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CONTRIBUTIONS TO PRECAMBRIAN GEOLOGY OF LAKE SUPERIOR REGION

Great Lakes Tectonic Zone in Marquette Area, 
Michigan  Implications for Archean Tectonics in 
North-Central United States

By P.K. Sims

Abstract

The Great Lakes tectonic zone (GLTZ) is an Archean 
crustal boundary of subcontinental length that separates a 
greenstone-granite terrane (southern part of Superior province 
of Canadian Shield) on the north from a partly older gneiss 
terrane on the south. It is generally interpreted as a paleosuture 
resulting from continent-continent collision. The tectonic zone 
is covered at imost places in the Lake Superior region by 
Proterozoic rocks or Pleistocene glacial deposits, and its 
position and characteristics previously have been determined 
mainly by geophysical data. Geologic mapping in the Mar­ 
quette, Michigan area provides for the first time direct obser­ 
vations of the structure.

In the Marquette area, the GLTZ is characterized by a 
zone of mylonite (orthomylonite) that has been superposed on 
previously deformed rocks of both the Archean greenstone- 
granite terrane and the Archean gneiss terrane. Foliation in the 
mylonite strikes about N. 60° W. and dips steeply southwest, 
presumably subparallel to the boundary between the 
greenstone-granite and gneiss terranes. A pronounced 
stretching lineation and tight fold hinges plunge about 45° S. 
45° E. The attitude of the stretching lineation (line of tectonic 
transport) together with asymmetric structures indicative of 
movement sense indicates that collision at this locality was 
oblique, resulting in dextral-thrust shear along the boundary, 
northwestward vergence, and probable overriding of the 
greenstone-granite terrane by the gneiss terrane. Transmittal of 
the dextral shear stress across a large area of the greenstone- 
granite crust (Superior province) to the north may have been 
responsible for the nearly east-west foliation, upright folds, and 
northwest- to east-west-trending dextral faults and shear zones 
at least as far north as the Quetico fault, in southern Ontario, 
a distance of about 250 kilometers.

Manuscript approved for publication June 26, 1990.

As a whole, the GLTZ is characterized by systematic 
angular bends that alternately trend west-northwestward, as in 
the Marquette area, and northeastward. This zigzag pattern 
probably reflects original irregularities in the continental 
margin (Superior province) composed of greenstone-granite 
crust. Late Archean convergence along this margin resulted in 
a variable trajectory of stress into the greenstone-granite crust 
and probably in along-strike diachroneity of orogeny. The 
major deformation resulted from oblique compression at 
promontories, which acted as buttresses against which 
compressive stress was directed into the crust. In addition to 
the dominant foliation, major brittle-ductile to brittle strike-slip 
faults, such as the Vermilion fault system in northern 
Minnesota and the Quetico and Rainy Lake-Seine River faults 
in southern Ontario, resulted from a more brittle continuum of 
the transcurrent shear caused by collision along the GLTZ.

INTRODUCTION

The Great Lakes tectonic zone (GLTZ) is an Archean 
crustal boundary more than 1,000 km long that separates a 
greenstone-granite terrane (southern part of Superior prov­ 
ince) on the north from a gneiss terrane on the south (Sims 
and others, 1980; Sims and Peterman, 1981; Peterman, 
1979). It is covered throughout most of the Great Lakes 
region by younger Proterozoic rocks or Pleistocene glacial 
deposits, but recently it has been delineated and studied in 
outcrop in an area south of Marquette, Mich. (fig. 1).

The boundary was first recognized in Minnesota 
(Sims and Morey, 1973; Morey and Sims, 1976) from 
regional geologic relations, which indicated that the two 
basement terranes had different geologic histories and 
probably had evolved separately. Regional magnetic and

Great Lakes Tectonic Zone in Marquette Area, Michigan E1



gravity data were utilized to determine the position of the 
boundary. Later (Sims, 1980), the boundary was approxi­ 
mately delineated in the western part of Upper Michigan 
(Sims and others, 1984) and northwestern Wisconsin (Sims 
and others, 1985), east of the Middle Proterozoic Midcon- 
tinent rift system, and it was inferred on indirect evidence to 
extend eastward through the Sudbury structure, where it is 
truncated by the Middle Proterozoic Grenville tectonic zone 
(Sims and others, 1980).

Recent geologic mapping in the Sands 7 1/2-minute 
quadrangle, Michigan (fig. 1), previously mapped by Gair 
and Thaden (1968), has delineated this Archean boundary in 
outcrop for the first time. It is exposed on the south side of 
the Early Proterozoic Marquette synclinorium (or trough), 
and its northwestern projection into the trough coincides 
with a major Early Proterozoic fault, the Richmond fault. 
The GLTZ here is a mylonite zone about 2.4 km wide that 
mainly is overprinted on rocks of the greenstone-granite 
terrane but also affects an approximately 0.4-km-wide zone 
of the Archean gneiss. In this area, the GLTZ is interpreted 
as a continent-continent collision zone. The collision was 
oblique, resulting in dextral wrench shear on the N. 60° W.- 
trending boundary and northwestward vergence of the 
gneiss terrane against the greenstone-granite terrane.

The purpose of this report is to describe the exposed 
GLTZ in the context of the regional geology, to discuss 
genetic relationships between convergence along the boun­ 
dary and structural features in the Archean rocks to the 
north, and to present a refined interpretation of the evolution 
of the GLTZ throughout the Lake Superior region.
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GEOLOGIC SETTING

The Great Lakes tectonic zone is moderately well 
exposed in the Sands 7 1/2-minute quadrangle in Upper 
Michigan (see fig. 5). It separates the two distinctive 
Archean terranes in the area. The northern greenstone- 
granite terrane is composed largely of Late Archean gran­ 
itoid rocks and approximately coeval metavolcanic and 
lesser metasedimentary rocks of greenstone affinity. The 
layered rocks and most of the granitoid rocks were meta­ 
morphosed (mainly to greenschist facies) and deformed 
during Late Archean orogeny. The southern Archean gneiss 
terrane is composed mainly of layered gneiss, migmatite, 
and amphibolite rocks that are distinctly different from 
those in the greenstone-granite terrane. Except for late-

tectonic to post-tectonic, generally small(?) granitoid 
bodies, the rocks are metamorphosed mainly to amphibolite 
facies. The rocks exposed within the two terranes in Upper 
Michigan are closely similar to those in Minnesota (Morey 
and Sims, 1976; Sims and others, 1980), thus establishing 
the identity of the GLTZ in the Marquette area.

