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Cover.  Outcrop along Hue Creek at the northern front of the Shublik Mountains, northeast Brooks Range. A geologist examines the 
steeply dipping, overturned contact between the Jurassic Kingak Shale (left-center) and Lower Cretaceous Kemik Sandstone (right). 
The light-colored rocks (upper left) are Proterozoic Katakturuk Dolomite, thrust northward over the Kingak Shale. The Kingak-Kemik 
contact is the Lower Cretaceous unconformity. Photograph by David W. Houseknecht, U.S. Geological Survey.
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Modified Method for Estimating Petroleum Source-Rock 
Potential Using Wireline Logs, With Application to the 
Kingak Shale, Alaska North Slope

By William A. Rouse and David W. Houseknecht

Abstract
In 2012, the U.S. Geological Survey completed an 

assessment of undiscovered, technically recoverable oil and 
gas resources in three source rocks of the Alaska North Slope, 
including the lower part of the Jurassic to Lower Cretaceous 
Kingak Shale. In order to identify organic shale potential in 
the absence of a robust geochemical dataset from the lower 
Kingak Shale, we introduce two quantitative parameters, ∆DTx 
and ∆DTz , estimated from wireline logs from exploration wells 
and based in part on the commonly used delta-log resistivity 
(∆log R) technique. Calculation of ∆DTx and ∆DTz is intended 
to produce objective parameters that may be proportional 
to the quality and volume, respectively, of potential source 
rocks penetrated by a well and that can be used as mapping 
parameters to convey the spatial distribution of source-rock 
potential. Both the ∆DTx and ∆DTz mapping parameters show 
increased source-rock potential from north to south across the 
North Slope, with the largest values at the toe of clinoforms 
in the lower Kingak Shale. Because thermal maturity is not 
considered in the calculation of ∆DTx or ∆DTz, total organic 
carbon values for individual wells cannot be calculated on the 
basis of ∆DTx or ∆DTz alone. Therefore, the ∆DTx and ∆DTz 
mapping parameters should be viewed as first-step reconnais-
sance tools for identifying source-rock potential. 

Introduction
In 2012, the U.S. Geological Survey (USGS) completed 

an assessment of undiscovered, technically recoverable oil 
and gas resources in three source-rock systems (fig. 1) of 
the Alaska North Slope: (1) the Triassic Shublik Formation; 
(2) the lower part of the Jurassic to Lower Cretaceous Kingak 
Shale; and (3) the Cretaceous pebble shale unit, Hue Shale, 
and parts of the Paleogene Canning Formation, collectively 
called the Brookian shale (Houseknecht, Rouse, Garrity, and 
others, 2012). Maps of inferred source-rock richness were 
constructed using three parameters because of differences in 

lithology and wireline-log response among the source rocks. 
The map used for the Kingak Shale is highly generalized 
(fig. 2) because no quantitative mapping parameter had been 
defined. The study summarized in this report was initiated 
to evaluate the efficacy of the delta-log resistivity (∆log R) 
technique (Passey and others, 1990) for estimating an objec-
tive and quantitative parameter for evaluating source-rock 
potential from wireline-log data. This parameter may be useful 
as an evaluation tool for individual wells and, when calculated 
for multiple wells, as a mapping parameter. However, due to 
software limitations for digital calculation of ∆log R and the 
absence of a robust geochemical dataset for calibration of 
∆log R, we sought to develop a modified version of ∆log R 
that yields two parameters that may serve as proxies of 
source-rock quality and volume. This report documents the 
digital workflow developed for calculating a modified version 
of ∆log R and presents the results of applying the technique to 
evaluate source-rock potential of the lower Kingak Shale.

Geologic Background
The Jurassic to Lower Cretaceous Kingak Shale contains 

both marine and terrigenous organic matter deposited in a 
marine siliciclastic setting influenced by pulses of syndepo
sitional uplift of the Beaufort rift shoulder (also known as 
the Barrow arch; see figs. 3 and 4) during opening of the 
Canada Basin (Magoon and Claypool, 1984; Hubbard and 
others, 1987; Bird and Houseknecht, 2011). Houseknecht and 
Bird (2004) identified four depositional sequence sets in the 
Kingak Shale (fig. 3, K1–K4) that define a northern-sourced 
southward-offlapping succession of Beaufortian strata in the 
National Petroleum Reserve in Alaska (NPRA), and these 
sequence sets subsequently have been mapped eastward 
beyond the NPRA on the basis of seismic and well data. 

