
M68HCU GRIPPER

CONTROLLER SOFTWARE

A/,_ _'/3 33

by

/odd Wei-Duk Tsai

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

May 1991

CIRSSE REPORT #90

(£)Copy,'ight 1991

I}V

Jodi Wei-Duk Tsai

All Rights Reserved

CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

ACKNOWLEDGEMENT viii

ABSTRACT ix

1. Introduction 1

2. Overview 2

2.1 MechanicalAspects 2

2.2 Software Interface 2

2.3 Hardware Interface 2

3. VxWorks Gripper Library 7

3.1 grRegWrite, grRegRead 7

3.1.1 Synopsis 7

3.1.2 Description 7

3.1.3 Return Value 7

3.1.4 Errors 9

3.1.5 See Also 9

3.2 grSrvGrab, grSrvForce, grSrvPo_ 10

3.2.1 Synopsis 10

3.2.2 Description 10

3.2.3 Return Value i0

3.2.4 Errors 10

4. Firmware Software Architecture 11

4.1 Initialization 11

4.1.1 Power Up Initialization (powerUpStart) 11

4.1.2 ACIA Initialization (AClAInit, ONACIA) 11

4.1.3 RAM Initialization (initR.-\M) 13

4.1.4 Hardware Initialization (bwInit) 14

.°.

III

4.1.5 Software Initialization (swlnit) 18

4.2 Comme_nd Processing (processCt_c_l) 18

4.2.1 Register Model 20

4.2.2 Servo Modes (grSrvGrab. grSrvPos, grSrvForce) 22

4.3 Interrupt Level (positionServo,forceServo,grabServo) 24

4.3.1 Grab Servo (grabServo) 24

4.4 Critical Data 26

4.4.1 Floating Point Control Parameters 26

4.4.2 Working Memory of Floating Point Routines 26

4.5 EPROM 27

4.6 Control Loop 27

4.7 Command Processing Real-Time, Constraints 27

4.8 Debugging 28

4.8.1 EPROM Configuration 28

4.8.2 Debug Configuration 28

5. Tutorial 29

5.1 Initializing the Network Daemol, 29

5.2 Creating the 68HCll Buffalo Monitor Window 29

5.3 Constructing an Imakefi[e 31

5.4 Assembling and Downloading 31

6. Tools 32

6.1 rDevLogin - remote device login 32

6.1.1 Synopsis 32

6.1.2 Description 32

6.2 rDevd - remote device daemon 32

6.2.1 Synopsis 32

6.2.2 Description 33

6.3 rDevCmd 33

6.4 a611floatpp 35

6.5 moto2moto 35

6.6 motooffset 36

iV

6.7 installMan 37

6.8 manc 37

6.9 xmanc 37

6.10 Public Domain Utilities 38

6.10.1 68HC11 Assembler 38

6.10.2 int2moto 38

7. Configuration Management 39

7.1 Motivation 39

7.1.1 Complicated Makefiles 39

7.1.2 Working Versions of Files 39

7.2 Imake Configuration Files 40

7.2.1 Files 40

7.2.2 Caveats 47

7.2.3 Bugs 47

7.2.4 See Also 47

7.3 Imakefile 47

7.3.1 VxWorks Library 48

7.3.2 VxWorks Binary 50

7.3.3 UNIX Library 51

7.3.4 UNIX Binary 52

7.3.5 Making subdirectories with no local targets 53

7.3.6 Making subdirectories with local targets 53

7.3.7 Making local targets only 56

7.3.8 Custom rules and depemlencies 56

8. Conclusions 60

LITERATURE CITED 61

LIST OF TABLES

2.1

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.ii

6.1

68HCll Hardware Interface 3

Register Constants 8

Errors 9

Memory Map 14

Interrupt Vector Map with Buffalo monitor 16

Interrupt Vector" Map with gripper controller 16

Command Character Tal)[('. 19

Subroutine Table 19

RS-232 Serial Port Commands 20

Error Codes 20

Registers 21

State Transition Table 24

Bit Representation 25

State Transition Table in Bit Representation 25

Action Table 35

LIST OF FIGURES

2.1

2.2

2.3

4.1

4.2

4.3

4.4

5.1

6.1

6.2

CIRSSE Gripper 3

Configuration 4

Schematic of Pneumatic Piston Assembly 5

Software Architecture 12

Real-Time Clock Error ('aused by Interrupt Overrun 18

Top Level State Transiti_m Diagram 22

Grab Servo Mode State r['ransition Diagram 23

Hardware Configuration 30

Network Connections 34

Software Architecture 36

vii

ACKNOWLEDGEMENT

I would like to thank my mother and fath_r for their support. I would also like to

thank Dr. Robert B. Kelley, my thesis adviser, for his guidance during the various

stages of development.

hi eQ
viii

ABSTRACT

This thesis discusses the development of firmware for the 68HC11 gripper controller.

A general description of the software and hardware interfaces is given. The C li-

brary interface for the gripper is then described followed by a detailed discussion

of the software architecture of the firmwate. A procedure to assemble and down-

load 68HCll programs is presented in th,_ form of a tutorial. The tools used to

implement this environment are then described. Finally, the implementation of the

configuration management scheme used t_, Inanage all CIRSSE software is presented.

ix

CHAPTER 1

Introduction

The objective of this project we_s to produce a low-cost gripper controller for CIRSSE

and attain the following design goals:

• provide an RS-232 command interface.

• implement position feedback control using potentiometers.

• implement force feedback control using strain gauges.

• allow the gripper to "grab" objects using the infrared sensors.

• minimize sampling period (maximize sampling rate) to allow maximum pos-

sible fluctuation in gripper control parameters.

In addition, software tools were cr_,ated for SunOS and VxWorks to provide

an easy to use edit-compile-download-d,'tmg environment for the development of

programs using the 68HCll EVB on a S_I1Lworkstation.

CHAPTER 2

Overview

2.1 Mechanical Aspects

The gripper is shown in Figure 2.1. The gripper has a crossfire infrared sensor

to detect the presence of an object betweet_ the fingers. Potentiometers and strain

gauges allow position and force feedback control to be implemented.

2.2 Software Interface

The top level interface through ttw gripper is through the VxWorks gripper

library on the MV135 68020 processor boards. The actual servoing is accomplished

with the 68HC11 EVB. Communication occurs between the MV135 68020 processor

boards and the 68HCll EVB via an RS232 cable. This configuration is shown in

Figure 2.2.

2.3 Hardware Interface

The CIRSSE gripper is a pneumatically controlled system shown in Figure 2.3.

The pressure is adjusted by writing an 8-bit value to port B of the 68HCll. This

port is connected to a D/A converter outside of the 68HCll evaluation board. The

D/A converter generates a signal that is amplified to control a servo valve. This

effectively controls the rate at which air enters the piston from both sides. Table 2.1

shows the port mapping.

Since the air pressure is fixed at all times, the 8-bit value at the 68HCll port

merely acts as an integral gain. A point ,,xists where the servo valve delivers air at

the same rate to both sides of the piston. The digital output value at this point is

known as Z_r,,sur,. Although the digital o_ltput value may take on the full range of

3

Gripper

crossfiresensor

strain gauges_<

infrared sensor

potentiometers

Figure 2.1" C[RSSE Gripper

fuaction 68HC11'port

position EO

force E1

crossfire sensor C bit 0

air valve' B bit '7-0

Table 2.1: 68HCll l[ardware Interface

VxWorks Host

!
!

It brary,Gripper "
I
I

t. _ a

RS-232 cable

!!Gripper Cont_'oiler Softwar_
o i
b

68HC 11 EVB

Figure 2.2: Configuration

5

I 68HC 11 EVB

t

[8bit D/A -i

air _ _

I- v&lve
piston

Figure 2.3: Schematic of l)ueumatic Piston Assembly

gripper

6

8-bit values, in practice, only very slight perturbations are needed from zj,.,3s_,., in

order to move the fingers of the gripper Io any given position or force setpoint.

The current method used to adjust the pressure is a proportional-integral-

derivative (PID) controller. All parameters may be dynamically adjusted while the

gripper controller is servoing.

