

Wind Electrolysis – Hydrogen Cost Optimization

Fuel Cell & Hydrogen Energy Conference

Washington, DC

Genevieve Saur

February 16, 2011

NREL/PR-5600-50810

Project Background

- U.S. Department of Energy (DOE) and Xcel Energy's Wind-to-Hydrogen Project at NREL, part of the Renewable Electrolysis task
- Examination of a grid-tied, co-located wind electrolysis hydrogen production facility
- 4 scenarios optimize wind farm size vs electrolyzer requirements using hour-by-hour modeling

Key Parameters - System

8,760 hourly analysis based upon NREL's H2A Production and Fuel Cell Power models

Using hourly electricity market pricing and hourly wind data

Hydrogen production facility

50,000 kg H2/day nominal

4 grid-connected wind electrolysis scenarios

Grid supplements wind to power electrolyzers

Scenarios

- A) Cost Balanced: \$ grid purchased = \$ wind sold
- B) Power Balanced: kWh grid purchased = kWh wind sold
- C) Same as A) but no summer peak grid electricity purchased
- D) Same as B) but no summer peak grid electricity purchased

Key Parameters - Components

Electrolyzers

- Design capacity of ~51,000 kg/day with 98% capacity factor
- 106 MW electricity requirement (50 kWh/kg)
- \$50.1M total depreciable capital cost
- Replacement, O&M costs also included

Wind Farm

- Multiples of 3 MW turbines
- Design performance based on class 4 wind site
- Wind costs

	Low Cost	Current Cost
Installed wind turbine	\$1,148/kW	\$1,964/kW
O&M (incl replacement)	\$0.012/kWh	\$0.0074/kWh
Fixed charge rate	12.1%	12.1%

Key Parameters - Infrastructure

Grid Electricity Pricing

- 6 tiered structure; 3 summer, 3 winter
- \$0.039/kWh to \$0.099/kWh
- "hotter" hours = higher price

Key Parameters - Infrastructure

Wind Profiles

- NREL's Western Wind data set
- 136 sites in California, class 1 to class 6

Results - Comparison

Power Balanced Scenario – range of costs

Results – Current Wind Costs

Results - Scenario Details

Wind Farm Sizes to Produce 50,000 kg/day H2

Results – Case Example

Averaged Yearly Profile

Results – Case Example

Wind Site Details

- Class 5 wind site with capacity factor 47%
- Average wind speed at 100 m 8.5 m/s
- Produces electricity for \$0.064/kWh

Scenario	Wind Farm Size (MW)	# 3-MW Turbines	Grid Utilization (%)	Unmet H2 Production (kg/yr)	Cost of H2 (\$/kg)
(a) Cost-Balanced—Buy Summer Peak	210	70	94	0	3.80
(b) Power-Balanced—Buy Summer Peak	219	73	102	0	3.82
(c) Cost-Balanced— No Summer Peak	195	65	100	622,000	3.72
(d) Power-Balanced—No Summer Peak	213	71	120	602,000	3.77
NATIONAL DENEMARIE ENERGY LAR	ODATODY				

Results – Case Sensitivity

Sensitivity for power balanced case

- Baseline optimization and sizing held constant
- Other scenarios show similar ranges

Acknowledgements

Xcel Energy

Frank Novachek

DOE

- Roxanne Garland
- Richard Farmer

NREL

- Todd Ramsden (co-author)
- Kevin Harrison
- Darlene Steward
- Greg Martin
- Keith Wipke
- George Sverdrup
- Robert Remick