The basal K1 sequence set is 1,000 to more than 
1,250 feet (ft) (300 to 380 meters [m]) thick across a broad 
area in the north-central NPRA that extends to the south 
as a lobe in the central NPRA (fig. 4). North of the zone of 
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maximum thickness in the central NPRA, the K1 sequence set 
thins gradually where seismic data show an erosional contact 
between the K1 and K2 sequence sets. Farther north, the 
K1 sequence set abruptly thins to a zero edge along the trend 
of the Barrow arch, where it is beveled beneath the Lower 
Cretaceous unconformity. South of the zone of maximum 
thickness, the K1 sequence set abruptly thins in a radial 
pattern to less than 500 ft (150 m) in the western NPRA and 
to less than 250 ft (76 m) in the southeastern NPRA.

Wireline-log responses within the K1 sequence set in 
the northern NPRA commonly exhibit thin (<200 ft [61 m]) 
coarsening-upward trends consisting of mudstone grading 
upward to siltstone (for example, fig. 5, Walakpa 1 well, 
2,980- to 2,800-ft [908- to 853-m] depth) or mudstone 
grading upward to sandstone (for example, fig. 5, Walakpa 1 
well, 3,200- to 3,050-ft [975- to 930-m] depth). In contrast, 
fining-upward transitions commonly are abrupt between 
sandstone and siltstone (for example, fig. 5, Walakpa 1 well, 
~3,050-ft [930-m] depth) or between siltstone and mudstone 
(for example, fig. 5, Walakpa 1 well, ~2,990-ft [911-m] depth), 
with an additional few thin fining-upward successions also 
present (for example, fig. 5, Walakpa 1 well, 2,800- to 2,770-ft 
[853- to 844-m] depth; Houseknecht and Bird, 2004).

Within the zone of maximum thickness in the central 
NPRA, wireline-log responses within the K1 sequence set 

display subtle coarsening-upward successions capped by 
siltstone abruptly overlain by shale, as well as repetitive 
intervals of silty mudstone locally punctuated by shale 
(fig. 5, Ikpikpuk well). The wireline-log response in the most 
distal well penetrations of the K1 sequence set in the eastern 
NPRA displays an off-the-scale gamma-ray response in a thin 
interval of silty mudstone near or beyond the toe of K1 clino-
forms (fig. 5, Inigok well). 

The distal increase in gamma-ray response within the 
K1 sequence set was interpreted as increased organic matter 
content and coalescence of time lines (that is, it is a condensed 
section) in a distal direction by Houseknecht and Bird (2004). 
Biostratigraphic data from NPRA wells indicate that the K1 
sequence set is Early to Middle Jurassic, equivalent to the 
lower Kingak Shale in the central North Slope (Carman and 
Hardwick, 1983; Masterson and Paris, 1987). Conventional oil 
accumulations at the Alpine, Endicott, Milne Point, and Prudhoe 
Bay fields were sourced entirely or partly from the lower 
Kingak Shale (fig. 2; Seifert and others, 1980; Claypool and 
Magoon, 1985; Premuzic and others, 1986; Sedivy and others, 
1987; Masterson, 2001; Magoon and others, 2003; Peters 
and others, 2006). The potential for self-sourced, continuous 
accumulations of recoverable oil and gas in lower Kingak Shale 
source rocks is assumed to exist (Houseknecht, Rouse, and 
Garrity, 2012) but has not been confirmed by well completions.

Figure 5.  Wireline-log response in the K1 sequence set. Well locations are shown in figure 4. Wireline-log measured 
depth ticks below kelly bushing are at 100-foot (ft) (30-meter) intervals, and numbers are ×1,000 ft. Modified from 
Houseknecht and Bird (2004). Abbreviations used: ohm-m, ohm-meter; API, American Petroleum Institute.
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Source-Rock Characterization With 
Wireline Logs

Petroleum source rocks typically are shale or limestone 
containing more than 1 or 2 weight percent of organic matter 
(Tissot and Welte, 1984). Direct geochemical measurements 
on source rocks are generally sparse, resulting in the increased 
use of common wireline logs from exploration and develop-
ment wells for identifying source-rock intervals and estimating 
organic matter content. Recognition of organic-matter-rich 
strata from wireline logs is based on the unique physical 
properties of organic matter as compared to minerals in 
the host rock. These properties include higher radioactivity 
(Beers, 1945; Schmoker, 1981), lower density (Schmoker, 
1979), higher resistivity (Nixon, 1973; Meissner, 1978; 
Schmoker and Hester, 1989), and slower sonic velocity or 
higher sonic travel time (Dellenbach and others, 1983).

