
 

    

August 2015 
 

NASA/TM-2015-218795 
 

 
 

 
A Case Study on the Application of a Structured 
Experimental Method for Optimal Parameter 
Design of a Complex Control System 
 
Wilfredo Torres-Pomales 

Langley Research Center, Hampton, Virginia 

 

 

 

 

 

 
 
 



NASA STI Program . . . in Profile 
 

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA scientific and technical information (STI) 
program plays a key part in helping NASA maintain 
this important role. 

 
The NASA STI program operates under the auspices 
of the Agency Chief Information Officer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NTRS Registered and its public interface, the 
NASA Technical Reports Server, thus providing one 
of the largest collections of aeronautical and space 
science STI in the world. Results are published in both 
non-NASA channels and by NASA in the NASA STI 
Report Series, which includes the following report 
types: 

 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase of 
research that present the results of NASA 
Programs and include extensive data or theoretical 
analysis. Includes compilations of significant 
scientific and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations. 
 

• TECHNICAL MEMORANDUM.  
Scientific and technical findings that are 
preliminary or of specialized interest,  
e.g., quick release reports, working  
papers, and bibliographies that contain minimal 
annotation. Does not contain extensive analysis. 
 

• CONTRACTOR REPORT. Scientific and 
technical findings by NASA-sponsored 
contractors and grantees. 

• CONFERENCE PUBLICATION.  
Collected papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or  
co-sponsored by NASA. 
 

• SPECIAL PUBLICATION. Scientific, 
technical, or historical information from NASA 
programs, projects, and missions, often 
concerned with subjects having substantial 
public interest. 
 

• TECHNICAL TRANSLATION.  
English-language translations of foreign 
scientific and technical material pertinent to  
NASA’s mission. 
 

Specialized services also include organizing  
and publishing research results, distributing 
specialized research announcements and feeds, 
providing information desk and personal search 
support, and enabling data exchange services. 

 
For more information about the NASA STI program, 
see the following: 

 
• Access the NASA STI program home page at 

http://www.sti.nasa.gov 
 

• E-mail your question to help@sti.nasa.gov 
 

• Phone the NASA STI Information Desk at   
757-864-9658 
 

• Write to: 
NASA STI Information Desk 
Mail Stop 148 
NASA Langley Research Center 
Hampton, VA 23681-2199 

 



 

National Aeronautics and  
Space Administration 
 
Langley Research Center   
Hampton, Virginia 23681-2199  

    

August 2015 

NASA/TM-2015-218795
 

 
 

 
A Case Study on the Application of a Structured 
Experimental Method for Optimal Parameter 
Design of a Complex Control System 
 
Wilfredo Torres-Pomales 

Langley Research Center, Hampton, Virginia 

 

 
 

 

 

 

 

 



 

 
 

Available from: 
 

NASA STI Program / Mail Stop 148 
NASA Langley Research Center 

Hampton, VA  23681-2199 
Fax: 757-864-6500 

 

Acknowledgments 

I would like to express my gratitude to the reviewers, Mr. Sixto Vazquez and Dr. Kenneth Eure of NASA 
Langley Research Center, and to Professor Resit Unal from Old Dominion University who introduced me 
to the field of Robust Design and Reliability Engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iii 

 

Abstract 

This report documents a case study on the application of 

Reliability Engineering techniques to achieve an optimal balance 

between performance and robustness by tuning the functional 

parameters of a complex non-linear control system.  For complex 

systems with intricate and non-linear patterns of interaction 

between system components, analytical derivation of a 

mathematical model of system performance and robustness in 

terms of functional parameters may not be feasible or cost-

effective.  The demonstrated approach is simple, structured, 

effective, repeatable, and cost and time efficient.  This general 

approach is suitable for a wide range of systems. 
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1.   Introduction 

This report documents a case study on the application of Reliability Engineering techniques to achieve 
an optimal balance between performance and robustness by tuning the functional parameters of a complex 
non-linear control system.  The system of interest is the nonlinear pendulum control system reported by 
Torres-Pomales and Gonzalez [2].  The following subsection examines fundamental systems concepts and 
establishes a general context for the case study. 

1.1.   Background Systems Concepts 

An engineered system is an entity with a purpose that is achieved by the interactions (i.e., relations) of 
its internal components (i.e., sub-entities) with each other and with the external environment (i.e., 
surroundings).  The concept of system is circular and recursive such that, in general, both the environment 
and the components of a system are themselves systems.  A system of interest (SOI) (or system in focus) is 
always contained within a larger super-system (or meta-system) consisting of the SOI and its environment.   

The purpose (i.e., a goal) of an engineered system is defined in terms of the desired (i.e., intended) 
effect on its environment achieved by the flow of matter, energy, or information between the system and 
its environment.  The system purpose is the basis for the specification of the desired functional and quality 
attributes (i.e., properties) of the system.  The purpose of system components is to contribute to 
accomplishing the larger goal of the containing system.  Thus, in general, there is a dependence (i.e., a 
relation) between a system and its environment.  Avizienis et al. define system dependability as “the ability 
to deliver service that can justifiably be trusted” and also “the ability to avoid service failures that are more 
frequent and more severe than is acceptable” [1].  Dependability is a function of criticality, which is a 
measure of the importance (i.e., degree or strength of influence) of a factor in achieving a larger goal.  The 
failure or variability in performance of a high criticality component can have a severe effect on the operation 
of the containing system.  Dependability is also a function of trust (i.e., confidence) in the service delivered 
by a system.  Assurance is the level of confidence in the properties of a system.  This confidence is bounded 
by the various forms of uncertainty (both epistemic and aleatoric) that threaten the ability to achieve and 
ascertain the desired system properties.  Uncertainties can originate internal to the system, or they can be 
external in nature and their effects propagate to the system (for example, at the inputs).  Dependability is 
bounded by the ability to measure uncertainties and predict their effects on goals.  In general, the ability to 
assess uncertainties and their effects diminishes as system complexity (i.e., number and variety of 
components, relations, and states) increases.  The dependability of a component (or sub-system) can be 
seen as a measure of the level of associated risk (i.e., potential for unwanted outcome) with respect to the 
goals of the containing system. 

