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INTRODUCTION 

The 1979 Environmental Protection Agency aircraft emissions 

standards require that newly manufactured aircraft gas turbine 

engines be tested for compliance with emission standards. These 

standards are based upon engine testing at standard day condi- 

tions. It is extremely difficult to provide the enormous quan- 

titiesof air necessary to operate large turbo-fan engines at 

standard day conditions, so preliminary emission certification 

testing commenced utilizing ambient air. A trend appeared that 

the engine to engine variations in emissions were greater than 

were thought to be attributable to manufacturing tolerances. 

It was postulated that this engine to engine variation was in 

part due to the varying atmospheric conditions on the days that 

the engines were tested. 

The effect of inlet pressure, temperature, and humidity on 

the oxides of nitrogen produced by an engine operating at take- 

off power was noted quite early, and subsequent correlations 

were formulated by Lipfert'. A compilation and evaluation of 

these correlations has recently been given by Rubins and 
2 Marchionna . For smoke, which is a pollutant of concern at 

high thrust settings, a recently reported result3 indicates that 

the smoke number variability can be correlated to changes in the 

ambient inlet temperature. For a combustor operating at idle 

conditions, correlations were developed by Marzeski and 

Blazowski' to account for the effects of nonstandard inlet pres- 

sure and temperature on gaseous emissions. The effect of ambient 
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temperature and pressure on gaseous emissions over the complete 

thrust range for samples of a given production engine have been 

correlated by Sarli et al. 5 With the exception of some limited 
6 7 engine test data presented by Nelson et al. , Mosier and Roberts , 

and Allen and Slusher 8 , the effect of humidity on idle emissions 

has received little attention even though the extreme sensitivity 

of CO oxidation to the presence of water vapor is well known. 

This investigation was initiated in order to determine, in 

a systematic way and under controlled conditions, the effect of 

variations in the ambient conditions of pressure, temperature, 

and relative humidity upon the emissions of a gas turbine com- 

bustor. A single combustor can from a Pratt and Whitney JT8D-17 

engine was run at parametric inlet conditions bracketing the 

actual engine idle conditions. Nonvitiated inlet air was used, 

and fuel was supplied through a flight certified fuel nozzle. 

These data were then correlated in order to determine the func- 

tional relationships between the emissions and ambient conditions. 

These correlations, though useful to account for day to day 

variances in emissions, do not give any insight into the mechanism 

by which the generation of these pollutants is influenced by 

atmospheric conditions. It is for this reason that a mathematical 

modelling effort was initiated to explain the observed behavior of 

carbon monoxide and unburned hydrocarbons. 

The carbon monoxide emissions were modelled using finite 

rate chemical kinetics in a plug flow scheme. The combustor was 

divided into three zones, primary, secondary, and dilution, and 

appropriate values were chosen for the local fuel-air ratio in 
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each zone. The initial species concentrations reflected not 

only the local combustor characteristics but also the effect 

of the changing inlet conditions. 

Hydrocarbon emissions were believed to result from the 

failure of large droplets to completely vaporize. 'Vaporiza- 

tion calculations were performed for a Rosin-Ranunler fuel drop 

distribution as it passed through the three zones of the com- 

bustor. The temperatures in each zone were based on the adia- 

batic flame temperature for that zone as determined by the 

local combustor characteristics and the changing inlet conditions. 
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EXPERIMENTAL EFFORT 

Test Apparatus 

The experimental program was conducted in a closed duct 

combustor test facility described in detail by Fear 9 and located 

in the Engine Research Building of the NASA Lewis Research 

Center. A single Pratt and Whitney JT8D-17 combustor can, shown 

in cross section in Figure 1, was supplied with the appropriate 

quantity of Jet A fuel and nonvitiated air. The combustor inlet 

conditions of pressure, temperature,and humidity were varied 

parametrically around the actual engine idle inlet conditions. 

The combustor installation and instrumentation are shown in 

Figure 2. The water content of the air furnished to the com- 

bustor was controlled by injecting demineralized water into 

the hot airstream approximately 5 meters upstream of the com- 

bustor. The water was injected through a pressure atomizing 

spray nozzle and complete vaporization of the water occurred 

before it entered the combustor. The water content of the air 

supplied by the preheater was continually monitored using an 

EGG optical sensor and it was nominally quite small,with a dew 

point of approximately 239 K. The combustor emissions were 

measured according to SAE specifications 10 . 

Test Conditions 

The actual JT8D-17 idle operating conditions are shown in 

Table I. Table II lists the parametric inlet conditions investi- 

gated in this report. Compressor pressure ratios of 2, 3, 4, 
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and 5 were chosen, with the combustor inlet temperature, T3, 

calculated assuming a compressor efficiency of 80%. The mass 

flow through the combustor was determined by maintaining a 

constant compressor discharge Mach number, M3, or 

reference velocity, V3. 

a constant 

The mass flow into the combustor consists of both air and 

water, the combination of which may be considered an oxidizer. 

The fuel flow was set to maintain a constant fuel-air ratio 

and not a constant fuel-oxidizer ratio. A changing fuel flow 

rate was therefore dictated. This resulted in a different 

combustor discharge temperature, T4, for each test point. Three 

different values of the overall fuel-air ratio were run in order 

to investigate the effect of local stoichiometry upon the emis- 

sions of the combustor. 

Experimental Results 

Unburned Hydrocarbon Emissions 

The unburned hydrocarbon emission data is shown in Figures 

3 to 11. Figures 3 to 7 present data obtained when the combustor 

reference velocity was maintained constant at 15.2 meters per 

second, and Figures 8 to 11 present data obtained holding com- 

bustor inlet Mach number constant at 0.42. Each set of data was 

obtained at the four different compressor pressure ratios of 

2, 3, 4, and 5. Each figure presents data for one compressor 

pressure ratio and contains three sets of data, each corres- 

ponding to one of the three overall fuel-air ratios run. Within 

each fuel-air ratio grouping the ambient compressor inlet 
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temperature, To, and the relative humidity, RH, were varied. 

For each of the three ambient temperatures considered, data 

were obtained at three relative humidities with the exception 

of the T 
0 

= 244 K condition where only one value of relative 

humidity was run due to extremely small water concentration 

necessary to cause saturation. 

On all figures the ordinate is the emission index of 

unburned hydrocarbons in grams of CH2 per kilogram of fuel 

burned, and the abscissa is the combustor discharge tempera- 

ture, T4. Early in the program it was thought that the 

combustor discharge temperature would be the dominant factor 

in determining the emissions. 