Previous assessments of technically recoverable shale-gas 
resources by the USGS have used a high-gamma-ray (HGR; 
gamma-ray greater than 150 American Petroleum Institute 
[API] units) mapping parameter as a possible indication 
of source-rock richness (Houseknecht and others, 2014). 
Whereas gamma-ray response increases distally within the 
lower Kingak Shale, gamma-ray values rarely exceed 150 API 
except for a thin interval near the base of the formation in 
distal parts of the depositional system, precluding the use 
of the HGR mapping parameter in identifying source-rock 
potential and necessitating an alternative methodology. 

Meyer and Nederlof (1984) developed a method 
involving a combination of density, resistivity, and sonic logs 
that discriminates between source rocks and non-source rocks 
without attempting to quantify the organic-matter richness 
from the combination of logs. Their technique uses cross 
plots of density versus resistivity and of sonic travel time 
versus resistivity; strata with relatively high resistivity and 
either relatively high sonic travel time or low bulk density 
represent a potential source rock. A regression line is fit 
through the cross-plot data, the equation of which becomes 
the discriminant function for separating potential source rock 
from non-source rock.

Passey and others (1990), using a principle similar to that 
of Meyer and Nederlof (1984), developed a method called 
delta-log resistivity (∆log R) that identifies potential source 
rocks by overlaying the sonic curve and the resistivity curve 
in a baseline interval consisting of clay-rich rocks (mudstone 
or shale) that are not of source-rock quality (fig. 6). Potential 
source rocks in other depth intervals of the well are identified 
by a separation of the two curves through the parameter 
quantified in the following equation:

2,200

FEET

2,300

2,400

Resistivity, in ohm-m
0.01 0.1 1.0 10 100

Sonic, in µsec/ft
Gamma ray,
in API units

2002000 150 100 50 0

∆log R

Resistivity
Sonic

Baseline
interval {

Figure 6.Figure 6.  Part of a wireline log illustrating overlay of 
sonic and resistivity logs to define ∆log R separation 
in an unidentified organic-matter-rich interval. Scaling 
of the sonic and resistivity curves is adjusted so that 
50 µsec/ft on the sonic log corresponds to one decade 
of resistivity. The values in the center of the sonic 
and resistivity log track correspond to the Rbaseline and 
∆tbaseline values (for this example, Rbaseline = 1 ohm-m, 
and ∆t baseline = 100 µsec/ft).  Wireline-log measured 
depth ticks below kelly bushing are at 100-foot (ft) 
(30-meter) intervals. Figure from Passey and others 
(1990). Abbreviations used: ohm-m, ohm-meter; 
µsec/ft, microsecond per foot; m, meter; API, American 
Petroleum Institute.
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	 R
R

∆t ∆t∆log R log 0.02 ( )
baseline

baseline10= 





×+ − 	 (1)

where
	 ∆log R	 is the curve separation measured in 

logarithmic resistivity cycles;
	 R	 is the resistivity measured in ohm-meters 

(ohm-m); 
	 ∆t	 is the measured sonic travel time in 

microseconds per foot (µsec/ft);
	 Rbaseline	 is the resistivity corresponding to the  

∆tbaseline value when the curves are  
overlain in non-source, clay-rich rocks; and

	 0.02	 is based on the ratio of -50 µsec/ft per 
resistivity cycle. 

Passey and others (1990) found a linear correlation between 
∆log R separation and total organic carbon (TOC) content in 
multiple source rocks as a function of thermal maturity (fig. 7). 
The original calibration of the ∆log R technique (Passey and 
others, 1990) was for source rocks in the oil window, as there 
was no calibration at that time to include rocks of higher 
thermal maturity (Passey and others, 2010). Sondergeld and 
others (2010) proposed using a correction multiplier to obtain 
log-derived TOC using the ∆log R technique for overmature 
shale-gas formations: 

	 TOC = ∆log R ×10(2.297– 0.1688×LOM )×C	 (2)

where
	 TOC	 is the total organic carbon measured in  

weight percent,
	 LOM	 is the level of organic metamorphism  

(Hood and others, 1975), and
	 C	 is a correction factor.
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Methodology
The methodology used in this study for identifying 

organic shale potential is based on a combination of the 
cross-plot and ∆log R methods (Meyer and Nederlof, 1984; 
Passey and others, 1990) and follows an example presented 
by Bowman (2010). Our digital workflow was developed 
and tested using IHS Kingdom® version 8.8 software. The 
following procedures were performed on a well-by-well basis.