Goals, dependencies, and uncertainties are interrelated.  In engineering a system, we want to achieve a 
balance between performance (i.e., utility or value with respect to purpose) and robustness (i.e., 
insensitivity to uncertainties and undesired influences) in achieving the goals.  The relation between goals 
and uncertainties is primarily determined by the dependencies defined in the system architecture and is a 
function of system parameters.  Once a system architecture has been specified, we want to determine the 
combination of parameter values that results in the optimal balance between performance and robustness.  
For complex systems with intricate and non-linear patterns of interaction between system components, 
analytical derivation of a mathematical model of system performance and robustness in terms of functional 
parameters may not be feasible or cost-effective.  Even if a model can be derived, closed-form solutions 
may not be possible.  Without effective analytical means to determine the best combination of system 
parameters, the alternative option is experimentation.  However, trial-and-error can be time consuming and 
the results can be unpredictable.  We want a methodical, effective, repeatable, and cost and time efficient 
approach to tune the parameters of a system. 
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1.2.   Overview of Content 

The next section describes the system of interest, including the plant and the controller.  This is followed 
by the system tuning problem statement.  An overview of the Reliability Engineering concepts applied in 
this study is given.  This is followed by a description of the approach used to tune the system.  Detailed 
results are presented.  Conclusions and final remarks end the report. 

 

2.   System Under Study 

Figure 1 is the block diagram of the control system.  The state of the plant X is controlled by the motor 
torque Td.  The system is designed to track the target arm position d while maintaining control of the 
pendulum above the horizontal.  The swing-up problem was not part of this study. 

 

 

 

 

 

 

 

 

  

2.1.   Plant 

The plant consists of a motor which generates a torque , a vertical shaft, a horizontal arm with position 
and speed denoted  and 𝜃̇, and a freely rotating pendulum with position and speed denoted  and 𝜙̇.  For 
this case study, it is assumed that the pendulum is always above the horizontal position, i.e.,  ≤  90o.  Two 
plant models were developed.  The Ideal Plant Model does not include motor dynamics and assumes that 
the desired motor torque equals the applied torque (i.e., Td = ).  The Laboratory Plant Model includes 
model dynamics, friction, and other hard nonlinearities.   

2.1.1.   Ideal Plant Model 

The ideal plant model was derived using the Euler-Lagrange equation.  Variable m denotes the 
pendulum mass, J1 is the moment of inertia of the shaft and arm relative to the shaft’s main axis, J2 denotes 
the moment of inertia of the pendulum with respect to its center of mass, L1 is the length of the arm, L2 is 
the length of the pendulum, and g is the gravitational constant. 

Lab Plant Model 

Controller 

Torque Td 

State X 

Target Arm 

Position d 

Figure 1: High-Level Block Diagram of Control System 
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A𝜃̈ + B𝜙̈ + C = τ           (1) 

D𝜃̈ + E𝜙̈ + F + G  = 0           (2) 

where: 

A = J1 + mL1
2 + (¼) mL2

2sin2() E = J2 + (¼) mL2
2 

B = (½) mL1L2cos() F = - (1/8) mL2
2sin(2)(𝜃̇)2 

C = - (½) mL1L2sin()(𝜙̇)2 + (¼) mL2
2sin(2)(𝜙̇𝜃̇) G = - (½) mgL2sin() 

D = B  

 

2.1.2.   Laboratory Plant Model 

The laboratory plant model was developed starting from the ideal model and adds motor dynamics, 
friction, and some hard nonlinearities. 

Ae𝜃̈ + Be 𝜙̈ + Ce = Td           (3) 

De𝜃̈ + Ee𝜙̈ + Fe + Ge  + He = 0          (4) 

where: 

Ae = A + Jm Ee = E 

Be = B Fe = F 

Ce = C + am𝜃̇ Ge = G 

De = D He = (½) bp𝜙̇ 

 

 

Here Td denotes the torque developed by the motor, Jm denotes the rotational inertia of the motor, and 
am and bp are viscous friction terms.  In addition, the Laboratory Plant Model includes torque saturation 
Td,max, motor angular speed saturation 𝜃̇d,max, static and dynamic motor friction Tstatic and Tdynamic, and input 
torque dead zone Td,dead.  In addition, scaling factors were used to more closely match the response of the 
model to the physical plant.  Table 1 lists the model parameter values. 
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Table 1: Parameter Values for Laboratory Plant Model 

Parameter Value Parameter Value Parameter Value 

J1 0.04699 kg-m2 am 0.01932 N-m-s dAe 1.20 

J2 0.00780 kg-m2 bp 0.01 N-m-s dBe 1.12 

Jm 0.03790 kg-m2 Td,max 9.8 N-m dCe 1.05 

L1 0.36 m 𝜃̇𝑑,𝑚𝑎𝑥  28.27 rad/s dDe 1.12 

L2 0.28 m Tstatic 0.10 N-m dEe 0.98 

m 1.1564 kg Tdynamic 0.08 N-m dFe 1.00 

g 9.8 m/s2 Td,dead 0.147 N-m dGe 1.08 

 dHe 5.50 

 

2.2.   Controller 

Figure 2 illustrates the structure of the system controller.  This is a dual-loop architecture in which the 
inner loop is responsible for the state of the pendulum and the outer loop generates pendulum position 
commands based on the target arm trajectory.   

