arc
104° long was selected to cut through Central America from southwest
to northeast, beginning at lat. 20° S. and long. 110° W. and ter-
minating at lat. 45° N. and the resulting longitude of about 19°59'36"
W.

The former point is used as the pole and as the center of tr~nsformed
parallels of latitude for an Oblique Conformal Conic projection with
two standard parallels (at polar distances of 31° and 73°) for all the
land in the Americas southeast of the 104° great circle arc. The latter
point serves as the pole and center of parallels for an identical projec-
tion for all land northwest of the same arc. The inner and outer stand-
ard parallels of the northwest portion of the map, thus, are tangent to
the outer and inner standard parallels, respectively, of the southeast
portion, touching at the dividing line (104° -31°=173°).
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TABLE 16.—Lambert Conformal Conic projection: Polar coordinates

(Standard parallels: 33° and 45° N.)

Projection for Clarke 1866 ellipsoid (a =6,378,206.4 m)

484

Projection for sphere (R =6,370,997 m) Conformal lat.! Geocentric lat.?
(n=0.6304777) (n=0.6304965) (n=0.6305000)

Lat. [ k i P k k? P

52° 6,359,534 1.02222 1.04494 6,379,530 1.02215 1.04480 -

51 6,472,954 1.01787 1.03606 6,493,008 1.01781 1.03595 6,492,973
50 6,585,914 1.01394 1.02807 6,606,007 1.01389 1.02798 6,605,970
49 6,698,458 1.01040 1.02091 6,718,571 1.01037 1.02084 6,718,537
48 6,810,631 1.00725 1.01456 6,830,746 1.00723 1.01451 6,830,708
47 6,922,475 1.00448 1.00898 6,942,573 1.00446 1.00894 6,942,534
46 7,034,030 1.00206 1.00413 7,054,092 1.00206 1.00412 7,054,052
45 7,145,336 1.06000 1.00000 7,165,344 1.00000 1.00000 7,165,303
44 7,256,432 99828 99656 7,276,367 99828 99657 7,276,330
43 7,367,355 99689 99379 7,387,198 99690 .99381 7,387,158
42 7,478,142 199582 99167 7,497,873 99584 99170 7,497,833
41 7,588,828 .99508 99018 7,608,429 99510 99022 7,608,384
40 7,699,449 99464 98932 7,718,900 99467 .98936 7,718,857
39 7,810,038 99452 98907 7,829,321 99454 .98911 7,829,278
38 7,920,631 99470 .98942 7,939,726 99472 .98946 7,939,680
37 8,031,259 99517 99036 8,050,148 99519 99040 8,050,107
36 8,141,957 99594 99190 8,160,619 99596 99193 8,160,581
35 8,252,757 99700 99402 8,271,174 99702 99404 8,271,129
34 8,363,692 99836 99672 8,381,843 .99836 99673 8,381,798
33 8,474,793 1.00000 1.00000 8,492,660 1.00000 1.00000 8,492,614
32 8,586,092 1.00193 1.00386 8,603,656 1.00192 1.00385 8,603,610
31 8,697,622 1.00415 1.00831 8,714,863 1.00413 1.00827 8,714,820
30 8,809,415 1.00665 1.01335 8,826,313 1.00662 1.01328 8,826,267
29 8,921,602 1.00944 1.01897 8,938,038 1.00940 1.01888 8,937,986
28 9,033,915 1.01252 1.02520 9,050,070 1.01246 1.02507 9,050,021
27 9,146,686 1.01589 1.03203 9,162,440 1.01581 1.03186 9,162,396
26 9,259,848 1.01954 1.03947 9,275,181 1.01944 1.03927 9,275,132
25 9,373,433 1.02349 1.04754 9,388,326 1.02337 1.04729 9,388,277
24 9,487,474 1.02774 1.05625 9,501,906 1.02759 1.05595 9,501,859
23 9,602,003 1.03228 1.06560 9,615,955 1.03211 1.06525 9,615,911
22 9,717,054 1.03712 1.07563 9,730,506 1.03692 1.07521 9,730,456

‘Based on rigorous equations using conformal latitude. k*=scale factor (areal).
“Based on geocentric latitude as given in Adams (1918, p. 34) and Deetz and Adams (1934, p. 84). a=assumed semimajor axis of ellipsoid.
R =assumed radius of sphere.

Notes: p=radius of latitude circles, meters.

k= scale factor (linear). n=cone constant, or ratio of angle between meridians on map to true angle.
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The scale of the map was then increased by about 3.5 percent, so that
the linear scale error along the central parallels (at a polar distance of
52°, halfway between 31° and 73°) is equal and opposite in sign (- 3.5
percent) to the scale error along the two standard parallels (now +3.5
percent) which are at the normal map limits. Under these conditions,
transformed parallels at polar distances of about 36.34° and 66.58° are
true to scale and are actually the standard transformed parallels.

The use of the Oblique Conformal Conic projection was not original
with Miller and Briesemeister. The concept involves the shifting of the
graticule of meridians and parallels for the regular Lambert Conformal
Conic so that the pole of the projection is no longer at the pole of the
Earth. This is the same principle as the transformation for the Oblique
Mercator projection. The bipolar concept is unique, however, and it has
apparently not been used for any other maps.

FEATURES AND USAGE

The Geological Survey has used the North American por*ion of the
map for the Geologic Map (1965), the Basement Map (1967), the
Geothermal Map, and the Metallogenic Map, all retaining the original
scale of 1:5,000,000. The Tectonic Map of North America (1969) is
generally based on the Bipolar Oblique Conic Conformal, but there are
modifications near the edges. An oblique conic projection abcnt a single
transformed pole would suffice for either one of the continents alone,
but the AGS map served as an available base map at an avpropriate
scale. In 1979, the USGS decided to replace this projection with the
Transverse Mercator for a map of North America.

The projection is conformal, and each of the two conic projections has
all the characteristics of the Lambert Conformal Conic proj=ction, ex-
cept for the important difference in location of the pole, and a very nar-
row band near the center. While meridians and parallels on the oblique
projection intersect at right angles because the map is conformal, the
parallels are not arcs of circles, and the meridians are not straight, ex-
cept for the peripheral meridian from each transformed pole to the
nearest normal pole.

The scale is constant along each circular arc centered on the
transformed pole for the conic projection of the particular portion of
the map. Thus, the two lines at a scale factor of 1.035, th~t is, both
pairs of the official standard transformed parallels, are map»ed as cir-
cular arcs forming the letter “S.” The 104° great circle arc separating
the two oblique conic projections is a straight line on the map, and all
other straight lines radiating from the poles for the respective conic
projections are transformed meridians and are therefore great circle
routes. These straight lines are not normally shown on tke finished
map.
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At the juncture of the two conic projections, along the 104° axis,
there is actually a slight mathematical discontinuity at every point ex-
cept for the two points at which the transformed parallels of polar
distance 31° and 73° meet. If the conic projections are strictly fol-
lowed, there is a maximum discrepancy of 1.6 mm at the 1:5,000,000
scale at the midpoint of this axis, halfway between the poles or k2tween
the intersections of the axis with the 31° and 73° transformed
parallels. In other words, a meridian approaching the axis from the
south is shifted up to 1.6 mm along the axis as it crosses. Along the
axis, but beyond the portion between the lines of true scale, the
discrepancy increases markedly, until it is over 240 mm at the
transformed poles. These latter areas are beyond the needed range of
the map and are not shown, just as the polar areas of the regular
Lambert Conformal Conic are normally omitted. This would rot hap-
pen if the Oblique Equidistant Conic projection were used.

The discontinuity was resolved by connecting the two arcs with a
straight line tangent to both, a convenience which leaves the small in-
termediate area slightly nonconformal. This adjustment is inclided in
the formulas below.

FORMULAS FOR THE SPHERE

The original map was prepared by the American Geographicz! Socie-
ty, in an era when automatic plotters and easy computation of coordi-
nates were not yet present. Map coordinates were determined by con-
verting the geographical coordinates of a given graticule intersection
to the transformed latitude and longitude based on the poles of the pro-
Jection, then to polar coordinates according to the conformal projec-
tion, and finally to rectangular coordinates relative to the selected
origin.

The following formulas combine these steps in a form which may be
programed for the computer. First, various constants are cal~ulated
from the above parameters, applying to the entire map. Since only one
map is involved, the numerical values are inserted in formulas, except
where the numbers are transcendental and are referred to by simbols.

If the southwest pole is at point A, the northeast pole is at pnint B,
and the center point on the axis is C,

Ns=—110° +arccos {[cos 104° — sin (-20°) sin 45°)/

[cos (—20°) cos 45°]) (14-1)
= -19°59'36" long., the longitude of B (negative is west long.)
n=(In sin 31° —In sin 73°)/[In tan (31°/2)~In tan (73°/2)] (14-2)

=0.63056, the cone constant for both conic projections
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Fy=R sin 31°/[n tan~ (31°/2)] (14-3)
=1.83376 R, where R is the radius of the globe at the scale of the
map. For the 1:5,000,000 map, R was taken as 6,371,221 m,
the radius of a sphere having a volume equal to that of the In-
ternational ellipsoid.
ko=2/[1+nF, tan® 26°/(R sin 52°)] (14-4)
=1.03462, the scale factor by which the coordinates are multiplied
to balance the errors
F=k,F, (14-5)
=1.89725 R, a convenient constant
Az,z=arccos {[cos (—20°) sin 45° —sin (—20°) cos 45° cos
(\e+110°))/sin 104°} (14-6)
=46.78203°, the azimuth east of north of B from A
Azg,=arccos {[cos 45° sin (—20°)-sin 45° cos (~20°) cos

(A\s+110°))/sin 104°} (14-7)
=104.42834°, the azimuth west of north of A from B
T'=tan~(31°/2)+tan" (73°/2) (14-8)
=1.27247, a convenient constant
p.="FT (14-9)
=1.20709 R, the radius of the center point of the axis from either
pole
z.=2 arctan (T/2)V/~ (14-10)
=52.03888°, the polar distance of the center point from either
pole

Note that z, would be exactly 52°, if there were no discontinuity at the
axis. The values of ¢,, \., and Az, are calculated as if no adjustment
were made at the axis due to the discontinuity. Their use is completely
arbitrary and only affects positions of the arbitrary X and Y axes, not
the map itself. The adjustment is included in formulas for a giiven point.

¢.=arcsin [sin (-20°) cos 2, + cos (—20°) sin 2, cos Az,,] (14-11)
=17°16'28" N. lat., the latitude of the center point, on the
southern-cone side of the axis
A\.=arcsin (sin z, sin Az,z/cos ¢.)~ 110° (14-12)
= -73°00'27" long., the longitude of the center point, on the
southern-cone side of the axis
Az, =arcsin [cos (—20°) sin Az,z/cos ¢.] (14-13)
=45.81997°, the azimuth east of north of the axis at the center
point, relative to meridian A, on the southern-cone side of the
axis
The remaining equations are given in the order used, for calculating
rectangular coordinates for various values of latitude ¢ and longitude A
(measured east from Greenwich, or with a minus sign for the western
values used here). It must be established first whether point (¢, \) is
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north or south of the axis, to determine which conic projection is in-
volved. With these formulas, it is done by comparing the azimuth of
point (¢, \) with the azimuth of the axis, all as viewed from B:

zg=arccos [sin 45° sin ¢ + cos 45° cos ¢ cos (\s —\)] (14-14)
=polar distance of (¢, \) from pole B
Azg=arctan {sin (\; - \)/[cos 45° tan ¢ — sin 45° cos (\z—N)]} (14-15)
=azimuth of (¢, \) west of north, viewed from B

If Az, is greater than Az,, (from equation (14-7)), go to equation
(14-23). Otherwise proceed to equation (14-16) for the projection from
pole B.

ps=F tan"ez, (14-16)
k= psn/(R sin z) (14-17)
=scale factor at point (¢, \), disregarding small adjustment near
axis
a=arecos {[tan"zz, + tan"2(104° — 2,))/ T (14-18)
If [n (Azg,—Az;)| is less than q,
ps = pslcos{a—n(Azz.—Az)] (14-19)
If the above expression is equal to or greater than «,
Ps = Ps- (14-20)
Then
*'=py sin [n (Azg,—Azs)] (14-21)
Y =ps cos [N (Azgs—Azg)] - p. (14-22)

using constants from equations (14-2), (14-3), (14-7), and (14-9) for
rectangular coordinates relative to the axis. To change to nonskewed
rectangular coordinates, go to equations (14-32) and (14-33). The
following formulas give coordinates for the projection from pole A.

24 =arccos [sin (- 20°) sin ¢ + cos (—20°) cos ¢ cos (A +110°)]  (14-23)
=polar distance of (¢, \) from pole A
Az, =arctan {sin (A + 110°)/[cos (- 20°) tan ¢ —sin (- 20°) cos (A + 110°)]}

(14-24)

=azimuth of (¢, \) east of north, viewed from A
pa=F tanYez, (14-25)
k= p.n/R sin z, =scale factor at point (¢, \) (14-26)
a = arccos {[tan"Yzz, + tan"2(104° — z,))/ T} (14-27)

If |n (Azss—Az,)| is less than q,
pa' =palcos[a+n(Az,s—Az,)] (14-28)
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If the above expression is equal to or greater than a,

0a'= pa (14-29)
Then
¥=p, sin[n(Az—-Az,)] (14~-30)
Y'=—pd cos[n(Azp—-Az,)]+p. (14-31)
x= -~ cosAz. —y sinAz, (14-32)
=~y cosAz +x sinAz, (14-33)

where the center point at (¢, \.) is approximately the origin of (z, ¥)
coordinates, the Y axis increasing due north and the X axis due east
from the origin. (The meridian and parallel actually crossing the origin
are shifted by about 3' of arc, due to the adjustment at the axis, but
their actual values do not affect the calculations here.)

For the inverse formulas for the Bipolar Oblique Conic Conformal,
the constants for the map must first be calculated from equations
(14-1)~(14-13). Given x and y coordinates based on the above axes,
they are then converted to the skew coordinates:

¥=~2xcosAz +ysinAz, (14-34)
Yy =-xsinAz —ycosAz, (14-35)

If # is equal to or greater than zero, go to equation (14-36). If «’ is
negative, go to equation (14-45).

ps =[2%+(p.+y¥)]"2 (14-36)
Azy=arctan [2/(p. +¥)] : (14-37)
Let

Pe= PB' (14-38)

2z =2 arctan (ps/F)'/ (14-39)

a=arccos {[tan"Y2z, + tan"12(104° — 2,)J/ T} (14-40)

If |A%y| is equal to or greater than «, go to equation (14-42). If |Azy/| is
less than «, calculate

ps=ps €OS(a—Azy) (14-41)

and use this value to recalculate equations (14-39), (14-40), and
(14-41), repeating until p, found in (14-41) changes by less than a pre-
determined convergence. Then,

Azg=Azz—AzIn (14-42)
Using Az, and the final value of z,,

¢ =arcsin (sin 45° cos z, + cos 45° sin z; cos Az,) (14-43)
A=Az —arctan {sin Az,/[cos 45°/tan z, - sin 45° cos Az} (14-44)
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The remaining equations are for the southern cone only (negative x'):

pa =[2*+(p.~¥)]"? (14-45)
Az/=arctan[2/(p.-¥)] (14-46)
Let

PaA= PA, (14—47)

2a=2 arctan (p/F)\/ (14-48)

a = arccos {[tan"Yaz, + tan"y2(104° - 2, )/ T} (14-49)

If |Az,'| is equal to or greater than «, go to equation (14-51). If |Az,/| is
less than «, calculate

pa=pa cos(a+Az,) (14-50)

and use this value to recalculate equations (14-48), (14-49), and
(14-50), repeating until p, found in equation (14-50) change: by less
than a predetermined convergence. Then,

Az,=Az,,—Az2,//n (14-51)

Using Az, and the final value of z,,

¢ =arcsin [sin (- 20°) cos z, + cos 20° sin z, cos Az,] (14-52)
A=arctan {sin Az,/[cos (-20°)/tan z,—sin (-20°) cos Az,]}-110°
(14-53)

Equations (14-17) or (14-26) may be used for calculating & after ¢ and A
are determined.

A table of rectangular coordinates is given in table 17, based on a
radius R of 1.0, while a graticule is shown in figure 17.
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FIGURE 17. - Bipolar Oblique Conic Conformal projection used for various geologic maps.
The American Geographical Society, under O. M. Miller, prepared the base map used
by the USGS. (Prepared by Tau Rho Alpha.)



TABLE 17.-Bipolar Oblique Conic Conformal progection: Rectangular coordinates

[R=1.0. y coordinates in parentheses below x coordinates. Solid line separates the portions formed from the two transformed poles. Origin at approximately iat. 17°15' N., long. 73°02' W., with Y axis
due north at that point only]

021

Lat. W. Long. 170° 160° 150° 140° 130° 120° 110° 100°

0P e -0.14576 - - - - - - -

(1.24309) = = 2= s e — —

80 e - 31273 -0.30608 -0.29464 -0.27876 -0.25892 -0.23569 -0.20973 -0.18175
(1.21904) (1.19057) (1.16367) (1.13914) (1.11769) (1.09992) (1.08634) (1.07737)

| |/ S o - .48092 - .46705 - 44372 - .41182 - .37243 - .32673 - .27593 - .22126
(1.19421) (1.13725) (1.08381) (1.03535) ( .99311) (.95806) (.93098) ( .91246)

60 _________ - .65416 - .63138 - .59444 - .54518 - .48559 - 41763 - .34310 - .26359
(1.16623) (1.07999) (1.00006) (.92849) ( .86677) ( .81589) ( .77644) ( .74880)

A o - .83656 - .80200 - .74851 - .67943 - .59806 - .50739 - .40985 - .30732
(1.13260) (1.01551) (.90886) ( .81512) ( .73570) ( .67112) ( .62133) ( .58603)

A0 e —— e -- - .81523 - .70964 - 59515 ~- .47485 - .35078
—_— - - ( .69140) ( .59654) ( .52100) ( .46360) ( .42294)

| . - - - - - .81990 - .67999 - .53678 - .39231
- - - - ( .44545) ( .36240) ( .30074) ( .25766)

20 i - - - - - - .76061 - .59421 - .43026
- - - - - { 19177) ( .12988) ( .08782)

10 - - - - - - .83496 - .64522 - .46280
- - - -— - (.00499) (-.05222) (-.08930)

. beyond arbitrary map limits - - - - - .68704 - 48758
- - - -— — - (-.24918) (-.27670)
= [ R —— e - -— - - - 72338 - .50751*
- - - - - - (-.47150) (—.48360)

20 . - 23 e - - e _ 86567 %] - .48812
o = = - - - (-.84124) (~.73406)

| R - - - - - — - 65209 - .38781
= £ 22 - . — (~1.10271) (~.96476)

-40 _________ - - - - - - - 37784 - .26583
e 2 = = = - (-1.24800)  (-1.14111)

S50 . 3 = == == o — = - 23054 - 14798
= e = o - - (-1.37082)  (-1.28862)

=80’ ____ o5 A= == = = - — - 09524 ~ 03499
= e - - - - (~1.48363)  (-1.42268)

21 T e beyond arbitrary map limits - - - - .03504 07542
- — - - — - (-159227)  (-1.55124)

RO BT S - - =L 2 2 - .16491 .18569
o E= =L = - — (-1.70055) (- 1.67949)

SO0E it s = 2 e == . = 29823 be

ces I o = - == (- 1.81171) s

* Adjustment to z and y made for discontinuity near axis.of conic projections.
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TABLE 17.-Bipolar Oblique Conic Conformal projection: Rectangular coordinates —Continued

Lat. W. Long. 90° 80° 70° 60° 50° 40° 30° 20° 10°
90° _____ -0.14576 s = _ — - _ _ _
(1.24309) — — — — — - - -
80 — 15254  -0.12293 -0.09378 -0.06599 -0.04047 -0.01809  0.00033  0.01411  0.02275
(1.07330)  (1.07432)  (1.08048)  (1.09170)  (1.10774)  (1.12816)  (1.15236)  (1.17955)  (1.20877)
70 - 16395 - .10525 04651 01074 .06470 11317 15365 18369 20152
(.90301)  ( .90303) ( .91292)  ( .93301)  ( .96349)  (1.00421)  (1.05436)  (1.11215)  (1.17478)
60 ~ 18043 - .09477 - .00767 07976 116594 24806 32065 37468 40201
(.73324)  (.73013)  ( .74005) ( .76403)  ( .80369)  ( .86133)  ( .93920)  (1.03623)  (1.14388)
50 - 20109 - .09192 .01990 113461 25295 37631 50548 62083 64638
( 56481)  ( .55749)  ( .56421)  ( .58582)  ( .62443)  ( .68480)  (.77907) ( .93836)  (1.13342)
40 - 22411 - .09519 03637 17183 31377 46682 * [ 64259 * — -
(.39765)  ( .38660)  ( .38903)  ( .40460). ( .43354)  ( .47595) | ( .54614) — —
30 - 24741 - .10203 04468 119431 34922 51120 68326 == .
(.23065) ( .21759) ( .21675) _ ( .22664) | ( .24602) ( .27522)  ( .31537) — .
20 - 26899 - .10979 04816 *| 20770 37167 54280 72518 — —
(.06192)  (.04921)  ( .04683) | ( .05280) ( .06603) ( .08551)  ( .11131) - —
10 - 28689 |- .11634*  .05000 21614 38494 56021 74645 o -
(- .11090) |(- .12083) (- .12223) (- .11773) (- .10970) (- .09944) (- .08790) — —
0 ~ 29905 * | - .11920 105292 22166 139129 56601 75029 — —
(= .29059) |(- .29390) (- .29122) (- .28661) (- .28234) (- .28009) (- .28151) - s
~10 - 29984 - .11376 05921 22626 139254 56225 73941 — -
(- .48267) (- .47202) (- .46189) (- .45503) (- .45295) (- .45710) (- .46938) — -
~20 - 27575 - .09495 07161 23171 39016 55057 71601 - -
(- .68590) (- .65440) (- .63424) (- .62366) (- .62240) (- .63119) (- .65175) — —
~30 - 21865 - .05954 09194 23925 38524 53215 68181 — -
(- 88430) (- .83575) (- .80677) (- .79252) (- .79127) (- .80304) (- .82907) - e
- 40 - 13981 - .00990 .12002 24931 37838 50784 63813 — -
(~1.06299) (-1.01016) (- .97740) (- .96122) (- .95992) (- .97320) (-1.00184) == =
~50 - 05346 04829 15387 26134 36964 AT806 58591 - .
(~1.22345) (-1.17590) (-1.14498) (-1.12947) (-1.12858) (-1.14214) (- 1.17057) - —
- 60 03430 .11029 .19081 27404 35849 44283 52574 s o
(-1.37283) (-1.33514) (-1.31002) (-1.29749) (-1.29753) (-1.31019) (-1.33568) o —
-70 12196 17341 22844 28571 34391 40173 45785 beyond .
(-1.51739) (-1.49156) (-1.47435) (-1.46615) (-1.46721) (-1.47764) (-1.49748)  arbitrary =
-80 20970 23631 26481 29445 32443 135394 38215  map limits ==
(~1.66218) (-1.64908) (-1.64057) (-1.63693) (-1.63831) (-1.64474) (-1.65615) e -
-90 29823 g - e a i e 0 ==
(-1.81171) L . B2 o 55 = i3 .
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15. POLYCONIC PROJECTION
SUMMARY

¢ Neither conformal nor equal-area.

e Parallels of latitude (except for Equator) are arcs of circles, but are not concentric.

e Central meridian and Equator are straight lines; all other meridians are complex
curves.

® Scale is true along each parallel and along the central meridian, but no parallel is
“standard.”

e Free of distortion only along the central meridian.

e Used almost exclusively in slightly modified form for large-scale mapping in the U.S.
until the 1950’s.

e Was apparently originated about 1820 by Hassler.

HISTORY

Shortly before 1820, Ferdinand Rudolph Hassler (fig. 18) began to
promote the Polyconic projection, which was to become a standard for
much of the official mapping of the United States (Deetz and Adams,
1934, p. 58-60).

Born in Switzerland in 1770, Hassler arrived in the United States in
1805 and was hired 2 years later as the first head of the Survey of the
Coast. He was forced to wait until 1811 for funds and equipment,
meanwhile teaching to maintain income. After funds were granted, he
spent 4 years in Europe securing equipment. Surveying began in 1816,
but Congress, dissatisfied with the progress, took the Survey from s
control in 1818. The work only foundered. It was returned to Hassler,
now superintendent, in 1832. Hassler died in Philadelphia in 1843 as a
result of exposure after a fall, trying to save his instruments in a severe
wind and hailstorm, but he had firmly established what later became
the U.S. Coast and Geodetic Survey (Wraight and Roberts, 1957) and is
now the National Ocean Survey.

The Polyconic projection, usually called the American Polyconic in
Europe, achieved its name because the curvature of the circular arc for
each parallel on the map is the same as it would be following the unroll-
ing of a cone which had been wrapped around the globe tangent to the
particular parallel of latitude, with the parallel traced onto the cone.
Thus, there are many (“poly-”) cones involved, rather than the single
cone of each regular conic projection. As Hassler himself described the
principles, “[t]his distribution of the projection, in an assemblage of sec-
tions of surfaces of successive cones, tangents to or cutting a regular
succession of parallels, and upon regularly changing central meridians,
appeared to me the only one applicable to the coast of the United
States” (Hassler, 1825, p. 407-408).
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FIGURE 18.-Ferdinand Rudolph Hassler (1770-1843), first Superintendent of the U.S.
Coast Survey and presumed inventor of the Polyconic projection. As a result of his
promotion of its use, it became the projection exclusively used for USGS topographic
quadrangles for about 70 years.

The term “polyconic” is also applied generically by some writers to
other projections on which parallels are shown as circular arcs. Most
commonly, the term applies to the specific projection described here.

FEATURES

The Polyconic projection (fig. 19) is neither equal-area nor conformal.
Along the central meridian, however, it is both distortion free and true
to scale. Each parallel is true to scale, but the meridians are lengthened.



FIGURE 19.-North America on a Polyconic projection grid, central meridian long. 100° W., using a 10° interval. The parallels are arcs of
circles which are not concentric, but have radii equal to the radius of curvature of the parallel at the Earth’s surface. The meridians are
complex curves formed by connecting points marked off along the parallels at their true distances. Used by the USGS for topographic
quadrangle maps.
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by various amounts to cross each parallel at the correct position along
the parallel, so that no parallel is standard in the sense of having con-
formality (or correct angles), except at the central meridian. Near the
central meridian, which is the case with 7'2-minute quadrangles,
distortion is extremely small. The Polyconic projection is universal in
that tables of rectangular coordinates may be used for any Polyconic
projection of the same ellipsoid by merely applying the proper scale and
central meridian. U.S. Coast and Geodetic Survey Special Publication
No. 5 (1900) replaced tables published in 1884 and was often reprinted
because of the universality of the projection (the Clarke 1874 is the
reference ellipsoid). Polyconic quadrangle maps prepared to the same
scale and for the same central meridian and ellipsoid will fit exactly
from north to south. Since they are drawn in practice with straight
meridians, they also fit east to west, but discrepancies will ac:umulate
if mosaicking is attempted in both directions.

The parallels are all circular arcs, with the centers of the arcs lying
along an extension of the straight central meridian, but these arcs are
not concentric. Instead, as noted earlier, the radius of each arc is that
of the circle developed from a cone tangent to the sphere or el *osoid at
the latitude. For the sphere, each parallel has a radius proportional to
the cotangent of the latitude. For the ellipsoid, the radius is slizhtly dif-
ferent. The Equator is a straight line in either case. Along th= central
meridian, the parallels are spaced at their true intervals. For the
sphere, they are therefore equidistant. Each parallel is marked off for
meridians equidistantly and true to scale. The points so marked are
connected by the curved meridians.

USAGE

As geodetic and coastal surveying began in earnest during the 19th
century, the Polyconic projection became a standard, especially for
quadrangles. The name of the projection appears on a later r2print of
one of the first published USGS topographic quadrangles, which ap-
peared in 1886. In 1904, the USGS published tables of rectangular
coordinates extracted from an 1884 Coast and Geodetic Surve;” report.
They were called “coordinates of curvature,” but were actuglly coor-
dinates for the Polyconic projection, although the latter term was not
used (Gannett, 1904, p. 37-48).

As 2 1928 USGS bulletin of topographic instructions stated (Beaman,
1928, p. 163):

“The topographic engineer needs a projection which is simple in construction. which can
be used to represent small areas on any part of the globe, and which, for each small area
to which it is applied, preserves shapes, areas, distances, and azimuths in their true rela-

tion to the surface of the earth. The polyconic projection meets all these nee\jls and was
adopted for the standard topographic map of the United States, in which the 1°
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quadrangle is the largest unit** *and the 15 quadrangle is the average
unit. * * * Misuse of this projection in attempts to spread it over large areas—that is, to
construct a single map of a large area—has developed serious errors and gros+ exaggera-
tion of details. For example, the polyconic projection is not at all suitable for a single-
sheet map of the United States or of a large State, although it has been so employed.”

When coordinate plotters and published tables for the Stete Plane
Coordinate System (SPCS) became available in the late 1¢50’s, the
USGS ceased using the Polyconic for new maps, in favor of the
Transverse Mercator or Lambert Conformal Conic projections used
with the SPCS for the area involved. Some of the quedrangles
prepared on one or the other of these projections have continued to
carry the Polyconic designation, however.

The Polyconic projection was also used for the Progressive Military
Grid for military mapping of the U.S., until its replacement by the
Universal Transverse Mercator grid. There were seven zones, A-G,
with central meridians every 8° west from long. 73° W. (zone A), each
zone having an origin at lat. 40°30’ N. on the central meridian with
coordinates z=1,000,000 yards, y=2,000,000 yards (Deetz and Adams,
1934, p. 87-90). Some USGS quadrangles of the 1930’s and 1940’s
display tick marks according to this grid in yards, and many
quadrangles then prepared by the Army Map Service and sold by the
USGS show a complete grid pattern.

While quadrangles based on the Polyconic provide low-cistortion
mapping of the local areas, the inability to mosaic these quadrangles in
all directions without gaps makes them less satisfactory for a larger
region. Quadrangles based on the SPCS may be mosaicked over an en-
tire zone, at the expense of increased distortion.

For an individual quadrangle 7% or 15 minutes of latitude or
longitude on a side, the distance of the quadrangle from th~ central
meridian of a Transverse Mercator zone or from the standard parallels
of a Lambert Conformal Conic zone of the SPCS has much more effect
than the type of projection upon the variation in measurement of
distances on quadrangles based on the various projections. If the cen-
tral meridians or standard parallels of the SPCS zones fall on the
quadrangle, a change of projection from Polyconic to Transverse Mer-
cator or Lambert Conformal Conic results in a difference of less than
0.001 mm in the measurement of the 700-800 mm diagonals of a
7Y%.-minute quadrangle. If the quadrangle is near the edge of a zone, the
discrepancy between measurements of diagonals on two maps of the
saime quadrangle, one using the Transverse Mercator or Laml ort Con-
formal Conic projection and the other using the Polyconic, can reach
about 0.05 mm. These differences are exceeded by variations in expan-
sion and contraction of paper maps, so that these matl<matical
discrepancies apply only to comparisons of stable-base maps.
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Before the Lambert became the projection for the 1:500,(10 State
base map series, the Polyconic was used, but the details are unclear.
The Polyconic has also been used for maps of the United States; but, as
stated above, the distortion is excessive at the east and west coasts,
and most current maps are drawn to either the Lambert or Albers Con-
ic projections.

GEOMETRIC CONSTRUCTION

Because of the simplicity of construction using universal tables with
which the central meridian and each parallel may be marked off at true
distances, the Polyconic projection was favored long after theoretically
better projections became known in geodetic circles.

The Polyconic projection must be constructed with curved meridians
and parallels if it is used for single-sheet maps of areas with east-west
extent of several degrees. Then, however, the inherent distortion is ex-
cessive, and a different projection should be considered. For accurate
topographic work, the coverage must remain so small that tt < merid-
ians and parallels may ironically but satisfactorily be drawn as straight-
line segments. Official USGS instructions of 1928 declared tl~t

“* * * in actual practice on projections of small quadrangles, the parallels are not drawn
as arcs of circles, but their intersections with the meridians are plotted from the com-
puted z and y values, and the sections of the parallels between adjacent meridians are
drawn as straight lines. In polyconic projections of quadrangles of 1° or sme'ler merid-
ians may be drawn as straight lines, and in large-scale projections of small quadrangles in
low latitudes both meridians and parallels may be drawn as straight lines. For example,
the curvature of the parallels of a projection of a 15’ quadrangle on a scale of 1:48,000 in
latitudes from 0° to 30° is so small that it can not be plotted, and for a 7' qusdrangle on
a scale of 1:31,680 or larger the curvature can not be plotted at any latitude”

(Beaman, 1928, p. 167). This instruction is essentially repeated in the
1964 edition (USGS, 1964, p. 12-13). The formulas given b~low are
based on curved meridians.

FORMULAS FOR THE SPHERE

The principles stated above lead to the following forward formulas
for rectangular coordinates for the spherical form of the Polyconic pro-
jection, using radians:

If ¢ is 0,
x=RM\-)\) (7-1)
=-Ré, (15-1)
If ¢ is not 0,
E=(\-)\)sin¢g (15-2)
x=Rcot¢sinE (15-3)

Y=R[p—po+cot ¢ (1-cosE)] (15-4)
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where ¢, is an arbitrary latitude (frequently the Equator) chosen for
the origin of the rectangular coordinates at its intersection with \,, the
central meridian. As with other conics and the Transvers= Mercator,
the Y axis coincides with the central meridian, y increasing northerly,
and the X axis intersects perpendicularly at ¢,, « increasing easterly. If
(A—)o) exceeds the range +180°, 360° must be added or subtracted to
place it within the range. For the scale factor k along the meridians,
(Adams, 1919, p. 144-147):

h=(1-cos? ¢ cos E)/(sin? ¢ cos D) (15-5)
where
D=arctan [(F - sin E)/(sec? ¢ — cos E)] (15-6)

If ¢ is O, this is indeterminate, but 4 is then [1+(\—X,)*2]. In all cases,
the scale factor k along any parallel is 1.0.

The inverse formulas for the sphere are given here in th~ form of a
Newton-Raphson approximation, which converges to any desired ac-
curacy after several iterations, except that if |\—)\,|>90°, a rarely
used range, this iteration does not converge, and if y= —F¢,, it is in-
determinate. In the latter case, however,

¢=0

A=2/R+\, (7-5)
Otherwise, if y# — R¢,, calculations are made in this order:

A=¢,+y/R (15-7)

B=x*/R*>+ A? (15-8)

Using an initial value of ¢,=A, ¢,., is found from equation (15-9),

D1 =0, ~[A(0, tan ¢, +1)—- ¢, - 2(¢,2+B) tan ¢,/
[(¢.—A)tan ¢, -1] (15-9)

The new trial value of ¢,., is successively substituted in place of ¢,, un-
til ¢,.,, differs from ¢, by less than a predetermined convergence limit.
Then ¢ =¢,., as finally determined.

A=[arcsin (x tan ¢/R)l/sin¢ + X\, (15-10)

If o= +90°, equation (15-10) is indeterminate, but A may be given any
value, such as \,.

FORMULAS FOR THE ELLIPSOID

The forward formulas for the ellipsoidal form of the Polyconic projec-
tion are only a little more complicated than those for the spt=re. These
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formulas are theoretically exact. They are adapted from formulas
given by the Coast and Geodetic Survey (1946, p. 4):

If ¢ is zero:
r=a (- (7-6)
y=-M, (15-11)
If ¢ is not zero:

E=(\-)\)sin¢ (15-2)
z=Ncot¢sinFE (15-12)
y=M-My+N cot ¢ (1-cosE) (15-13)

where

M=qf(1-¢*/4—-3¢/64—5¢°/256 . . .) ¢ —(8e*/8+ 3¢*/32 + 45¢6/1024
+...) sin 2¢+(15¢*/256 + 45¢5/1024 + . . .) sin 4¢ — (35¢5/7072
+...)sin6é+ ...] (3-21)

N=al(1-¢*sin?¢)""? (4-20)

and M, is found from equation (3-21) by using ¢, for ¢ and M, for M,

with ¢, the latitude of the origin of rectangular coordinates at its in-

tersection with central meridian A,. See the spherical formulas for the

orientation of axes. The value of (\—\) must be adjusted by adcing or

subtracting 360°, if necessary to fall within the range of +18(°. For

scale factor 2 along the meridians (k=1.0 along the parallels):
If ¢ is zero,

h=[M+% \-N)*V(1-€?) (15-14)
If ¢ is not zero (Adams, 1919, p. 144-146),
h=[{1-¢*+2(1-¢*sin® ¢) sin? Y2E/tan? ¢}/[(1 - €*) cos D] (15-15)
where
D =arctan {(E - sin E)/[sec® ¢ — cos E ~ € sin® ¢/(1 - ¢* sin? ¢)}} (15-16)

M =1-¢*4-3¢"/64-5¢5/256— . . . -2 (3¢*/8+ 3¢*/32 + 45¢°/1024
+...)cos 2¢+4 (15¢%/256 + 45¢%/1024 + . . .) cos 4¢—6
(35¢%/ 3072+ . ..)cos6p+ . . .. 15-17)

As with the inverse spherical formulas, the inverse ellipsoidal for-
mulas are given in a Newton-Raphson form, converging to any desired
degree of accuracy after several iterations. As before, if |\ —N\o| >90°,
this iteration does not converge, but the projection should not k= used
in that range in any case. The formulas may be calculated in the follow-
ing order, given q, ¢, ¢, \o, &, and y. First M, is calculated from equa-
tion (3-21) above, as in the forward case, with ¢, for ¢ and M, for M.

If y= - M,, the iteration is not applicable, but

¢=0
A=/ 4+ Mo (7-12)
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If y # — M, the calculation is as follows:

A=M,+y)la
B=x*a*+ A?

131

(15-18)
(15-19)

Using an initial value of ¢,=A, the following calculations are made:

C=(1-e*sin?¢,)"2 tan ¢,

(15-20)

Then M, and M, are found from equations (3-21) and (15-17) above, us-
ing ¢, for ¢, M, for M, and M,’ for M'. Let M,=M,/a.

Gn1=0,—[A(CM,+1)-M, - Y2(M,> + B)C)/[¢* sin 2¢, (M, + P -2AM,)/
4C+(A-M,)(CM,' -2/sin 2¢,)- M.}

Each value of ¢,., is substituted in place of ¢,, and C, M,, I, and ¢,.,
are recalculated from equations (15-20), (3-21), (15-17), end (15-21),
respectively. This process is repeated until ¢,., varies frorm ¢, by less
than a predetermined convergence value. Then ¢ equals tt = final ¢,.4.

A=[aresin (xC/a))/sin ¢+,

(15-21)

(15-22)

using the C calculated for the last ¢, from equation (15-20). If ¢ = + 90°,
\ is indeterminate, but may be given any value.
Table 18 lists rectangular coordinates for a band 3° on either side of
the central meridian for the ellipsoid extending from lat. 23° to 50° N.
Figure 19 shows the graticule applied to a map of North America.

TABLE 18. - Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid

[y coordinates in parentheses under x coordinates. Italic indicat
Long. A 0° 1° 2° 3°
Lat. ¢

50° _______ 0 71,696 143,379 215,037
(5,540,628) (5,541,107) (5,542,545) (5,544,941)
1.000000 1.000063 1.000252 1.000568
49 _ 0 73,172 146,331 219,465
(5,429,409) (5,429,890) (5,431,336) (5,433,745)
1.000000 1.000066 1.000263 1.000592
48 0 74,626 149,239 223,827
(5,318,209) (5,318,693) (5,320,144) (5,322,564)
1.000000 1.000068 1.000274 1.000616
47 0 76,056 152,100 228,119
(5,207,028) (5,207,514) (5,208,970) (£ 211,397)
1.000000 1.000071 1.00028} 1.000640
46 0 77,464 154,915 . 232,342
(5,095,868) (5,096,354) (5,097,813) (£.100,244)
1.000000 1.000074 1.000295 1.000664
45 0 78,847 157,682 236,493
(4,984,727) (4,985,214) (4,986,673) (4,989,106)
1.000000 1.000076 1.000806 1.000688
4 0 80,207 160,401 240,572
(4,873,606) (4,874,092) (4,875,551) (4,8717,982)
1.000000 1.000079 1.000816 1.000712
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TABLE 18.—Polyconic Projection: Rectangular coordinates for the Clarke 1866 -

ellipsoid — Continued

Long. A 0° 1° 2° 3°
Lat. ¢

43° _________ 0 81,641 163,071 244,578
(4,762,505) (4,762,990) (4,764,446) (4,766,872)

1.000000 1.000082 1.000327 1.000736

L. — 0 82,851 165,691 248,508
(4,651,423) (4,651,907) (4,653,358) (4,655,777)

1.000000 1.000084 1.000338 1.000760

41 . 0 84,136 168,260 252,363
(4,540,361) (4,540,843) (4,542,288) (4,544,696)

1.000000 1.000087 1.000848 1.000784

40 0 85,394 170,778 256,140
(4,429,319) (4,429,798) (4,431,235) (4,433,630)

1.000000 1.000090 1.000359 1.000808

39 0 86,627 173,243 259,839
(4,318,296) (4,318,772) (4,320,199) (4,322,577)

1.000000 1.000092 1.000369 1.000831

38 0 87,833 175,656 263,458
(4,207,292) (4,207,764) (4,209,180) (4,211,539)

1.000000 1 .000095 1.000380 1.000855

37 0 89,012 178,015 266,997
(4,096,308) (4,096,775) (4,098,178) (4,100,515)

1.000000 1.000098 1.000390 1.000878

36 0 90,164 180,319 270,455
(3,985,342) (3,985,805) (3,987,192) (3,989,504)

1.000000 1.000100 1.000400 1.000901

3 __________ 0 91,289 182,568 273,830
(3,874,395) (3,874,852) (3,876,223) (3,878.507)

1.000000 1.000108 1.000411 1.000924

4 0 92,385 184,762 277,121
(3,763,467) (3,763,918) (3,765,270) (3,767,524)

1.000000 1.000105 1.000421 1.000946

33 0 93,454 186,899 280,328
(3,652,557) (8,653,001) (3,654,333) (3,656.554)

1.000000 1.000108 1.000431 1.000969

32 _ __ 0 94,494 188,980 283,449
(3,541,665) (3,542,102) (3,543,413) (3,545.597)

1.000000 1.000110 1.000440 1.000991

31 . 0 95,505 191,002 286,484
(3,430,790) (3,431,220) (3,432,507) (3,434,653)

1.000000 1.000112 1.000450 1.001012

30 0 96,487 192,967 289,432
(3,319,933) (3,320,354) (3,321,617) (3,323.722)

1.000000 1.000115 1.000459 1.0010383

29 0 97,440 194,872 292,291
(3,209,093) (8,209,506) (3,210,742) (3,212,803)

1.000000 1.000117 1.000468 1.001054

28 0 98,363 196,719 295,062
(3,098,270) (3,098,673) (3,099,882) (3,101,897)

1.000000 1.000119 1.000477 1.001074%
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TABLE 18.—Polyconic Projection: Rectangular coordinates for the Carke 1866
ellipsoid — Continued

Long. A 0° 1° 2° 3°
Lat. ¢

27° _ ___ 0 99,256 198,505 297,742
(2,987,463) (2,987,856) (2,989,036) (2,991,002)
1.000000 1.000122 1.000486 1.001094
26 ___ 0 100,119 200,231 300,332
(2,876,672) (2,877,055) (2,878,204) (2,880,119)
1.000000 1.000124 1.000495 1.001113
25 0 100,951 201,896 302,831
(2,765,896) (2,766,269) (2,767,386) (2,769,247)
1.000000 1.000126 1.000503 1.001132
24 __ 0 101,753 203,500 305,237
(2,655,136) (2,655,497) (2,656,580) (2,658,386)
1.000000 1.000128 1.000511 1.001150
23 0 102,523 205,042 307,551
(2,544,390) (2,544,739) (2,5645,788) (2,547,536)
1.000000 1.000130 1.000519 1.001168

Note: 7, y=rectangular coordinates, meters; origin at ¢=0, A=0. Y axis increasing north.
h=scale factor along meridian.
k= scale factor along parallel=1.0.
\=longitude east of central meridian. For longitude west of central meridian revers= sign of z.