To assure adequate non-source-rock strata with which to 
determine a baseline for sonic and resistivity data, we defined 
a target stratigraphic interval that includes both the K1 and the 
overlying K2 sequence sets (fig. 3) in the Kingak Shale, where 
the K2 sequence set is assumed to consist of predominately 
non-source-rock strata. The target stratigraphic interval was 
identified by examining wireline-log and seismic data across 
the North Slope. To constrain the analysis to clay-rich inter-
vals within the K2 and K1 sequence sets, shale volume was 
calculated for each well using the following equation:

	 GRlog – GRclean

GRshale –GRclean
Vsh = 





	 (3)

where
	 Vsh	 is the shale volume (decimal percent),
	 GRlog	 is the API value from the gamma-ray 

log curve,
	 GRclean	 is the API value of a “clean” sand, and 
	 GRshale	 is the API value of a shale. 
GRclean and GRshale values were computed for each well 
using the IHS Kingdom® version 8.8 software Petrophysics 
module. Only strata consisting of at least 60 percent shale 

Figure 7.  Chart relating ∆log R, total organic carbon, and thermal maturity expressed as level of 
organic metamorphism (LOM ) (Hood and others, 1975). Abbreviations used: Ro , vitrinite reflectance.
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by volume (Vsh ≥ 0.6) were considered suitable as a baseline 
(Tom Wild, President and Owner, Tom Wild Petrophysical 
Services LLC, written commun., February 27, 2013). Fifty-
four wells were identified with suitable shale intervals and 
complete digital gamma-ray (GR), resistivity (RILD), and 
sonic travel time (DT) wireline-log data that extend through 
the K2 and K1 sequence sets.

The inability to display linear and logarithmic data on 
the same log track in IHS Kingdom® version 8.8 software 
precluded digital curve manipulation of the ∆log R method-
ology (Passey and others, 1990) to determine baseline values 
for non-source-rock shale intervals. As an alternative, cross 
plots of sonic travel time versus resistivity were constructed 
for each well (Bowman, 2010). Cross-plot data were 
constrained to the assumed non-source-rock K2 sequence 
set and a reduced major axis (RMA) regression line was 
fit through the data, thus automating the determination of 
Bowman’s (2010) low-resistivity shale line. The resultant 
correlation equation then was used to calculate a pseudosonic 
log DTlogR which transformed resistivity data into sonic travel 
time units (µsec/ft), thereby enabling the direct comparison 
of sonic and resistivity log data within the same unit space 
and scaling the resistivity data to overlie the sonic data in the 
assumed non-source-rock interval (equation 4, fig. 8). 

	 DTlogR=b – m×log R	 (4)

where
	 m	 is the slope and
	 b	 is the y-intercept of a line.
In two cases where individual wells exhibited an inverse 
regression trend (positive m value), values for b and m were 
substituted from the nearest well. The DTlogR curve calculation 
(equation 4) then was applied to both K2 and K1 sequence 
sets. Curve separation within the lower Kingak Shale 
K1 sequence set was calculated using the following equation:

	 ∆DT = DT–DTlogR	 (5)

where ∆DT is the separation between DT and DTlogR curves  
(in units of µsec/ft), a transform functionally similar to ∆log R 
of Passey and others (1990). 

It should be noted that whereas ∆DT is functionally 
similar to ∆log R of Passey and others (1990), the application 
of the RMA transform in the calculation of DTlogR ultimately 
distorts the resistivity data. Thus, ∆DT values may not be 
equivalent to ∆log R values in all cases.

We assumed the existence of a positive relationship 
between ∆log R and TOC, as documented by Passey and 
others (1990, 2010) (fig. 7), to infer qualitatively the pres-
ence of potential source-rock intervals in the lower Kingak 
Shale K1 sequence set. Although this revised methodology 
addressed the presence of potential source rocks by the calcu-
lation of ∆DT, our objectives also included the development of 
a parameter that may be proportional to the volume of potential 
source rocks in a well. We therefore introduced an additional 
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parameter, ∆DTz , which incorporated both the magnitude and 
thickness of the ∆DT curve separation, defined as:

	 ∆DTz = ∆DTx × hnet , ∆DT  > 0	 (6)

where  
	 ∆DTx	 is the mean of positive ∆DT values calculated 

within the stratigraphic interval of interest 
(K1 sequence set, in this example) and

	 hnet	 is the net vertical interval in feet, over  
which ∆DT exceeds zero within the  
subject interval.