 

 

 

 

 

 

The system control laws were developed based on a Simplified Plant Model with scaling factors added 
to minimize the modeling error relative to the Laboratory Plant Model.  The equations of the Simplified 
Plant Model are: 

∅̈ =  H̅a+ L̅aTd           (5) 

𝜃̈ =  Q̅a+ R̅aTd           (6) 

where: 

Target Arm 

Position d 

Arm 
Controller 

Pendulum 
Controller 

Target 
Pendulum 

Position d Torque Td 

State  

,  𝜃̇, , ∅̇ 

Figure 2: Block Diagram of System Controller 
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H̅a = -[Aa(Fa + Ga)]/(AaEa - BaDa) Ca = 0 

L̅a = -Da/(AaEa - BaDa) Da = D 

Q̅a = Ba(Fa + Ga)]/(AaEa - BaDa) Ea = J2 + (¼) mL2
2 

R̅a = Ea/(AaEa - BaDa) Fa = - (1/8) mL2
2(𝜃̇)2 

Aa = J1 + mL1
2 Ga = - (½) mgL2() 

Ba = (½) mL1L2  

 

The scaling factors in Table 2 were applied to the Simplified Plant Model. 

Table 2: Scaling Factors for Simplified Plant Model 

Parameter Value Parameter Value 

dAa 1.35 dEa 0.98 

dBa 1.00 dFa 1.05 

dCa 0.00 dGa 1.00 

dDa 1.00 dLa 1.05 

 

2.2.1.   Pendulum Controller 

The pendulum control law used the sliding controller theory presented by Slotine and Li [2].  The 
sliding surface is: 

s = (
d
dt

 +  𝜆)
2

(∫ 𝜙̃ dt
𝑡

0

) = 𝜙̃ + 2λ𝜙̇̃ + 𝜆2 ∫ 𝜙̃dt
𝑡

0

 

where 𝜙̃ = 𝜙 − 𝜙𝑑.  The desired motor torque is: 

Td = (- H̅a + V + W)/ L̅a          (7) 

with: 

V = 𝜙̈𝑑 − 2𝜆𝜙̇̃ − 𝜆2𝜙̃  =  

W = -K sat(s/) 
𝛽 = √L̅u L̅l⁄  
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K = β[F̂+η] + (β-1)|û| F̂ = |H̅u - H̅l| 

û = −H̅a + V  

 

Factors H̅u, H̅l, L̅u, and L̅l are upper (u) and lower (l) bounds for H̅ and L̅ of the Laboratory Plant Model.  
These factors are given by the corresponding factors in the Simplified Plant Model using the scaling factors 
in Table 3.  The tuning parameters for the Pendulum Controller are , , and . 

Table 3: Scaling Factors for Error Bound Models 

Parameter Value Parameter Value 

dAu 1.25 dAl 1.60 

dBu 1.00 dBl 1.00 

dCu 0.00 dCl 0.00 

dDu 1.00 dDl 1.00 

dEu 0.90 dEl 0.98 

dFu 1.30 dFl 0.85 

dGu 1.30 dGl 0.80 

dLu 0.90 dLl 0.90 

 

2.2.2.   Arm Controller 

The arm control law is a PID law (Proportional, Integral, Derivative) with a nonlinear scaling factor to 
map the desired arm angular acceleration to the desired pendulum position. 

𝜙d = [−K1𝜃̇̃ − K2𝜃̃ − K3 ∫ 𝜃̃ dt𝑡

0
] [(1

2
)(L1 L2⁄ )𝜃̇2 + (g/L1)]⁄      (8) 

where 𝜃̃ = 𝜃 − 𝜃𝑑.  The tuning parameters for the Arm Controller are K1, K2, and K3. 

 

3.   System Tuning Problem 

The purpose of the control system is to move the arm following the trajectory given by the Target Arm 
Position d while balancing the pendulum.  Ideally, the arm would perfectly track the target position with 
no effects due to variations in the characteristics of the plant.  In real life, it is not possible to mitigate 
completely the effects of delays and functional coupling between system elements.  Thus, the goal is to 
achieve an optimal balance between arm tracking performance and robustness.  The robustness attribute 
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would account for plant modeling errors and variability in the characteristics of the physical plant.  Note 
that swing-up of the pendulum is not within the scope of this arm-tracking problem.  The applicable system 
initial conditions include those where the pendulum is above the horizontal position ( ≤ 90o) and the 
combined values of the plant state variables , 𝜙̇, , and 𝜃̇ are within the stable region of the control system.  
It is also assumed that deriving a closed-form analytical derivation of optimal parameter settings is not 
feasible. 

 

4.   Reliability Engineering Concepts 

Statistical techniques from the field of Reliability Engineering enable learning about and 
characterization of products and processes by means of systematic experimentation and modeling.  The 
following sections present brief overviews of these topics. 

4.1.   Design of Experiments 

Design of Experiments (DOE) theory is applied in the development of strategies to investigate the 
effects of independent controlled variables on system performance measured at selected variables of interest 
[4] [5].  The system of interest (SOI) is modeled as a black box to study the relations between Control, 
Input Signal, and Noise Factors (i.e., variables, parameters) and the Response Variable, as illustrated in 
Figure 3.  The Noise Factors represent sources of system variability.  In this model, the value of the response 
variable is a function of the Control, Input Signal, and Noise variables: y = f(X, S, Z).  We seek efficient 
experiments that yield insightful knowledge about the system with as few resources as possible.   

 

 

 

 

 

 

  

In a basic experiment, we study the relation between the Control Factors (denoted x1, x2, …, xk) and 
the Response Variable (denoted y) while the Input Signal Factors are given and the Noise Factors are not 
controlled.  An experiment consists of a series of test points in which the Control Factors are assigned 
particular values and the Response is measured.  In a two-level experiment, the Control Factors are tested 
at two different values.  For a quantitative variable, the levels are the extremes of the value range, denoted 
xmax and xmin.  For a qualitative variable, which has discrete values, the two levels are different values in the 
variable’s value set.  A Full Factorial (Experiment) Design consists of all possible combinations of the 
control variables.  This is a complete and systematic study of the design space defined by the Control 
Factors.  A two-level full factorial design consists of 2k test points.  A Fractional Factorial Design includes 
a subset of test points in a Full Factorial Design.  There are 2k-p test points in a two-level fractional factorial 
design, which consists with k-p independently assigned control factors and p confounded factors that are 

Input 
Signal 

Factors S 

Noise 
Factors Z 

Control 
Factors X 

Response 
Variable y  

System of 
Interest 

Figure 3: High-Level Black-box Model of the System of Interest (SOI) 



 

 8 

assigned values as function of the independent control factors.   