CHAPTER 3

VxWorks Gripper Library

The gripper library is a standardized C library interface to the gripper controller.

This allows future changes to be made to the software in the 68HCll without

invalidating the code written at the application level.

The gripper library also isolates the application software from the real-time

constraints of the gripper protocol. This is done by providing the proper interchar-

aeter delay and the intercommand delay when sending commands to the gripper.

3.1 grRegWrite, grRegRead

3.1.1 Synopsis

.... #include <grLib.h>

int grRegWrite(inZ fd,GRREG regNo,double value)

int grRegRead(int fd,GRREG regNo,double *pValue)

3.1.2 Description

These functions read and write to software registers in the 68HCII. In all of

these functions, the argument fd is a file descriptor returned by open (2V) [Sun 88].

The argument regNo refers to one ,ff the constants in Table 3.1. The mathe-

matical representatioas of these registers is given in Table 4.8.

3.1.3 Return Value

These functions return 0 if the call is successful otherwise 1 is returned.

constant

grReg_positionSetPoint

grReg_positionPropGain

grReg_positionDerivGain

grReg_positionIntglGain

grReg_positionIntglMin

grReg_positionInt glMax

grReg_forceSetPoint

grReg_forcePropGain

grReg_forceDerivGain

grReg_foreeIntglGain

grReg._foreelntglMin

grReg_forceIntglMax

grReg_xfireGrabThreshold

7"enJ ¢11"_8

fully open = 0, fully closed = 255

minimum force = 0, maximum force = 255

lowe," bound on the integral of the force error

upper bound on the integral of the force error

for grab mode, if x,,_,o, < zthr,_hota then

force servo, otherwise position servo

grReg_xfireLED

grReg_zeroPressure

grReg_position

grReg_p os it ion Error

grReg_positionErrorPrev

grReg_positionPropTerm

turns crossfire LED on or of[.off = 0, on = 1

digital output value to air valve to

apply zero force

fully open = 0, fully closed = 255

grReg_positionDerivTerm

grReg_positionIntglTerm

grReg_positionIntgl

grReg_positionIntglNext

grReg_positionControl

grReg_positionControlOutput

grReg_force

grReg_forceError

grReg_forceErrorPrev

grReg_forcePropTerm

grReg_forceDerivTerm

grReg_forceInt glTerm

grReg_forceIntgl

grReg_forceIntglNext

grReg..forceControl

grReg_forceControlOutput

grReg..xfireSensor

grReg_realTime

min tbrce = 0, max force = 255

min intensity = 0 maximum intensity = 255

time in seconds, roils over back to zero every

65534_(8.19,nittis_o,_d,) = 536.739,_o,_ds

Table 3.1: Register Constants

9

constant remarks

S.grLib_VxWorks_IiNVARG An invalid argument was given when

calling the function.

S_grLib_VxWorks_INVCMD

S..grLib_VxWo rks_BAD_P,.ES P ONSE

S..grLib_VxWorks_TIMEO UT

EBADF

ENOTTY

An invalid command was given. This

indicates that garbage was sent

over the RS232 serial line,

probably a hardware fault.

The response from the 68HCll could

not be recognized because the

68HC11 EVB was not initialized

properly

There was no response from the

68HCll EVB.

ioctl(2) failed because the

stream was not associated with a

valid file descriptor.

ioctl(2) FIONREAD request

does not apply to kind of object
associated with the file stream.

EINVAL The request or arguments to ioctl(2)
were invalid.

EFAULT The Data transfer that occurred

within ioctl(2) resulted in
a read or write to an address

outside of the process' address

space.

Table 3.2: Errors

3.1.4 Errors

The error codes returned are showr_ in Table 3.2.

3.1.5 See Also

In the UNIX man pages, see open (2V), close (2) [Sun 88].

10

3.2 grSrvGrab, grSrvForce, grSrvPos

3.2.1 Synopsis

#include <grLib .h>

int ErSrvGrab(ing fd)

int grSrvPos(int fd)

ing grSrvForce(ing fd)

3.2.2 Description

These functions enable various servo modes. The gripper controller software

in the 68HCll attempts to maintain the position and force set points set by the

grReg(2) commands.

In all these functions, the argument fd is a file descriptor returned by open(2V).

grSrvGrab() enables position mode or servo mode depending on whether

there is an object detected between the fingers of the gripper.

grSrvPos() enables position servo mode and attempts to maintain the posi-

tion.

grSrvForce() enables force servo mode and attempts to maintain the force

set point.

3.2.3 Return Value

These functions return 0 if the call is successful otherwise 1 is returned.

3.2.4 Errors

See Table 3.2.

CHAPTER 4

Firmware Software Architecture

The software for the gripper controller is a simple real-time executive which operates

in three different modes.

grab servo mode servos to the force set point if there is an object detected be-

tween the fingers, otherwise servos to the position set point.

position servo mode servos the gripper to maintain a position set point.

force servo mode servos the gripper to maintain a force set point.

For each section or subsection headi,lg, the relevant subroutine in the gripper

controller source code is indicated in parentheses.

4.1 Initialization

4.1.1 Power Up Initialization (powerUpStart)

Upon power up, the 68HCll EVB 1 starts executing instructions at 0xe000.

The power up startup code sets the OPTION register and TMSK2 register immedi-

ately since these must be set within 64 bus-cycles after reset [Motorola 89, p. 3-8].

After this period expires, some of the bils in these registers become read-only and

may not be set.

4.1.2 ACIA Initialization (ACIAInit, ONACIA)

ACIAInit initializes the ACIA on power up to enable communication via the

RS-232 serial port. ONACIA re-initializes the ACIA after an error.

1The 68HCll EVB uses the MC68HCllAI version of the M68ttCll family

]L

12

Host

..... | _-

=|R5232 _ri_l.. Port *!
| !

Conut_ands Error Stb.tus Codes

68HCll

Bas,_ Level

Interrupt Level

Pressure: Control

I

i

I

T

Position Feedback
L,. Gripper [[ardware

Force Feedback
--J

Figure 4.1: Software Architecture

13

Note that there are two RS-232 serial ports on the M68HCll EVB. The ter-

minal port is connected to the ACIA. The other host port is connected to the SCI

on the M68HCll and is not used [Motorola 86, Figure 6-2].

4.1.3 RAM Initialization (initRAM)

The on-chip RAM space is only 256 bytes. The on-chip EEPROM space is only

512 bytes [Motorola 89, Table 1-1]. Since t he gripper controller software exceeds the

capacity of both on-chip memories, an ex't(,rnal RAM and an external EPROM are

needed.

Two methods were considered in allocating program space to the external

RAM and EPROM.

1. using the external RAM area for uniuitialized data and initialized data; using

the EPROM area for constant data. initialized data, and code.

2. using the RAM area for all code and data.

The first method uses EPROM and RAM space optimally. However, it in-

troduces complexity by requiring a separate section of memory for constant data,

initialized data, and uninitialized data.

The second method treats all code aad data the same and merely copies the

whole contents of the EPROM to the RAM" area and then executes the code residing

in RAM. The primary benefit of this method is that it is trivial to implement at the

expense of wasting some space by needlessly duplicating constant data and code.

The second method is used for this application. The firmware copies itself to

RAM after performing a few required initializations and jumps to the first routine

main in RAM. Note that all jumps and branches prior to the main routine must

use relative addressing since the program is assembled with the origin at the start

of RAM (0xc000) not EPROM (0xe000)..-\ memory map is shown in Table 4.1.

14

address description
0x0000 direct RAM

0xc000 user RAM

gripper controller code gets copied
EPROM and is executed here

0xdf00 top of stack

0xe000 EPROM

initialization copies code and data
to RAM

Table 4.1: Memory Map

4.1.4 Hardware Initialization (hwInit)

During hardware initialization, the following are accomplished.

• crossfire port initialization

• A/D converter register initialization

• interrupt subroutine vector initializa.tion

• real-time interrupt register initialization

• hardware diagnostics

4.1.4.1 Crossfire Port Initialization (hwInitXfire)

The crossfire LED is turned on by writing to bit 0 of the PORTC register. The

port C databus is bi-directional. Each bit in the DDRC register determines whether

the corresponding bit of the databus is either an input or output line [Motorola 89,

p. 7-20]. Thus, proper configuration of the DDRC register requires that bit 0 be

high.