On all figures a key to the data is presented. The shape 

of the symbol indicates the relative humidity, a circle for 

zero percent, a square for fifty percent, and a diamond for 

one hundred percent. A flag is used to indicate compressor 

inlet temperature. No flag indicates 244 K, a vertical flag 

289 K, and a horizontal flag indicates 322 K compressor inlet 

temperature. The shading of the symbol indicates the overall 

fuel-air ratio. Bottom half shading indicates .007, top half 

shading indicates . 011, and no shading indicates an overall 

fuel-air ratio of .015. 

The following trends can beeasily recognized for the 

combustor discharge temperature. A higher fuel-air ratio will 

result in a higher combustor discharge temperature if all other 

conditions are held constant. Increasing the ambient inlet 

temperature will result in an increased combustor discharge 
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temperature for a fixed relative humidity and fuel-air ratio. 

For a fixed fuel-air ratio and ambient inlet temperature, 

increasing the relative humidity decreases the combustor dis- 

charge temperature. 

The following trends can be recognized for the hydro- 

carbon emissions. Curves Al and A7 on Figure 3 show that 

an increase in fuel-air ratio results in a decrease in the 

hydrocarbon emission index if all other conditions are held 

constant. Connection of other points for identical ambient 

inlet conditions also gives the same trend. For a fixed fuel- 

air ratio, pressure ratio, and zero relative humidity, an 

increase in the compressor inlet temperature effects a decrease 

in the hydrocarbon emissions as shown by curves B1, B2, and B3 

on Figure 3. For a fixed fuel-air ratio, pressure ratio, and 

compressor inlet temperature an increase in the relative humid- 

ity effects an increase in the hydrocarbon emission index. 

This effect is especially noticeable for the 322 K inlet temper- 

ature data and is shown by curves C 1, C2, and C3 on Figure 3. 

At this condition saturation corresponds to 8.12 mass percent 

water vapor. For all conditions fixed except pressure, an 

increase in pressure effects a decrease in the hydrocarbon emis- 

sion index. In a qualitative fashion one can see that for all 

fuel-air ratios the slope of [8(EI-HC)/aTq]RH=0, curves B1, B2, 

and B3 of Figure 3,is less negative than the slope of 

[a (EI-HC)/BTdRH=l, curves D1, D2 and D3 of Figure 3. For all 

curves the slope becomes less negative with increasing fuel-air 

ratios. In other words, humidity affects the unburned 



hydrocarbon emissions more strongly at lower adiabatic flame 

temperatures, and humidity has a stronger influence on emis- 

sions than compressor inlet air temperature. 

This data clearly shows that the combustor exit tempera- 

ture does not uniquely determine the overall emissions as was 

first postulated. In order to determine the repeatability of 

the data, the experimental conditions run for Figure 3 were 

rerun several weeks after the initial data collection. The 

results of this run are shown in Figure 4. Although slight 

variances in the actual emissions are detected, the qualitative 

trends from Figure 3 are clearly reproduced. 

Figures 5, 6, and 7 depict the unburned hydrocarbon emis- 

sions for compressor pressure ratios of 3, 4, and 5 respectively. 

Figures 8, 9, 10, and 11 present the remaining unburned hydro- 

carbon emission data taken for a constant combustor inlet Mach 

number of 0.42. In all cases data were taken over the same 

pressure, inlet temperature, and humidity matrix. The constant 

inlet Mach number data displays the same qualitative trends as 

the constant reference velocity data. 

Carbon Monoxide Emissions 

The carbon monoxide emission data is presented in Figures 

12 to 20. Figures 12 to 16 present data obtained at a constant 

combustor reference velocity of 15.2 meters per second, and Figures 

Figures 17 to 21 present data obtained holding combustor inlet 

Mach number constant at 0.42. 

The test matrix for the carbon monoxide emissions was iden- 

ticai with that for the unburned hydrocarbons, as the two were 

8 



simultaneously measured. On all figures the ordinate is the 

emission index of carbon monoxide in grams of carbon monoxide 

per kilogram of fuel burned, and the abscissa is the combustor 

discharge temperature. A key to the data is presented on all 

figures. 

The followingtrends can be recognized from the carbon mon- 

oxide emission data. Curves El and E7 on Figure 12 show that an 

increase in fuel-air ratio results in a decrease in the carbon 

monoxide emission index if all other conditions are held constant. 

For a fixed fuel-air ratio, Fressure ratio, and zero relative 

humidity, an increase in the compressor inlet temperature effects 

a decrease in the carbon monoxide emissions as shown by curves 

F1, F2, and F3 on Figure 12. F'or a fixed fuel-air ratio, pres- 

sure ratio, and compressor inlet temperature an increase in the 

relative humidity effects an increase in the carbon monoxide 

emission index. This effect is shown by curves Gl, G2, and G3 on 

Figure 12. In a qualitative fashion one can see that for all 

fuel-air ratios the slopes [>(EI-CO)/aT4)RH=0 , curves F 1' F2' 
and F 3 on Figure 12, are nearly identical; while the slopes 

[a (EI-CwaT41RH=1, curves G 1, G2, and G3, becomes less 

negative with increasing fuel-air ratio. At the fuel-air ratio 

equal to 0.015 case the slopes are nearly identical. In other 

words, changes in relative humidity have a stronger influence 

upon the carbon monoxide emissions than do changes in the com- 

pressor inlet air temperature. 
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In general the trends shown by the carbon monoxide emissions 

are very similar to the trends displayed by the unburned hydro- 

carbons. Again one sees that the carbon monoxide emissions are 

not uniquely determined by the combustor exit temperature. 

In order to determine the repeatability of the data, the 

pressure ratio two data was rerun several weeks after the initial 

data of Figure 12 was taken. The rerun data is presented in 

Figure 13. Although variations in the actual emissions are present, 

the qualitative trends are reproduced. 

Figures 14, 15, and 16 present the carbon monoxide emissions 

for pressure ratios of 3, 4, and 5, respectively. Figures 17, 

18, 19 and 20 present the remaining carbon monoxide data taken for 

the constant combustor inlet Mach number case. The data was taken 

over the same test matrix as for the previous figures presented. 

The constant inlet Mach number data display the same qualitative 

trends as the constant reference velocity data. 