The Archean rocks in Michigan are overlain in the 
Marquette synclinorium, the Republic trough, and the Dead 
River, Clark Creek, and Baraga basins by shelf deposits of 
the Early Proterozoic Marquette Range Supergroup (fig. 1; 
Cannon and Gair, 1970). For the Archean rocks north of the 
Marquette synclinorium, Van Hise and Bay ley (1897) 
introduced the name "northern complex"; the Archean rocks 
south of the synclinorium they named "southern complex."

A Late Archean age for the GLTZ is now established 
by regional geologic relationships in north-central United 
States. The Archean rocks in the greenstone-granite terrane 
in northern Minnesota (Hudleston and others, 1988) and 
northernmost Michigan (fig. 1) are characterized mainly by 
ductile and brittle structures formed in response to dextral 
shear, which accords with the deformation pattern observed 
in mylonite within the exposed GLTZ south of Marquette, 
Mich. These structures include a generally west trending 
steep foliation and upright folds, widespread Z-shaped 
folds, and northwest- to west-trending dextral faults, indic­ 
ative of dextral shear. In contrast, Early Proterozoic 
Penokean deformation in the Marquette area had little effect 
on the Archean basement (Cambray, 1984). Cambray pro­ 
posed that the Penokean deformation was produced by 
horizontal compression that was transmitted from the 
basement to the folded cover rocks by narrow ductile shears 
in the basement. Readjustment of rigid basement blocks 
along these shears using old weaknesses resulted in some 
shortening, but not folding of the basement rocks. For the 
Early Proterozoic Marquette trough, Cambray proposed a 
nearly north-south compressional axis, which initially 
produced reverse dip slip on faults bounding the trough and 
compressed the Early Proterozoic sedimentary rocks within 
the trough into west-trending folds. Subsequently, resist­ 
ance to this movement resulted in a sinistral strike-slip 
motion and the development of F2 folds with northwest- 
trending axial surfaces and variable plunge.

Gair and Thaden (1968) applied the name "Compeau 
Creek Gneiss" to both the foliated granitoid rocks of the 
Archean greenstone-granite terrane and the layered gneisses 
and massive intrusions of the gneiss terrane, and subsequent 
investigators extended this terminology to the western parts 
of the southern complex (Cannon and Simmons, 1973). To 
apply this name to rocks in both Archean terranes, however, 
is inappropriate, because the two terranes consist of 
distinctive rock types of different origins. Accordingly, in 
this report informal lithologic names are used to describe 
the crystalline rocks in the two diverse terranes.
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ARCHEAN GREENSTONE-GRANITE 
TERRANE

The greenstone-granite terrane in the Marquette area 
(fig. 1) consists of several thousand meters of subaqueous 
mafic to felsic flows and pyroclastic rocks and volcanogenic 
sedimentary rocks in a succession that is intruded by small 
bodies of gabbro and ultramafic rocks and by large plutons 
of granitoid rocks (Bornhorst, 1988). The volcanic rocks 
have been named the Ishpeming greenstone belt (Morgan 
and DeCristoforo, 1980); they represent the southwestern 
extension of the Wawa subprovince of the Superior 
province (Card and Ciesielski, 1986). Felsic volcanic rocks 
adjacent to an ultramafic body north of Ishpeming host gold 
deposits of the Ropes mine (Brozdowski and others, 1986; 
Brozdowski, 1988, 1989), and the ultramafic body hosts 
additional mineral prospects (Bodwell, 1972). Foliated 
tonalite from the northern complex (Hammond, 1978) has a 
U-Pb zircon age of 2,703±16 Ma (recalculated by Zell E. 
Peterman), and associated rhyolite has a U-Pb zircon age of 
2,780+69 Ma (recalculated by Zell E. Peterman). These 
ages are consistent with more precise U-Pb ages in the 
Wawa (Shebandowan) subprovince in adjacent Canada 
(Corfu and Stott, 1986).

Granitoid Rocks

The Late Archean granitoid rocks in the greenstone- 
granite terrane (fig. 1) are dominantly pink to grayish-pink, 
generally medium grained, porphyritic, foliated, homo­ 
geneous tonalite or granodiorite (Gair and Thaden, 1968, 
p. 18-23). They contain xenoliths and schlieren of biotite 
schist and amphibolite. In the Sands quadrangle (fig. 1), 
weakly foliated granite also is a common rock type (table 1; 
fig. 2), but its age relation to the tonalite-granodiorite was 
not determined. The bimodal composition of the granitoid 
rocks (fig. 2) suggests, however, that the granite represents 
a discrete magmatic event.

The granitoid rocks of the greenstone-granite terrane 
in the Marquette area exposed on both sides of the Mar­ 
quette trough are strongly altered (table 1). Plagioclase 
(oligoclase) is saussuritized and albite twinning is largely 
obscured, and biotite is largely changed to chlorite and 
opaque oxides (locally rutile). The rocks are highly frac­ 
tured, and fracture surfaces are coated by chlorite and other 
propylitic minerals. Along the south margin of the Mar­ 
quette trough, the granitoid rocks are exceptionally rich in 
quartz (table 1; fig. 2). The granitoid rocks in the Sands 
quadrangle also are mylonitic. The protomylonite is charac­ 
terized by recrystallization of quartz to fine grain sizes and 
localized shear-induced recrystallization of plagioclase and 
potassium feldspar to fine-grained polycrystalline aggre­ 
gates (type IP, IIP, 1M, and 11M structures of Hanmer,

1982). The protomylonite grades into orthomylonite at 
a distance of about 2 km north of the GLTZ. (See 
fig- 5.)

The relative homogeneity of the granitoid rocks, the 
occurrence of sharp-walled xenoliths, and the general 
absence of a lithologic layering that could represent original 
sedimentary or volcanic layering suggest that the granitoid 
rocks of the greenstone-granite terrane are of magmatic 
origin. Their pervasive foliation is attributed to deformation 
subsequent to primary crystallization, as discussed 
following.

