Summary of Chemical Analyses and <sup>40</sup>Ar/<sup>39</sup>Ar Age-Spectra Data for Eocene Volcanic Rocks from the Central Part of the Northeast Nevada Volcanic Field

# U.S. GEOLOGICAL SURVEY BULLETIN 1988-K



# AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY

Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available.

Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry.

Order U.S. Geological Survey publications by mail or over the counter from the offices listed below.

## **BY MAIL**

### **Books**

Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general interest (such as leaflets, pamphlets, booklets), single copies of Earthquakes & Volcanoes, Preliminary Determination of Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from

## U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225

Subscriptions to periodicals (Earthquakes & Volcanoes and Preliminary Determination of Epicenters) can be obtained ONLY from the

### Superintendent of Documents Government Printing Office Washington, DC 20402

(Check or money order must be payable to Superintendent of Documents.)

#### Maps

For maps, address mail orders to

### U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225

Residents of Alaska may order maps from

U.S. Geological Survey, Earth Science Information Center 101 Twelfth Ave., Box 12 Fairbanks, AK 99701

## **OVER THE COUNTER**

### **Books and Maps**

Books and maps of the U.S. Geological Survey are available over the counter at the following U.S. Geological Survey offices, all of which are authorized agents of the Superintendent of Documents.

- ANCHORAGE, Alaska-Rm. 101, 4230 University Dr.
- LAKEWOOD, Colorado-Federal Center, Bldg. 810
- MENLO PARK, California–Bldg. 3, Rm. 3128, 345 Middlefield Rd.
- **RESTON, Virginia**–USGS National Center, Rm. 1C402, 12201 Sunrise Valley Dr.
- SALT LAKE CITY, Utah–Federal Bldg., Rm. 8105, 125 South State St.
- SPOKANE, Washington–U.S. Post Office Bldg., Rm. 135, West 904 Riverside Ave.
- WASHINGTON, D.C.-Main Interior Bldg., Rm. 2650, 18th and C Sts., NW.

### Maps Only

Maps may be purchased over the counter at the following U.S. Geological Survey offices:

- FAIRBANKS, Alaska-New Federal Bldg, 101 Twelfth Ave.
- ROLLA, Missouri-1400 Independence Rd.
- STENNIS SPACE CENTER, Mississippi-Bldg. 3101

# Summary of Chemical Analyses and <sup>40</sup>Ar/<sup>39</sup>Ar Age-Spectra Data for Eocene Volcanic Rocks from the Central Part of the Northeast Nevada Volcanic Field

*By* William E. Brooks, Charles H. Thorman, Lawrence W. Snee, Constance J. Nutt, Christopher J. Potter, *and* Russell F. Dubiel

EVOLUTION OF SEDIMENTARY BASINS—EASTERN GREAT BASIN Harry E. Cook and Christopher J. Potter, Project Coordinators

U.S. GEOLOGICAL SURVEY BULLETIN 1988-K

A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern



UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1995

# U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

# U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

## For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

### Library of Congress Cataloging-in-Publication Data

Summary of chemical analyses and <sup>40</sup>Ar/ <sup>39</sup>Ar age-spectra data for Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field / by William E.
Brooks ... [et al.].
p. cm. — (Evolution of sedimentary basins—Eastern Great Basin ; K)
(U.S. Geological Survey bulletin ; 1988) Includes bibliographical references.
Supt. of Docs. no. : I 19.13 : B1988-K
1. Rocks, Igneous—Nevada—Composition. 2. Argon-argon dating—Nevada.
3. Geochemistry—Nevada. 4. Geology, Stratigraphic—Eocene. I. Brooks,
William E. II. Series. III. Series : Evolution of sedimentary basins—Eastern
Great Basin ; ch. K.
QE75.B9 no. 1988-K
[QE461]
557 s—dc20
[552'.2' 09793]
95-23828
CIP

# CONTENTS

| Abstract                          | K1 |
|-----------------------------------|----|
| Introduction                      | 1  |
| Regional Eocene Setting           | 1  |
| Data Tables and Plots of Analyses | 5  |
| References Cited                  | 31 |

# FIGURES

| 1. | Map showing central part of Northeast Nevada volcanic field, composite stratigraphic column for Nanny           |    |
|----|-----------------------------------------------------------------------------------------------------------------|----|
|    | Creek type area, and schematic west-east cross section of central part of Northeast Nevada volcanic field       | K2 |
| 2. | Age-spectrum diagrams for volcanic rocks from the central part of the Northeast Nevada volcanic field           | 4  |
| 3. | Geologic map of the Nanny Creek area, northern Pequop Mountains, Nevada                                         | 6  |
| 4. | AFM ( $[Na_2O+K_2O]$ -FeO-MgO) diagrams for samples from the central part of the                                |    |
|    | Northeast Nevada volcanic field.                                                                                | 7  |
| 5. | Total-alkali (Na <sub>2</sub> O+ $K_2$ O)-(SiO <sub>2</sub> ) diagrams for samples from the central part of the |    |
|    | Northeast Nevada volcanic field                                                                                 | 7  |
| 6. | Total-alkali (Na <sub>2</sub> O+ $K_2$ O)-(SiO <sub>2</sub> ) diagrams for samples from the central part of the |    |
|    | Northeast Nevada volcanic field by locality                                                                     | 8  |

# TABLES

| 1. | Regional summary of localities at which Eocene volcanic rocks have been dated, northeast Nevada<br>and adjacent Utah                                           | К9 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Chemical analyses of Eocene volcanic rocks from the Nanny Creek type area, Northeast Nevada volcanic field                                                     | 10 |
| 3. | Chemical analyses of other Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field                                                  | 13 |
| 4. | Summary of <sup>40</sup> Ar/ <sup>39</sup> Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field  | 22 |
| 5. | Abbreviated <sup>40</sup> Ar/ <sup>39</sup> Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field | 23 |
| 6. | Production ratios for interfering isotopes of argon produced during irradiation                                                                                | 30 |
| 7. | U-Th-Pb isotopic ages of sphene from pyroxene diorite, southern East Humboldt Range,<br>central part of Northeast Nevada volcanic field                        | 31 |

.

# Summary of Chemical Analyses and <sup>40</sup>Ar/<sup>39</sup>Ar Age-Spectra Data for Eocene Volcanic Rocks from the Central Part of the Northeast Nevada Volcanic Field

*By* William E. Brooks, Charles H. Thorman, Lawrence W. Snee, Constance J. Nutt, Christopher J. Potter, *and* Russell F. Dubiel

# ABSTRACT

Widespread rhyolitic to andesitic calc-alkaline volcanic rocks in northeast Nevada and northwest Utah are part of a distinct Eocene eruptive sequence that is older than previously believed. Parts of this volcanic terrane, the central part of the Northeast Nevada volcanic field, are exposed over a large area that extends in an east-west direction from the Silver Island Mountains, Utah, to Elko, Nevada, and in a north-south direction from an area a few miles north of Wells, Nevada, to the Deep Creek Range, Utah.

The type area for the Northeast Nevada volcanic field is at Nanny Creek, in the northern Pequop Mountains, where the base of the volcanic sequence, unconformable on Eocene lacustrine deposits, includes rhyolitic ash-flow tuffs that are overlain by a monotonous series of dacitic to andesitic flows and flow breccias that were locally erupted. The similarities in age, chemistry, and mode of occurrence of these volcanic rocks throughout the field indicate that they are part of the same widespread Eocene volcanic sequence.