Oxides of Nitrogen Emissions 

The oxides of nitrogen data is shown in Figures 21, 22, 23, 

and 24 for a constant reference velocity of 15.2 meters per second 

and in Figures 25, 26, 27, and 28 for a constant combustor inlet 

Mach number of 0.42. The test matrix for the oxides of nitrogen 

was identical with that for all other emissions. On all figures 

the ordinate is the emission index of total oxides of nitrogen 

in grams of nitrogen dioxide per kilogram of fuel burned. The 

abscissa is the combustor discharge temperature. A key to the 

data is presented on all the figures. 
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For the total oxides of nitrogen, the following trends are 

observed. For a given ambient condition the oxides of nitrogen 

may either remain constant or increase as shown in Figure 21 by 

curves I 1 and I 7' At a given pressure, a fixed fuel-air ratio, 

and zero humidity, an increase in the ambient compressor inlet 

temperature effects an increase in the emission index, as shown 

by curves Jl, J2 and J3 on Figure 21. For a fixed pressure, 

fuel-air ratio, and ambient compressor inlet temperature, an 

increase in relative humidity causes a decrease in the total 

oxides of nitrogen emission index. The effect is quite 

noticeable when the amount of water necessary for saturation is 

quite large, as shown by curves Kl, K2, and K 3 on Figure 21. 

An increase in pressure, with all other parameters constant, 

increases the emission index. The slopes [a(EI-NOx)/aT41RH=0, 

curves Jl, J2 and J3 on Figure 21, and [a(EI-NOx)/aT41RH=l, 

curves L1, L2 and L3 on Figure 21, are seen to be little affected 

by overall fuel-air ratio. 

Figures 22, 23, and 24 present the remainder of the oxides 

of nitrogen emissions for the constant reference velocity case. 

Difficulty was experienced with the chemiluminescent instrumenta- 

tion during portions of the overall test program. It is for this 

reason that incomplete data is presented in Figure 23. Figures 

25, 26, 27, and 28 present the oxides of nitrogen emissions for 

the constant compressor inlet Mach number case. The constant 

inlet Mach number data display the same qualitative trends as the 

constant reference velocity data. 
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Nitrogen Dioxide Emissions 

The nitrogen dioxide emissions are shown in Figures 29, 30, 

31, and 32 for a constant combustor reference velocity of 15.2 

meters per second and for compressor pressure ratios of 2, 3, 4 

and 5, respectively. Figures 33, 34, 35, and 36 present the 

same data for a constant combustor inlet Mach number of 0.42. 

The test matrix for-the nitrogen dioxide emissions is identical 

with that for all the other emissions. On all figures the ordinate 

is the emission index of nitrogen dioxide in grams of nitrogen 

dioxide per kilogram of fuel burned. The abscissa is the com- 

bustor discharge temperature. A key to the data is presented on 

all figures. Figure 31 presents incomplete data due to difficulty 

with the chemiluminescent instrumentation. 

Most of the nitrogen dioxide emission plots display the same 

trends as the oxides of nitrogen emissions. This is shown by the 

similarity of the curves on Figure 29 with the curves on Figure 21. 

However, for data taken at pressure ratios of 4 and 5, Figures 31, 

32, 35 and 36, it is difficult to recognize the functional 

dependence of the nitrogen dioxide emissions index on ambient 

inlet conditions. An examination of all the nitrogen dioxide 

emission data shows that the functional dependence of the nitrogen 

dioxide emissions is identical to the total oxides of nitrogen 

emissions as long as the combustor discharge temperature is less 

than 900 K. Below this temperature the nitrogen dioxide emissions 

are a substantial portion of the total oxides of nitrogen. Above 

this temperature nitrogen dioxide emissions are no longer a 

significant amount of the oxides of nitrogen emissions as the high 

temperature causes the nitrogen dioxide to form nitric oxide. 
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Empirical Emissions Correlations 

For regulatory purposes the convenient independent variables 

in a correlati.on equation are the pressure, temperature, and 

humidity at the compressor discharge plane-p3, T3, and HUM, 

respectively-and the overall engine fuel-air ratio, FAR. The 

experimental data from this study was employed to generate such 

an equation for the emission index of each pollutant species. 

Because of the similarity between the constant velocity and 

constant Mach number data, separate correlations were not developed. 

The emission data were fit employing a stepwise multiple linear 

regression program to determine the coefficients in an equation of 

the following form: 

EI = (p3/6.894 x 103) 
a 

exp [b + (FAR/c) + (9T3/5d) + (HUM/e) 1 

where the respective dimensions are: 

EI(gms/kg), p3(pascals), T3(K), and IlUM(gms I12@/kg air). 

The coefficients as determined by the prograr, are given in Table 

III for two extremes: all data collected, and various subcases 

selected to maximize the correlation. To maximize the correla- 

tions for the hydrocarbons and the carbon monoxide, the data 

collected at a compressor discharge pressure of two atmospheres 

was not included. The correlation consistently under-predicted 

the emissions at this pressure ratio due to marginal combustion 

in the burner can. For the case of total oxides of nitrogen 

only the data for a fuel-air ratio of -015 was included since 

the prociuction of oxides of nitrogen is highest under these 

conditions. 
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Graphically the agreement between the measured emissions 

and the predicted emissions by regression analysis is shown in 

Figures 37, 38, and 39 for the selected data case. The rela- 

tionship between the emissions and the chosen variables would 

appear to be adequately established as the correlation coeffi- 

cients, 2 R , clearly show. 

Discussion 

For a T-56 combustor the effect of ambient conditions on the 

gaseous emissions is surprisingly similar to that of the JT8D-17. 

The emission data of Marzeski and Blazowski4, shown in Figures 40, 

41, and 42, was collected using a T-56 combustor employing two 

different fuels, JP-4 and JP-8. Three different geometric modi- 

fications were run giving different primary zone fuel-air ratios 

of nominal, rich, and lean while maintaining a constant overall 

fuel-air ratio. The relative humidity of the inlet air was close 

to zero, the simulated compressor pressure ratio was three, and 

the compressor discharge Mach number was held constant. The 

changing combustor discharge temperature represents changes in 

ambient inlet temperature between 244 K and 322 K. 

Although the absolute values of the emission indices for the 

T-56 vary slightly from the JT8D-17, at identical compressor 

pressure ratios and combustor discharge temperatures, the sensi- 

tivities dthe emission index to changes in combustor discharge 

temperature, i.e. the slopes [a (EI)/aT4]RF,0 o, for hydrocarbons, I . 
carbon monoxide, and oxides of nitrogen are nearly identical. 

Perhaps this is not su.rprising considering that these two com- 

bustors are of a similar vintage, loading, air splits, and 
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reference velocity. Such a similarity among various combustors 

could ease the regulatory task of developing correction factors 

for each combustor for nonstandard inlet conditions. 

15 
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ANALYTICAL EFFORT 

Model 

The experimental results indicate that the hydrocarbon and 

carbon monoxide emissions are decreased by increasing fuel-air 

ratio, pressure ratio, or ambient compressor inlet temperature; 

while they are increased by increasing relative humidity. For 

the oxides of nitrogen emissions the situation is just the reverse. 

