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Abstract 

During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at 

the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). 

Three different crash scenarios were represented.  The first test simulated a flare-to-stall 

emergency or hard landing onto a rigid surface such as a road or runway.  The second test simulated 

a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a 

controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately 

prior to impact, resulting in a tail strike condition.  An on-board data acquisition system (DAS) 

captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard 

Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and co-

pilot.  Each of the three tests contained different airframe loading conditions and different types of 

restraints for both the pilot and co-pilot ATDs.  The results show large differences in occupant 

response and restraint performance with varying likelihoods of occupant injury.  
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Introduction 

During the summer of 2015, three full-scale crash tests of Cessna 172 aircraft were conducted at 

NASA Langley Research Center’s (LaRC) Landing and Impact Research (LandIR) Facility. These 

crash tests were conducted as a part of the Emergency Locator Transmitter Survivability and 

Reliability (ELTSAR) project, which had the ultimate goal of improving Emergency Locator 

Transmitter (ELT) reliability [1].   The LandIR facility has been in use since the mid 1970’s to 

conduct full-scale crash tests on aircraft and spacecraft for the improvement of safety features [2].  

LandIR is a unique facility that is used to impart combined forward and vertical velocities onto 

test articles at complex impact attitudes, which create more realistic crash conditions and scenarios 

than those tests conducted by pure vertical drops.  The facility uses a pendulum-like swing system 

to lift and swing the test articles into the ground.  Pitch rate can be varied or eliminated and the 

facility is capable of lifting and swinging test articles up to 32 tons in weight.  Combinations of 

swing cable length, drop height, angle of attack, impact surface (rigid, soil or water) and location 

can all be varied, creating a wide range of impact conditions.  

 

Some of the many full-scale tests conducted at LandIR led to improvements in seat certification 

guidelines [3], the development of parachute recovery system [4], and the development of 

composite crashworthiness airframe features [5]. The facility continues to provide critical safety 

research for the aviation community.  The LandIR facility is shown in Figure 1. 

 

 
Figure 1 - Landing and Impact Research Facility (LandIR) 
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The three tests Cessna 172 conducted were intended to represent general aviation (GA) accidents 

in which the airplane impacts the ground under severe but survivable conditions.  A severe but 

survivable crash condition is of interest for the ELTSAR project because ELT systems must 

function in a mishap where the occupants are physically incapacitated but alive and unable to call 

for help.  A severe but survivable crash condition is also preferable because it will quantitatively 

define (in part) the limits in which an occupant is reasonably expected to be able to survive the 

crash.  In order to help quantify the severity of the crash, airframe accelerations and post-test 

deformation were all examined, and two Anthropomorphic Test Devices (ATDs, a.k.a. crash test 

dummies) representing the pilot and co-pilot were used in each test.  The main objective for using 

the ATDs was to measure loads and accelerations within the ATD head, chest, pelvis and lumbar 

region, and to compare the data to established injury metrics and limits to determine the probability 

and severity of injury. 

 

Aircraft accidents, unfortunately, have a part of the aviation community ever since people have 

been flying airplanes.  The National Transportation Safety Board (NTSB) reports that between 

1972 and 1981, there were over 36,000 accidents involving GA aircraft.  From these, 16% included 

fatalities, and 9% included serious injuries [6].  A more recent NTSB summary from 2002 shows 

fatal accident rates have remained mostly constant between the years of 1993 (3.3 deaths per 

100,000 hours flown) and 2002 (2.3 deaths per 100,000 hours flown) [7].  Even with improvements 

constantly being made in aircraft crashworthiness, the persistence of accident occurrences in GA 

shows that research is still necessary for implementing guidelines for improvements in aircraft, 

seat and restraint performance.    

 

In one notable example, the Federal Aviation Administration (FAA) Code of Federal Regulations 

(CFR) Section 23.2, “Special Retroactive Requirements,” has mandated that shoulder harnesses 

must be provided on all airplanes manufactured after December 12, 1986 [8].  Literature has 

already shown that the use of a shoulder harness has significantly reduced fatality rates during 

aircraft accidents.  One study conducted on commuter and air taxi crashes suggests that the use of 

a shoulder harness reduces the chances of fatality by a factor of almost 4 [9], and the FAA states 

that using shoulder belts in small aircraft would reduce major injuries by 88% and fatalities by 

20% [10].  Similarly, the Canadian Transportation Safety Administration (TSA) states “the use of 

a shoulder harness in conjunction with a safety belt can reduce serious injuries to the head, neck, 

and upper torso of aircraft occupants and has the potential to reduce fatalities of occupants involved 

in an otherwise survivable accident [11].”   Additionally, restraint systems containing airbags were 

first certified in 2003 by the FAA and have been proven successful in reducing the severity of 

occupant injury, according to one NTSB study [12].  

 

Crash testing can be used to assess injury though the simulation of real life conditions by using 

flight  or flight-like structures and ATDs.  This type of testing is often superior to actual crash data 

due to the controlled conditions used in crash testing and rigor used in data collection.  In most 

instances, the acquisition of accident data is obtained though mishap reports, and databases 

containing parameters of the crash (make/model of airplane, impact conditions, weather, etc.) are 

in many cases incomplete and often subject to interpretation.  Subcomponent tests, such as the 

FAA seat qualification tests [3], are a tier below full-scale experimentation, but nonetheless 

provide controlled conditions for which to evaluate components.  NASA has conducted many full-
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scale and subscale crash tests under a variety of conditions, using instrumented ATDs and various 

airframes and airframe components.  Many of the airframe and occupant injury data for both 

helicopters [13-16] and airplanes [17] has been published.  By using the crash test data obtained 

during the Cessna 172 crash tests, along with established injury criteria, a complete analysis of the 

crash severity can be obtained and used to further understand real life accidents. 

