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ABSTRACT

The geophysical survey of the four selected areas within the Trade Fair Locality 
at Pecos National Historical Park was conducted between June 24 and 30, 2012. The 
Midwest Archeological Center provided technical assistance for the geophysical 
investigations of the four geophysical project areas. The geophysical investigations 
consisted primarily of a magnetic survey with a dual fluxgate gradiometer. A limited 
conductivity survey with an electromagnetic induction meter was also conducted 
on two of the four geophysical project areas. An area equal to 8,876 m2 or 2.19 ac was 
surveyed during the geophysical investigations of the four geophysical project areas. The 
geophysical survey resulted in the identification of numerous subsurface archeological 
features associated with the Pecos Pueblo occupation, historic Spanish and American 
activities, and the modern National Park Serv ice use of the property.

PURPOSE OF ARCHEOLOGICAL WORK PER SOW AND 
PROJECT DESIGN

 The Intermountain Regional Office’s Heritage Partnership Programs (IMRO-
SF) staff in Santa Fe, New Mexico, requested archeological assistance from the Midwest 
Archeological Center (MWAC) to conduct a geophysical survey of the Trade Fair Locality 
within Pecos National Historical Park (Figure 1). The purpose of the geophysical project 
was to identify and evaluate buried archeological resources within selected areas at 
Pecos National Historical Park (Haecker 2012a). The geophysical survey techniques 
consisted of a magnetic survey of Areas A, B, C, and D with a dual fluxgate gradiometer 
and limited conductivity surveys in Areas A and C with a ground-conductivity meter 
set in the quadrature phase (De Vore 2012). These techniques offered an inexpensive, 
rapid, and relatively non-destructive and non-invasive method of identifying buried 
archeological resources and site patterns that were detectable and also provided a means 
for sampling relatively large areas in an efficient manner (Roosevelt 2007:444-445; Von 
Der Osten-Woldenburg 2005:621-626).

ARCHEOLOGICAL PROJECT LOCATION AND AREA OF 
INVENTORY OR EXTENT OF TESTING

Pecos National Historical Park was established for its exceptional historic and 
archeological importance. The park contained the remains of a 17th-century mission 
and an ancient Indian pueblo. The monument was originally established in 1965 by 
President Lyndon Johnson (P.L. 89-54). The park was designated a National Historical 
Park in 1987 (P.L. 100-225) and expanded to include the Glorieta Battlefield unit to 
commemorate the Civil War Battle of Glorieta Pass (P.L. 101-536) in 1990. The present 
geophysical project is located within the Pecos unit.

The Trade Fair Locality contained an estimated 20-ac open expanse located 
immediately east of the Pecos Pueblo-Mission Complex. The geophysical project Area 
A within the Trade Fair Locality was located approximately 40 m east of the Mission 
and Convento (Figure 2). Area A consisted of grasses mixed with cacti and brush. 
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The geophysical project area was located on the east-facing slope below the Mission 
and Convento complex. Area B was located approximately 200 m northwest of the 
park’s visitor center. The area is located at the base of the ridge in the valley between 
the Visitors Center and the Pecos Pueblo-Mission Complex (Figure 3). The vegetation 
included mixed grasses and juniper. Area C contained a rock concentration that 
has been identified as a Jicarilla Apache tipi ring (PECO 65/LA 14148). It was located 
approximately 100 m southwest of park headquarters in a stand of juniper (Figure 4). 
Area D was located approximately 160 m southeast of the park headquarters. Area 
D consists of open grasslands along an arroyo (Figure 5). The Santa Fe Trail swale is 
located on the west side of the geophysical project area. 

ARCHEOLOGICAL PROJECT PERSONNEL

MWAC archeologist Steven L. De Vore directed and conducted the magnetic and 
conductivity surveys. Jacque Miller, Bailey Lathrop, Kasey Mathieson, Jessica Albertz, 
and Carl Haberstick of the University of Nebraska-Lincoln (UN-L) archeological field 
school through the Volunteers-In-Park (VIP) program assisted during the geophysical 
grid stakeout and global positioning system mapping, and geophysical data collection of 
the four geophysical project areas. During the course of the project, the UN-L volunteers 
provided 64 hours towards the geophysical investigations at the park. 

ENVIRONMENTAL DESCRIPTION OF PROJECT AREA

Pecos National Historical Park in San Miguel County, New Mexico, is located 
within the transition zone between the Southern Rocky Mountains province of the 
Rocky Mountain System division (Fenneman 1931:92-132), the Raton and the Pecos 
Valley sections of the Great Plains province of the Interior Plains division (Fenneman 
1931:37-50), and the Sacramento section of the Basin and Range province of the 
Intermontane Plateau division of the North American continent (Fenneman 1931:393-
395). The region is part of the Southern Rocky Mountain Foothills major land resource 
area (USDA 2006:132-134) of the Rocky Mountain Range and Forest land resource region 
(USDA 2006:113-114). The region consists of broad, elevated, complex strips of north-
south trending mountains with steeply dipping intermountain sedimentary basins. The 
Pecos River and its tributaries, including Glorieta Creek, drain the project area. The 
upper Pecos River valley is bordered by the Sangre de Cristo Mountains on the north, the 
Tecolote Range on the east, and Gloria Mesa to the west (Johnson et al. 2011:5). Bedrock 
consists of Pennsylvanian and early Permian conglomerates, limestones, sandstones, 
shales, and siltstones of the Sangre de Cristo Formation (Johnson et al. 2011:5; USDA 
2006:133). The limestone Magdalena group underlies the Sangre de Cristo Formation 
and outcrops along the Pecos River. Igneous and metamorphosed Precambrian rocks 
outcrop along Glorieta Creek. The Pecos River valley is covered with Pleistocene and 
Holocene alluvium. 

The dominant soils in the region are mollisols, alfisols, inceptisols, and entisols 
(Foth and Schafer 1980; USDA 2006:133-134). The soils are dominated by a mesic or 
frigid soil temperature regime with an ustic soil moisture regime. The soils typically 
have a smectitic or mixed mineralogy. The soils of the Pecos National Historical Park 
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lie within the Laporte-Rock outcrop soil association of “shallow, moderately undulating 
to hilly, well drained soils that formed in material weathered from limestone, and Rock 
outcrop on hills and ridges” (Hilley et al. 1981:9-10) and the Vibo-Tapia soil association 
of “deep, moderately undulating to moderately rolling, well-drained soils that formed 
in mixed material and in alluvial and eolian material on fans, valley sides and uplands” 
(Hilley et al. 1981:10). Soils within the Pecos unit of the park include the undulating Vibo-
Ribera association, the moderately sloping Ribera-Sombordoro-Vibo association, the 
moderately sloping Tuluso-Sombordoro-Rock outcrop complex, and the steep Laporte-
Rock outcrop complex (Johnson et al. 2011:5-6). Areas A, C, and D are located within 
the moderately sloping Ribera-Somboro-Vibo association, which is located on uplands 
and valley sides (Hilley et al. 1981:32, 72-74, 78-79). The Ribera soil is moderately deep 
and well drained, the Somboro soil is very shallow and well drained, and the Vibo soil 
is deep and well drained. The Ribera soil is a fine sandy loam that formed in sandstone- 
and shale-derived alluvial and eolian deposits, which has a moderate permeability 
with a moderate available water capacity, and a neutral to moderately alkaline pH. 
The Somboro soil is a very stony, fine sandy loam that formed in material derived from 
sandstone, which has a slow permeability with a very low available water capacity, 
medium runoff, and a mildly to moderately alkaline pH. The Vibo soil is a fine sandy 
loam that formed in alluvial and eolian sediments, which have a moderate permeability 
with a high available water capacity, medium runoff, and a neutral to moderately alkaline 
pH. Area B is located within the undulating Vibo-Ribera association, which is located on 
fans with one to nine percent slopes (Hilley et al. 1981:40-41,72,78-79). The hazard of 
water erosion ranges from moderate to high, while wind erosion ranges from slight to 
high in the park. 