The behavior of the oxides of nitrogen emissions have been modelled 

to account for all the observed effects byBlazowski et al. 12 

Some of the mechanisms of carbon monoxide production within the 

gas turbine combustor have been previously modelled by Morr et al. 13 

A less sophisticated model, but including a limited effect of 

ambient conditions, has been presented by Sarli5. 

In the model considered here and discussed in detail by 
14 Subramaniam , it is suggested that the combustor may be treated 

as a plug flow reactor in which there is homogeneous reaction 

between perfectly mixed fuel and oxidizer under the isothermal 

conditions corresponding to the adiabatic flame temperature. 

Since the kinetics representing the oxidation of a complex hydro- 

carbon fuel, such as Jet A, are only poorly understood, methane 

was chosen as the fuel for employment in the chemical kinetics 

scheme. In computing the carbon monoxide emissions it must be 

emphasized that instantaneous and complete evaporation of the 

fuel was assumed. 
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Previous hydrocarbon emission modelling conducted by 

Marchionna et al. 15 indicated that much of the unburned hydro- 

carbon emissions result from the escape of raw fuel. Therefore 

it is necessary to consider the vaporization of fuel droplets 

as they pass in a plug flow fashion through the combustor for 

the determination of the unburned hydrocarbon emissions. 

For both pollutant species the calculation process is 

initiated by determining the adiabatic flame temperature within 

a particular combustor zone using the NASA CEC-71 computer 
16 program . The combustor inlet conditions of temperature, 

pressure, and water content were the same as those used during 

the collection of the data. The fuel-air ratio within the 

combustor was determined by the total fuel flow rate and the air 

flow splits within the combustor as shown in Figure 1. 

Carbon Monoxide Model 

In the kinetic scheme for modelling the carbon monoxide 

emissions it was assumed that methane was instantaneously mixed 

with air and water vapor in the primary zone to obtain the 

desired fuel-air ratio within that zone. The mixture was then 

allowed to react for a period of time corresponding to the 

appropriate primary zone residence time at a temperature which 

corresponded to the adiabatic flame temperature. The primary 

zone combustion products were then instantaneously mixed with the 

quantity of additional air necessary to simulate entrance into 

the secondary combustion zone. The mixture was again allowed to 

react at the temperature representing the new adiabatic flame 

temperature for a period of time representing the appropriate 
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residence time in this zone. This process was again repeated 

in the dilution zone. 

The methane-air kinetic scheme employed is that given by 

Ay and Sichel 17 and listed in Table IV. The second rate constant 

in reaction nine is similar in nature to that developed by 

Kollrack", but it is an order of magnitude smaller in order to 

prevent excessive oxidation of the carbon monoxide. It may be 

worthwhile to note that the species HO2 and NO2 are not included 

in the reaction scheme.. Simultaneous solution of the rate equa- 

tions for all species was done using the NASA GCKP-72 computer 
19 program . The initial species composition utilized in this 

program differed for each ambient condition and for each combustor 

region. 

Unburned Hydrocarbons Model 

For modelling the unburned hydrocarbons a distribution of 

JP-4 fuel droplets was passed through the respective plug flow 

zones of the combustor. The amount of vaporization was determined 

by the local adiabatic flame temperature and the local residence 

time. Limited atomization data exists for the JT8D-17 fuel nozzle 

in the open literature. Therefore a Rosin-Rammler droplet size 

distribution function was assumed for the spray. This distribu- 

tion gives the weight fraction of particles, R, having a diameter 

larger than a given diameter, d, i.e. R = exp (- bag). The value 

of the parameter indicating the monodisperse nature of the spray, 

q, was assumed to be similar to those determined for airblast 

atomizers15. The value of the parameter determining the mean 

drop size, b, of the spray was obtained by fitting experimentally 

measured emission data at one reference condition. To calculate 
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the amount of fuel vaporized, the drop distribution was divided 

into small segments and the diameter squared vaporization law 

was applied including corrections for convective enhancement, 

i.e. 

do2 - d2 = Kt , 

K static = (8/pll) (kg/Cpg) Rn (B + 1) I 

and 

E=C 
Pg ItT - Tb)/Ll I 

K =K 
cov static (1 + -276 ReS5 Pr*33) . 

The Reynolds number, Re, the Frandtl number, Pr, the gas conduc- 

tivity, k 
g' 

and the specific heat, C 
PFT' 

were determined by local 

conditions in each zone of the combustor. The droplets were 

allowed to remain in each zone for their characteristic residence 

time. All droplets were assumed to have an initial velocity of 

60 m/s and the drag coefficient was parameterized by: 

cD = 28/Re' .48 . 85 + 

Analytical Results 

Because of limited computer access time, calculations were 

performed at a compressor pressure ratio of four only. 

Values of the adiabatic flame temperature reflecting the 

effects of different ambient conditions are shown in Figure 43. 

The effect of humidity is to reduce the flame temperature. 

Lines of constant fuel-air ratio may be constructed on this 

figure using the data in Figure 44. For a given inlet temperature 

and relative humidity a fuel-air ratio is chosen and the value 

of the equivalence ratio is determined. This process may then 

be repeated for different inlet conditions but the same 
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fuel-air ratio. The results presented in Figure 45 relate 

the fuel-oxidizer and equivalence ratios. 

It has not been clearly established where the cooling air 

from a given louver mixes with the main flow within the combustor. 

It may mix immediately within the zone in which it is introduced 

or it may not mix until subsequent zones. Hence for a given fuel 

flow a maximum and a minimum possible fuel-air ratio can be 

computed for each of the three combustor zones depending upon 

where the film cooling air is assumed to mix. For an overall 

fuel-air ratio of . 011 the zone fuel-air ratios are given in 

Table V along with an upper and lower temperature and the resi- 

dence time corresponding to these local conditions. For the 

primary zone a 2 ms residence time is typical while for the 

secondary and dilution zones a 4 ms and a 3 ms residence time, 

respectively, are more representative. 

In the primary zone the carbon monoxide concentration is 

very near the equilibrium value as the computational results show 

in Figure 46. Using the plug flow reactor approach the effect 

of changing ambient conditions on the amount of carbon monoxide 

at the end of the primary zone is shown in Figure 47. Here the 

correction factor CFCO is defined as the mole fraction of carbonmon- 

oxide at standard ambient conditions (To = 289 K, KH = 0%) 

divided by the mole fraction of carbon monoxide at nonstandard 

ambient conditions. Three different primary zone fuel-air ratios 

are considered, but the effects of ambient temperature and 

humidity changes are similar for each. 
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An increase intheambient temperature causesan increase in 

the carbonmonoxide mole fraction andanincrease in the ambient 

humidity causes a decrease inthecarbon monoxide mole fraction. 