 

Crash Test Overview 

Three Cessna 172 airplanes were used as test articles.  Airplanes used for Tests 1 and 2 were a 

1958 model year, while the airplane used for Test 3 was a 1974 model year.  Airplanes 1 and 3 

were current on their annual inspection and were flying as of late 2014.  Three differing accidents 

representing severe but survivable crash scenarios were evaluated for the test series.  The first 

scenario represented a flare-into-stall emergency landing onto a rigid surface such as a highway.  

This scenario was tested by impacting the airplane onto concrete featuring a high sink rate at a 

slight nose up attitude.  The second and third scenarios were impact tests onto a soil surface.  This 

surface was created by building up a 2-ft. high bed of soil at the impact location.  In scenario two, 

the airplane impacted the soil in a nose down attitude, simulating a Controlled Flight Into Terrain 

(CFIT).  In the third scenario, the airplane impacted the soil in a nose up attitude, resulting in a tail 

strike condition.  

 

Each airplane was outfitted with numerous accelerometers and cameras which captured as much 

of the impact accelerations and structural deformation as possible.  The pilot side of the airplane 

was painted with a stochastic black and white speckle pattern which was used for full field 

photogrammetric tracking and is the subject of a separate report [18].  Each test contained two 

Hybrid II 50th percentile ATDs, which represented the pilot and co-pilot. 

 

Each ATD was restrained using commonly used restraints in typical GA airplanes. The restraints 

were intentionally varied between the pilot and co-pilot for each test to provide comparative results 

and probability of injury for different restraints.  Furthermore, restraint types varied between tests, 

giving a total of six discrete data points to evaluate.  One major objective of varying the restraint 

types was to generate data of occupant responses when using various types of 3-point shoulder 

harnesses as compared to a 2-point lap belt only restraint.   

 

The original seats for all three airplanes were used.  The ATD occupants were positioned such that 

their feet contacted the brake pedals and hands were placed on their knees.  All restraint systems 

were purchased new and installed per manufacturer’s instructions.  On airplanes which did not 

include anchoring locations of the restraints due to model year, a retrofit kit included with the 

restraint was installed according to manufacturer’s instructions.  Details describing the specific 

types of restraints are provided in each of the following test sections. Once tested, restraints were 

not reused. Each ATD was instrumented with 7 channels of data and all instrumentation was 

oriented to and all results were filtered in accordance to SAE-J211 [19].  These channels are 

summarized in Table 1. 
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Table 1 – ATD instrumentation 

ATD Location Measurement Direction 

Head Acceleration Horizontal, Vertical 

Chest Acceleration Horizontal 

Pelvis Acceleration Horizontal, Vertical 

Lumbar Force Vertical 

Seatbelt Force Strap tension 

 

 

Full details describing each test, along with airframe results, time histories and photos are provided 

in [20]; however, some of the results from each test are summarized herein.  

 

Test 1 Results 

Test 1 occurred on July 1, 2015, and simulated an emergency landing onto a rigid surface such as 

concrete or a highway.  The airplane center of gravity (CG) impacted the ground at a flight path 

velocity of 64.4 ft./sec.,  corresponding to 60.2-ft./sec. horizontal and 23.0-ft./sec. vertical 

velocities at an Angle of Attack (AoA) of 1.5 degrees nose high.  The landing gear compressed for 

approximately 0.300 seconds and the plane rebounded from the ground with a large amount of 

residual horizontal velocity and then contacted a large catch net approximately 0.475 seconds after 

impact.  The large catch net was the main mechanism for providing the horizontal deceleration. 

The accelerations throughout the entire airframe were in general agreement with each other, and 

are fully described and plotted in [20].  Accelerations measured by accelerometers mounted 

beneath both the pilot and co-pilots seats, generally agreed with the other airframe accelerations, 

and are shown in Figure 2.  

 

 
 

Figure 2 - Floor accelerations from Test 1 

 

The peak vertical floor accelerations mainly occurred during the first 0.300 seconds after initial 

ground contact.  The shape of the pulse can be generalized as trapezoidal in nature, having a 
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sustained average acceleration of 4.8 g for the pilot and 4.6 g for the co-pilot.  The trapezoidal 

shape is sustained from the landing gear flexing.   Horizontal accelerations were mainly seen 

during the post-impact net capture, which occurred between 0.800 seconds and 1.600 seconds after 

initial ground impact.  The shape of the horizontal acceleration pulse was generalized as triangular, 

having peaks of 5.4 g for both the pilot and co-pilot, which occurred approximately 1.200 seconds 

after impact, or during the middle of the net capture event.  When examining occupant motion and 

accelerations, it generally follows that the relevant occupant vertical motion occurs due to the 

ground contact, and the relevant occupant horizontal motion occurs due to the net capture. 

 

The pilot was outfitted with a 3 point restraint, consisting of a fixed lap and shoulder belt.  The co-

pilot was outfitted with a lap belt only.  Figure 3 shows the pre-test setup for the occupants for 

Test 1.  Note since the co-pilot was not wearing a shoulder belt, he was taped into the seat to 

prevent slouching forward during airplane pullback, prior to impact.  The tape was designed to fail 

upon ground impact. 

