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ABSTRACT

This report summarizes the research conducted on this contract and

previously reported in a number of technical reports, papers presented at

technical meetings, and published papers. The principal goal of the contract

was to explore procedures for improving the modal modeling of structures using

test data and to determine appropriate analytical models based on substructure

experimental data.

In the area of modal modeling using test data, two related research

topics were considered: modal modeling using several independently-acquired

columns of frequency response data, and modal modeling using simultaneous

multi-point excitation. In the area of component mode synthesis modeling, the

emphasis has been on determining the best way to employ complex modes and

residuals. This report presents abstracts of the major publications which have

been previously issued on these topics.
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MULTISHAKER TESi" METHODS

The period of this contract has been a period of great activity on the

topic of multishaker modal testing.	 On the one hand, Vold and his colleagues at

Structural	 Dynamics	 Research Corporation developed a multi-input modal	 estima-

tion	 algorithm	 for	 minicomputers	 (1-3)	 which	 simultaneously	 employs	 several

columns of frequency response function	 (FRF) data.	 On the other hand, Allemang

(4,5) developed a	 simultaneous multi-input method 	 for computing	 (single-input)

columns	 of	 the FRF matrix.	 A combination of the multi-inpl.,t modal	 estimation

algorithm and the Allemang algorithm for using simultaneous uncorrelated multi-
a

ple inputs	 to generate the FRF's required by the modal estimation algorithm has j

led to a great improvement in experimental modal modeling technology.

The	 goals	 of	 the	 present	 contract	 in	 the	 area	 of multishaker	 test'

tt
methods	 are	 along	 lines	 similar	 to	 the work	 of	 Vold	 and	 Allemang	 mentioned

above.	 However,	 on	 the	 topic	 of modal	 modeling	 using	 several	 independently-
s

acquired columns of FRF data,	 research has followed a different path than that

r; taken	 by	 Vold.	 In	 Report	 CAR	 81-1	 (6)	 and	 Report	 CAR	 82-1	 (7)	 the	 "Asher

; method" and a generalization of the Asher method called the "minimum coincident

response	 method"	 were	 employed	 to	 determine	 real	 modes	 and	 undamped	 natural

frequencies from independently-acquired columns of FRF data. 	 An application of

r:LAltishaker	 random	 testing	 is	 also	 included	 in	 Report	 CAR	 81-1.	 The	 modal

tuning work was also 	 summarized	 in	 a	 paper presented	 at	 the March	 1982	 SDRC i

` Troubleshooting	 oftware User's Conference (8).	 Abstracts of these reports and9	 p l
papers are presented below.

A parameter estimation algorithm which employs multi-input excitation

directly has been recently developed and is described fully in Report CAR 83-1`.
it

F ; (9).	 A	 paper summarizing	 this	 work	 has	 been	 submitted	 to	 the AIAA	 Dynamics M<.

Specialists Conferer .=. ce (10).	 With this algorithm it is not necessary to gener-
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ate columns of the FRF matrix prior to entering a modal parameter estimation

algorithm as is done in O e Allemang/Vold procedure,
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COMPONENT MODE SYNTHESIS

One of the ultimate goals of refined modal test methods is to produce

math models of structural components which are sufficiently accurate to employ

in synthesizing system models from component models. Component mode synthesis
it

t4	 research has been conducted concurrently with the modal test research summarized

L '._	 above in order to clarify which component modal parameters are ultimately needed

for synthesizing accurate system models.

Chung developed both Hamiltonian and state vector methods of component

,.	 mode synthesis.	 These are described in his Ph.D. dissertation (11).	 The

Hamiltonian formulation is summarized in References 12 and 13, while the state

vector formulation is summarised in Reference 14. A more simplified state

`, ector component mode synthesis formulation has been developed by Howsman. The

work completed! to date has been submitted as a technical paper to the

AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Materials Conference

(15). Work on this topic is being continued under NASA Contract NAS8-35338.
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ABSTRACTS OF REPORTS AND TECHNICAL. PAPERS

Modal Analysis Using a Fourier Analyzer, Curve-Fitting, and Modal Tuning

, tKeT•	 01

This report proposes a modal testing procedure including the following

tasks:	 (1)	 data acquisition and FFT processing,	 (2)	 curve-fitting of single

t
"P

FRF's,	 (3)	 modal	 tuning,	 (4)	 mathematical	 modeling,	 and/or	 (5)	 computer-

controlled testing.	 Steps	 (1) through (3) are described in the report.