# **INTRODUCTION**

Middle to late Eocene calc-alkalic volcanism that formed the Northeast Nevada volcanic field marks the onset of Tertiary volcanism in the northern Basin and Range. The central part of this large field, in northeast Nevada and adjacent Utah, is defined by (1) 12 numbered localities (fig. 1A) from which 23  $^{40}$ Ar/ $^{39}$ Ar ages, ranging from 42.6 to 39.0 Ma, were obtained, (2) more than 90 chemical analyses, (3) stratigraphic position of the volcanic rocks above a regional Eocene unconformity, and (4) lithology. The type area is at Nanny Creek in the northern Pequop Mountains, Nevada (Brooks and others, 1992, 1995a, b; Thorman and others, 1993) (fig. 1). Prior to our studies, dated middle Eocene volcanic rocks were known at a only few widespread sites in northeast Nevada and adjacent Utah (fig. 1*A*, lettered localities; table 1). Integration of ages (K-Ar method) from these localities into a regional volcanic framework was difficult because (1) the localities are geographically scattered and (2) only a few chemical analyses of these dated volcanic rocks are available.

On the basis of the previously sampled localities having middle Eocene ages listed in table 1, the Northeast Nevada volcanic field was defined as extending east to the Cottonwood Canyon area in the Wasatch Range, Utah, north to the Nevada-Idaho State line, south to the Roberts Mountains in central Nevada and west to the Snowstorm Mountains in north-central Nevada. Sparse chemical analyses and no  ${}^{40}$ Ar/ ${}^{39}$ Ar dates are available for Eocene volcanic rocks at localities listed in table 1. As part of an ongoing regional study, samples of the volcanic rocks from those localities in table 1 were recollected for chemical and geochronological ( ${}^{40}$ Ar/ ${}^{39}$ Ar method) analysis in order to help delineate the regional extent of the Northeast Nevada volcanic field.

# **REGIONAL EOCENE SETTING**

The Northeast Nevada volcanic field consists of the coalesced products of intermediate to rhyolitic, calk-alkalic volcanism in northeast Nevada and adjacent Utah that were erupted from 42.6 to 39 Ma, during Eocene time. The central part of the Northeast Nevada volcanic field (Brooks and others, 1995) was defined by mapping and stratigraphy at 12 localities (fig. 1*A*), by 92 major oxide chemical analyses of



Figure 1 (above and facing page). Map showing central part of Northeast Nevada volcanic field, northeast Nevada and adjacent Utah, composite stratigraphic column for Nanny Creek type area, and schematic west-east cross section of central part of Northeast Nevada volcanic field. A, Map showing localities (solid circles) from which Eocene volcanic rocks were dated and analyzed. Shaded areas indicate ranges. Samples from numbered localities were collected as part of this study: 1, Nanny Creek, northern Pequop Mountains; 2, southern Snake Mountains; 3, northern East Humboldt Range; 4, southern East Humboldt Range; 5, Deadman Creek area, Windermere Hills (Mueller, 1992); 6, Wood Hills; 7, Ferguson Mountain (J. Welsh, U.S. Geological Survey, unpub. mapping, 1992); 8, Dolly Varden Mountains (Zamudio, 1992); 9, Silver Island Mountains; 10, Sanford Springs, southern Deep Creek Mountains; 11, Gold Hill area, northern Deep Creek Mountains (Dubiel and others, 1993); 12, Coal Mine Canyon, northern Adobe Range, east side of Elko Basin (K. Ketner, U.S. Geological Survey, written commun., 1993). Letters indicate localities of Eocene volcanic rocks previously studied: a, central Pilot Range, Utah, K-Ar (biotite), 37.1 Ma, tuff and sedimentary rock, (Miller, 1984); b, central Pilot Range, Utah, K-Ar (biotite), 36.9 Ma, tuff, (Miller,

1984); c, Silver Island Mountains, Utah, K-Ar (biotite), 40.9 Ma, andesite (Moore and McKee, 1983); d, Gold Hill, Utah, K-Ar (biotite), 39.2 Ma, latite (Moore and McKee, 1983); e, Grouse Creek Mountains, Utah, K-Ar (biotite), 36.4 Ma, tuff (Compton, 1983); f, Tuscarora (Big Cottonwood Canyon caldera), Nevada, K-Ar (biotite), 40.5 Ma, tuff (B.R. Berger, U.S. Geological Survey, written commun., 1993); g, Tuscarora, Nevada, K-Ar (biotite), 41.9 Ma, basal ash-flow tuff (Boden and others, 1993); h, Tippett Canyon, southern Deep Creek Mountains, Nevada, <sup>40</sup>Ar/<sup>39</sup>Ar (biotite), 39.5 Ma, tuff (Gans and others, 1989); i, Independence Range, Nevada, <sup>40</sup>Ar/<sup>39</sup>Ar (biotite), 41.6 Ma, tuff (A.H. Hofstra, U.S. Geological Survey, written commun., 1994). B, Composite stratigraphic column, Nanny Creek type area. Ages were determined by  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$  method; solid circles indicates dated units. Map units T1, T2, T3, and T4 are shown in figure 3. C, Schematic west-east cross section of the central part of the Northeast Nevada volcanic field. Intertonguing relationship of lava flows and pre-Eocene and early to middle Eocene unconformities (heavy dashed and solid lines, respectively) are generalized. Lines in sedimentary units in the Elko Basin and the White Sage Basin indicate tilted, bedded units, not true dip. No vertical scale implied.



volcanic rocks and 1 analysis of a coeval pyroxene diorite (tables 2, 3), and by 23  $^{40}$ Ar/ $^{39}$ Ar ages (table 4) from 12 localities. Age-spectrum diagrams and abbreviated data tables for samples from the 12 numbered localities shown in figure 1A are presented in figure 2 and table 5, respectively. Production ratios are presented in table 6. Comparable volcanic setting, lithology, and stratigraphic position of the volcanic rocks above a regional middle Eocene unconformity (Thorman and Brooks, 1991) that is recognized in the Elko Basin (Wingate, 1983; Ketner and Ross, 1990) to the west and in the White Sage Basin to the east (Potter and others, 1995) (figs. 1A, C) are also significant in the regional reconstruction of this Eocene volcanic terrane.

The Northeast Nevada volcanic field coincides in time and space with the Tuscarora magmatic belt of Christiansen and Yeats (1992), which was broadly defined using only a few K-Ar ages and no rock chemistry. The type area for the Northeast Nevada volcanic field is at Nanny Creek (fig. 1B, loc. 1, fig. 3) in the northern Pequop Mountains, where the section is 1,200 m thick. Here, rhyolite ash-flow tuffs (units T1, T2) are overlain by a thick section of intercalated andesitic to dacitic flows and flow breccias (unit T3x) and rhyolite ash-flow tuffs (unit T3a). These rocks, which are dated, are overlain by an undated hornblende rhyolite, and regional relationships of the flows, flow breccias, tuffs, and underlying Paleozoic strata are shown schematically in figure 1C. A widespread basal sedimentary unit is included in the stratigraphic section because of the tectonic implications of included Eocene volcanic material (Brooks and others, 1995). Typically, the volcanic outcrops of the field are widely scattered, have limited areal extent, and are discontinuous between ranges.