 

 
Figure 3 - Test 1 ATD configuration pre-test 

An onboard high speed camera mounted in the instrument panel was able to capture the entire 

impact event, starting at ground contact and ending after the net capture.  Four frames of the video 

are presented in Figure 4. The four frames represent notable event times from either the occupant 

or the restraint. The photo shown in the upper left corner shows the occupants immediately before 

impact, indicating symmetric positioning between the pilot and co-pilot, with the exception that 

the co-pilot’s right hand becomes dislodged from its original location on the right knee. The frame 

in the upper right shows the approximate time in which the occupants experienced the maximum 

lumbar load, which occurred very early in the ground contact at 0.076 seconds after impact. The 

occupants do not show noticeable forward displacement, and only a slight amount of vertical 

deformation into the seats. The frame in the lower left shows the time at which the restraint load 

cell measured maximum tensile load, which occurred at the same approximate time of maximum 

horizontal deceleration due to the net capture. The lower right frame shows the occupant position, 

after the airplane motion has stopped.  Figure 5 shows the same image sequence taken from the 

pilot wing camera.  
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Figure 4 - Test 1 occupant motion sequence - onboard camera 
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Figure 5 - Test 1 occupant sequence - wing camera 

The vertical displacement causing the maximum lumbar load in the occupants is evident from the 

wing camera.  Noticeable vertical displacement is present in both the pilot and co-pilot causing the 

lumbar load to reach a maximum value.  The camera also showed noticeable differences in the 

position of the head and chest during the time of maximum belt load.  The post impact image 

shows that the occupants generally return to their pre-impact position. 

 

Maximum head flail was further examined for both the pilot and co-pilot.  The maximum head 

flail for the pilot occurred at 1.063 seconds after impact, while the maximum head flail for the co-

pilot occurred a short time later at 1.132 seconds after impact.  Both of these events occurred from 

the horizontal deceleration due to the net catch.  Figure 6 and Figure 7 show the closest available 

frame taken from the wing cameras for the pilot and co-pilot, respectively, and compared them to 

a pre-impact state.  Using the best available scaling information based on the known size of the 

window, the pilot’s head experienced slightly less than 4 in. of forward travel. Using the best 

available scaling information based on the known size of the co-pilot window, the large amount 

of motion of the co-pilot head achieved a maximum forward displacement of approximately 17 in. 

when compared to the head prior to impact.  
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Figure 6 – Test 1 pilot head flail.  Before impact (top) and max flail (bottom)  
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Figure 7 - Test 1 co-pilot head flail.  Before impact (top) and at max flail (bottom) 

 

The type of restraint clearly affected the maximum head motion. The addition of the shoulder belt 

reduced the head motion by approximately 13 in. and clearly prevented the pilot from striking the 

instrument panel. However, it was unclear from both the wing and the panel video as to whether 

the co-pilot head had actually made contact with the instrument panel. The acceleration responses 

from the head are next plotted to obtain insight into the ATD accelerations and loads.  Figure 8 

first shows the ATD horizontal accelerations. 
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Figure 8 - Test 1 ATD horizontal acceleration.  Pilot (left) and co-pilot (right) 

As stated previously, since the majority of the horizontal accelerations occurred during the net 

catch event, the accelerations in the occupants will be examined during the net catch. Generally, 

the pilot and co-pilot accelerations match shape and duration in the horizontal direction.  The pilot 

acceleration signal shows a smoother trace than the co-pilot, and the co-pilot seems to experience 

at least two minor spikes in head acceleration.  The pilot acceleration reaches maximums of 8.4, -

5.6 and -5.3 g in the head, chest and pelvis, respectively.  These results are contrasted in the co-

pilot, which experiences 30.4 (not shown), -10.8 and -9.8 maximum g in the head, chest and pelvis, 

respectively.  The larger peak value in the head could be due to an impact with either the yoke or 

instrument panel, while the large values in the chest and pelvis are likely due to the increased 

acceleration as the lap belt is loaded.  Vertical acceleration is next examined, and shown in Figure 

9. 

 

 

 
Figure 9 - Test 1 ATD vertical acceleration.  Pilot (left) and co-pilot (right) 
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Using the data from the initial ground contact where the vertical accelerations are the most 

pronounced, the vertical accelerations for the pilot and co-pilot are in good agreement with each 

other.   First examining the head, the maximum acceleration for both the pilot and co-pilot is 12.0 

g, which occurs at 0.073 seconds after impact for the pilot and 0.07 seconds after impact for the 

co-pilot.  The pelvic accelerations are slightly different, where the maximum acceleration for the 

pilot is 10.5 g and the maximum for the co-pilot is 10.3 g.  The pulse durations for the head and 

pelvis match each other for both the pilot and co-pilot, as do the pulse durations.  These results 

indicate uniform loading, which is a result of the initial vertical impact.  The data were next used 

to calculate a Head Injury Criteria value. 

 

Head injury criteria (HIC), as defined in the Federal Motor Vehicle Safety Standards (FMVSS) 

No. 208 [21], is a way of evaluating the acceleration data obtained from an ATD during a crash 

test and equating it to the probability of skull fracture.  The equation is: 

 

𝐻𝐼𝐶 = max(
1

𝑡2 − 𝑡1
∫ 𝑎(𝑡) ∗ 𝑑𝑡

𝑡2

𝑡1

)

2.5

∗ (𝑡2 − 𝑡1) 

 

The variable a(t) is the root sum square of the head acceleration time history obtained from the 

test, which has moving end points of t1 and t2.  Typically, HIC uses a 36 millisecond moving 

window and a limit of 1000 for a 50th percentile ATD.  The HIC value of 1000 gives the probability 

of a skull fracture (Abbreviated Injury Scale ≥ 2) at 48% [22], and is used as the limit in FAR 

23.562 [23].  The HIC values for Test 1 are shown in Table 2. 

 

Table 2 - Test 1 HIC36 values 

 HIC36 

Pilot 11 

Co-pilot 25 

 

As indicated in Table 2, neither the pilot nor co-pilot sustained high HIC loading from the test, 

suggesting that the co-pilot head did not strike the instrument panel.  The acceleration profile from 

the net capture was low enough and spread over a large enough time period that both the spike 

magnitude and duration seen in the co-pilot head accelerations used for HIC did not register high 

enough values to cross the injurious threshold. 