Structure

The rocks in the greenstone-granite terrane, on the 
north side of the GLTZ (fig. 1), record early recumbent 
folding (F,) of metavolcanic rocks of the Ishpeming 
greenstone belt. Superposed deformation (D2) produced 
northwest- to west-trending upright, upward- and down­ 
ward-facing folds (F2) that are Z-shaped in plan view 
(Rodney Johnson, written commun., 1989). An axial plane 
foliation was developed during F2. The Z-symmetry of the 
F2 folds is consistent with their development in a 
deformation regime with a dextral shear component. 
Associated granitoid rocks also were deformed by D2 . 
Younger, northwest- to west-trending faults, some of which 
have demonstrable dextral movement, transect and offset 
the folded rocks. Commonly, these faults separate volcanic 
rock domains having opposite stratigraphic facing 
directions, as shown in figure 1.

Foliation and lithologic layering in the vicinity of the 
Ropes mine (R, fig. 1) are puzzling with respect to the 
dominant regional structure. Here, foliation and lithologic 
layering strike about N. 70° E. and are nearly vertical 
(Brozdowski, 1988, p. A-44). The published geologic map 
that includes the Ropes mine area (Negaunee SW 
quadrangle; Clark and others, 1975) also shows a steep 
(stretch?) lineation that plunges southeastward in unit Wkf 
of the Kitchi Schist. Possibly, the northeast foliation in the 
Ropes mine area represents the east-northeast-trending limb 
of a large-scale D2 Z-fold.

The steep, northwest- to west-trending shear zones 
and faults in the greenstone-granite terrane are tens of 
meters to a few hundred meters wide. They are highly 
schistose zones characterized by an intense, close-spaced 
foliation, a steep stretching(?) lineation, and strong 
retrograde alteration. The faults are of both ductile and 
brittle-ductile types. Major structures include the Dead 
River shear zone (fig. 1, DRSZ) (Puffett, 1974), which 
forms the northern boundary of the Dead River basin; the 
Carp River shear zone (CRSZ), northeast of the Ropes 
mine, which separates two different blocks of Archean 
volcanic rocks; and the Carp River Falls shear zone 
(CRFSZ), which forms the north margin of the Marquette 
trough in this area. The Carp River Falls shear zone is

Great Lakes Tectonic Zone in Marquette Area, Michigan E3
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Figure 2. Quartz-alkali feldspar-plagioclase diagram for 
granitoid rocks of Archean greenstone-granite terrane, Mar- 
quette area. Rock classification modified from Streckeisen 
(1976). Modes determined by 600 to 1,000 point counts on 
standard thin sections, and given in table 1. Open circles 1, 2, 
and 3, average compositions reported by Gair and Thaden 
(1968).

reported to be cut by relatively undeformed mafic dikes of 
presumed Late Arehean age, indicating a probable Archean 
age for the shear zone (Baxter and Bornhorst, 1988).

In the area north of the Palmer fault (fig. 1), foliated 
and fractured Late Archean granitoid rocks form partly fault 
bounded domes surrounded by Early Proterozoic rocks of 
the Marquette Range Supergroup. The large Archean gran­ 
itoid body in the Sugarloaf Mountain area, north of Mar­ 
quette, also is a dome; foliation in adjacent metavolcanic 
rocks (Puffett, 1974) dips gently to moderately away from 
the granite contact.

Late-Tectonic Conglomerate

The youngest Archean unit in the greenstone-granite 
terrane is the Reany Creek Formation (Puffett, 1969; 1974). 
On the basis of the reinterpretation of age and structural 
relationships, the Reany Creek Formation is no longer 
included as part of the Chocolay Group or the Marquette 
Range Supergroup. It is a heterogeneous body of con­ 
glomerate, arkose, chloritic slate, graywacke, and boulder- 
bearing slate. It transects structures in the older volcanic 
rocks, is less deformed than the volcanic rocks, and is 
bounded along its south margin by the northwest-trending 
Dead River shear zone (fig. 1). Its age has been uncertain 
(see Puffett, 1974), but its penetrative foliation, asymmetry 
of basin fill, and relationship to the Dead River shear zone 
strongly suggest that it developed concurrently with dextral 
shear along the Dead River shear zone. It is similar to 
"Timiskaming-type" sequences, such as the Seine Group, in 
northern Ontario, now commonly interpreted as forming in 
Archean analogs to modern pull-apart basins (Poulsen, 
1986; Thurston and Chivers, 1990).

ARCHEAN GNEISS TERRANE

The Archean gneiss terrane in the Marquette area 
(fig. 1) constitutes the greater part of the southern complex, 
as defined by Van Hise and Bayley (1897). It consists of 
gneiss, migmatite, and amphibolite, substantial amounts of 
deformed and undeformed granite pegmatite, and massive 
to weakly foliated granite plutons. Cannon and Simmons 
(1973) have described the general rock types in much of the 
southern complex. One rock has been dated as Late 
Archean. A sample of gray gneiss (called Compeau Creek 
Gneiss by Gair, 1975) collected in SE1/4SW1/4 sec. 36, 
T. 47 N., R. 27 W. (Hammond, 1978) has a U-Pb zircon age 
of 2,779+21 Ma and a lower intercept age of 802±76 Ma 
(recalculated by Zell E. Peterman).

Gneiss and Associated Granitoid Rocks

Compositionally layered, medium-grained gneiss and 
migmatite are the dominant rock types in the gneiss terrane 
in the Marquette area. Layered felsic gneisses ranging in 
composition from tonalite to granite predominate. Smaller 
amounts of massive to layered amphibolite are intercalated 
with the felsic gneiss, but amphibolite constitutes layers 
several tens of meters thick at places, as can be seen on the 
geologic map of the Palmer 7 1/2-minute quadrangle (Gair, 
1975, pi. 1), which is immediately west of the Sands 
quadrangle. The felsic gneisses are gray to pinkish gray; 
typically, compositional layering is expressed by different 
proportions of the major silicate minerals, as for example, 
(1) plagioclase-quartz-biotite-microperthite, (2) micro- 
perthite-quartz-plagioclase-biotite, and (3) biotite-quartz- 
plagioclase-microperthite. Textural differences at places 
emphasize the compositional layering. Pink aplitic granite 
and granite pegmatite commonly transect the gneiss and 
amphibolite and locally form migmatite. Metasedimentary 
rocks such as iron-formation, which forms layers in the 
felsic gneisses in the vicinity of the Republic trough 
(Cannon and Simmons, 1973), were not observed in the 
Marquette area.