In designing experiments, there is a tradeoff between the quality of data and the cost needed to generate 
it.  In general, we want to maximize the accuracy of the characterization made possible by the data (i.e., the 
benefit) while minimizing the number of test points (i.e., the cost).  The simplest way to increase the quality 
of information generated by an experiment is to increase the number of levels of the control factors.  A 
three-level fractional factorial design consists of 3k-p test points.  The obvious problem with this approach 
is that the number of test points (and thus, the cost of the experiment) increases exponentially.  A Central 

Composite Design (CCD) consisting of full or factorial experiment portion, a center portion, and an axial 
portion offers a more favorable tradeoff between quality and size of an experiment [6].  Figure 4 illustrates 
the structure of a two-factor CCD experiment.  The values -1 and +1 are standardized representations of the 
variables values, xmin and xmax, respectively.  In this figure, the four points at the corners of the box are the 
factorial portion of the experiment: (1, 1).  Point (0, 0) is the central portion.  The points at the ends 
of the central axes (0, ) and (, 0) are the axial portion.  Notice that this is five-level experiment with 
the control factors taking values 0, 1, and .  When  = 1, the experiment is called a Face-Centered 

Design and the factors take only three possible values: 0 and 1.  The number of test points in a CCD 
experiment is 2k-p + 2k + 1.   

 

 

 

 

 

 

 

 

 

 

4.2.   Response Modeling 

We want to use the results of an experiment to generate a mathematical model of the relation between 
the control factors x and the response variable y.  Here, we consider only polynomial models.  A two-level 
experiment that tests each factor only at two values contains enough information to build a linear model.  
In addition to the direct relation between each control factor and the response variable, we want to consider 
possible interactions between control factors.  The general expression for a linear polynomial model with 
two-factor interaction terms is: 

y = bo + i bixi + ij bijxixj         (9) 

where 1 ≤ i ≤ k, 1 ≤ j ≤ k, and i  j.  If the variables are assigned values in the 1 as in Figure 4, the 

(-1, +1) (+1, +1) 

(-1, -1) (+1, -1) 

(0, 0) 

(0, +) 

(+, 0) 

(0, -) 

(-, 0) X2 

X1 

Figure 4: Structure of a Central Composite Design (CCD) 



 

 9 

magnitude of the coefficients bi is a measure of the strength of the effect (and hence, importance) of the 
corresponding factor xi or interaction xixj.  Note that higher-order interactions are possible, but as a rule of 
thumb, the strength of interactions decreases as their order (i.e., number of interacting factors) increases.  
For a three-level experiment such as a CCD, the system response can be modeled with a second-order 
polynomial. 

y = bo + i bixi + ij, ij bijxixj + i biixi
2        (10) 

This model can achieve better accuracy for systems with non-linear responses.   

The basic relation between modeling and experiment design is that high-order models can achieve 
better accuracy but require experiments with higher granularity and, thus, higher cost.  We need models 
that have adequate fidelity for the intended use at a reasonable cost.  Analysis of the application and careful 
judgment are required to determine the best combination of experiment design and response model. 

4.3.   Optimal and Robust Parameter Design 

Once a model has been developed, an optimization tool can be used to determine the combination of 
control factors that results in the best system response.  There are three categories of optimization problems: 
the-smaller-the-better, the-larger-the-better, and the-closer-to-nominal-the-better (i.e., as close as possible 
to a target).  The quality of system performance is determined not only on achieving the desired target value 
under ideal conditions, but must also take into accounts the effects of variability in uncontrolled noise 
factors.  To achieve a high quality system design, both the mean and the dispersion in system performance 
must be controlled.  An optimal parameter design achieves the best balance between performance and 
robustness (i.e., insensitivity to variability).  For this, we need a parameter optimization approach that can 
account for the mean value y̅ and deviation y of the system response.  One approach to this is the use of 
Dual Response Surfaces, in which models are developed for the mean response and the standard deviation, 
and an optimizer is used to minimize the deviation with a constraint on the error of the mean response 
relative to the desired target [7].  Another approach described below is to optimize signal-to-noise ratios, 
which is the approach used in the case study reported here. 

To enable a robust parameter design, the experiment must generate data suitable for the characterization 
of the effects of the noise factors z (see Figure 3).  Note that the categorization of factors as either control 
or noise can be a matter of judgment based on the goals of the parameter design activity.  Factors with weak 
effects on the response variable could be classified as noise in order to simplify the design activity by 
focusing on the strongest control factors.  Because of this, it is possible that some noise factors are 
controllable in an experiment and others may really be uncontrollable.  For simulation-based experiments 
such as the one considered in the case study reported here, the set of controllable noise factors may be larger 
than for real physical experiments.  Figure 5 illustrates the high-level structure of an experiment intended 
to characterization and optimization of system performance and robustness.  The inner and outer arrays are 
independent experiments for control and noise factors as described in preceding sections.  The complete 
outer array experiment is executed for each test point of control factors in the inner array.  A response 
measure is made for every test point of control and noise factors, and robustness measures (such as mean 
response and deviation) are made by combining the results of a complete noise factors experiment for a 
particular control factors test point. 