 

The tension developed in the restraints were next examined and plotted in Figure 10.  The tension 

is measured on the pilot shoulder belt, while the tension is measured on the co-pilot lap belt due to 

the lack of a shoulder restraint.  
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Figure 10 - Test 1 restraint loads 

The maximum restraint load of 491 lb. occurred at 1.26 seconds after ground contact for the pilot, 

and the maximum load of 294 lb. occurred at 1.18 seconds after ground contact for the co-pilot. 

Both of these times were during the horizontal deceleration due to the net capture.  While not 

directly comparable due to differing measurement locations and differing restraint types, it is clear 

that the shoulder belt required almost 500 lb. of tension to restrain the pilot into the seat with a 

maximum head displacement of 4 in. Because the shoulder belt was not present in co-pilot, the 

main restraint was the lap belt, providing almost 300 lb. of tension to restrain the co-pilot into the 

seat near the co-pilot’s pelvic region.   The load measured in the pilot shoulder belt was below the 

1,750 value specified in the FAR 23.562 [23]. 

 

Lumbar loads were next examined to check for spinal compression injury.  Primarily vertical in 

nature, the main portion of the lumbar loads occurred during the initial ground contact where the 

highest vertical accelerations also occurred.  The lumbar load was minimal during the net capture. 

Figure 11 shows the measured lumbar loads which occurred during the ground contact.    
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Figure 11 - Test 1 lumbar loads 

The pilot lumbar load peaks at 643 lb., while the co-pilot lumbar load shows a peak value of 535 

lb., both reaching peaks approximately 0.076 seconds after impact, which was near the beginning 

of the sustained portion in trapezoidal vertical acceleration profile.  The approximate 100 lb. 

difference could be due to the addition of a shoulder restraint, slight differences in ATD 

positioning, or the seats themselves.  However, both of these values are well below the 1,500 lb. 

limit established by the FAA in FAR 23.562 [23], indicating spinal compressive facture likely did 

not occur.  

 

The summary of Test 1 suggests that occupant loading from the ground contact caused 

accelerations and loads which were well below the established limits for injury.  The co-pilot head 

accelerations suggest that the head may have hit the instrument panel; however, the deceleration 

due to the net catch was slow enough such that the head contact with the instrument panel was 

likely not fatal.  The differences between using a shoulder with lap belt and a lap belt only are very 

evident during the large horizontal deceleration due to the net capture when comparing the torso 

flail between the pilot and co-pilot.  

 

Test 2 Results 

Test 2 was conducted on July 29, 2015 and was the first of 2 tests where the airplane impacted a 

soil surface.  The surface was to represent a dirt field or other type of unprepared surface not 

considered rigid.  The airplane CG impacted the soil at a 68.6-ft./sec. horizontal and 28.7-ft./sec. 

vertical velocities.  The AoA was 12.2 degrees nose down with a pitch rate of +16.1 

degrees/second.  

 

The nose of the airplane first came in contact with the soil due to the nose down configuration of 

the impact.  While the nose and nose gear began plowing into the soil, the forward momentum 
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caused the airplane to start rotating about the nose/nose gear position, which acted like a pivot 

point from which to rotate.  The airplane started to flip over, which caused the pilot wing to break 

free and also the tail to buckle.  At some point during the flipping rotation, the nose wheel became 

dislodged from the airframe.  The airplane landed upside down almost 2 seconds after impact, and 

rocked back and forth.  Approximately 6.79 seconds after impact, the airplane came to rest, upside 

down and oriented toward the co-pilot direction.  Figure 12 shows the post-crash orientation of the 

airplane.  

  

 
Figure 12 - Post-test orientation of airplane in Test 2 

Accelerations from accelerometers mounted on the floor under the crew seats are plotted in Figure 

13.  Unlike Test 1, both the main horizontal and vertical accelerations occurred within the first 

0.300 seconds of ground (soil) contact.   

 

 
 

Figure 13 - Floor accelerations from Test 2 

The horizontal acceleration pulse shapes were triangular having peak accelerations of -27.0 g for 

the pilot floor and -32.9 g for the co-pilot floor.  The sustained peak value, which represented an 
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average value of the accelerations which occurred between 0.100 and 0.120 seconds was -18.6 g 

for both the pilot and co-pilot locations.  The main horizontal acceleration pulse lasted for 

approximately 0.200 seconds after soil contact.  The vertical acceleration was also triangular in 

shape, having peaks of 23.1 g in the pilot floor and 31.7 g in the co-pilot floor.  The sustained 

peaks, taking the average between 0.086 and 0.11 seconds, gives 14.6 g and 17.6 g for the pilot 

and co-pilot, respectively.  The pulse duration is much shorter than the horizontal pulse, with the 

main acceleration occurring between 0.0725 and 0.150 seconds, giving a total duration of 0.0775 

seconds.   

 

The pilot was outfitted with a lap belt only while the co-pilot was outfitted with a lap belt and 

shoulder y-harness.  Both restraints were purchased new and outfitted into the existing restraint 

attachment points.  For the shoulder y-harness, a retrofit kit was included and installed per 

manufacturer’s instructions, which required the y-harness to attach into the rear wing support 

stiffener, located on the ceiling behind the co-pilot location.  All belts were tightened to a 

pretension of approximately 20 lb.  Figure 14 shows the occupant configuration, prior to the test.  