∆DTx may be used as a proxy of the overall source-rock 
quality in a stratigraphic interval of interest. ∆DTx and ∆DTz 
were only calculated where ∆DT was greater than zero, as 
positive values represent higher resistivity and higher sonic 
travel times indicative of possible source rocks. Definition of 
∆DTz to include both the magnitude and thickness of positive 
∆DT values was intended to produce an objective parameter 
that may be proportional to the volume of potential source 
rocks penetrated by each well. Following the calculation of 
∆DTx and ∆DTz for each well, the results for the lower Kingak 
Shale K1 sequence set were mapped (figs. 9, 10) using a 
gridding algorithm in IHS Kingdom® version 8.8 software. 
A digital workflow for calculation of ∆DTx and ∆DTz using 
IHS Kingdom® 8.8 software is presented in appendix 1.

Figure 8.  Cross plot of log resistivity (log R ) versus sonic travel 
time (DT ) (both derived from wireline logs) within the K2 sequence 
set of the Kingak Shale in the Ikpikpuk No. 1 well (location shown 
in figures 9 and 10). The equation of the reduced major axis (RMA) 
regression line is used to transform resistivity-log data into sonic 
travel time units, enabling the direct comparison of sonic- and 
resistivity-log data within the same unit space. Abbreviations used: 
ohm-m, ohm-meter; µsec/ft, microsecond per foot.
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Discussion
The ∆DTx and ∆DTz parameters were developed to serve 

as proxies for potential source-rock quality and volume, 
respectively, in the absence of geochemical and thermal 
maturity data necessary for the direct correlation of TOC 
log and geochemical data. Geochemical data from the lower 
Kingak Shale are sparse and largely derived from cuttings 
collected over intervals of 10 to 100 ft (3 to 30 m). Moreover, 
most of the available TOC data were concentrated in relatively 
proximal parts of the Kingak Shale depositional system that 
lack organic-matter-rich and oil-prone source rocks, making a 
direct comparison of TOC and ∆DT in potential source-rock 
intervals difficult. However, where TOC measurements were 
available in potential source-rock intervals, ∆DT and TOC 
values were positively correlated (for example, North Inigok; 
fig. 11). 

Maps of ∆DTx  and ∆DTz in the K1 sequence set reveal 
an increase in potential source-rock quality and volume, 
respectively, from north to south. The potentially richest area 
in the eastern NPRA corresponds to a re-entrant in the K1 
shelf margin, as defined by a K1 isopach map (figs. 9, 10). 
Within the NPRA, ∆DTx and ∆DTz values are inversely related 
to the thickness of the K1 sequence set, with the greatest 
values where the K1 sequence set thins distally (fig. 12). These 
findings agree with Houseknecht and Bird’s (2004) interpre
tation of a distal increase in organic matter content within the 
K1 sequence set in the NPRA. Outside of the NPRA, ∆DTx 
and ∆DTz values gradually decrease eastward toward the 
Arctic National Wildlife Refuge (figs. 9, 10). An exception to 
this regional trend occurs in the Prudhoe Bay area, where a 
pod of large ∆DTx and ∆DTz values highlight a potential rich 
source-rock area, although the controls are not understood 
(figs. 9, 10). 

The large ∆DTz value calculated for the Kugrua well 
(location shown in figure 10) is attributed to elevated methane 

concentrations within shale of the K2 interval (Hayba and 
others, 2002), skewing the shale baseline values meant to be 
derived in a non-source-rock interval. This results in an offset 
of the DT and DTlogR log curves within the K1 interval, where 
the curves otherwise would be superimposed. This small curve 
separation (as evident in figure 9), combined with the thick-
ness of the K1 sequence set preserved in the proximal portion 
of the basin, result in a large ∆DTz value that is unlikely to 
correspond to a large volume of potential source rock. 