Pinkish-gray to pink, medium-grained, massive to 
weakly foliated, homogeneous granite (table 2; fig. 3) 
intrudes the gneisses at places. Hammond (1978) delineated 
a body of massive granite about 4 km2 in areal extent south 
of Ishpeming, Mich. (unit Wgt, fig. 1), which he informally 
called the "Tilden granite." It is a gray to pink, medium- 
grained, locally porphyritic massive granite that locally 
contains oriented xenoliths of mafic gneiss. It is cut by pink 
pegmatite and is highly fractured. The fractures have 
slickensided surfaces and a thin coating of chlorite and other 
propylitic alteration minerals. Isotopic data on samples of 
the granite near Tilden of Hammond (1978) indicate that 
both the Rb-Sr and U-Th-Pb systems are highly disturbed. 
Four zircon fractions from one sample of a red phase of the

Great Lakes Tectonic Zone in Marquette Area, Michigan E7
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Figure 3. Quartz-alkali feldspar-plagioclase diagram for 
granitoid rocks of Archean gneiss terrane, Marquette area. 
Modes given in table 2.

Table 2. Approximate modes of granitoid rocks, in volume 
percent, in Archean gneiss terrane

[Tr., trace; blank, absent]

Sample No....................

Plagioclase...................
Quartz........ ............ ......
Potassium feldspar ......
Biotite ..........................
Chlorite........................
Muscovite ....................
Epidote ........................
Sphene .........................
Opaque oxides.............
Accessory minerals .....

153A

34.7
28
28

9

Tr.

Tr.
0.3

146-88

33.5
23.8
34.2

8.0
Tr.
Tr.
Tr.

0.5

1

25
25
40

3
Tr.
2

Tr.
Tr.
Tr.

226A

26.3
38.2
33.0
2.2

Tr.

0.3

226B

39.3
32.7
25.0

3
Tr.
Tr.

Tr.

SAMPLE DESCRIPTIONS

granite yield an age of 2,545±71 Ma, but when combined 
with two zircon fractions from another red phase yield an 
age of 2,633±100 Ma (Hammond, 1978, p. 38). Six zircon 
fractions from two samples of the gray phase, however, 
yield an age of 2,345+20 Ma, which is comparable to a 
2,330 Ma Rb-Sr whole-rock age on the same rock body. 
Hammond (1978) concluded that the granite near Tilden 
probably dates at about 2,350 Ma. I suggest, however, that 
the granite is Late Archean in age and that the =2,350 Ma 
age records highly disturbed Rb-Sr and U-Pb systems.

A nearly circular body of alkali granite (unit Xga, 
fig. 1) about 2 km in diameter occurs about 3 km south of 
Humboldt, Mich. (Schulz and others, 1988). The granite is 
light red to brick red, generally massive, fine to medium 
grained, and equigranular to hypidiomorphic granular. The 
granite is similar compositionally to Sn-W mineralized 
alkali feldspar granites of the Arabian Shield (Jackson and 
Ramsay, 1986) and the Nigerian younger granite province 
(Kinnaird and others, 1985). The granite has a Rb-Sr 
whole-rock age of 1,733±25 Ma, which is interpreted as a 
crystallization age (Zell E. Peterman, written commun., 
1988); it is a post-tectonic intrusion.

Structure

Archean gneisses in the southern complex form a 
northwest-trending antiformal structure that closes to the 
west and is overlapped by Paleozoic rocks to the east (Sims, 
1991). An infolded belt of Early Proterozoic (Marquette 
Range Supergroup) rocks indents the Archean fold nose in 
the Republic trough (fig. 1). In the area west of the Republic 
trough, Taylor (1967) determined two principal phases of 
deformation: (1) early, probably flat lying folds with axial 
planes trending northeastward, and (2) younger upright 
folds with steep northwest-trending axial surfaces. The 
latter phase mainly controls the distribution of the rock 
units.

153A. Pinkish-gray, medium-grained, foliated granite, SEViNEVi 
sec. 7, T. 46 N., R. 26 W. Biotite is weakly altered.

146-88. "Tilden granite" of Hammond (1978). Quartz and biotite are 
recrystallized in shears; biotite slightly altered to chlorite.

1. "Tilden granite" of Hammond (1978, p. 63). Potassium 
feldspar is microperthite. Plagioclase has concentric 
zoning. Highly fractured.

226A. Light-gray, medium-grained, foliated granite. Cut by 
fractures. Biotite highly altered to chlorite. Quarry, 
SE'ASW'A sec. 21, T. 46 N., R. 26 W.

226B. Pale-reddish-brown, medium-grained foliated granite. Cut by 
shears, some with mylonite. Biotite highly altered to 
chlorite and calcite. SEV&SWV& sec. 21, T. 46 N., R. 26 
W. Same locality as 226A.

In the Marquette area, early gently inclined to 
recumbent folds that trend northwestward and plunge gently 
northward (fig. 4) are the dominant structure in the gneisses. 
These folds deform an older foliation (Sj). Boudinage 
accompanied the folding; the boudins plunge subparallel to 
gently inclined fold hinges. The flat foliation is overprinted 
at a distance of about 0.4 km from the GLTZ by the 
mylonite foliation in the GLTZ. Discernible remnants of the 
older, gently dipping foliation remain, however, in the 
mylonite zone.

A narrow ductile shear zone trending N. 45° W. and 
dipping 75° NE. was delineated in the eastern part of 
sec. 31, T. 47 N., R. 26 W., 1.5 km south of Palmer (fig. 1). 
A mineral lineation and mullions in the shear zone plunge 
70° N. 10° E. The rocks within this shear zone are fine 
grained (mylonite) and extensively serialized. The shearing 
obliterates the older, gently dipping foliation.