 

 
Figure 14 - Test 2 occupant configuration - pre-test 

Load cells were located on the lap belt for the pilot and on the left y-harness shoulder strap for the 

co-pilot.  The high speed camera mounted in the instrument panel was able to capture the entire 

impact event, starting at soil contact and ending after the airplane had flipped upside-down.  Four 

frames of the video are presented in Figure 15.  The upper left frame in Figure 15, shows the 

occupant position at impact.  As with Test 1, the ATDs are in a symmetric configuration, sitting 

upright with their hands on their knees.  The upper right frame shows the ATD position at the time 

of maximum lumbar load, which occurs just after the time of maximum vertical acceleration, but 

also at the time of maximum horizontal acceleration.  The effect of the maximum horizontal 

acceleration is shown by noting that both ATDs have begun to flail forward.  The lower left frame 

shows a major event happening: the y-harness restraint used on the co-pilot failing at the stitching 

location.   This failure occurred at 0.137 seconds after impact, which is 0.020 seconds after the 

peak acceleration value measured by the co-pilot floor accelerometers, and will be discussed in 

detail below.  Because this restraint failed, both ATD torsos flailed forward.  The lower right frame 
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shows the maximum forward flail; however, the camera lens was not wide enough to capture the 

position of each of the ATDs heads at this particular time.  

 

 
Figure 15 - Test 2 occupant motion sequence - onboard camera 

The wing cameras were in a better position to capture the flail and are next examined. Figure 16 

shows the pilot flail from the pilot wing camera.  The wing camera frame clearly shows the pilot 

head impacting the instrument panel.  Using this view, along with the timing of the instrument 

panel camera shows that this event occurred very early in the impact loading.  It occurred 

immediately after the maximum horizontal acceleration, but before the airplane had started to flip 

over, meaning the large horizontal acceleration due to the initial impact was the cause of the head 

strike and not the flipping of the airplane. 
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Figure 16 - Test 2 pilot head flail. Before impact (top) and max flail (bottom) 

The wing camera showing the co-pilot flail was next examined, and is shown in Figure 17.  A 

major result from Test 2 is that the y-harness restraint failed at approximately 0.137 seconds after 

impact.  The failure occurred at the stitching where the “y” portion of the shoulder harness met 

with the single roof attachment strap.  This failure caused the co-pilot to act much like the pilot. 

However, the additional restraint of the torso due to the y-harness being present (before failure) 

delayed the forward motion enough that the co-pilot head may have just narrowly missed striking 

the instrument panel, or potentially struck the instrument panel with much less force than that of 

the pilot.  This finding will be confirmed when examining the acceleration profiles of the ATDs 

heads. 
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   Figure 17 - Test 2 co-pilot head flail.  Before impact (top) and max flail (bottom) 

Figure 18 shows two adjacent frames of video showing the y-harness before and after failure.  Post-

test inspections of the y-harness showed that it failed in the stitching which connected the y-web 

portions meant to go over the torso to the single aircraft attachment web. The webbing itself did 

not fail. Note that because the load cell was measuring a single portion of the y-harness, the loads 

can be assumed to be double the measured value on both the stitching and aircraft attachment 

webbing. 
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Figure 18 - Test 2 y-harness failure 

The strap loads are plotted in Figure 19.  The load cell reading in the y-shoulder harness reaches a 

peak value of 570 lb., which implies the stitching failure occurred at 1140 lb. The straps 

immediately unload after the failure due to loss of tension, and the load cell reading goes to zero.   

This failure load is well below the Upper Torso Restraints Requirement of 2,500 lb., as defined in 

SAE “Restraint Systems for Civil Aircraft” [24]. The pilot lap belt reached a maximum load of 

764 lb. The maximum forward flail for both occupants occurred after 0.200 seconds, which was a 

much later time than either of the strap load maximums. Had the y-harness not failed, the maximum 

flail for the co-pilot would have been much less.  Figure 20 shows the failure of the y-harness in 

detail and compares to the same y-harness, when new.  
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Figure 19 - Test 2 seatbelt loads 

 

 

 
 

Figure 20 - Test 2 shoulder y-harness failure 

Lumbar loads are next examined and plotted in Figure 21.  The pilot experiences a 525 lb. 

maximum lumbar load 0.115 seconds after impact, while the co-pilot experiences a 587 lb. 

maximum lumbar load which is 0.124 seconds after impact.  The pilot and co-pilot’s maximum 

values occur at almost the same time, which is also approximately the same time as the maximum 

horizontal acceleration on the floor.  These values are well below the 1,500 lb. FAA guideline, 

suggesting that injury due to spinal compression did not occur. 
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Figure 21 - Test 2 lumbar loads 

The accelerations in the horizontal direction are shown in Figure 22 while the vertical accelerations 

are shown in Figure 23 for both the pilot and co-pilot.  The pilot experiences large horizontal 

accelerations in the head, with a peak of 589 g (out of range in Figure 22). The large spike in the 

horizontal head acceleration confirms that the pilot head struck the instrument panel approximately 

0.15 seconds after impact.  The large chest accelerations are also a result of the pilot flail during 

the impact. The chest experiences 70.3 g peak acceleration.  In contrast, the pelvis which is 

restrained by the lap belt only experiences 25.6 g peak acceleration.  

 

These responses are contrasted by the response in the co-pilot.  The head acceleration peaks at 

70.0 g.  While still high, the addition of the y-harness restrains it enough to not severely strike the 

instrument panel or yoke.  The co-pilot chest acceleration achieves a 52.8 g peak, while the peak 

pelvic acceleration is only 23.8 g. 
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Figure 22 - Test 2 ATD horizontal acceleration.  Pilot (left) and co-pilot (right) 

 

Vertical accelerations were next examined and are shown in Figure 23.  Large accelerations also 

show up in the vertical acceleration values in the pilot.  The head experiences a short spike of 

234.8 g (out of range in Figure 23), whereas the co-pilot head experiences only a 49.1 g peak 

acceleration.  The pelvic accelerations match more closely, at 30.1 g and 28.7 g for the pilot and 

co-pilot, respectively. These values were then used in the HIC calculation, with the results shown 

in Table 3.  The HIC value for the pilot is well above the established limit of 1,000. The pilot head 

clearly hit the instrument panel and a cranial fracture has occurred.  The co-pilot, even with the 

spikes in the acceleration data, shows a maximum HIC below the limit of 1,000.  