MODIFIED POLYCONIC FOR THE INTERNATIONAL MAP OF T-1IE WORLD

A modified Polyconic projection was devised by Lallemand of France
and in 1909 adopted by the International Map Committee (IMC) in Lon-
don as the basis for the 1:1,000,000-scale International Map of the
World (IMW) series. Used for sheets 6° of longitude by 4° of latitude
between lats. 60° N. and 60° S., 12° of longitude by 4° of latitude be-
tween lats. 60° and 76° N. or S., and 24° by 4° between lats. 76° and
84° N. or S., the projection differs from the ordinary Polyconic in two
principal features: All meridians are straight, and there are two merid-
ians (2° east and west of the central meridian on sheets b=tween lats.
60° N. & S.) that are made true to scale. Between lats. 60° & 76° N.
and S., the meridians 4° east and west are true to scale, and between
76° & 84°, the true-scale meridians are 8° from the central meridian
(United Nations, 1963, p. 22-23; Lallemand, 1911, p. 559).

The top and bottom parallels of each sheet are nonconcertric circular
arcs constructed with radii of N cot ¢, where N=a/(1-e¢* sin? ¢)'/2.
These radii are the same as the radii on the regular Polyconic for the
ellipsoid, and the arcs of these two parallels are marked off true to
scale for the straight meridians. The two parallels, however, are spaced
from each other according to the true scale along the tvro standard
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meridians, not according to the scale along the central meridian, which
is slightly reduced. The approximately 440 mm true length of the cen-
tral meridian at the map scale is thereby reduced by 0.270 to 0.076 mm,
depending on the latitude of the sheet. Other parallels of lat. ¢ are cir-
cular arcs with radii N cot ¢, intersecting the meridians which are true
to scale at the correct points. The parallels strike other meridians at
geometrically fixed locations which slightly deviate from the true scale
on meridians as well as parallels.

With this modified Polyconic, as with USGS quadrangles based on
the rectified Polyconic, adjacent sheets exactly fit together not only
north to south; but east to west. There is still a gap when mosaicking in
all directions, in that there is a gap between each diagonal sheet and
either one or the other adjacent sheet.

In 1962, a U.N. conference on the IMW adopted the Lambert Con-
formal Conic and Polar Stereographic projections to replace the
modified Polyconic (United Nations, 1963, p. 9-10). The USGS has
prepared a number of sheets for the IMW series over the years accord-
ing to the projection officially in use at the time.



AZIMUTHAL MAP PROJECTIONS

A third very important group of map projections, some of which have
been known for 2,000 years, consists of five major azimuthal (or
zenithal) projections and various less-common forms. While cylindrical
and conic projections are related to cylinders and cones wrapped
around the globe representing the Earth, the azimuthal projections are
formed onto a plane which is usually tangent to the globe at either pole,
the Equator, or any intermediate point. These variations are called the
polar, equatorial (or meridian or meridional), and oblique (or horizon)
aspects, respectively. Some azimuthals are true perspective projec-
tions; others are not. Although perspective cylindrical and conic projec-
tions are much less used than those which are not persnective, the
perspective azimuthals are frequently used and have valuable proper-
ties. Complications arise when the ellipsoid is involved, but it is used
only in special applications that are discussed below.

As stated earlier, azimuthal projections are characterized by the fact
that the direction, or azimuth, from the center of the yrojection to
every other point on the map is shown correctly. In addition, on the
spherical forms, all great circles passing through the center of the pro-
jection are shown as straight lines. Therefore, the shortest route from
this center to any other point is shown as a straight line. Tt's fact made
some of these projections especially popular for maps as flight and
radio transmission became commonplace.

The five principal azimuthals are as follows:

(1) Orthographic. A true perspective, in which the Earth is projected
from an infinite distance onto a plane. The map looks like a globe,
thus stressing the roundness of the Earth.

(2) Stereographic. A true perspective in the spherical form, with the
point of perspective on the surface of the sphere at a point exactly
opposite the point of tangency for the plane, or opposite the
center of the projection, even if the plane is secant. This projec-
tion is conformal for sphere or ellipsoid, but the ellipsoidal form is
not truly perspective.

(3) Gnomonic. A true perspective, with the Earth projected from the
center onto the tangent plane. All great circles, not merely those
passing through the center, are shown as straight lines on the
spherical form. Since the Gnomonic projection has not been used
by the USGS, it is not discussed in detail.

(4) Lambert Azimuthal Equal-Area. Not a true perspective. Areas are
correct, and the overall scale variation is less than that found on
the major perspective azimuthals.

135
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(5) Azimuthal Equidistant. Not a true perspective. Distances from
the center of the projection to any other point are shown ccrrect-
ly. Overall scale variation is moderate compared to the perspec-
tive azimuthals.

A sixth azimuthal projection of increasing interest in the space age is
the general vertical perspective (resembling the Orthographic), pro-
jecting the Earth from any point in space, such as a satellite, onto a
tangent or secant plane. It is used primarily in derivations and pictorial
representations and has not been used by the Geological Surv=y for
published maps. Therefore, it is not discussed in this bulletin.

As a group, the azimuthals have unique esthetic qualities while re-
maining functional. There is a unity and roundness of the Earth on
each (except perhaps the Gnomonic) which is not as apparent on cylin-
drical and conic projections.

The simplest forms of the azimuthal projections are the polar aspects,
in which all meridians are shown as straight lines radiating at the'r true
angles from the center, while parallels of latitude are circles, concen-
tric about the pole. The difference is in the spacing of the parallels.
Table 19 lists for all five of the above azimuthals the radius of every 10°
of latitude on a sphere of radius 1.0 unit, centered on the Nortl Pole.
Scale factors and maximum angular deformation are also shown. The
distortion is the same for the oblique and equatorial aspects at the same
angular distance from the center of the projection, except that & and &
are along and perpendicular to, respectively, radii from the center, not
necessarily along meridians or parallels.

There are two principal drawbacks to the azimuthals. First, they are
more difficult to construct than the cylindricals and the conics, except
for the polar aspects. This drawback was more applicable, howeer, in
the days before computers and plotters, but it is still more difficult to
prepare a map having complex curves between plotted coordinates
than it is to draw the entire graticule with circles and straight lines.
Nevertheless, an increased use of azimuthal projections in atlases and
for other published maps may be expected.

Secondly, most azimuthal maps do not have standard parallels or
standard meridians. Each map has only one standard point: the center
(except for the Stereographic, which may have a-standard circle). Thus,
the azimuthals are suitable for minimizing distortion in a somewhat cir-
cular region such as Antarctica, but not for an area with predominant
length in one direction.
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TABLE 19.-Comparison of major azimuthal projections: Radius, scale factors, max-
imum angular distortion for projection of sphere with radius 1.0, Nortk Polar aspect

Lat. Orthographic
Radius h k w
90° 0.00000 1.00000 1.0 0.000°
80 .17365 98481 1.0 877
70 .34202 .93969 1.0 3.563
60 .50000 .86603 1.0 8.234
50 .64279 .76604 1.0 15.23
40 76604 64279 1.0 25.12
30 .86603 .50000 1.0 38.94
20 93969 .34202 1.0 58.72
10 98481 .17365 1.0 89.51
1(0) 1.00000 .00000 1.0 180.0
-20 _— _— _— —
-30 _— . _ —_—
- gg (beyond limits of map) __ _—
-60 - _ _— —
-70 _— — _— —
-80 - - _— _—
-90 - _— _— —
Lat. Stereographi«
Radius k*
90° 0.00000 1.00000
80 17498 1.00765
70 .35263 1.03109
60 .53590 1.07180
50 72794 1.13247
40 93262 1.21744
30 1.15470 1.33333
20 1.40042 1.49029
10 1.67820 1.70409
0 2.00000 2.00000
-10 2.38351 2.42028
-20 2.85630 3.03961
-30 3.46410 4.00000
-40 4.28901 5.59891
-50 5.49495 8.54863
-60 7.46410 14.9282
-70 11.3426 33.1634
-80 22.8601 131.646

-90 _ ® o
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TABLE 19.-Comparison of major azimuthal projections: Radius, scale factirs, maz-
wmum angular distortion for projection of sphere with radius 1.0, North Polar
aspect— Continued

Lat. Gnomonic
Radius h k w
90° 0.00000 1.00000 1.00000 0.000°
80 17633 1.03109 1.01543 877
70 36397 1.13247 1.06418 3.563
60 571735 1.33333 1.15470 8.234
50 .83910 1.70409 1.30541 15.23
40 1.19175 2.42028 1.555672 25.12
30 1.73205 4.00000 2.00000 38.94
20 2.74748 8.54863 2.92380 58.72
10 5.67128 33.1634 5.75877 89.51
0 o oo -5 _—
-10 - — - _
-20 — — _— _—
-30 . . _ -
- gg (beyond limits of map) — -
-60 i . — _—
-70 . - - _—
-80 . - _— -
-90 - - - —
Lat Lambert Azimuthal Equal-Area
at- Radius ) k ©
90° 0.00000 1.00000 1.00000 0.000°
80 17431 99619 1.00382 437
70 .34730 .98481 1.01543 1.754
60 51764 96593 1.03528 3.972
50 .68404 93969 1.06418 7.123
40 84524 .90631 1.10338 11.25
30 1.00000 .86603 1.15470 16.43
20 1.14715 .81915 1.22077 22.71
10 1.28558 76604 1.30541 30.19
0 1.41421 70711 1.41421 38.94
-10 1.53209 64279 1.55572 490.07
-20 1.63830 57358 1.74345 60.65
-30 1.73205 50000 2.00000 73.74
-40 1.81262 42262 2.36620 8¢ 36
-50 1.87939 .34202 2.92380 104.5
-60 1.93185 .25882 3.86370 122.0
(] 1.96962 .17365 5.75877 140.6
-80 1.99239 08716 11.4737 160.1

-90 2.00000 .00000 o 180.0
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TABLE 19.-Comparison of major azimuthal projections: Radius, scale factors, max-
mum angular distortion for projection of sphere with radius 1.0, North Polar
aspect— Continued

Lat Azimuthal Equidistant
at. Radius h k @
90° 0.00000 1.0 1.00000 0.000°
80 17453 1.0 1.00510 291
70 34907 1.0 1.02060 1.168
60 52360 1.0 1.04720 2.642
50 69813 1.0 1.08610 4.731
40 87266 1.0 1.18918 7.461
30 1.04720 1.0 1.20920 10.87
20 1.22173 1.0 1.30014 15.00
10 1.39626 1.0 1.41780 19.90
0 1.57080 1.0 1.57080 25.66
-10 1.74533 1.0 1.77225 32.35
-20 1.91986 1.0 2.04307 40.09
-30 2.09440 1.0 2.41840 49.03
-40 2.26893 1.0 2.96188 59.36
-50 2.44346 1.0 3.80135 71.39
-60 2.61799 1.0 5.23599 85.57
-70 2.79253 1.0 8.16480 102.8
- 80 2.96706 1.0 17.0866 125.6
-90 3.14159 1.0 ®© 180.0

Radius=radius of circle showing given latitude.

w=maximum angular deformation.
h=scale factor along meridian of longitude.
k=scale factor along parallel of latitude.

* For Stereographic, A=k and w=0.






16. ORTHOGRAPHIC PROJECTION

SUMMARY

Azimuthal.

All meridians and parallels are ellipses, circles, or straight lines.

Neither conformal nor equal-area.

Closely resembles a globe in appearance, since it is a perspective projection from
infinite distance.

Only one hemisphere can be shown at a time.

Much distortion near the edge of the hemisphere shown.

No distortion at the center only.

Directions from the center are true.

Radial scale factor decreases as distance increases from the center.

Scale in the direction of the lines of latitude is true in the polar aspect.

Used chiefly for pictorial views.

Used only in the spherical form.

Known by Egyptians and Greeks 2,000 years ago.

HISTORY

To the layman, the best known perspective azimuthal projection is
the Orthographic, although it is the least useful for measurements.
While its distortion in shape and area is quite severe near the edges,
and only one hemisphere may be shown on a single mag. the eye is
much more willing to forgive this distortion than to forgive that of the
Mercator projection because the Orthographic projectior makes the
map look very much like a globe appears, especially in the oblique
aspect.

The Egyptians were probably aware of the Orthographic projection,
and Hipparchus of Greece (2nd century B.C.) used the equatorial aspect
for astronomical calculations. Its early name was “analemma,” a name
also used by Ptolemy, but it was replaced by “orthographic” in 1613 by
Francois d’ Aiguillon of Antwerp. While it was also used by Indians and
Arabs for astronomical purposes, it is not known to have been used for
world maps older than 16th-century works by Albracht Diirer
(1471-1528), the German artist and cartographer, who prenared polar
and equatorial versions (Keuning, 1955, p. 6).

FEATURES

The point of perspective for the Orthographic projectior is at an in-
finite distance, so that the meridians and parallels are projected onto
the tangent plane with parallel projection lines. All meridians and
parallels are shown as ellipses, circles, or straight lines.
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As on all polar azimuthal projections, the meridians of the polar Or-
thographic projection appear as straight lines radiating from the pole
at their true angles, while the parallels of latitude are complete circles
centered about the pole. On the Orthographic, the parallels are spaced
most widely near the pole, and the spacing decreases to zero at the
Equator, which is the circle marking the edge of the map (figs. 20,
21A). As a result, the land shapes near the pole are prominent, while
lands near the Equator are compressed so that they can hard’; be
recognized. In spite of the fact that the scale along the meridians varies
from the correct value at the pole to zero at the Equator, the scale
along every parallel is true.

The equatorial aspect of the Orthographic projection has as its center
some point on the Earth’s Equator. Here, all the parallels of latitude in-
cluding the Equator are seen edge-on; thus, they appear as str~ight
parallel lines (fig. 21B). The meridians, which are shaped like circl=s on
the sphere, are projected onto the map at various inclinations to the
lines of perspective. The central meridian, seen edge-on, is a straight
line. The meridian 90° from the central meridian is shown as a circle
marking the limit of the equatorial aspect. This circle is equidistantly
marked with parallels of latitude. Other meridians are ellipses of eccen-
tricities ranging from zero (the bounding circle) to 1.0 (the central
meridian).

Infinite perspective |

__tangent plane
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FIGURE 20. — Geometric projection of the parallels of the polar Orthographic projection.

FiGuRE 21.-Orthographic projection. (4) Polar aspect. (B) Equatorial aspect, approxi-
mately the view of the Moon, Mars, and other outer planets as seen from the Earth.
(C) Oblique aspect, centered at lat. 40° N., giving the classic globelike view.



AZIMUTHAL MAP PROJECTIONS

i |
o |
/S5

g ‘\ b
9 o

fatang]

R \(/\

PN x

TN T s
R d

/NG

7
g
V-
s

LTS

TR

\

N
AN

\
=

v,

143




144 MAP PROJECTIONS USED BY THE USGS

The oblique Orthographic projection, with its center somew} 2re be-
tween the Equator and a pole, gives the classic globelike appe=rance;
and in fact an oblique view, with its center near but not on the Equator
or pole, is often preferred to the equatorial or polar aspect for gictorial
purposes. On the oblique Orthographic, the only straight line is the cen-
tral meridian, if it is actually portrayed. All parallels of latitude are
ellipses with the same eccentricity (fig. 21C). Some of these ellipses are
shown completely and some only partially, while some cannot be shown
at all. All other meridians are also ellipses of varying eccentricities. No
meridian appears as a circle on the oblique aspect.

The intersection of any given meridian and parallel is shown on an
Orthographic projection at the same distance from the central merid-
ian, regardless of whether the aspect is oblique, polar, or equatorial,
provided the same central meridian and the same scale are mair *ained.
Scale and distortion, as on all azimuthal projections, change orly with
the distance from the center. The center of projection has no distortion,
but the outer regions are compressed, even though the scale is true
along all circles drawn about the center. (These circles are not “stand-
ard” lines because the scale is true only in the direction followec by the
line.)

USAGE

The Orthographic projection seldom appears in atlases, excent as a
globe in relief without meridians and parallels. When it does appear,
it provides a striking view. Richard Edes Harrison has used the Ortho-
graphic for several maps in an atlas of the 1940’s partially based on
this projection. Frank Debenham (1958) used photographed relief
globes extensively in The Global Atlas, and Rand McNally has done
likewise in their world atlases since 1960. The USGS has used it occa-
sionally as a frontispiece or end map (USGS, 1970; Thompson. 1979),
but it also provided a base for definitive maps of voyages of discovery
across the North Atlantic (USGS, 1970, p. 133).

It became especially popular during the Second World War when
there was stress on the global nature of the conflict. With som« space
flights of the 1960’s, the first photographs of the Earth from space
renewed consciousness of the Orthographic concept.

GEOMETRIC CONSTRUCTION

The three aspects of the Orthographic projection may be graphically
constructed with an adaptation of the draftsman’s technique shown by
Raisz (1962, p. 180). Referring to figure 22, circle A is drawn for the
polar aspect, with meridians marked at true angles. Perpendiculars are
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tion of polar, equatorial, and oblique Orthographic projections.
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dropped from the intersections of the outer circle with the meridians
onto the horizontal meridian EE. This determines the rzdii of the
parallels of latitude, which may then be drawn about the center.

For the equatorial aspect, circle C is drawn with the same radius as
A, circle B is drawn like half of circle A, and the outer cir-le of C is
equidistantly marked to locate intersections of parallels with that cir-
cle. Parallels of latitude are drawn as straight lines, with the Equator
midway. Parallels are shown tilted merely for use with oblique projec-
tion circle D. Points at intersections of parallels with other meridians
of B are then projected onto the corresponding parallels of latitude on
C, and the new points connected for the meridians of C. By tilting
graticule C at an angle ¢, equal to the central latitude of the desired
oblique aspect, the corresponding points of circles A and C may be pro-
jected vertically and horizontally, respectively, onto circle D to provide
intersections for meridians and parallels.

FORMULAS FOR THE SPHERE

To understand the mathematical concept of the Orthograptic projec-
tion, it is helpful to think in terms of polar coordinates p and 6:

p=Rsinc¢ (16-1)
0=7—-Az=180°-Az (16-2)

where ¢ is the angular distance of the given point from the center of
projection. Az is the azimuth east of north, and 6 is the polar coordinate
east of south. The distance from the center of a point on an Or-
thographic map projection is thus proportional to the sine of the
angular distance from the center on the sphere. Applying equations
(5-3), (56-4), and (5-5) for great circle distance ¢ and azimith Az in
terms of latitude and longitude, and equations for rectangular coor-
dinates in terms of polar coordinates, the equations for re~tangular
coordinates for the oblique Orthographic projection reduce to the
following, given R, ¢,, Ao, ¢, and \:

=R cos ¢ sin(A—\o) (16-3)
y=R [cos ¢, Sin ¢ —sin ¢, cos ¢ cos (A~ )] (16-4)
h=cosc

=5in ¢, sin ¢ + €oS ¢, €0s ¢ cos (A —\o) (16-5)
kK=1.0

where ¢, and )\, are the latitude and longitude, respectively, of the
center point and origin of the projection, %' is the scale factcr along a
line radiating from the center, and ¥’ is the scale factor in a direction
perpendicular to a line radiating from the center. The Y axis coincides
with the central meridian \,, ¥ increasing northerly. All the parallels
are ellipses of eccentricity cos ¢,.
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For the north polar Orthographic, letting ¢,=90°, x is still found
from (16-3), but

Yy=-Rcos¢pcos(A\—X\o) (16-6)

h=sin ¢ (16-7)
In polar coordinates,

p=Rcos¢ (16-8)

B=N-Xo (16-9)

For the south polar Orthographic, with ¢, = —90°, x does not change,
but

y=R cos¢ cos(A=X\o) (16-10)

h=-sin¢ (16-11)
For polar coordinates, p is found from (16-8), but

f=m—N+No (16-12)

For the equatorial Orthographic, letting ¢, =0, « still does not change
from (16-3), but

y=R sin ¢ (16-13)

In automatically computing a general set of coordinates for a com-
plete Orthographic map, the distance ¢ from the center should be
calculated for each intersection of latitude and longitude to determine

whether it exceeds 90° and therefore whether the point is bayond the
range of the map. More directly, using equation (5-3),

€oS ¢=S5in ¢, sin ¢ + €os ¢, cos ¢ cos (A=) (5-3)

if cos ¢ is zero or positive, the point is to be plotted. If cos ¢ is negative,
the point is not to be plotted.

For the inverse formulas for the sphere, to find ¢ and ), given R, ¢,,
Mo &, and y:

¢ =arcsin [cos ¢ sin ¢, + (¥ sin ¢ cos ¢,/p)] (16-14)

But if p=0, ¢=¢,.
If ¢, is not +90°,

A=M\o+arctan [z sin ¢/(p cos ¢, cosc—-y sin ¢, sinc)] (16-15)
If ¢, is 90°,

A=\, +arctan [z/(-y)] (16-16)
If ¢, is -90°,
A=\, +arctan (x/y) (16-17)
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Note that, while the ratio [x/(-y)] in (16-16) is numerically the same as
(—/y), the necessary quadrant adjustment is different when using the
Fortran ATAN2 function or its equivalent.

In equations (16-14) and (16-15),

p=(x*+y?)"? (16-18)
c=aresin (p/R) (16-19)

Simplification for inverse equations for the polar and equatorial
aspects is obtained by giving ¢, values of +90° and 0°, respertively.
They are not given in detail here.

Tables 20 and 21 list rectangular coordinates for the equato+ial and
oblique aspects, respectively, for a 10° graticule with a sphere of radius
R=1.0. For the oblique example, ¢,=40°.

TABLE 20.-Orthographic projection: Rectangular coordinates for equatorial aspect

Long. 0° 10° 20° 30° 40°
Lat. Y x
90° ___ 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
80 ____ .9848 .0000 .0302 .0594 .0868 1116
70 ____ 19397 0000 .0594 1170 1710 .2198
60 ____ .8660 .0000 .0868 1710 2500 3214
50 - 7660 .0000 1116 2198 3214 4132
40 ____ .6428 .0000 .1330 .2620 .3830 4924
30 - .5000 .0000 .1504 .2962 .4330 5567
20 ____ .3420 .0000 .1632 3214 .4698 .6040
10 ___ .1736 .0000 1710 .3368 4924 6330
0 ____ .0000 .0000 .1736 .3420 .5000 6428
Long. 50° 60° 70° 80° 90°
Lat. x
90° ___ 0.0000 0.0000 0.0000 0.0000 0.0000
80 ____ .1330 1504 .1632 1710 1736

70 .2620 2962 3214 .3368 3420

60 ____ .3830 4330 .4698 4924 .5000

50 ____ 4924 5567 .6040 .6330 .6428
40 ____ .5868 .6634 7198 7544 7660
30 ____ .6634 7500 .8138 .8529 .8660
20 ___ 7198 .8138 .8830 9254 9397

10 ____ .7544 .8529 9254 .9698 .9848

0 ____ 7660 .8660 9397 .9848 1.0000

Radius of sphere=1.0
Origin: (z, y)=0 at (lat., long.)=0. Y axis increases north. Other quadrants of hemisphere are symmetrical.
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TABLE 21. - Orthographic projection: Rectangular coordinates for oblique aspct centered
at lat. 40° N.

[The circle bounding the hemisphere map has the same coordinates as the A=90° circle on the equatorial Orthographic
projection. The radius of the sphere=1.0. y coordinate in parentheses under x coordinate]

% 0° 10° 20° 30° 40°
Lat.

90° ____________ 0.0000 0.0000 0.0000 0.0000 0.0000
( .7660)  ( .7660)  ( .7660) ( .7660)  ( .7660)
80 .0000 0302 0594 10868 1116
( 6428)  ( .6445) ( .6495) ( 6577) ( .6689)
0 .0000 0594 1170 1710 2198
( 5000) ( .5033) ( .5133) ( .5295) ( .5514)
60 . ___ 10000 10868 1710 2500 3214
( 3420) ( .3469) ( .3614) ( .3851) ( .4172)
50 10000 1116 2198 3214 4132
( .1736)  ( .1799) ( .1986) ( .2290) ( .2703)
0 .0000 1330 2620 3830 4924
( 0000) ( .0075) ( .0297) ( .0660) ( .1152)
30 0000 1504 2962 4330 5567
(-.1736)  (-.1652)  (-.1401) (-.0991)  (-.0434)
20 0000 1632 3214 4698 6040
(-.3420) (-.3328) (-.3056) (-.2611)  (~.2007)
10 0000 1710 3368 4924 6330
(-5000)  (-.4904) (-.4618) (-.4152)  (-.3519)
0 o 0000 1736 3420 5000 6428
(-6428)  (-.6330) (-.6040) (-.5567)  (-.4924)
-0 0000 1710 3368 4924 6330
(-7660)  (—.7564) (-.7279) (-.6812) (~.6179)
20 0000 1632 3214 4698 6040
(-.8660) (-.8568) (-.8296) (-.7851)  (-.7247)
-80 -0000 1504 2962 14330 5567
(-.9397) (-.9312) (-.9061) (-.8651)  (-.8095)
40 ____________ 0000 1330 2620 3830 4924
(- 9848) (-9773)  (-.9551) (-.9188) (-.8696)
50 -0000 _ _ _ _
(- 1.0000) _ _ = —

Origin: (z, y)=0 at (lat., long.)=(40°, 0). Y axis increases north. Coordinates shown for central meridian (A = 0)
and meridians east of central meridian. For meridians west (negative), reverse signs of meridians aad of z.
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TABLE 21. - Orthographic projection: Rectangular coordinates for ohligue aspect centered
at lat. 40° N.—Continued

\\\\\Efff; 50° 60° 70° 80° 90°
Lat.

90° ____________ 0.0000 0.0000 0.0000 0.0000 0.0000
( 7660)  ( .7660)  ( .7660) ( .7660)  ( .7660)
80 1330 1504 1632 1710 1736
( 6827) ( .6986) ( .7162) ( .7350)  ( .7544)
0 2620 2962 3214 3368 3420
( 5785)  ( .6099) ( .6447) ( .6817) ( .7198)
60 . ___ 3830 14330 4698 4924 5000
( 4568)  ( .5027) ( .5535) ( .6076) ( .6634)
50 4924 5567 6040 6330 6428
( 3212) ( .3802) ( .4455) ( .5151) ( .5868)
0 5868 6634 7198 7544 7660
( 1759)  ( .2462)  ( .3240) ( .4069)  ( .4924)
80 6634 7500 8138 8529 8660
( 0252) ( .1047) ( .1926) ( .2864) ( .3830)
20 7198 8138 8830 9254 19397
(-.1263)  (-.0400) ( .0554) ( .1571) ( .2620)
10 ____________ 7544 8529 9254 9698 9848
(-2739)  (-.1835)  (-.0835) ( .0231)  ( .1330)
0 7660 8660 9397 9848 1.0000
(-.4132)  (-.3214) (-.2198) (-.1116) ( .0000)
-10 7544 8529 9254 9698 _
(~.5399)  (-.4495)  (-.3495)  (-.2429) _
-20 . 7198 8138 8830 _ -
(-.6503)  (-.5640)  (-.4686) - -
30 6634 7500 __ _ _

TABLE 21. - Orthographic projection: Rectangular coordinates for oblique aspect centered
at lat. 40° N.-Continued

\\\\\lifff; 100° 110° 120° 130° 140°
Lat.

90° ____________ 0.0000 0.0000 0.0000 0.0000 0.0000

( 7660) ( .7660)  ( .7660)  ( .7660)  ( .7660)
80 1710 1632 1504 1330 1116

( 7738) ( 7926) ( .8102) ( .8262) ( .8399)
70 o 3368 3214 2962 2620 2198

( 7580) ( .7950) ( .829%) ( .8612) ( .8883)
60 _______________ 4924 4698 4330 3830 3214

( 7192)  ( 7733)  ( .8241)  ( R700)  ( .9096)
50 - ________  .6330 16040 5567 4924 4132

( 6586) ( .7281) ( .7934) ( .8524)  ( .9033)
40 7544 7198 6634 5868 _

( 5779) ( .6608) ( .7386)  ( 2089) _
80 8529 8138 __ - _

( A797)  ( 5734) - - _
20 . 9254 __ _ - -

( .3669) - - - _




AZIMUTHAL MAP PROJECTIONS 151

TABLE 21. - Orthographic projection: Rectangular coordinates for oblique aspect centered
at lat. 40° N.-Continued

Long. 150° 160° 170° 180°
m

90° ____________ 0.0000 0.0000 0.0000 0.0000
(.7660)  (.7660)  ( .7660)  ( .7660)
80 ______________ 0868 0594 0302 .0000
(.8511)  (.8593)  ( .8643)  ( .8660)
70 1710 1170 10594 .0000
(.9102)  (.9264)  (.9364)  ( .9397)
60 o __ 2500 1710 10868 .0000
(9417)  (.9654)  ( .9799)  ( .9848)
50 3214 2198 1116 10000
(.9446)  ( .9751)  ( .9937)  (1.0000)

40 — _— — _







17. STEREOGRAPHIC PROJECTION
SUMMARY

Azimuthal.

Conformal.

The central meridian and a particular paralle] (if shown) are straight lires.

All meridians on the polar aspect and the Equator on the equatoriz] aspect are
straight lines,

All other meridians and parallels are shown as arcs of circles.

¢ A perspective projection for the sphere.

¢ Directions from the center of the projection are true (except on ellipsoidal oblique and
equatorial aspects).

Scale increases away from the center of the projection.

Point opposite the center of the projection cannot be plotted.

Used for polar maps and miscellaneous special maps.

Apparently invented by Hipparchus (2nd century B.C.).

[ ) ® o o 0

HISTORY

The Stereographic projection was probably known in its polar form
to the Egyptians, while Hipparchus was apparently the firs® Greek to
use it. He is generally considered its inventor. Ptolemy referred to it as
“Planisphaerum,” a name used into the 16th century. The name
“Stereographic” was assigned to it by Francois d’ Aiguillon in 1613. The
polar Stereographic was exclusively used for star maps until perhaps
1507, when the earliest-known use for a map of the world wzs made by
Walther Ludd (Gaultier Lud) of St. Dié, Lorraine.

The oblique aspect was used by Theon of Alexandria in the 4th cen-
tury for maps of the sky, but it was not proposed for geographical maps
until Stabius and Werner discussed it together with their cordiform
(heart-shaped) projections in the early 16th century. The earliest-
known world maps were included in a 1583 atlas by Jacques de Vaulx
(c. 1655-97). The two hemispheres were centered on Paris and its op-
posite point, respectively.

The equatorial Stereographic originated with the Arabs. and was
used by the Arab astronomer Ibn-el-Zarkali (1029-87) of Tol=do for an
astrolabe. It became a basis for world maps in the early 16th century,
with the earliest known examples by Jean Roze (or Rotz), a Morman, in
1542. After Rumold (the son of Gerhardus) Mercator’s use of the
equatorial Stereographic for the world maps of the atlas of 1595, it
became very popular among cartographers (Keuning, 1955, p. 7-9;
Nordenskiold, 1889, p. 90, 92-93).
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FEATURES

Like the Orthographic, the Stereographic projection is a true
perspective in its spherical form. It is the only known true persnective
projection of any kind that is also conformal. Its point of projection is
on the surface of the sphere at a point just opposite the point of tangen-
cy of the plane or the center point of the projection (fig. 23). Thus, if the
North Pole is the center of the map, the projection is from th= South
Pole. All of one hemisphere can be comfortably shown, but it is impossi-
ble to show both hemispheres in their entirety from one center. The
point on the sphere opposite the center of the map projects at an in-
finite distance in the plane of the map.

N.Pole Plane of projection
I

< < — \/LC__;I\' 7 7 7
) | / ’

S.Pole
FIGURE 23.—Geometric projection of the polar Stereographic projection.

The polar aspect somewhat resembles other polar azimutheals, with
straight radiating meridians and concentric circles for parallels (fig.
24A). The parallels are spaced at increasingly wide distances, the far-
ther the latitude is from the pole (the Orthographic has the opposite
feature).

In the equatorial and oblique aspects, the distinctive appearance of
the Stereographic becomes more evident: All meridians and parallels,
except for two, are shown as circles, and the meridians inter~ect the
parallels at right angles (figs. 24B, C). The central meridian i~ shown
straight, as is the parallel of the same numerical value, but opposite in
sign to the central parallel. For example, if lat. 40° N. is the central
parallel, then lat. 40° S. is shown as a straight line. For the ecatorial
aspect with lat. 0° as the central parallel, the Equator, which is of
course also its own negative counterpart, is shown straight. (For the
polar aspect, this has no meaning since the opposite pole cennot be
shown.) Circles for parallels are centered along the central meridian;

FIGURE 24.-Stereographic projection. (4) polar aspect; the most common scientific
projection for polar areas of Earth, Moon, and the planets, since it is conf~rmal. (B)
equatorial aspect; often used in the 16th and 17th centuries for maps of herispheres.
(C) oblique aspect; centered on lat. 40° N. The Stereographic is the only geometric
projection of the sphere which is conformal.
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circles for meridians are centered along the straight parallel. The me-
ridian 90° from the central meridian on the equatorial aspect i~ shown
as a circle bounding the hemisphere. This circle is centered on the pro-
jection center and is equidistantly marked for parallels of latitude.

As an azimuthal projection, directions from the center are shown cor-
rectly in the spherical form. In the ellipsoidal form, only th= polar
aspect is truly azimuthal, but it is not perspective, in order to retain
conformality. The oblique and equatorial aspects of the ellipsoidal
Stereographic, in order to be conformal, are neither azimuthal nor
perspective. As with other azimuthal projections, there is no di~tortion
at the center, which may be made the “standard point” true to scale in
all directions. Because of the conformality of the projection, a
Stereographic map may be given, instead of a “standard point,” a
“standard circle” (or “standard parallel” in the polar aspect) with an ap-
propriate radius from the center, balancing the scale error throughout
the map. (On the ellipsoidal oblique or equatorial aspects, the lines of
constant scale are not perfect circles.) This cannot be done with non-
conformal azimuthal projections. In fact, O. M. Miller (1953) took the
standard circle a step further and modified the s»herical
Stereographic to produce a standard oval better suited for a combined
map of Europe and Africa. This projection is called Miller’s Prolated
Stereographic.

USAGE

While the oblique aspect of the Stereographic projection has been
recently used in the spherical form by the USGS for circular maps of
portions of the Moon, Mars, and Mercury, generally center~d on a
basin, the USGS has most often used the Stereographic in the polar
aspect and ellipsoidal form for maps of Antarctica. For 1:500,000
sketch maps, the standard parallel is 71° S.; for its 1:250,070-scale
series between 80° and the South Pole, the standard parallel i< 80°14'
S. The Universal Transverse Mercator (UTM) grid employs the UPS
(Universal Polar Stereographic) projection from the North Pole to lat.
84° N., and from the South Pole to lat. 80° S. For the UPS, the scale at
each pole is reduced to 0.994, resulting in a standard parallel of about
81°07 N. or S.

In 1962, a United Nations conference changed the polar pction of
the International Map of the World (at a scale of 1:1,000,000) from a
modified Polyconic to the polar Stereographic. This has consequently
affected IMW sheets drawn by the USGS. North of lat. 84° N. or south
of lat. 80° S, it is used “with scale matching that of the I1odified
Polyconic Projection or the Lambert Conformal Conic Projection at
Latitudes 84° N. and 80° S.” (United Nations, 1963, p. 10). The
reference ellipsoid for all these polar Stereographic projections is the
International of 1924.



TABLE 22. - Polar Stereographic projection: Used for extraterrestial mapping
[From Batson, 1973; Davies and Batson, 1975; Batson and others, 1980; Batson, private commun., 1981}

Range in lat. . .
Body* Scale? ge;)r X Adjacent Overlap  Matching parallel Comments
(scale at pole) projections with (scale)?
Mereury ——_________________ 1:15,000,000 55° to ;ole Mercator 2% 56° = -
at Equator. (1:9,172,000) (1:8,388,000)
1:5,000,000 65° to gole Lambert Conformal 5° 87.5° —
at Equator. (1:4,749,000) Conic. (1:4,568,000)
Mars ______ 1:25,000,000 55° to pole Mercator 10° 60° —
at Equator. (1:13,4{3,000) (1:12,549,000)
1:15,000,000 55° to pole Mercator 2° 56° -
at Equator. (l:9,20§.0000) (1:8,418,000)
1:5,000,000 65° to g)o\e Lambert Conformal 0° 65° -
at Equator. (1:4,518,000) Conic. (1:4,306,000)
1:1,000,000 65° to pole — — — Quadrangles
1:250,000 (varies) 200-34% km
on a side.
1:2,000,000 65° to gso!e Lambert Conformal 0° 65° Quadrangies
(1:2,035,000) Conic. (1:1,939,000) 45° long. x 13°
lat. (between 65°
& 78° lat.).
Semicircles 180°
long. x 12° lat,
(between 78° lat.
& pole).
T 7 Galilean satellites of Jupiter T -
10 o 1:25,000,000 T le Mercator 2° 56°
at Equator. (1:15,287,000) (1:13,980,000)
Europa ___________________ 1:15,000,000 55° to Eole Mercator 2° 56°
at Equator. (1:9,172,000) (1:8,388,000)
Ganymede _______________ 1:5,000,000 45° to pole Mercator 5° 45°
({Io & Europa). (1:5.008,0000) (1:4,268,000)
Callisto —._______________.__ 1:5,000,000 65° to smle Lambert Conformal 1° 5.2°
(Ganymede & (1:5,000,000) Conic. (1:4,769,000)
Callisto).
) Satellites of Saturn
Mimas, Enceladus,
Hyperion ________________ 1:5,000,000 55° to ?ole Mercator 2° 56°
at Equator. (1:3,057,000) (1:2,796,000)
Tethys, Dione, Rhea,
apetus _________________ 1:10,000,000 55° to pole Mercator 2° 56°
at Equator. {1:6,115,029) {1:5,592,000)

ipsoid). 2.

:Ezkuilt;:srse%::smﬁeﬁc:rgg: gdo:l: gegﬁssogi lsfe()otg,b(;go and 1:250,000 (Mars) occur at central parallel of quadrangle. Scale ?f
1:5,000,000 for satellites occurs at pole of Stereographic projection. Scale of 1:2,000,000 occurs at standard parallels of Lambert Con-
formal Conic projection.

3 Matching parallels are both N. & S.

SNOILOHFOdd dVIN TVHLONWIZV
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The Astrogeology Center of the Geological Survey at Flagstaff,
Ariz., has been using the polar Stereographic for the mapping of polar
areas of Mars, Mercury, and satellites of Jupiter and Saturn at various
scales (see table 22).

The USGS is preparing a geologic map of the Arctic regions, using as
a base an American Geographical Society map of the Arctic at a scale
of 1:5,000,000. Drawn to the Stereographic projection, th= map is
based on a sphere having a radius which gives it the same volume as the
International ellipsoid, and lat. 71° N. is made the standard parallel.

FORMULAS FOR THE SPHERE

Mathematically, a point at a given angular distance from th = chosen
center point on the sphere is plotted on the Stereographic projection
at a distance from the center proportional to the trigonometric tangent
of half that angular distance, and at its true azimuth, or, if the central
scale factor is 1,

p=2Rtan% ¢ (17-1)
0=n-Az=180°-Az (16-2)
k=sec*%e ¢ (17-1a)

where ¢ is the angular distance from the center, Az is the azimuth east
of north (see equations (5-3) through (5-6)), and 6 is the pclar coor-
dinate east of south. Combining with standard equations, the formulas
for rectangular coordinates of the oblique Stereographic projection are
found to be as follows, given R, k,, ¢1, N, ¢, and \:

x=Rk cos ¢ sin (\—\,) 17-2)

y=Rk[cos ¢, sin ¢ —sin ¢, cos ¢ cos(A—No)] 17-3)
where

ke=2ky/[1+sin ¢, sin ¢ + cos ¢, cos ¢ cos (A—N)] 17-4)

and (¢,, \o) are the latitude and longitude of the center, which is also the
origin. Since this is a conformal projection, k is the scale factor in all
directions, based on a central scale factor of k,, normally 1.0, k1t which
may be reduced. The Y axis coincides with the central meridian )\, ¥ in-
creasing northerly and z, easterly.

If ¢ = — ¢, and A=\, + 180°, the point cannot be plotted. Geometrical-
ly, it is the point from which projection takes place.
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For the north polar Stereographic, with ¢,=90°, these simplify to

x=2R k, tan (n/4 - ¢/2) sin (A —\o) (17-5)
y=—2R ko tan (x/d - ¢/2) cos (A= No) (17-6)
k=2ko/(1+ sin ¢) a7-7
p=2R kytan (n/4 - ¢/2) (17-8)
B=XA—X (16-9)
For the south polar Stereographic with ¢,=-90°,
xr=2R k, tan (x/4+ ¢/2) sin (\ = \o) (17-9)
y=2R k, tan (w/4+ ¢/2) cos (\—\o) (17-10)
k =2ky/(1-sin ¢) (17-11)
p=2R k, tan (n/4 + ¢/2) (17-12)
G=m—N+No (16-12)
For the equatorial aspect, letting ¢,=0, x is found from (17-2), but
y=Rksin¢ (17-13)
k=2ky/[1+cos ¢ cos(A—N)] (17-14)

For the inverse formulas for the sphere, given R, ko, ¢4, No, %, and y:
¢ =arcsin [cos ¢ sin ¢, +(y sin ¢ cos ¢,/p)] (16-14) ‘

but if p=0, ¢p=09,.
If ¢, is not +90°:

\=\o+arctan [z sin ¢/(p cos ¢, cos ¢y sin ¢, sin ¢)] (16-15)
If ¢, is 90°:

A=\o+arctan [x/( - y)] (16-16)
If ¢, is —90°:

A=\ +arctan (x/y) (16-17)
In equations (16-14) and (16-15),

o =(@+y?)" (16-18)

¢=2 arctan [ p/(2Rk,)] (17-15)

The similarity of formulas for Orthographic, Stereographic, and
other azimuthals niay be noted. The equations for ¥ (k for the
Stereographic, ¥ = 1.0 for the Orthographic) and the inverse ¢ are the
only differences in forward or inverse formulas for the sphere. The for-
mulas are repeated for convenience, unless shown only a few lines
earlier.
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Table 23 lists rectangular coordinates for the equatorial aspect for a
10° graticule with a sphere of radius R =1.0.

Following are equations for the centers and radii of the circles
representing the meridians and parallels of the oblique Stereographic
in the spherical form:

Circles for meridians:

Centers: x= —2R k,/[cos ¢, tan (\—\o)] (17-16)
y=-2Rk, tan ¢, 17-17)
Radii: p=2R ky/[cos ¢, sin(A—\o)] (17-18)

Circles for parallels of latitude:

Centers: =0
y=2R k, cos ¢,/(sin ¢, + sin ¢) 17-19)
Radii: p=2Rk, cos ¢/(sin ¢, +sin ¢) (17-20)

Reduction to the polar and equatorial aspects may be made by letting
.= +90° or 0°, respectively.