The area also lies within the Navahonian biotic province (Dice 1943:39-42). The 
Pecos River valley lies within the Rocky Mountain conifer vegetation zone (Johnson et 
al. 2011:8-9). Stands of pinyon and juniper occur across the park with ponderosa pine 
and Douglas fir found at higher elevations. Open grasslands and juniper grasslands 
occur below the timber stands containing a mixture of short grasses along with a variety 
of shrubs, forbs, yucca, and cacti. Cottonwoods are found along Glorieta Creek and 
the Pecos River. Native grasses include blue grama, Indian ricegrass, sand dropseed, 
threeawn, hairy grama, broom snakeweed, pinyon ricegrass, little bluestem, and sideoats 
grama (Hilley et al. 1981:22, 32, 38, 41; Johnson et al. 2011:8-10, 82-85). Cottonwoods are 
the dominant forest species along the streams. The major wildlife species in the region 
include mule deer, bighorn sheep, elk, black bear, mountain lion, jackrabbit, cottontail 
rabbit, rodents, turkey, and mourning dove, as well as several species of songbirds, owls, 
and raptors (Britton and Ferrell 2006; Johnson et al. 2011:6-8; USDA 2006:134). Waterfowl 
can be found along lakes and perennial streams. Numerous reptiles, amphibians, fish, 
and insects are also present in the region (Britton and Ferrell 2006; Johnson 2011:7,92-
124; Parmenter and Lightfoot 1996).

The climate in the region is a middle-latitude dry climate with warm summers 
and cold, dry winters (Dice 1943:39-40; Houghton 1981:1-2,80; Trewartha and Horn 
1980:360-364). The average yearly temperature ranges from an average daily minimum 
of 1.6° C to an average daily maximum of 17.78° C. Temperatures can range from below 
-20° C in the winter to over 43 ° C in the summer. Precipitation averages 36.8 cm with the 
majority of it falling in summer thunder storms. The growing season is approximately 
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150 frost-free days. Prevailing winds are generally out of the southwest. These resources 
provide the basis of the aboriginal subsistence of prehistoric times and the historic and 
modern ranching economy. 

GENERAL DESCRIPTION OF THE GEOPHYSICAL PROJECT 
AND METHODS: 

Overall Research Design

The present geophysical inventory project is designed to provide a baseline 
geophysical data set for the evaluation of buried archeological resources within four 
areas of the Trade Fair Locality at Pecos National Historical Park (Haecker 2012a). The 
geophysical investigations were part of an intensive remote-sensing investigation of the 
Trade Fair Locality and other selected locations within the park. The investigations were 
to identify and define historic activities that occurred within the project area, which 
were described in written accounts and oral histories concerning the Pecos Pueblo. 

Previous Work

The project area lies within the Anasazi sub-region of the Southwest archeological 
culture area (Willey 1966:178-245). Historic contexts have been identified for the 
region in David Stuart and Rory Gauthier’s (1981) compilation of the state’s prehistoric 
resources. Genevieve Head, Janet Orcutt, and Robert Powers (2002:2-13) also provide a 
detailed review of the Upper Pecos Valley cultural history.

Archeological investigations of Pecos National Historical Park began in the late 
1800s. Adolph Bandelier compiled a set of notes and archeological drawings of the Pecos 
Pueblo and the Mission complex during his archeological investigations of the upper 
Pecos River valley in 1880 (Bandelier 1881,1892:127-138). Edgar Hewett continued the 
work of Bandelier in the early 1900s (Hewett 1904:426-439). From 1915 to 1929, A. V. 
Kidder conducted systematic archeological excavation within the boundary of today’s 
Pecos National Historical Park. Kidder’s excavations and analyses of the ceramics 
provided a basis for the chronological framework and the development of a regional 
synthesis (Kidder 1916a, 1916b, 1917a, 1917b, 1921, 1922, 1924, 1925, 1926a, 1926b, 1932, 
1951, 1958). The Pecos State Monument was established in 1935. In the years to follow, 
archeological work at the Pecos Pueblo concentrated on ruins stabilization or smaller 
sites around the periphery of the main complex (Hayes 1974:19; Ivey 2005; Metzger 1990; 
Stubbs et al. 1957). With the establishment of the Pecos National Monument in 1965, 
emphasis was directed to site display, interpretation, and ruins protection (Eininger 
2002:28-34). Archeological activity then shifted back to the Pecos Pueblo and Mission 
complex on the mesilla (Hayes 1970; Matlock 1974; Metzger 1990, Nordby 1990, Nordby 
et al. 1975, Oinkley 1968, White 1993,1994). Although most of the NPS archeological 
activities focused on the mesilla, James Gunnerson conducted archeological 
investigations searching for Apache sites near the Pecos Pueblo (Gunnerson 1969, 1970; 
Gunnerson and Gunnerson 1970). During the course of three field seasons, Gunnerson 
identified at least nine Apache sites within the park. The archeological investigation 
of the park has continued to the present. Many of the projects represented small-scale 
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investigations associated with park undertakings while a Systemwide Archeological 
Inventory Program (SAIP) inventory was undertaken in the mid to late 1990s (Head and 
Orcutt 2002). 

The park staff has incorporated archeological prospection investigative 
techniques into the park’s archeological research, beginning in 1998 with the hosting 
of the National Park Service’s Non-destructive Investigative Techniques for Cultural 
Resource Management workshop (De Vore 1998a). Magnetic, resistance, conductivity 
and magnetic susceptibility, and ground-penetrating radar (GPR) surveys were 
conducted in an area south of the park’s headquarter building (Bevan 1998a; McNeil 
1998). A pit structure was identified in the conductivity/susceptibility data (McNeil 1998). 
In 1998, geophysical investigations were conducted at the location of the Civil War’s 
Union encampment of Camp Lewis (Haecker 1998; De Vore 1998b). The investigations 
included a metal-detector survey, a magnetic survey with a fluxgate gradiometer, and 
the analysis of aerial photographs. Metal-detector surveys of the Civil War’s Glorieta 
Battlefield and the Pigeon’s Ranch site were conducted in 2005 (Scott 2005). Metal-
detector surveys have also been used within the Trade Fair area and the adjacent uplands 
in 2011 (Haecker 2012b).