 

 

 
Figure 23 - Test 2 ATD vertical acceleration.  Pilot (left) and co-pilot (right) 
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Table 3 - Test 2 HIC36 values 

 HIC36 

Pilot 4,241 

Co-pilot 274 

 

 

Additional post-test inspections were completed on the airframe once removed from the soil and 

set right-side-up in the preparation hangar.  When the seats were examined, it was noted that both 

rear seat rail attachments for both seats were either partially or fully pulled out from the seat track. 

All four of the front seat attachments were set normally in the seat track.  The rear seat attachment 

failure is likely due to the large amount of ATD flail due to the horizontal accelerations 

experienced at impact.  All restraint attachments were still secure in their aircraft attachment 

locations.  Figure 24 shows the seat pullout.  

 

 
Figure 24 - Test 2 seat partial pullout 

 

Test 2 results showed that a crash into dirt resulted in very large horizontal and vertical 

accelerations both on the airframe and on the occupants due to the penetration and plowing into 

the soil.  These large accelerations occurred during the first 0.300 seconds after the impact, while 

the flipping of the airplane required a few seconds to complete.  The results show that the sudden 

large horizontal accelerations are the injurious part of the crash, not the flipping and by the time 

the flipping has begun to occur, the maximum accelerations have already occurred and the 

occupants have already experienced their maximum loading.  

 

In this test, two types of restraints were used, a lap belt only and a lap belt with y-harness. 

Surprisingly, the y-harness failed in the stitching at the junction between the y and the overhead 

attachment strap, at an estimated load of 1,140 lb.  After the failure, both the pilot and co-pilot 

head accelerations experienced significant spikes, with the spike in the pilot head being large 

enough to register over the HIC limit.  Even though the y-harness failed and the co-pilot likely 

impacted the instrument panel or yoke, the severity of the impact was much reduced due to the 

restraint of the y-harness, prior to failure. 
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Test 3 Results 

Test 3 was conducted on August 26, 2015 and was the second test where the airplane impacted a 

soil surface.  As with the first soil test, the surface was to represent a dirt field or other type of 

unprepared surface not considered rigid.  

 

The pilot was outfitted with a shoulder and lap belt. The co-pilot was outfitted with a shoulder belt 

with inertia reel and lap belt.  Both restraints were purchased new and outfitted into the existing 

restraint attachment points. The pilot belts were tightened to a pretension of approximately 20 lb. 

The co-pilot lap belt was also pretensioned to 20 lb.; however, the characteristics of the inertia reel 

disallowed for pretensioning.   Figure 25 shows the occupant configuration, prior to the test.  

 

 
 

Figure 25 - Test 3 occupant configuration - pre-test 

 

The airplane CG impacted the soil at a 56.9-ft./sec. horizontal and 23.6-ft./sec. vertical velocities.  

The AoA was 8.0 degrees nose up with a pitch rate of +13.3 degrees/second.  Test 3 included a 

slight amount of roll (right side high) and yaw (nose left).  

 

Due to the slight amount of roll and yaw, the airplane left main gear impacted the soil first.  Shortly 

thereafter, the tail contacted the surface at 0.030 seconds after impact. The tail contact created a 

slap down effect where a significant amount of nose down rotation occurred at a pivot point on the 

tail.  This slap down effect caused the nose gear, along with the nose of the airplane to contact the 

soil 0.116 seconds after impact.  As with Test 2, after the nose gear penetrated into the soil surface, 

the airplane started to flip around the nose, which acted like a pivot point.  Unlike Test 2, however, 

the tail developed a fracture aft of station 108 at 0.138 seconds after impact.  This fracture caused 

the tail to peel away from the fuselage, acting much like a hinge.  A small portion of skin on the 

bottom of the aircraft retained the tail to the rest of the airplane during the rotation.  The rotation 

of the aircraft lasted until approximately 1.53 seconds after impact, at which time the ceiling of 
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the airplane contacted the soil.  The airplane rocked for a few seconds before finally coming to 

rest at almost 5 seconds after initial impact.  The post-test configuration of the airplane in Test 3 

is shown in Figure 26. 

 

 
Figure 26 - Post-test orientation of airplane in Test 3 

The accelerations on the floor beneath the pilot and co-pilot seats are plotted in Figure 27.  As in 

Test 2, the acceleration experienced in the airplane from the ground (soil) contact occurred within 

the first 0.300 seconds of impact, both in the horizontal and vertical directions.  Accelerations were 

very symmetric between the pilot and co-pilot position, suggesting the roll and yaw did not 

adversely affect the acceleration on the floor.  The horizontal acceleration resembles generally a 

triangular shape, but contains a small plateau at the beginning of the pulse, due to the initial 

penetration of the gear into the soil.  Maximum accelerations were -18.1 g for the pilot and -17.6 

g for the co-pilot.  These maximums occurred at 0.163 seconds after impact.  The two acceleration 

curves closely mimicked each other. 

 

In the vertical direction, the accelerations represented a plateau shape with spikes occurring 0.160 

seconds and 0.195 seconds after impact.  The peak accelerations reach 17.9 g for the floor under 

the pilot and 15.7 g for the floor under the co-pilot.  The pulse duration lasts approximately 0.295 

sec.  Average accelerations, which occur between 0.100 seconds and 0.200 seconds, are 8.3 g for 

the pilot and 7.7 g for the co-pilot.  
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Figure 27 - Floor accelerations from Test 3 

 

An onboard camera, mounted in the instrument panel, captured the ATD motion throughout the 

entire crash sequence.  Individual frames showing notable events were extracted from the video, 

and are presented in Figure 28.  Airplanes used in Tests 1 and 2 did not have armrests on the doors.  