To use a “standard circle” for the spherical Stereographic projection,
such that the scale error is a minimum (based on least squares) over the
apparent area of the map, the circle has an angular distance ¢ from the
center, where

¢=2 arccos (1/k)2 17-21)
k= tan? Y%B/(-In cos 2 p) (17-22)

and 3 is the great circle distance of the circular limit of the region being
mapped stereographically. The calculation is only slightly dif ~rent if
minimum error is based on the true area of the map:

k= -In cos? Y.B/sin? Y28 (17-23)

In either case, ¢ of the standard circle is approximately 8/V/2.

FORMULAS FOR THE ELLIPSOID

As noted above, the ellipsoidal forms of the Stereographic projection
are nonperspective, in order to preserve conformality. The oblique and
equatorial aspects are also slightly nonazimuthal for the same reason.
The formulas result from replacing geodetic latitude ¢ in the spherical
equations with conformal latitude x (see equation (3-1)), followed by a
small adjustment to the scale at the center of projection (Thomas, 1952,
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TABLE 23.-Stereographic projection: Rectangular coordinates for equatorial aspect
( sphere)

[One hemisphere; y coordinate in parentheses under z coordinate]

Long. 0° 10° 20° 30° 40°
m

90° 0.00000  0.00000  0.00000  0.00000  0.00000
(2.00000)  (2.00000)  (2.00000)  (2.00000)  (2.00000)
80 .00000 05150 10212 15095 .19703
(1.67820)  (1.68198) (1.69331) (1.71214) (1.73837)
70 e .00000 08885 17705 26386 34841
(1.40042)  (1.40586)  (1.42227)  (1.44992)  (1.48921)
60 00000 11635 23269 134892 46477
(1.15470)  (1.16058)  (1.17839)  (1.20868)  (1.25237)
50 00000 13670 27412 41292
(.93262) (.93819) ( .95515) ( .98421)  (1.02659)
0 00000 15164 30468 46053 62062
(72794)  (.73277) ( .14749)  ( .77285)  ( .81016)
80 ce—ee—____ 00000 16233 32661 49487 66931
( 53590) ( .53970) ( .55133) ( .57143) ( .60117
20 _______________ 00000 16950 34136 51808 70241
(.35265) ( .35527) ( .36327) ( .37713) ( .39773)
10 00000 17363 34987 53150 72164
(.17498) ( .17631) ( .18037) ( .18744)  ( .19796)
0 00000 17498 35265 53590 72794
( .00000)  ( .00000) ( .00000) ( .00000) ( .00000)

TaBLE 23.-Stereographic projection: Rectangular coordinates for equctorial aspect
(sphere) - Continued

Long. 50° 60° 70° 80° 90°

90° ______________ 0.00000  0.00000  0.00000  0.00000  0.00000
(2.00000)  (2.00000)  (2.00000)  (2.00000)  (2.00000)
80 _______________ 23933 27674 -30806 33201 34730
(1.77184)  (1.81227)  (1.85920) (1.91196)  (1.96962)
0 42957 50588 57547 63588 68404
(1.54067)  (1.60493)  (1.68256)  (1.77402)  (1.87939)
60 57972 69282 80246 90613 1.00000
(1.31078)  (1.38564)  (1.47911) (1.59368)  (1.73205)
50 169688 84255 99033  1.13892  1.28558
(1.08415)  (1.15945)  (1.25597) (1.37825)  (1.53209)
40 _______________ 78641 95937  1.14080  1.33167  1.53209

(.86141)  ( .92954) (1.01868) (1.13464)  (1.28558)

30 85235  1.04675 125567  1.48275  1.73205
(.64240) ( .69783) ( .77149) ( .86928)  (1.00000)
20 89755 110732  1.33650 159119  1.87939
(.42645)  ( .46538) ( .51767) ( .58808)  ( .68404)
10 92394  1.14295  1.38450  1.65643  1.96962
(.21267) (.23271) ( .25979) ( .29658) ( .34730)
0 93262°  1.15470°  1.40042  1.67820  2.00000
( .00000)  ( .00000) ( .00000) ( .00000) ( .00000)

Radius of sphere=1.0.
Origin: (z, ¥)=0 at (lat., long.)=0. Y axis increases north. Other quadrants of hemisphere are symmetrical.
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p. 14-15, 128-139). The general forward formulas for the oblique
aspect are as follows; given a, ¢, ko, ¢1, No, ¢, and \:

z=A cos x sin(A\—X\,) (17-24)

y=A [cos x, sin x —sin x, cos x cos (A —\o)] (17-25)

k=A cos x/(am) (17-26)
where

A=2 q kym,/fcos x, [1+sin x, sin x

+ €08 x; €0S x oS (A —No)J} (17-27)

x =2 arctan {tan (x/4 + ¢/2)[(1-e sin ¢)/(1+e sin ¢)}*?} '
~7/2 (3-1)
m=cos ¢/(1-¢? sin2p)* (12-15)

and x, and m, are x and m, respectively, calculated using ¢,, the central
latitude, in place of ¢, while k, is the scale factor at the center (novmally
1.0). The origin of x and y coordinates occurs at the center (¢, \o). the Y’
axis coinciding with the central meridian \,, and y increasing northerly
and z, easterly. The scale factor is actually k, along a near-circle pass-
ing through the origin, except for polar and equatorial aspects, where it
occurs only at the central point. The radius of this near-circle is almost
0.4° at midlatitudes, and its center is along the central meridian, ap-
proaching the Equator from ¢,. The scale factor at the center of the cir-
cle is within 0.00001 less than k,.

In the equatorial aspect, with the substitution of ¢,=0 (therefore
x1=0), z is still found from (17-24) and ¥ from (17-26),

but

y=Asiny (17-28)
A =2aky/[1+cos x cos(A—\)] (17-29)

For the north polar aspect, substitution of ¢,=90° (therefore
x1=90°) into equations (17-27) and (12-15) leads to an indeterminate
A. To avoid this problem, the polar equations may take the form

x=p sin (\—\o) ("7-30)

=—pcos(A\-Xo) (17-31)

k= pl(am) (*7-32)
where

p=2ak, t/[(1+e)t+9(1-e)r-a]*% (17-33)

t=tan (x/4— /2)/[(1 - e sin $)/(1 +¢ sin )} (13-9)
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Equation (17-33) applies only if true scale or known scale factor k, is to
occur at the pole. For true scale along the circle representing latitude

b,

p=am,t/t, (17-34)
Then the scale at the pole is
k,=Y2m [(1+e)1+9 (1-e)1-914/(a t) (17-85)

In equations (17-34) and (17-35), m, and ¢, are found from equations
(12-15) and (13-9), respectively, substituting ¢, in place of ¢

For the south polar aspect, the equations for the north polar aspect
may be used, but the signs of , y, ¢, ¢, \, and A\, must be revarsed to be
used in the equations.

For the inverse formulas for the ellipsoid, the oblique and equatorial
aspects (where ¢, is not +90°) may be solved as follows, given a, ¢, %,

®1, Mo, %, and y:

¢ =2 arctan (tan (x/4 + x/2)[(1 + ¢ sin ¢)/(1 - ¢ sin ¢)]*?}
- 7l2 (3-4)
A=\, +arctan [x sin ¢ /(p cos x, cos ¢,y sin x, sin ¢)] (17-36)

where
x =arcsin [cos ¢, sin x, +(y sin ¢, cos x,/p)] (17-37)
p=(x?+y2)*" (16-18)
¢,=2 arctan [p cos x,/(2 a k, m,)] (17-38) -

and m, is found from equation (12-15) above, using ¢, in place of ¢.
Equation (3—4) involves iteration, using x as the first trial ¢ in the right-
hand side, solving for a new trial ¢ on the left side, substituting into the
right side, etc., until ¢ changes by less than a preset convergence (such
as 10-° radians). Conformal latitude y, is found from (3-1), using ¢, for
¢. The factor c, is not the true angular distance, as it is in th= spherical
case, but it is a convenient expression similar in nature to ¢, used to find
¢ and \.
To avoid the iteration of (3-4), this series may be used ins‘ead:

d=x+(¢*/2+5¢424+¢9/12+ ... )sin 2x
+(7e4/48+29¢ /240 + . . .) sin dx+(7e %120+ . ..)
sin6y+ ... (3-5)

The inverse equations for the north polar ellipsoidal Stereographic
are as follows; given a, ¢, ¢, k, (if ¢,=90°), \o, 2, and :

¢=w/2-2 arctan {{{(1 - ¢ sin ¢)/(1 + ¢ sin ¢)]¢%} (7-9)
N=X\o+arctan [z/(-y)] (16-16)
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Equation (7-9) for ¢ also involves iteration. For the first trial, (x/2-2
arctan f) is substituted for ¢ in the right side, and the procedure for
solving equation (3-4) just above is followed.

If ¢, (the latitude of true scale) is 90°,

t=p[(1+e)1+9 (1 -e)1-91%/(2a k,) (17-39)
If ¢, is not 90°,

t=ptl(am) (17-40)
In either case,

p=@*+y?)" (16-18)

and ¢, and m, are found from equations (13-9) and (12-15), respertively,
listed with the forward equations, using ¢, in place of ¢. Scale factor &
is found from equation (17-26) or (17-32) above, for the ¢ fourd from
equation (3-4), (3-5), or (7-9), depending on the aspect.

To avoid iteration, series (3-5) above may be used in place of (7-9),

where
x=7l2-2arctan ¢ (7-13)

Inverse equations for the south polar aspect are the same as thase for
the north polar aspect, but the signs of x, y, )\, ¢,, ¢, and \ rust be
reversed.

Polar coordinates for the ellipsoidal form of the polar Stereoxraphic
are given in table 24, using the International ellipsoid and a central
scale factor of 1.0.
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TABLE 24. - Ellipsoidal polar Stereographic projection: Polar coordinates

[International ellipsoid; central scale factor =1.0]

165

Latitude Radius, meters k, s~ale factor
90° 0.0 1.000000
89 111,702.7 1.000076
88 223 421.7 1.000305
87 335 173.4 1.000686
86 446,974.1 1.001219
85 558,840.1 1.001906
84 670, 788 1 1.002746
83 782, 834 3 1.003741
82 894,995.4 1.004389
81 1,007,287.9 1.006193
30 1,119,728.7 1.007653
79 1,232,334.4 1.009270
8 1,345,122.0 1.011045
7 1 458 108.4 1.012979
76 1 571 310 9 1.015073
75 1,684,746 8 1.017328
74 1,798,433.4 1.019746
73 1,912,388.4 1.022329
72 2,026,629.5 1.025077
71 2,141,174.8 1.027993
70 2,256,042.3 1.031078
69 2.371,250.5 1.034335
68 2,486,818.0 1.037765
67 2,602,763.6 1.0413870
66 2,719,106.4 1.045154
65 2,835,865.8 1.049117
64 2,953,061.4 1.053264
63 3,070,713.2 1.057595
62 3,188,841.4 1.062115
61 3,307,466.7 1.066826
60 3,426,609.9 1.071732







18. LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION

SUMMARY

¢ Azimuthal.

¢ Equal-Area.

¢ All meridians in the polar aspect, the central meridian in other asmects, and the
Equator in the equatorial aspect are straight lines.

® The outer meridian of a hemisphere in the equatorial aspect (for the sphere) and the
parallels in the polar aspect (sphere or ellipsoid) are circles.

o All other meridians and parallels are complex curves.

* Not a perspective projection. i

¢ Scale decreases radially as the distance increases from the center, the only point with-
out distortion.

¢ Scale increases in the direction perpendicular to radii as the distance increases from

the center.

Directions from the center are true for the sphere and the polar elliproidal forms.

Point opposite the center is shown as a circle surrounding the map (fcr the sphere).

Used for maps of continents and hemispheres.

Presented by Lambert in 1772.

HISTORY

The last major projection presented by Johann Heinrich Lambert in
his 1772 Beitrige was his azimuthal equal-area projection (Lambert,
1772, p. 75-78). His name is usually applied to the projecticn in modern
references, but it is occasionally called merely the Azimuthal (or
Zenithal) Equal-Area projection. Not only is it equal-ar~a, with, of
course, the azimuthal property showing true directions from the center
of the projection, but its scale at a given distance from the center varies
less from the scale at the center than the scale of any of the other major
azimuthals (see table 19).

Lambert discussed the polar and equatorial aspects of the Azimuthal
Equal-Area projection, but the oblique aspect is just as popular now.
The polar aspect was apparently independently derived by De Lorgna
in Italy in 1789, and the latter was called the originator in a publication
a century later (USC&GS, 1882, p. 290). G. A. Ginsburg proposed two
modifications of the general Lambert Azimuthal projection in 1949 to
reduce the angular distortion at the expense of creating a slight distor-
tion in area (Maling, 1960, p. 206).

FEATURES

The Lambert Azimuthal Equal-Area projection is not a perspective
projection. It may be called a “synthetic” azimuthal in thet it was de-
rived for the specific purpose of maintaining equal area. Th< ellipsoidal

167
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form maintains equal area, but it is not quite azimuthal except in the
polar aspect, so the name for the general ellipsoidal form is a slight
misnomer, although it looks like the spherical azimuthal form and has
most of its other characteristics.

The polar aspect (fig. 25A4), like that of the Orthographi~ and
Stereographic, has circles for parallels of latitude, all centered about
the North or South Pole, and straight equally spaced radii of these
circles for meridians. The difference is, once again, in the spacing of
the parallels. For the Lambert, the spacing between the parallels
gradually decreases with increasing distance from the pole. T-e op-
posite pole, not visible on either the Orthographic or Stereographie,
may be shown on the Lambert as a large circle surrounding the map,
almost half again as far as the Equator from the center. Normally, the
projection is not shown beyond one hemisphere (or beyond the Eauator
in the polar aspect).

The equatorial aspect (fig. 25B) has, like the other azimuthals, a
straight Equator and straight central meridian, with a circle reprsent-
ing the 90th meridian east and west of the central meridian. Unlike
those for the Orthographic and Stereographic, the remaining merid-
ians and parallels are uncommon complex curves. The chief visual
distinguishing characteristic is that the spacing of the meridians near
the 90th meridian and of the parallels near the poles is about 0.7 of the
spacing at the center of the projection, or moderately less to th eye.
The parallels of latitude look considerably like circular arcs, except
near the 90th meridians, where they exhibit a noticeable turn toward
the nearest pole.

The oblique aspect (fig. 25C) of the Lambert Azimuthal Equal-Area
resembles the Orthographic to some extent, until it is seer that
crowding is far less pronounced as the distance from the center in-
creases. Aside from the straight central meridian, all meridians and
parallels are complex curves, not ellipses.

In both the equatorial and oblique aspects, the point opposite the
center may be shown as a circle surrounding the map, correspond™g to
the opposite pole in the polar aspect. Except for the advantage of show-
ing the entire Earth in an equal-area projection from one point, the
distortion is so great beyond the inner hemisphere that for world maps
the Earth should be shown as two separate hemispherical map-. the
second map centered on the point opposite the center of the first map.

Fi1GURE 25.-Lambert Azimuthal Equal-Area projection. (4) polar aspect showing one
hemisphere; the entire globe may be included in a circle of 1.41 times the diarteter of
the Equator. (B) equatorial aspect; frequently used in atlases for maps of the Eastern
and Western hemispheres. (C) oblique aspect; centered on lat. 40° N.



169

AZIMUTHAL MAP PROJECTIONS

(A \...-\
iz
L L7 o

::‘“-“RW




170 MAP PROJECTIONS USED BY THE USGS

USAGE

The spherical form in all three aspects of the Lambert Azimuthal
Equal-Area projection has appeared in recent commercial atleses for
Eastern and Western Hemispheres (replacing the long-used Globular
projection) and for maps of oceans and most of the continents and polar
regions.

The polar aspect appears in the National Atlas (USGS, 1970, p.
148-149) for maps delineating north and south polar expeditions, at a
scale of 1:39,000,000. It is used at a scale of 1:20,000,000 for the Arctic
Region as an inset on the 1978 USGS Map of Prospective Hydrncarbon
Provinces of the World.

The USGS has prepared six base maps of the Pacific Ocear on the
spherical form of the Lambert Azimuthal Equal-Area. Four sections, at
1:10,000,000, have centers at 35° N., 150° E.; 35° N, 135° W.; 35° S.,
135° E.; and 40° S., 100° W. The Pacific-Antarctic region, at a larger
scale, is centered at 20° S. and 165° W., while a Pacific Basin map at
1:20,000,000 is centered at the Equator and 160° W. The basre maps
have been used for individual geographic, geologic, tectonic, minerals,
and energy maps. The USGS has also cooperated with the 1Tational
Geographic Society in revising maps of the entire Moon drawn to the
spherical form of the equatorial Lambert Azimuthal Equal-Ar-a.

GEOMETRIC CONSTRUCTION

The polar aspect (for the sphere) may be drawn with a simple
geometric construction: In figure 26, if angle AOR is the latitud~ ¢ and
P is the pole at the center, PA is the radius of that latitude on t~ polar
map. The oblique and equatorial aspects have no direct geomet-ic con-
struction. They may be prepared indirectly by using other azimuthal
projections (Harrison, 1943), but it is now simpler to plot autom-~tically
or manually from rectangular coordinates which are generated by a
relatively simple computer program. The formulas are given b-low.

FORMULAS FOR THE SPHERE

On the Lambert Azimuthal Equal-Area projection for the sphere, a
point at a given angular distance from the center of projection is plot-
ted at a distance from the center proportional to the sine of half that
angular distance, and at its true azimuth, or

p=2RsinY%:c (18-1)
0=n-Az=180°-Az (16-2)
h=cosc (18-1a)

KF=seclzc (18-1b)
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Fi6urE 26.— Geometric construction of polar Lambert Azimuthal Eqnal-
Area projection.
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where c is the angular distance from the center, Az is the azimuth east
of north (see equations (5-3) through (5-6)), and # is the polar coor-
dinate east of south. The term ¥ is the scale factor in a direction
perpendicular to the radius from the center of the map, not along the
parallel, except in the polar case. The scale factor:#' in the dircction of
the radius equals 1/k'. After combining with standard equations, the
formulas for rectangular coordinates for the oblique Lambert
Azimuthal Equal-Area projection may be written as follows, given R,

&1, Moy ¢, and \:

=Rk cos ¢ sin(A—=X,) (18-2)

Yy=R kK [cos ¢, sin ¢ —sin ¢, cos ¢ cos (A —No)] (18-3)
where

K ={2/[1+sin ¢, sin ¢ + cos ¢, cos ¢ cos (\—\o)]}* (18-4)

and (¢,, \o) are latitude and longitude of the projection center and
origin. The Y axis coincides with the central meridian )\,, ¥ in-reasing
northerly. For the point opposite the center, at latitude -¢, and
longitude )\, + 180°, these formulas give indeterminants. This point, if
the map is to cover the entire sphere, is plotted as a circle of radius 2R.

For the north polar Lambert Azimuthal Equal-Area, with ¢,=90°,
since ¥ is k for the polar aspect, these formulas simplify to

z=2R sin (x/4 - $/2) sin (A = \o) (18-5)
Y= —2R sin (z/4 - ¢/2) cos (A —\o) (18-6)
k=sec(w/4-¢/2) (18-7)
h=1/k=cos (x/4-¢/2) (18-8)
or, using polar coordinates,
p =2R sin (x/4- ¢/2) (18-9)
0=\=X, (16-9)
For the south polar aspect, with ¢, = -90°,
x=2R cos (/4 - ¢/2) sin (A=) (18-10)
Y=2R cos (x/4— ¢/2) cos (\—\o) (18-11)
k=1/sin (x/4 - ¢/2) (18-12)
h=sin (x/4 - ¢/2) (18-13)
or
p=2R cos (n/4~¢/2) (18-14)
B=7~X+o (16-12)
For the equatorial aspect, letting ¢, =0, z is found from (18-2), but
y=RI sin¢ (18-15)
and

K ={2/[1+cos ¢ cos(\—No)]}* (18-16)
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The maximum angular deformation w for any of these aspects, de-
rived from equations (4-7) through (4-9), and from the fact. that &' = 1/’
for equal-area maps:

sinY2 w=(k' 2-1)/(1+k ?) (18-17)
For the inverse formulas for the sphere, given R, ¢,, Ao, %, and y:
¢ =arcsin [cos ¢ sin ¢, +(y sin ¢ cos ¢,/p)] (16-14)
But if p=0, ¢=¢l'

If ¢, is not +90°:
A=\o+arctan [x sin c/(p cos ¢, cos c—y sin ¢, sin c)] (16-15)
If ¢, is 90°:

A=\, +arctan [2/( - y)] (16-16)
If ¢, is —90°:

A=)\, +arctan (z/y) (16-17)
In equations (16-14) and (16-15),

p=(+y)" (16-18)

c=2 arcsin [p/(2R)] (18-18)

It may again be noted that several of the above forward and inverse
equations apply to the other azimuthals.

Table 25 lists rectangular coordinates for the equatorial aspect for a
10° graticule with a sphere of radius R=1.0.

FORMULAS FOR THE ELLIPSOID

As noted above, the ellipsoidal oblique aspect of the Lambert
Azimuthal Equal-Area projection is slightly nonazimuthal in order to
preserve equality of area. To date, the USGS has not us-<d the ellip-
soidal form in any aspect. The formulas are analogous to the spherical
equations, but involve replacing the geodetic latitude ¢ vith authalic
latitude g (see equation (3-11)). In order to achieve correct scale in all
directions at the center of projection, that is, to make the center a
“standard point,” a slight adjustment using D is also necessary. The
general forward formulas for the oblique aspect are as follows, given a,

€ 1, No, ¢, and \:

=B D cos B sin (A=) (18-19)
y=(B/D)[cos f, sin 8-sin 8, cos B cos (A —\o)] (18-20)
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TABLE 25.—Lambert Azimuthal Equal-Area projection: Rectangular coordinates for
equatorial aspect (sphere)

[One hemisphere; y coordinate in parentheses under x coordinate]

Long. 0° 10° 20° 30° 4°
Lat.

90° ______________ 0.00000  0.00000  0.00000  0.00000  0.00700
(1.41421)  (1.41421) (1.41421) (1.41421) (1.41421)
80 —oeeee—————___ .00000 .03941 07788 11448 .14830
(1.28558)  (1.28702)  (1.29135)  (1.29851)  (1.30°42)
0 e .00000 07264 14391 21242 27°76
(1.14715)  (1.14938)  (1.15607) (1.16725)  (1.18796)
60 .00000 .10051 .19948 29535 38749
(1.00000)  (1.00254)  (1.01021)  (1.02311)  (1.04143)
50 .00000 12353 24549 36430 47731
(.84524) ( .84776) ( .85539)  ( .86830) ( .88°80)
40 .00000 14203 28254 41999 55281
(.68404) ( .68631) ( .69317) ( .70483) ( .72164)
30 .00000 15624 31103 46291 61040
( 51764) ( .51947) ( .52504) ( .53452) ( .54%26)
20 .00000 .16631 33123 49337 65136
(.34730) ( .34858) ( .35248) ( .35915) ( .36883)
10 .00000 17231 34329 51158 67588
(.17431)  ( .17497) ( .17698) ( .18041)  ( .18540)
0 .00000 17431 34730 51764 68404
(.00000)  ( .00000) ( .00000) ( .00000) ( .00000)

Radius of sphere=1.0.
Origin: (z, ¥)=0 at (lat., long.)=0. Y axis increases north. Other quadrants of hemisphere are symmetrical.

where

B=R,_{2/[1+sin 8, sin B+ cos §, cos § cos (\—o)]}* (18-21)

D=a ml /(R cos ;) (18-22)
R,=a(g /2)"' (3-13)

6 arcsin (q/qp) (3-11)

g=(1-¢?) {sin ¢/(1-e? sin? ¢)-[1/(2 )] In

[(1-esin ¢)/(1 +esin ¢)] (3-12)

m=cos ¢/(1—e? sin? ¢p)* (12-15)

and B, is found from (3-11), using g, for ¢, while ¢, and g, are found
from (8-12) using ¢, and 90°, respectlvely, for ¢, and m, is found from
(12-15), calculated for ¢,. The origin occurs at (¢,, \), the Y axis coin-
ciding with the central meridian \,, and y increasing northerly. For the
equatorial aspect, the equations simplify as follows:

Z=a cos B sin (\—=N\){2/[1+cos B cos (A - )w,)j}"z (18-23)
y=(R *a)sin B {2/[1+ cos B cos A= No)]}* (18-24)
For the polar aspects, D is indeterminate using equations abov=, but

the following equations may be used instead. For the north polar
aspect, ¢, =90°,
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TABLE 25.—Lambert Azimuthal Equal-Area projection: Rectangular coordinates for
equatorial aspect (sphere)— Continued

w 50° 60° 70° 80° 90°
Lat.

90° ______________ 0.00000 0.00000 0.00000 0.00000 0.00000
(1.41421)  (1.41421) (1.41421) (1.41421)  (1.41421)
80 o 17843 .20400 22420 .23828 .24558
(1.32096)  (1.33594)  (1.35313)  (1.37219)  (1.39273)
70 @ .33548 38709 .43006 .46280 48369
(1.20323) (1.22806)  (1.25741)  (1.29114)  (1.32893)
60 ____ . ___ 47122 54772 .61403 66797 70711
(1.06544)  (1.09545)  (1.13179)  (1.17481)  (1.22474)
50 .58579 68485 77342 .84909 90904
( .91132)  (.94244) ( .98088)  (1.02752)  (1.08335)
40 .67933 79778 90620 1.00231 1.08335
( .74411 ( .77298 ( .80919)  ( .85401)  ( .90904)
30 e 75197 .88604 1.01087 1.12454 1.22474
( .56674)  ( .B9069)  ( .62108) ( .65927) ( .70711)
20 o _________  .80380 194928 1.08635 1.21347 1.32893
( .38191)  ( .39896) ( .42078)  ( .44848) ( .48369)
0 .83488 98731 1.13192 1.26747 1.39273
(.19217)  (.20102) ( .21240) ( .22694) ( .24558)
0 .84524 1.00000 1.14715 1.28558 1.41421
( .00000) ( .00000) ( .00000) ( .00000) ( .00000)
T=p sin (A=) (17-30)
Y=—p cos (A=) (17-31)
k=pl(am) (17-32)
where
p=alg,~ 9" (18-25)

and g, and g are found from (3-12) as before and m from (12-15) above.
Since the meridians and parallels intersect at right angles, and this is
an equal-area projection, h=1/k.

For the south polar aspect, (¢, = —90°), equations (17-30) and (17-32)
remain the same, but

Y=pcos(A-\) (18-26)

and
p=a(q,+q)* (18-27)
For the inverse formulas for the ellipsoid, the oblique and equatorial

aspects (where ¢, is not +90°) may be solved as follows, given a, ¢, ¢, ,
Nos &, and y.

_ . (1-e*sin? ¢)? q sin ¢ 1 l-esin ¢
o=o+ 2 cos ¢ [1—e1 1—e’sin’¢+2eln(1+esin¢ ](3_16)

A=\o+arctan [z sin ¢ /(D p cos 3, cos ¢,— D*y sin 8, sin ¢,)] (18-28)
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where
g=4,[cos ¢,sin B, +(Dy sin ¢, cos 8./p)] (18-29)
butif p=0, ¢g=g,sing,
p =[(/D)* +(Dyy]" (18-30)
c,=2aresin(p/2R) (18-31)

and D, R, g,, and B, are found from equations (18-22), (3-13), (3-12),
(3-11), and &2-15), as in the forward equations above. The fac‘or ¢, is
not the true angular distance, as ¢ is in the spherical case, but it is a
convenient number similar in nature to ¢, used to find ¢ and \. Equa-
tion (3-16) requires iteration by successive substitution, using arcsin
(¢/2) as the first trial ¢ on the right side, calculating ¢ on the left side,
substituting this new ¢ on the right side, ete., until the change in ¢ is
negligible. If, in equation (18-29),

g=={1-[1-€)(2e)]In[(1-e)/(1+e)}) (12-20)

the iteration does not converge, but ¢ = + 90°, taking the sign cf q.
To avoid the iteration, equations (3-16), (18-29), and (12-20) may be
replaced with the series

¢=B8+(e*/3+31e*/180+517¢ %5040+ . ..)sin2 g
+(23¢/360+ 251¢%/3780+ . .. ) sin 4 3+ (761e%/45360+ . . .)
sin6g+ ... (3-18)

where 8, the authalic latitude, is found thus:
B=arcsin [cos ¢, sin B, +(Dy sin ¢, cos §,/p)] (18-32)

Equations (18-28), (18-30), and (18-31) still apply. In (18-32), if p=0,
B= B
The inverse formulas for the polar aspects involve relatively simple
transformations of above equations (17-30), (17-31), and (18-25), ex-
cept that ¢ is found from the iterative equation (3-16), listed just above,
in which ¢ is calculated as follows:
9= +[g,-(p/a)] (18-33)
taking the sign of ¢,. The series (3-18) may be used instead for ¢,
where
B= taresin {1- p*[a*1-((1-¢>)/(2 e))
In((1-e)/(1+e)]} (18-34)

taking the sign of ¢,. In any case,
p =2 +y7)" (16-18)
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while

A=\ +arctan [2/(~y)] (16-16)
for the north polar case, and

A=\, +arctan (x/y) (16-17)

for the south polar case.
Table 26 lists polar coordinates for the ellipsoidal polar as»ect of the
Lambert Azimuthal Equal-Area, using the International ellivsoid.

TABLE 26. - Ellipsoidal polar Lambert Azimuthal Equal-Area projection (International

ellipsoid)
Latitude Radius, meters h k
90° 0.0 1.000000 1.000000
89 111,698.4 1999962 1.000038
88 223,387.7 999848 1.000152
87 335,058.5 999657 1.000343
86 446,701.8 1999391 1.000610
85 558,308.3 999048 1.000953
84 669,868.8 .998630 1.001372
83 781,374.2 .998135 1.001869
82 892,815.4 1997564 1.002442
81 1,004,183.1 .996918 1.003092
80 1,115,468.3 996195 1.003820
79 1,226,661.9 .995397 1.004625
78 1,337,754.7 .994522 1.005508
77 1,448,737.6 .993573 1.006469
76 1,559,601.7 992547 1.007509
75 1,670,337.9 .991446 1.008628
74 1,780,937.2 .990270 1.009826
73 1,891,390.6 .989018 1.011104
72 2,001,689.2 987691 1.012462
71 2,111,824.0 .986289 1.013902
70 2,221,786.2 .984812 1.015422

h=scale factor along meridian.
k =scale factor along parallel.






19. AZIMUTHAL EQUIDISTANT PROJECTION

SUMMARY

Azimuthal.

Distances measured from the center are true.

Distances not measured along radii from the center are not correct.

The center of projection is the only point without distortion.

Directions from the center are true (except on some oblique and equatcrial ellipsoidal
forms).

¢ Neither equal-area nor conformal.

¢ All meridians on the polar aspect, the central meridian on other aspects, and the

Equator on the equatorial aspect are straight lines.

¢ Parallels on the polar projection are circles spaced at true intervals (equidistant for
the sphere).

The outer meridian of a hemisphere on the equatorial aspect (for the sph-re) is a circle.

All other meridians and parallels are complex curves.

Not a perspective projection.

Point opposite the center is shown as a circle (for the sphere) surrounding the map.

Used in the polar aspect for world maps and maps of polar hemispheres.

Used in the oblique aspect for atlas maps of continents and world maps for aviation
and radio use.

e Known for many centuries in the polar aspect.

e ® & & o o

HISTORY

While the Orthographic is probably the most familiar azimuthal pro-
jection, the Azimuthal Equidistant, especially in its polar form, has
found its way into many atlases with the coming of the air age for maps
of the Northern and Southern Hemispheres or for world maps. The
simplicity of the polar aspect for the sphere, with equally spaced merid-
ians and equidistant concentric circles for parallels of latitude, has
made it easier to understand than most other projections. The primary
feature, showing distances and directions correctly from one point on
the Earth’s surface, is also easily accepted. In addition, its linear scale
distortion is moderate and falls between that of equal-area and con-
formal projections.

Like the Orthographic, Stereographic, and Gnomonic projections,
the Azimuthal Equidistant was apparently used centuries before the
15th-century surge in scientific mapmaking. It is believed that Egyp-
tians used the polar aspect for star charts, but the oldest existing
celestial map on the projection was prepared in 1426 by Cor+ad of Dyf-
fenbach. It was also used in principle for small areas by mariners from
earliest times in order to chart coasts, using distances anc¢ directions
obtained at sea.

179
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The first clear examples of the use of the Azimuthal Equidistant for
polar maps of the Earth are those included by Gerhardus Mer-ator as
insets on his 1569 world map, which introduced his famous cylindrical
projection. As Northern and Southern Hemispheres, the projection ap-
peared in a manuscript of about 1510 by the Swiss Henricus Loritus,
usually called Glareanus (1488-1563), and by several others in the next
few decades (Keuning, 1955, p. 4-5). Guillaume Postel is given credit in
France for its origin, although he did not use it until 1581. Antonio
Cagnoli even gave the projection his name as originator in 1792 (Deetz
and Adams, 1934, p. 163; Steers, 1970, p. 234). Philippe Hatt de-reloped
ellipsoidal versions of the oblique aspect which are used by the French
and the Greeks for coastal or topographic mapping.

Two projections with similar names are called the Tvro-Point
Azimuthal and the Two-Point Equidistant projections. Both were
developed about 1920 independently by Maurer (1919) of Germany and
Close (1921) of England. The first projection (rarely used) is
geometrically a tilting of the Gnomonic projection to provide true
azimuths from either of two chosen points instead of from j1st one.
Like the Gnomonic, it shows all great circle arcs as straight lines and is
limited to one hemisphere. The Two-Point Equidistant has received
moderate use and interest, and shows true distances, but not true
azimuths, from ¢ither of two chosen points to any other point on the
map, which may be extended to show the entire world (Close, 1934).

The Chamberlin Trimetric projection is an approximate “thr~e-point
equidistant” projection, constructed so that distances from three
chosen points to any other point on the map are approximately correct.
The latter distances cannot be exactly true, but the projection is a com-
promise which the National Geographic Society uses as a standard pro-
jection for maps of most continents. This projection was geometrically
constructed by the Society, of which Wellman Chamberlin (1908-76)
was chief cartographer for many years.

An ellipsoidal adaptation of the Two-Point Equidistant was made by
Jay K. Donald of American Telephone and Telegraph Company in 1956
to develop a grid still used by the Bell Telephone system for
establishing the distance component of long distance rates. Still
another approach is Bomford’s modification of the Azimuthal Equidis-
tant, in which the usual circles of constant scale factor perpendicular to
the radius from the center are made ovals to give a better avera~e scale
factor on a map with a rectangular border (Lewis and Campbe'l, 1951,
p. 7, 12-15).

FEATURES

The Azimuthal Equidistant projection, like the Lambert Azimuthal
Equal-Area, is not a perspective projection, but in the spheric~l form,
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and in some of the ellipsoidal forms, it has the azimuthal characteristic
that all directions or azimuths are correct when measur=d from the
center of the projection. As its special feature, all distancer are at true
scale when measured between this center and any other point on the
map.

The polar aspect (fig. 27A), like other polar azimuthals, has circles for
parallels of latitude, all centered about the North or South Pole, and
equally spaced radii of these circles for meridians. The parallels are,
however, spaced equidistantly on the spherical form (or according to
actual parallel spacings on the ellipsoid). A world map can extend to the
opposite pole, but distortion becomes infinite. Even though the map is
finite, the point for the opposite pole is shown as a circle twice the
radius of the mapped Equator, thus giving an infinite scale factor along
that circle. Likewise, the countries of the outer hemisphere are visibly
increasingly distorted as the distance from the center increases, while
the inner hemisphere has little enough distortion to apnear rather
satisfactory to the eye, although the east-west scale along the Equator
is almost 60 percent greater than the scale at the center.

As on other azimuthals, there is no distortion at the center of the pro-
jection and, as on azimuthals other than the Stereographic, the scale
cannot be reduced at the center to provide a standard circle of no
distortion elsewhere. It is possible to use an average scale cver the map
involved to minimize variations in scale error in any direction, but this
defeats the main purpose of the projection, that of providing true
distance from the center. Therefore, the scale at the projection center
should be used for any Azimuthal Equidistant map.

The equatorial aspect (fig. 27B) is least used of the thre= Azimuthal
Equidistant aspects, primarily because there are no cities along the
Equator from which distances in all directions have been of much in-
terest to map users. Its potential use as a map of the Eastern or
Western Hemisphere was usually supplanted first by th= equatorial
Stereographic projection, later by the Globular projection (both
graticules drawn entirely with arcs of circles and straight lines), and
now by the equatorial Lambert Azimuthal Equal-Area.

For the equatorial Azimuthal Equidistant projection of the sphere,
the only straight lines are the central meridian and the Equator. The
outer circle for one hemisphere (the meridian 90° east anc west of the
central meridian) is equidistantly marked off for the parallels, as itis on
other azimuthals. The other meridians and parallels are cor~plex curves
constructed to maintain the correct distances and azimuths from the
center. The parallels cross the central meridian at their true equidis-
tant spacings, and the meridians cross the Equator equidi~tantly. The
map can be extended, like the polar aspect, to include a much-distorted
second hemisphere on the same center.
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The oblique Azimuthal Equidistant projection (fig. 27C) rather
resembles the oblique Lambert Azimuthal Equal-Area when corfined
to the inner hemisphere centered on any chosen point between Equator
and pole. Except for the straight central meridian, the graticule con-
sists of complex curves, positioned to maintain true distance and
azimuth from the center. When the outer hemisphere is included, the
difference between the Equidistant and the Lambert becomes more
pronounced, and while distortion is as extreme as in other aspects, the
distances and directions of the features from the center now outweigh
the distortion for many applications.

USAGE

The polar aspect of the Azimuthal Equidistant has regularly ap-
peared in commercial atlases issued during the past century ¢s the
most common projection for maps of the north and south polar areas. It
is used for polar insets on Van der Grinten-projection world maps
published by the National Geographic Society and used as base maps
(including the insets) by USGS. The polar Azimuthal Equidistant pro-
jection is also normally used when a hemisphere or complete sohere
centered on the North or South Pole is to be shown. The oblique espect
has been used for maps of the world centered on important cit'es or
sites and occasionally for maps of continents. Nearly all these maps
use the spherical form of the projection.

The USGS has used the Azimuthal Equidistant projection in both
spherical and ellipsoidal form. An oblique spherical version of the
Earth centered at lat. 40° N., long. 100° W., appears in the National
Atlas (USGS, 1970, p. 329). At a scale of 1:175,000,000, it does not
show meridians and parallels, but shows circles at 1,000-mile intervals
from the center. The ellipsoidal oblique aspect is used for the plane
coordinate projection system in approximate form for Guam and in
nearly rigorous form for islands in Micronesia.

GEOMETRIC CONSTRUCTION

The polar Azimuthal Equidistant is among the easiest projections to
construct geometrically, since the parallels of latitude are equally
spaced in the spherical case and the meridians are drawn at thei- true
angles. There are no direct geometric constructions for the oblique and
equatorial aspects. Like the Lambert Azimuthal Equal-Area, the; may
be prepared indirectly by using other azimuthal projections (Harrison,
1943), but automatic computer plotting or manual plotting of

Ficure 27.- Azimuthal Equidistant projection. (4) Polar aspect extending to the South
Pole; commonly used in atlases for polar maps. (B) Equatorial aspect. (C) Oblique .
aspect centered on lat. 40° N. Distance from the center is true to scale.



183

GRS

ST I
S IS A
(G gusrcmnaNe )

5 v«&? 5 A
,? %&mvﬁ%nk--“‘ )
/&cn.-—»ooc%%nnnn“@_
NS
| /%?\ 7 M\,\\\
R

AN

AZIMUTHAL MAP PROJECTIONS

g SN TR
/ b // =l — \.\ 74 \ - \\
/ /
/ \\
A= o X
' 7 X «r!...r
% N
%...‘m.llmm»wmw < o , N
(NS o3

\
S

MRS




184 MAP PROJECTIONS USED BY THE USGS

calculated rectangular coordinates is the most suitable means now
available.
FORMULAS FOR THE SPHERE
On the Azimuthal Equidistant projection for the sphere, a given point
is plotted at a distance from the center of the map proportional to the
distance on the sphere and at its true azimuth, or

o=Rc (19-1)
f=m-Az=180°-Az (16-2)

where ¢ is the angular distance from the center, Az is the azimuth east
of north (see equations (5-3) through (5-6)), and @ is the polar coor-
dinate east of south. For ¥’ and ¥, see equation (19-2) and the state-
ment below. Combining various equations, the rectangular coord‘nates
for the oblique Azimuthal Equidistant projection are found as fcllows,
given R, ¢y, ho, ¢, and \:

=R I cos ¢ sSin (A=) (18-2)
y=R K [cos ¢, Sin ¢ —sin ¢, cos ¢ cos (A—o)] (18-3)
where
K =clsinc (19-2)
€os ¢=sin ¢, sin ¢+ cos @, cos ¢ cos (\—\) (5-3)

and (¢, \o) are latitude and longitude of the center of projecticn and
origin. The Y axis coincides with the central meridian \,, anc ¥ in-
creases northerly. If cos ¢=1, equation (19-2) is indeterminate, but
k=1, and x=y=0. If cos ¢= -1, the point opposite the center (-¢,, Ao
+ 180°) is indicated; it is plotted as a circle of radius xR. The term ¥ is
the scale factor in a direction perpendicular to the radius from the
center of the map, not along the parallel, except in the polar cas=. The
scale factor /' in the direction of the radius is 1.0.
For the north polar aspect, with ¢, =90°,

r=R(%/2-¢) sin (A\—\o) (19-3)
Y= -R(7/2-¢)cos(\-\o) (19-4)
k=(n/2-¢)/cos ¢ (19-5)
h=1.0

p=R(x/2-¢) (19-6)
f=X=Xo (16-9)

For the south polar aspect, with ¢,=-90°,

x=R(n/2+ ) sin (\-)\,) 19-7)
Y=R(x/2+ ¢) cos(\=\,) (19-8)
k=(x/2+¢)/cos ¢ (19-9)
h=1.0

p=R(x/2+¢) (19-10)

f=m—N+X (16-12)
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For the equatorial aspect, with ¢, =0, x is found from (18-2) and ¥’ from
(19-2), but

y=RK sing (19-11)
and
€OoS ¢=C0S ¢ COS(A—\o) (19-12)

The maximum angular deformation w for any of these aspects, using
equations (4-7) through (4-9), since #'=1.0:

sin Yew= (k' - 1)/(K +1) (19-13)
=(c—sin ¢)/(c+sinc) (19-14)

For the inverse formulas for the sphere, given R, ¢, N, %, and y:
¢ =arcsin [cos ¢ sin ¢, + (¥ sin ¢ cos ¢,/p)] (16-14)

Butif p=0, ¢=¢,.
If ¢, is not +90°:

A=X\o+arctan [ sin ¢/(p cos ¢, cos ¢—y sin ¢, sin ¢)] (16-15)
If ¢, is 90°:

A=\o+arctan [x/( - y)] (16-16)
If ¢, is —90°:

A=\o+arctan (z/y) (16-17)
In equations (16-14) and (16-15),

p=(=*+y?)* (16-18)

c=pl/R (19-15)

Except for (19-15), the above inverse formulas are the same as those
for the other azimuthals, and (19-2) is the only change from previous
azimuthals among the general (oblique) formulas (18-2) through (5-3)
for the forward calculations as listed above.

Table 27 shows rectangular coordinates for the equatorial aspect for
a 10° graticule with a sphere of radius B =1.0.

FORMULAS FOR THE ELLIPSOID

The formulas for the polar aspect of the ellipsoidal Azimuthal
Equidistant projection are relatively simple and are theoretically ac-
curate for a map of the entire world. However, such a use is un-
necessary because the errors of the sphere versus the ellipsoid become
insignificant when compared to the basic errors of projection. The
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TaBLE 27.-Azimuthal Equidistant projection: Rectangular coordinates for equatorial
aspect (sphere)

[One hemisphere; R=1. y coordinates in parentheses under x coordinates]

% 0° 10° 20° 30° 40°
Lat.