The signal-to-noise ratio is a robustness measure intended to capture with a single metric both the 
deviation of the average response from the target response ym and the dispersion of the response.  The mean 
square deviation of the response is given by: 



 

 10 

msd = (y̅ – ym)2 + y
2         (11)  

The signal-to-noise ratios for the optimization problems of the-smaller-the-better, the-larger-the-better, 
and the-closer-to-nominal-the-better are given in Table 4.  This robustness measure is computed for each 
test point of the inner array in Figure 5.  At the completion of the experiment, a model can be built to relate 
the control factors to the signal-to-noise ratio SN.  A control factor optimization based on the maximization 
of the signal-to-noise ratio gives the system configuration with the best balance of performance and 
robustness. 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Formulas for Signal-to-Noise Ratio 

Case Signal-to-Noise Ratio (SN) 

the-smaller-the-better -10 log10[(1/r) i yi
2] 

the-larger-the-better -10 log10[(1/r) i (1/yi
2)] 

the-closer-to-nominal-the-better  10 log10[y̅2/y2] 

 

5.   System Tuning Approach 

This section describes the elements of the approach followed to tune the parameters of the control 
system.  This case study was intended as a proof of concept and demonstration, and as such, the tuning 
problem was scoped to be representative but without excessive complexity.  MATLAB was used to model 
the system and perform simulation experiments. 

Inner 
Experiment 

Array 

Response 
Measures 

Array 

Outer  
Experiment 

Array 

Robustness 
Measures 

Array 

1 
2 
3 
 
. 
. 
. 
 
 
n 

1    2    3     …    r 

Figure 5: Structure of Robust Parameter Design Experiment 
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5.1.   Control and Noise Factors 

Table 5 lists the chosen control and noise factors.  The baseline values for the noise factors are the 
nominal values given in Table 1.  The baseline values for the Arm Controller and the Pendulum Controller 
factors where determined by trial-and-error to result in a stable system (i.e., small state perturbations are 
mitigated asymptotically) with the region of convergence for the pendulum state given in Table 6 (i.e., if 
the initial pendulum state is in this region, the plant state will converge the zero state (, 𝜙̇, , and 𝜃̇) = (0, 
0, 0, 0), assuming d = 0.  The ranges of the control and noise factors were specified as percentages of the 
baselines values. 

Table 5: Control and Noise Factors for the Control System 

Category 
System 

Element 
Factor 

Baseline 

Value 

Range 

(%) 

Control 
Factors 

 Arm 
Controller 

K1 2.50 50 

K2 2.00 50 

K3 0.10 50 

Pendulum 
Controller 

 20.00 50 

 0.017 50 

Noise 
Factors 

Laboratory 
Plant Model 

L1 0.36 15 

L2 0.28 15 

m 1.1564 15 

 

Table 6: Region of Convergence of Baseline Control System 

Initial 

Pendulum 

Position  (o) 

Range of 

Initial 

Pendulum 

Speeds ∅̇ (o/s) 

Initial 

Pendulum 

Position  (o) 

Range of 

Initial 

Pendulum 

Speeds ∅̇  (o/s) 

+35 (-600, +30) -35 (-30, +600) 

+25 (-500, +190) -25 (-190, +500) 

+15 (-525, +340) -15 (-340, +525) 

+5 (-525, +500) -5 (-500, +525) 
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5.2.   Stimulus Tracking Signal  

The chosen Arm Position Target d, which corresponds to the Input Signal in Figure 3, was a ramp 
waveform from 00 to 900 with a 30o/s slope from seconds 2 to 5.  This is illustrated in Figure 6. 

 

 

5.3.   Response Metrics 

Each experimental test point consisted of a 30 second run in which the control and noise factors were 
held constant and the stimulus signal was applied.  Each run was divided into two phases: a transient phase 
(denoted l) from 0 to 15 seconds, and a steady-state phase (denoted u) from 15 to 30 seconds.  The goal of 
the control system is to minimize the arm tracking error, defined as e = 𝜃̃ =  - d, while balancing the 
pendulum.  The performance metrics are given in Table 7, where Tl = 15 seconds and Tu = 30 seconds.  
Note that an outer array experiment consists of m test points (see Figure 5), and the signal-to-noise ratio is 
computed based on the results of one outer array experiment (i.e., one inner array row).   

 

 
 
 
 
 
 
 
 

Figure 6: Arm Position Tracking Target 
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Table 7: System Response Performance Metrics 

Experiment 

Segment 
Phase Description Label Formula 

Test Point (i, j) 

Transient 

Mean Square 
Error (MSE) Pl (

1

Tl

) ∫ e2 dt
Tl

o

 

Maximum Square 
Error el

2 max(e2) for 0 ≤ t ≤ Tl 

Steady 
State 

Mean Square 
Error (MSE) Pu (

1

Tu - Tl

) ∫ e2 dt
Tu

Tl

 

Maximum Square 
Error eu

2 max(e2) for Tl ≤ t ≤ Tu 

All Combined Error E w1Pl + w2el
2 + w3Pu + w4eu

2; wq = 0.25 

Inner Array 
Row  Signal-to-Noise 

Ratio SN −10 log10 [(
1

m
) ∑ Ej

2
m

j=1
] 

 

5.4.   Experiment Design 

The Inner Experiment Array for the Control Factors was a Central Composite Design for the five factors 
K1, K2, K3, , and , which are denoted X1, X2, X3, X4, and X5.  The factorial portion of the Inner Array was 
a half-fractional factorial design with confounded factor X5 = X1X2X3X4.   

The Outer Experiment Array for the Noise Factors was a half-fractional factorial design for the three 
factors L1, L2, and m denoted N1, N2, and N3.  The confounded noise factor was N3 = N1N2. 

 

6.   Results 

As stated above, the experiment was performed using MATLAB.  This section describes the experiment 
results and the parameter design with optimal signal-to-noise ratio. 

6.1.   Experimental Response Measures 

Table 8 shows the results of the experiment.  The combined error measures for each test point are given 
in the columns labeled E1 to E4.  The signal-to-noise ratio for each row of control factors is given in the 
S/N column. 