The armrests on the doors of the Test 3 airplane obstructed the positioning of the elbows; therefore, 

the ATDs had to be offset in order to fit in the cabin.  The upper left picture shows the co-pilot left 

arm sitting slightly overlapping the pilot arm.  Similar to Test 2, the maximum load in the co-pilot 

lumbar region is very early in the impact event, occurring at 0.130 seconds after impact.  At this 

point, due to the co-pilot initial position, the co-pilot has started rotating about the shoulder 

restraint causing the head to lean toward the pilot position.  The upper right image shows the pilot 

at the time of maximum lumbar loading which occurs slightly later in the impact event at 0.175 

seconds. At this point, the co-pilot head has started to point straight forward.  At 0.200 seconds 

after impact, the maximum loads developed in the shoulder restraint occurred both for the pilot 

and co-pilot.  The bottom middle image shows both occupants seated normally while the airplane 

was flipping over, and this image was taken when it had achieved a vertical orientation.  The 

bottom right picture shows the occupants, post-test, with their hands out pointing toward the 

ground, and in a symmetric configuration.  The wing cameras were next examined to show 

maximum flail in the pilot and co-pilot. 
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Figure 28 - Test 3 occupant motion sequence - onboard camera 

The image series of the pilot taken from the wing camera is shown in Figure 29.  Using the best 

available scaling information based on the window dimensions, the maximum flail encountered in 

the head of the pilot was 7.27 in. in the forward direction. However, the pilot was never in danger 

of striking either the yoke or the instrument panel, even with the rotation and flipping over of the 

airplane.   
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Figure 29 - Test 3 pilot head flail.  Before impact (top) and max flail (bottom) 

The co-pilot flail was next examined and is shown in Figure 30.  Using the best available scaling 

information based on the window dimensions, the maximum flail encountered in the head of the 

co-pilot was 12.5 in. in the forward direction, which was approximately 5.25 in. more than the 

pilot. 
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Figure 30 - Test 3 co-pilot head flail.  Before impact (top) and max flail (bottom) 

Restraint loads were next examined.  Even with the large rotation in the co-pilot, the inertia reel 

three-point restraint kept the head from striking any portion of the instrument panel and/or yoke.  

Due to the restraint of this large rotation, the maximum belt load in the inertia reel was 1,144 lb. 

and occurred approximately 0.2 seconds after impact, and more specifically at the time of 

maximum co-pilot torso flail.  The maximum pilot harness load was 981 lb. and occurred a short 

time later at 0.215 seconds after impact.  The restraint anchoring points, both on the floor and on 

the wall behind the doors showed no signs of failure for either the pilot or co-pilot.  Figure 31 

shows the time history of the restraint loading. 
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Figure 31 - Test 3 seatbelt loads 

ATD data were next examined, and lumbar load forces are plotted in Figure 32.  Lumbar loads for 

the pilot and co-pilot reached similar peak values, and both responses had similar double peak 

shapes. However, the timing of the peak values was reversed between the pilot and co-pilot; 

showing up as the first peak for the co-pilot and the second peak for the pilot.  The co-pilot also 

had a sharper rise and falling time as compared to the pilot; however, the majority of the loading 

was complete at approximately 0.3 seconds after impact.  The peak value for the pilot was 

approximately 923 lb. and occurred at 0.176 seconds after impact, while the peak value for the co-

pilot was 956 and occurred 0.128 seconds after impact.  It is hypothesized that, because shoulders 

of the ATDs were overlapping slightly prior to and during the first stages of the crash sequence, 

the shifting of the ATDs during the crash caused the double peaks. Neither of these values, 

however, reached the FAA spinal injury threshold of 1,500 lb., indicating that spinal compression 

injury did not occur. 
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Figure 32 – Test 3 lumbar loads 

Accelerations from both the pilot and co-pilot were next examined.  Figure 33 shows the 

accelerations measured in the horizontal direction.  In general, the pilot and co-pilot horizontal 

accelerations match in shape and duration.  The pilot horizontal head acceleration reaches a peak 

value of 19.2 g while the co-pilot reaches a peak horizontal acceleration of only approximately 

14.5 g.  Both of these events occur approximately 0.25 seconds after impact.  The co-pilot 

experiences a short duration spike in acceleration, which occurs approximately 0.3 seconds after 

impact, and reaches a peak value of -52.7 g.  Since the head did not physically contact with any 

obstacle, the spike is likely due an electrical anomaly.  Similarly, the chest and pelvic accelerations 

also matched generally in shape and duration.  The co-pilot experienced a slight amount of 

increased acceleration, presumably due to the large amounts of rotation about the shoulder harness. 

 

 
Figure 33 - Test 3 ATD horizontal acceleration.  Pilot (left) and co-pilot (right) 
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Vertical accelerations were next examined, and are shown in Figure 34.  The pilot and co-pilot 

also experienced similar vertical magnitudes and shapes, with the notable exception of the head of 

the co-pilot.  Due to the large amounts of rotation of the co-pilot head and torso around the shoulder 

harness, the head reaches a maximum acceleration of -25.7 g at approximately 0.22 seconds after 

impact, which is near the time of maximum belt load and also maximum flail.  The pilot, in 

contrast, only experiences a maximum acceleration of -9.9 g. The pelvic vertical accelerations 

were almost identical both in shape and magnitude, reaching peaks of 18.5 g and 18.0 g for the 

pilot and co-pilot, respectively.  These numbers were then used for the HIC computation, which is 

shown in Table 4. Because neither the pilot nor co-pilot head impacted either the instrument panel 

or yoke, the HIC limits for Test 3 were well below the established limits of 1,000.  