These effects areprecisely opposite to that observed in the ex- 

perimental measurements butarein agreementwiththe burner mea- 

surements of Muller-Dethlefs and Schlader 20 . Theseresults are 

simply explained by consideringtheeffect of flame temperature 

on dissociation ofC02. As the flame temperature increases dueto 

increasing temperature or decreasing humidity, the formation of 

CO and 0 is favored. Miles also findsthesame inverse ambient 

effects whenthe primary zone is treatedasa perfectly stirred 

reactor employing aglobalhydrocarbonkineticscheme. (Private 

communication from G. A. Miles, Detroit Diesel Allison Div., 

General Motors Corp., Indianapolis, Indiana in August 1976.) 

In view of these results, it appears that the kinetics in 

the secondary and dilution zones are the ones primarily respon- 

sible for the overall effect of the changing ambient inlet con- 

ditions. Some results of modelling the complete combustor are 

shown in Figure 48. Here the carbon monoxide mole fraction is 

plotted against the combustor exit plane adiabatic flame temper- 

ature. Changing parameters are indicated in the identical fashion 

as done previously with the experimental data-symbol shape 

indicates ambient humidity, flag position indicates ambient 

temperature, and symbol shading indicates fuel-air ratio. The 

fuel-air ratios here though represent those in each zone of the 

combustor. In this particular case the fuel-air ratio of the 

secondary zone is varied within reasonable limits because of the 

cooling air ambiguity. The primary zone fuel-air ratio is taken 
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as .07 and the exit plane fuel-air ratio is .015. The residence 

time in each zone is 5 millseconds. The secondary zone with the 

lowest fuel-air ratio (0.025) produced more carbon monoxide than a 

secondary zone with a higher fuel-air ratio for all other param- 

eters constant. This is not surprising for the colder secondary 

zone retards carbon monoxide oxidation. Examining the results 

for any one of the secondary zone fuel-air ratios, the effect of 

changing ambient conditions on the carbon monoxide is evident. 

For zero ambient humidity an increase in the ambient temperature 

decreases the emissions, curves A, while for a given ambient 

temperature an increase in the ambient humidity increases the 

emissions, curves B on Figure 48. The slopes, 0 (co) m4i RH=O o . 
and [a(CO)/aT41EB,1 o, are seen to depend upon the fuel-air ratio . 
of the secondary zone. 

Within each combustor zone for each operating condition the 

local fuel-air ratio is determined by the airflow splits and the 

overall fuel and air flows. As the exit plane fuel-air ratio is 

increased, the fuel-air ratio within each combustor zone will 

also increase. Figures 49, 50, and 51 show the calculated carbon 

monoxide emissions at an increased primary fuel-air ratio for 

the JT8D-17. The individual secondary zone data pairs with 

individual dilution zone data. The values of the fuel-air ratios 

used are representative of the ranges which may occur within the 

JT8D-17. As expected each figure shows that a higher exit fuel- 

air ratio produces less carbon monoxide. Also, within each 

dilution sequence the effect due to changing ambient conditions 

is discernible. Taking as a reference point the carbon monoxide 

emissions at T 
0 

= 322 K and 0% relative humidity, for all cases 
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considered, an increase in the humidity or a decrease in the 

temperature causes an increase in the carbon monoxide emissions. 

The slopes [a(CO)/aT41RH=0.0 and [a(CO)/aT41RH=1.0 depend upon 

the particular primary zone and the dilution zone fuel-air ratios. 

In all cases the calculated emissions are more sensitive to changes 

in temperature than to changes in humidity. 

For lean idle operating conditions corresponding to a com- 

bustor exit fuel-air ratio of 0.007 a slight modification of the 

modelling scheme was necessary. Consideration of only three 

combustor zones produced very little carbon monoxide at the com- 

bustor exit plane. An analysis of the problem indicated that 

too small a quantity of carbon monoxide was being produced in 

the homogeneous lean primary zone for fuel-air ratios varying 

between 0.30 and 0.45. In a lean actual combustion with a fuel 

spray I combustion will occur at approximately stoichiometric in 

the droplet diffusion flame of the primary zone. These products 

of combustion will then be further diluted by the excess air 

present in the primary zone. This has the effect of "freezing" 

the high carbon monoxide levels which occur during droplet 

combustion. 

ExperimentalevidencegivenbySullivanindicatesthatthis 

type ofprimary zonequenchingdoesoccur. (Private communication 

fromD. Sullivan, GeneralElectric Co., Schenectady, NewYork in 

March1979.) He foundthatunderlean combustion conditions the 

exactplacementofairholesinthe secondary zone hadverylittle 

effectonthe carbonmonoxide emission levels, suggestingthatthese 

levels arequenchedbysurroundingprimaryairitselfandthatany 

additionalairwouldmakeverylittledifference inloweringthemass 
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fractions of carbon monoxide dueto the additionalamountof air 

introduced. Asimilar approachwasemployed inthecurrent homo- 

geneous combustion model. The methane and the oxidizer were 

allowed to react stoichiometrically for a short period of time 

(0.5 ITS). This time was chosen to produce large amounts of 

carbon monoxide. Then an initial dilution was allowed to occur 

within the primary zone to some lower equivalence ratio where 

reactions were allowed to continue for the usual 5 ms. These 

products were then exhausted into the usual secondary and dilu- 

tion zones. The results of such a calculation are shown in 

F'igure 52 for subsequent primary zone fuel-air ratios of .06 and 

. 03. Two different dilution schemes are then employed in arriv- 

ing at the exit conditions. In this fashion adequate amounts of 

carbon monoxide may be produced, and the usual ambient effects 

may be recognized. 

Ey the selection of typical primary zone and dilution zone 

fuel-air ratios, it is possible to simulate the JT8D-17 emissions 

at different overall fuel-air ratios, including the effect of 

differing ambient conditions. Results are presented in Figure 53 

where the effects of different ambient conditions are shown on 

earlier dilution sequence presented. 

For the hydrocarbon emissions, calculations were performed 

at one overall fuel-air ratio of 0.011 using the conditions of 

Table V. The effect of three different ambient inlet conditions 

on the evaporated mass fraction of the fuel spray at the combustor 

exit plane is presented in Figure 54 for drops of different 
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diameters. Because of the effect on adiabatic flame temperature, 

cold, wet ambient air is effective in suppressing vaporization. 