6.2.   Response Model 

The system response was modeled with a quadratic polynomial as in equation (10).  Rather than 
including all the two-factor terms, an effects analysis was performed to identify the strongest interactions.  
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These were X1X2, X1X3, X1X4, X2X3, and X1X5.  The full model for the signal-to-noise ratio is: 

SN = bo + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b12X1X2 + b13X1X3 + b14X1X4 + b23X2X3 + b15X1X5 + b11X1
2 

+ b22X2
2 + b33X3

3 + b44X4
4 + b55X5

5  

The model coefficients were determined using regression.  The values are given in Table 9 

 

 

 

 
 

 
 

Noise Factors
N1/L1 -1 1 -1 1

N2/L2 -1 -1 1 1

Control Factors N3/m 1 -1 -1 1

X1/k1 X2/k2 X3/k3 X4/lambda X5/epsilon E1 E2 E3 E4 S/N

1 -1 -1 -1 -1 1 164.759 211.915 169.640 202.773 -104.769

2 1 -1 -1 -1 -1 92.331 105.338 98.999 101.663 -92.042

3 -1 1 -1 -1 -1 140.695 174.424 142.577 172.215 -101.287

4 1 1 -1 -1 1 101.038 102.994 138.310 98.582 -94.268

5 -1 -1 1 -1 -1 164.944 240.843 168.811 230.420 -106.383

6 1 -1 1 -1 1 96.915 105.989 107.866 101.518 -92.725

7 -1 1 1 -1 1 145.174 171.730 152.304 162.395 -101.280

8 1 1 1 -1 -1 91.764 103.789 125.609 99.935 -93.272

9 -1 -1 -1 1 -1 155.422 203.201 153.378 206.819 -104.023

10 1 -1 -1 1 1 82.765 97.702 87.739 94.618 -90.194

11 -1 1 -1 1 1 128.789 159.214 131.805 154.813 -99.436

12 1 1 -1 1 -1 83.854 98.019 109.475 98.034 -91.652

13 -1 -1 1 1 1 153.453 216.126 154.486 207.743 -104.435

14 1 -1 1 1 -1 83.720 101.371 85.523 99.925 -90.649

15 -1 1 1 1 -1 128.261 159.511 130.653 174.621 -100.152

16 1 1 1 1 1 83.644 94.659 110.132 91.651 -91.184

17 0 0 0 0 0 97.714 118.274 100.694 114.897 -93.690

18 -1 0 0 0 0 137.437 174.931 139.790 170.091 -101.060

19 1 0 0 0 0 83.531 96.579 90.889 93.246 -90.258

20 0 -1 0 0 0 100.726 124.102 103.103 120.556 -94.476

21 0 1 0 0 0 95.844 114.538 99.449 111.058 -93.176

22 0 0 -1 0 0 97.679 118.160 100.654 114.810 -93.677

23 0 0 1 0 0 97.759 118.347 100.751 114.936 -93.700

24 0 0 0 -1 0 104.244 122.517 109.246 117.315 -94.645

25 0 0 0 1 0 96.731 118.287 99.177 115.201 -93.600

26 0 0 0 0 -1 96.856 118.396 99.271 121.655 -93.938

27 0 0 0 0 1 98.500 118.874 102.004 114.817 -93.805

Table 8: Experiment System Response Measures 
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Table 9: Coefficients for Model of Signal-to-Noise Ratio of System Response 

Coefficient Value Coefficient Value Coefficient Value Coefficient Value 

b0  -93.4849 b4 0.8526 b14 0.1848 b22 -0.3668 

b1 5.3657 b5 0.0723 b23 0.2449 b33 -0.2291 

b2 0.7772 b12 -1.3888 b15 -0.1675 b44 -0.6631 

b3 -0.1351 b13 0.1913 b11 -2.2001 b55 -0.4123 

 

6.3.   Optimal Parameter Design 

The optimizing compiler in Excel was used to determine the maximum signal-to-noise ration within 
the range of the control factors using the model in the previous section.  The optimal signal-to-noise ratio 
was SNoptimal = -89.62 with the parameter values given in Table 10. 

Table 10: Optimal Values of the System Control Factors 

Control 

Factor 
Value 

Control 

Factor 
Value 

K1 3.750  27.826 

K1 1.035  0.016 

K1 0.080  

 

6.4.   Verification 

A brief experiment was run to verify the optimization results.  For this verification experiment, the 
control factors were set as in Table 10 and noise factors were cycled as in the outer array in Table 8.  The 
resulting signal-to-noise ratio was SNverification = -90.082, which is a close match to the optimal value.  Figure 
7 to Figure 10 show the arm position tracking response for each verification test point.  The steady-state 
oscillations are probably due to time delays in the system and the torque dead zone of the motor.  Figure 11 
shows the time history of all the plant state variables for the verification run with Noise Factors set to (N1, 
N2, N3) = (+1, +1, +1). 
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Figure 7: Verification Run for Noise Factors (N1, N2, N3) = (-1, -1, +1) 

Figure 8: Verification Run for Noise Factors (N1, N2, N3) = (+1, -1, -1) 
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Figure 9: Verification Run for Noise Factors (N1, N2, N3) = (-1, +1, -1) 

Figure 10: Verification Run for Noise Factors (N1, N2, N3) = (+1, +1, +1) 
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7.   Final Remarks 

This case study has demonstrated the application of Reliability Engineering techniques for optimal 
tuning of a complex control system.  These techniques pertain to experiment design and mathematical 
modeling of the effects of control and noise factors on system performance and robustness.  The applied 
approach enables the generation of insight into the relation between goals, dependencies, and uncertainties 
in a system.  This is especially useful when complexity limits our ability to derive closed-form analytical 
expressions of system performance.  The examined system contained many complex features such a dual-
loop control architecture, plant and controller state (i.e., memory), and a variety of nonlinear relations 
including quadratic, sinusoidal, and thresholds. 