 

 

 
Figure 34 - Test 3 ATD vertical acceleration.  Pilot (left) and co-pilot (right) 

 

Table 4 - Test 3 HIC36 values 

 HIC36 

Pilot 51 

Co-pilot 92 

 

Similarly to Test 2, the aircraft experienced a large amount of rotation due to it flipping over at 

impact.  The chair rails were examined for signs of pull out or failure.  The co-pilot chair was 

pulled out on the rear outboard leg, and cracking was evident in the rail itself.  The pilot seat fared 

much better with no signs of pullout or seat rail cracking.  The pullout in the co-pilot chair is 

presumably due to the large amount of forward motion experienced in the co-pilot.  The pilot, in 

contrast, did not experience significant motion.  A picture of the co-pilot rear outboard leg taken 

at the impact location immediately after Test 3 is shown in Figure 35. 
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Figure 35 - Test 3 co-pilot seat pullout 

Test 3 results showed that a crash into dirt in a tail strike condition can also result in the airplane 

flipping over and landing upside down.  As with Test 2, the dirt contact resulted in very large 

horizontal and vertical accelerations both on the airframe and on the occupants due to the sudden 

stopping of the airplane at the impact location.  And similarly, these large accelerations occurred 

during the first 0.300 seconds after the impact, while the flipping of the airplane required a few 

seconds to complete.  The resultant high accelerations experienced in the pilot and co-pilot were 

mainly due to loading during the first 0.300 of impact, and not due to the flipping action of the 

aircraft.  

 

Since both ATDs were restrained with 3 point harnesses, the resultant injury metrics all showed a 

low probability of injury.  The space issues inside the cockpit required offsetting the ATDs, such 

that part of their elbows overlapped in the middle.  This overlapping caused the co-pilot ATD to 

rotate about the shoulder harness; however, the co-pilot did not end up striking either the 

instrument panel or yoke.  Both ATDs remained seated even after the impact even when the aircraft 

was oriented upside-down post-test. 

 

Discussion 

Test 1 resulted in a dual impact scenario.  The first impact was dominated by the airplane impacting 

the rigid surface with a large sink rate, and represented a stall-to-emergency or crash landing.  This 

impact gave the highest vertical accelerations in the ATDs and airframe.  It was also during this 

impact that the lumbar loads reached their highest values; however, they did not come close to 

exceeding the limit established by the FAA.  The second impact was a result of a safety net 

stopping the residual horizontal velocity of the aircraft and represented the airplane impacting a 

soft obstruction during rollout from the initial ground impact.  It was during the second impact that 

both airframe and ATD horizontal accelerations were the highest.  The horizontal accelerations 

were not severe enough to cause either the pilot or co-pilot’s head to strike the instrument panel or 

yoke.  
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However, for the co-pilot outfitted only with a lap belt, the onboard video data show that the head 

came very close to striking the instrument panel. If the aircraft had landed at a slightly higher 

velocity, or experienced a slightly shorter deceleration pulse duration, the co-pilot would have 

experienced a head strike scenario and the potential for injury would have greatly increased.  The 

airframe itself was mostly undamaged.  

 

Test 2 was the first of the soil impact tests and was a good representation of a CFIT scenario.  The 

airplane impacted the surface nose first at a 12.2 degrees nose down angle.  The pilot, which was 

only restrained by a lap belt, experienced severe injury when the head hit the instrument panel, 

due to the large amount of torso motion.  The co-pilot, restrained by a y-harness restraint did not 

strike the instrument panel hard enough to register an injury using the HIC metrics, even after the 

y-harness failure.  

 

In Test 3, the airplane impacted the ground in a nose up configuration, which was the opposite 

configuration as Test 2.  However, the final result of Test 3 was very similar to Test 2.  Both 

airplanes sunk into the dirt and both airplanes flipped over and landed upside down near the 

original impact location.  The onboard occupant responses are different; however, because in Test 

3 both occupants were restrained with 3 point harnesses, the results showed the pilot survived in 

Test 3, which is in contrast to Test 2.  

 

The occupant data suggest that the three crashes are severe but survivable by strictly using the 

various forms of injury criteria presented; however, it should be noted that there are other human 

factors affecting each individual which may lead to injuries sustained during what is considered a 

survivable crash.  There are also measurable injury metrics that were unable to be performed due 

to data constraints.  Thus, for example, there could have been potential for broken arms or legs 

during any one of the crash tests presented.  If broken leg(s) were to occur, it is unlikely that the 

occupant would be able to egress the aircraft and travel any significant distance to obtain help.  

 

Conclusion 

The three Cessna 172 crash tests conducted and documented in this report recreated three types of 

airplane accidents in which the occupants experienced a severe but survivable loading condition.  

The impact conditions themselves were very different in nature; however, the last two tests resulted 

in similar post-impact kinematics.  Maximum accelerations for all three tests did not exceed 30 g 

when measured at the seat interface locations.  

 

The three tests gave the opportunity to evaluate four types of restraints under three types of loading 

conditions.  The restraints tested were a lap belt, a lap belt with shoulder harness, a lap belt with 

y-harness, and a lap belt with shoulder harness and inertia reel.  The results reinforce the previous 

guidance from the FAA and others that a three point harness provides much benefit when keeping 

the occupant restrained in a crash event.  

 

Any of the three point harnesses proved to be beneficial when comparing the occupant flail and 

loads to the lap belt only occupant. Even the failed three point harness in Test 2 still restrained the 
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co-pilot from severely striking the yoke or instrument panel, saving what could have been a cranial 

fracture.  In Tests 2 and 3, there were clear signs of seat rail failures and seat pullout.  These 

failures were mainly due to the large amount of forward flail of the occupants compounded with 

the rotation of the airplane during the test. 

 

It is hoped that the data presented offer further insight into the dynamics which occur during GA 

crash events and will lead to improved understanding of the airframe-seat-occupant-restraint 

coupling.  While the test series consisted of only three crash scenarios and four restraint types, it 

is hoped that these results are beneficial for continued studies of GA crashworthiness and occupant 

protection. 
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gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
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