GREAT LAKES TECTONIC ZONE

The GLTZ is characterized in the Marquette area 
(figs. 1, 5, and 6) by a mylonite zone about 2.4 km wide that

E8 Precambrian Geology of Lake Superior Region



Lower hemisphere

Figure 4. Equal-area projection of poles to foliation (cross, 
n=26), lineations (dot, n=9), and fold hinges (open circle, n=4) 
in gneisses of Archean gneiss terrane.

has been superposed on dominantly massive granitoid rocks 
and schists of the Archean greenstone-granite terrane and 
previously deformed rocks of the Archean gneiss terrane. 
As mapped (fig. 5), the mylonite zone is about 2 km wide in 
the greenstone-granite terrane and 0.4 km wide in the gneiss 
terrane. The great width of this shear zone distinguishes it 
from the other, much narrower shear zones and faults in the 
region. The mylonite grades northward into protomylonite 
and highly fractured and altered rocks (fig. 5).

Foliation in the mylonite zone strikes west-northwest 
and dips steeply southwest (fig. 7), presumably subparallel 
to the N. 60°-65° W.-trending boundary between the 
greenstone-granite and gneiss terranes. A pronounced 
rodding (stretching) lineation in the mylonite, expressed 
mainly by comminuted and recrystallized quartz and quartz- 
feldspar aggregates, plunges about 45° S. 45° E. Hinges of 
tight folds are subparallel to the plunge of the stretching 
lineation (fig. 7). Locally, slickensides and tectonic grooves 
are also parallel to the lineation.

Mylonite

The mylonite is mainly orthomylonite, as defined by 
Wise and others (1984), inasmuch as surviving megacrysts 
compose 10-20 percent of the rock. In the terminology of 
Hanmer (1987), the mylonites are mainly "heteroclastic" 
because the porphyroclasts have variable size ranges, but

include ''homoclastic" mylonite having more uniform 
textural characteristics. Ultramylonite is absent except on a 
scale of a few centimeters.

Mylonite on the north side of the boundary between 
the greenstone-granite terrane and the gneiss terrane shows 
progressive sequential textural development from proto­ 
mylonite to orthomylonite. In the zone of protomylonite, 
quartz in granitoid rocks is strained, sutured, and recrystal­ 
lized into lensoid aggregates. In the northern part of the 
mylonite zone, as defined in figure 5, quartz typically is 
recrystallized into "ribbon quartz," yielding a pronounced 
rodding (stretch) lineation. Amphibolite xenoliths in the 
granitoid rocks in this part of the zone are virtually 
undeformed but are somewhat retrograded, as indicated by 
the presence of some actinolite and chlorite, indicating 
deformation under upper greenschist metamorphic condi­ 
tions. Inward, the relatively stiff minerals, plagioclase and 
potassium feldspar, are progressively recrystallized to finer 
grain sizes, with the development of core-mantle structures 
(White, 1976) or type IP and 1M structures (Hanmer, 
1982); these structures yielded oriented aggregates of quartz 
and of quartz-and-feldspar that produce a prominent 
stretching lineation. Accompanying biotite is mainly recrys­ 
tallized in planar or irregular shears.

Interpretation

The Great Lakes tectonic zone has been interpreted 
(Gibbs and others, 1984; Southwick and Sims, in press) as 
a paleosuture resulting from continent-continent collision 
that juxtaposed the Archean gneiss and greenstone-granite 
terranes. In the Marquette area, the stretching lineation, 
which represents the line of tectonic transport (Schackleton 
and Ries, 1984), indicates that collision was oblique, 
resulting in dextral shear along the N. 60°-65° W.-trending 
boundary (paleosuture). The parallelism of the fold axes 
with the extension direction (X finite strain axis), which is 
common in many ductile shear zones (Bryant and Reed, 
1969), can be accounted for by rotation of fold axes as a 
result of shear strain perpendicular to the displacement 
direction (Ridley, 1986; Ridley and Casey, 1989). The 
deformation resulted from a combination of thrust shear and 
wrench shear.

The oblique collision would be expected to produce 
dextral shear across a large region north of the GLTZ 
(fig. 8). The extent of the area affected by this dextral 
transcurrent shear is not definitely known, however, 
because dextral shear was the dominant mechanism of 
deformation throughout most of the Superior province 
(Card, 1990). Card has proposed that the Superior craton 
was constructed from the oblique subduction of a suc­ 
cession of arcs, seamounts, and microcontinents or craton- 
ized islands (modern analogs such as Borneo or New 
Guinea) that progressed temporally from north (oldest) to 
south (youngest). This hypothesis is supported by existing

Great Lakes Tectonic Zone in Marquette Area, Michigan E9
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EXPLANATION
Archcan

Greenstone-granite terrane

Biotite schist and granitoid rocks

Mylonite Protolith dominantly granitoid rocks but includes
biotite schist and amphibolite 

Gneiss terrane
Gneiss, migmatite, and amphibolite-lncludes foliated and

massive granite 
Mylonite Dominantly mylonitic quartzofeldspathic gneiss

Silicified rocks

Boundary between rocks of greenstone-granite terrane 
and gneiss terrane within the Great Lakes tectonic 
zone(GLTZ)

- Approximate outer limit of orthomylonile in Great Lakes 
tectonic zone

Strike and dip of foliation 
Inclined

Vertical 

Bearing and plunge of minor fold

Bearing and plunge of lineation May be combined with 
foliation symbols

geochronological data, particularly the southward-younging 
ages of the terminal granitoid plutons in the various sub- 
provinces of the Superior province (Hoffman, 1989).