Intermediate-composition volcanic rocks, including hornblende andesite, two-pyroxene andesite, and biotite ( $\pm$ hornblende) dacite, probably were locally derived from numerous vents throughout the field, whereas calderas for the biotite ( $\pm$ hornblende, quartz, lithic) rhyolite ash-flow tuffs are, for the most part, unknown. For example, in the



southern East Humboldt Range (fig. 1A, loc. 4) several volcanic centers in andesitic to dacitic rocks are characterized by flows, scoriaceous agglomerate, spatter, and near-source, oxidized, angular block and breccia (2-3 m) flows, all of which are features present in low hills with shieldlike morphology. A hypabyssal center in the southern East Humboldt Range was identified on the basis of an Eocene (U-Th-Pb ages of 39.5±0.4 Ma and 37.8±0.3 Ma on two sphene fractions; R.E. Zartman, USGS, written commun., 1994) pyroxene diorite (table 3, sample 91T22; table 7) that intruded and contact metamorphosed the Permian and Triassic strata. This fine-grained holocrystalline rock weathers much the same as its nearby extrusive equivalents and can be easily mistaken for andesite. In the southern Deep Creek Range, near Sanford Springs, a dissected block-and-cinder cone 40 m high is exposed through dacitic to andesitic flows and flow breccias (Nutt and Brooks, 1994).



Figure 2 (above and facing page). Age-spectrum diagrams for volcanic rocks from the central part of the Northeast Nevada volcanic field. Sample localities are shown in figure 1A. Age-spectrum diagrams for Deadman Creek are given in Mueller (1992).



A possible source for some of the rhyolite ash-flow tuffs is an Eocene caldera complex near Tuscarora, northwest of Elko (McKee and Coats, 1975; Berger and others, 1991; Boden and others, 1993). A K-Ar age of 40.5 Ma was obtained from vitrophyre at the Big Cottonwood Canyon caldera (B.R. Berger, written commun., 1993) in the complex.

# DATA TABLES AND PLOTS OF ANALYSES

Samples of the volcanic units from the numbered localities shown in figure 1A were collected in order to define regional and local chemical affinity and refine field nomenclature. Although most samples are devitrified and some are altered, samples were collected and analyzed in order to provide analytical data for each locality. Potassium-metasomatized volcanic rocks, which have been considered absent or sparse in the northern Basin and Range (Glazner and Bartley, 1990), are present in the Grant Range (Scott, 1965; Brooks and others, 1994), at Round Mountain (Shawe and Leprey, 1985), and, by this study, in the southern Snake Mountains (table 3, samples 88T36, 88T38, 88T41, and 88T42), southern East Humboldt Range (table 3, sample 92B46), and Deadman Creek area (table 3, sample 90-14). This type of alteration, which is usually not obvious in hand sample, is indicated by analytical results including minimal amounts of Na<sub>2</sub>O (<1.0 weight percent) and excessive amounts of K<sub>2</sub>O (as much as 12-13 weight percent) that yield K<sub>2</sub>O:Na<sub>2</sub>O ratios greater than 2 (Brooks, 1986). Neither leucite, analcite, nor nepheline, possible host phases for the excess potassium in some high-potassium volcanic rocks, is present.

Armstrong (1970) recognized problems in dating potassium-metasomatized rocks and indicated that dates from these altered rocks may indicate the age of metasomatism, not the age of the volcanic rock. Biotite from metasomatized volcanic rock from the southern Snake Mountains was dated by 40Ar/39Ar methods, and those ages (table 4) are considered reliable, based on work by Brooks and others (1994) on biotite from similarly potassium-metasomatized volcanic rocks in the Grant Range, Nevada. Despite their anomalously high potassium content these altered rocks are referred to as andesite or dacite because their SiO<sub>2</sub> content, a key oxide in chemical rock nomenclature, and other major-element contents were little changed during metasomatism (Sawyer and others, 1989; Brooks and others, 1994). Because of their excessive K2O content, however, analyses from these potassium-metasomatized rocks commonly plot in the trachyandesite or trachydacite field on a total alkali-silica (TAS) diagram.





Figure 3 (above and facing page). Geologic map of the Nanny Creek area, northern Pequop Mountains, Nevada.



Figure 4. AFM ( $[Na_2O+K_2O]$ -total iron as FeO-MgO) diagrams using recalculated major oxide analyses for samples from the central part of the middle Eocene Northeast Nevada volcanic field. Recalculated using method of Sidder (1994); calc-alkaline trend from Irvine and Baragar (1971). *A*, All analyses from numbered localities shown in figure 1*A* within the central part of the Northeast Nevada volcanic field. *B*, Analyses from Nanny Creek type area.



Figure 5. Total-alkali  $(Na_2O+K_2O)-(SiO_2)$  diagrams using recalculated major oxide analyses for samples from the central part of the middle Eocene Northeast Nevada volcanic field. Recalculated using method of Sidder (1994); rock classification grid from Le Bas and Streckeisen (1991). *A*, All analyses from numbered localities shown in figure 1*A* within the central part of the Northeast Nevada volcanic field. *B*, Analyses from Nanny Creek type area.

Propylitic alteration has affected andesite and dacite in the northern East Humboldt Range (table 3, sample 90B31B) and elsewhere in the study area. These rocks are commonly green, typically yield more than 2.0 weight percent volatiles (loss on ignition or LOI), and have total alkali-silica compositions in or near the trachytic field. Silicified ash-flow tuffs may also be green; however, they have conchoidal fracture and porcellaneous matrix. They typically contain more than 76 weight percent SiO<sub>2</sub> but still plot in the rhyolitic field of the total alkali-silica diagram.

Major oxide analyses presented in tables 2 and 3 are uncorrected for loss of volatiles and were obtained by X-ray fluorescence techniques in analytical laboratories of the U.S. Geological Survey, Denver, Colorado; analytical methods, accuracy, and precision are as described by Taggart and others (1987). Trace element contents (tables 2, 3) were determined by energy-dispersive X-ray fluorescence



Figure 6 (above and facing page). Total-alkali ( $Na_2O+K_2O$ ) -(SiO<sub>2</sub>) diagrams using recalculated major oxide analyses for samples from the central part of the middle Eocene Northeast Nevada volcanic field. Recalculated using method of Sidder (1994); rock classification grid from Le Bas and Streckeisen (1991). Localities are shown in figure 1A. A, Southern Snake Mountains. B, Northern

East Humboldt Range. C, Southern East Humboldt Range. D, Deadman Creek. E, Deadman Creek (samples received from K. Mueller, University of Wyoming). F, Wood Hills. G, Ferguson Mountain and Dolly Varden Mountains. H, Silver Island Mountains, Utah. I, Sanford Springs. J, Gold Hills area. K, Coal Mine Canyon, northern Adobe Range.

| Date (Ma) | Method                | Rock type  | Locality                                                            |
|-----------|-----------------------|------------|---------------------------------------------------------------------|
| 37.3      | K-Ar, biotite         |            | Cottonwood area, Wasatch Range, Utah (Crittenden and others, 1973). |
| 37.5      | K-Ar,                 | Tuff       | Roberts Mountains, Nevada (Maher and others, 1990).                 |
| 38.4      | K-Ar, biotite         | Dacite     | Snowstorm Mountains, Nevada (Wallace, 1993).                        |
| 38.8      | K-Ar, biotite         | Andesite   | Bingham, Utah (James and others, 1961).                             |
| 38–43     | K-Ar,                 |            | Tuscarora area-Bull Run Mountains, Nevada (McKee and others, 1976). |
| 39.6      | K-Ar, biotite         | Rhyolite   | Owyhee, Nevada (Coats, 1971).                                       |
| 39.9      | K-Ar, biotite         | Tuff       | Jarbridge, Nevada (Coats, 1964).                                    |
| 41.8      | Fission track, zircon | Rhyodacite | Drum Mountains, Utah (Lindsey, 1982).                               |
| 42.5      | K-Ar, biotite         |            | Bull Run Mountains, Nevada (Axelrod, 1966).                         |



 Table 1. Regional summary of localities at which Eocene volcanic rocks have been dated, northeast Nevada and adjacent Utah.