Conclusions
The methodology outlined in this report can be used in 

a completely digital workflow to evaluate the richness and 
volume of potential source rocks, both in individual wells 
and in a map area containing multiple wells, provided that a 
non-source-rock interval of mudstone or shale can be identi-
fied to establish a baseline for comparison. Use of ∆DTx and 
∆DTz parameters delineates regional source-rock potential in 
the lower Kingak Shale, and map results are consistent with 
known patterns of lithofacies and geochemistry. However, 
because thermal maturity was not considered in the calcula-
tion of these parameters in the Kingak Shale test case, TOC 
values cannot be estimated for individual wells or regionally. 
Therefore, the ∆DTx and ∆DTz mapping parameters should 
be viewed as first-step reconnaissance tools for identifying 
possible source-rock potential. 
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Figure 11.  Gamma-ray log, sonic travel time, and total organic carbon content of 
the Kingak Shale K1 and K2 sequence sets in the North Inigok well (location shown 
in figures 9 and 10). Greater positive separation of the DT and DTlogR  curves (∆DT; 
highlighted in red) in the K1 sequence set correlates with high total organic carbon 
values.  Depths are below kelly bushing. Abbreviations: API, American Petroleum 
Institute; DT, sonic travel time.
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Figure 12.  Well logs from cross section A–A' illustrating regional change in ∆DT  (highlighted in red) related to location 
in Kingak Shale K1– K3 sequence sets. Intervals with curve separation highlighted in gray have less than 60 percent shale 
content and were not included in the calculation of ∆DT.  Wireline-log measured depth ticks below kelly bushing are at 100-foot 
(ft) (30-meter) intervals. Cross section hung on the Lower Cretaceous unconformity (LCU). Location of cross section shown in 
figures 9 and 10. Abbreviations: API, American Petroleum Institute; DT, sonic travel time; GR, gamma ray; µsec/ft, microseconds 
per foot.
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Figure 12.  Well logs from cross section A–A' illustrating regional change in ∆DT  (highlighted in red) related to location 
in Kingak Shale K1– K3 sequence sets. Intervals with curve separation highlighted in gray have less than 60 percent shale 
content and were not included in the calculation of ∆DT.  Wireline-log measured depth ticks below kelly bushing are at 100-foot 
(ft) (30-meter) intervals. Cross section hung on the Lower Cretaceous unconformity (LCU). Location of cross section shown in 
figures 9 and 10. Abbreviations: API, American Petroleum Institute; DT, sonic travel time; GR, gamma ray; µsec/ft, microseconds 
per foot.— Continued
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Appendix 1.  Workflow for Calculating Key Parameters

The following workflow was compiled using IHS Kingdom® version 8.8 software with the EarthPAK® module. This 
workflow assumes that a project has already been populated with well locations, digital gamma-ray, resistivity, and sonic 
wireline-log data in LAS format, and formation tops that bound the stratigraphic interval of interest. For instructions on 
how to input these data, the reader is referred to the IHS Kingdom® version 8.8 software help files. This workflow uses 
input parameters specific to the Alaska North Slope Kingak Shale that may not be applicable to all shale plays. 

Calculating Shale Volume (Vsh )

Note: The Petrophysics module is available with an EarthPAK license.
1.	 From the Logs menu, select Petrophysics... to proceed to the Petrophysics dialog box.

2.	 In the Quick-Look Analysis Navigator window, select Zone-related Parameters. 

3.	 In the Zone-related Parameters window, from the Select an Existing Zone drop-down menu, select Borehole  
(Public). Under Select Lithology and Porosity Model, from the Reservoir Lithology drop-down menu, select  
the appropriate reservoir lithology (sandstone in this example). Accept all other defaults.
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4.	 In the Quick-Look Analysis Navigator, under Zone-related Parameters, select Vshale Indicators. Calculated values 
for clean and shale baselines for gamma-ray (GR) and spontaneous potential (SP) are displayed; these may be accepted 
or manually adjusted. 

5.	 In the Quick-Look Analysis Navigator, select 
Run All Wells to proceed to the Select Logs  
to Save dialog box.

6.	 Select VShale from the curve selection 
window.

7.	 Under Save Options, toggle Create New Curves 
Only and accept the default prefix  
of SMT. 

8.	 Click OK.
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Calculating Log R

1.	 From the Logs menu, select Calculations → Equation to proceed to the Select or Enter an Equation dialog box.

2.	 In the Equation Category window, type Other.

3.	 In the Equation window, type LOGR=. In the Functions window below, double click on LOG10(x) to place it in 
the equation and replace (x) with R. The resulting equation should read LOGR=LOG10(R).