For additional information on the National Park Service archeological 
investigations see the summary of archeological investigations by Susan Eininger 
(2002:28-37). Besides the archeological resource investigations, an ethnographic 
overview (Levine et al. 1994) and a cultural landscape overview (Cowley et al. 1998) have 
been completed. The ethnographic overview identified several ethnic groups that were 
traditionally associated with the park and provided information on the traditional land 
use by these groups within the park. The cultural landscape overview examined the 
cultural and natural forces that have affected the park’s landscape features.

Description of Investigations

Geophysical prospection techniques available for archeological investigations 
consist of a number of techniques that record the various physical properties of the earth, 
typically in the upper couple of meters; however, deeper prospection can be utilized if 
necessary (David 1995). Geophysical techniques are divided between passive and active 
techniques. Passive techniques are primarily ones that measure inherently or naturally 
occurring local or planetary fields created by earth-related processes (Heimmer and 
De Vore 1995:7, 2000:55; Kvamme 2001:356). The primary passive method utilized in 
archeology is magnetic surveying. Other passive methods with limited archeological 
applications include self-potential methods, gravity survey techniques, and differential 
thermal analysis. Active techniques transmit an electrical, electromagnetic, or acoustic 
signal into the ground (Heimmer and De Vore 1995:9, 2000:58-59; Kvamme 2001:355-
356). The interaction of these signals with buried materials produces alternated return 
signals that are measured by the appropriate geophysical instruments. Changes in the 
transmitted signal of amplitude, frequency, wavelength, and time-delay properties may 
also be observable. Active methods applicable to archeological investigations include 
electrical resistivity, electromagnetic conductivity (including ground-conductivity and 
metal detectors), magnetic susceptibility, and ground-penetrating radar. Active acoustic 
techniques, including seismic, sonar, and acoustic sounding, have very limited or specific 
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archeological applications. In order to identify any buried archeological resources at the 
Pecos National Historical Park, the National Park Service’s MWAC and IMSF-SF staffs, 
along with student volunteers from the University of Nebraska-Lincoln archeological 
field school, applied magnetic and conductivity survey techniques to investigate and 
identify the nature, extent, and the location of possible archeological features associated 
with historic Native American, Spanish, and American occupations and activities within 
the four geophysical project areas. 

Field Methods

Using an Ushikata S-25 TRACON surveying compass (Ushikata 2005) and a 
100-m tape measure, the four geophysical grids were fitted to the landforms in the four 
geophysical project areas (Figure 6). Wooden 2-in-by-2-in hub stakes were placed at the 
grid unit corners or at points along the edges of the grid units at a specified meter interval 
where access was not obstructed by natural (e.g., trees, bushes, arroyos) or cultural (e.g., 
buildings, fences, pavement) features.

Area A consisted of 12 complete 20-m-by-20-m grid units measuring 60 m east-
west by 80 m north-south, oriented on magnetic north. The total survey area measured 
4,800 m2 or 1.19 ac.  Area B consisted of two complete 20-m-by-20-m grid units 
measuring 40 m east-west by 20 m north-south, oriented 42 degrees east of magnetic 
north. The total survey area measured 800 m2 or 0.20 ac. Area C, the potential Apache 
stone circle site, consisted of one partial 20-m-by-20-m grid unit measuring 20 m east-
west by 10 m north-south, oriented 24 degrees west of magnetic north. The total survey 
area measured 156 m2 or 0.04 ac. Area D consisted of seven complete and one partial 
20-m-by-20-m grid units measuring 80 m east-west by 40 m north-south, oriented 8 
degrees west of magnetic north. The total survey area measured 3,120 m2 or 0.78 ac. An 
area totalling 8,876 m2 or 2.19 ac was surveyed during the geophysical investigations of 
the four geophysical project areas. 

During the establishment of the grid units of the four PECO geophysical project 
areas, the grid corners of the project areas were recorded with a global positioning 
system (GPS) unit (Figure 7). The GPS unit consisted of a Trimble GeoXH handheld 
receiver and external antenna (Trimble 2007a). The GPS readings at stationary points 
(i.e., grid unit corners and individual surface features) were collected with 30 readings 
from five or more satellites. The field GPS data were collected in the Universal Transverse 
Mercator (UTM) projection for the Zone 13 North coordinates using the North 
American Datum of 1983 (NAD83) horizontal datum. The data were transferred to a 
laptop computer via the Trimble TerraSync software (Trimble 2007b,2007c). The data 
were then differentially corrected with the Trimble Pathfinder Office software (Trimble 
2007d) using the continuously operating reference station, CORS Santa Fe (NMSF), 
located 28 km away in Santa Fe, New Mexico. After the raw survey data in the standard 
storage format (SSF) were post processed, the corrected data were exported to Excel 
data files. The data were then imported into the SURFER 10 contouring and 3D surface 
mapping program (Golden Software 2011) for the generation of the UTM project map 
(Figure 8). One thousand eight hundred forty-seven (99.95%) of 1,848 selected positions 
were code corrected by post-processing against the two base providers. One thousand 
eight hundred forty-six (99.89%) of 1,848 selected positions were carrier corrected by 
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post-processing against the two base providers. The estimated accuracy for the 1,847 
corrected positions resulted in 99.95% percent of the corrected positions for points 
within 5-15 cm of the actual landscape position and 0.05% within 0.5-1.0 m of the actual 
position.

Twenty-meter ropes were placed along the base lines connecting the grid unit 
corners. These ropes formed the traverse boundaries of each grid unit during the GPR 
profile data collection phase of the survey (Figure 9). The ropes were marked with 
different color tape at half-meter and meter increments, which were designed to help 
guide the survey effort. In addition to the survey ropes at the ends of the project grid 
units, traverse ropes were placed perpendicular to the baseline ropes at the 2-m intervals 
to serve as additional guides during the data collection along each traverse. The survey 
ropes were moved to the next grid unit once the data collection was completed for each 
traverse line. The first traverse was oriented towards the north during the magnetic 
survey of the four geophysical project areas. The magnetic data were acquired across the 
grid units beginning in the lower left hand corner of grid facing the direction of travel 
along the first traverse. In addition to the GPS mapping of the geophysical project area, 
sketch maps of the above ground features were made during the magnetic survey when 
the survey ropes were placed on the grid units for each geophysical project area (Figures 
10 through 13 for Areas A through D, respectively).