P '
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Figure 1.	 Two-Input, Single-Output System

The multishaker procedure for acquiring	 FRF's which was proposed	 by r

Allemang	 (4,5)	 is	 outlined	 in	 the	 report.	 For	 example,	 for	 the	 two-input,

single-output system shown in Fig.	 1, the Fourier-transformed response 	 Y(f)	 is

= a given by

Y(f)	 H 1 (f) X 1 (f) + H 2 (f) X2 (f) + N(f)	 (1) :p
.x

r
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The	 least squares estiriates for Hyl	 and	 Hy? are giver. by

X2'21 1
,G 1'22 ' 2'21 r Yl

-
G..1622

Hyl	 G11'22 -	 '121 ^ G il 1	 - y 1 ?2

1 - ^1 G12

'11'y2 -	 '12'y1 2
Hy2	

'11'22 -	 '
G
12^ '22 1	 -	 a122

5

(2)

where

Gyl = VX1
	 G11 = X

1 X 1	 etc.	 (3)

andY12 is the ordinary coherrrcP functicn between inputs X 1 (f) and X2(f).

Figure 2. Dual-Beam with Modified Ends and Modified

Shaker Attachment

C WD I
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Dual-shaker uncorrelated	 random excitation was	 applied	 to the dual-

beam test structure of Fig. 2.	 The time histories from two force cells and four

accelerometers were tape recorded and subsequently played bacl 	 through a HP5420A

Fourier analyzer to compute the necessary auto- and cross-spectra.	 Although 25

records were averaged in computing these auto- and cross-spectra, the computed

FRF's were not of acceptable quality. 	 This appears to be attributable to the

a use of tape-recorded data, which did not permit proper time correlation of the

records	 input	 to	 the	 two-channel	 analyzer.	 Because	 of	 the	 failure	 of	 this

attempt to employ multiple shakers, efforts were renewed to secure funding for a

16-channel	 modal	 analysis	 system,	 and	 subsequent	 testing	 was	 confined	 to

2-channel	 processing of single-shaker FRF's.

The curve-fitting of individual FRF's was performed in order to obtain

M the best analytical	 fit of the FRF's	 over limited frequency ranges. 	 The MDOF

' curve-fit algorithm (GE command) in the MODAL PLUS program of Structural Dynam-

ics Research Corporation was employed.

In order	 to	 provide	 a	 rational	 procedure	 for	 incorporating multiple

FRF's	 in	 the determination	 of system modal	 parameters,	 two modal	 tuning algo-

rithms were employed, the "Asher method" of Ref. 	 16 and the "minimum coincident

}
response method" 	 of Ref.	 17.	 In the Asher method, approximations to the true

undamped natural frequencies of a system are obtained by computing the roots of

the determinant of the reel part of the FRF matrix.

4	 det GC(fc )] = 0	 (4)

Its

This method requires a square FRF matrix, i.e. as many exciters as responses.

'	 The minimum coincident response method 	 "*i	 p	 permits the number of response DOF s to

exceed the number of excitation DOF's by selecting frequencies and force

f-	 distributions which minimize an error function defined as the sum of the squares4
of the coincident (real) responses, i.e.

J
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c	 Y R	 Y R	 X T [Ca T [Cl X	 (5)

The basic algorithms are presented in Ref. (6), while applications are presented

in Ref. (7).