4.	 In the Description window, type LogR from resistivity.

5.	 Click Next > to proceed to the Assign Variables dialog box.
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6.	 To assign R to the resistivity (RILD) log curve, in the Select the Variable to Assign window, select R; then toggle 
on Log Curves, and select RILD from the drop-down menu and click Assign.

7.	 Click Next > to proceed to the Depth Range Selection dialog box.

8.	 Toggle on by Zone Intervals and select Borehole (Public) from the drop-down menu.

9.	 Click Next > to proceed to the Output dialog box.
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10.	 In the Output Log Curve Name window, type LOGR.

11.	 From the Output Log Curve Type drop-down menu, select Other.

12.	 Toggle on Create new log curve and replace existing curve.

13.	 Click Finish.



24    Modified Method for Estimating Petroleum Source-Rock Potential Using Wireline Logs, With Application to the Kingak Shale

Creating a Cross Plot of Log R versus DT

Note: The following exercise assumes that the user has predefined zones within the interval of interest. For these  
exercises, the K1 TO KBASE zone is the interval that is assessed for probable source rock potential and the  
K2 TO K1 zone is the assumed non-source rock interval used to create baseline sonic and resistivity data.
1.	 From the Tools menu, select Crossplot → New to proceed to the Select Data dialog box.

2.	 In the Category window, select Log.

3.	 In the Attributes drop-down menu, select a well that contains gamma-ray, sonic, and resistivity log curves  
and for which you have calculated VSH and LOGR. 

4.	 In the Attributes window, select the LOGR curve; from the Axis/Filter window, select X and click >.

5.	 In the Attributes window, select the DT curve; from the Axis/Filter window, select Y and click >.

6.	 In the Attributes window, select the SMTVSH curve; from the Axis/Filter window, select Filter and click >.  
In the Min Value window, type 0.6 and keep the default Max Value. 

7.	 Click Depth Range to proceed to the Crossplot Depth Range Selection dialog box.
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8.	 Toggle on By Zone Intervals and select the assumed non-source rock interval zone.

9.	 Click OK to return to proceed to the Select Data dialog box.

10.	 Click OK to proceed to the Crossplot window.
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11.	  Click on the regression icon  to proceed to the Regression dialog box.
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12.	  Under Regression Method, toggle on Numerical Regression.

13.	  Under Equation, toggle on Polynomial and Reduced Major Axis (RMA).

14.	  Click OK to return to the Crossplot window. 
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15.	 The regression equation is shown under the x-axis. Record the slope and intercept of the regression line for 
each well in order to calculate DTLOGR.
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Calculating DTlogR (DTLOGR)

Note: Calculation of DTlogR must be done on a well-by-well basis. When using this workflow, make sure that only one  
well is selected in the project, otherwise the calculation will be applied to all wells selected.
1.	 From the Logs menu, select Calculations → Equation to proceed to the Select or Enter an Equation dialog box.

2.	 In the Equation Category window, type Other.

3.	 In the Equation window, type DTLOGR=B-M*LOGR.

4.	 In the Description window, type DTLOGR from Crossplot of LogR vs. DT.

5.	 Click Next > to proceed to the Assign Variables dialog box.
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6.	 Assign B to the y intercept of the regression equation for the well by selecting B in the Select the Variable to Assign 
window, toggling on Constant, entering the intercept value in the window, and clicking Assign.

7.	 Assign LOGR to the LOGR log curve by selecting LOGR in the Select the Variable to Assign window, toggling on 
Log Curves, selecting LOGR from the drop-down menu, and clicking Assign.

8.	 Assign M to the slope of the regression equation for the well by selecting M in the Select the Variable to Assign 
window, toggling on Constant, entering the slope value in the window, and clicking Assign.

9.	 Click Next > to proceed to the Depth Range Selection dialog box.
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10.	 Toggle on by Zone Intervals and select the zone to be assessed for probable source rock potential from the 
drop-down menu.

11.	 Click Next > to proceed to the Output dialog box.

12.	  In the Output Log Curve Name window, type DTLOGR.

13.	  In the Output Log Curve Type window, select Other from the drop-down menu.

14.	  Toggle on Create new log curve and replace existing curve.

15.	  Click Finish.
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Calculating ∆DT Curve Separation

1.	 From the Logs menu, select Calculations → Equation to proceed to the Select or Enter an Equation dialog box.

2.	 In the Equation Category window, type Other.

3.	 In the Equation window, type DELTADT=DT-DTLOGR.

4.	 In the Description window, type Curve separation between DT and DTLOGR.

5.	 Click Next > to proceed to the Assign Variables dialog box.
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6.	 Assign DT to the DT log curve by selecting DT in the Select the Variable to Assign window, toggling on  
Log Curves, selecting DT from the drop-down menu, and clicking Assign.