15

4.1.4.2 A/D converter initializatio,a (hwInitADC/ADCInit)

The A/D converter subsystem is initialized by the ADPU and CSEL bits in

the OPTION control register. The A/D charge pump is initially disabled upon reset.

The ADPU bit must be set to one to enable the A/D charge pump [Motorola 89, p.

12-12]. The CSEL bit is set to zero for this application since additional A/D error

is caused by internal noise if the alternate' clock source for the on-chip EEPROM

charge pump is selected during A/D conv_rsion [Motorola 89, p. 12-13].

4.1.4.3 Interrupt Vector Initialization (RTISetISR)

During each of the grab, position, and force servo modes mentioned in Sec-

tion 4, a separate interrupt subroutine is used. These interrupt subroutines are set

with the RTISetISR subroutine.

4.1.4.4 Real-Time Interrupt Initialization (RTIInit)

The real-time interrupt serves three purposes.

• provides periodic activation of the s,,rvo loop to ensure a constant sampling

rate.

• allows a timer to be maintained so that the delay for grab mode can be im-

plemented.

• maintains a real-time clock to determine if the servo loop is executing within

the proper time.

l:tTIInit first sets the tick counter Io zero. The counter is incremented on

every real-time interrupt. This counter is used to calculate the real-time in seconds

and is used to schedule events in grab m_de.

Since the interrupt vector table is located from 0xffd6 to 0xfffi _, the Buffalo

monitor automatically presets the interrupt, vectors. However, these vectors merely

16

address

OxOOc4

OxOOeb

OxOOff

Oxffd6

OxfffO

Oxffff

Table 4.2:

description

Start of Buffalo JMP vector table

JMP RTIInt

End of JMP vector table

Start of Buffalo monitor vector table
0x00eb

End of Buffalo monitor vector table

Interrupt Vector Map with Buffalo monitor

address

0x00c4

0x00eb

0x00ff

0xffd6

0xfff0

0xffff

Table 4.3:

description

Start of unused JMP vector table

JMP RTIInt (still initialized but not used)
End of unused JhIP vector table

Start of gripper controller vector table

RTIInt

End of gripper co_ltroller vector table

Interrupt Vector Map with gripper controller

point to JMP instructions in RAM which jump to the appropriate interrupt handler.

Thus, a JMP instruction to the real-time interrupt handler must be present at the

real-time interrupt address of the Buffalo lllonitor jump table. This configuration is

shown in Table 4.2.

When the Buffalo monitor is remow_d and replaced with the gripper controller

software, the jump table in RAM is no longer necessary since the interrupt vec-

tor table located from 0xffd6 to 0xffff can be set with the appropriate vectors by

initializing the corresponding EPROM locations. The JMP instruction is still harm-

lessly initialized since the gripper controller is never aware of whether it was copied

from EPROM or downloaded via the RS-232 port. This configuration is shown in

Table 4.3.

17

The TFLG2 register is usedto cleartl_eRTIF status bit which is automatically

set at the end of every interrupt [Motorol_ 89,p. 10-12]. The RTI rate is then set

by initializing the lower two bits of the PACTL register.

When real-time interrupt initialization is complete, the interrupts are in a

disabled state. They may be turned on and off with the RTIStart and RTIStop

routines.

A real-time clock is maintained and is displayedasseconds.This parameter, t,

is one of the gripper controller software registers shown in Table 4.8. If the interrupt

handler routine does not execute in time ['or the next interrupt then the real-time

clock here will be off from the actual elaps_d time by some integer factor.

For example, if the interrupt routine takes 10ms to execute and an interrupt

occurs every 8.19ms, the next interrupt will be missed. Therefore the real-time clock

will be slowed by a factor of two. Thus, by merely observing the real-time clock and

using a wristwatch, it is possible to veri_" that real-time interrupts are not being

missed. An example of this type of error is given in Figure 4.2.

4.1.4.5 Hardware Diagnostics (hwInit, hwInitADC)

Hardware diagnostics are performed to ensure that the following features of

the M68HCll EVB are functional:

• A/D conversion

• real-time interrupts

To test the A/D subsystem, a conversion command is output to the ADCTL

register and the CCF flag is then polled to ensure that a conversion complete is

returned at approximately the correct tim_..

To test the real-time interrupt, a sul,r_mtine to set a byte in memory is installed

as an interrupt handler. Proper generati,m of interrupts is verified by checking the

18

real-time interrupts

_40.95

i I

0 10 26.38

start of interrupt routine

I

completion of interrupt routine

Figure 4.2: Real-Time Clock Error Caused by Interrupt Overrun

memory location after enabling and disabling interrupts.

4.1.5 Software Initialization (swInit)

Software initialization consists of all the run-time initialization of various con-

stants used in the controller algorithms. The two goals are to minimize the amount

of information that needs to be updated if parameters are changed and to optimize

performance by computing common sube×l_ressions beforehand.

4.2 Command Processing (processCmd)

Command processing is performed _t the non-interrupt driven level. This level

of execution performs all the command line processing through the RS-232 serial

interface.

First, the software reads a commalt,:l line from the RS-232 serial port. Each

19

offset com/_and letter

0 g

1 p

2 f

3 w

4 r

s

Table 4.4: Command Character Table

offset

0

2

4

6

8

10

process command subroutine

grSrvGrab

grSrvPos

grSrvForce

grReg'Read

grRegWrite

dispGripStat

Table 4.5: Subroutine Table

command consists of a single letter. When a command is received, the command is

parsed by searching the table of letters shown in Table 4.4.

Using the index into this table, a corresponding entry is found in the table of

subroutine addresses shown in Table 4.5. The subroutine is then invoked to execute

the command. The X register points to the current character being parsed. Upon

entry into each of the subroutines invoked, the X register points to the arguments

in the command buffer.

The commands for the gripper controller are shown in Table 4.6. The argument

register in the write register and read register commands refers to one of the

registers in Table 4.8. The regi._terValue parameter is a floating point number.

After processing each command, a line is returned to the host through the

2O

function corn.mand to 63HCll response from 68HCll

grab serve mode g errorCode

position serve mode p errorCode

force serve mode f errorCode

read register r register errorCode register Value

write register w register regi._terValue errorCode

Table 4.6:RS-232 Serial Port Commands

errorCode eT"ror

0 no error

1 invalid argument
2 invalid command

Table 4.7: Error Codes

RS-232 serial port. The errorCode field contains the error status code. The mean-

ing of the errorCode field is shown in Table 4.7. There is another register Value

field returned in response to the read register command. This is a floating point

number.

4.2.1 Register Model

The register model is used to set all of the parameters for the gripper controller

primarily because the control algorithm is expected to change often. Therefore, it is

important that control parameters can be easily added or deleted from the system

without requiring any major changes to tile gripper protocol.

In addition to the PID gains, there ave additional registers representing terms

which must be computed at the end of every sample period. These terms are in-

cluded in order to assist the user in determining the correct gains to be used with

a gripper. The mathematical representations for all these registers are shown in

Table 4.8.