Modal Vector Estimation for Closel -S aced-Fre uenc Modes Ref. 7

The purpose of this report is to discuss the difficulty of obtaining

accurate mode shapes of systems with closely-spaced Natural frequencies, and to

present examples of the use of modal tuning to obtain modal parameters of such
i

systems by simultaneously using several FRF's, Table 1 illustrates the fact

that while frequencies of a system are only moderately sensitive to system,

changes, the mode, shapes are extremely sensitive to small stiffness or mass

changes.

s

m'	 fl	 f2
	 ^2	 +

r.

4

1.000 1.0000

1.000 1.0000
1.000

1.0002
-1.0000

1.0000 •1.6192

1.001 0.9994
1.6176

1.0016
1.0000

1.0000 -10.1099
1.010 0.9910

10.0098
1.0011 1.0000

1.0000 -100.1109
1.100 A .9100

91.0100
1.0010

1.0000

t

R

'e

i

1
i

o J

{

¢^ 1

"

Table 1. Effect of Subsystem Properties on System Modes
,-^	 of a Weakly Coupled 2DOF System	 i
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Thus, while modal tuning methods which are based on multiple FRF's can be

expected to produce improved frequency estimates, it may be expected that mode

shapes will be more difficult to determine accurately.

Complete derivations of the Asher method and the minimum coincident

response method are given in the report. Both methods were applied to determine

the frequencies and mode shapes of the weakly-coupled beam structure of Fig. 2.

The effect of analysis bandwidth on modes and frequencies was studied for the

two modes at 118.80 Hz and 119.03 Hz.

The conclusions drawn from this report are (1) that the standard Asher

method and minimum coincident response method are rational procedures for

employing multiple FRF's for identifying modal parameters, and (2) that lightly-

coupled systems will always lead to greet difficulty in obtaining "accurate"

mode shapes because of the extreme sensitivity of the mode shapes to system

parameters.

1^	 . ^
.	 '

Modal Vector Estimation for Closely-Spaced-Frequency Modes (Ref. 8)
14

This paper, presented at the GE/CAE International Troubleshooting

Software User's Conference, summarizes the work presented in Refs. 6 and 7 and

abstracted above.	 t	 ,
F

f

i

+t

A Generalized Multiple=Input, Multiple-Ou
ri-'t̂ m Re T s. O)

out Modal Parameter Estimation Algo-

	

A new multi-shaker modal analysis algorithm for estimation of modal	 i

	coefficients has been developed in a thesis (Ref: 9) and summarized in a techni-
	 ^r

cal paper (Ref. 10). The algorithm permits multiple inputs (exciter locations)
'X

	as well as multiple outputs (accelerometer locations) to be employed. The
	 4

excitation may be simultaneous random or simultaneous swept sine. free decay
a	 F

responses may also be used. The algorithm is an extension of an algorithm

o
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published by Coppolino in Ref. 18. Measurement stations are designated as

"independent" or "depend,^nt," wiva; the number of independent static. -.1s being

equal to the number of modes to be identified in a given frequency range, Modal

vectors, which are assumed to be complex, are defined at both independent and

dependent degrees of freedom.

{	 The algorithm is based on the theory that a linear structure may be

accurately described over a limited frequency range be a finite number of

degrees of fr-edom. The frequency domain equation relating output acceleration

to input forces is

{()}	 rf{(^) { F(w )}	 (6)

It may be rewritten in a form which identifies independent and dependent outputs

(accelerations) and input forces as follows.

{ x i } = [oi l rA(w)7 r^i ] T [Did]{f(w)}	 (7a)

{Xd } = ["hdJ r^i 7 `I { xi }	 (7b)

	Equation (7a) is transformed into an equation for the	 n	 independent

coordinates

	

[M i :l { x i (w)} -+ [ C i ] {x i (w)} + [K 1 1 {xi( w)}	 rgi d7 {fm)	 (8)

Accelerations are determined at k frequencies (k > n) and assembled into a
4

matrix

[Ki((0)] = [Yw l ) 1 x i ( w2 ) {	 ( x i ( wk )]	 (9)

Equation (8) may be rewritten for each of the k frequencies and assembled in

the form
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Ckil

[Cy CKia .. [D i6 3 ]	 Cx i l	 (10)

If]

where txi(w)) and (x i (w)) a^e obtained from the measured {X I (w )I by the

equations

{xi (w)}	 A x i (^)}	 (11a)

{x i ( )	 ^ 2 {ii i (w)	 (11b)

Equation (10) is solved in a least-squares manner for EC i 1 and CKi1 , which

are used to form an eigenequation whose solution gives the natural frequency and

damping estimates and the Gai l portion of the modal vectors. Equation (7b) is

used to recover Pit,; Rd portion of the modal vectors.