Through a combination of these results and the previously dis- 

cussed Rosin-Rammler droplet distribution function, the total 

quantity of unburned hydrocarbon emissions may be calculated. 

The results are presented in Table VI. For both static and con- 

vectively enhanced vaporization, emissions are increased with 

respect to the reference level, 322 K and 0% RR, through either 

cooling of the ambient air or an increase in humidity. The 

emissions are more sensitive to wide humidity variations than to 

wide temperature changes. 
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EXPERIMENTAL AND ANALYTICAL COMPARISONS 

Both experimental and analytical results show that for zero 

ambient relative humidity an increasing ambient inlet temperature 

decreases both the hydrocarbon and the carbon monoxide emissions. 

Also an increasing ambient relative humidity increases hydrocarbon 

and carbon monoxide emissions for a given ambient inlet tempera- 

ture. 

In order for increasing relative humidity or for decreasing 

ambient temperature to increase carbon monoxide production a 

modified CO-OH rate constant had to be used in the analytical 

model. It was also found that the analytical carbon monoxide 

emissions were extremely sensitive to the fuel-air ratio within 

each combustor zone. At this time only reasonable bounds may 

be placed on the local fuel-air ratio within each zone. As 

already indicated by Morr et al. 13 , a Gaussian distribution should 

be considered for the local residence times as well as for the 

local fuel-air ratios. This was not done in this study. 

A direct comparison between experimental and analytical 

results is given in Figure 55. The analytical values show too 

large an overall decrease in carbon monoxide emissions with 

increased overall fuel-air ratio, and too small a sensitivity to 

changing humidity and ambient inlet temperature. Additional com- 

parisons are given in Figures 56, 57, and 58 where the carbon 

monoxide emissions at standard conditions are divided by those 

at nonstandard conditions and plotted as a function of ambient 

temperature. Relative humidity is also included as a parameter. 

The magnitude of the emission variation is reasonable. However, 

26 



the kinetic calculations are again unable to predict a suffici- 

ently large increase in the carbon monoxide emissions with 

increasing humidity. Although no calculations were done for the 

T-56 combustor, the experimental data is shown in Figure 59 in 

the same format as the previous three figures for the JT8D-17. 

For no relative humidity the JT8D-17 shows a greater sensitivity 

to temperature changes than the T-56. 

For the hydrocarbon emissions, as given in Table VI, the 

predicted effect of changing ambient conditions is much less than 

those actually observed. However, this disagreement is believed 

to be due in part to the changing character of the fuel spray as 

ambient inlet conditions vary. The data were obtained at a con- 

stant fuel-air ratio. Therefore as the water replaced the air 

with increasing humidity, it was necessary to decrease the fuel 

flow,which caused poorer fuel atomization. At test conditions 

for a pressure ratio of two, the entire combustor fuel flow was 

supplied by the primary portion of the duplex fuel nozzle. The 

Sauter mean diameter, SMD, of the spray is directly proportional 

to the fuel mass flow and inversely proportional to the nozzle 

pressure drop. It may be calculated by using a proprietary 

correlation. This correlation may also be used when there is 

fuel flow through the secondary nozzle as did occur for pressure 

ratios greater than two. The results however are less certain 

for this case. Calculated Sauter mean diameters are superimposed 

upon the emission data in Figures 60-63. Large variations do 

occur in its value, and for the case of the primary nozzle only 

fueled, the highest values of hydrocarbon emissions do 
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correspond to the largest values of the Sauter mean diameter. 

The hydrocarbon calculations presented in Table VI,were done 

using a constant value for the Sauter mean diameter. 

Although no explicit analytical predictions were made for 

the oxides of nitrogen an attempt was made to further collapse 

the experimental data through consideration of the combustion 

efficiency. On Figures 64-67 combustion efficiency is indicated 

for each oxides of nitrogen emission data point. It can be seen 

that for similar efficiency values there are still large differ- 

ences in the oxides of nitrogen emission index. 
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CONCLUSIONS 

Changing engine inlet conditions as produced by variations 

in the atmospheric temperature and relative humidity causes the 

amount of pollutants emitted by a ,gas turbine to vary. Increas- 

ing ambient temperature and decreasing relative humidity cause a 

decrease in the hydrocarbon and carbon monoxide emissions and 

an increase in the oxides of nitrogen emissions. Conversely, 

decreasing ambient temperature and increasing relative humidity 

cause an increase in the hydrocarbon and carbon monoxide emis- 

sions and a decrease in the oxides of nitrogen emissions. 

Increasing the engine pressure ratio or the engine fuel-air ratio 

decreases the hydrocarbon and carbon monoxide emissions and 

increases the oxides of nitrogen emissions and conversely. 

For the JT8D-17 combustor these effects were experimentally 

quantized. It was found that the variations in the different 

emission indices could be correlated by an equation of the form 

EI = (p /6 894 x 103)a 3 - ew [b + (FAR/C) + (9T3/5d) 

+ (HUM/e)1 , 

using appropriate constants for each pollutant species. 

Analytically, it has been possible to determine the effect 

of ambient conditions on gas turbine engine emissions. The 

combustor is modelled as a plug flow reactor using an appropriate 

kinetic scheme along with the best available information concern- 

ing local values of the fuel-air ratio and the fuel spray size. 

Through the use of a smaller than generally accepted rate constant 

for the CO-OK reaction the magnitude and trend caused by changes 
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in ambient conditions of the carbon monoxide emission index were 

successfully predicted. This calculated value was found though 

to be quite sensitive to the values chosen for the fuel-air ratio 

within the different combustor zones. The magnitude and trend due 

to changes in ambient conditions of the hydrocarbon emission index 

did not reproduce experimental results. This is due to changes in 

the fuel spray drop size distribution which occur in conjunction 

with changing ambient conditions and which is not included in 

the model. 
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TABLE I 

Idle JT8D-17 Combustor Conditions 

Nominal Operation 

Total Inlet Pressure - 2.47 atm 
Total Inlet Temperature - 393 K 
Air Flow - 1.37 kg/set 
Fuel Flow - 0.0161 kg/set 
Fuel/Air Ratio - 0.0117 

TABLE II 
Test Operation 

Compressor Efficiency - 0.8 
Compressor Pressure Ratio - 2, 3, 4, 5 
Compressor Inlet Pressure - 1 atm 
Compressor Inlet Temperature - 244, 289, 322 K 
Compressor Inlet Relative Humidity - 0, 50, 100% 
Fuel/Air Ratio - 0.007, 0.011, 0.015 
Constant Compressor Discharge Mach Number 

M3 = 0.42, or 
Constant Reference Velocity, V3 = 15.2 m/set 
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TABLE III 

Coefficients of Regression Analysis 

Emission 
Index HC co NOx 
Coeff. 