The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient.  This 
general approach is suitable for a wide range of systems.  The case study showed that the applied techniques 
are able to predict performance with high accuracy.  Simulation-based experimentation in a flexible 
environment such as MATLAB enables quick turnaround in the generation, characterization, and tuning of 
virtual system prototypes.   

There are several ways to expand the scope and depth of the case study presented here.  Future case 
studies could increase the number of plant and controller parameters in the sets of control and noise factors.  
Also, instead of a single ramp input signal, a set of input signals could be applied such as steps, square 
waves, and sinusoidal waveforms.  In that case the input signals would be handled as additional noise factors 
and considered in the design of the experiment outer array.  This would expand the set of conditions in the 

Figure 11: Plant State Variables for Verification Run with Noise Factors (N1, N2, N3) = (+1, +1, +1) 
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characterization of robustness.  Additionally, in this case study, we chose to follow a trial-and-error 
approach to identify a stable system configuration that served as a baseline for the study of performance 
and robustness.  In tuning a nonlinear system from a stability perspective, we are primarily interested in the 
size of the region of convergence.  It should be possible to develop simple metrics for the size of the region 
of convergence.  Given that, an experiment could be designed to explore the system design space and 
identify the proper tuning of parameters to achieve an optimal balance of stability, performance, and 
robustness.   
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Appendix A.   MATLAB Script for Simulation Experiment 

 

% Run Experiment on pendulum control system 

% Notes: 

% 1. Performance measure results are saved to file 

% 

echo on ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set filename for control and noise matrices 

% => This one in MATLAB format 

% => This one will be in Excel-loadable format 

control_matrix_filename_TXT = 'control_matrix.dat' ; 

noise_matrix_filename_TXT   = 'noise_matrix.dat' ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set filename for error matrix 

% => This one in MATLAB format 

% => This one will be in Excel-loadable format 

E_matrix_filename_TXT   = 'E_matrix.dat' ; 

Pl_matrix_filename_TXT  = 'Pl_matrix.dat' ; 

Pu_matrix_filename_TXT  = 'Pu_matrix.dat' ; 

e2l_matrix_filename_TXT = 'e2l_matrix.dat' ; 

e2u_matrix_filename_TXT = 'e2u_matrix.dat' ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set filename for performance measures 

% => This one in MATLAB format 

perf_measures_filename_MAT = 'perf_measures_MAT' ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set filename for signal-to-noise measures 

% => This one will be in Excel-loadable format 

% ==> Make entries TAB separated and include end-of-line character 

% ==> Can also include headings (for rows, columns, table caption, etc.) 

SN_measures_filename_TXT = 'SN_measures.dat' ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set model information 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Specify model name 

model_name = 'system_controller_n_plant_enhanced_v3p0' ; 

  

% Run time (seconds) 

t_final = 30.0 ; 

  

% Transient interval duration (seconds) 

t_Transient = 15.0 ; 

  

% Set plant initial conditions 

Initial_arm_angle_deg          = [0 0.0] ; 

Initial_arm_speed_deg_sec      = [0 0.0] ; 

Initial_pendulum_angle_deg     = [0 0.0] ; 

Initial_pendulum_speed_deg_sec = [0 0.0] ; 



 

 21 

  

% Baseline controlled model parameters 

k1_base      = 2.50 ;  % X1 

k2_base      = 2.00 ;  % X2 

k3_base      = 0.10 ;  % X3 

lambda_base  = 20.0 ;  % X4 

epsilon_base = 0.017 ; % X5  

eta_base     = 1.0 ;   % This one will remain constant 

  

% Baseline noise (uncontrolled) model parameters 

J1_kg_m2_base = 0.04699 ;  % This one will remain constant 

J2_kg_m2_base = 0.007800 ; % This one will remain constant 

L1_m_base     = 0.36 ;     % N1 

L2_m_base     = 0.28 ;     % N2 

m_kg_base     = 1.1564 ;   % N3 

  

% Range percentage for model parameters (%) 

r_control = 50.0 ; 

r_noise   = 15.0 ;  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set experiment matrices 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Matrix for Controlled parameters 

% X1, X2, X3, X4, X4, X5(= X1X2X3X4) 

Control_matrix = ... 

[ 

-1, -1, -1, -1, +1; 

+1, -1, -1, -1, -1; 

-1, +1, -1, -1, -1; 

+1, +1, -1, -1, +1; 

  

-1, -1, +1, -1, -1; 

+1, -1, +1, -1, +1; 

-1, +1, +1, -1, +1; 

+1, +1, +1, -1, -1; 

  

-1, -1, -1, +1, -1; 

+1, -1, -1, +1, +1; 

-1, +1, -1, +1, +1; 

+1, +1, -1, +1, -1; 

  

-1, -1, +1, +1, +1; 

+1, -1, +1, +1, -1; 

-1, +1, +1, +1, -1; 

+1, +1, +1, +1, +1; 

  

 0,  0,  0,  0,  0; 

  

-1,  0,  0,  0,  0; 

+1,  0,  0,  0,  0; 

 0, -1,  0,  0,  0; 

 0, +1,  0,  0,  0; 

 0,  0, -1,  0,  0; 

 0,  0, +1,  0,  0; 

 0,  0,  0, -1,  0; 

 0,  0,  0, +1,  0; 
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 0,  0,  0,  0, -1; 

 0,  0,  0,  0, +1 ] ; 

  

% Matrix for Noise parameters 

% N1, N2, N3(= N1N2)  

Noise_matrix = ... 