'imu"tIon studies were performed to test the applicability and

accuracy of the algorithm.	 In one study, randon forces were applied and

accelerations measured at all 8 DOF's of an 8 DOF system having

closely-spaced-frequency modes in the range 5 Hz to 15 Hz. The analysis range

was taken as 0 Hz to 1024 Hz with 256 data points, for a delta frequency of 4

Hz. All modes were identified to extremely high accuracy in spite of the fact

that there were seven natural frequencies between two of the data points. No

noise was introduced into the data used in this study.

More realistic simulation studies were carried out on a 9 DOF system

using 1, 4, 5, and 8 inputs; 5 and 8 independent DOF's; pure random and

random-phased swept sine excitation; and noise ratios of 0%, 10%, and 209.

Table 2 shows the frequencies, damping factors, and mode shapes of the 9 DOF

simulation model. Tables 3 and 4 show the identified modes corresponding to the

5 Hz, 5.5 Hz and 5.55 Hz modes. Eight independent DOF's were employed. Note

that the single exciter in Table 3 was unable to identify the 5 Hz mode because

t



w

of its location near a "node line" of the 5 Hz mode, while the 4-exciter results

in Table 4 show acceptable frequencies and made shapes for all three modes.
M;

t
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Mode No. Frequency (Hz) Damping

1 5.000 0.010
2 5.250 0.010
3 5.500 0.010
4 5.550 0.010
5 5.900 0.010
6 6.200 0.010
7 6.600 0.010
8 15.000 0.010
9 25.000 0.010

DOf

MODE
1 2 3 4 5 6 7 8

1 .010 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1010 1.000 1.000 -1.000 -1.000 -1.000 -1.000

3 1.000 L000 -.010 -1.000 -1.000 -1.000 1.000 1.000

4 1.000 1.000 -1.000 -.010 1.000 1.000 -1.000 -1.000

5 1.000 -1.000 -1.000 1.000 .010 -1.000 -1.000 1.000

6 1.000 -1.000 -1.000 1.000 -1.000 .010 1.000 -1.000

7 1.00t; -1.000 1.000 -1.000 -1.000 1.000 -,010 1.000

8 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000 -.010

9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mk

+R

,' t

.t,

i

f

r

IAX
`T

Table 2. System Frequencies, Damping Factors, and Mode Shapes
(defined at 8 DOF only)F'
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No mode corresponding to 5 Hz was identified

Undamped Natural Frequency = .549815E+01
Damping = .922684"E-02

Coordinate Coefficient

1 .100000E+01 0

2 .961693E+00 .154095E-01

3 -.111589E+00 -.243182E+00

4 -.953094E+00 -.189219E-01

5 -.866331E+00 .201760E+00

6 -.874222E+00 .225422E+00

• 7 .852086E+00 -.247594E+00

8 .852671E+00 -.202553E+00

y^

Undamped 'Natural	 Frequency = .556574E+01

Damping = .125684E-01

Coordinate Coefficient

1 .969798E+00 .718633E-02

2 .100000E+01 0

3 -.601954E+00 .299185E+00

4 -.306331E-01 .115159E+00

5 .663191E+00 -.152995E+00

6 .655221E+00 -.180120E+00

7 -.574999E+00 .258952E+00

` 8 -.641525E+00 .178636E+00

G , ♦ 	 'V

t	
=." Force at DOF No.	 1	 Noise Ratio = 10%

Table 3. Single-Exciter Results
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Damping = .979900E-02