All Data 
i -1.2833 15.806 -0.9468 11.552 -2.916 0.2547 

: -128.93 -0.00400 -243.48 -0.00981 324.67 0.02074 

e 43.30 76.39 -59.88 
Multiple Cor- .934 . 929 . 824 
relation Coef. 
Squared 

Selected Data 
;: -1.9130 20.135 -1.1214 13.411 -2.090 0.2552 

: -107.35 -0.00341 -196.11 -0.00673 334.44 0.0 

e 34.61 77.04 -54.31 
Multiple Cor- .953 . 940 . 955 
relation Coef. 
Squared 
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1 M + CH4 = CH3 + H 
2 CH4 + OH = CH3 + H20 
3 CH4 -I- 0 = CH3 + OH 
4 CH4 + H = CH3 + H2 
5 CH3 + 02 = HCO + H20 
6 CH3 + 0 = HCO + H2 
7 HCO + OH = co + H20 
8 M + HCO = CO + H 
9 CO + OH = CO2 + H 

10 H + 02 =o + OH 
11 0 + H2 =OH +H 
12 0 + H20 = OH + OH 
13 H + H20 = H2 + OH 
14 H + OH = H20 + M 
15 H +H = H2 + M 
16 0 +o =02 +M 
17 0 +H =OH +M 
18 N + 02 =NO +0 
19 0 + N2 =NO +N 
20 OH +N =NO +H 

TABLE IV 

Kinetic Scheme of Methane/Air Combustion 

and Forward Rate Constants 

kc =AT"e -AE/RT (cm3/mole/sec) L 

Reaction A 

0.20E18 
0.28E14 
0.20E14 
0.69E14 
0.20E11 
0.10E15 
0.10E15 
0.20E13 
0.56E12 
0.85E-14 
0.22E15 
0.17E14 
0.58314 
0.84E14 
0.40E20 
0.15E19 
0.40E18 
0.53E16 
0.64ElO 
0.14E15 
0.40E14 

a 

0.0 

0.0 
0.0 
0.0 
0.0 

0.0 

0.0 

0.5 
0.0 

7.0 
0.0 

0.0 
0.0 

0.0 
-1.0 
-1.0 
-1.0 

0.0 
1.0 
0.0 
0.0 

AE 

88332.5 
4962.5 
9210.4 

11810.8 
0.0 
0.0 
0.0 

28584.0 
600.0 

13895.0 
16554.9 

9428.8 
18004.0 
20048.5 

0.0 
0.0 
0.0 

5518.3 
6232.9 

75231.5 
0.0 
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F/A 

T 2370 
T 1.77 

T 
T 

T 
F 

T 2380 
T 1.90 

T 2430 
T 1.97 

T 2330 
T 2.02 

T 2330 1870 1520 1130 920 875 
T 2.07 1.74 4.79 3.83 2.69 2.54 

TABLE V 

Typical Local Parameters, PR=4.0, F/A=.011 

Primary Secondary Dilution 

High Low High LOW High 

. 0709 .0484 .0337 .0193 .0119 

2400 
1.90 

2390 
1.90 

T,=244K 0% RH 
1960 1580 1100 
1.51 4.20 3.50 
T,=289K 0% RH 
2015 1635 1195 
1.59 4.40 3.50 

50% RH 
2000 1605 1175 
1.60 4.47 3.54 

100% RH 
1980 1580 1150 
1.61 4.52 3.61 
T,=322K 0% RH 
2050 1680 1235 
1.65 4.52 3~58 

50% RH 
1960 1595 1180 
1.69 4.67 3.66 

100% RH 

850 
2.59 

. 0109 

820 K 
2.48 MS 

930 905 
2.58 2.44 

915 900 
2.62 2.45 

895 895 
2.67 2.45 

980 950 
2.54 2.45 

940 925 
2.64 2.46 

Low 

TABLE VI 

HYDROCARBON EMISSIONS 

Ambient Correlations Hydrocarbon Emission Index 
Experi- 

Static Convective mental 

322 K, 0% RH 1.5 1.5 1.5 
244 K, 0% RH 3.19 2.80 14.4 
322 K, 100% RH 4.35 3.74 17.6 
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FUEL INJECTOR AND PRIMARY SWPRLER EQUIVALENT METERING AREA 7.61% 

Equivalent Metering Area 

Louver Cooling Air Combustion Air 

Panel 

1 1.53 2 7.93 
2 5.62 3 1.92 
3 7.56 5 8.00 
4 5.69 8 15.85 
5 4.24 9 18.09 
6 3.41 
7 3.42 
8 3.43 
9 2.78 

10 1.81 

% Panel % 

Figure 1. JT8D-17 Combustor 
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A STATIC PRESSURE 
o TOTAL TEMPERATURE 
a GAS SAMPLE PROBE 

SECTlON A-A SECTION B-B SECTION C-C 

COMBUSTOR INLET THERMOCOUPLE LOCATION GAS SAMPLE PROBE 
LOCATION 

ilNSULAJION-WRAPPEB LINER 

Figure 2. Combustor Test Section and Instrumentation Sections 
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0 0.0 RH m NO FLAG TO=244 
q 0.5 RH. VT. FLflG TO=289 
0 1 .O RH. HOR.FLAG TO=322 

;;tlTOH &I;;~; - F/R=.007 
- F/R=.011 

OPEN - F/A= .015 

PR= 2 V3 =CONST. 

I 
O45 -00 

I 55 I -00 I 65 000 75.00--- I 

m10' 
85.00 

1 
95 .oo 

T4 - K 

Figure 3. Hydrocarbon Emission Index for a Constant 
Reference Velocity at a Pressure Ratio of Two 
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0 0.0 RH. NO FLAG TO=244 
III 0.5 RH. VT. FLAG TO=289 
0 1 .O RH. HOR.FLFIG TO=322 

I I 1 I I .oo 55 .oo 65 .OO 75 moo 85 .OO 95.00 
14 - K mlOX 

Figure 4. Hydrocarbon Emission Index Rerun for a 
Constant Reference Velocity at a 
Pressure Ratio of Two 
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0 O’.O RH. NO FLAG TO=244 
0‘0.5 RH. VT. FLAG TO=289 
0 1 .O RH. HOR.FLAG TO=322 

I PR= 3 V3 =CONST l 

4!h m- o- 
0 

e- 
o- ---- 1 I I 

65.00 75 .oo 85 .OO 95.00 105 -00 
T4 - K m10' 