7.	 Assign DTLOGR to the DTLOGR log curve by selecting DTLOGR in the Select the Variable to Assign  
window, toggling on Log Curves, selecting DTLOGR from the drop-down menu, and clicking Assign.

8.	 Click Next > to proceed to the Depth Range Selection dialog box.



34    Modified Method for Estimating Petroleum Source-Rock Potential Using Wireline Logs, With Application to the Kingak Shale

9.	 Toggle on by Zone Intervals and select the zone to be assessed for probable source rock potential from the  
drop-down menu.

10.	  Click Next > to proceed to the Output dialog box.

11.	  In the Output Log Curve Name window, type DELTADT.

12.	  In the Output Log Curve Type window, select Other from the drop-down menu.

13.	  Toggle on Create new log curve and replace existing curve.

14.	  Click Finish.
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Calculating ∆DTz

Note: As of this publication, calculation of ∆DTz entirely in IHS Kingdom® version 8.8 software is not possible.  
However, the key variables in the equation, and hnet , can be obtained using the Kingdom software. 

Finding ∆DTx

In order to restrict the calculation of ∆DTz to positive ∆DT values:
1.	 From the Logs menu, select Calculations → If-Then-Else to proceed to the If-Then-Else for Log Curves 

dialog box.

2.	 Under IF, select DELTADT from the Log Curve Name drop-down menu, select GE (greater than or equal to) 
from the is drop-down menu, toggle on Constant and type 0.

3.	 Under THEN, toggle on Log Curve Name and select DELTADT from the drop-down menu.

4.	 Under ELSE, toggle on Missing (NULL).

5.	 Under Save As, type +DELTADT in the Log Curve Name window.

6.	 Click OK.
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In order to further restrict the calculation of ∆DTz to intervals containing at least 60 percent shale (Vsh ≥ 0.60):
7.	 From the Logs menu, select Calculations → If-Then-Else to proceed to the If-Then-Else for Log Curves 

dialog box.

8.	 Under IF, select VSH from the Log Curve Name drop-down menu, select GE (greater than or equal to) from 
the is drop-down menu, toggle on Constant and type 0.6.

9.	 Under THEN, toggle on Log Curve Name and select +DELTADT from the drop-down menu.

10.	  Under ELSE, toggle on Missing (NULL).

11.	  Under Save As, type +DELTADT VSH>0.6 in the Log Curve Name window.

12.	  Click OK.
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Finally, to find the mean ∆DT value (∆DTx  ):
13.	 From the Logs menu, select Calculations → Simple Statistics to proceed to the Log Curve Statistics dialog box.

14.	 Under Log Curves, select +DELTADT VSH>0.6.

15.	 Under Zones, select the zone to be assessed for probable source rock potential.

16.	 Click the check box next to Arithmetic Mean (AM) and type DDTAM.

17.	 Click OK.
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Finding hnet

1.	 From the Zones menu, select Zone Attribute Calculator to proceed to the Zone Attribute Calculator dialog box.

2.	 In the Attributes tab, under Attributes to Calculate, check the box next to Net and type HNET in the window.

3.	 Check the box next to Correct for TVD (Elev. Ref.).

4.	 Under Select One or More Zones, select the zone to be assessed for probable source rock potential.

5.	 Under Conditions, check the box next to Other, select the +DELTADT VSH>0.6 log curve from the drop-down 
menu and choose the default values for Minimum and Maximum.

6.	 Click OK.
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Exporting the Spreadsheet
The user can complete the calculation of ∆DTz by exporting and hnet to an Excel spreadsheet. To accomplish this:
1.	 From the Zones menu, select View Attribute Values by Zone to proceed to the Select Data for Spreadsheet 

dialog box.

2.	 Under Select Category, select Zone Information.

3.	 Under Zones, select the zone to be assessed for probable source rock potential from the drop-down menu.

4.	 Under Attributes, select DDTAM and HNET by clicking on each while holding down the ‘ctrl’ button.

5.	 Under Field, select Value.

6.	 Click > to move your selections to the Selected Items window.

7.	 Click OK to proceed to the Spreadsheet.
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From the spreadsheet, the user can copy and paste the data into an Excel workbook.
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