90° ______________ 0.00000  0.00000  0.00000  0.00000  (.00000
(1.57080)  (1.57080)  (1.57080)  (1.57080)  (1.57080)
80 _________ 104281 08469 12469 16188
(1.39626)  (1.39829)  (1.40434)  (1.41435)  (1.42823)
70 e .00000 07741 15362 22740 29744
(1.22173)  (1.22481)  (1.23407)  (1.24956)  (1.27137)
60 _____ e 00000 10534 20955 31145 40976
(1.04720)  (1.05068) (1.06119)  (1.07891)  (1.10415)
50 .00000 12765 25441 37931 50127
(.87266) ( .87609) ( .88647) ( .90408)  ( .92938)
40 _______________ 00000 14511 28959 43276 57386
(.69813) (.70119) ( .71046) ( .72626) ( .74912)
30 .00000 15822 31607 47314 62896
(.52360) ( .52606) ( .53355) ( .54634 56493
20 ______________ .00000 .16736 33454 50137 66762
(.34907) ( .35079) ( .35601) ( .36497) ( .37803)
10 o .00000 17275 34546 51807 69054
(.17453) ( .17541) ( .17810) ( .18270) ( .18943)
0 o .00000 17453 34907 52360 69813
(.00000)  ( .00000) ( .00000) ( .00000) ( .00000)

TABLE 27.—Azimuthal Equidistant projection: Rectangular coordinates for exuatorial
aspect (sphere)—Continued

Long. 50° 60° 70° 80° 90°
Lat.

90° 0.00000 0.00000 0.00000 0.00000 0.00000
(1.57080) (1.57080) (1.57080) (1.57080)  (1.57080)
80 — 19529 22399 .24706 .26358 27277
(1.44581)  (1.46686) (1.49104) (1.561792)  (1.54693)
" _ 36234 .42056 47039 50997 53724
(1.29957)  (1.83423) (1.37533) (1.42273) (1.47607)
60 50301 .58948 66711 73343 78540
(1.13733)  (1.17896) (1.22963)  (1.28993) (1.36035)
50 61904 73106 .83535 92935 1.00969
(.96306) (1.00602) (1.05942) (1.12464) (1.20330)
40 71195 .84583 97392 1.09409 1.20330
(.77984) ( .81953) ( .86967 93221 (1.00969)
30 . 78296 93436 1.08215 1.22487 1.36035
( .59010) ( .62291) ( .66488 ( .71809 ( .78540)
20 . 83301 99719 1.15965 1.31964 1.47607
( .39579) ( .41910) ( .44916) ( .48772 53724)
0 86278 1.03472 1.20620 1.37704 1.54693
( .19859) ( .21067) ( .22634) ( .24656) ( .27277)
o - 87266 1.04720 1.22173 1.39626 1.57080
( .00000) ( .00000) ( .00000) ( .00000) ( .00000)
Radius of sphere=1.0.

Origin: (z, )=0 at (lat., long.)=0. Y axis increases north. Other quadrants of hemisphere are symmetrical.
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polar form is truly azimuthal as well as equidistant. Given q, ¢, ¢,, \o, ¢,
and \, for the north polar aspect, ¢,=90°:

Z=p sin(\—X\o) (17-30)
=—p cos(A—\o) (17-31)
k=pl(am) (17-32)

where
o=M, M (19-16)

M=a[(1-¢%/4-3e*64-5¢5256— . ..)p—(3e¢*/8+3¢+/32
+4b5¢ /1024 + . . . ) sin 2 ¢ +(15e 4/256 + 45¢ /1024 + . . .)

sin4 ¢-(35¢%3072+ ...)sin6¢+ ...] (3-21)
with M ) the value of M for a ¢ of 90°,
and m = cos ¢/(1 - €2 sin? ¢)* (12-15)

For the south polar aspect, the equations for the north polar aspect
apply, except that equations (17-31) and (19-16) become

Y=p cos(A—No) (18-23)
p=M, +M 19-17)

The origin falls at the pole in either case, and the Y axis follows the cen-
tral meridian \,. For the north polar aspect, \, is shown below the pole,
and y increases along \, toward the pole. For the south polar aspect, \o
is shown above the pole, and y increases along \, away fromr the pole.

Table 28 lists polar coordinates for the ellipsoidal aspect of the
Azimuthal Equidistant, using the International ellipsoid.

TABLE 28.-FEllipsoidal Azimuthal Equidistant projection (Internationcl ellipsoid)—

Polar Aspect
Latitude Radius, meters h k
90° 0.0 1.0 1.000000
89 111,699.8 1.0 1.000051
88 223,399.0 1.0 1.000203
87 335,096.8 1.0 1.000457
86 446,792.5 1.0 1.000813
85 558,485.4 1.0 1.001270
84 670,175.0 1.0 1.001830
83 781,860.4 1.0 1.002492
82 893,541.0 1.0 1.003256
81 1,005,216.2 1.0 1.004124
80 1,116,885.2 1.0 1.005095
79 1,228,547.5 1.0 1.006169
78 1,340,202.4 1.0 1.007348
7 1,451,849.2 1.0 1.008631
76 1,563,487.4 1.0 1.010019
75 1,675,116.3 1.0 1.011513
74 1,786,735.3 1.0 1.013113
73 1,898,343.8 1.0 1.014821
72 2,009,941.3 1.0 1.016636
71 2,121,627.1 1.0 1.018560
70 2,233,100.9 1.0 1.020594

h=scale factor along meridian.
k= scale factor along parallel.
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For the oblique and equatorial aspects of the ellipsoidal Azimuthal
Equidistant, both nearly rigorous and approximate sets of formulas
have been derived. For mapping of Guam, the National Geodetic
Survey and the USGS use an approximation to the ellipsoidal oblique
Azimuthal Equidistant called the “Guam projection.” It is described by
Claire (1968, p. 52-53) as follows (changing his symbols to match those
in this publication):

“The plane coordinates of the geodetic stations on Guam were obtained by first com-
puting the geodetic distances [¢] and azimuths [Az] of all points from the origin by inverse
computations. The coordinates were then computed by the equations: [x=c¢ sin Az and
y=c cos Az]. This really gives a true azimuthal equidistant projection. The equations
given here are simpler, however, than those for a geodetic inverse computation, and the
resulting coordinates computed using them will not be significantly different f-om those
computed rigidly by inverse computation. This is the reason it is called an apnroximate
azimuthal equidistant projection.”

The formulas for the Guam projection are equivalent to the following:

x=a (A=) cos ¢/(1 — €2 sin¢p)* (19-18)
y=M-M, +x* tan ¢ (1 - ¢ sin? ¢)*/(2a) (19-19)

where M and M, are found from equation (3-21) for ¢ and ¢,. Actually,
the original formulas are given in terms of seconds of re-tifying
latitude and geodetic latitude and longitude, but they may be written as
above. The z coordinate is thus taken as the distance along the parallel,
and y is the distance along the central meridian \, with adjustment for
curvature of the parallel. The origin occurs at (¢,, X\o), the Y axis coin-
cides with the central meridian, and y increases northerly.

For Guam, ¢,=13°2820.87887" N. lat. and \,=144°44'55.50254" E.
long., with 50,000 m added to both x and y to eliminate nogative
numbers. The Clarke 1866 ellipsoid is used.

A more complicated and more accurate approach to the oblique ellip-
soidal Azimuthal Equidistant projection is used for plane coordinates of
various individual islands of Micronesia. In this form, the true distance
and azimuth of any point on the island or in nearby waters are
measured from the origin chosen for the island and along the normal
section or plane containing the perpendicular to the surface of the ellip-
soid at the origin. This is not exactly the same as the shortest or
geodesic distance between the points, but the difference is nexligible
(Bomford, 1971, p. 125). This distance and azimuth are plotted on the
map. The projection is, therefore, equidistant and azimuthal with
respect to the center and appears to satisfy all the requirement= for an
ellipsoidal Azimuthal Equidistant projection, although it is described as
a “modified” form. The origin is assigned large-enough values of z and y
to prevent negative readings.
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The formulas for calculation of this distance and azimuth have been
published in various forms, depending on the maximum distance in-
volved. The projection system for Micronesia makes use of “Clarke’s
best formula” and Robbins’s inverse of this. These are considered
suitable for lines up to 800 km in length. The formulas below, rear-
ranged slightly from Robbins’s formulas as given in Bomford (1971, p.
136-137), are extended to produce rectangular coordinates. No itera-
tion is required. They are listed in the order of use, given a central
point at lat. ¢,, long. \,, coordinates %, and ¥, of the central point, the Y
axis along the central meridian \,, ¥ increasing northerl:, ellipsoidal
parameters a and ¢, and ¢ and \.

To find z and y:
N,=a/(1-e?sin* ¢,)* (4-20a)
N=al(1-e¢sin? ¢)* (4-20)
y=arctan [(1-e?)tan ¢ + > N, sin ¢,/(N cos ¢)] (19-20)

Az=arctan {sin (\—\,)/[cos ¢, tan y—sin ¢, cos(A\—\)}}  (19-21)

The ATAN2 Fortran function should be used with equation (19-21),
but it is not applicable to (19-20).

If sin A2=0,
$= + arcsin (cos ¢, sin y —sin ¢, cos y) (19-22)
taking the sign of cos Az.
If sin Az+0,
s=arcsin [sin (\ - \,) cos y/sin Az] (19-22a)
In either case,
G=esin ¢,/(1-e2)* (19-23)
H=¢cos ¢, cos Az/(1 - e?)* (19-24)

c¢=N, s{1-s2H*1- H?)/6+(s*/8)GH(1 - 2H?)
+(s*/120) H*(4 - TH?*) - 3G*(1 - TH?)]

—(s%/48)GH} (19-25)
r=csinAz+2, (19-26)
y=ccosAz+Y, (19-27)

where ¢ is the geodetic distance, and Az is azimuth east of north.
Table 29 shows the parameters for the various islands mapped with
this projection.
Inverse formulas for the polar ellipsoidal aspect, given ¢, e, ¢,, Ao, %,
and y:

o=p+(3e,/2-27 3/32) sin 2+ (21 ¢€3/16 55 ¢}/32) rin
4p+(151 €3/96) sin 6+ . . . (3-26)



TABLE 29. — Plane coordinate systems for Micronesia: Clarke 1866 ellipsoid

Do Meters
Group Islands Station at Origin Lat N. Long E. Xy Yo
Caroline Islands ________ YZF Yap Secor 9°32'48.898" 138°10/07.084" 39,987.92 60,022.98
Palau Arakabesan Is. 7°21'04.3996" 134°27'01.6015" 50,000.00 150,000.00
Ponape Distad (USE 6°57'54.2725" 158°12'33.4772" 80,122.82 80,747.24
Truk Atoll Truk Secor RM 1  7°2722.3600” 151°50'17.8530" 60,000.00 70,000.00
Mariana Islands ________ Saipan Saipan 15°11'05.6830" 145°44'29.9720" 28,657.52 67,199.99
Rota Astro 14°07'58.8608" 145°08'03.2275" 5,000.00 5,000.00
Marshall Islands ________ Majuro Atoll Dalap 7°05'14.0" 171°22'34.5" 85,000.00 40,000.00

%o, Yo=rectangular coordinates of center of projection.

¢1, \o=geodetic coordinates of center of projection.
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where
e =[1-(1-@)*Y[1+(1- "] (3-24)
p=M/a(1-e*4-3e*/64—5e5/256— . . )] (8-19)
M=M,-p for the north polar case, (19-28)
and
M= p-M, for the south polar case. (19-29)

Equation (3-21), listed with the forward equations, is used to find M,
for ¢ =90°. For either case,

p=(x>+y)* (16-18)
For longitude, for the north polar case,

A=\, +arctan [2/(-y)] (16-16)
For the south polar case,

A=\ +arctan (x/y) (16-17)

Inverse formulas for the Guam projection (Claire, 1968, p. 53) involve
an iteration of two equations, which may be rearranged snd rewritten
in the following form consistent with the above formulas. Given q, ¢, ¢,,
Mo» %, and y, M, is calculated for ¢, from (8-21), given with forward
equations. (If false northings and eastings are included in  and y, they
must be subtracted first.)

Then, first assuming ¢=¢,,

M=M, +y-a*tan ¢ (1-esin? ¢)*/(2 a) (19-30)

Using this M, u is calculated from (8-19) and inserted into the right side
of (3-26) to solve for a new ¢ on the left side. This is inserted into
(19-30), a new M is found, and it is resubstituted into (8-19), u into
(3-26), etc., until ¢ on the left side of (3-26) changes by less than a
chosen convergence figure, for a final ¢. Then

A=Xo+2 (1 —€? sin? ¢)*/(a cos ¢) (19-31)

The inverse Guam formulas arbitrarily stop at three iterations, which
are sufficient for the small area.

For the Micronesia version of the ellipsoidal Azimuthal Equidistant
projection, the inverse formulas given below are “Clarle’s best for-
mula,” as given in Bomford (1971, p. 133) and do not involve iteration.
They have also been rearranged to begin with rectangular coordinates,
but they are also suitable for finding latitude and longitude accurately
for a point at any given distance ¢ (up to about 800 km) and azimuth Az
(east of north) from the center, if equations (19-32) and (19-33) are
deleted. In order of use, givena, e, central point at lat. ¢,, long.X\,,
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rectangular coordinates of center #,, %,, and « and y for another point,
to find ¢ and \:

c=[(x -2l +(y - yo)]* (10-32)
Az=arctan [(x—%o)/(y —yo)] (19-33)
N,=al/(1-¢sin? ¢,)* (4-202)

A= —e*cos? ¢, cos? Az/(1-¢?) (19-34)
B=3¢*(1-A)sin ¢, cos ¢, cos Az/(1-¢?) (19-35)
D=¢/N, (19-36)
E=D-A(Q1+A)D?*6-B(1+34)D*/24 (19-37)
F=1-AFE?2-BE"/6 (19-38)

Y = arcsin (sin ¢, cos E +cos ¢, sin £ cos Az) (19-39)

A=\o+arcsin (sin Az sin E/cos y) (19-40)

¢ =arctan [(1-¢*F sin ¢,/sin y)tan y/(1-¢?)] (19-41)

The ATANZ2 function of Fortran, or equivalent, should be used in equa-
tion (19-33), but not (19-41).



SPACE MAP PROJECTIONS

One of the most recent developments in map projectiors has been
that involving a time factor, relating a mapping satellite revolving in an
orbit about a rotating Earth. With the advent of automated continuous
mapping in the near future, the static projections previously available
are not sufficient to provide the accuracy merited by the imagery,
without frequent readjustment of projection parameters and discon-
tinuity at each adjustment. Projections appropriate for such satellite
mapping are much more complicated mathematically, but, once de-
rived, can be handled by computer.

Several such space map projections have been conceived, and all but
one have been mathematically developed. The Space Oblique Mercator
projection, suitable for mapping imagery from Landzat and other ver-
tically scanning satellites, is described below. The Space Ohlique Con-
formal Conic is a still more complex projection, currently only in
conception, but for which mathematical development will he required
when satellite side-looking imagery has been developed to an extent
sufficient to encourage its use. Satellite-tracking projections are
simpler, but are less important and are not discussed here (Snyder,
1981a).

20. SPACE OBLIQUE MERCATOR PROJECTION

SUMMARY

® Modified cylindrical projection with map surface defined by satellite orbit.

¢ Designed especially for continuous mapping of satellite imagery.

¢ Basically conformal, especially in region of satellite scanning.

* Groundtrack of satellite, a curved line on the globe, is shown as a curvad line on the
map and is continuously true to scale as orbiting continues.

All meridians and parallels are curved lines, except meridian at each polar approach.

Recommended only for a relatively narrow band along the groundtrack.

Developed 1973-79 by Colvocoresses, Snyder, and Junkins.

HISTORY

The launching of an Earth-sensing satellite by the National
Aeronautics and Space Administration in 1972 led to a new era of map-
ping on a continuous basis from space. This satellite, first called
ERTS-1 and renamed Landsat-1 in 1975, was followed by two others,
all of which circled the Earth in a nearly circular orbit incl'ned about
99° to the Equator and scanning a swath about 185 km (of ‘icially 100
nautical miles) wide from an altitude of about 919 km. A forarth Land-
sat has somewhat different orbital parameters.
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Continuous mapping of this band required a new map proj=ction.
Although conformal mapping was desired, the normal choice, the
Oblique Mercator projection, is unsatisfactory for two reasons. First,
the Earth is rotating at the same time the satellite is moving in an orbit
which lies in a plane almost at a right angle to the plane of the Equator,
with the double-motion effect producing a curved groundtrack, rather
than one formed by the intersection of the Earth’s surface with a plane
passing through the center of the Earth. Second, the only available
Oblique Mercator projections for the ellipsoid are for limited coverage
near the chosen central point. ‘

What was needed was a map projection on which the groundtr-ck re-
mained true-to-scale throughout its course. This course does not. in the
case of Landsat, return to the same point for 251 revolutions. It was
also felt necessary that conformality be closely maintained within the
range of the swath mapped by the satellite.

Alden P. Colvocoresses of the Geological Survey was the first to
realize not only that such a projection was needed, but also that it was
mathematically feasible. He defined it geometrically (Colvocoresses,
1974) and immediately began to appeal for the development of for-
mulas. The following formulas resulted from the writer’s response to
Colvocoresses’ appeal made at a geodetic conference at The Ohio State
University in 1976. While the formulas were derived (1977-79) for
Landsat, they are applicable to any satellite orbiting the Earth in a cir-
cular or elliptical orbit and at any inclination. Less complete formulas
were also developed in 1977 by John L. Junkins, then of the University
of Virginia. The following formulas are limited to nearly circular orbits.
A complete derivation for orbits of any ellipticity is given by Snyder
(1981) and another summary by Snyder (1978b).

FEATURES AND USAGE

The Space Oblique Mercator (SOM) projection visually differs from
the Oblique Mercator projection in that the central line (the ground-
track of the orbiting satellite) is slightly curved, rather than st-aight.
For Landsat, this groundtrack appears as a nearly sinusoidal curve
crossing the X axis at an angle of about 8°. The scanlines, perpen-
dicular to the orbit in space, are slightly skewed with respect to the
perpendicular to the groundtrack when plotted on the sphere or ellip-
soid. Due to Earth rotation, the scanlines on the Earth (or map) in-
tersect the groundtrack at about 86° near the Equator, but at 90°
when the groundtrack makes its closest approach to either pole. With
the curved groundtrack, the scanlines generally are skewed with
respect to the X and Y axes, inclined about 4° to the Y axis at the
Equator, and not at all at the polar approaches.
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The Landsat orbit intersects the plane of the Equator at an inclina-
tion of about 99°, measured as the angle between the direction of
satellite revolution and the direction of Earth rotation. Thus the
groundtrack reaches limits of about lat. 81° N. and S. (180° minus 99°).
The 185-km swath scanned by Landsat, about 0.83° on either side of
the groundtrack, leads to complete coverage of the Earth from about
lat. 82° N. to 82° S. in the course of the 251 revolution~. With a
nominal altitude of about 919 km, the time of one revolution is 103.267
minutes, and the orbit is designed to complete the 251 revolutions in
exactly 18 days.

As on the normal Oblique Mercator, all meridians and parallels are
curved lines, except for the meridian crossed by the groundtrack at
each polar approach. While the straight meridians are 180° apart on
the normal Oblique Mercator, they are about 167° apart or the SOM
for Landsat, since the Earth advances about 26° in longitud= for each
revolution of the satellite.

As developed, the SOM is not perfectly conformal for either the
sphere or ellipsoid, although the error is negligible within the scanning
range for either. Along the groundtrack, scale in the direction of the
groundtrack is correct for sphere or ellipsoid, while conformelity is cor-
rect for the sphere and within 0.0005 percent of correct for the ellip-
soid. At 1° away from the groundtrack, the Tissot Indicatrix (the
ellipse of distortion) is flattened a maximum of 0.001 percent for the
sphere and a maximum of 0.006 percent for the ellipsoid (this would be
zero if conformal). The scale 1° away from the groundtraclk averages
0.015 percent greater than that at the groundtrack, a valu= which is
fundamental to projection. As a result of the slight nonconformality,
the scale 1° away from the groundtrack on the ellipsoid then varies
from 0.012 to 0.018 percent more than the scale along the groundtrack.

A prototype version of the SOM was used by NASA with a geometric
analogy proposed by Colvocoresses (1974) while he was seeking the
more rigorous mathematical development. This consisted basically of
moving an obliquely tangent cylinder back and forth on the sphere so
that a circle around it which would normally be tangent shifted to
follow the groundtrack. This is suitable near the Equator but leads to
errors of about 0.1 percent near the poles, even for the spher=. In 1977,
John B. Rowland of the USGS applied the Hotine Oblique Mercator
(described previously) to Landsat 1, 2, and 3 orbits in five stationary
zones, with smaller but significant errors (up to twice the srale varia-
tion of the SOM) resulting from the fact that the groundtreck cannot
follow the straight central line of the HOM. In addition, there are
discontinuities at the zone changes. This was done to fill the void
resulting from the lack of SOM formulas.
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FIGURE 28.-Two orbits of the Space Oblique Mercator projection, shown for Landsat. Designed for a narrow band along groundtrack,
which remains true to scale. Note the change in longitude at a given latitude along the groundtrack, with successive orbits.
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FIGURE 29. ~ One quadrant of the Space Oblique Mercator projection. An “enlargement” of part of figure 28, beginning at the North Pole.
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As of this writing, the final SOM development has not rep'aced the
HOM programing for Landsat mapping, but this is expected in the near
future. The projection is included here because of its potential use and
the fact that it was developed wholly within or under the supervision of
the USGS. Figures 28 and 29 show the SOM extended to two orbits
with a 30° graticule and for one-fourth of an orbit with a 10° graticule,
respectively. The progressive advance of meridians may be seen in
figure 28. Both views are for Landsat constants.

FORMULAS FOR THE SPHERE

Both iteration and numerical integration are involved in the formulas
as presented for sphere or ellipsoid. The iteration is quite rapid (three
to five iterations required for ten-place accuracy), and the numrerical in-
tegration is greatly simplified by the use of rapidly converging Fourier
series. The coefficients for the Fourier series may be calculsted once
for a given satellite orbit. [Some formulas below are slightly simplified
from those first published (Snyder, 1978b).]

For the forward equations, for the sphere and circular orbit, to find
(x, y) for a given (¢, \), it is necessary to be given R, 1, P,, P, \o, ¢, and
A, where

R =the radius of the globe at the scale of the map.

1=angle of inclination between the plane of the Earth’s Equator
and the plane of the satellite orbit, measured counterclockwise
from the Equator to the orbital plane at the ascend'ng node
(99.092° for Landsat).

P, =time required for revolution of the satellite (103.267 min for
Landsat).

P,=length of Earth’s rotation with respect to the precessed
ascending node. For Landsat, the satellite orbit is Sun-
synchronous; that is, it is always the same with respect to the
Sun, equating P, to the solar day (1,440 min). The ascending
node is the point on the satellite orbit at which the satellite
crosses the Earth’s equatorial plane in a northerly direction.

Mo =the geodetic longitude of the ascending node at time ¢{=0.

(¢, N)=geodetic latitude and longitude of point to be p'ntted on
map.

t=time elapsed since the satellite crossed the ascending node for
the orbit considered to be the initial one. This may be the cur-
rent orbit or any earlier one, as long as the proper \, is used.

First, various constants applying to the entire map for all the satellite’s
orbits should be calculated a single time:

B=(2/m){o™ [(H - SH(1+S2)%]d N (20-1)
A =[4)(xn)]] o™ [(H - S?)(1 +S?*] cos n N d N (20-2)

for n=2 and 4 only.
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C,=[4H+1)/(xn)]}fo™ [S/(1+S?*] cosn N d N (20-3)

for n=1 and 3 only.

For calculating A, B, and C,, numerical integration using S‘mpson’s
rule is recommended, with 9° intervals in N’ (sufficient for ten-nlace ac-
curacy). The terms shown are sufficient for seven-place accuracy, am-
ple for the sphere. For H and S in equations (20-1) through (21-3):

H=1-(P,/P,)cos? (20-4)
S=(P,/P,)sinicos N (20-5)

To find x and y, with the X axis passing through each ascending and
descending node (wherever the groundtrack crosses the Equator), z in-
creasing in the direction of satellite motion, and the Y axis passing
through the ascending node for time ¢=0:

o/R=BN+A,sin2\'+A,sin 4N+ ...

—[S/(1+8%*] In tan (x/4 + ¢/2) (20-6)
YR=C,sinN+C,sin3\+ ...
+[1/(1+8%¥%] In tan (x/4 + ¢'/2) (20-7)

where B, A,, and C, and constants calculated above, S is calculated
from (20-5) for each point, and

N =arctan (cos < tan )\, + sin ¢ tan ¢/cos \) (20-8)
N=A=No+(Po/P)N (20-9)
¢'=arcsin (cos ¢ sin ¢ - sin ¢ cos ¢ sin \)) (20-10)
o= 128.87° - (360°/251)p (Landsat 1, 2, 3 only) (20-11)

p=path number of Landsat orbit for which the ascending node
occurs at time ¢=0. This ascending node is prior to the start of
the path, so that the path extends from % orbit past this node
to %/, orbit past it.

N =“transformed longitude,” the angular distance along the
groundtrack, measured from the initial ascending node (¢=0),
and directly proportional to ¢ for a circular orbit, or N'=360°
t/P,.

\.=a “satellite-apparent” longitude, the longitude relative to
Mo seen by the satellite if the Earth were stationary.

¢'=“transformed latitude,” the angular distance from the ground-
track, positive to the left of the satellite as it proceeds along the
orbit.

Finding N from equations (20-8) and (20-9) involves iteration per-
formed in the following manner: After selecting ¢ and \, the N of the
nearest polar approach, )\ /, is used as the first trial X' on the rieht side
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of (20-9); \, is calculated and substituted into (20-8) to find a new N. A
quadrant adjustment (see below) is applied to N, since the computer
normally calculates arctan as an angle between —90° and 90°, and this
N is used as the next trial N in (20-9), etc., until ' changes by l=ss than a
chosen convergence factor. The value of N may be determined as
follows, for any number of revolutions:

N,/=90°x(4 N+2+1) (20-12)

where N is the number of orbits completed at the last ascending node
before the satellite passes the nearest pole, and the + takes minus in
the Northern Hemisphere and plus in the Southern (eithe+ for the
Equator). Thus, if only the first path number past the ascending node is
involved, A is 90° for the first quadrant (North Pole to Equator), 270°
for the second and third quadrants (Equator to South Pole to Equator),
and 450° for the fourth quadrant (Equator to North Fnle). For
quadrant adjustment to N’ calculated from (20-8), the Fortran ATAN2
or its equivalent should not be used. Instead, N should be increased by
A, minus the following factor: 90° times sin )\ times +1 (taking the
sign of cos \,, where Ap=A=No+(P/P)\)). If cos Ay is zero, the final \'
is \). Thus, the adder to the arctan is 0° for the quadrant be*ween the
ascending node and the start of the path, and 180°, 180°, 360°, and
360°, respectively, for the four quadrants of the first path.

The closed forms of equations (20-6) and (20-7) are as follows:

2/R= I[;‘ [(H - S?)/(1 +8%)%])d N - [S/(1+S2*]

1 tan (a/4+¢'/2) (20-62)
yR=(H+1) J N [SI1+S8%#]d N +[1/(1+S87)%]
In tan (x/4+ ¢'/2) (20-7a)

Since these involve numerical integration for each point, the series
forms, limiting numerical integration to once per satellite, are distinct-
ly preferable. These are Fourier series, and equations (20-2) and (20-3)
normally require integration from 0 to 27, without the multip'ier 4, but
the symmetry of the circular orbit permits the simplification as shown
for the nonzero coefficients.

For inverse formulas for the sphere, given R, 1, P,, Py, o, %, and ¥,
with ¢ and A required: Constants B, A, C,, and \, must be calculated
from (20-1) through (20-3) and (20-11) just as they were for the for-
ward equations.

Then,

A=arctan [(cos i sin X'~ sin 1 tan ¢')/cos N]— (Po/P) N + X, (20-13)
¢ =arcsin (cos ¢ sin ¢’ +sin 1 cos ¢’ sin \) (20-14)
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where the ATANZ function of Fortran is useful for (20-13), except that
it may be necessary to add or subtract 360° to place \ betveen long.
180° E. (+) and 180° W. (-), and

N=[2/R+Sy/R-A, sin2 N -4, sin4 N-S(C, sin N
+C,;sin3\))/B (20-15)
In tan(x/4 + ¢'/2)=(1 + S?)*(y/R - C, sin X' - C, sin 3\)) (20-16)

Equation (20-15) is iterated by trying almost any N’ (preferably z/(BR))
in the right side, solving for N’ on the left and using the nev' X' for the
next trial, etc., until there is no significant change between successive
trial values. Equation (20-16) uses the final X' calculated from (20-15).
The closed form of equation (20-15) given below involves repeated
numerical integration as well as iteration, making its use ¢lmost pro-
hibitive:
(@+Sy)R= X [(H-S/(1+S?)4ld N
+SH+1)[) [S/(1+S?)*1d N (20-15a)

The following closed form of (20-16) requires the use of the last in-
tegral calculated from (20-15a):

In tan (x/4+ ¢'/2)=(1+S8?)"2 ((y/R)-(H+1){ »* [S/(1 +S2)'2]d\} (20-16a)

The original published forms of these equations include several other
Fourier coefficient calculations which slightly save computer time when
continuous mapping is involved. The resulting equations are more com-
plicated, so they are omitted here for simplicity. The above equations
are as accurate and only slightly less efficient.

The values of coefficients for Landsat (P,/P, = 18/251; 1= 99.092°) are
listed here for convenience:

A,=-0.0018820
A= 0.0000007

B= 1.0075654142 for X in radians
= 0.0175853339 for X' in degrees
C,= 0.1421597

C;=-0.0000296

It is also of interest to determine values of ¢, \, or N along the
groundtrack, given any one of the three (as well as P,, P,, 1, and \,).
Given ¢,

N =aresin (sin ¢/sin 1) (20-17)
A=arctan [(cos 7 sin X')/cos N'] - (Po/P,) N + )Xo (20-18)
If ¢ is given for a descending part of the orbit (daylight on Landsat),

subtract ' from the X' of the nearest descending node (180°, 540°, . . ).
If the orbit is ascending, add N to the N’ of the nearest ascerding node
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(0°, 360°, . . .). For a given path, only 180° and 360°, respectively, are
involved.

Given )\,
N =arctan (tan \,/cos 7) (20-19)
A=A=No+(P/P)N (20-9)
¢ =arcsin (sin % sin \') (20-20)

Given X, equations (20-18) and (20-20) may be used for \ and ¢,
respectively. Equations (20-6) and (20-7), with ¢'=0, convert these
values to x and y. Equations (20-19) and (20-9) require joint iteration,
using the same procedure as that for the pair of equations (29-8) and
(20-9) given earlier. The \ calculated from equation (20-18) should have
the same quadrant adjustment as that described for (20-13).

The formulas for scale factors 4 and k and maximum angul~r defor-
mation w are so lengthy that they are not given here. They are available
in Snyder (1981). Table 30 lists these values as calculated for the
spherical SOM using Landsat constants.

TABLE 30.~-Scale fuctors for the spherical Space Oblique Mercator projection using Land-
sat 1, 2, and 3 constants

, ¢l=10 ¢I=_10
X h k& P Ty h % o° Ty
0° ____ 1.000154 1.000151 0.0006 1.000152 1.000154 1.000151 0.0006 1.000152
5 _____ 1.000153 1000151  .0006 1.000151 1.000154 1000151  .0006 1.000152
10 _____ 1.000153 1.000151  .0006 1.000151 1.000155 1.000151  .0006 1.000153
15 ____ 1.000153 1.000151  .0006 1.000150 1.000155 1.000151  .0006 1.000153
20 _____ 1000152 1.000151  .0006 1.000150 1.000156 1.000151  .0006 1.000154
25 _____ 1.000152 1.000151  .0006 1.000150 1.000156 1.000151  .0006 1.000154
30 _____ 1.000152 1.000151 .0005 1.000149 1.000156 1.000151 .0005 1.000154
35 _____ 1.000152 1.000150  .0005 1.000149 1.000156 1.000151  .0005 1.000154
40 _____ 1.000152 1.000150 .0005 1.000150 1.000156 1.000151 .0005 1.000154
45 _____ 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0005 1.000154
50 _____ 1.000152 1.000150 0004 1.000150 1.000156 1.000151 .0004 1.000154
56 _____ 1.000152 1.000150 0004 1.000150 1.000155 1.000151 .0004 1.000154
60 _____ 1.000153 1.000151 0003 1.000151 1.000155 1.000151 .0003 1.000154
65 _____ 1.000153 1.000151 00038 1.000151 1.000155 1.000151 0003 1.000153
70 _____ 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 0002 1.000153
™ 1.000153 1.000151  .0002 1.000152 1.000154 1.000151  .0002 1.000153
80 _____ 1.000153 1.000151  .0001 1.000152 1.000153 1000152  .0001 1.000153
85 _____ 1.000153 1.000152 0001 1.000152 1.000153 1.000152 0001 1.000152
90 1.000152 1.000151  .0001 1.000152 1.000152 1.000152  .0000 1.000152

Notes: N'=angular position along groundtrack, from ascending node.

¢' =angular distance away from groundtrack, positive in direction away from North Pole.
h=scale factor along meridian of longitude.
k =scale factor along parallel of latitude.
w=maximum angular deformation.

m,, =scale factor along line of constant ¢'.

m,, =scale factor along line of constant X',

=sec ¢/, or 1.000152 at ¢'=1°.
If ¢'=0°, k, k, and m,,=1.0, while w=0.
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FORMULAS FOR THE ELLIPSOID

Since the SOM is intended to be used only for the mapping of
relatively narrow strips, it is highly recommended that the ellipsoidal
form be used to take advantage of the high accuracy of scale available,
especially as the imagery is further developed and used for more
precise measurement. In addition to the normal modifications to the
above spherical formulas for ellipsoidal equivalents, an add‘tional ele-
ment is introduced by the fact that Landsat is designed to sczn vertical-
ly, rather than in a geocentric direction. Therefore, “pseudotrans-
formed” latitude ¢” and longitude \” have been introduced. T-<y relate
to a geocentric groundtrack for an orbit in a plane through the center
of the Earth. The regular transformed coordinates ¢’ and X are related
to the actual vertical groundtrack. The two groundtracks are only a
maximum of 0.008° apart, although a lengthwise displacement of
0.028° for a given position may occur.

In addition, the following formulas accommodate a slight ellipticity in
the satellite orbit. They provide a true-to-scale groundtrack for an orbit
of any eccentricity, if the orbital motion follows Kepler’s law's for two-
bodied systems, but the areas scanned by the satellite as shc¢wn on the
map are distorted beyond the accuracy desired if the eccentricity of the
orbit exceeds about 0.05, well above the maximum reported eccentrici-
ty of Landsat orbits (about 0.002). For greater eccentricities, more
complex formulas (Snyder, 1981) are recommended. If the orbital ec-
centricity is made zero, these formulas readily reduce to thos= for a cir-
cular orbit. If the eccentricity of the ellipsoid is made zero, the formulas
further reduce to the spherical formulas above. These formulas vary
slightly, but not significantly, from those previously publishel. In prac-
tice, the coordinates for each picture element (pixel) should not be
calculated because of computer time required. Linear interpnlation be-
tween occasional calculated points can be developed with ad~quate ac-
curacy.

For the forward formulas, given a, ¢, 4, P,, Py, X, @, €, v, ¢, and X,
find # and y. As with the spherical formulas, the X axis passes through
each ascending and descending node, z increasing in the direction of
satellite motion, and the Y axis intersects perpendicularly at the
ascending node for the time ¢=0. Defining terms,

a, e=semimajor axis and eccentricity of ellipsoid, respective'y (as for
other ellipsoidal projections).
a/, ¢ =semimajor axis and eccentricity of satellite orbit, respactively.
v =longitude of the perigee relative to the ascending node (for a
circular orbit, with ¢ =0, v is not involved).
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i, P,, P, o, ¢, \ are as defined for the spherical SOM formules. For
constants applying to the entire map:

B, =[1/(2m)]§ (HJT - SHJ*+S?)2]dN" (20-21)
B,=[1/@2m{31SH+NIJ*+S?""1d\" (20-22)
A, =[1/(xn)]§ TT(HJT - SHI(J?+S2)'/2] cos n\"dN" (20-23)
Al =[1(xm)] | Z[(HJT - SH/(J? +S?)2] sin n\"d\" (20-24)
C.=[1(xn)]§ XTISH + J)(J? + S?)'%] cos n\"dN" (20-25)
C.=[1(xn)]§ ISH + J)(J* +S2)"/?] sin nN"dN" (20-26)
J=(1-¢) (20-27)
W=[(1-e?cos?1)*/(1-¢*)?]-1 (20-28)
Q=e*sin*i/(1-¢?) (20-29)
T=e?sin? i (2 - e2)/(1 - 6?)? (20-30)
H,=B,/(B,*+B,?)? (20-31)
S,=B,/(B,*+ B,?)12 (20-32)
Ju=m)[¢" sin nN'dN (20-33)
Fuo=(Um)|¢" cos nNdN (20-34)
m,=(1/7)| (N~ N) sin nNdN' (20-35)
ml,=(1/m) | "(\" = \) cos nNdN' (20-36)

where ¢" and N\’ are determined in these last four equations for the
groundtrack as functions of N, from equations (20-40a), (20-60),
(20-59), (20-58), (20-61), and (20-45) through (20-49).

To calculate A,, A!, B,, C,, and C,, the following functions, varying
with \", are used: |

S=(P,/P,)L’ sin 1 cos N {(1+ T sin? N")/[(1+ W sin® \")
(1+ @ sin? \")]}v/2 (20-37)

He [ 1+@Q sin?)\" ]“2 [( 1+Wsin?\" (P./P)L’ cos i] (20-38)

1+ W sin2 \' 1+@Q sin? \')?
L'=(1-¢ cos E"?/(1-€?)2 (20-39)
E’'=2 arctan {tan Y2(\" - v) [(1 - €)/(1 + €)]/3) (20-40)

These constants may be determined from numerical integrat'on, us-
ing Simpson’s rule with 9° intervals. For noncircular orbits, integra-
tion must occur through the 360° or 2« cycle, as indicated. Many more
terms are needed than for circular orbits.

For circular orbits, A', B,, C, A, if nis odd, C, if n is even, S,, 3., m..,
J. if m is even, and m, if n is odd are all zero, while H, and L’ are both
1.0. Numerical integration for the nonzero values of all the rer-aining
coefficients for circular orbits may be carried out from 0 to #/2, multi-
plying the result by 4.
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To find « and y from ¢ and \:

va=2H, +y'S, (20-41)
yla=yH,-28S, (20-42)
where

¥=BN'+ L A, sin o\~ 5 A, cos n\"+ X4 AL~ [SIJ*+S8)?] (20-43)
In tan (z/4+ ¢"/2)
Y= B‘,.\”+§ C, sin n)\" - ’; C,, cos n\"+ g C.+[JI(J*+S5%)'7] (20-44)

In tan (n/4+ ¢"/2)
\'=arctan [cos ¢ tan )\, + (1 - €?) sin  tan ¢/cos \,] (20-45)
A=N=Xo+(P/P)(L +7) (20-46)
L=F-¢sinE (20-47)
E’'=2arctan {tan Y2 (\" - ) [(1-€)/(1 + ¢)]*"3} (20-48)
¢"=arcsin {[(1-e?) cos % sin ¢—sin 1 cos ¢ sin \,}/
(1 - e?sin? ¢)'/?) (20-49)
No=128.87° - (360°/251)p (Landsat 1, 2, 3 only) (20-11)

Function E' is called the “eccentric anomaly” along the orbit, and L is
the “mean anomaly” or mean longitude of the satellite measur<d from
perigee and directly proportional to time.

Equations (20-45) through (20-48) are solved by special iteration as
described for equations (20-8) and (20-9) in the spherical formulas, ex-
cept that \" replaces N, and each trial \" is placed in (20-48), from which
E' is calculated, then L from (20-47), A, from (20-46), and another trial
N' from (20-45). This cycle is repeated until \” changes by less than the
selected convergence. The last value of \, found is then used in (20-49)
to find ¢".

For circular orbits, in calculating z and y from ¢ and A, equations
(20-41), (20-42), (20-47), and (20-48) may be eliminated, and equations
(20-43) and (20-44) may be rewritten as follows:

x/a=B\'+A, sin 2\"+A, sin AN+ . . .- [S/(J?+S*)"?]

In tan (n/4 +¢"/2) 20-43a)
y/a=C, sin \"+C, sin 3N+ . .. +[J/(J*+S%)"?]
In tan (x/4 + ¢"/2) (20-44a)

Also, for circular orbits, (L ++) in (20-46) is replaced by \", and the two
equations (20-45) and (20-46) are iterated together as were (20-8) and
(20-9). Equation (20-49) is unchanged. For both circular and non-
circular orbits, equation (20-37) is used to find S for the given \" in
equations (20-43), (20-44), (20-43a), and (20-44a).
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The closed forms of equations (20-43) and (20-44) are given below,
but the repeated numerical integration necessitates replacement by the
series forms.

2 = [ MHT - SHIJ? +52)17] dN' - [S(J* +S2)7]

In tan (x/4+ ¢"/2) (20-43b)
Y = [ ISEH + IV + )2 dN'+ AT+ S7]
In tan (x/4 + ¢"/2) (20-44b)

While the above equations are sufficient for plotting a graticule ac-
cording to the SOM projection, it is also desirable to relate these points
to the true vertical groundtrack. To find ¢” and \" in terms of ¢’ and X\,
the shift between these two sets of coordinates is so small it is
equivalent to an adjustment, requiring only small Fourier ccefficients,
and very lengthy calculations if they are not used. The use of Fourier
series is therefore highly recommended, although the one-time calcula-
tion of coefficients is more difficult than the foregoing calculation of 4,,
B,, and C,.

¢"=¢'+ Z Ja Sin n\ + E 7. cosnN - E I (20-50)

=N+ 2 m, sin nN + E m, cos nN — E m, (20-51)

For the circular orbit, as outlined in discussing other Fonrier con-
stants,

¢"=¢'+75, sinN+7,8in3N'+ ... (20-502)
N'=N+m,sin2N+m,sin4\'+ . .. (20-51a)
For N in terms of time ¢ from the initial ascending node,
N =v+2arctan {(tan ¥z E") [(1 +¢)/(1 - €)]'"?} (20-52)
E'=¢sin '+ Ly+27t/P, (20-53)
L,=E,-¢€ sin Ej, (20-54)
E\,= -2 arctan {tan Yey [(1 - €)/(1 + €)]*/?} (20-55)

Equation (20-53) requires iteration, converging rapidly by substituting
an initial trial E'= L, + 27t/P, in the right side, finding a new E’ on the
left, substituting it on the right, ete., until sufficient convergence oc-
curs. For a circular orbit, N’ is merely 2xt/P,.

The equations for functions of the satellite groundtrack, both for-
ward and inverse, are given here, since some are used in calculating j,
and m, as well. In any case q, ¢, 1, P,, P, \o, @, €, and v must be given.
For X' and ), if ¢ is given:

N =aresin (sin ¢,/sin %) (20-56)
¢, = ¢ —arcsin {ae* sin ¢ cos ¢/[R, (1~ e* sin? ¢)'/?]} (20-57)
R,=a'(1-¢ cos E") (20-58)

E'=2 arctan {tan Y2 (\ —v) [(1 - €)/(1 + €)]/%} (20-40a)
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where ¢, is the geocentric latitude of the point geocentrically under the
satellite, not the geocentric latitude corresponding to the vertical
groundtrack latitude ¢, and R, is the radius vector to the satellite from
the center of the Earth.