Figure 5. Hydrocarbon Emission Index for a Constant 
Reference Velocity at a Pressure 
Ratio of Three 
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0 0.0 RH. NO FLAG TO=244 
tl 0.5 RH. VT. FLAG TO=289 
01.0 RH. HOR.FLFIG TO=322 

;3;TOM ;;;l-lE; - F/R=.007 
- F/A=.011 

OPEN - F/F\=eO15 

PR= 4 V3 =CONST. 

e 
Q 5 0 o- 

I moo 1 65 000 I *& 
o- 75 .oo 85 -00 I 

m10' 
95 .oo 

1 
105 .oo 

T4 - K 

Figure 6. Hydrocarbon Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Four 

42 



0 
0 

. 
W 

0 
0 

d 

9 

0 0.0 RH. NO FLAG TO=244 
00.5 RH. VT. FLAG TO=289 
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Figure 7. Hydrocatibon Emission Index for a Constant 
Reference Velocity at a Pressure Ratio of 
Five 
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0 0.0 FiH. NO FLAG TO=244 
El 0.5 RH. VT. FLAG TO=289 

=: . o- 
0 1 .O RH. HOR.FLRG TO=322 

I PR= 2 H3 =CONST. 

53 
e- 

. 0 
z r!!F 

Ei 

;45 .oo 
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55.00 65.00 75 .oo 85 -00 95 
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Figure 8. Hydrocarbon Emission Index for a Constant 
> Compressor Discharge Mach Number at a 

Pressure Ratio of Two 
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Figure 10. Hydrocarbon Emission Index for a Constant 
Compressor Discharge Mach Number at a 
Pressure Ratio of Four 
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Figure 11. Hydrocarbon Emission Index for a Constant 
Compressor Discharge Mach Number at a 
Pressure Ratio of Five 
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Figure 12. Carbon Monoxide Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Two 
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Figure 13. Carbon Monoxide Emission Index Rerun for 
a Constant Reference Velocity at a Pressure 
Ratio of Two 
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Figure 15. Carbon Monoxide Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Four 
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Figure 16. Carbon Monoxide Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Five 
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Figure 17. Carbon Monoxide Emission Index for a 
Constant Compressor Discharge Mach 
Number at a Pressure Ratio of Two 

53 



8 

o- r 
0 0.0 RH. NO FLAG TO=244 
III 0.5 RH. VT. FLAG TO=289 
0 1 .O RH. HOR .FLRG TO=322 

BOTTOM SHRDED - F/R=.007 
TOP SHRDED - F/R=.011 
OPEN - F/R=.015 

I PR= 3 M3 =CONST. I 

I I I I -a- 

“00 65.00 75.00 85.00 95.00 105 -00 
T4 - K d0' 

Figure 18. Carbon Monoxide Emission Index for a 
Constant Compressor Discharge Mach Number 
at a Pressure Ratio of Three 
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Figure 19. Carbon Monoxide Emission Index for a 
Constant Compressor Discharge Mach 
Number at a Pressure Ratio of Four 
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Figure 20. Carbon Monoxide Emission Index for a 
Constant Compressor Discharge Mach Number 
at a Pressure Ratio of Five 
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Figure 22. Oxides of Nitrogen Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Three 
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Figure 23. Oxides of Nitrogen Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Four 
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Figure 24. Clxides of Nitrogen Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Five 
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Figure 25. Oxides of Nitrogen Emission Index for a 
Constant Compressor Discharqe Mach 
Number at a Pressure Ratio of Two 
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Figure 26. Oxides of Nitrogen Emission Index for a 
Constant Compressor Discharge Mach Number 
at a Pressure Ratio of Three 
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Figure 27. Oxides of Nitrogen Emission Index for a 
Constant Compressor Discharge Mach 
Number at a Pressure Ratio of Four 
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Figure 28. Oxides of Nitrogen Emission Index for a 
Constant Compressor Discharge Mach Number 
at a Pressure Ratio of Five 
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Constant Reference Velocity at a 
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Figure 30. Nitrogen Dioxide Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Three 
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Figure 31. Nitrogen Dioxide Emission Index for a 
Constant Reference Velocity at a 
Pressure Ratio of Four 
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Figure 32. Nitrogen Dioxide Emission Index for a 
Constant Reference Velocity of a 
Pressure Ratio of Five 
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Figure 33. Nitrogen Dioxide E'mission Index for a 
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Figure 34. Nitrogen Dioxide Emission Index for a 
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Number at a Pressure Ratio of Three 
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Figure 35. Nitrogen Dioxide Emission Index for a 
Constant Compressor Discharge Mach 
Number at a Pressure Ratio of Four 
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Figure 36. Nitrogen Dioxide Emission Index for a 
Constant Compressor Discharge Mach Number 
at a Pressure Ratio of Five 
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MEASURED HC EMISSION iNDEX 

Figure 37. Hydrocarbon Emission Curve Fit 
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MEASURED CO EMISSION INDEX 

Figure 38. Carbon Monoxide Emission Curve Fit 
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Figure 39. Oxides of Nitrogen Emission Curve Fit 
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Figure 40. Hydrocarbon Emission Index, T-56 
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Figure 41. Carbon Monoxide Emission Index, T-56 

77 



4 2 .Y 

38 . 

33 . 

% 
28 . 

0 
3 
L 23 h . 

18 . 

13 . 

. 8 

0 JP-4 
•I JP-8 
0 JP-4 lean 
A JP-8 lean 
b JP-4 rich 

550 650 750 850 950 IO50 

T4- K 

Figure 42. Oxides of Nitrogen Emission Index, T-56 
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Figure 43. Methane Adiabatic Flame Temperature 
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Figure 54. Fuel Drop Fvaporation 
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Figure 62. Hydrocarbon Emissions, SMD Effect for a 
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at a Pressure Ratio of Four 
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Figure 63. Hydrocarbon Emissions, SMD Effect for a 

Constant Compressor Discharge Mach Number 
at a Pressure Ratio of Five 
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Figure 64. Oxides of Nitrogen, Combustion Efficiency for a 
Constant Compressor Discharge Mach Number at a 
Pressure Ratio of Two 
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Figure 65. Oxides of Nitrogen, Combustion Efficiency 
for a Constant Compressor Discharge Mach 
Number at a Pressure Ratio of Three 
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Figure 66. Oxides of Nitrogen, Combustion Efficiency 

for a Constant Compressor Discharge Mach 
Number at a Pressure Ratio of Four 
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Figure 67. Oxides of Nitrogen, Combustion Efficiency 
for a Constant Compressor Discharge Mach 
Number at a Pressure ratio of Five 
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