Coordinate Coefficient
1 -.995591E+00 .353937E-01
2 -.963411E+00 .140834E-01
3 -..193424E-01 =.112736E-01
4 .9872.21E+00 .125764E-01
5 .952534E+00 -.241061E-01
6 .10000"-7+01 0
7 -.995252E+00 -.490844E-01
a -.960618E+00 -.491432E-01

i

a

4„

z^

L,

E

r

a

d F-

Undamped Natural Frequency = .55d82.5E+01
Damping = .943557E-02

Coordinate Coefficient
1 .993486E+00 -.268232E-01
2 .100000E+01 0
3 -.973952E+00 .261893E-02
4 -.554699E-01 .508959E-02
5 .852456E+00 -.601461E-02
6 .903672E+00 -.198642E-02
7 -.925322E+00 -.291869E-01
8 -.90532,2E+00 -.464260E-01

t

r

pd

k
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g

t

t

Undamped Natural Frequency = .499588E+01

Damping = .101836E-01

Coordinate Coefficient
1 .180826E-01 .648560E-02
2 .989374E+00 .422064E-03
3 .984854E+00 .001076E-02
4 .100000E+01 0
5 .975333E+00 .364940E-02
6 .987170E+00 -.791027E-02
7 .977551E+00 .291086E-02
8 .975623E+00 -.161876E-03

Undamped Natural Frequency = .549835E+01

Forces at DOF's 1,2,3 and 4	 Noise Ratio 10%

Table 4. Four-Exciter Results

}

r	 I



,Oft%L iL

IAX

9
4

4	 8

1	 4	 8

4%9/6

sj

4	 8

.68 %

r
4	 8

r.}

Cx

Freguen Mfrror
0.3 " *-Single Run

•-Three Averages
,-0 24

0.18-
F	 R

0,12.

0.06"

0.00
1	 4

r.

Damping Error
25."

201"

15.-

10.-

5.-

0A,
1	 4

Modal Vector Error
50.-

40.-

a

ORIGINAL rh,02' jj
OF POOR QUAL"	

15

1	 4	 a	 1	 -a	 A

5,9 Hz.	 5.5 Hz.	 5.55 Hz.

Figure 3. Modal Parameter Errors Versus Number of Shakers
for Single Runs and for 3-Run Average
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The results in Tables 3 and 4 were obtained from single "runs."

Averaging may be employed to improve the parameter (frequency, damping, mode

shape) estimates. Figure 3 illustrates the results of single runs with random

excitation and the results of three "runs" averaged.

This algorithm meets the primary objective of this NASA contract,

which was to produce an improved method for multi-shaker modal testing.

Although testing of this algorithm is still in progress, it is believed that it

will prove to be a valuable addition to the multi-input modal identification

software which is currently in great demand in the modal testing industry.

Application and Experimental !Determination of Substr ucture Coupling for Damped
Structural Systems Ref. 11

The principal topic covered in this thesis is the development of a

generalized substructure coupling procedure for a complex structure with general 	 z

viscous damping. A Hamiltonian first-order differential equation formulation is 	 ^..'w$

employed in order to permit complex substructure modes to be employed easily,

since complex modes are required for systems with non-proportional damping. The
t

substructure coupling procedure makes use of an incomplete set of complex normal

modes in conjunction with complex residual attachment modes to account for the
A

contribution of neglected higher-frequency modes.	 Aiso discussed in the

dissertation are experimental procedures for identifying the substructure data

by modal testing.	 j

The first-order substructure, or component, equations of motion are

ay + by = f	 (12)
f

^. µF	 !
^E

1i

R.:

ra
h
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where p is the momentum coordinate vector and x 	 is the displacement

coordinate vector.	 Complex free-interface modes are determined by the

homogeneous equation

	

4+by=0	 (14)

where y is taken to have the form

y 

= *eXt =
	

p eat
-	

^x	
(15)

Only the case of symmetric damping matrix, 	 c, is considered.	 Then

orthogonality and normalization of the modes leads to the equations

,YT a Y = I , TT b T _ -A	 (16)