Magnetic Survey—Dual Fluxgate Gradiometer

Instrument: Bartington Grad601-2 Magnetic (Fluxgate) Gradiometer 
(Bartington 2007)

Specifications: dual system with two sensor tubes spaced 1 m apart, 1-m 
sensor spacing between sensors on individual sensor tubes, 0.05 nT (nanotesla) 
resolution, 0.1 nT absolute accuracy

Survey type: magnetic 

Operator: Steven De Vore

A magnetic survey is a passive geophysical survey technique used to measure 
local changes in the earth’s magnetic field (see Aspinall et al. 2008; Bevan 1991, 1998b:29-
43; Breiner 1973,1992:313-381; Burger 1992:389-452; Clark 2000:92-98, 174-175; David 
1995:17-20; Davenport 2001:26, 50-71; Dobrin and Savit 1988:633-749; Gaffney and Gater 
2003:36-42, 61-72; Gaffney et al. 1991:6, 2002:7-9; Hanson et al. 2005:151-175; Heimmer 
and De Vore 1995:13, 2000:55-56; Kvamme 2001:357-358, 2003:441, 2005:434 436, 
2006a:205-233, 2006b:235-250; Lowrie 1997:229-306; Milsom and Eriksen 2011:65-84; 
Mussett and Khan 2000:139-180; Neubauer et al. 1996; Nishimura 2001:546-547; Oswin 
2009:43-54, 126-135; Robinson and Çoruh 1988:333-444; Scollar et al. 1990:375-519; 
Sharma 1997:65-111; Telford et al. 1990:62-135; Weymouth 1986:343; and Witten 2006:73-
116 for more details on magnetic surveying). Magnetometers depend upon sensing 
subtle variations in the strength of the earth’s magnetic field in close proximity to the 
archeological features being sought. Variation in the magnetic properties of the soil or 



8

other buried material induces small variations in the strength of the earth’s magnetic field. 
Its application to archeology results from the local effects of magnetic materials on the 
earth’s magnetic field. These anomalous conditions result from magnetic materials and 
minerals buried in the soil matrix. Iron-based materials have very strong effects on the 
local earth’s magnetic field. Historic iron artifacts, modern iron trash, and construction 
material, like metal fence posts, woven and barbed fencing wire, and fencing staples, 
as well as agricultural machinery parts, can produce such strong magnetic anomalies 
that nearby archeological features are masked by the strong magnetic fields of these 
materials and are therefore not detectable. Other cultural features that affect the earth’s 
local magnetic field include fire hearths and soil disturbances (e.g., pits, mounds, wells, 
pithouses, and dugouts), as well as, geological strata. 

Magnetic field strength is measured in nanoteslas (nT; Sheriff 1973:148). In North 
America, the earth’s magnetic field strength ranges from 40,000 to 60,000 nT with an 
inclination of approximately 60° to 70° (Burger 1992:400; Milsom and Eriksen 2011:68; 
Weymouth 1986:341). Magnetic anomalies of archeological interest are often in the ±5 
nT range, especially on prehistoric sites. Target depth in magnetic surveys depends on 
the magnetic susceptibility of the soil and the magnetic mass associated with buried 
features and objects. For most archeological surveys, target depth is generally confined 
to the upper 1-2 m below the ground surface with 3 m representing the maximum limit 
(Clark 2000:78-80; Kvamme 2001:358). Magnetic surveying applications for archeological 
investigations have included the detection of architectural features, soil disturbances, 
and magnetic objects. 

The Bartington Grad601-2 magnetic gradiometer is a fluxgate gradiometer 
that uses a dual fluxgate sensor system for the recordation of two lines of data for 
each traverse walked during the collection of magnetic data (Figure 14). It is a vector 
magnetometer, which measures the strength of the magnetic field in a particular 
direction (Bartington 2007). The two magnetic sensors in each gradiometer sensor tube 
on the fluxgate gradiometer are spaced 1.0 m apart. The sensor tubes are carried on a 
bar with a meter separation between the two sensor tubes. The instrument is carried so 
the two sensors are vertical to one another with the bottom sensor approximately 30 cm 
above the ground. Each sensor reads the magnetic field strength at its height above the 
ground. The gradient or change of the magnetic field strength between the two sensors 
is recorded in the instrument’s memory. This gradient is not in absolute field values but 
rather voltage changes, which are calibrated in terms of the magnetic field. The dual 
fluxgate gradiometer provides a continuous record of the magnetic field strength across 
each traverse. The sensors must be accurately balanced and aligned along the direction 
of the field component to be measured. The reference point for balancing and aligning 
the dual gradiometer for the survey of all four PECO geophysical project areas is located 
at N0/E0 in Area A. The gradiometer was aligned on magnetic north. 

The magnetic survey was designed to collect eight samples per meter along 
1.0-m traverses or 8 data values per square meter. The data were collected in a zigzag 
fashion with the surveyor alternating direction of travel for each traverse across the grid. 
Thirty-two hundred data measurements were collected during the survey of a complete 
grid unit. The magnetic data were recorded in the memory of the gradiometer and 
downloaded to a laptop computer after the completion of survey effort. The magnetic 
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data were directly imported into DW Consulting’s ArcheoSurveyor software (DW 
Consulting 2012) for processing. The grid files for individual grid units were combined 
into a site composite file (DW Consulting 2012:3-4). Both shade-relief and trace-line 
plots were generated in the field before the instrument’s memory was cleared.

Upon completion of the magnetic survey at each area, the data were processed 
in ArcheoSurveyor. After the grid data files were assembled into a composite file, 
the destripe processing routine was applied to remove any traverse discontinuities 
or striping effects that may have occurred from operator handling, heading errors, 
instrument setup, or instrument drift during the survey (DW Consulting 2012:69-70). 
Upon completion of the destripe function, the data were interpolated by expanding 
the number of data points in the traverse direction and by reducing the number of data 
points in the sampling direction to provide a smoother appearance in the data set and 
to enhance the operation of the low-pass filter (DW Consulting 2012:71). This changed 
the original 8-x-1 data point matrix into 4-x-4 data point matrix for the survey area. The 
low-pass filter was then applied over the entire data set to remove any high frequency, 
small scale spatial detail (DW Consulting 2012:81). This transformation resulted in the 
improved visibility of larger, weak archeological features. The data were then exported 
as an ASCII dat file (DW Consulting 2012:41) and placed in the SURFER 10 program 
(Golden Software 2011) for final the display (Oswin 2009:86-95).

The dual fluxgate gradiometer data from the Area A, after the application of 
the destriping traverse function, ranged from -100.0 nT/m to 100.0 nT/m with a mean 
of -0.17 nT/m and a standard deviation of 7.659 nT/m. Image and contour plots of the 
magnetic data were also generated for Area A in Surfer 10 (Figure 15). The dual fluxgate 
gradiometer data from the Area B, after the application of the destriping traverse 
function, ranged from -10.6 nT/m to 12.9 nT/m with a mean of -0.01 nT/m and a standard 
deviation of 0.996 nT/m. Image and contour plots of the magnetic data were also 
generated for Area B in Surfer 10 (Figure 16). The dual fluxgate gradiometer data from 
the Area C, after the application of the destriping traverse function, ranged from -53.8 
nT/m to 89.0 nT/m with a mean of -0.23 nT/m and a standard deviation of 5.721 nT/m. 
Image and contour plots of the magnetic data were also generated for Area C in Surfer 
10 (Figure 17). The dual fluxgate gradiometer data from the Area D, after the application 
of the destriping traverse function, ranged from -98.2 nT/m to 99.7 nT/m with a mean 
of 0.07 nT/m and a standard deviation of 6.351 nT/m. Image and contour plots of the 
magnetic data were also generated for Area D in Surfer 10 (Figure 18). 