 [Leaders (--) indicate not described]

spectroscopy (Elsass and duBray, 1982) using <sup>109</sup>Cd and <sup>241</sup>Am sources; accuracy and precision of these analyses are as described by Sawyer and Sargent (1989). Chemical data are for crushed bulk-rock samples from which xenocrystic fragments were hand picked from the ash-flow tuff samples.

Major oxide analyses shown in tables 2 and 3 were corrected for volatiles and plotted on AFM ([Na<sub>2</sub>O+K<sub>2</sub>O]-total iron as FeO-MgO] and total alkali (Na<sub>2</sub>O+K<sub>2</sub>O)-silica (SiO<sub>2</sub>) diagrams using a petrologic recalculation program (Sidder, 1994). The AFM plots show the regional, calc-alkalic, subduction-related character of the central part of the Northeast Nevada volcanic field (fig. 4A). Analyses from the Nanny Creek type area show a similar trend (fig. 4B). The andesitic-dacitic-rhyolitic composition of the volcanic rocks from the central part of the Northeast Nevada volcanic field and the Nanny Creek type area is shown in the total alkali-silica diagrams (figs. 5A, B). Classification of the volcanic rocks at each numbered locality is shown in a series of total alkali-silica diagrams (fig. 6). The analysis of the Eccene pyroxene diorite from the southern East Humboldt locality (loc. 4, fig. 1A) was not plotted.

|                                  | 5                                    |
|----------------------------------|--------------------------------------|
| Northeast Nevada volcanic field. | ray enectroccony: analysis D E Sieme |
| y Creek type area,               | ted) determined by Y                 |
| cks from the Nann                | ht nercent uncorrect                 |
| ocene volcanic roc               | Mainr ovides (main                   |
| Chemical analyses of E           | areas chown in figure 14             |
| le 2.                            | tion of                              |

[Location of areas shown in figure 14. Major oxides (weight percent, uncorrected) determined by X-ray spectroscopy; analysts D.F. Siems and J.E. Taggart; FeTO<sub>3</sub> indicates total iron reported as Fe<sub>2</sub>O<sub>3</sub>. LOI (weight percent), loss on ignition at 925°C. Rb, Sr, Y, Zr, Nb, and Ba (parts per million) determined by energy-dispersive analysis, <sup>108</sup>Cd and <sup>241</sup>Am sources; analyst E.J. LaRock; error is 10 percent of value listed or  $\pm 6$  (Rb),  $\pm 5$  (Sr),  $\pm 4$  (Y),  $\pm 3$  (Zr),  $\pm 3$  (Nb), and  $\pm 10$  (Ba), whichever is greater. Asterisk (\*) indicates dated sample (table 4). Map unit designations as in Table

| figure 3]                      |               |               |               |                   |               | •             | •             | )              |  |
|--------------------------------|---------------|---------------|---------------|-------------------|---------------|---------------|---------------|----------------|--|
| Map unit                       | TI            | II            | TI            | T2                | T2            | T2            | T2            | T2             |  |
| Lab No                         | D-323634      | D-365204      | D-365205      | D-323633          | D-365206      | D-365207      | D-365208      | D-365209       |  |
| Field No                       | 88T 56*       | 90B6          | 90B11         | 88T 55*           | 90B3          | 90B7A         | 90B7B         | 90 <b>B</b> 12 |  |
| Latitude                       | 41°01'30″ N.  | 41°01′38″ N.  | 41°00′34″ N.  | 41°01'29″ N.      | 41°00′42″ N.  | 41°01′38″ N.  | 41°01′38″ N.  | 41°00′57″ N.   |  |
| Longitude                      | 114°32′47″ W. | 114°32′54″ W. | 114°32′05″ W. | 114°32′41″ W.     | 114°32′27″ W. | 114°32′45″ W. | 114°32′45″ W. | 114°32′30″ W.  |  |
|                                |               |               |               | Major-oxide com   | oosition      |               |               |                |  |
| SiO <sub>2</sub>               | 71.4          | 67.6          | 67.3          | 78.0              | 75.0          | 76.5          | 75.2          | 77.7           |  |
| Al <sub>2</sub> O <sub>3</sub> | 14.2          | 16.6          | 15.6          | 11.6              | 12.8          | 11.6          | 11.4          | 10.5           |  |
| FeTO <sub>3</sub>              | 1.78          | 1.80          | 2.57          | 0.45              | 0.93          | 0.74          | 1.74          | 1.03           |  |
| MgO                            | 0.53          | 0.66          | 0.60          | 0.12              | 0.29          | 0.24          | 0.21          | 0.18           |  |
| CaO                            | 2.29          | 2.75          | 2.54          | 0.76              | 0.88          | 0.87          | 0.78          | 0.85           |  |
| $Na_2O$                        | 3.18          | 3.81          | 3.46          | 2.46              | 3.08          | 2.52          | 2.39          | 2.21           |  |
| $K_2O$                         | 4.14          | 4.13          | 4.09          | 5.36              | 5.12          | 5.29          | 5.40          | 4.48           |  |
| $TiO_2$                        | 0.37          | 0.45          | 0.39          | 0.1               | 0.10          | 0.09          | 0.09          | 0.11           |  |
| $P_2O_5$                       | 0.11          | 0.14          | 0.14          | 0.05              | 0.05          | 0.07          | 0.05          | 0.05           |  |
| MnO                            | 0.02          | 0.02          | 0.02          | 0.02              | 0.04          | 0.02          | 0.02          | 0.02           |  |
| IOI                            | 0.96          | 1.48          | 2.41          | 0.67              | 1.25          | 1.01          | 1.65          | 1.96           |  |
| Total                          | 99.98         | 99.44         | 99.12         | 99.59             | 99.54         | 98.95         | 98.93         | 60.66          |  |
|                                |               |               |               | Trace element com | Iposition     |               |               |                |  |
| Rb                             | 114           | 144           | 157           | 152               | 201           | 203           | 251           | 154            |  |
| Sr                             | 408           | 598           | 573           | 109               | 163           | 154           | 130           | 138            |  |
| Y                              | 21            | 20            | 24            | 18                | 22            | 25            | 23            | 21             |  |
| Zr                             | 212           | 276           | 252           | 66                | 141           | 120           | 114           | 112            |  |
| Nb                             | 8             | 15            | 12            | 12                | 15            | 14            | 11            | 12             |  |
| Ba                             | 1,974         | 2,110         | 2,550         | 605               | 1,043         | 915           | 711           | 967            |  |