The x and p-partitions of rigid-body modes are defined by the

equations

kx	 0 , km-1p = 0	 (17)

r—	 a	 :....,...:
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Convergence is improved by supplementing a truncated set of complex modes with

attachment modes, which are defined by the equation

-1
-m	 0	 p	 0	 (18)

0	 k
0x	 a	 fx

t-
,z

X	 After extensive manipulation of the attachment modes, the substructure response

is approximated by a truncated set of complex modes, Yn, and a set of residual

attachment modes, gym , by the equation

ya 
= Tnzn + O

mzm 	(19)

where ya is the approximated response.

When two or more substructures are combined to form a synthesized

structure, compatability equations must be enforced at substructure interfaces.

These take the form of

E 
I 
X = 0	 (20)

where X is the union of substructure displacement vectors. Compatibility is

also imposed on the velocity vector X, and the combined compatibility equation

is written in the form

-E l M- 1	0	 P	 0

(21)

0	 El	 X	 0

or

EY = 0
	

(22)
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Finally, the Y coordinates are expressed in terms of modal coordi-

nates through

1 x

Y = Ti Z	 (23)

and the Z coordinates expressed in terms of independent system coordinates

through

Z = SU	 (24)

Ti may contain either truncated sets of substructure complex modes or truncated

sets of complex modes plus sets of attachment modes. Details of the derivation

of the coupling matrix S for these cases are given in the dissertation. In

the former case the final coupled system equation of notion is

(STS) ll - ( STAS) U = -T11 (25)

The Hamiltonian approach outlined above employs the displacement

vector and momentum vector as coordinates in the first-order equations of

motion. The dissertation also briefly describes a state-vector approach to

substructure coupling, but this is further developed in Ref. (14), which is

abstracted below.

Finally, the dissertation contains a chapter on System Identification

which~ describes a procedure for employing experimentally-identified frequencies,

damping factors and mode shapes of lightly-damped systems to obtain substructure

equations of motion transformed to modal coordinates, i.e. to form TTaT and

TTbT .

i

-	 5

t'

A number of simulation studies are presented in the dissertation.	
t

Table 5 presents a portion of the results of one of these studies. It shows the

improvement in convergence resulting from the use of residual attachment modes.
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In summary, the following conclusions were reached in this disserta-

tion:

k

k

1. "A generalized first-order Hamiltonian formulation and a generalized

state vector representation have been developed for carrying out

component mode synthesis for viscously-damped systems. The component

modes are complex for systems with non-proportional damping. Both the

Hamiltonian approach and the state vector approaO produce the same

results. However, the state vector representation is more efficient

since it avoids the inversion of the mass matrix, ')he state vector

formulation is also easier to implement when experimental data is

employed."

2. "Complex residual attachment modes, which are based on static ap-

proximation of the neglected higher modes, have been defined and

derived. The inclusion of complex residual modes substantially

improves the approximation to the system eigenvalues and eigenvectors

in comparison with a solution based on truncated sets of component

normal modes only."

3. "The state vector formulation of substructure coupling has been

employed to identify the system chararteristics 
of" 

a complex structure

using data from simulated substructure tests. 	 A multiple-degree-

of-freedom curve-fit algorithm is used to obtain the poles and resi-

dues of the substructures, and light damping assumptions are employed

in estimating the complex mode shapes, generalized mass, damping and

stiffness of the substructures.	 The system results obtained by

substructure coupling show that excellent results can be obtained for

lightly damped systems."
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The following recommendations were offered:

"As a result of the work described in this dissertation, further

research on the identification of the generalized mass, damping and stiff-

ness for damped systems with complex modes is necessary in order tr provide

a more general and accurate system analysis technique via component mode

synthesis. The effect of frequency resolution on the response functions

needs to be investigated. A multiple-reference-multiple-degree-of-freedom
T.

curve fitting algorithm which curve-fits several frequency response

functions simultaneously should be studied in order to improve the est"ma-

tion of modal parameters. Finally, the relationship between the residual

attachment modes described in Chapter 3 and frequency response function

<,.	 residuals obtained in conjunction with multiple-degrees-of .-freedom curve

fitting needs to be elucidated."