Electromagnetic Induction Survey—Conductivity:

Instrument: Geonics EM38 ground conductivity meter (Geonics 2006a) with an 
Archer ultra-rugged Field PC (Geonics 2006b; Juniper Systems 2009) 

Specifications: apparent conductivity of the ground in millisiemens per meter 
(mS/m); measurement precision ±0.1% of full scale deflection; 100 and 1000 
mS/m conductivity ranges (4 digit digital meter).

Survey type: conductivity in the quadrature phase operating mode
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Operator: Steven De Vore

The electromagnetic induction (EM or EMI) survey in the conductivity or 
quadrature phase is an active geophysical technique that induces an electromagnetic 
field into the ground (see Bevan 1983, 1998:29-43; Clark 2000:171; Clay 2006:79-107; 
Dalan 1995; Davenport 2001:72-88; David 1995:20; Dobrin and Savit 1988:773-837; 
Fitterman and Labson 2005:301-355; Gaffney and Gater 2003:42-44; Gaffney et 
al. 1991:5, 2002:10; Heimmer and De Vore 1995:35-41, 2000:60-63; Klien and Lajoie 
1992:383-535; Kvamme 2001:362-363, 2003:441-442; Lowrie 1997:222-228; Mussett 
and Khan 2000:210-219; Nishimura 2001:551-552; Robinson and Çoruh 1988:490-500; 
Scollar et al. 1990:520-590; Sharma 1997:265-308; Telford et al. 1990:343-521; Weymouth 
1986:317-318, 326-327, and Witten 2006:147-213 for more details of electromagnetic 
induction conductivity surveys). This survey technique measures the apparent soil 
conductivity, which is in millisiemens per meter (mS/m: Sheriff 1973:197). Conductivity 
is also the reciprocal of resistivity. 

An electromagnetic field is induced into the ground through the transmitting 
coil. The induced primary field causes an electric current flow in the earth similar to 
a resistivity survey. In fact, a conductivity survey is the inverse of a resistivity survey. 
High conductivity equates to low resistivity and vice versa. The materials in the earth 
create secondary eddy current loops that are picked up by the instrument’s receiving 
coil. The interaction of the generated eddy loops or electromagnetic field with the 
earthen materials is directly proportional to terrain conductivity within the influence 
area of the instrument. The receiving coil detects the response alteration (secondary 
electromagnetic field) in the primary electromagnetic field. This secondary field is 
out of phase with the primary field (quadrature or conductivity phase). The in-phase 
component of the secondary signal is used to measure the magnetic susceptibility of the 
subsurface soil matrix. 

Changes result from electrical and magnetic properties of the soil matrix. Changes 
are caused by materials buried in the soil, differences in soil formation processes, or 
disturbances from natural or cultural modifications to the soil. EM instruments are also 
sensitive to surface and buried metals. Due to their high conductivity, metals show up 
as extreme values in the acquired data set. On occasion, these values may be expressed 
as negative values since the extremely high conductivity signal of the metals cause the 
secondary coil to become saturated. 

In archeology, the instrument has been used to identify areas of compaction 
and excavation as well as buried metallic objects. It has the potential to identify cultural 
features that are affected by the water saturation in the soil (Clark 2000; Heimmer 
and De Vore 1995:35-41). Its application to archeology results from the ability of the 
instrument to detect lateral changes on a rapid data acquisition, high resolution basis, 
where observable contrasts exist. Lateral changes in anthropogenic features result from 
compaction, structural material changes, buried metallic objects, excavation, habitation 
sites, and other features affecting water saturation (Heimmer and De Vore 1995:37). 
The conductivity survey can sometimes detect the disturbed soil matrix within a grave 
shaft. It can also locate large metal objects. Metallic trash on the surface and other small 
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objects buried in the upper portion of the soil can degrade the search of the buried 
archeological resources, including graves (Bevan 1991:1310).

The present EMI survey is conducted with a Geonics EM38 ground conductivity 
meter (Geonics 2006). The instrument is lightweight and 1.45 m in length (Figure 19). 
The self-contained dipole transmitter (primary field source) and self-contained dipole 
receiver (sensor) coils are located at opposite ends of the meter. The intercoil spacing 
is 1 m. The meter was connected to the Archer ultra-rugged Field PC for digital data 
acquisition (Geonics 2006a, Juniper Systems 2009). The conductivity survey was designed 
to collect in the continuous or automatic mode with readings collected every quarter 
of a second resulting in four samples per meter. The data were collected in a parallel 
fashion or unidirectional mode with the surveyor conducting the data acquisition in 
the same direction of travel for each traverse across the grid. The conductivity data 
were collected along 1.0-m traverses at a sampling density of four samples per meter. 
Sixteen hundred data measurements were collected in a complete grid unit. The data 
and header files stored in the polycorder were downloaded into the laptop computer 
at the end of the survey. The survey of the grid unit began in the lower left hand or 
southwest corner of the grid. The EM38 was used in the quadrature or conductivity 
phase, the vertical dipole mode, and one orientation parallel to the direction of travel 
along the traverses. It provided an exploration depth of approximately 1.5 m with its 
effective depth around 0.6 m in the vertical dipole mode. The instrument was nulled 
and calibrated before the start of the survey at the same reference point that was used 
to balance and align the dual fluxgate gradiometer in Area A. A single grid unit, located 
at N40/E20 in Area A, was surveyed using the conductivity meter. The conductivity 
survey was also conducted at Area C. The conductivity surveys were conducted to 
provide complementary data in the two areas and to check on the possibility of using it 
on sites within PECO in the future.

The data were downloaded to a laptop computer at the end of the survey of 
the geophysical project area. The data were processed using the DAT38W software 
(Geonics 2002). After the transfer of the data and header files to the laptop computer, 
the files were automatically converted from the raw EM38 format to DAT38 format with 
the extension name of G38 (Geonics 2002:12-14). The data were then displayed as data 
profile lines (Geonics 2002:14-15). The individual EM38 data file was then converted to 
XYZ coordinate file in the Surfer data format. To create the XYZ file, the orientation or 
direction of the survey line was selected in the DAT38W program along with the data 
type and format (Geonics 2002:20-23). The resulting XYZ data file was transfer to the 
SURFER 10 mapping software (Golden Software 2011). The conductivity data were 
reviewed and an image plot was generated in SURFER 10.