21

register

0

2

3

'4

5

6

'7

8

9

10

11

i2
13

14

I5

16

17

18

19

20

21

22

23

24

control parameter

position set point

position proportional gain

position derivative gain

position integral gain

position integral minimum

position integral maximum
force set point

force proportional gain

force derivative gain

force integral gain

force integrai minimum

force integral maximum

crossfire grab threshold

crossfire grab delay

crossfire LED

zero pressure point

position

position error

previous position error

position proportional term

position derivative term

position integral term

position integral

next position integral

position control

writable

3,as

yes

ves

),as

force proportional term

yes

ves

yes

yes

yes

'Yes

yes

yes

ves

yes

)'as

yes

no

no

no

no

no

no

no

tlo

representation

Psctpnt

Ppga!n

Pdgain

_,igain

Pimin

Pimax

f *etpnt

f pgain

f dgain

f igain

krn_n

krn_x

Xthreshold

Xdelay
.o

_led

Zpre$$_re

Pert "-- p -- Psetpnt

perrprev

Ppterrn "- PpgainPerr

Pd_aln (73err --perrprev)

P dterrn --" ' T "

Piterrn --" PigainPi

Pi

Pinext = Pi + _(Perrprev + pert)

Pctl = Ppterm + Pdterm + PiterrnnO

25 position control output no Po_,t = min(max(p_a + zpr..._, 0), 255)

26 force no f

27 force error no fear = f - f_tp.t

28 previous force error no f.._,._,

29 no

tlO30

31

force derivative term

force integral term

force integrM

next force integral

32

33

expiration time

fp_,_., = f,_oi.f...

fdterm = l.,_°i.(I.,-,'-/.,','p,'.,,)T

fi,e.._ = f.ig.!.ktlO

tlO

tlO

34 force control no fat = fr#,-,_ +fat,,., + fiterm

35 force control output no fo_,, = min(max(f_tt, 0), 255)

36 crossfire sensor I10 X _en$o r

37 no

38

39

real time

grab state

k
Tk..., = k + 7(L-,-. + L r)

_ezpire

tlO
| , • , . ,

tlO

40 grab mask ao

"['able 4.8: Registers

22

Start)

initialization complete

grab servo_ _ _ _grab

osition Servo Mode_

servo

(;o ")rce Servo Mode

Figure 4.3: Top Level State Transition Diagram

4.2.2 Servo Modes (grSrvGrab, grSrvPos, grSrvForce)

The grab, position, and force servo commands initiate calls to grSrvGrab,

grSrvPos, and grSrvForce respectively. All these routines initialize an interrupt

subroutine vector using RTISetISR. This creates three top level states that are

initiated by each command. The top level states for the gripper controller are shown

in Figure 4.3. The gripper controller begins in grab servo mode upon initialization.

Both positionServo and forceServo are similar in that they contain no

additional states. However, the grabServo mode contains substates.

When the gripper controller is in th¢, grab servo state, the gripper will close

whenever an object blocks the crossfire beam between the fingers. This closing can

be delayed a certain period of time. Figure 4.4 shows the different states for grab

servo mode. In both Position IVait and Position Delay states, position servoing is

performed and in the Force state, force servoing is performed.

23

Starl

/_ Position Wait

crossfire beam blocke_/_ -/ sfire beam not blocked

l
crossfire be_tm blocked

timer expired

Figure 4.4: Grab Servo Mode, State Transition Diagram

24

timer

ezpired

c,rossfiTe

blocked

yes

yes no

no

state

position wait

action

position servo

nezt state

,-qgr=b

position waitno no

no no positiondelay position servo position wait

no no force position servo position wait

no yes positionwait start timer position delay

no yes positiondelay position servo position delay

no forceforce

positionwait

force servo

positi'on servo

position servoposition delay

position wait

position wait

position waityes

yes no force position servo position wait

start timer position delayyes yes

yes yes

yes yes

position delay force servo force

force force servo force

Table 4.9: State Transition Table

4.3 Interrupt Level (positionServo,forceServo,grabServo)

The interrupt level refers to the interrupt driven software in the controller, the

interrupt handler code. This level of execution performs the servoing of the fingers.

A periodic interrupt occurs every sampling period T. T is 8.19 milliseconds.

The ADCTL register is configured so that the position, force, and crossfire

sensors are read simultaneously from ports E0, El, and E3 respectively as shown

in Figure 2.1. Conversions are performed on all three channels simultaneously by

setting the SCAN bit to zero and setting the MULT bit to one [Motorola 89, p.

12-14].

4.3.1 Grab Servo (grabServo)

Table 4.9 shows the the grab servo state table. There are two inputs which

cause all state changes. Table 4.11 is derived after substituting the bit representa-

tions in Table 4.10.

The actual implementation of the state transition table uses the first three

25

L ,,

symbol bit representation

no 0

yes i
position wait O0

position delay 01

force 10

position servo O0

force servo 01

start timer 10

Table 4.10: Bit Representation

timer crossfire

ezpired blocked

0 0

0 0

0 0

0 1

0 1

0 1

1 0

1 0"

1 0

1 1

1 1

1 1

state

.S9 ,.ut,

O0

O1

10

oo
O1

io

O0

O1

10

O0

Ol

10

action nezt state

8grab

O0 O0

O0 O0

O0 O0

10 01

oo oi
O1 10

O0 O0

oo " ob
O0 O0

10 O1

01 10

Ol lb

Table 4.11: State Transition "['able in Bit Representation

26

columns of Table 4.11 as an offset into a table which contains the action routine to

be performed and the next state.

4.4 Critical Data

There are two sets of critical data.

• the floating point control parameters written and read by the user via the

write register and read register commands

• the working memory used by the floating point routines

4.4.1 Floating Point Control Parameters

Critical data is inevitably introduced because of the use of floating point con-

trol parameters. There is no atomic instruction which can read or write 3 bytes,

the length of a floating point number. Wh_,n a critical control parameter is set, the

interrupts are masked while the floating point number is being transferred to the

register area used by the interrupt handlers. This prevents the interrupt handler

from using a partially updated floating point parameter. Fortunately, the amount

of critical code is limited to two places irt the software. Thus, masking can be per-

formed without losing any interrupts and without causing any discontinuities in the

servoing.

4.4.2 Working Memory of Floating Point Routines

Critical data also exists in the working memory of the floating point routines,

labeled floatContext in the source co&,. Since one set of floating point routines

are used for both non-interrupt and interrupt driven software, potential problems

arise if both levels of execution are using the same data.

Since the working memory only involves 6 bytes of memory which can be

copied quickly, the real-time interrupt hal lcIler sa:ves the non-interrupt level contents

27

of this memory area before calling the interrupt handler. After the interrupt handler

completes, the non-interrupt level contents is restored and execution resumes.

4.5 EPROM

The gripper controller firmware is designed to replace the Buffalo monitor

firmware at 0x6000. Testing has been simplified by avoiding the use of any pro-

gramming methods which would require the configuring of jumpers.

4.6 Control Loop

The control algorithm is essentially the same for position and force servoing.

Thus, it would have been possible to have one generic control loop subroutine.

However, this would require one of the following time consuming activities:

• indexing to each of the two control structures for each position and force

parameter.

• copying of the control structure to and from the memory area used by the

shared servo loop.

Both indexing and copying memory are time consuming activities for a large

number of registers. Indexing also complicates the code significantly. It was decided

to keep the code and data as simple and a._ fast as possible by keeping the position

and force servo loops separate at the expense of using slightly more memory for

code.

4.7 Command Processing Real-Time Constraints

There is a fundamental linfit imposed on the number of characters which may

be sent to the gripper controller in a c(.xtain period of time. Because the servo

loop must always be executed every 8.19 ms, the non-interrupt level software only

28

executesbetweenthe time the servoloop codehascompleted and the next real-time

interrupt. Since all reads from the RS-232 serial port occur at the non-interrupt

level, there is a possibility that characters may not be read if characters are sent down

too quickly. Thus, in order to guarantee that each character is read by the gripper

controller software, it is necessary to wait at least 20 ms between characters. This

will ensure that the servo loop has completely executed and that the non-interrupt

level software has read the character from the serial port.

In addition to waiting between characters, it takes a minimum of 40ms to

process a command. Thus, there must be at least a 40rns delay before any characters

are sent down to the 68HC11 following any the input of any command.

4.8 Debugging

The gripper controller can be configured for EPROM or downloading via the

RS-232 port. The latter configuration is useful for debugging the software.

4.8.1 EPROM Configuration

The software originally is located all in EPROM. When initialization begins

the initRAM subroutine copies EPROM to RAM. The source file ctl.asm contains

this code.

4.8.2 Debug Configuration

The software is downloaded into RAM at 0xc000. In this configuration,

initRAM must not be called since the software is already relocated and the

EPROM contains the Buffalo monitor. This source file is derived from ctl.asm by

deleting the bsr initRAM instruction. Th is is done automatically by the Imakefile.

CHAPTER 5

Tutorial

A set of software development tools allo_rs the programmer to perform all editing

and debugging on a Sun workstation. These' software development tools work within

emacs and X windows to create an integr;tted edit-compile-debug environment. The

procedure for editing, compiling and debugging is presented in this chapter.