A Generalized &,bstructure Coupling Procedure for Dames Systems (Ref. 12)

This paper summarizes the portions of the dissertation, (Ref, 11),

discussed above which deal with substructure coupling using truncated sets of

complex mods . Beam and truss examples are given in the paper. The following

conclusions are reached in the paper:

"A generalized substructure coupling procedure for systems with

damping has been presented. Lagrange multipliers have been employed to

incorporate the substructure interface compatibility constraints into the

first-order system equations of motion. Complex free-interface substruc-

ture modes have been employed in two example problems. Although the
E	

coupling method is shown to produce the correct system modes if all sub-

structure modes are retained, the results obtained for truncated systems

{	 are not very accurate. Since this is most likely a consequence of using

n
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free-interface modes, further research is needed to explore convergence

when other types of substructure modes are employed in the generalized

substructure coupling procedure."

State Vector Formulation of Substructure Coupling for Damped Systems (Re ,'. 14

This paper expands on the brief introduction to state vector formu-

lation in Ref. 11. In the state vector formulation the substructure equation of

motion still has the form of Eq. 12, but a, b, g and f are defined by

}	 0	 m	 -m	 0	 v	 0

a .,	 ,	 b -	 ,	 y -	 f	 (26)t

m	 c	 0	 k	 x	 fx

where v is the velocity vector. Free interface complex substructure modes are

again determined by Eq. (14), where y is now taken to have the form

	

y ^ te xt 	 r	 eat	 (27)

4`x

	

The matrix, ^D m	 of complex residual attachment modes is defined,

and y is again approximated by ya as in Eq. (19). The procedure for defin-

ing complex residual attachment modes requires the computation of all of the

k	 modal parameters of the substructure.

141	 As in the case of the Hamiltonian formulation described above, com-

patibility equations are employed to formulate expressions for the coupling
f

	matrix, S, of Eq. (24)..	 These expressions are presented for the case of

coupling using complete or truncated sets of complex normal „odes and for

1 	 coupling using truncated normal modes plus residual attachment modes. Example:

of these two approaches are

	

pp	 provided in the paper.. Table 6 illustrates the

a

s

r
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results, which show the improved convergence of the method employing residual

attachment modes,

Purely truncated modes	 Truncated modes plus residual
attachment modes

Na=8, N6=6, N t=12	 Na=7, 4=5, Nt=12

e error %	 wd error %	 a error %	 wd error %

-5.31 3.09 0.00 0.00
5.62 2.70 0100 0.00
-0.24 1.42 0.00 0.00
-0.67 6.46 0.00 0.00
-2.85 0.30 0.00 0.00
20.15 5.76 0.05 0.03
-22.87 4.06 -0.11 0.03
20.45 2.19 0.27 0.06
-0.58 11.99 _0:05 0.21
-5.63 0.18 1.23 0.19
54.66 8.08 -5.59 2.01
-31.70 7.76 18.84 19.57

___ --_ --- ._

--- --- ---

Table 6. Frequency and damping errors for a clamped-clamped beam with
non-proportional damping

The conclusions stated in this paper are the following:

	

"A generalized substructure coupling procedure for systems with	 E

damping has been presented. A state vector formulation leading to a

first-order system equation of motion has been developed. Complex residual

attachment modes, which approximate the contribution of the negle;'ted

higher modes, are defined. A new method which employs incomplete complex

normal modes in conjunction with the complex residual modes produces

r 0
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significantly more accurate results than those obtained by using a trun-

cated set of normal modes only. It is observed that the interface gener-

alized coordinates can be eliminated from the final system coordinates by

employing additional constraints on the generalized coordinates of attach-

ment modes."