These equations are solved as a group by iteration, inserting a trial
N =arcsin (sin ¢/sin ) in (20-40a), solving (20-58), (20-57), and (20-56)
for a new X, etc. Each trial N’ must be adjusted for quadrant. If the
satellite is traveling north, add 360° times the number of orbits com-
pleted at the nearest ascending node (0, 1, 2, ete.). If traveling south,
subtract N’ from 360° times the number of orbits completec at the
nearest descending node (1/2, 3/2, 5/2, ete.). For )\,

A=arctan [(cos ¢ sin N')/cos N']— (Po/P, XL +7v)+Xo (20-59)
L=FE-¢sinE (20-60)

using the ' and E’ finally found just above.

For a circular orbit, equations (20-58), (20-40a), and (20-60) are
eliminated. R, becomes the radius of the orbit (7,294,690 m for Land-
sat), and (L +v) in (20-59) is replaced with X". Iteration is eliminated as
well.

If X\ of a point along the groundtrack is given, to find N’ and ¢,

N =arctan (tan \,/cos 1) (20-19)
Ae=A=Xo+(P/P,) (L +7) (20-46)

and L is found from (20-60) and (20-40a) above. The four equations are
iterated as a group, as above, but the first trial N’ and the quadrant ad-
justments should follow the procedures listed for equation (20-8).

¢ =aresin (sin ¢ sin N')+arcsin {ae? sin ¢ cos ¢/
[R, (1-¢?sin? ¢)/2]} (20-61)

where R, is determined from (20-58) and (20-40a), using the N’ deter-
mined just above. Iteration is involved in (20-61), beginning with a trial
¢ of arcsin (sin % sin \).

For a circular orbit, only equations (20-19), (20-46), and (20-61) are
involved, using X\’ in place of (L ++) in (20-46) and using the orbital
radius for R,. Iteration remains for calculations of both ' and ¢.

If \' of a point along the groundtrack is given, ¢ is found from
(20-61), (20-58), and (20-40a); while \ is found from (20-59), (20-60),
and (20-40a). For the circular orbit, (20-61) is sufficient for ¢, and
(20-59) provides \ if X' is substituted for (L ++). Only (20-61) requires
iteration for these calculations, whether the orbit is circular or non-
circular.

Inverse formulas for the ellipsoidal form of the SOM projection, with
an orbit of 0.05 eccentricity or less, follow: Given a, e, 4, P,, Py, N\, @, €,
v, %, and y, to find ¢ and \, the general Fourier and other constants are
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first determined as described at the beginning of the forvard equa-
tions. Then

A=A —(PA/P)Y L +7)+X (20-62)
where
\.=arctan (V/cos \") (20-63)
V={[1-sin? ¢"/(1-¢*)] cos 1 sin \"~sin ¢ sin ¢" [(1+@Q sin? \")
(1-sin? ¢")-U sin? ¢"]/3}/[1 -sin? ¢" (1 + U)] (20-64)
U=e*cos?*i/(1-¢?) (20-65)

while L is found from (20-60), E' from (20-48), and \" and ¢" from
(20-68) and (20-69) below.

¢ =arctan {(tan X" cos \, — cos 7 sin \,)/[(1 - €?) sin 7]} (20-66)
If i=0, equation (20-66) is indeterminate, but
¢ =arcsin {sin ¢"/[(1 - €2)? + €* sin? ¢"]/?} (20-67)

No iteration is involved in equations (20-62) through (20-67), and the
ATAN2 function of Fortran should be used with (20-63), but not
(20-66), adding or subtracting 360° to or from \ if necessary in (20-62)
to place it between longs. 180° E. and W. For the circular orlt, (20-48)
and (20-60) do not apply, and (L ++) in (20-62) is replaced with \"
Other equations remain the same.

Iteration is required to find \" from z and y:

N={x'+(S/)y - ,.)':_’: [A, +(S/N)C,] sin n N + "Z:; [AL+(S/J)C.] cos n\" — ..E

=1

(A% +(S)C.H/B, +(S/7)B) (20-68)

using equations (20-37), (20-70), (20-71), and various constents. Itera-
tion involves substitution of a trial A" =2/B, in the right side, finding a
new )\ on the left side, ete.

For ¢”, the \" just calculated is used in the following equation:

In tan (/4 +¢"/2)=(1+SJ2) 2/ ~B, X'~ & C, sin n X'+ 2

CocosnN'-£C,) (20-69)

where
¥ =(x/a) H, - (y/a)S, (20-70)
¥ =(y/a) H, +(x/a)S, (20-71)

For the circular orbit, equations (20-70) and (20-71) are eliminated,
and (20-68) and (20-69) are rewritten thus:

N'=[x/a+(S/T)y/a)-A, sin 2 \"-A, sin 4 \'
—(S/NY)C, sin \"+C; sin 3N")|/B, (20-68a)
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In tan (x/4+¢"/2)=(1+SYJ2)/2 (yla—C, sin '~ C, sin3N)  (20-69a)

The first is solved by iteration just as (20-68), using an initial \" =x/aB,.

The closed forms of equations (20-68), (20-69), (20-68a), and
(20-69a) involve both iteration and repeated numerical integration and
are impractical:

o+ (SIy = [STEHT - SH(J2 +S2)72]d N

+(SIDFTSH + NH(J?* +SH)2)d N (20-68b)
In tan (x/4 + ¢"12)=[1+(S/I)*)*{y - |3 [SH +J)/
(J*+S?)2d \"} (20-69Db)

(For the circular orbit, ' and i are replaced by (x/a) and (y/a), respec-
tively.)

For ¢' and N in terms of ¢"” and \", the same Fourier series developed
for equations (20-50) and (20-51) may be used with reversal of signs,
since the correction is so small. That is,

¢'=9¢"- ):l J.sinn )\ - Z; JucosnN+X 7, (20-72)
n= n= n=1

N=N'= X m, sinn'- X m, cosn )+ £ e, (20-73)
n= n=1 n=1

Equations (20-72) and (20-73) are, of course, not the exact inverses of
(20-50) and (20-51), although the correct coefficients may ke derived
by an analogous numerical integration in terms of \”, rather than X'
The inverse values of ¢’ and N from (20-72) and (20-73) ¢re within
0.000003° and 0.000009°, respectively, of the true inverses of (20-50)
and (20-51) for the Landsat orbit.

For the circular orbit, as before, equations (20-72) and (20-73)
simplify to the following:

¢'=¢"-jsInN"-5sin3N"- ... (20-72a)
N=N-m,sin2\" -m,sin4\"—- ... (20-73a)

The following values of Fourier coefficients for the ellipscidal SOM
are listed for Landsat orbits, using the Clarke 1866 ellipsoid
(¢=6,378,206.4 m and ¢*=0.00676866) and a circular orbit
(R="17,294,690 m, i=99.092°, P,/P,=18/251).

B,= 1.005798138 for M in radians
= 0.0175544891 for N in degrees

A,=-0.0010979201
A,=-0.0000012928
Ags=-0.0000000021
C,= 0.1434409899
C,= 0.0000285091

s= —0.0000000011
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Ji= 0.00855567 for ¢" and ¢’ in degrees

7= 0.00081784 "
Js=—0.00000263 "
m, = —0.02384005 for \" and X' in degrees
me= 0.00010606 "
ms= 0.00000019 "

Additional Fourier constants have been developed in the published
literature for other functions of circular orbits. They add to t“e com-
plication of the equations, but not to the accuracy, and only slizhtly to
continuous mapping efficiency. For noncircular orbits, too many terms
are needed to justify their use on functions not otherwise requir'ng con-
tinuous integration. Therefore, they are omitted here. A further
simplification from published formulas is the elimination of a function
F, which nearly cancels out in the range involved in imaging.

As in the spherical form of the SOM, the formulas for scale factors 2
and k¥ and maximum angular deformation w are too lengthy to include
here, although they are given by Snyder (1981). Table 31 presents these
values for Landsat constants for the scanning range required.

TABLE 31.-Scale factors for the ellipsoidal Space Oblique Mercator project'on using
Landsat 1, 2, and 3 constants

N " h k w® s w
0° 1° 1.000154 1.000151 0.0006 0.000005
0 1.000000  1.000000 .0000 .000000
-1 1.000154  1.000151 .0006 .000005
15 1 1.000161 1.000151 .0022 .000019
0 1.000000  1.000000 .0001 .000000

-1 1.000147 1.000151 .0011 .000010

30 1 1.000167 1.000150 .0033 .000029
0 1.000000 1.000000 .0001 .000001

-1 1.000142 1.000150 .0025 .000021

45 1 1.000172 1.000150 .0036 .000031
0 999999 1.000000 .0001 .000001
-1 1.000138  1.000150 .0031 .000027
60 1 1.000174 1.000150 .0031 .000027
0 1999999 1.000000 .0002 .000001
-1 1.000136 1.000150 .0028 .000025
M e 1 1.000174 1.000152 .0019 000016
0 1999999 1.000000 .0001 .000000
-1 1.000135 1.000150 .0019 .000016
90 1 1.000170  1.000156 .0008 .000007
0 1999999 1.000000 .0000 .000000
-1 1.000133  1.000151 .0010 .000009

Notes: \"= angular position along geocentric groundtrack, from ascending node.
¢"= angular distance away from geocentric groundtrack, positive in direction away from North Pole.
h= scale factor along meridian o% longitude.
k= scale factor along parallel of latitude.
w= maximum angular deformation.
sin Y2w= maximum variation of seale factors from true conformal values.
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Only two map projections described in this study cannot be satis-
factorily placed in one of the four categories previously listed. If this
study included many of the projections not used by the USGS, several
additional categories would be shown, and those projections dizcussed
below would be placed with similar projections and probably reamoved
from the “miscellaneous” classification.

21. VAN DER GRINTEN PROJECTION

SUMMARY

Neither equal-area nor conformal.

Shows entire globe enclosed in a circle.

Central meridian and Equator are straight lines.

All other meridians and parallels are arcs of circles.

A curved modification of the Mercator projection, with great distortion in the polar
areas.

Equator is true to scale.

Used for world maps.

Used only in the spherical form.

Presented by van der Grinten in 1904.

HISTORY, FEATURES, AND USAGE

In a 1904 issue of a German geographical journal, Alphons J. van der
Grinten (1852-?) of Chicago presented four projections showing the en-
tire Earth. Aside from having a straight Equator and central meridian,
three of the projections consist of arcs of circles for meridizns and
parallels; the other projection has straight-line parallels. The projec-
tions are neither conformal nor equal-area (van der Grinten, 1904;
1905). They were patented in the United States by van der Grinten in
1904.

The best-known Van der Grinten projection, his first (fig. 30). shows
the world in a circle and was invented in 1898. It is designed for use in
the spherical form only. There are no special features to preserve in an
ellipsoidal form. It has been used by the National Geographic Society
for their standard world map since 1943, printed at various scales and
with the central meridian either through America or along the Green-
wich meridian; this use has prompted others to employ the projection.
The USGS has used one of the National Geographic maps as a kase for
a four-sheet set of maps of World Subsea Mineral Resources, 1970, one
at a scale of 1:60,000,000 and three at 1:39,283,200 (a scale usec by the
National Geographic), and for three smaller maps in the National Atlas
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FiGURE 30.— Van der Grinten projection. A projection resembling the Mercator, but not conformal. Used by
the USGS for special world maps, modifying a base map prepared by the National Geographic Society.
This illustration is prepared by computer.
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(USGS, 1970, p. 150-151, 332-335). All the USGS maps have a central
meridian of long. 85° W., passing through the United States.

Van der Grinten emphasized that this projection blends tke Mercator
appearance with the curves of the Mollweide, an equal-ares. projection
devised in 1805 and showing the world in an ellipse. He included a
simple graphical construction and limited formulas showing the
mathematical coordinates along the central meridian, the Equator, and
the outer (180th) meridian. The meridians are equally spaced along the
Equator, but the spacing between the parallels increases with latitude,
so that the 75th parallels are shown about halfway between the
Equator and the respective poles. Because of the polar exaggerations,
most published maps using the Van der Grinten projection do not
extend farther into the polar regions than the northern shores of
Greenland and the outer rim of Antarctica.

The National Geographic Society prepared the base map graphically.
General mathematical formulas have been published in recent years
and are only useful with computers, since they are fairly complex for
such a simply drawn projection (O’Keefe and Greenberg, 1977; Snyder,
1979b).

GEOMETRIC CONSTRUCTION

The meridians are circular arcs equally spaced on the Equator and
joined at the poles. For parallels, referring to figure 31, semicircle CDB
is drawn centered at A. Diagonal CD is drawn. Point E is marked so
that the ratio of EA to AD is the same as the ratio of the lati‘ude to 90°.

D
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G
J \H \l
K

C A B
FiGuRE 31.—Geometric construction of the Van der Grinter
projection.



214 MAP PROJECTIONS USED BY THE USGS

Line FE is drawn parallel to CB, and FB and GB are connected. At H,
the intersection of GB and AD, JHL is drawn parallel to CB. A c'rcular
arc, representing the parallel of latitude, is then drawn throught JKL.

FORMULAS FOR THE SPHERE

The general formulas published are in two forms. Both sets giv= iden-
tical results, but the 1979 formulas are somewhat shorter and are given
here with some rearrangement and addition of new inverse equations.
For the forward calculations, given R, \,, ¢, and \ (giving true scale
along the Equator), to find  and y:

2=+ 7R [A(G-P)+[AYG - P - (P*+ A\ G* - P 3}(P*+A?)  (21-1)

taking the sign of (\—\,). Note that (A—\,) must fall between +180°
and - 180°; if necessary, 360° must be added or subtracted. The X axis
lies along the Equator, x increasing easterly, while the Y axis coincides
with the central meridian \,.

y=+7R{PQ-Al(A*+1)XP*+A)—-Q*'* }(P*+A?) (21-2)
taking the sign of ¢,

where
A=Y2|m/(N=No) = (N =No)/ 7| (21-3)
G=cos0/(sinf+cosf-1) (21-4)
P=G(2/sing-1) (21-5)
6 =arcsin|2¢/7| (21-6)
QR=A*+G (21-6a)

But if ¢ =0 or A=\, these equations are indeterminant. In that case, if
¢ = 0)

z=RM\-\o) (21-7)
and

y=0
or if A=\,

z=0
and

y=+ =R tan(6/2) (21-8)

taking the sign of ¢. It may be noted that absolute values (syml ™l | |)

are used in several cases. The origin is at the center (¢ =0, A=\.).
For the inverse equations, given R, o, %, and y, to find ¢ and X\:

Because of the complications involved, the equations are given in the
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order of use. This is closely based upon a recent, non-ite~ative algo-
rithm by Rubincam (1981):

X=x/(zR) (21-9)
Y=y/(=xR) (21-10)
¢=—|Y|1+X?*+Y? (21-11)
c=¢—-2Y?+X? (21-12)
cs=—2¢,+1+2Y?+H(X?+ Y?)? (21-13)
d=Y?%c;+(2c3/c3—9c¢yca/c3)/2T (21-14)
a,=(c,—c3/3cs)/cs (21-15)
m,=2(—a,/3)""? (21-16)
6,=(1/3) arccos (3d/a,m,) (21-17)
¢=1txl—m, cos (6, +7/3)—c./3cs] (21-18)

taking the sign of y.
A=m{ X+ Y2-1+[14+2(X?*—-Y)+(X2+ Y2 }/2X+\, (21-19)

but if X=0, equation (21-19) is indeterminate. Then

A=ho (21-20)

The formulas for scale factors are quite lengthy and are nat included
here. Rectangular coordinates are given in table 32 for a map of the
world with unit radius of the outer circle, or R=1/x. The longitude is
measured from the central meridian. Only one quadrant of the map is
given, but the map is symmetrical about both X and Y ares.
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TABLE 32.— Van der Grinten projection: Rectangular coordinates

[y-coordinate in parentheses under z-coordinate]

Long. 0° 10° 20° 30° 40°
m
90°........ 0.00000 0.00000 0.00000 0.00000 0.07°000
(1.00000) (1.00000) (1.00000) (1.00000) (1.07000)
80......... .00000 03491 .06982 10473 .13963
(.60961)  (.61020)  ( .61196)  ( .61490)  ( .61902)
70......... 00000 04289 .08581 12878 17184
( .47759)  (.47806)  ( .47948)  ( .48184)  ( .4%517)
60......... + 00000 04746 09495 14252 .19020
(.38197)  (.38231)  (.38336)  ( .38511)  ( .3°756)
50......... .00000 05045 .10094 15149 29215
( .30334) ( .30358) ( .30430) ( .30551) ( .39721)
40......... .00000 05251 .10504 15764 21031
( .23444) ( .23459) ( .23505) ( .23582) ( .23690)
30......... .00000 .05392 10787 .16185 .21588
( .17157) ( .17166) ( .17192) ( .17235) ( .17295)
20......... .00000 05485 10972 16460 21951
( .11252) ( .11256) ( .11267) ( .11286) ( .11313)
10......... .00000 .05538 11077 .16616 22156
( .05573) ( .05574) ( .05577) ( .05581) ( .05588)
O......... .00000 .05556 11111 .16667 22222
( .00000) ( .00000) ( .00000) ( .00000) ( .€C0000)
TABLE 32.— Van der Grinten projection: Rectangular coordinates—Continued
Long. ° o o o o
m 50 60 70 80 90
90°........ 0.00000 0.00000 0.00000 0.00000 0.00000
(1.00000) (1.00000) (1.00000) (1.00000) (1.00000)
80......... 17450 20932 .24403 27859 .31293
( .62435) ( .63088) ( .63863) ( .64760) ( .65778)
..., 21498 25821 .30152 .34488 .38827
( .48946)  ( .49473)  ( .50100)  ( .50828)  ( .51657)
60......... .23800 .28594 .33403 38225 .43059
( .39073) ( .39462) ( .39925) ( .40462) ( .41074)
50......... 25293 .30385 .35492 40614 45750
( .30940) ( .31208) ( .31527) ( .31897) ( .32319)
40......... .26308 .31596 .36897 42210 47535
( .23829) ( .24000) ( .24202) ( .24436) ( .24703)
30......... 26998 32415 .37841 43275 48718
(.17373)  (.17468)  ( .17581)  ( .17711)  ( .17860)
20......... 27445 32944 38446 .43953 49464
(.11347) ( .11389) ( .11439) ( .11497) ( .11562)
10......... 27697 .33239 .38782 .44327 49872
( .05597)  ( .05607)  ( .05620)  ( .05634)  ( .05650)
0......... 27778 .33333 .38889 . 44444 .50000
( .00000)  ( .00000)  ( .00000)  ( .00000)  ( .00000)
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TABLE 32.— Van der Grinten projection: Rectangular coordinates—Continued

w 100° 110° 120° 130° 140°
Lat.
90°........ 0.00000 0.00000 0.00000 0.00000 0.00000
(1.00000) (1.00000) (1.00000) (1.00000) (1.00000)
80......... 34699 .38069 41394 .44668 47882
( .66917) ( .68174) ( .69548) ( .71085) ( .72631)
70....... .. 43163 47493 51810 56110 60385
( .52588) ( .53621) ( .54756) ( .55992) ( .57328)
60......... 47903 52754 57608 162463 67313
( .41762) ( .42525) ( .43366) ( .44282) ( .45275)
50......... .50899 .56059 .61228 66404 71585
( .32792) ( .33317) ( .33894) ( .34524) ( .35207)
0......... 52871 58218 63575 68939 74310
( .25001) ( .25333) ( .25697) ( .26094) ( .26523)
30......... 54168 .59626 65091 70562 76038
( .18026) ( .18209) ( .18411) ( .18631) ( .18869)
20......... 54979 .60499 66022 71548 77077
( .11635) ( .11716) ( .11804) ( .11901) ( .12005)
10......... 55419 .60967 66516 72066 77617
( .05668) ( .05688) ( .05710) ( .05734) ( .05760)
Ouevernnn. 55555 61111 66667 712222 7778
( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

TABLE 32.— Van der Grinten projection: Rectangular coordinates —Continued

Long. ° ° 170° 80°
m\ 150 160 0 1

90° ......... 0.00000 0.00000 0.00000 0.00000
(1.00000) (1.00000) (1.00000) (1.00000)
80 ..., 51028 54101 57093 60000
( .74331) ( .76130) ( .78021) ( .80000)
0. ... .. 64631 68843 73013 77139
( .58762) ( .60293) ( .61919) ( .63636)
60 .......... 12156 76988 81804 86603
( .46344) ( .47488) ( .48707) ( .50000)
50 ..eenn... 76768 81951 87132 92308
( .35942) ( .36729) ( .37569) ( .38462)
40 .......... 79686 85066 90448 95831
( .26986) ( .27482) ( .28010) ( .28571)
80 .......... 81518 87003 92490 97980
( .19125) ( .19398) ( .19690) ( .20000)
20 . ..., 82609 88143 93678 99216
( .12117) ( .12237) ( .12365) ( .12500)
10....0.nnn. 83168 88721 94274 99827
( .05788) ( .05817) ( .05849) ( .05882)
| 83333 88889 94444 1.00000
( .00000) ( .00000) ( .00000) ( .00000)

Radius of map = 1.0. Radius of sphere = 1/x.
Origin: (z, ) = 0 at (lat, long) = 0. Y axis increases north. One quadrant given. Other qradrants of world
map are symmetrical.






22, SINUSOIDAL PROJECTION

SUMMARY
* Pseudocylindrical projection.
s Equal-area.
¢ Central meridian is a straight line; all other meridians are shown as sinusoidal
curves.

* Parallels are equally spaced straight lines.

* Scale is true along central meridian and all parallels.

¢ Used for world maps with single central meridian or in interrupted form with
several central meridians.

Used for maps of South America and Africa.

Used since the mid-16th century.

HISTORY

There is an almost endless number of possible projections with
horizontal straight lines for parallels of latitude and curved lines for
meridians. They are sometimes called pseudocylindrical because of
their partial similarity to cylindrical projections. Scores of snch projec-
tions have been presented, purporting various special advantages,
although several are strikingly similar to other members of the group
(Snyder, 1977). While there were rudimentary projections with
straight parallels used as early as the 2nd century B.C. by Hipparchus,
the first such projection still used for scientific mapping of the sphere is
the Sinusoidal.

This projection (fig. 32), used for world maps as well as maps of con-
tinents and other regions, especially those bordering the Ecmator, has
been given many names after various presumed originator=, but it is
most frequently called by the named used here. Among the first to
show the Sinusoidal projection was Jean Cossin of Dieppe, who used
it for a world map of 1570. In addition, it was used by Jodocus Handius
for maps of South America and Africa in some of his editions of Mer-
cator’s atlases of 1606-1609. This is probably the basis for one of the
names of the projection: The Mercator Equal-Area. Nicolas Sanson
(1600-67) of France used it in about 1650 for maps of continents, while
John Flamsteed (1646-1719) of England later used it for star maps.
Thus, the name “Sanson-Flamsteed” has often been applied to the
Sinusoidal projection, even though they were not the originators
(Keuning, 1955, p. 24; Deetz and Adams, 1934, p. 161).

While maps of North America are no longer drawn to the £ *nusoidal,
South America and Africa are still shown on this projectior in recent
Rand McNally atlases.

219
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FEATURES AND USAGE

The simplicity of construction, either graphically or mathematically,
combined with the useful features obtained, make the Sinusoidal pro-
jection not only popular to use, but a popular object of stuly for inter-
ruptions, transformations, and combination with other projections.

On the normal Sinusoidal projection, the parallels of latitude are
equally spaced straight parallel lines, and the central moridian is a
straight line crossing the parallels perpendicularly. The Equator is
marked off from the central meridian equidistantly for meridians at the
same scale as the latitude markings on the central meridian, so the
Equator for a complete world map is twice as long as the central merid-
ian. The other parallels of latitude are also marked off for meridians in
proportion to the true distances from the central meridian. The merid-
ians connect these markings from pole to pole. Since the spacings on
the parallels are proportional to the cosine of the latitude, and since
parallels are equally spaced, the meridians form curves which may be
called cosine, sine, or sinusoidal curves; hence,the name.

Areas are shown correctly. There is no distortion along the Equator
and central meridian, but distortion becomes pronounced near the
outer meridians, especially in the polar regions.

Because of this distortion, J. Paul Goode (1862-1932) of The Univer-
sity of Chicago developed an interrupted form of the Sinusoidal with
several meridians chosen as central meridians without distcrtion and a
limited expanse east and west for each section. The central meridians
may be different for Northern and Southern Hemispheres and may be
selected to minimize distortion of continents or of ocezns instead.
Ultimately, Goode combined the portion of the interrupted Sinusoidal
projection between about lats. 40° N. and S. with the portions of the
Mollweide or Homolographic projection (mentioned earlier) not in this
zone, to produce the Homolosine projection used in Rand McNally’s
Goode’s Atlas (Goode, 1925).

In 1927, the Sinusoidal was shown interrupted in three symmetrical
segments in the Nordisk Virlds Atlas, Stockholm, serving as the base
for the Sinusoidal as shown in Deetz and Adams (1934, p. 1€1). It is this
interrupted form which served in turn as the base for a three-sheet set
by the USGS in 1978 at a scale of 1:20,000,000, entitled Map of
Prospective Hydrocarbon Provinces of the World. With irterruptions
occurring at longs. 160° W., 20° W., and 60° E., and the three central
meridians equidistant from these limits, the sheets show (1) North and
South America; (2) Europe, West Asia, and Africa; and (3) East Asia,
Australia, and the Pacific; respectively. The maps extend pole to pole,
but no data are shown for Antarctica. An inset of the Aretic region at
the same scale is drawn to the polar Lambert Azimuthal Equal-Area
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projection. A similar map is being prepared by the USGS showing
sedimentary basins of the world.

The Sinusoidal projection is normally used in the spherical forn, ade-
quate for the usual small-scale usage. The ellipsoidal form may be made
by spacing parallels along the central meridian(s) true to scale for the
ellipsoid (equation (3-21)) and meridians along each parallel also true
to scale (equation (4-21)). The projection remains equal-area, while the
parallels are not quite equally spaced, and the meridians are no longer
perfect sinusoids.

FORMULAS FOR THE SPHERE

The formulas for the Sinusoidal projection are perhaps the simplest
of those for any projection described in this bulletin, except for the
Equidistant Cylindrical. For the forward case, given R, \,, ¢, ani \, to
find z and y:

x=R(\-N\o)cos ¢ (22-1)
y=R¢ (22-2)
h=[1+(\—\o)* sin? ¢]*/ (22-3)
k=1.0

¢ =arcsin (1/h) (22-4)
w=2 arctan|%z(\ — \o) sin ¢| (22-5)

where ¢ is the angle of intersection of a given meridian and p-rallel
(see equation (4-14)), and %, k, and w are other distortion factors as
previously used. The X axis coincides with the Equator, with  increas-
ing easterly, while the Y axis follows the central meridian A\, y increas-
ing northerly. It is necessary to adjust (\—\,), if it falls outside the
range +180°, by adding or subtracting 360°. For the interrupted form,
values of  are calculated for each section with respect to its own cen-
tral meridian X\,.

In equations (22-1) through (22-5), radians must be used, or ¢ and A
in degrees must be multiplied by #/180°.

For the inverse formulas, given R, \,, «, and ¥, to find ¢ and \:

¢=y/R (22-6)
A=No+2/Rcos¢ (22-7)

but if ¢ = + /2, equation (22-7) is indeterminate, and A may be given an
arbitrary value such as \.
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APPENDIX A
NUMERICAL EXAMPLES

The numerical examples which follow should aid in the use of the
many formulas in this study of map projections. Single examples are
given for equations for forward and inverse functions of the projec-
tions, both spherical and ellipsoidal, when both are given. They are
given in the order the projections are given. The order of equations
used is based on the order of calculation, even though the equations
may be originally listed in a somewhat different order. In scme cases,
the last digit may vary from check calculations, due to round‘ng off, or
the lack of it.

AUXILIARY LATITUDES (SEE P. 16-22)

For all the examples under this heading, the Clarke 1866 ellipsoid is
used: a is not needed here, ¢*=0.00676866, or ¢=0.0822719. Auxiliary
latitudes will be calculated for geodetic latitude ¢ =40°:

Conformal latitude, using closed equation (3-1):

x =2 arctan {tan (45° +40°/2) [(1 - 0.0822719 sin 40°)/(1 +0.0822719
sin 400)]0.0822719/21 - 900
=2 arctan {2.1445069 [0.8995456]°-04!13¢0) — 90°
=2 arctan (2.1351882)-90°
=2x64.9042961° -90°
=39.8085922° =39°48'30.9"

Using series equation (8-2), obtaining x first in radians:

=40° x 71/180° -(0.00676866/2 + 5 x 0.00676866%/24 + 3 x 0.0( 376866/
32)xsin (2x40°)+(5x0.00676866%/48 + 7 x 0.00676866°/8() x sin
(4x40°)—-(18 x 0.006768663/480) sin (6 x40°)

=0.6981317 - (0.0033939) x 0.9848078 +(0.0000048) x 0.342( 201
-(.0000000) x (- 0.8660254)

=0.6947910 radian

=0.6947910 x 180°/x = 39.8085923°

For inverse calculations, using closed equation (8-4) with iteration
and given x =39.8085922°, find ¢:
First trial: '

¢ =2 arctan {tan (45° + 39.8085922°/2) [(1 + 0.0822719 sin 39.§185922°y
(1-0.0822719 sin 39.8085922°)]0-0822719/2} _9()°
=2 arctan {2.1351882 [1.1112(023]°-041136%} _9(°
=129.9992366° - 90°
=39.9992366°

=

225
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Second trial:

¢=2 arctan {2.1351882 [(1+0.0822719 sin 39.9992366°)/(1-0.0°22719
sin 39.9992366°)]°-0411360} _9(°
=2 arctan (2.1445068)-90°
=39.9999970°

The third trial gives ¢ =40.0000000°, also given by the fourth trial.
Using series equation (3-5):

6 =39.8085922° x 7/180° +(0.00676866/2 + 5 x 0.006768662/24

+0.00676866%/12) sin (2 x 39.8085922°) +(7 x 0.00676866%/48 +29
x 0.00676866%/240) sin (4 x 39.8085922°)+(7 x 0.00676866/120)
sin (6x 39.8085922°)

=0.6947910 +(0.0033939) x 0.9836256 + (0.0000067) x 0.3545461
+(0.0000000) x (- 0.8558300)

=0.6981317 radian

=0.6981317 x 180°/ = 40.0000000°

Isometric latitude, using equation (3-7):

¥=In {tan (45° +40°/2) [(1-0.0822719 sin 40°)/(1 +0.0822719
sin 4(°)]o-0822719/2
~In (2.1351882)
=0.7585548

Using equation (8-8) with the value of x resulting from the akove ex-
amples:

¢=In tan (45° + 39.8085923°/2)
=In tan 64.9042962°
=0.75855648

For inverse calculations, using equation (3-9) with ¢ =0.7585548:

x . 2 arctan e0.7585548 — 900
=2 arctan (2.1351882)-90°
=39.8085922°

From this value of x, ¢ may be found from (3-4) or (3-5) as shown
above.

Using iterative equation (8-10), with ¢ =0.7585548, to find ¢:
First trial:

¢ =2 arctan e 7585846 _9(°
=389.8085922°, as just above.

Second trial:

¢ =2 arctan {e®7°#*%¢ [(1+0.0822719 sin 39.8085922°)/(1-0.0822719
sin 39.8085922°)]0-0822719/2) _ 9()°
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=2 arctan (2.1351882 x 1.0043469)-90°
=39.9992365°

Third trial:

é=2 arctan (€755 [(1+0.0822719 sin 39.9992365°)/(1-0.0822719
sin 39.9992865°)]0-0822719/2) _9(°
=39.9999970°

Fourth trial, substituting 39.9999970° in place of 39.99923°5°:
¢ =40.0000000°, also given by fifth trial.
Authalic latitude, using equations (3-11) and (3-12):

¢=(1-0.00676866) {sin 40°/(1-0.00676866 sin? 40°)—
[1/(2x0.0822719)] In [(1-0.0822719 sin 40°)/(1 +0.0822719 sin
40°)]) '
=0.9932318 (0.6445903 —6.0774117 In 0.8995456)
=1.2792602
¢,=(1-0.00676866) {sin 90°/(1-0.00676866 sin? 90°)-[1/
(2x0.0822719)] In [(1-0.0822719 sin 90°)/(1 +0.0822719 sin 90°)]}
=1.9954814
B=arcsin (1.2792602/1.9954814)
=arcsin 0.6410785
=39.8722878° =39°52'20.2"

Determining 8 from series equation (8-14) involves the same pattern
as the example for equation (3-5) given above.

For inverse calculations, using equation (3-17) with iter~tive equa-
tion (8-16), given §=39.8722878°, and gq,=1.9954814 as determined
above:

g=1.9954814 sin 39.8722878°
=1.2792602

First trial:

¢ =arcsin (1.2792602/2)
=39.762435°

Second trial:

¢ =39.7642435° + (180°/) {[(1-0.00676866 sin* 39.7642435°)*/(2 cos
39.7642435°)] [1.2792602/(1 - 0.00676866) — sin 39.7642435°/
(1-0.00676866 sin? 39.7642435°)
+[1/(2x 0.0822719)] In [(1-0.0822719 sin 39.7642435°)/
(1+0.0822719 sin 39.7642435°)]]}
=39.9996014°
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Third trial, substituting 39.9996014° in place of 89.7642435°,
¢ =39.9999992°

Fourth trial gives the same result.

Finding ¢ from g by series equation (3-18) involves the same pattern
as the example for equation (8-5) given above.

Rectifying latitude, using equations (3-20) and (3-21):

M =4a[(1-0.00676866/4 — 3 x 0.006768662/64 - 5x 0.00676866°/256, x 40°
x 7/180°~(3x 0.00676866/8 + 3 x 0.006768662/32 + 45 x 0.00676866°/
1024) sin (2x 40°)+(15x 0.006768662/256 + 45 x 0.00676866°/1024)
sin (4x40°)-(35x 0.00676866°/3072) sin (6 x 40°)]

=a[0.9983057 x 0.6981317 - 0.0025426 sin 80° +0.0000027 sin 160°
-0.0000000 sin 240°]
=0.6944458a
M,=1.5681349a, using 90° in place of 40° in the above example.
p=90°x0.6944458a/1.5681349a,
=39.8563451° =39°51'22.8"

Calculation of y from series (8-23), and the inverse ¢ from (8-26), is
similar to the example for equation (8-2) except that e, is used rather
than e. From equation (3-24),

e,=[1-(1-0.00676866)'/2J[1+(1-0.00676866)'/?]
=0.001697916

Geocentric latitude, using equation (3-28),

¢,=arctan [(1-0.00676866) tan 40°]
=39.8085032° =39°48'30.6"

Reduced latitude, using equation (3-31),

n=arctan [(1-0.00676866) tan 40°]
=39.9042229° = 39°54'15.2"

Series examples for ¢, and n follow the pattern of (3-2) and (3-23).

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID (SEE P. 28-81)

Radius of curvature and length of degrees, using the Clarke 1866
ellipsoid at lat. 40° N.:
From equation (4-18),

R'=6378206.4 (1-0.00676866)/(1 —0.00676866 sin? 40°)*/2
=6,361,703.0 m

From equation (4-19), using the figure just calculated,

L,=6361703.0 #/180°=111,032.7 m, the length of 1° of latitude at
lat. 40° N.
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From equation (4-20),

N=6378206.4/(1 - 0.00676866 sin? 40°)»/2
=6,387,143.9 m

From equation (4-21),

L, =[6378206.4 cos 40°/(1-0.00676866 sin? 40°)'/?] x/180°
=85,396.1 m, the length of 1° of longitude at lat. 40° N.

MERCATOR PROJECTION (SPHERE)-FORWARD EQUATIONS (SET" P. 47, 50)

Given: Radius of sphere: R=1.0 unit
Central meridian: )\,=180° W. long.
Point: ¢=35° N. lat.
A=75° W. long.

Find: z, y, k.
Using equations (7-1) through (7-3),
=7x1.0x[(-75°)-(~180°))/180° = 1.8325957 units

y=1.0xIn tan (45° +35°/2)=1.0xIn tan (62.5°)
=In 1.9209821 = 0.6528366 unit

or

y=1.0xarctanh (sin 35°)=arctanh 0.5735764
=0.6528366 unit
h=Fk=sec 35°=1/cos 35°=1/0.8191520 =1.2207746

MERCATOR PROJECTION (SPHERE)-INVERSE EQUATIONS (SEE P. 50)

Inversing forward example:
Given: R, \, for forward example
x=1.8325957 units
4 =0.6528366 unit

Find: ¢, A
Using equations (7-4) and (7-5),

¢ = 900 - 2 arctan (e-0.6528366/ l.l))
=90° -2 arctan (0.5205670)=90° ~2x 27.5° =35°
=35° N. lat, since the sign is “+.”
A=(1.8325957/1.0)x 180°/x +(—180°)
=105°-180° = - 75°=75° W. long., since the sign is “-.”

The scale factor may then be determined as in equation (7-3) using the
newly calculated ¢.
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MERCATOR PROJECTION (ELLIPSOID)- FORWARD EQUATIONS (SEE P. 50)

Given: Clarke 1866 ellipsoid: a=6378206.4 m
¢*=0.00676866
or ¢=0.0822719
Central meridian: \,=180° W. long.
Point: ¢= 35° N. lat.
A= 75° W. long.

Find: z, 4, k
Using equations (7-6) through (7-8),

£=6378206.4x [(~ 75°)— (- 180°)] x 7/180° = 11688673.7 m
] o . axorm {(1=0.0822719 sin 35° \ossnsra
y=6378206.4 In [tan (45° +35°/2) (1+ 0.0822719 sin 350) ]
— 6378206.4 In [1.9209821 x 0.9961223]

~6378206.4 In 19135331 = 4,139, 145.6 m
J=(1-0.00676866 sin? 35°)¥/cos 35°
=1.2194146

MERCATOR PROJECTION (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 50-51)
Inversing forward example:

Given: a, ¢ )\, for forward example
2=11688673.7 m
y=4139145.6 m

Find: ¢, A
Using equation (7-10),
t = e-4139145.6/6378206.4 = O' 5225935

From equation (7-11), the first trial ¢=90°-2 arctan 0.5275935=
34.8174484°. Using this value on the right side of equation (7-9),

¢=90° -2 arctan {0.5225935[(1 - 0.0822719 sin 34.8174484°)/(
+0.0822719 sin 34.8174484°)]0-0822719/2
=34.9991687°

Replacing 34.8174484° with 34.9991687° for the second trial, recalcu-
lation using (7-9) gives ¢=34.9999969°. The third trial gives
¢=235.0000006°, which does not change (to 7 places) with recalcrlation.
If it were not for rounding-off errors in the values of  and y, ¢ vrould be
35° N. lat.

For )\, using equation (7-12),

A=(11688673.7/6378206.4)x 180°/7 + (- 180°)
= -75.0000001° =75.0000001° W. long.
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Using equations (7-13) and (3-5) instead, to find ¢,

x=90° -2 arctan 0.5225935
=90° - 55.1825516°
=34.8174484°

using ¢ as calculated above from (7-10). Using (8-5), x is inserted as in
the example given above for inverse auxiliary latitude x:

¢=235.0000006°

TRANSVERSE MERCATOR (SPHERE)- FORWARD EQUATIONS (SEL P. 64, 67)

Given: Radius of sphere: R=1.0 unit
Origin: ¢,=0
ho=75° W. long.
Central scale factor: k,=1.0
Point: ¢=40°30 N. lat.
A=73°30' W. long.
Find:«, y, &
Using equation (8-5),
B=cos 40.5° sin [(-73.5°)-(-"75°)]
=cos 40.5° sin 1.5°=0.0199051
From equation (8-1),

2=Yx1.0x1.0 In [(1+0.0199051)/(1-0.0199051)].
=0.0199077 unit

From equation (8-3),

y¥=1.0x1.0 {arctan [tan 40.5°/cos 1.5°]-0}
=40.5096980° 7/180° =0.7070276 unit

From equation (8-4),
k=1.0/(1-0.0199051%)"2=1.0001982

TRANSVERSE MERCATOR (SPHERE)-INVERSE EQUATIONS (SEE P. 67)
Inversing forward example:

Given: R, ¢o, No, ko for forward example
2=0.0199077 unit
¥=0.7070276 unit

Find: ¢, A
Using equation (8-8),

D=0.7070276/(1.0x 1.0)+ 0=0.7070276 radian
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For the hyperbolic functions of (x/Rk.), the relationships

sinh z=(e*-e™)/2
and
cosh x=(e*+e™)/2

are recalled if the function is not directly available on a given computer
or calculator. In this case,
sinh (2/Rk,)=sinh [0.0199077/(1.0 x 1.0)]
- (e0.0199077 — e-0.0199077)/2
=0.0199090
cosh (x/R ko) = (eo.owso'n + e-o.owoon)/z
=1.0001982

From equation (8-6), with D in radians, not degrees,

¢ =arcsin (sin 0.7070276/1.0001982) = arcsin (0.6495767/1.0001982)
=40.4999995° N. lat.

From equation (8-7),

A= —T5°+ arctan [0.0199090/ cos 0.7070276]
= -75°+ arctan 0.0261859 = - 75° +1.4999961 = - 73.50000°
=73.5000039° W. long.

If more decimals were supplied with the x and y calculated from the
forward equations, the ¢ and \ here would agree more exactly with the
original values.

TRANSVERSE MERCATOR (ELLIPSOID)- FORWARD EQUATIONS (SEF P. 67-68)

Given: Clarke 1866 ellipsoid: @=6378206.4 m
¢*=0.00676866
Origin (UTM Zone 18): ¢,=0
No=75° W. long.
Central scale factor: k,=0.9996
Point: ¢=40°30' N. lat.
A=73°30' W. long.