The absence of any known suture in the Wawa 
subprovince (fig. 8) suggests that it is a single structural 
terrane. Structures in the greenstone-granite rocks of north­ 
ern Minnesota (Wawa subprovince) are remarkably similar 
to those in northern Michigan. In northern Minnesota, 
deformed and metamorphosed volcanic and sedimentary 
rocks of the Vermilion district (Sims, 1976; Sims and 
Southwick, 1985) compose an east-trending belt between 
higher grade rocks of the Late Archean Vermilion Granitic 
Complex (Quetico subprovince, fig. 8) (Southwick, 1972) 
and the Giants Range batholith to the south. The measured 
strain, a cleavage, upright folds, and a mineral lineation in 
this belt have been attributed to the "main" phase of 
deformation (D2) that followed an early nappe-forming 
event (D t ) (Bauer, 1985). The nappes show little evidence 
of a penetrative fabric (Hudleston, 1976). Hudleston and 
others (1988) attributed the (D2) deformation to regional 
dextral transpression, as the strain pattern requires a 
northeast-southwest component of shortening in addition to 
shear. They further proposed that major dextral faults, such 
as the Vermilion fault (fig. 8), are later more brittle 
expressions of this shear regime. They concluded that the 
D2 transpressive deformation resulted from oblique com­ 
pression between the two more rigid crustal blocks to the 
north (Quetico subprovince) and south (Giants Range 
batholith). A similar tectonic regime has been recognized in 
the Rainy Lake area (Poulsen and others, 1980; Day and 
Sims, 1984; Wood, 1980), where early recumbent folding 
was followed by upright folding and dextral strike-slip 
faulting.

Figure 6. Isometric diagram (not to scale) illustrating 
geometry and deformational elements of Great Lakes 
tectonic zone. A, mylonitic foliation; B, quartz and quartz- 
feldspar aggregates that define a moderately plunging stretch 
lineation; C, dominantly granite-tonalite rocks of Archean 
greenstone-granite terrane; D, gneiss of Archean gneiss 
terrane.

Lower hemisphere

Figure 7. Equal-area projection of poles to foliation (cross, 
n=21), stretching lineation (dot, n=19), and fold hinges (open 
circle, n=3) in mylonite of Great Lakes tectonic zone, Sands 
and Palmer ZVz-minute quadrangles, Marquette area, 
Michigan.

Recent precise isotopic analyses of zircon, titanite, 
and rutile from the Rainy Lake area, Canada (Davis and 
others, 1989), which lies between the Quetico and Wabi- 
goon subprovinces, have provided time constraints on these

Great Lakes Tectonic Zone in Marquette Area, Michigan E11



97
°

95
°

94
°

93
°

92
°

90
°

a-
 

55' n 8 f

49
//

/ 1
 1 

1 1
 1 

n
 1 

1 1
 1 

1 1
 1 

1 1
 11

 1 
1 1

 1 
1 1

 1 
1 1

 1 
hi

 1 
1 1

 1 
1 1

 1 
1 1

 M
 1 

1 1
 1 

1 /
//

//
[/

//
/ /

//
//

//
i/

 /
//

//
//

//
//

//
//

,
""

  
 
 "

 -
  
 -
-.

  
 

ab
io

on
 s

ub
ro

v
50

10
0 

KI
LO

M
ET

ER
S

:
/)<

v 
>*

< 
y 

' "
<"

" 
"> 

+ 
~* 

A 
< 

^W
is

co
ns

in
 m

ag
m

at
ic

 t
er

ra
ne

s 
vr

*
v

'1
';
iA

i
1-
\<

'|
 

ro

^
f-

::
:7

^
K

::
^
:>

:^
^
:^

::
':
^
^
:^

::
^

46
° 
 

M
id

dl
e 

P
ro

te
ro

zo
ic

V
o

lc
a
n

ic
, 

s
e
d

im
e
n

ta
ry

, 
an

d
 p

lu
to

n
ic

 r
o

ck
s 

o
f

M
id

c
o

n
ti

n
e
n

t 
ri

ft
 s

ys
te

m
 (

=
1
,1

0
0
 M

a
) 

E
a

rl
y

 P
ro

te
ro

zo
ic

T
u

rb
id

it
e

s
 o

v
e
rl

y
in

g
 s

h
e

lf
 d

ep
o

si
ts

P
lu

to
n

ic
 a

n
d

 v
o

lc
a
n

ic
 r

o
ck

s

C
o

m
p

le
x
 c

o
n

ti
n

e
n

ta
l-

m
a

rg
in

 s
eq

u
en

ce
s

E
X

P
L

A
N

A
T

IO
N

 
A

rc
he

an
R

o
ck

s 
o

f 
g

re
e
n

s
to

n
e
-g

ra
n

it
e
 t

e
rr

a
n

e
 

(S
u

p
e
ri

o
r 

p
ro

v
in

c
e

)

R
o

ck
s 

o
f 

g
n

ei
ss

 t
e
rr

a
n

e
 

C
o

n
ta

c
t

H
ig

h
-a

n
gl

e 
fa

ul
t

T
ra

ns
cu

rr
en

t 
fa

u
lt

  
Sh

ow
in

g 
re

la
tiv

e 
ho

riz
on

ta
l 

m
ov

em
en

t

 
*
 
 
*
 
 T

h
ru

st
 f

a
u
lt 

S
a
w

te
e
th

 o
n 

ov
er

th
ru

st
 b

lo
ck

 
-
-
-
-
 T

ra
c

e
 o

f 
G

re
a

t 
L

a
k

e
s

 t
e
c
to

n
ic

 z
o

n
e

 (
G

L
T

2)

 
  
  
 

T
re

n
d

 o
f 

m
a

g
n

e
ti

c
 a

n
o

m
a

ly

Fi
gu

re
 8

. 
S

im
pl

ifi
ed

 t
ec

to
ni

c 
m

ap
 o

f 
La

ke
 S

up
er

io
r 

re
gi

on
 s

ho
w

in
g 

G
re

at
 L

ak
es

 t
ec

to
ni

c 
zo

ne
 a

nd
 a

dj
ac

en
t 

A
rc

he
an

 t
er

ra
ne

s.
 G

eo
lo

gy
 m

od
ifi

ed
 f

ro
m

 M
or

ey
 a

nd
 o

th
er

s 
(1

98
2)

, 
S

ou
th

w
ic

k 
an

d 
M

or
ey

 (
in

 p
re

ss
), 

Si
m

s 
(1

99
1)

, 
an

d 
W

.C
. 