| Table 2. Chemi                 | ical analyses of Eoc | cene volcanic rocks f | from the Nanny Cree | sk type area, Northe | ast Nevada volcanic | field—Continued |               |               |  |
|--------------------------------|----------------------|-----------------------|---------------------|----------------------|---------------------|-----------------|---------------|---------------|--|
| Map Unit                       | T2                   | T3x                   | T3x                 | T3x                  | T3x                 | T3x             | T3x           | T3a           |  |
| Lab No                         | D-365210             | D-365219              | D-365220            | D-365221             | D-357055            | D-357056        | D-503359      | D-365211      |  |
| Field No                       | 90B13                | 90B5                  | 90B19A              | 90B19B               | 90B24A              | 90B24B          | 91T10*        | 90B9A         |  |
| Latitude                       | 41°01′55″ N.         | 41°01′07″ N.          | 41°01′23″ N.        | 41°01′23″ N.         | 41°01′28″ N.        | 41°01′28″ N.    | 41°03′02″ N.  | 41°01′34″ N.  |  |
| Longitude                      | 114°32′39″ W.        | 114°32′25″ W.         | 114°31′40″ W.       | 114°31′40″ W.        | 114°32′30″ W.       | 114°32′30″ W.   | 114°30′10″ W. | 114°32′36″ W. |  |
|                                |                      |                       |                     | Major-oxide comp     | oosition            |                 |               |               |  |
| SiO <sub>2</sub>               | 75.2                 | 61.3                  | 60.3                | 64.6                 | 60.3                | 60.8            | 61.7          | 68.5          |  |
| Al <sub>2</sub> O <sub>3</sub> | 12.4                 | 16.3                  | 16.0                | 16.5                 | 16.8                | 16.4            | 16.4          | 12.6          |  |
| FeTO <sub>3</sub>              | 1.15                 | 4.89                  | 5.51                | 3.68                 | 5.37                | 5.45            | 4.46          | 1.39          |  |
| MgO                            | 0.19                 | 2.54                  | 3.14                | 1.45                 | 2.86                | 2.93            | 2.28          | 0.96          |  |
| CaO                            | 0.89                 | 5.59                  | 6.08                | 5.80                 | 5.70                | 5.73            | 4.74          | 2.30          |  |
| Na <sub>2</sub> O              | 3.04                 | 3.52                  | 2.91                | 3.50                 | 3.20                | 3.20            | 3.37          | 2.12          |  |
| $K_2O$                         | 4.85                 | 2.09                  | 1.71                | 2.09                 | 2.13                | 2.42            | 2.88          | 2.34          |  |
| $TiO_2$                        | 0.10                 | 0.59                  | 0.64                | 0.64                 | 0.66                | 0.66            | .56           | 0.16          |  |
| $P_2O_5$                       | 0.05                 | 0.19                  | 0.17                | 0.18                 | 0.21                | 0.23            | 0.23          | 0.05          |  |
| MnO                            | 0.02                 | 0.07                  | 0.08                | 0.04                 | 0.10                | 0.09            | 0.08          | 0.02          |  |
| IOI                            | 1.55                 | 2.66                  | 3.69                | 1.10                 | 2.71                | 2.27            | 2.22          | 9.17          |  |
| Total                          | 99.44                | 99.74                 | 100.23              | 99.58                | 100.04              | 100.18          | 98.92         | 99.61         |  |
|                                |                      |                       |                     | Trace element com    | Iposition           |                 |               |               |  |
| Rb                             | 208                  | 62                    | 54                  | 65                   | 81                  | 95              | 73            | 104           |  |
| Sr                             | 157                  | 525                   | 544                 | 509                  | 574                 | 552             | 526           | 535           |  |
| Y                              | 20                   | 18                    | 22                  | 24                   | 21                  | 18              | 20            | 16            |  |
| Zr                             | 126                  | 168                   | 154                 | 147                  | 181                 | 171             | 124           | 146           |  |
| Nb                             | 14                   | 7                     | 12                  | 8                    | 6                   | 7               | 10            | 13            |  |
| Ba                             | 952                  | 1,348                 | 1,136               | 1,462                | 1,240               | 1,243           | 2,910         | 1,336         |  |
|                                |                      |                       |                     |                      |                     |                 |               |               |  |

| ontinue    |
|------------|
| ğ          |
| eld-       |
| c fi       |
| cani       |
| volo       |
| ada        |
| Nev        |
| ast ]      |
| rthe       |
| No.        |
| rea,       |
| pe a       |
| k ty       |
| ree        |
| o C        |
| Vani       |
| he         |
| b t        |
| s frc      |
| ock        |
| uic n      |
| lcar       |
| e vo       |
| cent       |
| Εo         |
| io se      |
| lyse       |
| ana        |
| ical       |
| Jem        |
| Ð          |
| е <b>;</b> |
| blu        |

| Unit   | T3a           | T3a            | T3a           | T3a               | T3a            | T3a           | T4            | T4            |
|--------|---------------|----------------|---------------|-------------------|----------------|---------------|---------------|---------------|
| No     | D-357054      | D-365212       | D-365213      | D-365214          | D-365215       | D-365218      | D-365216      | D-365217      |
| 1 No   | 90B9B*        | 90 <b>B</b> 10 | 90B17         | 90 <b>B</b> 20    | 90 <b>B</b> 25 | 90B27         | 90B26A        | 90B26B        |
| tude   | 41°01′34″ N.  | 41°01′36″ N.   | 41°01'56" N.  | 41°01′33″ N.      | 41°03′03″ N.   | 41°02′10″ N.  | 41°02′04″ N.  | 41°02′04″ N.  |
| gitude | 114°32′36″ W. | 114°32'08″ W.  | 114°32′25″ W. | 114°31′44″ W.     | 114°31'43″ W.  | 114°31'17″ W. | 114°30'52" W. | 114°30′52″ W. |
|        |               |                |               | Major-oxide com   | oosition       |               |               |               |
| 2      | 74.8          | 73.8           | 76.0          | 79.0              | 75.7           | 68.4          | 70.2          | 70.5          |
| 3      | 12.5          | 11.3           | 11.8          | 10.2              | 11.1           | 13.3          | 14.3          | 14.3          |
| o,     | 1.35          | 1.16           | 0.67          | 0.34              | 1.12           | 2.07          | 2.71          | 2.69          |
|        | 0.23          | 0.51           | 0.17          | 0.10              | 0.22           | 0.79          | 0.89          | 0.61          |
|        | 0.89          | 1.38           | 0.96          | 0.12              | 0.74           | 1.80          | 3.00          | 3.05          |
| 0      | 2.86          | 1.44           | 2.62          | 1.21              | 1.64           | 2.26          | 3.46          | 3.48          |
|        | 5.16          | 4.93           | 5.02          | 7.12              | 6.55           | 4.05          | 2.99          | 3.07          |
|        | 0.10          | 0.15           | 0.11          | 0.08              | 0.13           | 0.10          | 0.30          | 0.32          |
|        | 0.05          | 0.06           | 0.05          | 0.05              | 0.14           | 0.08          | 0.13          | 0.16          |
| •      | 0.02          | 0.02           | 0.02          | 0.02              | 0.02           | 0.04          | 0.03          | 0.03          |
|        | 1.65          | 4.69           | 1.69          | 1.27              | 1.74           | 6.90          | 1.35          | 0.99          |
| Total  | 99.61         | 99.44          | 99.11         | 99.51             | 99.10          | 99.79         | 99.36         | 99.20         |
|        |               |                |               | Trace element com | position       |               |               |               |
|        | 205           | 115            | 177           | 183               | 200            | 146           | 110           | 111           |
|        | 143           | 480            | 176           | 62                | 153            | 246           | 450           | 441           |
|        | 22            | 18             | 18            | 14                | 21             | 16            | 17            | 13            |
|        | 128           | 149            | 143           | 121               | 146            | 110           | 133           | 136           |
|        | 12            | 14             | 17            | 11                | 11             | 13            | 6             | 6             |
|        | 773           | 1 941          | 1 146         | 895               | 1 /00          | 1 658         | 1 168         | 1 525         |