Find: z, 4, k
Using equations (8-12) through (8-15) in order,

¢*=0.00676866/(1-0.00676866) = 0.0068148
N=6878206.4/(1 -0.00676866 sin? 40.5°)/*=6387330.5 m
T'=tan? 40.5° =0.7294538

C=0.0068148 cos? 40.5° =0.0039404

A =(cos 40°30')x[(-73.5°) = (=75°)] x/180° =0.0199074
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Instead of equation (3-21), we may use (8-22) for the Clar¥e 1866:

M=111132.0894 x(40.5°) - 16216.94 sin (2x40.5°)+17.21 sin
(4x40.5°)~0.02 sin (6 x40.5°)
=4,484,837.67 m
M,=111132.0894 x 0° - 16216.94 sin (2x0°)+17.21 sin (4x0°)-0.02
sin (6x0°)
=0.00 m

Equations (8-9) and (8-10) may now be used:

z=0.9996 x 6387330.5 x[0.0199074 + (1 - 0.7294538 + 0.00404)
% 0.0199074°/6 + (5 - 18 x 0.7294538 + 0.72945382 + 72 x 00039404
- 58x0.0068148) x 0.0199074%/120]
=127,106,6 m
¥=0.9996 x {4484837.7 -0+ 6387330.5 x 0.8540807 x [0.0199074%/2
+(5-0.7294538 + 9 x 0.0039404 + 4 x 0.00394042) x 0.01990744/24
+(61-58x0.7294538 + 0.7294538% + 600 x 0.0039404 - 330
% 0.0068148) x 0.0199074°/720]}
=4,484,124.4 m

These values agree exactly with the UTM tabular values, except that
500,000.0 m must be added to « for “false eastings.” To calculate %, us-
ing equation (8-11),

k=0.9996 x[1 +(1 +0.0039404) x 0.0199074%/2 + (5 — 4 X 0.7294538 + 42
%0.0039404 + 13 x 0.00894042 ~ 28 x 0.0068148) x 0.0199074+/24
+(61-148x0.7294538 + 16 x 0.72945382) x 0.0199074¢/720]

=0.9997989

Using equation (8~16) instead,

k=0.9996 x[1+(1+0.0068148 cos? 40.5°)x 127106.5*/(2 x 0.99962
% 6387330.5%)
=0.9997989

TRANSVERSE MERCATOR (ELLIPSOID)- INVERSE EQUATIONS (SEE P. 68-69)

Inversing forward example:

Given: Clarke 1866 ellipsoid: a=6378206.4 m
¢*=0.00676866
Origin (UTM Zone 18): ¢o=0
No=75° W. long.
Central scale factor: ko=0.9996
Point: x=127106.5 m
y=4484124.4 m
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Find: ¢, A
Calculating M, from equation (3-22),

M,=111132.089x 0° - 16216.9 sin (2x0°)+17.2 sin (4x0°)-0.02 sin
(6x0°)
=0

From equation (8-12),
¢*=0.00676866/(1 - 0.00676866)=0.0068148
Using equation (8-20),
M=0+4484124.4/0.9996 = 4485918.8 m
From equation (3-24),

e;=[1-(1-0.00676866)"/2)/[1+(1-0.00676866)"%]
=0.001697916

From equation (8-19),

p=4485918.8/[6378206.4 x (1 - 0.00676866/4 — 3 x 0.00676866%/64
-5x0.00676866°/256)]
=0.7045135 radian

From equation (3-26), using u in radians,

¢:=0.7045135 +(8 % 0.001697916/2 — 27 x 0.001697916°/32) sin
(2x0.7045135)+ (21 x 0.001697916%/16 — 55 x 0.00169791€¢4/32)
sin (4x0.7045135)+ (1561 x 0.001697916°/96) sin (6 x 0.7045135)
=0.7070283 radian
=0.7070283 x 180°/7
=40.5097362°

Now equations (8-21) through (8-25) may be used:

C,=0.0068148 cos* 40.5097362° =0.0039393

T,=tan? 40.5097362° =0.7299560

N,=6378206.4/(1-0.00676866 sin* 40.5097362°)"/
=6387334.2 m

R,=6378206.4 x (1-0.00676866)/(1 - 0.00676866 sin* 40.5097362°)*'
=6,362,271.4 m

D,=127106.5/(6387334.2x 0.9996)=0.0199077

Returning to equation (8-17),

¢=40.5097362° - (6387334.2 x 0.8543746/6362271.4)x [0.0199977%/2
- (5x3x0.7299560 + 10x 0.0039393 — 4 x 0.0039393*- 9
x0.0068148)x 0.01990774/24 + (61 + 90 x 0.7299560 + 298
% 0.0039393 + 45 x 0.7299560% — 252 x 0.0068148 - 3
% 0.00393932)x 0.0199077¢/720] x 180° /%

=40.5000000° =40°30' N. lat.
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From equation (8-18),

A= —175°+{[0.0199077—(1 + 2x0.7299560+0.0039393) x 0.01990
-16
+(5-2x0.0039393 + 28 x 0.7299560 — 3 x 0.00393932 + 8
% 0.0068148 + 24 x 0.7299560%) x 0.01990774/120)/cos
40.5097362°}x 180°/x
= - 75°+1.5000000° = - 73.5° =73°30’ W. long.

OBLIQUE MERCATOR (SPHERE)- FORWARD EQUATIONS (SEE P. 76-78)

Given: Radius of sphere: R=1.0 unit
Central scale factor: k,=1.0
Central line through: ¢,=45° N. lat.
¢.=0° lat.
M =0° long.
A2=90° W. long.
Point: ¢=30° S. lat.
A=120° E. long.

Find: », y, k&
Using equation (9-1),
N\, =arctan {[cos 45° sin 0° cos 0° —sin 45° cos 0° cos (—90°)/
[sin 45° cos 0° sin (-90°)-cos 45° sin 0° sin 0°}
=arctan {[0-0)/[-0.7071068-0]}=0°

Since the denominator is negative, add or subtract 180° (the rumerator
has neither sign, but it doesn’t matter). Thus;

A\, =0°+180°=180°
From equation (9-2),

¢, =arctan [ -cos (180° - 0°)/tan 45°]
=arctan [+ 1/0.7071068] = 45°

The other pole is then at ¢ = —-45°, A\=0°. From equation (¢ -6a),
No=180° +90° =270°, equivalent to 270° - 360° or —90°.
From equation (9-6),

A =sin 45° sin (-830°)-cos 45° cos (—30°) sin [120° - (-90°)]
=0.7071068 x (- 0.5)—0.7071068 x 0.8660254 x (- 0.5)
=-0.0473672

From equation (9-3),

z=—1.0x1.0 arctan [tan (- 30°) cos 45°/cos (120° +90°)+sin 45°
tan (120° +90°)]
=0.7214592
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Since cos (120° +90°) is negative, subtract =, or = —2.420133f units
From equation (9-4),

y="x1.0x1.0 In [(1-0.0473672)/(1 +0.0473672)]
= —0.0474026 unit

From equation (9-5),
k=1.0/[1-(-0.0473672)]/2=1.0011237

If the parameters are given in terms of a central point (for equations
(9-7) and (9-8), we shall assume certain artificial parameters
(calculated with different formulas) which give the same pole as above:

Given: Radius of sphere: R=1.0 unit
Central scale factor: k,=1.0
Azimuth of central line: 8=48.8062990° east of north
Center: ¢.=20° N. lat.
A.=68.6557771° W. long.

Using equation (9-7),

¢,=arcsin (cos 20° sin 48.8062990°)
=45.0° N. lat.

From equation (9-8),

A, =arctan [-cos 48.8062990°/(-sin 20° sin 48.8062990°)]
-68.6557771°
=0°

Since the denominator of the argument of arctan is negative, add
—180° to \,, using “~” since the numerator is “-™:

\,=180° W. long.

OBLIQUE MERCATOR (SPHERE)- INVERSE EQUATIONS (SEE P. 78)
Inversing forward example:

Given: Radius of sphere: R=1.0 unit

Central scale factor: k,=1.0

Central line through: ¢,=45° N. lat.
¢,=0° lat.
M =0° long.
\.=90° W. long.

Point: 2=-2.4201335 units
y=—0.0474026 unit

Find: ¢, A
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First, ¢, and ), are determined, exactly as for the forward erample,
so that )\, again is —90°, and ¢,=45°. Determining hyperboli~ func-
tions, if not readily available,

Y/Rko= —0.0747026/(1.0x 1.0) = — 0.0474026
00474026 _ (. 9537034
sinh (y/Rk,)=(0.9537034 — 1/0.9537034)/2
= -0.0474203
cosh (y/Rko)=(0.9537034 + 1/0.9537034)/2
=1.0011237
tanh (y/Rko)=(0.9537034 — 1/0.9537034)/(0.9537034 + 1/0.9537034)
= —0.0473671

From equation (9-9),

¢ =arcsin {sin 45° x (- 0.0473671)+ cos 45° sin
[(-2.4201335/(1.0x 1.0)) x 180°/7])/1.0011237
=arcsin (- 0.5000000)
=-30°=30° S. lat.

From equation (9-10),

A= —90° +arctan {[sin 45° sin [-2.4201335x 180°/(xx 1.0
x 1.0)] - cos 45° x (- 0.0474203))/cos[ — 2.4201335
x180°/(xx 1.0x 1.0)]}

= -90°+30.0000041°
= —59.9999959°

but the main denominator is —0.7508428, which is negative, while the
numerator is also negative. Therefore, add (-180°) to A, so
A= -59.9999959° - 180° = —239.9999959° =240° W. long.=120° E.
long.

OBLIQUE MERCATOR (HOTINE ELLIPSOID)- FORWARD EQUATIONS
(SEE P. 78-83)

For Alternate A:

Given: Clarke 1866 ellipsoid: a=6378206.4 m
¢2=0.00676866
or e=0.0822719
Central scale factor: k,=0.9996
Center: ¢,=40° N. lat.
Central line through: ¢,=47°30' N. lat.
A =122°18 W. long. (Seattle, Wash.)
¢,=25°42' N. lat.
A2=80°12" W. long. (Miami, Fla.)
False coordinates: x,=4,000,000.0 m
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Yo =500,000.0 m
Point: ¢=40°48" N. lat.
A=74°00' W. long. (New York City)

Find: z, y, k
Following equations (9-11) through (9-24) in order:

B=[1+0.00676866 cos* 40°/(1-0.00676866)]'/*
=1.0011727
A =6378206.4x1.0011727x0.9996 x (1-0.00676866)"*/(1-0.07676866
sin? 40°)
=6,379,333.2 m
to=tan (45° —40°/2)/[(1-0.0822719 sin 40°)/(1+0.0822719 sin
400)]0.0322719/2
=0.4683428
t,=tan (45° —47.5°/2)/[(1 - 0.0822719 sin 47.5°)/(1 +0.0822719
sin 47. 50)10.0322719/2
=0.3908266
t,=tan (45° —25.7°/2)/[1-0.0822719 sin 25.7°)/(1+0.0822719
sin 25'70)]0.032171912
=0.6303639
D=1.0011727 x(1-0.00676866)*/2/[cos 40° x (1-0.00676866 sin?
400)1/2]
=1.3043327
E=[1.3043327 +(1.30433272 - 1)!/?] x 0.4683428"-0011727
=1.0021857

“ ., ”

using the “+” sign, since ¢, is north or positive.

H=0.39082661°011727 = (),.3903963
L =0.6303639*-0011727 = () 6300229
F=1.0021857/0.3903963 = 2.5670986
G =(2.5670986 —1/2.5670986)/2 = 1.0887769
J=(1.00218572-0.6300229 x 0.3903963)/(1.00218572 + 0.6300229
x 0.3903963)=0.6065716
P=(0.6300229 - 0.3903963)/(0.6300229 + 0.3903963)
=0.2348315
o= Y2[(-122.8°)+(—80.2°)]—-arctan {0.6065716 tan [1.0011727
x(-122.3° +80.2°)/2)/0.2348315}/1.0011727
—101.25° —arctan (-0.9953887)/1.0011727
-56.4349628°
arctan {sin [1.0011727 x (- 122.3° + 56.4349628°)}/1.0887769)}
= —-39.9858829°
a.=arcsin [1.8043327 sin (- 39.9858829°)]
= —56.9466070°
These are constants for the map. For the given ¢ and ), following
equations (9-25) through (9-34) in order:

Yo
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t=tan (45° - 40.8°/2)/[(1-0.0822719 sin 40.8°)/(1+0.0822719 sin
40.80)]0.0822719/2
=0.4598671
Q=1.0021857/0.45986711-°011727 = 2, 1812805
S=(2.1812805-1/2.1812805)/2=0.8614171
T=(2.1812805 +1/2.1812805)/2 = 1.3198634
V=sin [1.0011727 x (- 74° + 56.4349628°)]
= -0.3021309
U=[0.3021309 cos (- 39.9858829°)+0.8614171 sin (- 39.9858829°))/
1.3198634
= —0.2440041
v=6379333.2 In [(1 +0.2440041)/(1 - 0.2440041)]/(2x 1.0011727)
=1,586,767.3 m
u=[[6379333.2 arctan {[0.8614171 cos (-39.9858829°)
+(=0.3021309) sin (-39.9858829°))/cos [1.0011727 x (- T4°
+56.4349628°)]}/1.0011727]] x x/180°
=4,655,443.7 m

Note: Since cos [1.0011727 x (- 74° +56.4349628°)] = 0.9532664, which
is positive, no correction is needed to the arctan in the equation for u.
The (%/180°) is inserted, if arctan is calculated in degrees.

k=6379333.2 cos [1.0011727 x 4655443.7 x 180°/(w x 6379338.2)]
x(1-0.00676866 sin> 40.8°)"/%/{6378206.4 cos 40.8° cos
[1.0011727 x (- 74° + 56.4349628°)}}

=1.0307554

x=1586767.3 cos (- 56.9466070°)+4655443.7 sin (- 56.9466070°)

+4000000
=963,436.1 m

y=4655443.7 cos (-56.9466070°) - 1586767.3 sin (—56.9466070°)

+500000
=4,369,142.8 m

For Alternate B (forward):

Given: Clarke 1866 ellipsoid: a=6378206.4 m
¢2=0.00676866
or ¢=0.0822719
Central scale factor: %,=1.0
Center: ¢,=36° N. lat.
A.=T77.7610558° W. long.
Azimuth of central line: «.=14.3394883° east of north
Point: ¢=38°48'33.166" N. lat.
=38.8092128°
A=76°52'14.863" W. long.

. = —76.8707953°
Find: u, v (example uses center of Zone 2, Path 16, Landsat mapping,

with Hotine Oblique Mercator).
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Using equations (9-11) through (9-39) in order,

B=[1+0.00676866 cos* 36°/(1 - 0.00676866)]/*
=1,0014586
A =63780206.4x 1.0014586 x 1.0 x (1 - 0.00676866)!/2/(1 — 000376866
sin? 86°)=6,380,777.0 m
t,=tan (45° —36°/2)/[(1-0.0822719 sin 36°)/(1+0.0822719 sin
360)10.0822719/2
=0.5115582
D =1.0014586 x (1 — 0.00676866)*/*/[cos 36°
x (1-0.00676866 sin? 36°):/]
=1.2351194
F=1.2351194 + (1.23511942 — 1)/2= 19600471

using the “+” sign since ¢, is north or positive.

E=1.9600471x0,51155821-0014586 = 1 (0016984
G=(1.9600471-1/1.9600471)/2=0.7249276
vo=arcsin [(sin 14,3394883°)/1.2351194]
=11.5673996°
o= —T77.7610558° - [arcsin (0.7249276 tan 11.5673996°)}/1.0714586
= —86,2814800°
Ugeo, 1176, .»= +(6380777.0/1,0014586) arctan [(1.2351194*-1)"/3/
cos 14.3394883°]x #/180°
=4,092,868.9 m

Note: The #/180° is inserted, if arctan is calculated in degre=s. These
are constants for the map, The calculations of %, v, , and y for (¢, )
follow the same steps as the numerical example for equaticns (9-25)
through (9-34) for alternate A, For ¢=38.8092128° and
A= -76.8707953°, it is found that

%=4,414,439.0 m
v=-2.356.3 m

OBLIQUE MERCATOR (HOTINE ELLIPSOID)-INVERSE EQUAT NS
(SEE P. 83-84)

The above example for alternate A will be inverted, first using equa-
tions (9-11) through (9-24), then using equations (9-40) through (9-48).
Since no new equations are involved for inverse alternate B, an exam-
ple of the latter will be omitted. As stated with the inverse euations,
the constants for the map are chosen as in the forward examples.
Inversing forward example for alternate A:

Given: Clarke 1866 ellipsoid: a=6,378,206.4 m
¢2=0.00676866
or ¢=0.0822719
Central scale factor: k,=0.9996
Center: ¢,=40° N. lat.
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Center line through: ¢,=47°30' N. lat.
A =122°18 W. long.
¢, =25°42' N. lat.
A.=80°12' W. long.
False coordinates: x,=4,000,000.0 m
%o =500,000.0 m
Point: £=963,436.1 m
y¥=4,369,142.8 m
Find: ¢, A

Using equations (9-11) through (9-24) in order, again gives the follow-
ing constants:

B=1.0011727
A=6,379,333.2 m
E=1.0021857
o= —56.4349628°
o= —39.9858829°
.= - 56.9466070°

Following equations (9-40) through (9-48) in order:

v=(963436.1-4000000.0) cos (-56.9466070°)—(4369142.8
-500000.0) sin (- 56.9466070°)
=1,586,767.3 m
u=(4369142.8 - 500000.0) cos (- 56.9466070°)+(963436.1
~4000000.0) sin (- 56.9466070°)
=4,655,443.T m

Q’ _ e*(l.OOl 1727x1586767.3/6379333.2)

= @0-2490273

=0.7795587
S’ =(0.7795587 - 1/0.7795587)/2 = — 0.2516092
T =(0.7795587 + 1/0.7795587)/2 = 1.0311679
V7=sin [(1.0011727 x 4655443.7/6379333.2) x 180°/x]
=sin 41.8617535° = 0.6673356
17 =[0.6673356 cos (-39.9858829°)— 0.2516092 sin (- 39.9858829°))/
1.0311679
= 0.6526562
t={1.0021857/[(1 +0.6526562)/(1 - 0.6526562)]:/2}1/1.0011727
=0.4598671

The first trial ¢ for equation (7-9) is
¢ =90° -2 arctan (0.4598671)=40.6077096°
Calculating a new trial ¢:

¢=90°-2 arctan {0.4598671 x[(1-0.0822719 sin 40.6077096°)/
(1+0.0822719 sin 40.6077096°)]0-0s22719/2
=40.7992509°
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Substituting 40.7992509° in place of 40.6077096° and recalculating,
¢=40.7999971°. Using this ¢ for the third trial, ¢ =40.8000000°. The
next trial gives the same value of ¢. Thus,

¢=40.8°=40°48 N. lat.
A= —56.4349628° - arctan {[-0.2516092 cos (- 39.9858829°)
—0.6673356 sin (- 39.9858829°))/cos [(1.0011727
X 4655443.7/6379333.2) x 180°/x]} /1.0011727
= —74.0000000° = 74°00' W. long.

Using series equation (3-5) with (7-13), to avoid iteration of (7-9),
and beginning with equation (7-13),

x=90°-2 arctan 0.4598671
=40.6077096°

Since equation (3-5) is used in an example under Auxiliary latitudes,
the calculation will not be shown here.

MILLER CYLINDRICAL (SPHERE)- FORWARD EQUATIONS (SEE P. 87-88)

Given: Radius of sphere: R=1.0 unit
Central meridian: \,=0° long.
Point: ¢=>50° N. lat.
A=T75° W. long.

Findz, ¥, b, k
Using equations (10-1) through (10-5) in order,

2=1.0x[-75°-0°]x #/180°
= -1.3089969 units

y¥=1.0x{ln tan (45° +0.4x50°)}/0.8
=(In tan 65°)/0.8
=0.9536371 unit

or

y=1.0x{arctanh [sin (0.8 x 50°)]}/0.8
=arctanh 0.6427876/0.8
=0.9536371 unit

h=sec (0.8x50°)=1/cos 40° =1.3054073

k=sec 50° =1/cos 50° =1.5557238

sin Y2w=(cos 40° —cos 50°)/(cos 40° + cos 50°)

=0.0874887

w=10.0382962°

MILLER CYLINDRICAL (SPHERE)-INVERSE EQUATIONS (SEE P. 88)
Inversing forward example:

Given: R, \, for forward example
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x=-1.3089969 units
y¥=0.9536371 unit
Find: ¢, »
Using equations (10-6) and (10-7),
¢=2.5 arctan e(0-8x0-9536371/1.0) _(5/8)x 180°/x
=2.5 arctan e°76299% _1 9634954 x 180°/%
=2.5 arctan (2.1445069)-1.9634954 x 180°/x
=2.5x65.0000006° — 112.5000000°
=50.0000015° =50° N. lat.
or
¢ =arcsin [tanh (0.8 x 0.9536371/1.0)]/0.8
=(arcsin 0.6427876)/0.8
=50.0000015° =50° N. lat.
A=0°-(1.3089969/1.0)x 180°/x
=0°-"74.9999978° =75° W. long.

ALBERS CONICAL EQUAL-AREA (SPHERE)- FORWARD EQUATIONS
(SEE P. 95-96)

Given: Radius of sphere: R=1.0 unit
Standard parallels: ¢,=29°3(0' N. lat.
¢,=45°30" N. lat.
Origin: ¢,=23° N. lat.
No=96° W. long.
Point: ¢=35° N. lat.
A=T5° W. long.
Find: p, 0, 2, 4, k, k, @
From equation (12-6),
n=(sin 29.5° +sin 45.5°)/2
=0.6028370
From equation (12-5),
C=cos? 29.5° +2x0.6028370 sin 29.5°
=1.3512213
From equations (12-3) and (12-3a),

p=1.0x(1.3512213 -2x 0.6028370 sin 35°)/2/0.6028370

=1.3473026 units
po=1.0x(1.3512218 -2 x 0.6028370 sin 23°)'/2/0.6028370

=1.5562263 units
From equation (12-4),

9=0.6028370 x [( - 75°) - (- 96°)]
-12.6595771°
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From equation (12-1),

r=1.3473026 sin 12.6595771°
=0.2952720 unit

From equation (12-2),

y=1.5662263 - 1.3473026 cos 12.6595771°
=0.2416774 unit
From equation (12-7),

h=cos 35°/(1.3512213 - 2x 0.6028370 sin 35°)!/2
=1.0085547

and
k=1/1.0085547=0.9915178

From equation (4-9),

sin Y2w=1.0085547 - 0.9915178|/(1.0085547 + 0.9915178)
w=0.9761189°

ALBERS CONICAL EQUAL-AREA (SPHERE)-INVERSE EQUATIONS (SEE P. 96)

Inversing forward example:

Given: R, ¢,, ¢,, do, \o for forward example
£=0.2952720 unit
y=0.2416774 unit

Find: p, 6, ¢, A
As in the forward example, from equation (12-6),

n=(sin 29.5° +sin 45.5°)/2
=0.6028370

From equation (12-5),

C=cos? 29.5° +2x0.6028370 sin 29.5°
=1.3512213

From equation (12-3a),

po=1.0x(1.3512213-2x0.6028370 sin 23°)*/2/0.6028370
=1.5562263 units

From equation (12-10),

p =[0.2952720% + (1.5562263 — 0.2416774)*]*/2
=1.3473026 units
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From equation (12-11),

6=arctan [0.2952720/(1.5562263 - 0.2416774)]
=12.6595766°. Since the denominator is positive, there is no
adjustment to 6.

From equation (12-8),

¢=arcsin {[1.3512213 - (1.3473026 x 0.6028370/1.0)2)/
(2% 0.6028370)}
= arcsin 0.5735764
=35.0000007° =35° N. lat.

From equation (12-9),

A=12.6595766°/0.6028370 + (- 96°)
=20.9999992 - 96°
= -75.0000008° =75° W. long.

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)~- FORWARD EQUATIONS
(SEE P. 96-97)

Given: Clarke 1866 ellipsoid: a=6378206.4 m
¢2=0.00676866
or ¢=0.0822719
Standard parallels: ¢,=29°30' N. lat.
¢,=45°30" N. lat.
Origin: ¢,=23° N. lat.
No=96° W. long.
Point: ¢=35° N. lat.
A=75° W. long.

Find: p, 8, %, 4, k, h,
From equation (12-15),

m, = cos 29.5°/(1-0.00676866 sin? 29.5°)"/2
=0.8710708

m, = cos 45.5°/(1-0.00676866 sin? 45.5°)"/
=0.7021191

From equation (3-12),

¢, =(1-0.00676866) {sin 29.5°/(1-0.00676866 sin* 29.5°)
~[1/42x0.0822719)] In [(1 - 0.0822719 sin 29.5°)/
(1+0.0822719 sin 29.5°)])
=0.9792529
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Using the same formula for ¢, (with ¢, instead of ¢,),
q.=1.4201080

Using the same formula for ¢, (with ¢, instead of ¢,),
9o=0.7767080

From equation (12-14),

7n=(0.87107082-0.70211912)/(1.4201080 - 0.9792529)
=0.6029035

From equation (12-13),

C=0.87107082+0.6029035 x 0.9792529
=1.3491594

From equation (12-12a),

po=06378206.4 x(1.3491594 - 0.6029035 x 0.7767080)*/2/0.6029035
=9,929,079.6 m

These are the constants for the map. For ¢ =35° N. lat. and A=75°
W. long.: Using equation (3-12), but with ¢ in place of ¢,,

g=1.1410831
From equation (12-12),

p =6378206.4x(1.3491594 - 0.6029035 x 1.1410831)'/2/0.6029035
=8,602,328.2 m

From equation (12-4),

8=0.6029035 x [ - 75° — (- 96°)] = 12.6609735°
From equation (12-1),

x=_8602328.2 sin 12.6609735° =1,885,472.7 m
From equation (12-2),

¥=9929079.6 - 8602328.2 cos 12.6609735°
=1,5635,925.0 m

From equation (12-15),

m=cos 35°/(1-0.00676866 sin* 35°)"/2
=0.8200656

From equation (12-16),

k=8602328.2 x 0.6029035/(6378206.4 x 0.8200656)
=0.9915546
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From equation (12-18),
h=1/0.9915546=1.0085173
From equation (4-9),

sin Yew=1.0085173 - 0.9915546|/(1.0085173 + 0.9915546)
w=0.9718678°

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)- INVERSE EQUATIONS
(SEE P. 97-98)

Inversing forward example:

Given: Clarke 1866 ellipsoid: a=6378206.4 m
e2=0.00676866
or ¢=0.0822719
Standard parallel: ¢,=29°30' N. lat.
¢,=45°30' N. lat.
Origin: ¢,=23° N. lat.
Ao=96° W. long.
Point: 2=1,885,472.7 m
¥=1,5635,925.0 m

Find: p, 8, ¢, A

The same constants n, C, p, are calculated with the same equations as
those used for the forward example. For the particular point:

From equation (12-10),

p=[1885472.7*+(9929079.6 — 15635925.0)*}'/2
=8§,602,328.3 m

From equation (12-11),

6=arctan [1885472.7/(9929079.6 — 1535925.0)]
=arctan 0.2246441
=12.6609733°. The denominator is positive; therefore ¢ is not
adjusted. From equation (12-19),
g=[1.3491594 - (8602328.3 x 0.6029035/6378206.4))/0.6029035
=1.1410831

Using for the first trial ¢ the arcsin of (1.1410831/2), or 34.7879983°,
calculate a new ¢ from equation (12-19),

¢=34.7879983° +[(1~0.00676866 sin* 34.7879983°)*/(2 cos
34.7879983°)] x {1.1410831/(1 - 0.00676866) — sin 34.7879983°/
(1-0.00676866 sin* 34.7879983°)+[1/(2x 0.0822719)] In
[(1-0.0822719 sin 34.7879983°)/(1+0.0822719 sin
34.7879983°)]} x 180°/x
=34.9997335°
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Note that 180°/x is included to convert to degrees. Replacing
34.7879983° by 34.9997335° for the second trial, the calculation using
equation (12-19) now provides a third ¢ of 35.0000015°. A recalcula-
tion with this value results in no change to seven decimal places. (This
does not give exactly 35° due to rounding-off errors in « and y.) Thus,

¢=235.0000015° N. lat.
For the longitude use equation (12-9),

A=(-96°)+12.6609733°/0.6029035
= ~75.0000003° or 75.0000003° W. long.

For scale factors, we revert to the forward example, since ¢ end \ are
now known.

Series equation (8-18) may be used to avoid the iteration akove. Be-
ginning with equation (12-21),

B=aresin [1.1410831/(1 - [(1 - 0.00676866)/(2 x 0.0822719)] In
[(1-0.0822719)/(1 + 0.0822719)}}]
=34.8781793°

An example is not shown for equation (3-18), since it is similar to the
example for (3-5).

LAMBERT CONFORMAL CONIC (SPHERE)-FORWARD EQUATIONS
(SEE P. 105)

Given: 'Radius of sphere: RK=1.0 unit
Standard parallels: ¢,=33° N. lat.
¢,=45° N. lat.
Origin: ¢,=23° N. lat.
No=96° W. long.
Point: ¢=35° N. lat.
A=T75° W. long.

Find: p, 0, 2, y, k
From equation (13-3),

n=1In (cos 33°/cos 45°)/In [tan (45° +45°/2)/tan (45° + 33°/2)]
=0.6304777

From equation (13-2),

F=[cos 33° tan®%3%4777 (45° + 33°/2)}/0.6304777
=1.9550002 units

From equation (13-1a),

po=1.0x1.9550002/tan®634777 (45° + 23°/2)
=1.5071429 units
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The above constants apply to the map generally. For the specific ¢
and )\, using equation (13-1),

p =1.0x1.9550002/tan®2*4777 (45° + 35°/2)
=1.2953636 units

From equation (12-4),

6=0.6304777 x [( - 75°) - (- 96°)]
=13.2400316°

From equations (12-1) and (12-2),

x=1.2952636 sin 13.2400316°
=0.2966785 unit

y=1.5071429 - 1.2953636 cos 13.2400316°
=0.2462112 unit

From equation (13-4),

k=cos 33° tan®6304777 (45° +33°/2)/[COS 35° tgno-6304777 (450
+ 35°/2)]
=0.9970040

or from equation (4-5),

Je=0.6304777 x 1.2953636/(1.0 cos 35°)

=0.9970040
LAMBERT CONFORMAL CONIC (SPHERE)-INVERSE EQUATIONS
(SEE P. 105, 107)
Inversing forward example:

Given: R, ¢y, ¢, do, Ao for forward example
x=0.2966785 unit
9=0.2462112 unit

Find: p, 6, ¢, A
After calculating n, F, and p, as in the forward example, obtaining the
same values, equation (12-10) is used:

p =[0.2966785 + (1.5071429 - 0.2462112)*] 2
=1.2953636 units

From equation (12-11),

6=arctan [0.2966785/(1.5071429 - 0.2462112)]
=138.2400329°. Since the denominator is positive, # is not
adjusted.

From equation (12-9),

A =13.2400329°/0.6304777 + (- 96°)
= —74.9999981° ="74.9999981° W. long.
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From equation (13-5),

6=2 arctan (1.0x 1.9550002/1.2953636)1/0-6304777 _ 90°
=34.9999974° N. lat.

LAMBERT CONFORMAL CONIC (ELLIPSOID)- FORWARD EQUATTONS
(SEE P. 107-108)

Given: Clarke 1866 ellipsoid: a=6,378,206.4 m
¢2=0.00676866
or e=0.0822719
Standard parallels: ¢,=33° N. lat.
¢,=45° N. lat.
Origin: ¢,=23° N. lat.
No=96° W. long.
Point: ¢=35° N. lat.
A=75° W. long.
Find: p, 6, x, ¥, k

From equation (12-15),

m, =cos 33°/(1-0.00676866 sin? 33°)!/2
=0.8395138

m,=cos 45°/(1-0.00676866 sin* 45°)1/2
=0.7083064

From equation (13-9),

t,=tan (45° -33°/2)/[(1-0.0822719 sin 33°)/(1+0.0822719 sin
330)]0.0822719/2
=0.5449623
t,=0.4162031, using above with 45° in place of 33°.
t,=0.6636390, using above with 23° in place of 33°.

From equation (13-8),

n=In (0.8395138/0.7083064)/In (0.5449623/0.4162031)
=0.6304965

From equation (13-10),

F'=0.8395138/(0.6304965 x 0.54496230-6304965)
=1.9523837

From equation (13-7a),

po=6378206.4 x 1.9523837 x 0.66363900-s3049¢s
=9,615,955.2 m

The above are constants for the map. For the specific ¢, \, using
equation (13-9),

t=0.5225935, using above calculation with 35° in place of 33°.
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From equation (13-7),

o = 6378206.4 x 1.9523837 x 0.52259850-620456s
-8,271,173.9 m

From equation (12-4),
0=0.6304965 x[ - 75° — (- 96°)] = 13.2404256°
From equations (12-1) and (12-2),

x=8271173.9 sin 13.2404256°
=1,894,410.9 m

y=9615955.2 - 8271173.9 cos 13.2404256°
=1,564,649.5 m

From equations (12-15) and (12-16),

m=cos 35°/(1-0.00676866 sin? 35°)*/*
=0.8200656
k=8271173.9% 0.6304965/(6378206.4 x 0.8200656)
=0.9970171
LAMBERT CONFORMAL CONIC(ELLIPSOID)-INVERSE EQUATIONS
(SEE P. 108-109)
Inversing forward example:

Given: Clarke 1866 ellipsoid: «=6,378,206.4 m
¢*=0.00676866
or e=0.0822719
Standard parallels: ¢,=33° N. lat.
¢,=45° N, lat.
Origin: ¢,=23° N. lat.

Ao=96° W. long.
Point: 2=1,894,410.9 m
y¥=1,564,649.5 m

The map constants n, F, and p, are calculated as in the forward exam-
ple, obtaining the same values. Then, from equation (12-10),

p=[1894410.92+ (9615955.2 — 1564649.5)]/2
=8,271,173.8 m

From equation (12-11),

6=arctan [1894410.9/(9615955.2 — 1564649.5)]
=13.2404257°. The denominator is positive; therefore 6 is not
adjusted.

From equation (13-11),

t=[8271173.8/(6378206.4 x 1.9523837)]/0-6304965
=0.56225935
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To use equation (7-9), an initial trial ¢ is found as follows:

¢=90°-2 arctan 0.5225935
=34.8174484°

Inserting this into the right side of equation (7-9),

¢=90° -2 arctan {0.5225935x [(1-0.0822719 sin 34.8174484°)/
(1+0.0822719 sin 34.8174484°)]o.ce2215/2
=34.9991687°

Replacing 34.8174484° with 34.9991687° for the second trial, a ¢ of
34.9999969° is obtained. Recalculation with the new ¢ results in
¢=35.0000006°, which does not change to 7 decimals with a fourth
trial. (This is not exactly 35°, due to rounding-off errors.) Therefore,

¢=235.0000006° N. lat.
From equation (12-9),

=13.2404257°/0.6304965 + (- 96°)
= —75.0000013° =75.0000013° W. long.

Examples using equations (3-5) and (7-13) are omitted heve, since
comparable examples for these equations have been given above.

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)-FORWARD EQUATIONS
(SEE P. 114-117)
This example will illustrate equations (14-11) through (14-23),
assuming prior calculation of the constants from equatiors (14-1)
through (14-13).

Given: Radius of sphere: R=6,370,997 m
Point: ¢=40° N. lat.
A=90° W. long.

Find: z, y, &
From equation (14-14),

zg=arccos {sin 45° sin 40° +cos 45° cos 40° cos [(-19°59'37")
-(~90°)}}
=50.22875°

From equation (14-15),

Azg=arctan {sin (- 19°59'36" + 90°)/[cos 45° tan 40° —sin 45° cos
(-19°59'36" + 90°)]}
=69.48856°
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Since 69.48856° is less than 104.42834°, proceed to equation (14-16).
From equations (14-16) through (14-22),

pe=1.89725x 6370997 tan 0% (Y2 x 50.22875°)

=17,496,100 m
k=17,496,100x 0.63056/(6370997 sin 50.22875°)

=0.96527

a=arccos {[tan® 9305 (Y2 x 50.22875°)+ tan®6305¢ 1/5(104°

-50.22875°)}/1.27247}
=1.88279°
1A zp, —A2s)=0.63056 x (104.42834° — 69.48856°) = 22.03163°

This is greater than «, S0 p,'=ps.
«'="7,496,100 sin [0.63056 (104.42834° - 69.48855°)]
=2,811,900 m
¥'=17,496,100 cos [0.63056 (104.42834° — 69.48855°)]

-1.20709 % 6,370,997
= -741,670 m

From equations (14-32) and (14-33),

&= -2,811,900 cos 45.81997° + 741670 sin 45.81997°
=-1,427,800 m

y="741,670 cos 45.81997° +2811900 sin 45.81997°
=2,533,500 m

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)-INVERSE EQUATIONS
(SEE P. 117-118)

Inversing the forward example:

Given: Radius of sphere: R=6,370,997 m
Point: x=-1,427,800 m
¥=2,533,500 m

Find: ¢, A
From equations (14-34) and (14-35),

¥ = —(~1,427,800) cos 45.81997° + 2,533,500 sin 45.81997°
=2,811,900 m

y' = —(-1,427,800) sin 45.81997° - 2,533,500 cos 45.81997°
=-741,670 m

Since «’ is positive, go to equations (14-36) through (14-44) in order:

px=[2,811,900%+(1.20709 x 6,370,997 — 741,670)*]/*
=7,496,100 m
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Az =arctan [2,811,900/(1.20709 x 6,370,997 - 741,670)]
=22.03150° (The denominator is positive, so there is no
quadrant correction.)
ps= 1,496,100 m
zg=2 arctan [7,496,100/(1.89725 x 6,370,997)]:/0-s30s6
=50.22873°
a=arccos {[tan®%35 (12 x 50.22873°)
+ tan®-63056 1/5(104° - 50.22873°))/1.27247}
=1.88279°

Since Az is greater than a, go to equation (14-42).

Az;=104.42834° - 22.03150°/0.63056
=69.48876°
¢ =arcsin (sin 45° cos 50.22873° + cos 45° sin 50.22873° cos
69.48876°)
=39.99987° or 40° N. lat., if rounding off had not
accumulated errors.
A=(- 19°59’36”) arctan {sin 69.48876°/[cos 45°/tan 50. 22”73°
—sin 45° cos 69.48876°]
= —89.99987° or 90° W. long., if rounding off had not
accumulated errors.

POLYCONIC (SPHERE)-FORWARD EQUATIONS (SEE P. 128-129)

Given: Radius of sphere: R=1.0 unit
Origin: ¢,=30° N. lat.
No=96° W. long.
Point: ¢=40° N. lat.
A=75° W. long.

Find: «, 9, &
From equations (15-2) through (15-4),

E =(-75°+96°) sin 40°
=13.4985398°

x=1.0 cot 40° sin 13.4985398°
=0.2781798 unit

¥=1.0x[40° x 7/180° — 30° x x/180° +cot 40° (1-cos 13.4975398°)]
=0.2074541 unit
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From equations (15-6) and (15-5),

D =arctan [(13.4985398° x #/180° ~sin 13.4985398°)/(sec? 40° -
cos 13.4985398°)]
=0.17018327°
h=(1-cos? 40° cos 13.4985398°)/sin? 40° cos 0.17018327"
=1.0392385

POLYCONIC (SPHERE)-INVERSE EQUATIONS (SEE P. 129

Inversing the forward example:

Given: Radius of sphere: R=1.0 unit
Origin: ¢,=30° N. lat.
No=96° W. long.
Point: 2=0.2781798 unit
y=0.2074541 unit

Find: ¢, A
Since y# ~1.0x30° x /180°, use equations (15-7) and (15-8):

A =30°x7/180° +0.2074541/1.0
=0.73105629

B=0.2781798%/1.0%+0.7310529?
=0.6118223

Assuming an initial ¢,=A4 =0.7310529 radians, it is simplest. to work
with equation (15-9) in radians:

Gner =0.7810529 - [0.7310529 x (0.7310529 tan 0.7310529+ 1)
- 0.7310529 - 2(0.7310529 + 0.6118223) tan 0.731052¢)
[(0.7310529 - 0.7310529)/tan 0.7310529 - 1]
=0.6963533 radian

Using 0.6963538 in place of 0.7310529 (except that the boldface retains
the value of A) a new ¢,., of 0.6981266 radian is obtainel. Again
substituting this value, 0.6981317 radian is obtained. The fourth itera-
tion results in the same answer to seven decimal places. Therefore,

¢=0.6981317 x 180°/x =40.0000004° or 40° N. lat.
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From equation (15-10),

A\ =[aresin (0.2781798 tan 40°/1.0))/sin 40° +(-96°)
= —75.0000014° =75° W. long.

POLYCONIC (ELLIPSOID)-FORWARD EQUATIONS (SEE P. 129-130)
Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
¢*=0.00676866
Origin: ¢,=30° N. lat.
No=96° W. long.
Point: ¢=40° N. lat.
A=T75° W. long.
Find: z, , h
From equation (3-21),

M=6,378,206.4 x[(1 -0.00676866/4 — 3 x 0.00676866%/64

-5x0.00676866/256) x 40° x 7180° - (3 x 0.00676866/
+3x0.00676866%/32 + 45 x 0.00676866°/1024)

sin (2x40°)+ (15 x 0.00676866%/256 + 45 x 0.00676866%/1024)
sin (4x 40°)— (35 x 0.00676866°/3072) sin (6 x 40°)]

=4,429,318.9 m
Using 30° in place of 40°,
M,=3,319,933.3 m
From equation (4-20),

N=6,378,206.4/(1 - 0.00676866 sin* 40°)'/2
=6,387,143.9 m

From equations (15-2), (15-12), and (15-13),
E=(-75°+96°) sin 40°
=13.4985398°
£=6,387,143.9 cot 40° sin 13.4985398°
=1,776,774.5 m

y=4,429,318.9 - 3,319,933.3 + 6,387,143.9 cot 40°
(1-cos 13.4985398°)
=1,319,657.8 m

To calculate scale factor &, from equations (15-16) and (15-1£),

D =arctan {(13.4985398° x 7/180° —sin 13.4985398°)/[sec? 40°
- cos 13.4985398° - 0.00676866 sin* 40°/(1 —0.00676866
sin? 40°)]}

=0.1708380522°
h=[1-0.00676866 +2(1 —0.00676866 sin? 40°) sin*

12(18.4985398°)/tan? 40°]/(1-0.00676866) cos 0.1708¢*N522°
=1.0393954
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POLYCONIC (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 130-131)
Inversing the forward example:

Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
¢*=0.00676866
Origin: ¢,=30° N. lat.
No=96° W. long.
Point: 2=1,776,774.5m
y¥=1,319,657.8 m

Find: ¢, A
First calculating M, from equation (3-21), as in the forward example,

M,=3,319,933.3 m
Since y #M,, from equations (15-18) and (15-19),

A =(8,319,933.3+1,319,657.8)/6,378,206.4
=0.7274131

B=1,776,774.5%6,378,206.4*+0.7274131*
=0.6067309

Assuming an initial value of ¢,=0.7274131 radian, the following
calculations are made in radians from equations (15-2C), (3-21),
(15-17), and (15-21):

C=(1-0.00676866 sin? 0.7274131)"/2 tan 0.7274131
=0.8889365
M,=4,615,626.1 m
M,=1-0.00676866/4 -3 x0.00676866%/64 — 5 x 0.00676866°/256
~-2x(3x0.00676866/8 + 3 x 0.00676866%/32 + 45
x 0.00676866°/1024) cos (2x0.7274131)+4 x(15
x 0.00676866%/256 + 45 x 0.00676866/1024) cos (4
x0.7274131) -6 % (35 x 0.00676866°/3072) cos (6
x0.7274131)
=0.9977068
M,.=4,615,626.1/6,378,206.4 =0.7236558
6n01=0.7274131-[0.7274131 x (0.8889365 x 0.7236558 + 1)
- 0.7236558 — 12(0.7236558% + 0.6067309) x 0.888936£ )/
[0.00676866 sin (2x0.7274131)x(0.7236558%+0.6067309
~2x0.7274131 x 0.7236558)/(4 x 0.8889365)
+(0.7274131 - 0.7236558) x (0.8889365 x 0.9977068
— 2/sin (2x0.7274131))-0.9977068]
=0.6967280 radian

Substitution of 0.6967280 in place of 0.7274131 in equations (15-20),
(3-21), (15-17), and (15-21), except for boldface values, which are 4,
not ¢,, a new ¢,., of 0.6981286 is obtained. Using this in place of the.
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previous value results in a third ¢,., of 0.6981317, which is unchanged
by recalculation to seven decimals. Thus,

¢=0.6981317 x 180°/x =40.0000005° =40° N. lat.
From equation (15-22), using the finally calculated C of 0.8377255,

A=[aresin (1,776,774.5 x 0.8379255/6,378,206.4))/sin 40° +(~96°)
=-T75°=75° W. long.

ORTHOGRAPHIC (SPHERE)-FORWARD EQUATIONS (SEE P. 146-147)
Given: Radius of sphere: R=1.0 unit
Center: ¢,=40° N. lat.
No=100° W. long.
Point: ¢=30° N. lat.
A=110° W. long.
Find: z, y
In general calculations, to determine whether this point is beycnd view-
ing, using equation (5-3),

cos ¢=sin 40° sin 30° +cos 40° cos 30° cos (—-110°+100°)
=0.9747290

Since this is positive, the point is within view.
Using equations (16-3) and (16-4),

2=1.0 cos 30° sin (-110°+100°)
=-0.1503837

¥=1.0 [cos 40° sin 30° —sin 40° cos 30° cos (-110° +100°)]
= -0,1651911

Examples of other forward equations are omitted, since the oblique
case applies generally.