D
ay

 (
w

rit
te

n 
co

m
m

un
., 

19
90

). 
T

er
m

in
ol

og
y 

of
 E

ar
ly

 P
ro

te
ro

zo
ic

 r
oc

ks
 m

od
ifi

ed
 f

ro
m

 S
ou

th
w

ic
k 

an
d 

M
or

ey
 

(in
 p

re
ss

).



structural events. The major deformation, including nappe 
emplacement, thrusting, and local doming, took place 
between 2,696 Ma and 2,692 Ma; this deformation was 
followed shortly by wrench faulting and simultaneous 
deposition of conglomerate/arenite (Seine Group), which 
occurred in the interval 2,692-2,686 Ma. Late (Algoman) 
granitic plutons were emplaced about 2,686 Ma, although 
some are older. In the Wawa subprovince, west of Thunder 
Bay, Ont. (fig. 8), Corfu and Stott (1986) found that the D l 
deformation occurred during or before the intrusion of the 
Shebandowan Lake pluton at 2,696±2 Ma. Deformation D2 
in this area occurred between 2,689+3/-2 Ma and 
2,684+6/-3 Ma, similar to the age suggested by Davis and 
others (1989) for D2 in the Rainy Lake wrench zone. These 
ages are compatible with the less precise isotopic ages on 
rocks in northern Minnesota and Michigan (Peterman, 
1979), and it seems probable that the rocks and structures 
throughout the Wawa and Quetico subprovinces are 
approximately coeval (Percival, 1989). Although conver­ 
gence along the GLTZ undoubtedly was diachronous, 
collision probably occurred in the approximate interval 
2,692-2,686 Ma (Davis and others, 1989).

Kinematic Analysis

The attitude of the stretching lineation (line of 
tectonic transport) in the mylonite exposed south of Mar- 
quette together with asymmetric meso- and micro-structures 
revealing sense of movement indicates that the oblique 
collision resulted in dextral-thrust shear along the GLTZ 
and northwestward vergence and probable overriding of the 
Archean greenstone-granite terrane by the Archean gneiss 
terrane. Kinematic indicators rotated mica grains within 
narrow compositional layers, asymmetric porphyroclasts 
with tails (a type; Simpson, 1986), and asymmetric micro- 
folds in mylonitic layering indicate northwestward ver­ 
gence. This information implies southward subduction of 
the Archean greenstone-granite terrane (Wawa subprov­ 
ince) beneath the Archean gneiss terrane.

Evolution

The northwest direction of tectonic transport during 
suturing of the Archean terranes ascertained from the 
Marquette area provides a means for determining the 
evolution of the GLTZ and the variable trajectory of stress 
into the Superior province crust.

The GLTZ in the Lake Superior region is char­ 
acterized by systematic angular bends that alternately trend 
northeastward and west-northwestward (fig. 8). Presumably 
this zigzag pattern reflects original irregularities in the 
margin of the Archean greenstone-granite terrane (or 
Superior province) crust, which was a continental margin 
before convergence and collision with the southern Archean 
gneiss terrane.

The northeast-trending and west-northwest-trending 
segments of the GLTZ have different structural styles. As 
discussed earlier, deformation along the northwest-trending 
segments of the GLTZ, as particularly shown by data from 
the Marquette segment, was principally caused by dextral 
transpression resulting from oblique collision. Transmittal 
of this transcurrent shear into rocks north of the GLTZ 
yielded a widespread, pervasive west-northwest- to west- 
striking foliation, subparallel upright folds, and northwest- 
to west-trending dextral faults and shear zones in the 
Archean greenstone-granite terrane.

The similarly oriented northwest-trending segment of 
the GLTZ in northwestern Wisconsin has many structural 
features in common with the Marquette segment. Foliation 
and upright folds in low amphibolite-facies rocks of the 
Archean greenstone-granite terrane (unit Wga, fig. 4, Sims 
and others, 1985) strike west-northwest, and mineral 
lineations and fold hinges mainly plunge gently southeast. 
The boundary between the two terranes is not exposed 
because of a glacial cover, but is presumed to lie along the 
south edge of unit Wga. Numerous northwest-trending 
dextral faults, some of which reactivated in Early Protero- 
zoic time, have been mapped in the area (Sims and others, 
1985; fig. 1).

Collision along the northeast-trending segments of 
the GLTZ, on the other hand, produced northeast-trending 
structures of apparently more restricted areal extent. In the 
northeast-trending Marenisco segment (fig. 8; Sims and 
others, 1984), the boundary is covered by Early Proterozoic 
sedimentary and volcanic rocks, but lithologic layering and 
foliation in rocks of the adjacent Archean greenstone- 
granite terrane near the boundary trend northeastward and 
are deformed into upright, moderately tight northeast- 
trending folds that plunge 45°-50° SW. These structures are 
presumably subparallel to the covered Archean boundary. 
Archean metamorphism has been overprinted by Early 
Proterozoic Penokean nodal metamorphism centered on the 
Watersmeet dome (Sims and others, 1985; Sims, 1990); the 
presence of relict garnet at a few places in the Archean 
rocks of the greenstone-granite terrane near the boundary 
suggests that these rocks were metamorphosed to at least 
upper greenschist facies in Archean time. In the same way, 
north-verging Penokean deformation in the boundary zone 
overprinted Archean structures (Sims and others, 1984). An 
axial plane S2 (Penokean) penetrative cleavage that strikes 
northeast and dips 45°-70° SE. was superposed on the 
previously folded rocks. Apparently the Archean rocks were 
not refolded, however, as a result of the Penokean 
deformation.