Table 2. Chemical analyses of Eocene volcanic rocks from the Nanny Creek type area, Northeast Nevada volcanic field—Continued

| ocality                       |               |               |               |                   | Southern Snake M | ountains      |               |               |
|-------------------------------|---------------|---------------|---------------|-------------------|------------------|---------------|---------------|---------------|
| field No                      | 88T 11        | 88T 36*       | 88T 37        | 88T 38*           | 88T 39           | 88T 40        | 88T 41*       | 88T 42*       |
| ab No                         | D-323620      | D-323621      | D-323622      | D-323623          | D-323624         | D-323625      | D-323626      | D-323627      |
| atitude                       | 41°07'35″ N.  | 41°09′57″ N.  | 41°10′02″ N.  | 41°10′06″ N.      | 41°12′03″ N.     | 41°12′04″ N.  | 41°12′04″ N.  | 41°12′02″ N.  |
| ongitude                      | 114°59′08″ W. | 114°57'06″ W. | 114°57′02″ W. | 114°56'59″ W.     | 114°54'04″ W.    | 114°54'21" W. | 114°54'36″ W. | 114°54'43″ W. |
|                               |               |               |               | Major-oxide com   | position         |               |               |               |
| 3iO2                          | 68.0          | 81.7          | 61.9          | 77.1              | 75.6             | 62.1          | 79.3          | 64.4          |
| $M_2 \tilde{O}_3$             | 11.6          | 8.63          | 16.4          | 11.2              | 12.1             | 17.6          | 9.83          | 14.6          |
| <sup>2</sup> eTO <sub>3</sub> | 3.01          | 0.66          | 5.67          | 1.39              | 1.61             | 5.06          | 0.43          | 5.41          |
| AgO .                         | 0.76          | 0.11          | 1.57          | 0.11              | <0.10            | 0.67          | 0.21          | 0.86          |
| CaO                           | 1.59          | 0.30          | 3.66          | 0.23              | 1.07             | 4.19          | 0.40          | 1.86          |
| Va <sub>2</sub> O             | 1.09          | 0.83          | 3.89          | 0.53              | 2.81             | 3.93          | 0.93          | 1.86          |
| ζ <sub>2</sub> 0              | 4.65          | 6.25          | 3.91          | 6.77              | 5.03             | 3.41          | 69.9          | 6.16          |
| ∏O₂                           | 0.41          | 0.08          | 0.55          | 0.11              | 0.34             | 0.77          | 0.11          | 0.61          |
| 205                           | <0.05         | 0.06          | 0.16          | 0.13              | 0.07             | 0.31          | 0.18          | 0.24          |
| AnO                           | <0.02         | <0.02         | <0.02         | 0.04              | <0.02            | 0.03          | <0.02         | 0.03          |
| IO,                           | 8.45          | 0.69          | 2.24          | 1.72              | 0.48             | 1.57          | 1.21          | 3.35          |
| Total                         | 100.43        | 99.33         | 76.99         | 99.33             | 99.23            | 99.64         | 99.31         | 99.38         |
|                               |               |               |               | Trace element com | Iposition        |               |               |               |
| sb                            | 221           | 131           | 89            | 117               | 134              | 94            | 168           | 172           |
| br                            | 170           | 54            | 303           | 40                | 139              | 450           | 09            | 262           |
| ζ                             | 52            | 8             | 11            | 13                | 34               | 19            | 23            | 26            |
| <u>t</u> r                    | 464           | 82            | 121           | 114               | 408              | 157           | 91            | 130           |
| ۲b                            | <b>1</b> 37   | 6             | 9             | 13                | 20               | 6             | 9             | L             |
| 2.9                           | 1 788         | 926           | 860           | C20               | 1 075            | 7101          | 720           | L 5 77        |

[Location of areas shown in figure 14. Major oxides (weight percent, uncorrected) determined by X-ray spectroscopy; analysts D.F. Siems, J.S. Mee, and J.E. Taggart; FeTO<sub>3</sub> indicates total iron reported as Fe<sub>2</sub>O<sub>3</sub>. LOI (weight percent), loss on ignition at 925°C. Rb, Sr, Y, Zr, and Nb (parts per million) determined by energy-dispersive analysis, <sup>109</sup>Cd and <sup>241</sup>Am sources; analysts E.J. LaRock and K. Woodhume: error is 10 nercent of value listed or +6 (Rh) + 5 (Sr), +4 (Y), -3 (Zr), and +3 (Nh) whichever is orearer. Asterisk (\*) indicates dated sample (rable 4): 8 indicates Table 3. Chemical analyses of other Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field.

K13

| able 3. | Chemical analyse | es of other Eocene v | volcanic rocl | ks from the centra | I part of the Northea | st Nevada volcanic | field-Continued. |       |       |
|---------|------------------|----------------------|---------------|--------------------|-----------------------|--------------------|------------------|-------|-------|
| ocality | Northe           | ern East Humboldt Ra | nge           |                    |                       | Southern East H    | umboldt Range    |       |       |
| ield No | 90B31            | IA 90B3.             | 1B*           | 91T11              | 91T12*                | 91 T 13            | 91T14            | 91T15 | 91TI7 |