ORTHOGRAPHIC (SPHERE)-INVERSE EQUATIONS (SEE P. 147)
Inversing forward example:

Given: Radius of sphere: R=1.0 unit
Center: ¢,=40° N, lat.
Mo=100° W. long.
Point: = —0.1503837 unit
y=-0,1651911 unit
Find: ¢, A
Using equations (16-18) and (16-19),

p =[(-0.1503837)*+(~0.1651911)*]*/*
=0.2233906

c=aresin (0.2233906/1.0)
=12.9082572°
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Using equations (16-14) and (16-15),

¢ =arcsin [cos 12.9082572° sin 40° +(-0.1651911 sin
12.9082572° cos 40°/0.2233906)]
=30.0000007°, or 30° N. lat. if rounding off did not oc~ur.
A= —100° +arctan [-0.1503837 sin 12.9082572°/(0.2233706
cos 40° cos 12.9082572° +0.1651911 sin 40° sin
12.9082572°)]
= -100° +arctan [-0.0335943/0.1905228]
= —-100° +(-9.9999964°)
= -109.9999964°, or 110° W. long. if rounding off did not
occur.

Since the denominator of the argument of arctan is positive, no adjust-
ment for quadrant is necessary.

STEREOGRAPHIC (SPHERE)-FORWARD EQUATIONS (SEE P. 158-159)

Given: Radius of sphere: R=1.0 unit
Center: ¢,=40° N. lat.
No=100° W. long.
Central scale factor: k,=1.0
Point: ¢=30° N. lat.
A=T75° W. long.

Find: 2, y, &
Using equations (17-4), (17-2), and (17-3) in order,

k=2x1.0/[1+sin 40° sin 30° +cos 40° cos 30° cos (- 75° + 100°)]
=1.0402304
z£=1.0x1.0402304 cos 30° sin (- 75°+100°)
=0.3807224 unit
y=1.0x1.0402304 [cos 40° sin 30° —sin 40° cos 30° cos
(-75° +100°)]
= -0.1263802 unit

Examples of other forward equations are omitted, since the above
equations are general.

STEREOGRAPHIC (SPHERE)-INVERSE EQUATIONS (SEE P. 159)
Inversing forward example:

Given: Radius of sphere: R=1.0 unit
Center: ¢,=40° N. lat.
No=100° W, long.
Central scale factor: k,=1.0
Point:  2=0.3807224 unit
= -0.1263802 unit



260 MAP PROJECTIONS USED BY THE USGS

Find: ¢, A
Using equations (16-18) and (17-15),

p=[0.3807224% + (- 0.1263802)*]"/2 = 0.4011502 units
¢=2 arctan [0.4011502/(2x 1.0x 1.0)]
=22.6832261°

Using equations (16-14) and (16-15),

¢ =arcsin [cos 22.6832261° sin 40° +(-0.1263802)
sin 22.6832261° cos 40°/0.4011502]
=arcsin 0.5000000=30°=30° N. lat.
A= —100° +arctan [0.3807224 sin 22.6832261°/(0.4011502
cos 40° cos 22.6832261° +0.1263802 sin 40° sin 22.6832261°)]
= ~100° +arctan (0.1468202/0.3148570)
= -100°+25.0000013°
= —-74.9999987° =75° W. long.

except for effect of rounding-off input data. Since the denominator of
the argument of arctan is positive, no quadrant adjustment is
necessary. If it were negative, 180° should be added.

STEREOGRAPHIC (ELLIPSOID)-FORWARD EQUATIONS (SEE P. 160, 162-163)
Obligque aspect:

Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
¢2=0.00676866
or e=0.0822719
Center: ¢,=40° N. lat.
No=100° W. long.
Central scale factor: k,=0.9999
Point:  ¢=30° N. lat.
A=90° W. long.

Find: z, y, k&
From equation (3-1),

x: =2 arctan {tan (45° +40°/2) [(1-0.0822719 sin 40°)/

(1+0.0822719 sin 40°)Je-0822719/2) _ 9()°

=2 arctan 2.1351882 -90°

=39.8085922°

x=2 arctan {tan (45° +30°/2)[(1-0.0822719 sin 30°)/

(1+0.0822719 sin 30°)Jo-0822719/2} _ 9()°

=2 arctan 1.7261956 - 90°

=29.8318339°
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From equation (12-15),

m,=cos 40°/(1-0.00676866 sin* 40°)/2
=0.7671179

m=cos 30°/(1-0.00676866 sin? 30°)'/2
=0.8667591

From equation (17-27),

A=2x6,378,206.4x 0.9999 x 0.7671179/{cos 39.8085922°
[1xsin 39.8085922° sin 29.8318339° + cos 39.8085922°
cos 29.8318339° cos (—90° +100°)]}

=6,450,107.7 m

From equations (17-24), (17-25), and (17-26),

x=6,450,107.7 cos 29.8318339° sin (-90° +100°)
=971,630.8 m
¥=6,450,107.7 [cos 39.8085922° sin 29.8318339°
—sin 39.8085922° cos 29.8318339° cos (-90° +100°)]
=-1,063,049.3 m
k=6,450,107.7 cos 29.8318339°/[6,378,206.4 x 0.8667591]
=1.0121248

Polar aspect with known k,:

Given: International ellipsoid: =6,378,388.0 m
¢2=0.00672267
or ¢=0.0819919
Center: South Pole ¢,=90° S. lat.
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o =100° W. long. (meridian along

pos. Y axis)
Central scale factor: k,=0.994
Point: ¢=75° S. Iat.
A=150° E. long.

Find: z, y, k

Since this is the south polar aspect, for calculations change signs of #,
Y, &, A, and X, (¢. is not used): A, =100° E. long., ¢ =75° N. lat., \=150°

W. long. Using equations (13-9) and (17-33),

t=tan(45° - 75°/2)/[(1-0.0819919 sin 75°)/(1+0.0819919 sin

750)]0.081991912
=0.1325120

p=2%6,378,388.0x0.994 x 0.1325120/[(1 + 0.0819919)t1+0-0%19915]

X (]_ - 0.0819919)[1-0.0819919]]1/2
=1,674,638.5 m
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Using equations (17-30) and (17-31), changing signs of and y for the
south polar aspect,

2= —1,674,638.5 sin (- 150° - 100°)
=-1,573,645.4 m

y=+1,674,638.5 cos (- 150° —100°)
= ~572,760.1 m

From equation (12-15),

m=cos 75°/(1-0.00672267 sin? 75°)"/2
=0.2596346

From equation (17-32),

k=1,674,638.5/(6,378,388 x 0.2596346)
=1.0112245

Polar aspect with known ¢, not at the pole:
Given: International ellipsoid: @=6,378,388.0 m
¢2=0.00672267
or ¢=0.0819919
Standard parallel: ¢.=71° 8. lat.
=100 W. long. (meridian along
pos. Y axis)
Point: ¢="75° S. lat.
A=150° E. long.

Find: z, 4, k

Since ¢, is southern, for calculations change signs of z, ¥, ¢., ¢, A, and
Mot .¢==71° N. lat., ¢=75° N. lat., A=150° W. long., \,=100° E. long.
Using equation (13-9), ¢t for 75° has been calculated in the preceding
example, or

t=0.1325120

For t,, substitute 71° in place of 75° in (13-9), and
t.=0.1684118

From equation (12-15),

m,.=cos T1°/(1-0.00672267 sin? 71°)/2
=0.3265509

From equation (17-34),

p =6,378,388.0x 0.3265509 x 0.1325120/0.1684118
=1,638,869.6 m
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Equations (17-30), (17-31), and (17-32) are used as in the preceding
south polar example, changing signs of x and .

2= -1,638,869.6 sin (-150° -100°)
=-1,540,033.6 m

y=+1,638,869.6 cos (—150°-100°)
= -560,526.4 m

k=1,638,869.6/(6,378,388.0 x 0.2596346)
=0.9896255

where m is calculated in the preceding example.
STEREOGRAPHIC (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 163-164)

Obligque aspect (inversing forward example):

Given: Clarke 1866 ellipsoid: =6,378,206.4 m
¢=0.00676866
or ¢=0.0822719
Center: ¢,=40° N. lat.
No=100° W. long.
Center scale factor: k,=0.9999
Point: £=971,630.8 m
y=-1,063,049.3 m

Find: ¢, A
From equation (12-15),

m, = cos 40°/(1-0.00676866 sin 40°)1/2
=0.7671179

From equation (3-1), as in the forward oblique example,
x1=39.8085922°
From equations (16-18) and (17-38),

p=[971,630.82+(~-1,063,049.3)2]"/2
=1,440,187.6 m
¢,=2 arctan [1,440,187.6 cos 39.8085922°/(2x 6,378,206.4
x0.9999x 0.7671179)]
=12.9018251°

From equation (17-37),

x=aresin [cos 12.9018251° sin 39.8085922°
+(-1,063,049.8 sin 12.9018251° cos 39.8085922°/1,440,187.6)]
=29.8318337°
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Using x as the first trial ¢ in equation (3-4),

¢=2 arctan {tan (45° + 29.8318337°/2) x [(1+0.0822719
sin 29.8318337°)/(1—0.0822719 sin 29.8318337°)Jc-022715/2)
~90°
=29.9991438°

Using this new trial value in the same equation for ¢, not for x,

6=2 arctan {tan (45° +29.8318337°/2) x [(1 +0.0822719
sin 29.9991438°)/(1 - 0.0822719 sin 29.9991438°)Je-0s22719/2)
~90°
= 29.9999953°

Repeating with 29.9999953° in place of 29.9991438°, the next trial ¢ is
¢ =29.9999997°

The next trial calculation produces the same ¢ to seven decimals.
Therefore, this is ¢.
Using equation (17-36),

A= —-100° +arctan [971,630.8 sin 12.9018251°/
(1,440,187.6 cos 39.8085922° cos 12.9018251°
+1,063,049.3 sin 39.8085922° sin 12.9018251°)]

= —100° + arctan (216,946.9/1,230,366.8)
= —100° +10.0000000°
= —90.0000000° =90° W. long.

Since the denominator of the arctan argument is positive, no quadrant
adjustment is necessary. If it were negative, it would be necersary to
add or subtract 180°, whichever would place the final \ between + 180°
and -180°.

Instead of the iterative equation (3-4), series equation (3-5) may be
used:

¢ =29.8318337° x 7/180° +(0.00676866/2 + 5 x 0.00676866%/24
+0.00676866°/12) sin (2x 29.8318337°) + (7 x 0.0067686€2/48
+29x0.00676866°/240) sin (4 x 29.8318337°)+(7
x 0.006768662/120) sin (6 x 29.8318337°)

=0.5235988 radian
=29.9999997°

Polar aspect with known k, (inversing forward example):

Given: International ellipsoid: @=6,378,388.0 m
¢2=0.00672267
or ¢=0.0819919
Center: South Pole ¢,=90° S. lat.
No=100° W. long. (meridian along
pos. Y axis)
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Central scale factor: k,=0.994
Point: z=-1,573,645.4 m
=-572,760.1 m

Find: ¢, A

Since this is the south polar aspect, change signs as stated in text:
For calculation, use ¢.=90°, \,=100° E. long., x=1,573,645.4 m,
y¥=572,760.1 m. From equations (16-18) and (17-39),

0=(1,573,645.42 + 572,760.12)/2
=1,674,638.5 m
t=1,674,638.5x [(1 +0.0819919)i1+0.0819915)
(1-0.0819919)!t-0-08199191]1/2/(2 6,378, 388.0 x 0.994)
=0.1325120

To iterate with equation (7-9), use as the first trial ¢,

¢=90° -2 arctan 0.1325120
=174.9031975°
Substituting in (7-9),

¢=90° -2 arctan {0.1325120 x [(1 - 0.0819919 sin 74.9031975°)/
(1+0.0819919 sin 74.9031975°)]0-0819919/2}
=74.9999546°

Using this second trial ¢ in the same equation instead of 74.9031975°,
¢ =74.9999986°.

The third trial gives the same value to seven places, so, since the sign of
¢ must be reversed for the south polar aspect,

¢ =—"74.9999986°,="75° 8. lat. (disregarding effects of rounding
off).
If the series equation (3-5) is used instead of (7-9), x is first found from
(7-13):

x=90° -2 arctan 0.1325120
=174.9031975°

Substituting this into (3-5), after converting x to radians fo- the first
term, ¢ is found in radians and is converted to degrees, then given a
reversal of sign for the south polar aspect, giving the same recult as the
iteration.

From equation (16-16),

A= +100° +arctan [1,573,645.4/( - 572,760.1)]
=100° + (- 69.9999995°)
= 30.0000005°
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However, since the denominator of the argument of arctan is neative,
180° must be added to \ (added, not substracted, since the numerator is
positive), then the sign of A must be changed for the south polar aspect:

A= ~(30.0000005° + 180°)
= -210.0000005°

To place this between +180° and -180°, add 360°, so

A= +149.9999995° or 150° E. long., disregarding effects of
rounding off.

Polar aspect with known ¢, not at the pole (inversing forward
example):

Given: International ellipsoid: =6,378,388.0 m
¢2=0.00672267
or ¢=0.0819919
Standard parallel: ¢,=71° S. lat.
No=100° W. long. (meridian along
pos. Y axis)
Point: x=-1,540,033.6 m
y=-560,526.4 m

Find: ¢, A

Since this is south polar, change signs as stated in text: For calcula-
tion, ¢,=71° N. lat., \,=100° E. long., z=1,540,033.6, y="56(.526.4.
From equations (13-9) and (12-15), as calculated in the corresponding
forward example,

t.=tan (45° -71°/2)/[(1-0.0819919 sin 71°)/
(1+0.0819919 sin 71°)]o-0st9s15/2
=0.1684118
m,=cos 71°/(1-0.00672267 sinz 71°)2
=0.3265509

From equations (16-18) and (17-40),

p =(1,540,033.6* + 560,526.4%)/2
=1,638,869.5 m
t=1,638,869.5x0.1684118/(6,378,388.0 x 0.3265509)
=0.1325120

For the first trial ¢ in equation (7-9),

¢=90° -2 arctan 0.1325120
=T4.903197°
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Substituting in (7-9),

¢=90° -2 arctan {0.1325120 [(1-0.0819919 sin 74.903197°)/
(1+0.0819919 sin 74.903197°)Jo-0e19915/2)
=74.9999586°

Replacing 74.903197° with 74.9999586°, the next trial ¢ is
¢ ="175.0000026°
’Ijhe next iteration results in the same ¢ to seven places, s2 changing
signs,
o=— fg 5.0000026° ="75° S. lat., disregarding effects of rounding
off.

The use of series equation (3-5) with (7-18) to avoid iteration follows
the same procedure as the preceding example. For \, equation (16-16)
is used, calculating with reversed signs:

A= +100° +arctan [1,540,033.6/( - 560,526.4)]
=100° + (- 69.9999997°)
=30.0000003°

Since the denominator in the argument for arctan is negative, add
180°:
A=210.0000003°
Now subtract 360° to place \ between +180° and -180°:
= —149.9999997°
Finally, reverse the sign to account for the south polar aspct:

A= +149.9999997° =150° E. long., disregarding rounding off in
the input.

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)-FORWARD EQUATIONS
(SEE P. 170, 172-173)
Given: Radius of sphere: R=3.0 units
Center: ¢,=40° N. lat.
ho=100° W. long.
Point: ¢=20° S. lat.
A=100° E. long.

Find: z,
Using equation (18-4),
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K ={2/[1+sin 40° sin (-20°)+cos 40° cos (—20°) cos
(100° +100°)]3+2
=4.3912175

Using equations (18-2) and (18-3),

z=3.0x4.3912175 cos (—-20°) sin (100° +100°)
= —4.2339303 units
y¥=38.0x4.3912175 [cos 40° sin (—20°)-sin 40° cos (-20°)
cos (100° +100°)]
=4.0257775 units

Examples for the polar and equatorial reductions, equations (18-5)
through (18-16), are omitted, since the above general equations give
the same results.

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)-INVERSE EQUATIONS
(SEE P. 173)

Inversing forward example:

Given: Radius of sphere: R =3.0 units
Center: ¢,=40° N. lat.
Ao=100° W. long.
Point: 2= -4.2339303 units
y=4.0257775 units
Find: ¢, A
Using equations (16-18) and (18-18),

p=[(-4.2339303) + 4.02577752]/
=5.8423497 units

¢=2 arcsin [5.8423497/(2x 3.0)]
=153.6733917°

From equation (16-14),

¢ =arcsin [cos 153.6733917° sin 40° +4.0257775
sin 153.6733917° cos 40°/5.8423497]
= -19.9999993° =20° 8. lat., disregarding rounding-off effects.

From equation (16-15),

A= —100° +arctan [ -4.2339303 sin 153.6733917°/
(5.8423497 cos 40° cos 153.6733917°
-4.0257775 sin 40° sin 153.6733917°))

= -100° +arctan [ - 1.8776951/(- 5.1589246)]
= —100° +20.0000005°
= —79.9999995°

Since the denominator of the argument of arctan is negative, add180°:
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A=100.0000005° =100° E. long., disregarding rounding-off
effects.

In polar spherical cases, the calculation of \ from equations (16-16) or
(16-17) is simpler than the above, but the quadrant adjustment follows
the same rules.

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)-FORWARD EQUATIONS
(SEE P. 173-175)

Oblique aspect:

Given: Clarke 1866 ellipsoid: a=6,378,206.4 m
¢2=0.00676866
or ¢=0.0822719
Center: ¢,=40° N. lat.
No=100° W, long.
Point: ¢=30° N. lat.
A=110° W. long.

Find: 2, y
Using equation (3-12),

q=(1-0.00676866) {sin 30°/(1—0.00676866 sin? 30°)—[1/
(2x0.0822719)] In [(1-0.0822719 sin 30°)/
(1+0.0822719 sin 30°)))
=0.9943535

Inserting ¢,=40° in place of 30° in the same equation,
¢, =1.2792602

Inserting 90° in place of 30°,
g,=1.9954814

Using equation (3-11),

B=aresin (0.9943535/1.9954814)
=29.8877622°

By =arcsin (1.2792602/1.9954814)
=39.8722878°

Using equation (3-13),

R,=6,378,206.4x(1.9954814/2)/>
=6,370,997.2 m

Using equation (12-15),

m, =cos 40°/(1-0.00676866 sin* 40°)'/2
=0.7671179
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Using equations (18-21) and (18-22),
B=6,370,997.2 x {2/[1 +sin 89.8722878° sin 29.8877622°
+cos 39.8722878° cos 29.8877622° cos (—110° +100°)}*/2

=6,411,606.1 m
D=6,378,206.4x0.7671179/(6,370,997.2 cos 39.8722878°)

=1.0006653
Using equations (18-19) and (18-20),

x=6,411,606.1x1.0006653 cos 29.8877622° sin (-110°+100°)
=-965,932.1 m
y=(6,411,606.1/1.0006653)[cos 39.8722878° sin 29.8877622°
—sin 39.8722878° cos 29.8877622° cos (-110°+100°)]
= -1,056,814.9 m

Polar aspect:

Given: International ellipsoid: «=6,378,388.0 m

€*=0.00672267

or ¢=0.0819919

Center: North Pole ¢,=90° N. lat.
No=100° W. long. (meridian along

neg. Y axis)
Point: ¢=80° N. lat.
A=5° E. long.

Find: ¢, \, b, &
From equation (3-12),

g=(1-0.00672267) {sin 80°/(1 - 0.00672267 sin* 80°)
~[1/(2%0.0819919)] In [(1-0.0819919 sin 80°)/
(1+0.0819919 sin 80°)]}
=1.9649283

Using the same equation with 90° in place of 80°,
¢,=1.9955122
From equation (12-15),

m=cos 80°/(1-0.00672267 sin? 80°)'/2
=0.1742171

Using equations (18-25), (17-30), (17-31), and (17-32),

p=6,378,388.0 x(1.9955122 — 1.9649283)'/2
=1,115,468.3 m

=1,115,468.3 sin (5° +100°)
=1,077,459.7 m
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y=-1,115,468.3 cos (5° +100°)
=288,704.5 m

k=1,115,468.3/(6,378,388.0x 0.1742171)
=1.0038193

h=1/1.0038193=0.9961952

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)-INVERSE FAUATIONS
(SEE P. 175-177)

Oblique aspect (inversing forward example):

Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
¢*=0.00676866
or ¢=0,0822719
Center: ¢,=40° N. lat.
No=100° W. long.
Point: =-965,932.1 m
y=-1,056,814.9 m

Find: ¢, X

Since these are the same map parameters as those used in the forward
example, calculations of map constants not affected by ¢ ard \ are not
repeated here.

q,=1.9954814
B,=39.8722878°
R,=6,370,997.2 m
D=1.0006653

Using equations (18-30), (18-31), and (18-29),

o = {[-965,932.1/1.0006653]* + [1.0006653 x (- 1,056,814.9)]2}*/2
=1,431,827.1 m
¢,=2 arcsin [1,431,827.1/(2x 6,370,997.2)]
= 12.9039908°
q=1.9954814 [cos 12.9039908° sin 39.8722878°
+1.0006653 x (- 1,056,814.9) sin 12.9039908°
cos 39.8722878°/1,431,827.1]
=0.9943535

For the first trial ¢ in equation (3-16),

¢ =arcsin (0.9943535/2)
=29.8133914°
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Substituting into equation (3-16),

6 =29.8133914° +[(1 - 0.00676866 sin* 29.8133914°)/
(2 cos 29.8133914°)] x (0.9943535/(1 — 0.00676866)
—sin 29.8133914°/(1-0.00676866 sin* 29.8133914)
+[1/(2x0.0822719)] In [(1-0.0822719
sin 29.8133914°)/(1 +0.0822719 sin 29.8133914°)]} x 180¢/x
=29.9998293°

Substituting 29.9998293° in place of 29.8133914° in the same ecuation,
the new trial ¢ is found to be

¢=30.0000002°

The next iteration results in no change to seven decimal places;
therefore,

¢=30° N. lat.
Using equation (18-28),

A= —-100° +arctan {-965,932.1 sin 12.9039908°/[1.0006653
x1,431,827.1 cos 39.8722878° cos 12.9039908°
-1.0006653* (- 1,056,814.9) sin 39.8722878°
sin 12.9039908°]}

= —-100° +arctan (-215,710.0/1,223,352.4)
= -100°-9.9999999°
=-109.9999999°=110° W. long.

Since the denominator of the argument for arctan is positive, no
quadrant adjustment is necessary.

Polar aspect (inversing forward example):

Given: International ellipsoid: =6,378,388.0 m
e*=0.00672267
or ¢=0.0819919
Center: North Pole ¢,=90° N. lat.
No=100° W. long. (meridian along
neg. Y axis)
Point: £=1,077,459.7 m
y=288,704.5 m
Find: ¢, A
First g, is found to be 1.9955122 from equation (3-12), as in the cor-
responding forward example for the polar aspect. From ecmnations
(16-18) and (16-33),

p=(1,077,459.72 + 288,704.5%)/2
=1,115,468.4 m
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q=+[1.9955122 - (1,115,468.4/6,378,388.0)"]
=1.9649283

Iterative equation (3-16) may be used to find ¢. The first trial ¢ is

¢=arcsin (1.9649283/2)
=179.2542275°

When this is used in equation (3-16) as in the oblique inve~se example,
the next trial ¢ is found to be

¢="79.9744304°
Using this value instead, the next trial is
¢="79.9999713°
and the next,
¢ =80.0000036°
The next value is the same, so
¢=80° N. lat.
From equation (16-16),

A=-100° +arctan [1,077,459.7/(~ 288,704.5)]
= —174.9999978°

Since the denominator of the argument for arctan is ne¢mative, add
180°, or

A=5.0000022°=5° E. long.

AZIMUTHAL EQUIDISTANT (SPHERE)-FORWARD EQUATIONS
(SEE P. 184-185)

Given: Radius of sphere: R =3.0 units
Center: ¢,=40° N. lat.
Ao=100° W. long.
Point:  ¢=20° 8. lat.
A=100° E. long.

Find: z, y
Using equations (5-3) and (19-2),
cos c=sin 40° sin (-20°)+cos 40° cos (-20°) cos (100° +100°)
= -0.8962806

¢=153.6733925°
k' =(153.6733925° x 7/180°)/sin 153.6733925°

=6.0477621
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Using equations (18-2) and (18-3),

2=38.0%x6.0477621 cos (—20°) sin (100° +100°)
= -5.8311398 units
9=3.0x6.0477621 [cos 40° sin (—20°)-sin 40° cos (-20°)
cos (100° +100°)]
=5.5444634 units

Since the above equations are general, examples of other forward for-
mulas are not given.

AZIMUTHAL EQUIDISTANT (SPHERE)-INVERSE EQUATIONS (SEE P. 185)
Inversing forward example:

Given: Radius of sphere: R =3.0 units
Center: ¢,=40° N. lat.
Ao=100° W. long.
Point: x=-5.8311398 units
¥ ="5.5444634 units

Find: ¢, A
Using equations (16-18) and (19-15),

p =[(-5.8311398)? + 5.54446342]*/2
=8.0463200 units

¢=8.0463200/3.0
=2.6821067 radians
=2.6821067 x 180°/x = 158.6733925°

Using equation (16-14),

¢ =arcsin (cos 153.6733925° sin 40° + 5.5444634 sin
153.6733925° cos 40°/8.0463200)
= —19.9999999°
=20° 8. lat., disregarding effects of rounding off.

Using equation (16-15),

A= —100° +arctan [(-5.8311398) sin 153.6733925°/(8.0462200
cos 40° cos 153.6733925° — 5.5444634 sin 40°
sin 158.6733925°)]
= —100° +arctan [(-2.5860374)/(~7.1050794)]
= —100° —arctan 0.3639702
= —80.0000001°

but since the denominator of the argument of arctan is negative, add or
subtract 180°, whichever places the final result between +187° and
—-180°:
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= —80.0000001° +180°
=99.9999999°
=100° E. long., disregarding effects of rounding: of".

AZIMUTHAL EQUIDISTANT (ELLIPSOID)- FORWARD EQUATIONS
(SEE P. 185-189)

Polar aspect:

Given: International ellipsoid: @=6,378,388.0 m
¢*=0.00672267
Center: North Pole ¢,=90° N. lat.
Xo=100° W. long. (meridian along
neg. Y axis)
Point: ¢=80° N. lat.
A=5° E. long.

Find: z, y, k&
Using equation (3-21),

M=6,378,388.0 x [(1-0.00672267/4 — 3 x 0.006722672/64 — 5
x 0.00672267°/256) x 80° x 7/180° — (3 x 0.00672267/°
+3x0.006722672/32 + 45 x 0.00672267%/1024) sin (2x 80°)
+(15 % 0.006722672/256 + 45 x 0.00672267/1024) sin (4x 80°)
~(35x0.00672267%/3072) sin (6 x 80°)]
=8,885,403.1 m

Using the same equation (3-21), but with 90° in place of 82°,
M,=10,002,288.3 m
Using equation (12-15),

m=cos 80°/(1-0.00672267 sin? 80°)/2
=0.1742171

Using equations (19-16), (17-30), (17-31), and (17-32),

p =10,002,288.3 - 8,885,403.1
=1,116,885.2 m

£=1,116,885.2 sin (5° + 100°)
=1,078,828.3 m

y=-1,116,885.2 cos (5° + 100°)
=289,071.2 m

k=1,116,885.2/(6,378,388.0x 0.1742171)
=1.0050946
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Oblique aspect (Guam projection):

Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
€2=0.00676866
Center: ¢,=13°28'20.87887" N. lat.
o= 144°44'55.50254" E. long.
False origin:  2,=50,000 m
Yo= 50,000 m
Point: ¢=13°20'20.53846" N. lat.
A=144°3807.19265" E.. long.
Find: z, y
Using equation (19-18), after converting angles to degreer and
decimals: (¢, =13.472466353°, \o = 144.748750706°, ¢ =13.33903£461°,
A=144.635331292°),
x=[6,378,206.4 x(144.635331292° — 144.748750706°)
cos 13.339038461°/(1 —0.00676866 sin? 13.339038461°)'/%]
x 7/180°
=-12,287.52 m

Since 50,000 m is added to the origin for the Guam projection,

x=-12,287.52 +50,000.0
=37,712.48 m

From equation (3-21),

M=6,378,206.4 x[(1-0.00676866/4 — 3 x 0.00676866%/64 — 5
x0.00676866°/256)x 13.339038461° x x/180° — (3
x 0.00676866/8 + 3 x 0.00676866%/32 + 45 x 0.00676866°/
1024) sin (2x 13.339038461°) + (15 x 0.00676866%/256
+45x0.00676866°1024) sin (4 x 13.339038461°)
-(35x0.00676866%3072) sin (6 x 13.339038461°)]
=1,475,127.96 m

Substituting ¢, =13.472466353° in place of 13.339038461° in the same
equation,

M,=1,489,888.76 m
Using equation (19-19), and using the x without false origin,

y=1,475,127.96 - 1,489,888.76 + (- 12,287.52)* tan 13.339038461°
x (1-0.00676866 sin? 13.339038461°)"/2/(2 x 6,378,206.4)
= -14,758.00 m

Adding 50,000 meters for the false origin,
¥=35,242.00 m
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Oblique aspect (Micronesia form):

Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
€*=0.00676866
Center: Saipan Island ¢,=15°11'05.6830" N. lat.
o= 145°44'29.9720" E. long.
False origin: x,=28,657.62 m
%0=67,199.99 m
Point: Station Petosukara ¢=15°14'47.4930" N. lat.
A=145°47'34.9080" E. long.
Find: ~ y
First convert angles to degrees and decimals:
¢,=15.18491194°
No=145.7416589°
¢ =15.24652583°
A=145.7930300°

From equations (4-20a), (4-20), (19-20), and (19-21) in order,

N, =6,378,206.4/(1-0.00676866 x sin? 15.18491194°)2
=6,379,687.9 m
N=6,378,206.4/(1-0.00676866 x sin® 15.24652583°)/2
=6,379,699.7 m
y=arctan [(1-0.00676866) tan 15.24652583°
+0.00676866 x 6379687.9 sin 15.18491194°/
(6,379,699.7 x cos 15.24652583°)]
=15.2461374°

Az=arctan {sin (145.79303° - 145.7416589°)/
[cos 15.18491194° x tan 15.2461374°
- sin 15.18491194° x cos (145.79303° —145.741658¢ °)]}
=38.9881345°

Since sin Az+#0, from equation (19-22a),

s=aresin [sin (145.79303° - 145.7416589°) x cos 15.2461374°/

sin 38.9881345°]
=0.001374913 radians, since s is used only in radians.

From equations (19-23) through (19-27) in order,

G =0.00676866 sin 15.18491194°/(1 - 0.00676866)"*
=0.02162319
H=0.00676866'/2 cos 15.18491194° cos 38.9881345°/
(1-0.00676866)"/*
=0.06192519



278 MAP PROJECTIONS USED BY THE USGS

¢=6,379,687.9x0.001374913 x {1 - 0.0013749132x 0.06192£192
x(1-0.06192519%)/6 +(0.001374913%/8) x 0.02162319
x0.06192519 x (1 -2x0.06192519%) +(0.0013749134/120)
x[0.061925192x (4 - 7x 0.06192519%) - 3 x 0.02162319*
x(1-7%0.06192519%)] - (0.001374913%/48) x 0.02162319
x0.06192519}
=8,771.62 m
x=8,771.52x sin 38.9881345° +28,657.52
=34,176.20 m
y=8,771.562x cos 38.9881345° +67,199.99
=74,017.88 m

AZIMUTHAL EQUIDISTANT (ELLIPSOID)-INVERSE EQUATIONS
(SEE P. 189-192)

Polar aspect (inversing forward example):

Given: International ellipsoid: @=6,378,388.0 m
¢*=0.00672267
Center: North Pole ¢,=90° N. Iat.
No=100° W. long. (meridian along
neg. Y axis)
Point: 2=1,078,828.3 m
¥=289,071.2 m

Find: ¢, )
Using equation (3-21), as in the corresponding forward example,
M,=10,002,288.3 m

Using equations (16-18), (19-28), and (8-19),

p=(1,078,828.3% +289,071.22)!/2

=1,116,885.2 m
M=10,002,288.3-1,116,885.2

=8,885,403.1 m

u=_8,885,403.1/[6,378,388.0 x (1 - 0.00672267/4 - 3 x 0.00672267%/64

-5x0.00672267°/256)]

=1.3953965 radians
=1.3953965 x 180°/7 =79.9503324°

Using equations (3-24) and (3-26),

e, =[1-(1-0.00672267)"/2J/[1 +(1 - 0.00672267)"/7]
=0.0016863
¢=1.3953965 radians +(3x0.0016863/2 — 27 x 0.0016863 /32"
sin (2x 79.9503324°) + (21 x 0.0016863%/16 - 55
x 0.0016863%/32) sin (4x 79.9503324°) +(151
x 0.0016863%/96) sin (6 x 79.9503324°)
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=1.3962634 radians
=1.3962634 x 180°/x ="79.9999999°
=80° N. lat., rounding off.

Using equation (16-16),

A= -100° +arctan [1,078,828.3/(-289,071.2)]
= -100° -74.9999986° + 180°
=5.0000014°
=5° E. long., rounding off.

The 180° is added because the denominator in the argument for arctan
is negative.

Obligque aspect (Guam projection, inversing forward examg’e):

Given: Clarke 1866 ellipsoid: a=6,378,206.4 m
¢*=0.00676866
Center: ¢,=13.472466353° N. lat.

No=144.748750706° E. long.

False origin:  #,=50,000 m
%=50,000 m

Point: £=37,712.48 m

y=35,242.00 m

Find: ¢, A

First subtract 50,000 m from « and y to relate them to actuzl projection
origin: z=-12,287.52 m, y= -14,758.00 m. Calculation of M, from
equation (3-21) is exactly the same as in the forward exanrple, or

M,=1,489,888.76 m
From equation (19-30), the first trial M is found from #n assumed
¢=0y:

M=1,489,888.76 + (- 14,758.00) - (- 12,287.52)? tan 13.472466353°
x(1-0.00676866 sin* 13.472466353°)!/%/(2 x 6,378,206.4)
=1,475,127.92 m

Using equation (8-19) and the above trial M,

p=1,475,127.92/[6,378,206.4 x (1 - 0.00676866/4 — 3 x 0.09676866%/
64 —5x0.00676866°/256))
=0.2316688 radian

Using equation (3-24),

e1=[1-(1-0.00676866)"/2J/[1 +(1 - 0.00676866)"/7]
=0.0016979
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Using equation (3-26) in radians, although it could be converted to
degrees,

¢=0.2316688 +(3x 0.0016979/2 - 27 x 0.0016979%/32)
sin (2x0.2316688) +(21 x0.0016979%/16 - 55
x 0.00169794/32) sin (4x0.2316688)+ (151
x 0.0016979%/96) sin (6 x 0.2316688)
=0.2328101 radian
=0.2328101 x 180°/7 =13.3390381°

If this new trial value of ¢ is used in place of ¢, in equation (19-30), a
new value of M is found:

M=1,475,127.95 m
This in turn, used in (8-19), gives
#=0.2316688 radian
and from (3-26)
¢=13.3390384°

The third trial, through the above equations and starting with this
value of ¢, produces no change to seven decimal places. Thus, this is the
final value of ¢. Converting to degrees, minutes, and seconds,

¢ =13°20'20.538" N. lat.
Using equation (19-31) for longitude,

A =144.748750706° +[(-12,287.52) x (1 - 0.00676866
sin* 13.3390384°)'/%/(6,378,206.4 cos 13.3390384°)]x 180¢/x
=144.6353313°
=144°38'07.193" E. long.

Obligque aspect (Micronesia form, inversing forward example):

Given: Clarke 1866 ellipsoid: =6,378,206.4 m
¢*=0.00676866
Center: Saipan Island ¢,=15.18491194° N. lat.
Mo =145.7416589° E. long.
False origin: 2,=28,657.562 m
Y% =67,199.99 m
Point: x=34,176.20 m
y¥=74,017.88 m

Find: ¢, A
From equations (19-32) through (19-41) in order,

¢=[(34,176.20 - 28,657.52)* +(74,017.88 — 67,199.99)*]'/
=8,771.51 m
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Az=arctan [(34,176.20 - 28,657.52)/(74,017.88 - 67,199.99)]
=38.9881292°
N, =6,378,206.4/(1-0.00676866 sin* 15.18491194°)/2
=6,379,687.9 m
A=-0.00676866 cos? 15.18491194° cos? 38.9881292°/
(1-0.00676866)
= -0.003834730
B=3x0.00676866 x(1+0.003834730) sin 15.18491194° cos
15.18491194° x cos 38.9881292°/(1 - 0.00676866)
=0.004032465
D=8,771.51/6,379,687.9
=0.001374913
E=0.001374913 +0.003834730 x (1 - 0.003834730) x 0.001374913%/6
-0.004032465 x (1 -3 x 0.003834730) x 0.0013749134/24
=0.001374913. This is in radians for use in equation (19-38).

For use as degrees in equations (19-39) and (19-40),

E=0.001374913x180°/7 =0.07877669°
F=1+0.003834730x0.001374913%/2 - 0.004032465
x 0.001374913%/6
=1.000000004
Y =arcsin (sin 15.18491194° cos 0.07877669° + cos 15.18491194°
x sin 0.07877669° cos 38.9881292°)
=15.2461374°
A=145.7416589° + arcsin (sin 38.9881292° sin 0.07877¢A9°/
cos 15.2461374°)
=145.7416589° +0.0513711°
=145.7930300°
=145°47'34.908" E. long.
¢ =arctan [(1-0.00676866 x 1.000000004 sin 15.18491194°/ sin
15.2461374°)x tan 15.2461374°/(1 —0.00676866)]
=15.2465258°
=15°14'47.493" N. lat.

SPACE OBLIQUE MERCATOR (SPHERE)-FORWARD EQUATIONS
(SEE P. 198-200)
Given: Radius of sphere: R=6,370,997.0 m

Landsat orbit:  ¢=99.092°
P,/P,=18/251
Path=15

Point: ¢=40° N. lat.
A=T73° W. long.

Find: z, y for point taken during daylight northern (first) quadrant of
orbit.
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Assuming that this is only one of several points to be located, the
Fourier constants should first be calculated. Simpson’s rule may be
written as follows, using \' as the main variable:

If
F={:f\)dN
a close approximation of the integral is

F=(AN3)[f (\L)+4f (\L+ AN) + 2f (V. + 2AN) +4f (A + AN)
+2f O\L+4AN)+. . . +4F O = AN+ ()]

where f (\) is calculated for \’ equal to a, and for )\’ at each equ~l inter-
val AN until N'=b. The values f (\') are alternately multiplied by 4 and 2
as the formula indicates, except for the two end values, and all the
resulting values are added and multiplied by one-third of the interval.
The interval AN must be chosen so there is an even number of intervals.

Applying this rule to equation (20-1) with the suggested 9° interval
in N, the function f (\)=(H -S?)/(1 + §2)*2 is calculated for a N of 0°, 9°,
18°, 27°, 36°, .. ., 81°, and 90°, with ten 9° intervals. The cal~ulation
for N'=9° is as follows, using equations (20-4) and (20-5):

H=1-(18/251) cos 99.092°
=1.0113321
S=(18/251) sin 99.092° cos 9°
=0.0699403
S (\)=(1.0113321 - 0.06994032)/(1 + 0.0699403%)/
=1.0039879

To calculate B, the following table may be figuratively prepared,
although a computer or calculator program would normally be used in-
stead (H is a constant):

N S FAtY)] Multiplier Surmation

0 0.0708121 1.0038042 x1l= 1.(038042
9 0699403 1.0039879 x4= 4.0159516
8 0673463 1.0045212 X2= 2.0090423
27 .0630941 1.0053522 x4= 40214087
0572882 1.0064001 X2= 2.0128001

0500717 1.0075627 x4= 4.0302507

0416223 1.0087263 xX2= 2.0174526

10321480 1.0097770 x4= 4,0391079

10218822 1.0106114 x2= 2.0212227

.0110775 1.0111474 xX4= 4,0445895

90 .0000000 1.0113321 x1= 1.0113321

Total = 30.2269624
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To convert to B, again referring to equation (20-1) and remaining in
degrees for the final multipliers, since they cancel,

B=(2/180°)x(9°/3)x 30.2269624
=1.0075654

This is the Fourier coefficient B for equation (20-6) with )\’ in radians.
To use )\ in degrees, multiply B by x/180°:

B=1.0075654 x x/180
=0.017585334

Calculations of A, and C, are similar, except that the calculations of
the function involve an additional trigonometric term at each step. For
example, to calculate C, for N'=9°, using equation (20-3) and the S
found above from equation (20-5),

JN)=[S/(1+852?] cos 3N
=[0.0699403/(1 + 0.06994032)*/?] cos (3x9°)
=0.06216542

The sums for A, corresponding to 30.2269624 for B are as follows:

for A,:-0.0564594
for A,: 0.000041208

To convert to the desired constants,

A,=[4/(180° x 2)]x (9°/3) x (- 0.0564594)
= -0.00188198

A, =[4/(180° x 4)] x (9°/3) x (0.000041208)
=0.0000006868

The sums for C,:

for C,: - 1.0601909
for C,:-0.0006626541

To convert,

C, =[4x(1.0113321 + 1)/(180° x 1)] x (9°/3) x (1.0601909)
=0.1421597

C,=[4x(1.0113321 + 1)/(180° x 3)] x (9°/3) x (~ 0.0006626541)
= ~0.0000296182

These constants, rounded to seven decimal places except for B, will
be used below:

Using equation (20-11),

No=128.87° -(360°/251)x 15
=107.36°
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To solve equations (20-8) and (20-9) by iteration, determine N, from
equation (20-12) and the discussion following the equation, with N=0:

N,=90°x(4x0+2-1)
=90°

Then A, =~ 73°-107.36° +(18/251)x 90°
= -173.9058167°
cos \, = —0.9943487

Using N, as the first trial value of N’ in equation (20-9), usiry extra
decimal places for illustration:

A = —73° —107.36° + (18/251) x 90°
- —173.9058167°, as before.