A Substructure Coupling Procedure Applicable to General Linear Time-Invariant

Dynamic Systems (Ref. 15)

A':though the substructure coupling studies of Refs. 	 11-14 demonstrated

the use of first-order equations of motion, 	 complex modes,	 and residual modes,

they	 were	 subject	 to	 two	 significant	 limitations;	 the	 damping	 matrix	 was

assumed to be symmetric, and all substructure modes were required in forming the

truncated set of complex normal modes and the set of residual attachment modes.

An alternative state vector formulation is derived in this paper, which has been a

submitted	 to	 the	 AIAA/,ASME/ASCE/AHS	 25th	 Structures,	 Structural	 Dynamics	 and

Materials Conference.
.t

The	 coupling	 procedure	 can	 be	 described	 as	 a	 generalized	 component

mode	 synthesis	 technique.	 The equations	 of motion	 for each	 substructure	 are
K

cast	 in	 state	 vector	 form	 to	 facilitate	 the	 formation	 of	 the	 substructure f

eigenproblem.	 If	 nonsymmetries	 exist	 in	 the	 mass,	 damping,	 or	 stiffness`

matrices,	 the	 eigenproblem will	 be	 non-self-adjoint.	 The	 low frequency	 right

hand eigenvectors, along with a set of real 	 attachment modes, are used as the j

Ritz	 expansion	 vectors.	 The	 concept	 of	 interface	 compatibility	 is	 used	 to
4

couple	 the	 substructure	 equations	 of	 motion	 together	 to	 form	 the	 system }

equations of motion. r`

The synthesis technique is	 similar to the method presented in Refer- °r

ence	 1,	 but with	 important differences.	 The attachment modes,	 as	 defined	 in

Reference 1, are combinations of the high frequency modes not explicitly used as

O_.	 i
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Ritz vectors. This implies that the complete substructure eigenproblem must be

solved - a potentially expensive task if the substructure contains a large

number of degrees of freedom. The method to be presented avoids the problem of

solving for the high frequency component modes by defining the attachment modes

to be the static response of the substructure due to unit loads at the substruc-

ture interface. If the contribution of the low frequency component modes is

removed from this static response, the so-called residual attachment modes are

formed. The left-hand (adjoint) eigenvectors of the substructure are required

to form the residual attachment modes.

The coupling procedure has been applied to structural systems contain-

ing combinations of rigid body modes, symmetric non-proportional damping, and

non-symmetric damping matrices. Table 1 contains the eigenvalues obtained from

a substructure synthesis compared to the exact values for the following struc-

ture,

5

component A -----.t.---- component B

Figure 4. Structure Used in Skew-Symmetric Damping Study

k

The damping matrix for each :zubstructure is skew-symmetric, and of the

fo rm
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As can be seen from Table 7, the method presented is very accurate

even when nonsymmetries exist in the defining matrices, and the method of

defining attachment modes is quite efficient from a computational point of view.
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CONCLUSIONS AND RECOMMENDATIONS

Several significant contributions are contained in the reports and

papers prepared under this contract and abstracted above. The principal con-

elusions of this work are:

1. The modal tuning procedures discussed in Refs. 6-8 provide a systematic

procedure for combining modal data based on single-shaker FRF's to determine a
z

system's undamped modes and frequencies.

2. The generalized multi-input, multi-output modal parameter estimation algo -

rithm presented in Refs. 9 and 10 employs response data from several trans-

dur.,,ers, permits excitation at several points and of several types, and is

capable of accurately identifying modal parameters from moderately "noisy" data.

3. Residual attachment modes significantly improve convergence in substructure

coupling of damped systems. The generalized coupling procedure of Ref. 15

represents the culmination of the effort to develop a procedure capable of

employing complex modes and having reasonable convergence properties.

The following recommendations are made for further work:

1. Development of the generalized multi-input, multi-output modal parameter

estimation algorithm of Refs. 9 and 10 should be continued. An effort should be

made to adapt the algorithm to a minicomputer-based modal analysis system, and

the testing of the algorithm should be extended to modal testing of actual

structures.

2. Development of the generalized substructure coupling procedure of Ref. 15

should be continued. A, special effort should be made to determine appropriate

experimental procedures for determining input data required by the method.
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