In the northeast-trending Minnesota segment of the 
GLTZ, neither the terrane boundary nor the Archean rocks 
on either side are exposed. They are covered in west-central 
Minnesota by thick Quaternary glacial deposits and in 
central Minnesota by Early Proterozoic sedimentary and 
volcanic rocks of the Animikie basin (Southwick and
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others, 1988). The GLTZ has been investigated, however, 
by a detailed aeromagnetic survey, by computer-generated 
mapping of the second vertical derivative of the gravity 
field, and by shallow test-drilling (see Southwick and Sims, 
in press); the boundary has been located rather accurately on 
the basis of these data. The drilling has shown that the rocks 
on the northwest side are volcanogenic sedimentary and 
mafic to intermediate volcanic rocks, metamorphosed to 
upper greenschist fades, which are intruded by Afchean 
tonalite (Southwick and Chandler, 1983). These rocks are 
typical of the Archean greenstone-granite terrane in exposed 
parts of the Lake Superior region. A seismic reflection 
profile in central Minnesota acquired by COCORP 
(Consortium for Continental Reflection Profiling) has been 
interpreted to indicate that the GLTZ in this area is a 
shallow (=30°) north-dipping tectonic feature (Gibbs and 
others, 1984). In east-central Minnesota, the GLTZ is 
covered by Proterozoic rocks of the Animikie basin. The 
structural style in the Proterozoic cover indicates north- 
verging tectonism (Southwick and others, 1988), and as in 
the Marenisco segment, the Archean crustal boundary had a 
role in defining Penokean deformation.

Deformation along both of the northeast-trending 
segments of the GLTZ resulted mainly from northwest- 
southeast shortening, probably dominantly by flattening 
strain. The direction of tectonic transport during conver­ 
gence was virtually perpendicular to the juncture of the two 
terranes at these localities.

The origin of the zigzag pattern of the south edge of 
the Superior province, now marked by the GLTZ, is 
uncertain. The prevailing thought is that the Wawa subprov- 
ince is one of a sequence of stacked island arcs that formed 
progressively from north to south above north-dipping 
subduction zones as the continental mass to the south of 
the GLTZ (that is, the Archean gneiss terrane) migrated to 
the north (Card, 1990). With this interpretation, pos­ 
sible modern analogs of the Superior province are the 
convergent-plate boundaries of the western Pacific, as for 
example those of the Indonesian region (Hamilton, 1979).

The physical resemblance of the south margin of the 
Superior province to the Appalachian-Ouachita Paleozoic 
erogenic belt (Thomas, 1977), however, suggests a possible 
alternative interpretation for the origin of the Superior 
margin. In this interpretation, the Superior margin was a 
rifted continental margin. Two interpretations have been 
made for the origin of the Paleozoic continental margin: 
(1) rift segments offset by transform faults, as suggested by 
Thomas (1977, 1983), or (2) intersections between active 
rift arms at triple junctions (Rankin, 1976). Of these two 
suggestions, the rift-transform mechanism seems the more 
likely, with the Minnesota and Marenisco segments being 
the rifted segments (fig. 8) and the northwestern Wisconsin 
and Marquette segments being highly modified transform

faults. Regardless of the mechanism by which the zigzag 
Archean continental margin originated, the subsequent trace 
of the erogenic belt probably was inherited from the shape 
of the earlier margin.

CONCLUDING REMARKS

Convergence along the irregularly shaped margin of 
the Archean greenstone-granite terrane (GLTZ) resulted in a 
variable trajectory of stress into the continental crust and 
probably in along-strike diachroneity of orogeny. Structural 
data from the Marquette area, in particular, as well as 
elsewhere along the GLTZ, suggest that the major direction 
of tectonic transport was northwestward. Accordingly, 
promontories such as those along the concave part of the 
Marquette and Wisconsin segments of the GLTZ (fig. 8) 
must have projected as buttresses against which compres- 
sive stress was directed into the continental crust. Oblique 
compression at these points produced dextral shear across 
the region north of the suture, probably at least as far 
northward as the Quetico fault, a distance of about 250 km. 
This shear imposed a roughly east west, steep structural 
fabric on the rocks and, as a late, more brittle expression 
of the shear regime (Hudleston and others, 1988), the 
northwest- to west-trending dextral transcurrent faults.

Along the Marenisco and Minnesota segments of the 
GLTZ, where convergence was more nearly perpendicular 
to the ancient continental margin, a northeast-trending 
structural fabric was imposed on the rocks immediately 
cratonward from the suture.

I suggest that the main structural fabric (D2) in rocks 
of the Archean greenstone-granite terrane in the north- 
central United States (Wawa and Quetico subprovinces; 
fig. 8) resulted from the collision along the GLTZ. The 
predominance of orthomylonite rather than ultramylonite 
and the nearly pervasive retrogressive alteration (green- 
schist facies) in rocks of the greenstone-granite terrane 
suggest that the exposed collision zone was developed at a 
moderately shallow crustal level. As discussed in a previous 
report (Sims and others, 1980), the Archean structures in 
this regime played a strong role also in subsequent tec­ 
tonism, especially in the Early Proterozoic north-verging 
deformation.

I further suggest that the late-tectonic granite bodies 
in the Archean gneiss terrane are possibly related to the 
collision along the GLTZ and presumed southward subduc­ 
tion. The available age data on these granites are compatible 
with a presumed 2.69 Ga age for the collision. The "Tilden 
granite" of Hammond (1978) in Michigan has a probable 
Late Archean age, although both the U-Pb and Rb-Sr 
systems are disturbed. In the Minnesota River valley, in 
southwestern Minnesota, a large pluton of late-tectonic 
granite (Sacred Heart Granite) has a Pb-Pb age of about 
2,605 Ma (Doe and Delevaux, 1980) and a Rb-Sr age of 
about 2.7 Ga (Goldich and others, 1970). Doe and Delevaux
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(1980) have shown that 207Pb-204Pb values in the Sacred 
Heart Granite are characteristic of ensialic environments, as 
contrasted with the ensimatic (arc) granitoid bodies in the 
Superior province (greenstone-granite terrane). The ensialic 
environment indicates that the Archean gneiss terrane had 
been cratonized prior to emplacement of the Sacred Heart 
Granite. Precise ages are required to test the hypothesis that 
the Late Archean granites south of the GLTZ were indeed 
formed during continent-continent collision.

Cumulative data on the Archean Superior province 
(see Hoffman, 1989, for review) indicate that it consists of 
generally east trending belts of island arc and related rocks 
that were assembled progressively from north to south 
(Card, 1990), before finally colliding with the Archean 
gneiss terrane (continent) on the south at about 2,690 Ma. 
This pattern of accretion as well as the tectonic style is not 
unlike that in modern plate-tectonic regimes, indicating that 
plate-tectonic mechanisms existed in the Archean as well as 
in the Proterozoic and Phanerozoic.
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