Using equation (20-8),

N =arctan [cos 99.092° tan (-173.9058167°) + sin 99.092°¢
tan 40°/cos (- 173.9058167°)]
= -40.36910525°

For quadrant correction, from the discussion following equation
(20-12), using the sign of cos ), as calculated above,

N = —40.36910525° +90° —90° sin 90° x(~ 1)
= —40.36910525° + 180°
=139.6308947°

This is the next trial N'. Using equation (20-9),

A= —T73°-107.36° +(18/251) x 139.6308947°
= —170.3466291°

Substituting this value of A\, in place of —173.9058167° in equation
(20-8),

N=-40.9362858°
The same quadrant adjustment applies:

N'=—40.9362858° +180°
=139.0637142°

Substituting this in equation (20-9),
.= —170.3873034°
and from equation (20-8),
N =139.0707998°
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From the 4th iteration,

\.= —170.3867952°
N'=139.0707113°

From the 5th iteration,

A= —170.3868016°
N'=139.0707124°

From the 6th iteration,

A= —170.3868015°
\'=139.0707124°

Since ' has not changed to seven decimal places, the last iteration is
taken as the final value. Using equation (20-10), with the final value of
Aoy

¢'=aresin [cos 99.092° sin 40° —sin 99.092° cos 40° sin
(-170.3868015°)]
=1.4179606°

From equation (20-5),

S=(18/251) sin 99.092° cos 139.0707124°
= -0.05634999

From equations (20-6) and (20-7),

2= 6,370,997 x {0.017585334 x 139.0707124° + (- 0.0018821)
sin (2x 139.0707124°)+0.0000007 sin (4x 139.0707124°)
—[—0.0534999/(1 + (-~ 0.0534999)2)"/2] In tan
(45° +1.4179606°/2)}

=15,601,233.74 m

y=6,370,997 x (0.1421597 sin 139.0707124° +(~0.000029%)
sin (3x 139.0707124°) + [1/(1 + (- 0.0534999)2)7]
In tan (45° + 1.4179606°/2)}

=750,650.37 m

SPACE OBLIQUE MERCATOR (SPHERE)-INVERSE EQUATIONS
(SEE P. 200-202)

Inversing forward example:

Given: Radius of sphere: R=6,370,997.0 m
Landsat orbit:  1=99.092°
P,/P,=18/251
Path=15
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Point: 2=15,601,233.74 m
y=150,650.37 m
Find: ¢, A
Constants 4,, A,, B, C,, C,, and )\, are calculated exactly and have the
same values as in the forward example above. To solve equation (20-15)
by iteration, the first trial N is 2/BR, using the value of B for X' in
degrees in this example:

\'=15,601,233.74/(0.017585334 x 6370997.0)
=139.2518341°

Using equation (20-5) to find S for this trial X,

S=(18/251) sin 99.092° cos 139.2518341°
= -0.0536463

Inserting these values in the right side of equation (20-15),

N'={15,601,233.74/6,370,997.0 + (- 0.0536463)
x 750,650.37/6,370,997.0 — (- 0.0018820) sin (2x 139.2518341°)
—0.0000007 sin (4x 139.2518341°)—(-0.0536463)
x [0.1421597 sin 139.2518341° + (- 0.0000296)
sin (3 x 139.2518341°)}]}/0.017585334
=139.0695675°

Substituting this new trial value of \' in (20-5) for a new S, then both in
(20-15) for a new N, the next trial value is

N=139.0707197°
The fourth value is

N'=139.0707124°

and the fifth does not change to seven decimal places. Therefore, this N’
is the final value. The corresponding S last calculated from (20-5) is

S=(18/251) sin 99.092° cos 139.0707124°
= —0.0534999

Using equation (20-16),

In tan (45° +¢'/2)=[1+(~0.0534999)2]** x[750650.37/
6370997.0 - 0.1421597 sin 139.0707124°
—~(~0.0000296) sin (3 x 139.0707124°)]
=0.02475061

tan (450 + ¢’/2) = e0.0247506!
=1.0250594
45° +¢'/2=arctan 1.0250594
=45.7089803°
¢'=2x(45.7089803° - 45°)
=1,4179606°
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Using equation (20-13),

A=arctan [(cos 99.092° sin 139.0707124° — sin 99.092°
tan 1.4179606°)/cos 139.0707124°]-(18/251)
139.0707124° +107.36°

=arctan [-0.1279654/( - 0.7555187)] +97.3868015°
=9.6131985° + 97.3868015°
=107.0000000°

Since the denominator of the argument of arctan is negativ=, and the
numerator is negative, 180° must be subtracted from X\, or

A=107.0000000° —180° = - 73.0000000°
=73° W. long.

Using equation (20-14),

¢ =arcsin (cos 99.092° sin 1.4179606° + sin 99.092°
cos 1.4179606° sin 139.0707124°)
=40.0000000°
=40° N. lat.

For groundtrack calculations, equations (20-17) through (20-20) are
used, given the same Landsat parameters as above for R, 1, P,/P,, and
path 15, with \o=107.36°, and ¢ =40° S. lat. on the daylight (descend-
ing) part of the orbit. Using equation (20-17),

N'=arcsin [sin (-40°)/sin 99.092°]
= —40.6145062°

To adjust for quadrant, subtract from 180°, which is the N of the
descending node:

N'=180° —(-40.6145062°)
=220.6145062°

Using equation (20-18),

A=arctan [(cos 99.092° sin 220.6145062°)/cos 220.6145062°]
-(18/251)x 220.6145062° + 107.36°
=arctan [0.1028658/( - 0.7591065)] + 91.5390394°
=83.8219462°

Since the denominator of the argument for arctan is negative, add
180°, but 360° must be then subtracted to place A between + 180° and
-180°:

A =283.8219462 + 180° - 360°
=-96.1780538°
=96°10'40.99" W. long.
If \ is given instead, with the above \ used for the example, equations
(20-19) and (20-9) are iterated together using the same type of initial
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trial N’ as that used in the forward example for equations (20-8) and
(20-9). In this case, as described following equation (20-12), N, is 270°,
but this is only known from the final results. If N, =90° is chosen, the
same answer will be obtained, since there is considerable overlap in ac-
tual regions for which two adjacent N,’s may be used. If N',=450° is
chosen, the N calculated will be about 487.9° or the position on the
next orbit for this \. Using N, =270° and the equation for \,, fo'lowing
equation (20-12),

A= —96.1780538° - 107.36° +(18/251) x 270°
= —184.1755040°

for which the cosine is negative. From equation (20-9), the first trial \,
is the same as \,,. From equation (20-19),

N'=arctan [tan (- 184.1755040°)/cos 99.092°]
=24.7970120°

For quadrant adjustment, using the procedure following (20-12),

N'=24.7970120 +270° -90° sin 270° x(-1)
=204.7970120°

where the (-1) takes the sign of cos \,,.

Substituting this as the trial N in (20-9),
A= -96.1780538° - 107.36° +(18/251) x 204.7970120°

= —188.8514155°

Substituting this in place of —184.1755040° in (20-19),
N'=44.5812628°

but with the same quadrant adjustment as before,
N'=224.5812628°

Repeating the iteration, successive values of N are

N'=219.5419815°, then
=220.8989682°, then
=220.5386678°, then
=220.6346973°, then
=220.6091287°, then
=220.6159384°, etc.

After a total of about 16 iterations, a value which does not change to
seven decimal places is obtained:

N'=220.6145063°
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Using equation (20-20),

¢ =arcsin (sin 99.092° sin 220.6145063°)
= —40.0000000°
=40° S. lat.

SPACE OBLIQUE MERCATOR (ELLIPSOID)-FORWARD EQUAT ONS
(SEE P. 203-207)

While equations are given for orbits of small eccentricity, the calcula-
tions are so lengthy that examples will only be given for the circular
Landsat orbit, thus eliminating or simplifying several of the equations
given in the text.

Given: Clarke 1866 ellipsoid: a=6,378,206.4 m

€*=0.00676866

Landsat orbit:  1=99.092°
P,/P,=18/251
R,=17,294,690.0 m
Path=15
Point: ¢=40° N. lat.
A=T73° W. long.

Find: 2, y for point taken during daylight northern (first) qu~drant of
orbit.

The calculation of Fourier constants for the map follows the same
basic procedure as that given for the forward example for the spherical
form, except for greater complications in computing each step for the
Simpson’s numerical integration. The formula for Simpson’s rule (see
above) is not repeated here, but an example of calculation of . function
S (\") for constant A, at \"=18° is given below, as represented in equa-
tion (20-23).

f()\”)=[(HJ— Sz)/(Jz + Sz)uz] cos 2\
Using equations (20-27) through (20-30) in order,

J=(1-0.00676866)

=0.9798312

W=[(1-0.00676866 cos? 99.092°)*/(1-0.00676866)*] -1
=0.0133334

Q=0.00676866 sin* 99.092°/(1-0.00676866)
=0.0066446

T=0.00676866 sin* 99.092° x (2-0.00676866)/(1-0.00676866)
=0.0133345



290 MAP PROJECTIONS USED BY THE USGS

Using equations (20-37) and (20-38), remembering that L'=1.0 for the
circular orbit (as can be readily determined from (20-39) witt ¢ =0),

S=(18/251) x 1.0 sin 99.092° cos 18° x[(1 +0.0133345
sin? 18°)/(1 +0.0133334 sin? 18°) (1 +0.0066446 sin? 18°)]"/2
=0.0673250
H=[(1+0.0066446 sin* 18°)/(1 +0.0133334 sin? 18°)]"/2
x [(1+0.0133334 sin? 18°)/(1 +0.0066446 sin? 18°)?
~(18/251)x 1.0 cos 99.092°]
=1.0110133

Calculating the function A\") as given above,
S(\)=[(1.0110133 x 0.9798312 - 0.0673250%)/(0.9798312*
+0.0673250%)"2] cos (2x 18°)
=0.8122693

In tabular form, using 9° intervals in )", the calculation of A, proceeds
as follows, integrating only to 90° for the circular orbit:

N H S fQ Multiplier =~ Stmmation
0° —__._1.0113321 0.0708121 1.0035971 x1l= 1.0035971
e S 1.0112504 0.0699346 0.9545807 xX4= 3.8183229

18 1.0110133  0.0673250 0.8122693 x2= 1.6245386

27 e 1.0106439  0.0630509 0.5904356 x4= 2.3617425

36 1.0101782 0.0572226 0.3106003 X2= 0.6212007

45 __ 1.0096617  0.0499888 0.0000000 x4= 0.0000000

54 ____ 1.0091450 0.0415321  -0.3110197 x2= -0.622039%4

68 10086787  0.0320636 -0.5919529 x4= -2.3678116

72 _________1.0083085  0.0218167 -0.8151437 x2= -1.6302874

81 ___ 1.0080708  0.0110417  -0.9585531 x4= -3.8342122

90 1.0079888 0.0000000 -1.0079888 x1l= -1.0079888

Total = -0.0329376

To convert to A,, referring to equation (20-23), but multiplying by 4
because of the single-quadrant integration,

A, =[4/(180° x 2)]x (9°/3) x (- 0.0329376)
= ~0.0010979

Similar calculations of A,, B,, C,, and C, lead to the values given in
the text following equation (20-73a):

B, =0.0175544891 for \" in degrees
+=—0.0000013

C,=0.1434410

C,=0.0000285

Since the calculations of 7, and m, are not necessary for calculati9n of
# and y from ¢ and A, or the inverse, and are also lengthy, they will be
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omitted in these examples. The examples given will, however, assist in
the understanding of the text concerning their calculations. The other
general constant needed is \,, determined from (20-11), as in the for-
ward spherical formulas and example:

Ao =128.87° - (360°/251)x 15
=107.36°

For coordinates of the specific point, equations (20-45) ard (20-46)
are iterated together, replacing (L ++) with \” in (20-46) for t} = circular
orbit. Except for the additional factor of (1-e?) in (20-45). the pro-
cedure is identical to the forward spherical example for solving (20-8)
and (20-9). The calculations of N, and the first trial \, are idertical with
that example since ¢ and A have been made the same. The sign of cos ),
is also negative.

N,=90°

A= —173.9058167°

Using equation (20-45),

N’=arctan [cos 99.092° tan (-173.9058167°)+(1-0.0067¢R66)
sin 99.092° tan 40°/cos (- 173.9058167°)]
= —40.1810005°

For quadrant correction,

N'=-40.1810005° + 90° - 90° sin 90° x(-1)
=139.8189995°

Successive iterations give

(2) \=-170.3331395°
N\"=139.2478915°
(3) A\.=-170.3740954°
N'=139.2550483°
(4) N\ =-170.3735822°
N"'=139.2549587°
(6) \=-170.3735886°
\"=139.2549598°
(6) \=-170.3735885°
N'=139.2549598°

These last values do not change within seven decimal places in subse-
quent iterations.

Using equation (20-49) with the final value of A,,

¢"=arcsin {[(1-0.00676866) cos 99.092° sin 40° —sin 99.092°
cos 40° sin (- 170.3735885°)J/(1 - 0.00676866
sin? 40°)'/2)
=1.4692784°
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From equation (20-37), using 139.2549598° in place of 18° in th« exam-
ple for calculation of Fourier constants,

S=-0.0535730
From equations (20-43a) and (20-44a),

2 =6,378,206.4 x {0.0175544891 x 139.2549598° + (- 0.0010979)
sin (2x 139.2549598°) + (- 0.0000013) sin (4 x 139.25495¢°°)
—[-0.0535730/(0.97983122 + (- 0.0535730)?)"/7] In tan (45°
+1.4692784°/2))

=15,607,700.94 m

y=6,378,206.4x {0.1434410 sin 139.2549598° +0.0000285
sin (3x 139.2549598°) +[0.9798312/(0.9798312
+(—-0.0535730)2)'/2] In tan (45° + 1.4692784°/2)}

=760,636.33 m

For calculation of positions along the groundtrack for a circular or-
bit, these examples use the same basic Landsat parameters as those in
the preceding example, except that $=40° S. lat. on the daylight
(descending) part of the orbit. To find X, ¢, is first calculated from
equation (20-57):

&, =(-40°)-arcsin {6,378,206.4 x 0.00676866 sin (-40°) cos
(-40°)/[7,294,690.0 x (1 - 0.00676866 sin? (-40°))*/?]
= —40° —(-0.1672042°)
= —39.8327958°

From equation (20-56),

N'=aresin [sin (-39.8327958°)/sin 99.092°]
= —40.4436361°

To adjust for quadrant, since the satellite is traveling south, subtract
from Y2 x 360°:
N'=180° - (-40.4436361°)
=220.4436361°

Using equation (20-59), replacing (L ++) with X’ for the circular orbit,

A=arctan [(cos 99.092° sin 220.4436361°)/cos 220.4436361°]
~(18/251)x 220.4436361° + 107.36°
=arctan [0.1025077/( - 0.7610445)] + 91.5512930°
=83.8800995°

Since the denominator of the argument for arctan is negat've, add
180°, but 360° must also be subtracted to place \ between +180° and
—180°:

A =83.8800995° + 180° — 360°
-96.1199005°
96°07'11.64" W. long.
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If \ is given instead, with the above \ used in the example, equations
(20-19) and (20-46) are iterated together, with X in place of (L +v) in
the latter for the circular orbit. The technique is the same as that used
previously for solving (20-8) and (20-9) in the forward spherical exam-
ple. See also the discussion for the corresponding spherical ground-
track example, using equations (20-19) and (20-9), near the end of the
inverse example. Since the formulas for the circular orbit ar< the same
for ellipsoid or sphere for this particular calculation, the various itera-
tions are not shown here. With A= -96.1199005°, X\’ is found to be
220.4436361°. To find the corresponding ¢ from equation (20-61), a
trial ¢ =arcsin (sin 99.092° sin 220.4436361°)= —39.8327748° is in-
serted:

¢ =arcsin (sin 99.092° sin 220.4436361°)
+ arcsin {6,378,206.4 x 0.00676866 sin (—39.832795¢°)
cos (—39.8327958°)/[7,294,690.0 x (1 - 0.00676866
sin? (- 39.8327958°))12]
= -39.9998234°

Substituting - 39.9998234° in place of —39.8327958° in the same equa-
tion, a new value of ¢ is obtained:

¢ =—39.9999998°

With the next iteration,
¢ = —40.0000000°

which does not change to seven decimal places. Thus,
¢=40° S. lat.

SPACE OBLIQUE MERCATOR (ELLIPSOID)-INVERSE EQUATIONS
(SEE P. 207-210)

This example is limited to the circular Landsat orbit, using the
parameters of the forward example.

Inversing forward example:

Given: Clarke 1866 ellipsoid: @=6,378,206.4 m
¢*=0.00676866
Landsat orbit:  ¢=92.092°
P,/P,=18/251
R,=17,294,690.0 m
Path=15 (thus \,=107.36° as in
forward example)
Point: x=15,607,700.94 m
¥="760,636.33 m
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Find: ¢, A

All constants J, W, Q, T, A., B,, and C,, as calculated in the forward
example, must be calculated or otherwise provided for use for inverse
calculations.

To find \" from equation (20-68a) by iteration, the procedure is iden-
tical to that given for (20-15) in the inverse spherical example, except
for the use of different constants. For the initial \" =x/aB,,

N'=15,607,700.94/(6,378,206.4 x 0.0175544891)
=139.3965968°

Using equation (20-37) to find S for this value of \’,

S=(18/251)x 1.0 sin 99.092° cos 139.3965968° x[(1 +0.0133745
sin? 139.3965968°)/(1 +0.0133334 sin? 139.3965968°)(1
+0.0066446 sin* 139.3965968°)]*/2

=-0.0536874

Inserting these values into (20-68a),

N =(15,607,700.94/6,378,206.4 + (- 0.0536874/0.9798312)
x (760,636.33/6,378,206.4) - (- 0.0010979) sin (2
x 139.3965968°) (- 0.0000013) sin (4 x 139.3965968°)
—(~0.0536874/0.9798312) x [0.1434410 sin 139.3965968°
+0.0000285 sin (3 x 139.3965968°)]}/0.0175544891
=189.2539963°

Substituting this new trial value of \" into (20-37) for a new S, then
both into (20-68a), the next trial value is

N'=139.2549663°

and the fourth trial value is
N'=139.2549597°

The fifth trial value is
N'=139.2549598°

which does not change with another iteration to seven decimal places.
Therefore, this is the final value of \". The corresponding S last
calculated from (20-37) using this value of N is —0.0535730. Using
equation (20-69a),

In tan (45° +¢"/2)=[1 +(~0.0535730)%/0.97983127]/2
x[760,636.33/6,378,206.4 - 0.1434410 sin
139.2549598° —0.0000285 sin (3 x 139.2549598°)]

=0.0256466
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tan (45° + ¢"/2) = 00256466
=1.0259783
45° + ¢"/2 =arctan 1.0259783
=45.7346392°
¢"=2x(45.7346392° - 45°)
=1.4692784°

Using equations (20-65), (20-64), and (20-63) in order,

U=0.00676866 cos? 99.092°/(1 -0.00676866)
=0.0001702
V={[1-sin? 1.4692784°/(1 -0.00676866)] cos 99.092°
sin 139.2549598° —sin 99.092° sin 1.4692784°
x[(1+0.0066446 sin? 139.2549598°) x (1 —sin? 1.46927°4°)
-0.0001702 sin? 1.4692784°]/2)/
[1-sin? 1.4692784° (1+0.0001702)]
= ~0.1285013
A.=arctan (-0.1285013/cos 139.2549598°)
=arctan [-0.1285013/(-0.7576215)]
=9.6264115°

Since the denominator of the argument for arctan is negative, and the
numerator is negative, subtract 180°:

A\.=9.6264115° -180°
= -170.3735885°

Using equation (20-62), with \" in place of (L ++) for the circlar orbit,

A= -170.3735885° — (18/251) x 189.2549598° + 107.36°
= ~73.0000000°
=73° W. long.

Using equation (20-66),

¢ =arctan {[tan 189.2549598° cos (-170.3735885°)
—cos 99.092° sin (-170.3735885°))/[(1 - 0.00676866)
sin 99.092°]
=40.0000000°
=40° W. lat.

VAN DER GRINTEN (SPHERE)-FORWARD EQUATIONS (SEE P. 214)

Given: Radius of sphere: R=1.0 unit
Central meridian: \,=85° W. long.
Point: ¢=50° S. lat.
A=160° W. long.
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Find: «, y
From equations (21-6), (21-3), (21-4), (21-5), and (21-6a) in o-der,

6=aresin |2x(-50°)/180°|

=arcsin 0.5555556
=33.7489886°
=%2|180°/[(-160°)—(-85°)]-[(-160°)-(-85°))/180°|
=Y | —2.4000000 (- 0.4166667)|
=0.9916667

G =cos 33.7489886°/(sin 33.7489886° + cos 33.7489886° - 1)
=2.1483315

P=2.1483315x(2/sin 33.7489886° — 1)
=5.5856618

Q=0.99166672+2.1483315=3.1317342
From equation (21-1),

x=-1x1.0x{0.9916667 x(2.1483315-5.5856618%)
+[0.9916667%x (2.1483315 - 5.5856618%)
—(5.58566182+0.9916667%) x(2.14833152-5. 5856618’)]” 3/
(5.5856618%+0.9916667>)
= —1.1954154 units

taking the initial ”—" sign because (\ —\,) is negative. Note that r is not
converted to 180° here, since there is no angle in degrees to offset it.
From equation (21-2),

y=—mx1.0x{5.5856618x3.1317342—-0.9916667
x[(0.9916667*+1)x(5.58566182+0.99166672)
—3.1317342%'2}/(5.58566182+0.9916667)
= —0.9960733 units, taking the initial ”-" sign because ¢ is
negative.

VAN DER GRINTEN (SPHERE)-INVERSE EQUATIONS (SEE P. 214-216)

Inversing forward example:
Given: Radius of sphere: R=1.0 unit
Central meridian: X\,=85° W. long.
Point: %= -1.1954154 units
y=—0.9960733 unit

Find: ¢, A
Using equations (21-9) through (21-19) in order,

=-1.1954154/(wx1.0)
=-0.3805125
Y=-0.9960733/(xx1.0)
=-0.3170600
¢,=—0.3170600x[1+(—0.3805125)*+(—0.3170600)"]
=-0.3948401
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¢;=—0.3948401-2x(—0.3170600)*+(—0.3805125)*
=-0.4511044

¢s=—2x(—0.3948401)+1+2 x(—0.3170600)*
+[(—0.3805125)*+(—0.3170600)*]

=2.0509147

d=(—0.3170600)%/2.0509147 +[2x(—0.4511044)*/2.0507147*

—9%(—0.3948401)x(—0.4511044)/2.05091472)/27

=0.0341124

a,=[—0.3948401—(—0.4511044)*/(3x2.0509147))/2.0500147
=-0.2086455
m,=2x%(0.2086455/3)"*
=0.5274409
6,=(1/3) arccos [3x0.0341124/(—0.2086455 % 0.5274409)]

=(1/3) arccos (—0.9299322)

=52.8080831°

=-180°x[—0.5274409 x cos (52.8080831 °+60 °)
—(—0.4511044)/(3x2.0509147)]

=-50°=50° S. lat., taking the initial “—" sign because y is
negative.

A=180°x{(—0.3805125)*+(—0.3170600)*—1+
[1+2x((—0.3805125)*—(—0.3170600)%)
+((—0.3805125)*+(—0.3170600)*)2]'/2 }/
[2x(—0.3805125)]+(—85°)

=-160°=160° W. long.

SINUSOIDAL (SPHERE)-FORWARD EQUATIONS (SEE P. 222)

Given: Radius of sphere: R=1.0 unit
Central meridian: X\,=90° W. long.
Point: ¢=50° 8. lat.
A=T75° W. long.

Find:z, 9, b k, ¢, @
From equations (22-1) through (22-5) in order,

2=1.0x[-75°-(-90°)]x cos (-50°)x x/180°
=0.1682814 unit

y=1.0x(-50°)x x/180°
= ~0.8726646 unit

h={1+[-75°-(-90°)]x(x/180°)*x sin? (- 50°)}*/?
=1.0199119

k=1.0

6'=arcsin (1/1.0199119)
=T8.6597719°

w=2 arctan |Y2[ - 75° —(-90°)] x (x/180°) x sin (-50°)|
=11.4523842°
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SINUSOIDAL (SPHERE)- INVERSE EQUATIONS (SEE P. 222)

Inversing forward example:

Given: Radius of sphere: R=1.0 unit
Central meridian: \,=90° W. long.
Point: 2=0.1682814 unit
y=—0.8726646 unit

Find: ¢, A
From equations (22-6) and (22-7),
¢=(-0.8726646/1.0) x 180°/=
= —49.9999985°
=50° S. lat. rounding off.
A= —90° +[0.1682814/(1.0 x cos (- 49.9999985°)] x 180°/x
= -75.0000007°
=75° W. long.
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NOTES FOR NUMERICAL EXAMPLES






APPENDIX B

USE OF MAP PROJECTIONS BY U.S. GEOLOGICAL SURVEY -SUMMARY
Note: This list is not exhaustive. For further details, see text.

Class, Projection

Cylindrical
Mercator

Transverse Mercator

Universal Transverse Mercator

“Modified Transverse Mercator”
Oblique Mercator

Miller Cylindrical
Equidistant Cylindrical

Conze

Albers Equal-Area Conic
Lambert Conformal Conic

Bipolar Oblique Conic

Conformal
Polyconic
Modified Polyconic

Maps

Northeast Equatorial Pacific

Indonesia (Tectonic)

Other planets and satellites

7' and 15’ quadrang'es for
22 States

North America

1° lat. x 2° long. qusdrangles
of U.S. metric quadrangles and
County maps.

Alaska

Grids in southeast
Alaska

Landsat Satellite Imagery

World

United States and State Index
Maps

United States and sections

7' and 15' quadrang'=s for
32 States

Quadrangles for Puerto Rico,
Virgin Islands, and Samoa

State Base Maps

Quadrangles for International
Map of the World

Other planets and satellites

North America (Geolcic)

Quadrangles for all States

Quadrangles for International
Map of the World

301
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Azimuthal
Orthographic (oblique) ——————__— Pictorial views of Earth
or portions
Stereographic (oblique) —————_— Other planets and satellites
(polar) — Antarctica

Arctic regions
Other planets and satellites
Lambert Azimuthal Equal-Area

(oblique) Pacific Ocean
(polar) Arctic regions (Hydrocarbon
Provinces)

North and South Polar regions
(polar expeditions)
Azimuthal Equidistant (oblique) World
Quadrangles for Guam and

Micronesia
Space
Space Oblique Mercator ——_____ Satellite image mapping
Miscellaneous
Van der Grinten —————________ World (Subsea Mineral

Resources, misc.)
Sinusoidal (interrupted) - ———___ World (Hydrocarbon Provir-es)
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projection, Simple Cylindrical pro-
jection, Transverse Equidistant
Cylindrical projection, Transverse

Mercator projection
D

d’Aiguillion, F 141, 153
Datum 13-16
Debenham, F 144
Deetz, C. H 2
Defense Mapping Ageney ________________ 16
Deformation, maximum angular _23, 24, 27, 96,

103, 202, 210
De Lorgna 167

Distortion of maps
See deformation, maximum angular;
scale

Page
Donald, J.K 180
Direr, A 141
E
Easting, false XI
Egyptian cartographers ________ 141, 153,179
Ellipsoid, Earth takenas _____________ 13-16
eccentricity, symbols _____________ X1, 16
flattening 13, 15, 16
Scale and distortion ______________28-31
Stereographic projection character-
istics 156

See also Clarke 1866 ellipsoid; International
ellipsoid; Latitude, auxiliary;
specific projection

Equal-area projections ___________. 5-6, 19, 39

See also Albers Equal-Area Conie projec-
tion, Cylindrical Equal-Ar-a projec-
tion, Lambert Azimuthal Equal-
Area projection, Sinusoid+l projec-

tion

Equatorial projections _________ 9, 33, 36, 135
Azimuthal Equidistant ______________181
Lambert Azimuthal Equal-Area ______168
Orthographie _________________ 142, 143
Stereographic 154
Equiareal projections 6
Equidistant Conic projection __.____69, 71, 91
Equidistant Cylindrical projection ___89-90, 92,
222, 301

formulas, for sphere _________________ 90
history and features ______________89-90
Equidistant projections _______________ 6, 39

See also Azimuthal Equidistant projection,
Equidistant Conic projection,

Equidistant Cylindrical projection
Equirectangular projection ______________89
Equivalent projections _________________ -6
Eratosthenes 89
ERTS-1 193
Etzlaub, E 43
Europe, map of 156
Extraterrestrial mapping ______________3,17

Lambert Conformal Conic projection __106,
301
Mercator projection __..____ 48-41, 51, 301
Stereographic projection, oblique _156, 302
polar 157, 302
Transverse Mercator projection _______63

F
Flamsteed, J 219
Fourier series ____________ 198, 200. 206, 209

G

Galilean satellites of Jupiter

See Jupiter satellites
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Page
Gall, J 85
Gall's Cylindrical projection ________41, 85, 87
Gauss, C. F 53
Gauss conformal projection ______________ 54
Gauss-Kriiger projection ________________ 54
Geodetic Reference System ___________15,16
Geographia 89
Geologicmaps __________________| 56, 93, 301
Geothermal Map 113
Germain, A 54
Ginsburg, G. A 167
Glareanus 180
Globular projection ________________170, 181
Gnomonic projection _________ 6, 135, 138, 180
Goode, J. P 221
Goode’s Atlas 221
Great circle distance ________________ 34, 146
Greatcirclepaths _____________| 6, 34, 45, 135
Greenwich meridian 11
Grid declination 24
Guam projection __182, 188, 191, 276, 279, 302
H
Harrison, R.E 144
Hassler, F. R 2,123,124
Hatt, P 180
Hawaii, mapsof __________________45,76,95
Hayford, J. F 13
Hayford ellipsoid 15
Heat Capacity Mapping Mission (HCMM)
imagery 76
Hipparchus _______________ 12, 141, 153, 219
Homalographic projections _______________| 6
Homolographic projections ___________| 6, 221
Homolosine projection 221
Hondius, J 219
Horizon aspect of projections, defi-
nition __________________ 33, 135
Hotine, M ______._______73,74,176,78,79,81

Hotine Oblique Mercator (HOM) projection
See Oblique Mercator projection: Hotine
Hydrocarbon Provinces, map of __170, 221, 302

I

Ibn-el-Zarkali 153
Index maps, topographic ____________90, 301
Indicatrix, Tissot’s ____.______ _28-25, 31, 195
Indonesia, mapsof ___________.______ 47, 301
International ellipsoid .__________________56
dimensions 13, 15
length of degreeusing _______________29
use with polar projections ___164, 165, 177,
187

use in Universal Transverse Mercator
projection ___________________64

International Map Committee ___________ 133

International Map of the World (IMW) ____104,
133-134, 156, 301

International Union of Geodesy and

Geophysics (IUGG) ._______ 13, 16
Inverse equations, for auxiliary latitudes _____
18-21
for projections
See specific projection
for transformations ______________ 35, 36
Isometric latitude ___________ 18-19, 226-227
Italy, map of 76
J
Junkins, J. L 194
Jupiter satellites, maps of
Lambert Conformal Conic
projection______________ 104, 106
Mercator projection .____________ 47, 49
reference spheres ________________ 16, 17
Stereographic projection ___._____ 157, 158
K
Kavraisky, V. V 95
Kepler's laws 203
Kriger, L 53
L
Laborde, J. 73, 76, 79
Lallemand, C 133
Lambert,J H . ___ 53, 54, 101, 167

Lambert Azimuthal Equal-Area projection __3,
94, 135, 138, 167-177, 302

coordinates, polar __________________ 177
rectangular ________________ 174,175
features 167-169
formulas, ellipsoid _____ 173-177, 269-273
sphere ______ _-170, 172-173, 267-269
geometric construction _____________170
history 53, 167
usage 170, 181
Lambert Conformal Conic projection _101-109,
113
features 26, 101-103
formulas, ellipsoid _____ 107-109, 250-252
sphere . _______ 107, 107, 248-250
history 53, 101
polar coordinates __________________ 112
usage _________ __3,92,10°-104, 128, 301
in extraterrestrial mapping _.____106

in International Map of the
World 134, 156

in State Plane Coordina‘e System ___3,
56, 58, 60-62, 103, 127
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Page
Lambert’s Cylindrical Equal-Area

projection _______________ 41,94
Lambert's Equal-Area Conic projection ____94

Landsat imagery, Hotine Oblique Mercator
projection ____76, 77, 194, 195, 301
Space Oblique Mercator projection ___193,
194, 195, 198, 203, 209-210, 302
Latitude, authalic _____ 19-20, 22, 98, 173, 176,
227-228
auxiliary _______________16-22, 225-228
See also latitude: Authalic, conformal,
geocentric, isometric, parametric,

reduced
conformal _17, 18-19, 22, 74, 108, 160, 163,
226-226
footpoint 68
geocentric ____16-17, 21, 22, 108, 109, 228
geodetic _______ XII, 7,9, 11-12, 14, 16, 17
length of degrees ______________ 28, 29
scale and distortion ___________ 24, 25
standard
See parallels, standard
See also specific projection
geographic
See latitude, geodetic
isometric _______________ 18-19, 226-227
parametric or reduced _______ 21, 22, 228
“pseudotransformed” _______________ 203
rectifying ____________20-21,22, 188, 228
reduced or parametric ________21, 22, 228
transformed __XII, 33, 35, 67, 74, 113, 199
Lee, L. P 55
Longitude
geodetic _____________ XI1, 17,9, 11-12, 14
length of degree ______________ 28, 29
scale and distortion ___________ 24, 25
See also specific projection
“pseudotransformed” _______________ 203
“satellite-apparent” ________________ 199
transformed __XII, 33, 35, 67, 74, 113, 199
Loritus, H 180
Loxodromes 43, 45
Ludd, W 153
M
Madagascar, mapsof ________________ 78,76
Malaya, maps of 76
Map projections ____________ --1-40, 301-302
See also specific projection
Maps for America 2
Marinus of Tyre 89
Mars, maps of 3
Lambert Conformal Conic
projection ______________ 104, 106
Mercator projection ___________ 47,48
reference ellipsoid _____________ __16, 17

Page

Mars, maps of - Continued
Stereographic projection ____156, 157, 1568

Transverse Mercator projection _______ 63
Maurer, H 40, 180
Meades Ranch, Kans 15
Mercator, G ____ ---43, 44, 180, 219
Mercator, R 153
Mercator Equal-Area projection _______ --219

Mercator projection ___7, 41, 43-52, 74, 87, 101

features 6, 45, 46
formulas, ellipsoid _18, 19, 50-51, 230-231
sphere o 47, 49, 229
history 43-45
Oblique
See Oblique Mercator projection
rectangular coordinates ________._____ 52
Transverse
See Transverse Mercator projection
usage 4, 47,301
in extraterrestrial mapping __48-49, 51
with another standard parallel _________| 51
Mercury, maps of 3
Lambert Conformal Conic
projection ______________ 104, 106
Mercator projection ____________ .47, 48
reference sphere _________________ 16, 17
Stereographic projection ____156, 157, 158
Transverse Mercator projection .._____ 63
Meridian )
central _______________ XI1I, 12, 55, 58-60
See also specific projection
prime 11
Meridian aspect of projection _________ 33, 135
Meridians
See longitude
Meridional aspect of projection _______ 33,135
Metallogenic Map 113
Metric conversion 56

Micronesia, mapping of ____182, 188, 189, 190,
191, 277, 280, 302

Miller, O.M . _______ 85, 87, 111, 113, 156
Miller Cylindrical projection ___________ 85-88
features 85-87
formulas, sphere _________ 87-88 242-243
history 85, 87
rectangular coordinates ______________ 88
use 2, 87,301
Mineral Resources, mapsof _______ _-211, 302
Modified Polyconic projection ___104, 138-184,
156, 301
“Modified Transverse Mercator” projection _69,
71-77, 92, 301
Mollweide projection _______________ 213, 221
Moon, maps of Earth’s 3
Lambert Azimuthal Equal-Area
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Page
Moon, Maps of - Continued
Lambert Conformal Conic pro-
jection . _______.____104, 106
Mercator projection ______________47, 48
referencesphere _________________16,17
Stereographic projection ____________156
N
National Aeronautics and Space Administration
(NASA) 193, 195
National Atlas .___3, 87, 93, 104, 170, 182, 211
National Bureau of Standards ____________| 56
National Geodetic Survey ____________ 16, 188
See also United States Coast and Geodetic
Survey
National Geographic Society _76, 170, 180, 211,
213
National Mapping Program _______________ 2
National Ocean Survey 2
See also United States Coast and Geodetic
Survey
National Oceanic and Atmospheric Adminis-
tration (NOAA) ______________76
New England Datum __________________ 15
New Zealand, mapsof ___________________ 76
Newton-Raphson iteration ___20, 129, 130, 216
Nordisk Virlds Atlas 221
North America, ellipsoid . ___________ 13,16
mapsof ______________ 111, 118, 219, 301
naming 43
North AmericanDatum ______________15,16
Northing, false X1
0

Oblique Conformal Conic projection __111, 113
See also Bipolar Oblique Conic Conformal

projection
Oblique Equidistant Conic projection _____ 114
Oblique Mercator projection _______78-84, 113
features 34, 74-76
formulas, ellipsoid _______ 78-84, 237-242
sphere ______________ 7678, 235-237
history 73-74
Hotine (HOM), formulas __________78-84,
237-242
use, satellite imagery _____76, 77, 194,
195, 301

State Plane Coordinate Sys-
tem ____56, 58, 62, 76, 104

use (otherthanHotine) _______________76
Oblique projections __________ 8,9,25,91,135
Azimuthal Equidistant ______________ 183
Lambert Azimuthal Equal-Area ______ 168
Orthographic _________________143, 144

Stereographic 154

Page
Oblique projections— Continued

transformation __________________ 33, 35
See also Bipolar Obligie Conic Con-
formal projection, Oblique Confor-
mal Conic projection, Oblique
Equidistant Conic projection, Ob-
lique Mercator projection, Space

Oblique Mercator projection

Ordnance Survey 63
Orthographic projection _______ 141-151, 179
coordinates, polar 137
rectangular ________________148-151
features ____________ 135, 141-144, 154
formulas, sphere _______146-147, 258-259
geometric construction ___.__142, 144-146
history 141
usage 144, 302
Orthomorphic projections _________________| 6
P
Pacific Ocean, maps of ____3, 45, 170, 301, 302
Parallels, standard ________X"1, 9, 24, 91, 136
Albers Equal-Area Conic projection _94-95
Lambert Conformal Conic
projection ___________| 60-62, 101, 107
Mercator projection _________________ 51
Stereographic projection _..__________156
Parallels of latitude
See latitude
Perspective projections _._____9, 135, 136, 154
See also Orthographic projection,
Stereographic projection
Plane as basis of projection ____________ 7,8,9

Planets, maps of
See extraterrestrial mappirg

Planisphaerum projection _______________ 153
Plate Carrée 89
Polar azimuthal projections ___.___. 33, 135, 136

Azimuthal Equidistant __139, 181, 182, 187
Lambert Azimuthal Equal-Area __138, 168,

177
Orthographic ______ ___________ 137, 142
Stereographic
See Stereographic projection, Polar
Polyconic projection _______________123-124
features __________________ 9, 91, 124-126
formulas, ellipsoid _____ 129-131, 256-258
sphere ___________ 18%-129, 254-255
geometric construction _____________ 128
history 123-124
modified __________ 104, 133-184, 156, 301
rectangular coordinates _________131-133
use ___________2,3,56,104, 126-128, 301
Postel, G 180
Principio, Md 15
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Page
Progressive Military Grid _______________ 127
Prolated Stereographic projection _____85, 156
Pseudocylindrical projections _______! 9, 39, 219
transformation __________________ 33, 34
See also Sinusoidal projection
Ptolemy, C __________ .-1,12, 89,91, 141, 153
Q
Quadrangles _________. 3, 56, 63, 167, 301, 302
See also State Plane Coordinate System
R
Rand McNally&Co____________ 144, 219, 221
Rechteckige Plattkarte, Die ______________ 89
Rectangular projection __________________ 89
Rectified skew orthomorphic projection ____73
Rectifying latitude _______ _20-21, 22, 188, 228
Rhumb lines 6,43, 45
Robbins’s geodesic inverse ____________ ..189
Rosenmund, M _______________73,74, 76,79
Rowland, J. B 76, 195
Roze, J 153
S
Sanson, N 219
Sanson-Flamsteed projection ____________219
Satellites, imagery from artificial _3, 6, 76, 193,
301, 302
See also Landsat
Satellites, natural, maps of
See Moon, Jupiter, Saturn
Satellite-tracking projections ____________ 193
Saturn satellites, maps of
Mercator projection _______.______ 47, 49
reference spheres ________________ 16, 17
Stereographic projection ________157, 158
Scale error 24
See also scale factor
Scale factor 24, 136
areal 28, 30, 50
calculation 23-31
See also specific projection
Scale of maps 6
See also scale factor
Schmid, E 76
Simple Cylindrical projection _____________89
Simpson’s rule 199, 282
Singular points in conformal projections _____6
Sinusoidal projection ____________34, 219-222
features 9, 220-222
formulas for sphere ________222,297-298

MAP PROJECTIONS USED BY THE USGS

Page
Sinusoidal projection—Continued
history 53, 219
usage 221-222, 302
South America, mapsof __________ -..111, 219
Space map projections _________ 193-210, 302
Space Oblique Conformal Conic projection _193
Space Oblique Mercator projection ______ 3,79,
193-210
features 194-198
formulas, ellipsoid _____. 203-210, 289-295
sphere _______________ 198-202, 281-289
history 193-194
usage _________________76,195 198, 302
Sphere, Earth taken as, scale ani distor-
tion 25-28
formulas for projections
See specific projection
Spheroid, oblate
See ellipsoid
Stabius, J 153
Standard circle 156, 160
Standard parallels
See parallels, standard
State base maps ___________64, 104, 128, 301

State Plane Coordinate System (SPCS)
using Hotine Oblique Mercato~ projec-
tion _____ . __ 56, 58, 62, 76, 104
using Lambert Conformal Ccnic pro-
jection ___3, 56, 58, 60-62. 103, 127
using Transverse Mercator projec-
tion _3, 56, 58-60, 68, 103 104, 127

Stereographic projection _________ T, 158-165
coordinates, polar ___.__________137,165
rectangular 161
features ___________ 6,9, 27, 135 154-156
formulas, ellipsoid _____156, 160, 162-164,
260-267

sphere ____________ 158-160. 259-260

history 153
Polar ___3, 79, 101, 134, 137, 154. 165, 302
Universal 156

See also Stereographic projection:
features; formulas; history

Prolated 85, 156
use —————————e——--156-158 181, 302

in extraterrestrial mapping ___156, 157

Survey of the Coast 2,123
Switzerland, mapsof _____________ 73, 74, 76

T

“Tailor-made” projection .______________ 111
Tectonic maps ______.___3, 47, 56, 93, 113, 301
Theon 153
Thompson, E. H 55
Tissot, A 23
Tobler, W. R 39

“Topographic Mapping Status***” ________ 90
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Page
Topographic maps 25
See also quadrangles
Transformation of graticules __________33-38
See also specific projection
Transverse Equidistant Cylindrical projec-
tion 63
Transverse Mercator projection _17, 33, 53-72,
73,79
features 26, 55, 57
formulas, ellipsoid __54, 55, 67-69, 232-235
sphere ______________| 64, 67, 231-232
history 2, 53-55
“Modified” ____________ 69, 71-72, 92, 301
rectangular coordinates ___________70, 71
Universal (UTM) _56, 63-64, 65, 66, 71, 104,
127, 156, 301
use _______________| 55-64, 113, 127, 301
in State Plane Coordinate
System ________._________8,56,
58-60, 68, 103, 104, 127
Transverse projections ___________| 8,9, 33, 36
See also Transverse Mercator projection
Two-Point Azimuthal projection _________180
Two-Point Equidistant projection ______ --180
U
United Nations (UN) _______________134, 156

United States, maps of ____783, 93, 95, 128, 301
United States Coast and Geodetic Survey _2, 3,

13, 76, 93, 103, 123, 130
United States Standard Datum ___________15
Universal Polar Stereographic projection __156

* U.S.

Page
Universal Transverse Mercator (UTM) pro-
jection
See Transverse Mercator projection,
Universal
v
Vander Grinten, A. J ______________ 211, 213
Van der Grinten projection ________ --211-218
features 211-213
formulas, sphere _______214-216, 295-299
geometric construction _____________ 213
history 2,211
rectangular coordinates _________. 216-218
use 211-213, 302
Vaulx, J. de 153
Venus, maps of, Mercator projection ____47, 48
reference sphere . ________________16,17
w
Washington, D.C., meridian ______________11
Universal Transverse Mercator (UTM)
zone 64
Werner, J 153
West Indies, maps of 76
World, maps of _45, 85, 179, 211, 221, 301, 302
World Geodetic System (WGS) ______ 14,15,16
Wright, E 45
Z
Zenithal Equal-Area projection __________ 167
Zenithal projections ________________ 6,135
Zinger, N. J 95
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