The hardware configuration and the tools needed are shown in Figure 5.1.

This section assumes you are already familiar with UNIX and X windows.

5.1 Initializing the Network Daemon

Before any communication from the Sun workstation to the 68HCll EVB can

begin, a network daemon must first be prcse, nt on one of the 68020 MV135 processor

cards in the VME cage. This network daemon must be present on the same 68020

MV135 processor card that is connected to the 68HCll EVB via an RS232 serial

cable. In the following example, the 68H(' tl EVB must be connected to the lower

serial port (/tyCo/1).

The network daemon is invoked wil h the commands

rlogin vx2.ral.rpi.edu

id < /usr2/testbed/CIRSSE/ins_alled/VxWorks/bin/rDevd.o

rDevInit "/tyCo/l"

at the VxWorks prompt.

5.2 Creating the 68HCll Buffalo Monitor Window

A terminal connection to the 68HC11 Buffalo monitor is started with

3O

Sun workstation

MV135 68020 Processor Boards

/tyCo/1

/tyCo/0]

VME Cage

RS-232 Serial ('able

Emac$

rDevLogin

rDevCmd

Ethernet
*t

Gripper Controller

ttCll EVB J

gripper

Figure 5.1: Hardwa.re Configuration

31

rDevLogin hostname

in any zterm window.

5.3 Constructing an Imakefile

An Imakefile merely lists all the targets and dependencies which need to be

generated. In this case, the [make.file is trivial and only consists of one line.

AllTarget (prog. Y)

5.4 Assembling and Downloading

The resulting program may be compiled and downloaded by issuing the fol-

lowing command.

cm.l_f prog.Y

A listing file named prog.lst is created. Lines with errors are marked with a

letter from A-Z in the first column. Here i., an example.

U 0000 7e O0 O0 main imp

0003 end

main2

0000 main

The U stands for undefined. A complete listing of all error codes is given in

the manual page [Colley 87].

CHAPTER 6

Tools

A variety of tools have been constructed to aid in developing software for the

M68HCll EVB. Thesetoolsprovidesimp]ewaysto assemble,debug,and download

programs.

6.1 rDevLogin - remote device login

6.1.1 Synopsis

rDevLogin hostname

6.1.2 Description

The rDevLogin client redirects terminal input and output to a rDevd server

at the specified hostname. The rDevLogin client attempts to open a connection at

port 8200 of hostname. Using the select(2), read(2), and write(2) system calls,

a full duplex connection is implemented [S,m 88].

6.2 rDevd - remote device daemon

The network server rDevd runs on VxWorks to create a full-duplex connection

between a socket and a serial port on the [_8020 MV135.

6.2.1 Synopsis

rDevInit deviceName

32

33

6.2.2 Description

The rDevd serverlistens on two p_lblicports and waits for incoming connec-

tions. When it acceptsa connectionon either port, rDevd providesa byte stream

between the client and the devicespecifi,.dby deviceName.

The two ports areusedin order to establishtwo independentpaths to senddata

to the tty device. Oneport, symbolically a_medTELPORT, providesa full-duplex

connection to the tty device. Another port, symbolically named CMDPORT,

provides only a sendpath to the tty device. This allows TELPORT to be usedas

an interactive terminal interface to the try devicewhile CMDPORT can be used

to sendcommandsto the tty device. Figure 6.1 showsthis arrangement.

The select(2) call is usedto look for"incomingconnectionsor data. Any input

event receivedby the rDevd serverresults in two actions.

• an accept action where a connection is estabhshed.

• a transfer action where a block of data is transferred.

The inputs detected by select(2) ate mapped into the actions in Table 6.1.

Both the socket inde.r and destination soc_'et indez columns refer to indices into an

array of file descriptors. When data to be _'_ad appears on one of the file descriptors

in the array, either an accept or transfer _lction is taken using the action column.

The array element pointed to by destin_ttion socket indez is used to store the file

descriptor of the new socket connection accepted or store the file descriptor of the

socket where data is to be written.

6.3 rDevCmd

The network client rDevCmd run,_ on SunOS to send a string to the rDevd

server. Normally a carriage return always [ollows the string unless the -n parameter

is specified.

34

Keyboard

f

rDevLogin rDevCmd

//
TELPORT CMDPORT

t'Devd

RS232 Serial Port

r

MVL35 68020

Figure 6.1: Network Connections

35

socket indez action destination socket indez

TELNETLISTEN accept TELNETMSG

TELNETMSG trans f_.'r DEV

CMDLISTI_N accept CMDMSG

CMDMSG transfer DEV

DEV transfer TELNETMS'G

Table 6.1: A,-tion Table

The client rDevCmd uses the connect(2) system call to initiate a connection

on a socket.

6.4 a611floatpp

The utility aOllfloatpp is a preprocessor which is designed to scan its stan-

dard input for occurrences of floating poillt numbers. If a floating point number

is found and does not occur within a comment, it is expanded to its equivalent 3

byte hexadecimal representation in 68HCl1 assembler. This preprocessor is used in

conjunction with a611 to allow the use of floating point numbers in 68HCll source

code using the floating point routines in the gripper controller software.

6.5 moto2rnoto

The utility moto2moto reformats _lotorola S-records by reading in the orig-

inal S-records and outputting S-records which are no longer than a specified length.

This is needed because the S-records prochlced by the int2moto utility are too long

in length to be read by the Buffalo monitor'.

The program operates by reading in each S-record and storing each in a cell of

a linked list. Each cell of the linked list is then scanned a second time. The object

code for each cell is output until maxBytes are reached. A new S-record is started

and more object code is output until no more object code remains in the cell. This

36

cell

address

length

\

I data

I I _

I I

I I

I I

I.

cell

address

length

data

cell

address

length

,= _NI

I '

I

data

Figure 6.2: Softw,_re Architecture

linked list data structure is depicted in Figure 6.2.

Only S-records of type SO. $1, and S.q can be read by moto2moto.

6.6 motooffset

The utility motooffset offsets the base address of Motorola S-records. This

is necessary for EPROM programmers which require a base address of 0x0000 in

order to read in the S-records correctly.

For example, a program which is normally downloaded and tested in RAM

may be located at 0xc000. The S-records would normally start at 0xc000. If this

37

program is to be downloadedfi'om the EPROM, relocatable startup code must be

added to copy the program from EPRO_I to RAM. The resulting object code is

offset by -0xc000_ to make the first address0x0000so that the object code can be

downloadedproperly into the EPROM burner.

The operation of the motooffset utility is the sameasthe moto2moto utility

except that the offset in the argument list is added to each addressjust before S-

records are output from eachcell.

6.7' installMan

The Bourne shell script installMan installs a manual page in a directory

deriving the manual subdirectoryand exteI_sionfrom the section headerspecifiedin

the manual pageitself. This is a convenientway to install manual pages.

6.8 rnanc

The Bourne shell script manc merely invokes the ordinary UNIX man comm-

mand with the -M ./CIRSSE/installed/nlaa option. This provides a short and easy

way to obtain manual pages.

6.9 xmanc

The Bourne shell script xmanc set._ the MANPATH environment variable

to the ./CIRSSE/installed/man director.v and then invokes the xman command.

This provides a short and easy way to browse through manual pages in X windows.

=the two's complement of 0xc000

38

6.10 Public Domain Utilities

6.10.1 68HCll Assembler

A public domain assembler was used to translate the 68HC11 assembler source

to Iatel formatted object code [Colley 87].

6.10.2 int2moto

Since the 68HCll assembler output._ only Intel formatted object code, the

assembler output must be passed through the int2moto utility to convert it to

Motorola S-record format.

CHAPTER 7

Configuration Management

7.1 Motivation

There are two motivations for developing a configuration management scheme

for software at CIRSSE.

• Makefiles are complicated since a diverse programming environment exists.

• Version control.

7.1.1 Complicated Makefiles

The development of software at C[RSSE presents a very diverse number of

programming environments to the programmer.