| Table 3. Chemi    | cal analyses of othe | er Eocene volcanic r | ocks from the centra | I part of the Northe | ast Nevada volcanic | field-Continued. |               |               |  |
|-------------------|----------------------|----------------------|----------------------|----------------------|---------------------|------------------|---------------|---------------|--|
| Locality          | Northern East H      | lumboldt Range       |                      |                      | Southern East H     | lumboldt Range   |               |               |  |
| Field No.         | 90B31A               | 90B31B*              | 91T11                | 91T12*               | 91T13               | 91T14            | 91T15         | 91T17*        |  |
| Lab No            | D-357057             | D-357058             | D-503360             | D-503361             | D-503362            | D-503363         | D-503364      | D-503365      |  |
| Latitude          | 41°02′50″ N.         | 41°02′50″ N.         | 40°42′09″ N.         | 40°42′11″ N.         | 40°41'10″ N.        | 40°40′10″ N.     | 40°39′34″ N.  | -40°40'04" N. |  |
| Longitude         | 115°04'10" W.        | 115°04′10″ W.        | 115°04′20″ W.        | 115°04'22" W.        | 115°03'47" W.       | 115°02′40″ W.    | 115°06'09" W. | 115°06'22" W. |  |
|                   |                      |                      |                      | Major-oxide com      | position            |                  |               |               |  |
| SiO <sub>2</sub>  | 62.0                 | 65.4                 | 61.7                 | 61.1                 | 60.6                | 59.0             | 66.1          | 63.8          |  |
| $AI_2O_3$         | 16.5                 | 14.2                 | 16.0                 | 16.3                 | 16.4                | 16.7             | 15.9          | 15.5          |  |
| FeTO <sub>3</sub> | 5.52                 | 3.85                 | 4.92                 | 5.12                 | 5.59                | 5.68             | 2.96          | 3.77          |  |
| MgO               | 1.80                 | 1.37                 | 1.77                 | 2.77                 | 3.11                | 3.53             | 0.85          | 1.72          |  |
| CaO               | 4.48                 | 3.49                 | 3.74                 | 5.19                 | 5.66                | 6.06             | 2.79          | 4.12          |  |
| $Na_2O$           | 4.45                 | 1.53                 | 3.46                 | 3.90                 | 3.58                | 3.50             | 3.47          | 3.06          |  |
| $K_2O$            | 1.64                 | 2.32                 | 2.94                 | 1.26                 | 1.84                | 2.10             | 3.36          | 3.29          |  |
| $TiO_2$           | 0.69                 | 0.39                 | 0.61                 | 0.62                 | 0.70                | 0.83             | 0.40          | 0.47          |  |
| $P_2O_5$          | 0.19                 | 0.15                 | 0.17                 | 0.17                 | 0.19                | 0.24             | 0.16          | 0.14          |  |
| MnO               | 0.08                 | 0.02                 | 0.06                 | 0.10                 | 0.12                | 0.11             | 0.04          | 0.05          |  |
| IOI               | 2.62                 | 6.67                 | 3.45                 | 2.77                 | 1.59                | 1.45             | 3.28          | 3.09          |  |
| Total             | 99.97                | 99.39                | 98.82                | 99.3                 | 99.38               | 99.2             | 99.31         | 99.01         |  |
|                   |                      |                      |                      | Trace element com    | Iposition           |                  |               |               |  |
| Rb                | 43                   | 114                  | LL                   | 70                   | 80                  | 84               | 95            | 80            |  |
| Sr                | 481                  | 2,965                | 341                  | 404                  | 402                 | 653              | 320           | 359           |  |
| Y                 | 16                   | 12                   | 18                   | 11                   | 17                  | 18               | 12            | 16            |  |
| Zr                | 158                  | 194                  | 140                  | 139                  | 122                 | 133              | 160           | 112           |  |
| Nb                | 5                    | 10                   | 12                   | 11                   | 15                  | 8                | 12            | 10            |  |
| Ba                | 1,083                | 2,239                | 1,286                | 1,235                | 1,168               | 1,544            | 1,527         | 1,317         |  |
|                   |                      |                      |                      |                      |                     |                  |               |               |  |

| Locality                  |               |               |               | Southern East F   | Humboldt Range |               |               |               |
|---------------------------|---------------|---------------|---------------|-------------------|----------------|---------------|---------------|---------------|
| Field No                  | 91T19*        | 91T20         | 91T22§        | 91T23             | 92B42          | 92B45         | 92B46         | 92B49         |
| Lab No                    | D-503366      | D-503367      | D-503368      | D-503369          | D-522594       | D-522595      | D-522596      | D-522598      |
| Latitude                  | 40°41'48" N.  | 40°41'22" N.  | 40°38'33" N.  | 40°38'29" N.      | 40°41'33" N.   | 40°41'39" N.  | 40°41'23" N.  | 40°40'04" N.  |
| Longitude                 | 115°04'44" W. | 115°05'22" W. | 115°05'28" W. | 115°05'25" W.     | 115°04'33" W.  | 115°03'50" W. | 115°05'15" W. | 115°05'11" W. |
|                           |               |               |               | Major-oxide com   | position       |               |               |               |
| SiO <sub>2</sub>          | 71.4          | 67.5          | 53.2          | 58.4              | 67.3           | 62.8          | 72.8          | 64.3          |
| $Al_2O_3$                 | 12.4          | 13.8          | 17.0          | 17.0              | 12.6           | 15.7          | 11.1          | 15.9          |
| $FcTO_3$                  | 2.00          | 1.44          | 5.32          | 5.91              | 1.55           | 4.29          | 0.97          | 3.75          |
| MgO                       | 0.88          | 0.72          | 3.34          | 2.48              | 1.05           | 2.20          | 0.41          | 1.60          |
| CaO                       | 2.85          | 3.06          | 13.3          | 5.30              | 2.66           | 2.88          | 1.65          | 4.02          |
| $Na_2O$                   | 2.25          | 2.20          | 3.73          | 3.56              | 0.67           | 2.54          | 0.75          | 3.24          |
| $K_2O$                    | 4.10          | 3.00          | 1.38          | 2.32              | 4.09           | 5.07          | 7.17          | 2.43          |
| TiO <sub>2</sub>          | 0.39          | 0.13          | 0.45          | 0.81              | 0.19           | 0.68          | 0.11          | 0.46          |
| $P_2O_5$                  | 0.14          | 0.08          | 0.27          | 0.24              | 0.11           | 0.19          | 0.15          | 0.18          |
| MnO                       | 0.05          | 0.02          | 0.08          | 0.07              | 0.02           | 0.04          | 0.04          | 0.07          |
| IOI                       | 2.25          | 6.81          | 0.76          | 3.18              | 8.80           | 3.09          | 4.06          | 3.25          |
| Total                     | 98.71         | 98.76         | 98.83         | 99.27             | 99.04          | 99.48         | 99.21         | 99.2          |
|                           |               |               |               | Trace element com | iposition      |               |               |               |
| Rb                        | 89            | 57            | 35            | 50                | 126            | 106           | 138           | 46            |
| Sr                        | 509           | 1,101         | 1,948         | 554               | 763            | 277           | 137           | 932           |
| Υ                         | 13            | 10            | 11            | 19                | 18             | 12            | 18            | 15            |
| Zr                        | 160           | 74            | 84            | 120               | 129            | 94            | 63            | 129           |
| Nb                        | 11            | 10            | 4             | 10                | 6              | 9             | 12            | 8             |
| $\mathbf{B}_{\mathbf{A}}$ | 1 941         | 1 474         | 696           | 1 505             | 1 261          | 1 112         | 1 175         | 1 303         |

| Continued.             |  |
|------------------------|--|
| vada volcanic field-(  |  |
| rt of the Northeast Ne |  |
| from the central pa    |  |
| ene volcanic rocks     |  |
| nalyses of other Eoc   |  |
| ble 3. Chemical a      |  |