[ 

-1, -1, +1;  

+1, -1, -1; 

-1, +1, -1; 

+1, +1, +1 ] ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Performance Measure matrices 

weights           = [0.25, 0.25, 0.25, 0.25] ; 

num_metrics       = 4 ; 

num_ctrl_rows     = size(Control_matrix,  1) ; 

num_ctrl_columns  = size(Control_matrix,  2) ; 

num_noise_rows    = size(Noise_matrix,    1) ; 

num_noise_columns = size(Noise_matrix,    2) ; 

  

Pl  = zeros(num_ctrl_rows, num_noise_rows) ; 

Pu  = zeros(num_ctrl_rows, num_noise_rows) ; 

e2l = zeros(num_ctrl_rows, num_noise_rows) ; 

e2u = zeros(num_ctrl_rows, num_noise_rows) ;       

U   = zeros(num_ctrl_rows, num_noise_rows, num_metrics) ; 

E   = zeros(num_ctrl_rows, num_noise_rows) ; 

SN  = zeros(num_ctrl_rows, 1) ; 

  

%pause 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Loop over Control Matrix 

for i = 1 : num_ctrl_rows 

   % Factor values for current control point 

   k1      = [0 (k1_base      * ... 

                (1 + Control_matrix(i,1)*r_control/100.0)) ] ; 

   k2      = [0 (k2_base      * ... 

                (1 + Control_matrix(i,2)*r_control/100.0)) ] ; 

   k3      = [0 (k3_base      * ... 

                (1 + Control_matrix(i,3)*r_control/100.0)) ] ; 

   lambda  = [0 (lambda_base  * ... 

                (1 + Control_matrix(i,4)*r_control/100.0)) ] ; 

   epsilon = [0 (epsilon_base * ... 

                (1 + Control_matrix(i,5)*r_control/100.0)) ] ; 

   eta     = [0 eta_base] ; % This one remains constant 

     

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   % Loop over Noise matrix 

   for j = 1 : num_noise_rows 

      % Factor values for current noise point 

      J1_kg_m2 = [0 J1_kg_m2_base] ; % This one remains constant 

      J2_kg_m2 = [0 J2_kg_m2_base] ; % This one remains constant 

      L1_m     = [0 (L1_m_base * (1 +  

    Noise_matrix(j,1)*r_noise/100.0))] ; 

      L2_m     = [0 (L2_m_base * (1 +  

    Noise_matrix(j,2)*r_noise/100.0))] ; 
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      m_kg     = [0 (m_kg_base * (1 +  

    Noise_matrix(j,3)*r_noise/100.0))] ; 

       

      %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

      % Run the model 

      plant_state = sim(model_name, 'StopTime', 't_final') ; 

  

      %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

      % Get the plant state histories 

      time                    = plant_state.get('time') ; 

      arm_position_target_deg =  

  plant_state.get('arm_position_target_deg'); 

      arm_position_deg        = plant_state.get('arm_position_deg') ; 

      arm_speed_deg_sec       = plant_state.get('arm_speed_deg_sec') ; 

      pendulum_position_deg   =  

  plant_state.get('pendulum_position_deg') ; 

      pendulum_speed_deg_sec  =  

  plant_state.get('pendulum_speed_deg_sec') ; 

     

      %show_plant_state_v1 

       

%pause        

      

      % Get number of time points in the simulation 

      num_time_points = length(time) ;       

       

      % Scan full length of simulation run 

      for k = 1 : num_time_points 

           

          % For Lower/Transient time interval 

          if (time(k) <= t_Transient) 

              Pl(i,j) = Pl(i,j) + ... 

                  (arm_position_deg(k) – ... 

arm_position_target_deg(k))^2 ; 

              e2l(i,j) = max([e2l(i,j), ... 

                  (arm_position_deg(k) –  

   arm_position_target_deg(k))^2]) ; 

                               

          % For Upper/Steady-state time interval 

          else 

              Pu(i,j)  = Pu(i,j) + ... 

                  (arm_position_deg(k) –  

arm_position_target_deg(k))^2 ; 

              e2u(i,j) = max([e2u(i,j), ...  

                  (arm_position_deg(k) –  

    arm_position_target_deg(k))^2]) ;               

          end 

      end 

       

      % Finish up averaging sums of squares 

      Pl(i,j) = Pl(i,j)/num_time_points ; 

      Pu(i,j) = Pu(i,j)/num_time_points ; 

       

      % Store basic measures 

      U(i, j, 1) = Pl(i,j) ;  

      U(i, j, 2) = e2l(i,j) ; 

      U(i, j, 3) = Pu(i,j) ; 
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      U(i, j, 4) = e2u(i,j) ;          

       

      % Computer composite measure 

      for k = 1 : num_metrics 

         E(i, j) = E(i,j) + weights(k)*U(i, j, k) ; 

      end % k 

       

      % Update signal-to-noise ratio with current composite measure 

      SN(i) = SN(i) + E(i, j)*E(i, j) ; 

       

%pause 

  

   end % j 

    

   % Compute Signal-to-Noise ratio for current control point 

   SN(i) = -10*log(SN(i)/num_noise_rows) ;    

   

%pause    

    

end % i 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Save experiment control and noise matrices in Excel-loadable format 

save(control_matrix_filename_TXT,'Control_matrix','-ascii', '-tabs') ; 

save(noise_matrix_filename_TXT,  'Noise_matrix',  '-ascii', '-tabs') ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Save performance matrices in MATLAB format 

save(perf_measures_filename_MAT, ... 

    'Pl', 'e2l', 'Pu', 'e2u', 'U', 'E', 'SN') ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Save performance matrices in Excel-loadable format 

save(Pl_matrix_filename_TXT,   'Pl',  '-ascii', '-tabs') ; 

save(Pu_matrix_filename_TXT,   'Pu',  '-ascii', '-tabs') ; 

save(e2l_matrix_filename_TXT,  'e2l', '-ascii', '-tabs') ; 

save(e2u_matrix_filename_TXT,  'e2u', '-ascii', '-tabs') ; 

save(E_matrix_filename_TXT,    'E',   '-ascii', '-tabs') ; 

save(SN_measures_filename_TXT, 'SN',  '-ascii', '-tabs') ; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Finished 

echo off ; 
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