For example, the gripper controller software resides on the 68HCll EVB run-

ning the Buffalo monitor. It must also communicate to the outside world through a

cable connected to a 68020 MV135 runniug VxWorks. The 68020 MV135 must also

communicate to a SPARCstation host running SunOS. Software runs on all three of

these platforms.

In addition, there are a number of compilers being considered to implement

code at CIRSSE. Some of these are Sun's cc, GNU gcc, and GNU g++.

AH this diversity complicates the construction of Makefiles. A much simpler

method of constructing Makefiles has be,,n developed.

7.1.2 Working Versions of Files

Version control is designed to make, sure that working pieces of code are not

lost while experimenting with new add ons to the code. This is accomplished by

integrating SCCS into the configuration ma.nagement scheme.

:_(.j

4O

7.2 Imake Configuration Files

In order to make the task of system maintenance as easy as possible, imake

has been used to minimize the amount of information necessary to perform all the

necessary maintenance tasks. Imake also greatly simplifies the task of specifying

rules and dependencies. Instead of designing and maintaining a separate Makefile

in each directory which may" require information such as common paths to be dupli-

cated in each Makefile, a much shorter Im_kefile is specified. This Imakefile consists

of cpp macro calls and ordinary make rules, definitions, or dependencies. The abil-

ity of macro expansion allows [makefile :,."to be several times shorter than Makefile's

by isolating all configuration management details from the application programmer.

Configuration management schemes using imake also enable code to be de-

veloped either entirely within a single directory, distributed amongst several users

or both without going through the hassle of" updating duplicated configuration man-

agement related information in each Makefile.

In this configuration management scheme, there is only one [makefile per di-

rectory. This lmakefile may be copied directly into the project directory and used

as is without any modification. This greatly reduces the amount of effort required

for maintenance of the Makefile _ in an e,_vironment where software is not only be-

ing developed in separate directories own,_d by several different users but is also

available in a project directory which is ,,s,_d for shared public access.

7.2.1 Files

There are several #inclu,le files. The #include files are separated so that

different parts of the system can be added or deleted easily as needs change or if

new softwaa'e or hardware is added to th,. system.

• Imake.rules specifies aU the generic t,des.

41

• Project.tmpl specifies all the project dependent information such as directory

specifics.

• genclass.tmpl specifies all the rules for producing container classes using the

GNU libg++ class-generation facifity.

• LaTeX.tmpl specifies all the LaTeX rules and definitions.

• UNIX.trnpl specifies all the UNIX related rules and definitions.

• VxWorks.tmpl specifies all the VxWorks related rules and definitions.

• M68HC11.tmpl specifies all the M68|[Cll related rules and definitions.

• Imake.tmpl specifies all the rules and definitions common to every Imakefile.

7.2.1.1 Imake.rules

MakeSubdirs(subdirs) is a macro to descend the directories in the subdirs

argument and extract an Imakefile and run make to create a Makefile. Make is

then invoked using the same targets passed fi'om the parent make.

addClean(targets) is a macro to _,ld the list of files specified by targets to

the list of files to be cleaned when perfornfing make clean.

manInstall(manlist) is a macro ro install man pages. The cpp C prepro-

cessor is used on these man pages betbre actually installing them. This allows

preprocessor directives such as _:include to be used to included shared text be-

tween man pages to avoid unnecessary dul,lication. The argument rnanlist is a list

of man pages, ie. manInstall(ls.man sed.lnan)

manSo(solinks,manpage) is a macro to create man pages which are sourced

to a common manual page. All example of this is the strings (3) set of UNIX

functions. The argument solin_:s is a list ot" man pages to be sourced to a common

manual page. The argument manpage is t l_e name of the sourced manual page, ie.

42

manSo(strcpy.manstrdup.man,strings.man). The appropriate sectionis determined

by the sectionfield usedin the .TH headerof the file manpage.

installFile(flags,file,dir) is a genet'i,: installation macro to invoke the install

utility with the given flags to install the file specified by file into the specified

directory dir. Note that only one file may be specified, ie. file may not be a list of

files. When using installFile, absolute paths should be avoided since these make

the Imakefile dependent on where the source tree is located.

AllTarget(targets) is a macro to cause all targets to be built. Note that

targets can be a list as well as an individual target.

LintTarget(incs,srcs) is a macro to run the lint processor on all C source

files specified by srcs. Incs is a list of a ll #include files that are necessary for

compilation. The incs argument is necessary in order for the rule to generate the

appropriate dependencies.

7.2.1.2 Project.tmpl

Project.tmpl contains all the directory specific information. This information

normally varies fl'om project to project.

The make variable PROJDII:t is the official project directory.

It is recommended that relative paths be used to reference any local configura-

tion files so that programs can be moved to and from PROJDIR without changing

any Imakefiles.

INSTALLDIR is the installation di_',:ctory used to install all programs, scripts,

and other target files.

CONFIGDIR is the corlfiguratiozt directory used to store all configuration

management related files. These are all the' files necessary to create Imakefiles.

43

7.2.1.3 UNIX.tmpl

UNL¥.trnpl contains all the UNIX specific rules.

UNIXBinTarget(target,inclist.objlist) is a macro to link a group of cc

object files specified by objlist into one executable. Explicit rules are not necessary

to compile .c files into .o files. This is tM<en care of by the implicit suffix rules in

/usr/include/make/default.mk. Inclist is a list of #include files for the C sources.

Their presence is necessary for a propel" dependency. Target is the name of the

executable file.

UNIXBinCCCTarget(target,inclist,objlist) is a macro which is the same

as UNIXBinTarget except that objlist is the name of a group of g++ object files

to be compiled into one executable.

UNIXLibTarget(target,inclist,objlist) is a macro which is the same as

UNIXBinTarget except that target is the name of a library archive (.a) instead of

an executable. The object files in obflist are combined to form the library archive

specified by target.

UNIXBinInstall(binary) is a macro to install a UNIX binary executable.

UNIXLibInstall(library) is a macro to install a UNIX library archive.

UNIXHInstall(include) is a ma(r(, to install the #include file specified by

include.

UNIXShInstall(script) is a macro to install a UNIX script.

7.2.1.4 VxWorks.tmpl

VxWorksBinTarget(target,inclist,objlist) is a macro to generate the rule

to link the list of object files specified by ob.flist and to generate the proper #include

dependencies from the #include files specilied by inclist.

VxWorksLibTarget(target,inclist,objlist) is a macro which is exactly

the same as VxWorksBinTarget. Its ptlrpose is to logically separate object files

44

used as libraries from those object files which actually use those libraries.

Note that for either VxWorksBinTarget or VxWorksLibTarget, target

must never be a file in objlist. This would create a circular dependency which would

cause make to fail. To create a single object file from a single C file just leave the

objlist argument empty.

For example, VxWorksBinTarget(singleTarget.o, singleTargetlnc.h,),

will create single Target. o from single Ta_'v_ t. c.

VxWorksBinlnstall(binary) is _Lmacro to install the object file specified

by binary. Note that binary can only be a single file.

VxWorksLibInstall(library) is a lnacro to install the object file specified

by library. Note that library can only be a single file.

VxWorksHInstall(include) is a nlacro to install the #include file specified

by include. Note that include can only be a single file.

VxWorksShImstall(script) is a macro to install a VxWorks script.

7.2.1.5 M68HCll.tmpl

M68HCIi.tmpl contains macros, rules and definitions to generate Makefile's

for the 68HCll attached to one of the serb_[ports on the MV135 running VxWorks.

There are several macros in M68HCll.tmyl which are used only for constructing

other macros within M68HC11.tmpl they should NOT be used any other way. These

macros are M68HCllasmToObj, M68HCllobjToX, and M68HCllXToY.

These macros are used only to construct the implicit rules necessary to generate

downloadable Motorola S-records for the 6,SHCll Buffalo monitor.

M68HCllBinInstall(XFile) is _ macro to install a Motorola S-record ob-

ject file (.X). Note that there are implicil suffix rules for generating .X files.

M68HC11Clean(base) is a ma,'ro to add base.obj, base.lst, base.X, and

base. Y to the list of targets to be cleaned. Note that base is a basename such as

45

"hello", not "hello.c'. Note that there max be more than one base in the argument,

ie. M68HCllClean(basel base2).