To process the conductivity data further, it was transferred to GEOPLOT 
(Geoscan Research 2003). The conductivity data were stripped of the X and Y 
coordinates and then the Z values (measurements) were imported into GEOPLOT for 
further processing (Geoscan Research 2003:4/1-4/29). The resulting grid was formatted 
to form a composite file in GEOPLOT. A zero-mean traverse was then applied to remove 
any traverse discontinuities that may have occurred from operator handling or heading 
errors (Geoscan Research 2003:6/107-6/116). The interpolation routine was applied to 
the data set to arrange the data from the 4-x-1 data matrix to an equally spaced 4-x-4 
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square matrix (Geoscan Research 2003:6/53-6/56). A high-pass filter was then applied 
over the composite data set (Geoscan Research 2003:6/49-6/52). The high-pass filter 
was used to remove low frequency, large scale spatial detail such as a slowing changing 
geological ‘background’ trend. The data were then exported as an ASCII data file 
(Geoscan Research 2003: 5/4-5/7) and placed in the SURFER 10 mapping program 
(Golden Software 2011), then exported as an ASCII dat file and placed in the SURFER 
10 mapping program. The conductivity data from Area A, before additional processing, 
ranged from -8.3 mS/m to 16.0 mS/m with a mean of 11.92 mS/m and a standard deviation 
of 1.713 mS/m. The image and contour plots of the conductivity data from Grid Unit 
N40/E20 in Area A were generated for the survey area in SURFER 10 (Figure 20). The 
conductivity data from Area C, before additional processing, ranged from 6.8 mS/m to 
11.8 mS/m with a mean of 8.22 mS/m and a standard deviation of 0.657 mS/m. Image and 
contour plots of the conductivity data from Area C were also generated for the survey 
area in SURFER 10 (Figure 21). 

DESCRIPTION OF GEOPHYSICAL INTERPRETATION OF 
CULTURAL RESOURCES LOCATED

Andrew David (1995:30) defines interpretation as a “holistic process and its 
outcome should represent the combined influence of several factors, being arrived at 
through consultation with others where necessary.” Interpretation may be divided into 
two different types: the geophysical interpretation of the data and the archaeological 
interpretation of the data. At a simplistic level, geophysical interpretation involves the 
identification of the factors causing changes in the geophysical data. Archeological 
interpretation takes the geophysical results and tries to apply cultural attributes or 
causes. In both cases, interpretation requires both experience with the operation of 
geophysical equipment, data processing, and archeological methods; and knowledge of 
the geophysical techniques and properties, as well as known and expected archeology. 
Although there is variation between sites, several factors should be considered in the 
interpretation of the geophysical data. These may be divided between natural factors, 
such as geology, soil type, geomorphology, climate, surface conditions, topography, soil 
magnetic susceptibility, seasonality, and cultural factors, including known and inferred 
archeology, landscape history, survey methods, data treatment, modern interference, 
etc. (David 1995:30). It should also be pointed out that refinements in the geophysical 
interpretations are dependent on the feedback from subsequent archeological 
investigations. The use of multiple instrument surveys provides the archeologist with very 
different sources of data that may provide complementary information for comparison 
of the nature and cause (i.e., natural or cultural) of a geophysical anomaly (Clay 2001; 
Kvamme et al. 2006). Each instrument responds primarily to a single physical property: 
magnetometry to soil magnetism, electromagnetic induction to soil conductivity in the 
quadrature phase component and magnetic susceptibility in the in-phase component, 
resistivity to soil resistance, and ground-penetrating radar to dielectric properties of the 
soil (Weymouth 1986:371). 

Interpretation of the magnetic data (Bevan 1998:24) from the project requires 
a description of the buried archeological feature or object (e.g., its material, shape, 
depth, size, and orientation). The magnetic anomaly represents a local disturbance in 
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the earth’s magnetic field caused by a local change in the magnetic contract between 
buried archeological features, objects, and the surrounding soil matrix. Local increases 
or decreases over a very broad uniform magnetic surface would exhibit locally positive 
or negative anomalies (Breiner 1973:17). Magnetic anomalies tend to be highly variable 
in shape and amplitude. They are generally asymmetrical in nature due to the combined 
effects from several sources. To complicate matters further, a given anomaly may be 
produced from an infinite number of possible sources. Depth between the magnetometer 
and the magnetic source material also affect the shape of the apparent anomaly (Breiner 
1973:18). As the distance between the magnetic sensor on the magnetometer and the 
source material increases, the expression of the anomaly becomes broader. Anomaly 
shape and amplitude are also affected by the relative amounts of permanent and 
induced magnetization, the direction of the magnetic field, and the amount of magnetic 
minerals (e.g., magnetite) present in the source compared to the adjacent soil matrix. 
The shape (e.g., narrow or broad) and orientation of the source material also affects the 
anomaly signature. Anomalies are often identified in terms of various arrays of dipoles 
or monopoles (Breiner 1973:18-19). A magnetic object is made of magnetic poles (North 
or positive and South or negative). A simple dipole anomaly contains the pair of opposite 
poles that are relatively close together. A monopole anomaly is simply one end of a dipole 
anomaly and may be either positive or negative depending on the orientation of the 
object. The other end is too far away to have an effect on the magnetic field. Complex 
magnetic anomalies are combinations of dipoles and/or monopoles. In addition to the 
physical properties of the geophysical anomalies (shape size, strength, etc.), pattern 
recognition is an important component in the interpretation and potential identification 
of archeological features. The grouping of anomalies in circular, square, rectangular, or 
linear patterns may suggest the location of buried building foundations, wells, cellars, 
privies, room blocks, kivas, pit houses, stone circles or teepee rings, fence lines, utility 
lines, roads, earthworks, mounds, and other cultural features.

Magnetic anomalies of archeological objects tend to be approximately circular 
in contour outline. The circular contours are caused by the small size of the objects. 
The shape of the object is seldom revealed in the contoured data. The depth of the 
archaeological object can be estimated by half-width rule procedure (Bevan 1998:23-24; 
Breiner 1973:31; Milsom 2003:67-70). The approximations are based on a model of a steel 
sphere with a mass of 1 kg buried at a depth of 1.0 m below the surface with the magnetic 
measurements made at an elevation of 0.3 m above the ground. The depth of a magnetic 
object is determined by the location of the contour value at half the distance between 
the peak positive value of the anomaly and the background value. With the fluxgate 
gradiometer, the contour value is half the peak value since the background value is 
approximately zero. The diameter of this contour (Bevan 1998:Fig. B26) is measured 
and used in the depth formula where depth = diameter – 0.3 m (Note: The constant 
of 0.3 m is the height of the bottom fluxgate sensor above the ground in the Geoscan 
Research FM36 where I carry the instrument during data acquisition. This value needs 
to be adjusted for each individual that carries the instrument.). The mass in kilograms 
of the object (Bevan 1998:24, Fig. B26) is estimated by the following formula: mass = 
(peak value - background value) * (diameter)3/60. It is likely that the depth and mass 
estimates are too large rather than too small, since they are based on a compact spherical 
object made of iron. Archeological features are seldom compact but spread out in a line 
or lens. Both mass and depth estimates will be too large. The archaeological material 
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may be composed of something other than iron, such as fired earth or volcanic rock. 
Such materials are not usually distinguishable in the magnetic data collected during a 
survey (Bevan 1998:24). The depth and mass of features composed of fired earth, like 
that found in kilns, fireplaces, or furnaces could be off by 100 times the mass of iron. 
If the archeological feature were composed of bricks (e.g., brick wall, foundation, or 
chimney), estimates could be off by more than a 1,000 times that of iron. The location 
of the center of the object can also be determined by drawing a line connecting the peak 
positive and peak negative values. The rule of thumb is that the center of the object is 
located approximately one-third to one-half of the way along the line from the peak 
positive value for the anomaly. One should also be cautious of geophysical anomalies 
that extend in the direction of the traverses since these may represent operator-induced 
errors. The magnetic gradient anomalies may be classified as three different types: 
linear, dipole, and monopole.