M68HCllWindow() is a macro to open an xterm (1) window which in-

vokes rDevLogin (1) to connect xterm (1) to the 68HCll EVB Buffalo monitor.

The window may be created with the COlmnand cmkmf Window.

M68HC11Download(baselist) is a macro to download the .Y files specified

in baselist to the 68HCll EVB. Note that ghe names in baselist should not contain

.Y. This extension is automatically added. The downloading can be accomplished

by the command cmkmf Download.

7.2.1.6 LaTeX.tmpl

LaTeX.tmpl defines the implicit sumx rules to generate a .ps or .dvi file from

a LaTeX .tex or xfig .fig file. In addition. LaTeX.tmpl defines macros.

LaTeXClean(base) is a. macro to add base.aux, base.log, and base.dvi to

the list of targets to be cleaned. Note that there may be more than one base in the

argument, ie. LaTeXClean(basel base2).

7.2.1.7 Imake.tmpl

Imake.tmpl is a file that is the wmplate for all Makefile's generated from

ImakefiIe. All Makefile's generated from imake have the following targets:

• clean - clean all targets except installed targets

• lint - run the lint processor on all (I source files

• all - generate all targets, but do not, install anything

• install - generate all targets and in._ta.ll

46

The clean target is useful when the ,,oltrce code is working and installed targets

are all that is needed. This reclaims disk space used by intermediate object files and

other unnecessary files generated during the build.

The lint target is useful for checking _ll the C source code using the lint utility.

The all target is useful for testing if things compile correctly during editing

and an installation is not desired because the code is not finished. Since the all

rule does not perform an3" install, it may fail if some of the local targets depend

on installed targets that have not yet been installed. In other words, it is not

recommended that a make all be done olt +Lwhole directory unless it is certain that

the required targets are installed.

The install target is usefi_l for performing entire rebuilds or making sure that

everything is up to date.

7.2.1.8 Directory Structure

• CIRSSE- Project directory

• CIRSSE/installed - installed files

• CIRSSE/installed/M68HCll - inst_lled 68HCll files

• ClRSSE/installed/VxWorks- instatl_.d VxWorks files

• CIRSSE/installed/UNIX - installed IrNIX files

• CIRSSE/installed/man - installed m+t.nuai pages

• CIRSSE/src/config- configuration nlanagement info

• CIRSSE/src/apps - application (obj_.ct code that calls "library functions"

• CIRSSE/src/lib- libraries

• CIRSSE/src/samples - sample Imakefiles .

47

7".2.2 Caveats

The #include path is set using the -I option. -ICIRSSE/installed/UNIX/h

is added to CPPFLAGS whenever any of" the macros in UNIX.tmpl are used and

-ICIRSSE/installed/VxWorks/h is added to CPPFLAGS whenever any of the Vx-

Works target macros in VzWorks.trnpl are used. Thus, if these macros are not used,

the proper #include path is not added.

7.2.3 Bugs

You cannot mix macros from UNLX.tmpl and VzWorks.tmpl. You must main-

tain UNIX and VxWorks source code in different directories. This bug arises because

there can only be one value of CPPFLAGS per Makefile.

7.2.4 See Also

In UNIX man pages imake (1), cpp (1), man (1), xman (1) [Sun 88,

manual pages] [X11 89, manual pages].

7.3 Imakefile

An Imakefile is merely a collection of cpp macros and make definitions and

rules which are processed by imake to create a Makefile that will generate all the

necessary commands in order to perform certain maintenance on software.

After constructing an Imakefile, it is possible to perform the following com-

mands to do different types of maintenavc_, tasks.

• cmkmf clean - clean all targets exc,,pt installed targets

• cmkmf lint - perform lint checks on all code

• cmkmf all - build all targets but don't install anything

48

• crnkmf install - build and install all targets

Note that care must be taken when using crnkmf all because some targets

may depend on other installed targets which will not be installed by cmkmf all.

This kind of build is only useful if all installed targets needed are already in place.

The easiest way to learn what macro calls to put in Imakefiles to perform

different tasks is to look at some examples. It is easiest to copy an existing [makefile

and edit it.

7.3.1 VxWorks Library

Here is an example of a simple Imok,file to create all the necessary rules and

dependencies for a VxWorks library consisting of only one object module. No .c

files appear anywhere except in the Li.,tTarget macro in the Imakefile because

make automatically checks for .c files automatically from the implicit suffix rules

in/usr/include/make/default.rnk. This ln, akefile can be found in

./src/samptes/gx Works/lib/single/lrnakcfile.

/**/# Comments prefixed by C comment delimiters like this line are

/**/# copied into the Makefile generated by imake.

* Normal comments like this do not show up in the Makefile

*/

AllTarget(sampleSLib.o sampleSLib.v)

VxWorksLibTarget(sampleSLib.o , sampleSLib.h,)

VxWorksLibInstall(sampleSLib.o)

49

VxWorksHInstall(sampleSLib.h)

VxWorksShInstall(sampleSLib.v)

LintTarget(sampleSLib.h , sampleSLib.c)

Note the comma at the end of the s_,cond argument. The third argument is

blank.

If there is more than one object ill,: in a VxWorks library then the [makefile

would look like this. This Imakefile can 1,_ found in

.Isrc/samples/Vz Works/lib/m_Htiple/lma_'efile.

/**/# Comments prefixed by C comment delimiters like this line are

/**/# copied into the Makefile generated by imake.

* Normal comments like this do not

*/

show up in the Makefile

AllTarget (sampleMLib.o sampleMLib, v)

VxWorksLibTarget(sampleMLib.o,sampleMLib.h,functions.o subroutines.o)

VxWorksLibInstall(sampleMLib.o)

VxWorksHlnstall(sampleMLib.h)

VxWorksShInstall(sampleMLib.v)

LintTarget(sampleMLib.h , functions.c subroutines.c)

Note that for VxWorksLibTarget the first argument, the library, must be

unique from any of the object fil_s in the s,_cond argument, ie. the names of the input

and output files must all be unique. This is aecessary to avoid circular dependencies.

5O

7.3.2 VxWorks Binary

The lmakefile for VxWorks binaries is no different from the Irnakefile for

VxWorks libraries. The only functional difference is that the targets are put in a

different directory during installation.

Here is an example of an [makefile to create all the necessary rules and de-

pendencies for a VxWorks binary when dealing with only one object file. No .c

files appear anywhere except in the LintTarget macro in the Imakefile because

make automatically checks for .c files automatically from the implicit suffix rules

in/usr/include/make/de]'ault.mk. This rite can be found in

./src/sarnples/Vx Works/bin/single/Imake.file

/**/# Comments prefixed by C comment delimiters like this line are

/**/# copied into the Makefile generated by imake.

/*

* Normal comments like _his do not show up in the Makefile

*/

AllTarget (sampleSBin.o sampleSBin, v)

VxWorksBinTarget(sampleSBin.o , sampleSBinConst.h sampleSBinDecl.h,

VxWorksBinInstall(sampleSBin.o)

VxWorksHInstall(sampleSBinConst.h)

VxWorksHInstall(sampleSBinDecl.h)

VxWorksShInstall(sampleSBin.v)

LintTarget(sampleSBinConst.h sampleSBinDecl.h , sampleSBin.c)

Note the comma at the end of the _,'cond argument. The third argument is

51

blank.

If there is more than one object file ill the VxWorks binary then the Imakefile

would look like this. This Imakefile can be found in

./src/samples/Vz Works/bin/rn ,dtiple/Imakefile.

/**/# Comments prefixed by C comment delimiters like this line are

/**/# copied into the Makefile generated by imake.

* Normal comments like this do not

*/

show up in the Makefile

AllTarget(sampleMBin.o sampleMBin.v)

VxWorksBinTarget(sampleMBin.o,sampleMBinConst.h sampleMBinDecl.h,main.o io.o)

YxWorksBinInstall(sampleMBin.o)

VxWorksHInstall(sampleMBinConst.h)

VxWorksHInstall(sampleMBinDecl.h)

VxWorksShInstall(sampleMBin.v)

LintTarget(sampleMBinConst.h sampleMBinDecl.h , main.c io.c)

7.3.3 UNIX Library

Here is an example of a simple b,,&efile to create all the necessary rules

and dependencies for a UNIX library, consisting of only one object module. No

.c files appear anywhere except in the Li,,tTarget macro in the [makefile because

make automatically checks for. c files art1 o,natically from the implicit suffax rules in

lust/include/make/default.ink. This file can be found in ./src/samples/UNIXflib/Imakefile

/**/# Comments prefixed by C comment delimiters like this line are

52

/**I# copied into the Makefile generated by imake.

* Normal comments like this do not show up in the Makefile

AllTarget(sampleLib.a)

UNIXLibTarget(sampleLib.a , sampleLib.h , functions.o subroutines.o)

UNIXLibInstall(sampleLib.a)

UNIXHInstall(sampleLib.h)

LintTarget(sampleLib.h , functions.c subroutines.c)

7.3.4 UNIX Binary

Here is an example of aa lmakeJil, to create all the necessary rules and

dependencies for a UNIX binat'y, consisling of only one object module. No .c

files appear anywhere except in the Li,tTarget macro in the [makefile because

make automatically checks for .c files am o,natically from the impficit suffix rules in

lust/include/make/default.ink. This file ca_ be found in ./src/samples/UNIX/bin/Imakefile

/**/# Comments prefixed by C comment delimiters like this line are

/**/# copied into the Makefile generated by imake.

* Normal comments like this do not show up in the Makefile

53

AllTarget (sample)

UNIXBinTarget(sampleBin , sampleConst.h sampleDecl.h

UNIXBinInst all (sampleBin)

UNIXHInst all (sampleConst. h)

UNIXHInst all (sampleDecl, h)

LintTarget(sampleConst.h sampleDecl.h ,

, main.o input.o output.o)

main.c input.c output.c)

7.3.5 Making subdirectories with no local targets

There may be times when there are subdirectories which themselves contain

Imakefiles which generate more targets.

Here is an example of an Imakefile that generates all targets in the subdirec-

tories. This file can be found in ./src/samples/Imakefile.

MakeSubdirs(UNIX VxWorks localTarget custom)

7.3.6 Making subdirectories with local targets

Sometimes local targets exist in a ,livectory in addition to subdirectories. In

this case all the targets in the subdirectoH_,s must be built before the targets in the

local directory are built.

Consider the following directory hi_Tarchy.

Imakefile b/

a/ sampleLocalTarget.c

a:

54

Imakefile sampleSubdirATarget .c

b:

Imakefile sampleLocalTargetB, c

Targets in directories a and b must be built before the local target sampleLo-

calTarget is built.

The [makefile to accomplish this is shown below. This file can be found in

./src/samples flocalTarget/Imakefile

MakeSubdirs(a b)

* This local target is built after

* the subdirectories a, and b are built

* The standard targets for non-leaf directories are

* clean lint all install. They cause all the

* corresponding targets in subdirectories a and b

* to be built.

* The targets clean.local neat.local lint.local

* all.local and install.local are built after the

* subdirectories are built.

*/

AllTarget (sampleLocalTarget)

UNIXBinTarget(sampleLocalTarget,,sampleLocalTarget.o)

55

UNIXBinlnstall(sampleLocalTarget)

The subdirectories beneath the loc_dYarget directory merely contain ordinary

Imakefiles which build targets normally. "['hey are shown below for completeness.

This Imakefile for subdirectory a can be tbu,td in ./src/samplesflocalTarget/a/Imakefile.

/*

* This target is built before the directory above.

* The standard targets for leaf directories are

* clean lint all and install

* Note there are no local include files so the second argument to

* UNIXBinTarget and the first argument to LintTarget are empty.

AllTarget(sampleSubdirATarget)

UNIXBinTarget(sampleSubdirATarget,,sampleSubdirATarget.o)

UNIXBinlnstall(sampleSubdirATarget)

LimtTarget(,sampleSubdirATarget.c)

This [makefile for subdirectory b can I>e found in ./src/samples/localTarget/b/[makefile.

/*

* This target is built before the directory above.

* The standard targets for leaf directories are

* clean lint all and install

56

Note there are no include files so the second argument to

UNIXBinTarget and the first argument to LintTarget are empty.

AllTarget(sampleSubdirBTarget)

UNIXBinTarget(sampleSubdirBTarget,,sampleSubdirBTarget.o)

UNIXBinInstall(sampleSubdirBTarget)

LintTarget(,sampleSubdirBTarget.c)

7.3.7 Making local targets only

When code is being developed in very targe source trees, sometimes only a local

build is desired because traversing the entire tree is too time consuming. For this

reason, there is a way to build only the loced targets in a non-leaf directory. Instead

of using the clean, lint, all, and install targets which compile all the subdirectories

and the local targets, you can use the clea,.local, lint.local, all.local, and install.local

targets to build the targets in tile local dh'ectory only.

Be very cautious when doing this sillce building things in this manner may

cause the subdirectories to be out of date with respect to the local targets. For this

reason, it is recommended that a cmkmf el, an and cmkrnf install be done after you

are finished working on a particular directory to make sure all the targets from that

node down are all up to date.

7.3.8 Custom rules and dependencies

There may be cases where none of" the predefined macros are adequate to

serve your needs. Since imake is merel)" a preprocessor to make, you are free to

57

incorporate whatever make rules and definitions you desire.

Since local targets may have a suffix of .local if the current directory is a

leaf directory, the following make variableshavebeendefined so that the standard

targets may still be defined in a consiste_Ltmanner. They are merely set to the

valuesof the standard targets, but are suffixed by .local if MakeSubdirs 0 appears

at the beginning of the bnakefile.

• CLEAN_TARGET - defined as clean or clean.local

• LINT_TARGET - defined as lint o1" lint.local

• ALL_TARGET- defined as all or all.local

• INSTALL_TARGET - defined as install or install.local

Use relative paths so that your Ima_,,file isn't dependent on where the source

tree is installed. For example, use ../progdir/neatProg instead of

/home/userdir/projdir/progdir/neatProg.

Here is an example of an Imakefile that contains custom rules and dependen-

cies. This file can be found in ./sm/sampl, s/custom/Imakefile.

* A customized Imakefile

,/

AllTarget (a b c)

a:

echo "Making target a"

58

touch a

b:

echo "Making target b"

touch b

C:

echo "Making target c"

touch c

* These make variables are defined as clean all install uninstall and

lint if the macro MakeSubdirs() is NOT used, ie. the current

directory is a leaf directory. Otherwise these make variables are

* defined as clean.local all.local install.local and uninstall.local.

*!

$(CLEAN_TARGET)::

echo "Cleaning targets"

$(ALL_TARGET)::

echo "Making special all targets"

$(INSTALL_TARGET)::

echo "Installing targets"

$ (LINT_TARGET) ::

\

59

echo "Making lint targets"

addClean(a b c)

CHAPTER 8

Conclusions

The VxWorks gripper library functions isolate the application layer from the details

of the gripper protocol so that future chaages in gripper controller parameters do

not cause invalidate large portions of code.

The gripper controller software provides a simple command interface to the

68HCll EVB and enables the gripper to either "grab" objects which come between

the fingers of the gripper or unconditionally servo at a position or force set point.

The software development environmeat enables programs to be compiled and

downloaded with one simple command. This environment can be used to maintain

the gripper controller software and serve as a basis for developing any new software

for the 68HCll EVB.

{;I}

LITERATURE CITED

[Colley 87]

[Motorola 89]

[Motorola 86]

[Sun 88]

[WRS90]

[Xll 89]

68HCI1 Cross-Assembler (Portable) Version 0.1, William C. Colley

III, I987.

M68HC11 Reference Manual, Prentice Hall, Englewood Cliffs, New

Jersey, 1989.

M68HC11EI/B Evaluation Board User's Manual, Motorola Inc.,

1986.

SunOS 4.0 Reference Man_,d, Sun Microsysterns Inc., Mountain

View, California, 1988.

Vx Works Volume 2 versions. 5.00, Wind River Systems Inc.,

Emeryville, California, 1990.

X Window System Versiou 11 Release 4, Massachusetts Institute of

Technology, 1989.

(_L