Analyses of the geophysical data from the four PECO geophysical project areas 
indicate the presence of numerous magnetic anomalies. Complementary data from the 
limited complementary conductivity surveys provide additional data on the nature or 
source of the geophysical anomalies. The geophysical anomalies appear to be associated 
with the Native American occupation of the Pecos Pueblo, the Spanish occupation of 
the Mission and Convento, historic Apache campsites, and the Santa Fe Trail along with 
historic ranching activities, historic State park activities, and modern National Park 
Service operations.

Area A contains numerous individual dipole and monopole anomalies along 
with several clusters of magnetic anomalies across the grid area (Figure 22). Two linear 
magnetic anomalies in the southwestern section of Area A appear to represent roads/
trails to the mission site. They are also represented as swales on the landscape. These 
may be associated with the Santa Fe Trail or with park visitor access for parking and/or 
stabilization activities at the mission ruins. A series of strong dipole anomalies extend 
across the center of the grid in a northerly direction. It is possible that they represent 
fence post locations or other archeological features. One anomaly located near N55/E30 
may be a fire-related feature such as a fire hearth. Several clusters of magnetic anomalies 
appear square or rectangular in shape. The anomaly outlines are represented by clusters 
of dipoles or monopoles along with relatively strong linear anomalies adjacent to weaker 
anomalies. It is possible that these clusters represent rectangular Puebloan room blocks 
or square Spanish houses (Charles Haecker, personal communication 2012). It is also 
possible that the four identified rectangular/square areas in the northeastern part of the 
geophysical project area may be excavation units from the 1970 excavations east of the 
Mission Church (Gunnerson 1970). The excavation uncovered the remains of a burned 
structure in association with Puebloan and Apache pottery (Eininger 2002:31).

The magnetic data from Area B contains one relatively strong dipole anomaly 
(Figure 23). It ranges from approximately -10 to 10 nT/m. It is probably a ferrous metal 
object. The area is relatively quiet with a range of -3 to 3 nT/m.

Area C contains the possible Apache stone circle (Figure 24). In the area of 
the exposed rocks in the southwestern part of the grid, there are several relatively 
weak dipole anomalies ranging between -5 and 8 nT/m. These anomalies appear to be 
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associated with the rocks. Three relatively strong or strong dipoles have ranges of -15 
to 10 nT/m, -43 to 8 nT/m, and -47 to 45 nT/m. The two stronger dipoles may represent 
ferrous metal objects, rocks, or fired adobe brick fragments. The two strongest anomalies 
may be the wire from pin flags. Pin flags are made from high tensile steel with a very 
strong magnetic field. The magnetic field associated with a pin flag can obscure an area 
from 1 m to 5 m in diameter.

Area D contains a swale associated with the Santa Fe trail in the southwestern 
corner of the grid (Figure 25). The outside edges of the swale are represented by relatively 
weak positive linear anomalies. In the southwest corner of the grid, a linear magnetic 
anomaly with alternating strong positive and weak negative values represents a buried 
utility line or buried wire. The alternating strong positive and weak negative bead like 
magnetic anomaly represents the cooling of the ferrous wire or pipe and the formation 
of connected bar magnets (North/ positive – S/negative) in the earth’s magnetic field 
during its manufacture. 

Interpretation of the conductivity data results in the identification of lateral 
changes in the soil matrix. The conductivity data may be divided into three classes of 
anomalies including linear anomalies, point anomalies, and broad anomalous areas. 
Linear anomalies may represent foundations of buildings, trenches, buried utility 
lines, paths, trails, or roads that are longer than they are wide. Point anomalies tend to 
represent buried objects or vertical structures such as cisterns, wells, or storage pits. 
Occasionally, these anomalies may have negative values resulting from the saturation of 
the receiving coil by the overwhelming conductive metal response of buried metals to 
the generated electromagnetic field. Comparisons between these negative conductivity 
anomalies and the magnetic anomalies can elucidate the nature of the buried object. If 
the magnetic and conductivity point anomalies coincide, it is assumed that the buried 
object is made from ferrous material. The presence of a magnetic anomaly and the lack of 
a corresponding conductivity anomaly suggest that the magnetic anomaly is composed 
of non-metallic material such as fired clay typically found in fire-related features (i.e., 
fire hearths or pits, concentrated areas of ceramics, or bricks). The presence of a negative 
conductivity anomaly and the absence of a corresponding magnetic anomaly strongly 
suggest that the buried object is some type of non-ferrous metal (e.g., brass, copper, 
lead, etc.). Broad anomalous areas typically represent large areas of soil disturbances or 
compaction often found associated with gardens, basements or cellars, parking pads, 
compacted dirt floors, or areas of concrete or asphalt.

The conductivity data from Grid Unit 8 located at N40/E20 in Area A contains 
five conductivity anomalies (Figure 26). Four conductivity anomalies have the metal 
signature where the receiving coil has been overwhelmed by the eddy signal. A fifth 
conductivity anomaly near N47/E28 appears similar to a dipole with a strong and weak 
side. Comparing the magnetic and conductivity data from Grid Unit N40/E20, the four 
conductivity anomalies appear to be associated with four magnetic dipole anomalies 
in the same locations (Figure 27). It is highly probable that both types of anomalies are 
associated with ferrous metal objects. One conductivity anomaly does not appear to 
have a corresponding magnetic anomaly, which suggests that the source of the anomaly 
is non-ferrous metal. Four magnetic anomalies do not have corresponding conductivity 
anomalies suggesting that the sources for these anomalies are fire-related features, such 
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as fire hearths, ovens, or burned adobe bricks, or soil disturbances such as post holes or 
refuse/cache pits.

A different way of looking at the geophysical data collected during the 
investigations of the geophysical project area is to combine the complementary data sets 
into one display. Several of the different geophysical anomalies overlap, suggesting a 
strong correlation between the geophysical data and the buried archeological features 
(Ambrose 2005; Kvamme 2007:345-374). These areas of overlap would be considered 
areas of high probability for ground-truthing and the investigations of buried 
archeological resources. While these correlations are important, individual isolated 
occurrences also need ground-truthing in order to determine their unique nature, as 
well. Complementary data (Clay 2001) from the conductivity and associated magnetic 
survey area at Area A (Figure 28) indicate the locations of foundation remnants, ferrous 
and non-ferrous metal objects, fire-related features, and possible refuse and/or cache 
pits. The combined conductivity and magnetic data from Area C indicate a possible 
Apache stone circle and more recent ferrous objects related to the archeological 
investigations at the site and park activities.

NATIONAL REGISTER EVALUATION OF 
CULTURALRESOURCES LOCATED

The geophysical survey of the four PECO 2012 geophysical project areas was 
conducted as part of the National Park Service’s archeological investigations of the Trade 
Fair Locality within Pecos National Historical Park (Haecker 2012a). The MWAC staff 
provided technical support for the geophysical investigations of the four geophysical 
project areas with volunteers from the University of Nebraska-Lincoln archeological 
field school. The geophysical inventory of the four geophysical project areas consisted 
of a dual fluxgate gradiometer survey of all four areas and limited conductivity 
surveys of Grid Unit N40/E20 in Area A and the partial grid unit in Area C. The 
total area investigated at the geophysical project area consisted of 8,876 m2 or 2.19 
ac. The surveys resulted in the identification of numerous subsurface anomalies. The 
magnetic and conductivity data collected at the four Trade Fair geophysical project 
areas provided information on the physical properties (magnetic and soil conductivity 
properties) of the subsurface materials. Standard methods for conducting geophysical 
investigations were used with standard 20-m-by-20-m grid sizes where it was feasible. 
The geophysical survey of the site resulted in the identification of numerous subsurface 
anomalies associated with the historic Pecos Pueblo occupation, the historic Spanish 
occupation connected with the Mission and Convento, the historic Apache use of 
the area, the commerce along the historic Santa Fe trail, and modern National Park 
Service activities.

This report has provided a review and analysis of the geophysical data collected 
during the geophysical investigations of four PECO geophysical project areas. The 
use of geophysical survey techniques at PECO indicates the usefulness in collecting 
basic background geophysical data concerning the nature and extent of the buried 
archeological resources. Based on the information provided by the geophysical survey 
methods, it is apparent that the geophysical data set yielded useful information for the 
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determination of the integrity and significance of the buried archeological resources 
associated with the historic Native American, historic Spanish, and historic American 
periods, as well as the National Park Service use of the project areas. While the magnetic 
and conductivity surveys results provided data on the nature of the buried archeological 
resources, ground-truthing through archeological excavation will provide definitive 
information on the nature of these geophysical anomalies. 

Finally, refinement of the geophysical interpretation of the survey data is 
dependent on the feedback of the archeological investigations following geophysical 
survey (David 1995:30). Should additional archeological investigations occur at the four 
PECO geophysical project areas investigated during this project, the project archeologist 
is encouraged to share additional survey and excavation data with the geophysical 
investigator for incorporation into the investigator’s accumulated experiences 
with archeological problems. Throughout the entire geophysical and archeological 
investigations, communication between the geophysicist and the archeologist is essential 
for successful completion of the archeological investigations. It is also important for 
the investigators to disseminate the results of the geophysical survey and archeological 
investigations to the general public. It is through their support in funds and labor that 
the National Park Service will continue to make contributions to the application of 
geophysical techniques to the field of archeology. 

National Register Recommendations with Justifications for Eligible, Not Eligible, 
Need More Information from Testing, Etc

 The geophysical survey of four PECO 2012 geophysical project areas yielded 
baseline data for the evaluation of the archeological deposits and modern activities. 
Areas A, C, and D have the potential to yield information on the Native American, 
Spanish, and American use of the Trade Fair area under Criterion D of the National 
Register of Historic Places. The three geophysical project areas have the potential to 
answer research questions related to chronology, subsistence, environmental change, 
regional interaction and trade, and technological change (Orcutt and Head 2002:421-
433). The geophysical investigations have provided potential information on the integrity 
of the buried archeological resources at Area A, B. C, and D.

Site Integrity and Conservation/Stabilization/Avoidance Recommendations

The geophysical project areas contain archeological remains associated with 
occupation of the historic Pecos Pueblo, the Spanish missionary use of the area, 
and 19th- and 20th-century American activities, as well as more recent National 
Park Service stabilization activities. The resulting archeological integrity of buried 
archeological resources is good and the historic features represent significant resources 
associated with local, regional, and national historic contexts. Additional archeological 
investigations are needed to ground-truth the geophysical anomalies to determine their 
shape, nature, extent, and chronological placement.
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EFFECTS OF PROJECT ON RESOURCES

The application of geophysical survey techniques at the PECO Trade Fair Locality 
indicates the usefulness in collecting basic background geophysical data concerning 
the nature and extent of the buried archeological resources. These techniques should 
be applied to future archeological investigations conducted by the Pecos National 
Historical Park archaeological staff at other archeological sites within the national 
park unit. Based on the information provided by the geophysical survey methods, it is 
apparent that the geophysical data set yielded useful information for the determination 
of the integrity and significance of the buried archeological resources associated with the 
use of the site during the Native American, Spanish, and American historic occupation 
of the Trade Fair Locality. This information will be used by the Midwest Archeological 
Center, the Pecos National Historical Park, and the Intermountain Regional Office’s 
Heritage Partnership Program staffs to guide further archeological inquiry into the 
nature of the archeological resources of the Trade Fair Locality at PECO and help direct 
future National Park Service geophysical surveys and archeological excavations at other 
archeological sites across the Nation. 

 LOCATION OF ARTIFACTUAL MATERIALS AND RECORDS 
FROM THE WORK

No artifacts were collected during the geophysical investigations of the four 
project areas. The geophysical data and associated documentation are part of the 
PECO accession number 641. The materials are also temporarily curated under MWAC 
accession number 1514 until the entire collection is returned to PECO. 
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FIGURES

Figure 1.  Location of the geophysical project areas within Pecos National Historical Park, 
San Miguel County, New Mexico.
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Figure 2.  General view of the Area A (view to the north northwest).

Figure 3.  General view of Area B (view to the north).
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Figure 4.  General view of Area C (view to the northeast).

Figure 5.  General view of Area D (view to the north northwest).
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Figure 6.  Laying out Area A with a surveying compass and 100-m tape 
(view to the northwest).

Figure 7.  Collecting grid coordinate locational data with GPS unit and 
external antenna (view to the south southwest).
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Figure 8.  UTM grid of the PECO geophysical project areas. 
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Figure 9.  Laying out the geophysical survey ropes (view to the 
northeast).
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Figure 10.  Sketch map of Area A.
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Figure 11.  Sketch map of Area B.
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Figure 12.  Sketch map of Area C.
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Figure 14.  Conducting the magnetic survey with the dual fluxgate gradiometer (view to 
the west southwest).
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Figure 15. Image and contour plots of the magnetic data from Area A.
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Figure 16.  Image and contour plots of the magnetic data from Area B.
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Figure 17.  Image and contour plots of the magnetic data from Area C.
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Figure 18.  Image and contour plots of the magnetic data from Area D.
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Figure 19.  Demonstrating the use of the electromagnetic induction meter for conductivity surveying 
(view to the north).
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Figure 20.  Image and contour plots of the conductivity data from Grid Unit N40/E20 in 
Area A.
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Figure 21.  Image and contour plots of the conductivity data from Area C.
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Figure 22.  Interpretation of the magnetic data from Area A.
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Figure 23.  Interpretation of the magnetic data from Area B.

Figure 24.  Interpretation of the magnetic data from Area C.



49

Figure 25.  Interpretation of the magnetic data from Area D.

Figure 26.  Interpretation of conductivity data from Grid Unit N40/E20 in Area A.



50

Figure 27.  Comparison of magnetic and conductivity data from Grid Unit N40/E20 in Area A.

Figure 28.  Interpretation of conductivity data from Area C.
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Figure 29.  Combined geophysical survey data from the Grid Unit N40/E20 in Area A.
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Figure 30.  Combined geophysical survey data from Area C.
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