| Locality          | Southern East<br>Humboldt Range |               |               | Deadman           | Creek area    |               |               |               |  |
|-------------------|---------------------------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|--|
| Field No          | 92B57                           | HI            | H2            | H3                | H4            | H6            | WC-1*†        | HOL-2†        |  |
| Lab No            | D-522599                        | D-365192      | D-365193      | D-365194          | D-365195      | D-365196      | D-365197      | D-365198      |  |
| Latitude          | 40°38′27″ N.                    | 41°15′ N.     | 41°15′ N.     | 41°15′ N.         | 41°15' N.     | 41°15' N.     | 41°18′52″ N.  | 41°14'36″ N.  |  |
| Longitude         | 115°10'00" W.                   | 114°37′30″ W. | 114°37′30″ W. | 114°37′30″ W.     | 114°37′30″ W. | 114°37′30″ W. | 114°38′30″ W. | 114°37′55″ W. |  |
|                   |                                 |               |               | Major-oxide com   | position      |               |               |               |  |
| SiO <sub>2</sub>  | 65.2                            | 62.4          | 74.9          | 63.9              | 78.1          | 62.5          | 71.7          | 60.6          |  |
| $Al_2O_3$         | 15.7                            | 16.8          | 12.4          | 14.6              | 11.1          | 17.9          | 13.6          | 17.2          |  |
| FeTO <sub>3</sub> | 3.76                            | 5.67          | 1.11          | 4.15              | 0.84          | 4.46          | 1.94          | 5.07          |  |
| MgO               | 1.58                            | 1.29          | 0.43          | 0.78              | 0.24          | 1.62          | 0.56          | 2.30          |  |
| CaO               | 3.79                            | 2.11          | 0.71          | 3.59              | 0.55          | 1.39          | 2.11          | 3.63          |  |
| Na <sub>2</sub> O | 3.22                            | 5.07          | 2.32          | 3.27              | 2.96          | 8.17          | 3.32          | 4.85          |  |
| $K_2O$            | 3.61                            | 2.51          | 5.00          | 4.47              | 3.77          | 0.49          | 3.93          | 2.80          |  |
| $TiO_2$           | 0.54                            | 0.65          | 0.11          | 09.0              | 0.09          | 0.59          | 0.37          | 0.74          |  |
| $P_2O_5$          | 0.16                            | 0.21          | 0.06          | 0.21              | <0.05         | 0.19          | 0.14          | 0.27          |  |
| MnO               | 0.06                            | 0.05          | <0.02         | 0.10              | <0.02         | 0.18          | 0.02          | 0.05          |  |
| LOI               | 1.97                            | 2.50          | 2.22          | 3.70              | 1.61          | 1.85          | 0.86          | 2.02          |  |
| Total             | 99.59                           | 99.26         | 99.28         | 99.37             | 99.33         | 99.34         | 98.55         | 99.53         |  |
|                   |                                 |               |               | Trace element com | iposition     |               |               |               |  |
| Rb                | 106                             | 75            | 167           | 137               | 118           | 17            | 138           | 72            |  |
| Sr                | 298                             | 494           | 266           | 343               | 226           | 296           | 482           | 499           |  |
| Y                 | 22                              | 21            | 23            | 21                | 27            | 14            | 23            | 22            |  |
| Zr                | 139                             | 190           | 141           | 197               | 118           | 105           | 253           | 195           |  |
| Nb                | 15                              | 11            | 15            | 12                | 16            | 15            | 6             | 12            |  |
| Ba                | 988                             | 1,754         | 1,611         | 1,721             | 1,115         | 650           | 1,873         | 1,485         |  |
|                   |                                 |               |               |                   |               |               |               |               |  |

K16

Table 3. Chemical analyses of other Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                          |              | Deadman Creek area |                   |               | Wood          | l Hills       | Ferguson<br>Mountain |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|--------------|--------------------|-------------------|---------------|---------------|---------------|----------------------|--------------------------------------------------------|--|--|--|--|-----------------|----------|--|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|-------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|-------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|-------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|-------------------------------------------------------|----------------|-----------|------|--|------|------|------|------|------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------|--|------|------|-------|------|-------|-------------------------------------------------------|--|--|--|--|-------------------|-----------|--|--|--|------------------------------------------------------|-------------|---------|-----|--|-----|-----|-----|----|-----|------------------------------------------------------|-------------|---------|-----|--|-----|-----|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----|--|----|----|----|----|----|-----------------------------------------------------------------------------------------------------------------------|-------------|---------|-----|--|-----|-----|-----|-----|-----|-------------------------------|----------|-------|----|--|----|----|----|---|----|--|-------------------|-------------|-------|--|-------|-------|-------|-------|-------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOL-5† 90-14† 90-22†                  | 90-14† 90-22†            | 90-22        |                    | <del>1</del> 0-67 | 90–78†        | 92BWH1*††     | 92BWH2††      | 92T21*               |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| . $41^{\circ}18'38''N$ , $41^{\circ}04'53''N$ , $41^{\circ}04'53''N$ , $41^{\circ}04'53''N$ , $41^{\circ}02'51''N$ ,           ./         I14'39'55''W,         I14'35'55''W,         I14'05'55''W,         I14'05'55''W, $114^{\circ}08'54''W$ ,           Major-oxide composition         Major-oxide composition         72.7 $67.6$ $75.2$ $63.5$ $64.9$ $114^{\circ}08'54''W$ ,           Najor-oxide composition $72.7$ $67.6$ $75.2$ $63.5$ $64.9$ $114^{\circ}08'54''W$ ,           No $72.7$ $67.6$ $75.2$ $63.5$ $64.9$ $15.4$ 11.8 $15.7$ $12.6$ $12.6$ $13.6$ $4.37$ $4.36$ 2.97 $2.74$ $1.44$ $4.75$ $4.36$ $2.81$ $4.37$ 2.97 $2.340$ $0.60$ $0.19$ $0.66$ $0.67$ $0.57$ $2.07$ $0.140$ $0.15$ $0.162$ $0.64$ $3.40$ $0.57$ $2.09$ $0.140$ $0.05$ $0.019$ $0.66$ $0.18$ $0.57$ $0.110$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D-365199 D-365200 D-365201            | D-365200 D-365201        | D-365201     |                    | D-365202          | D-365203      | D-522590      | D-522591      | D-522586             |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| I.         114°3955" W.         114°38755" W.         114°38755" W.         114°0854" W.           Major-oxide composition         Major-oxide composition         114°38755" W.         114°38755" W.         114°38755" W.           Major-oxide composition $15.7$ $15.7$ $15.7$ $15.7$ $16.8$ $15.4$ 11.8 $15.7$ $12.6$ $16.8$ $15.4$ $4.75$ $4.36$ $15.4$ 2.97 $2.74$ $1.44$ $4.75$ $64.9$ $15.4$ 2.97 $2.97$ $2.74$ $1.44$ $4.75$ $4.36$ $1.76$ $2.95$ $2.322$ $0.019$ $0.060$ $0.019$ $0.67$ $0.57$ $2.97$ $2.365$ $3.15$ $3.380$ $2.81$ $4.21$ $2.021$ $0.60$ $0.019$ $0.016$ $0.062$ $0.57$ $0.102$ $0.040$ $0.062$ $0.64$ $0.57$ $0.018$ $0.114$ $1.044$ $0.052$ $0.062$ $0.51$ $0.564$ $0.51$ $0.564$ $0.51$ </td <td>41°14'48" N. 41°16'28" N. 41°17'18" N</td> <td>41°16'28" N. 41°17'18" N</td> <td>41°17′18″ N</td> <td><u> </u></td> <td>41°18'58″ N.</td> <td>41°18′44″ N.</td> <td>41°04′53″ N.</td> <td>41°04′53″ N.</td> <td>40°26'15" N.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41°14'48" N. 41°16'28" N. 41°17'18" N | 41°16'28" N. 41°17'18" N | 41°17′18″ N  | <u> </u>           | 41°18'58″ N.      | 41°18′44″ N.  | 41°04′53″ N.  | 41°04′53″ N.  | 40°26'15" N.         |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| Major-oxide composition75.2 $63.5$ $64.9$ 72.7 $67.6$ $75.2$ $63.5$ $64.9$ 11.8 $15.7$ $12.6$ $16.8$ $15.4$ $2.97$ $2.74$ $1.44$ $4.75$ $4.36$ $2.95$ $2.32$ $0.91$ $4.75$ $4.36$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.051$ $0.40$ $0.15$ $0.68$ $0.68$ $0.19$ $0.18$ $0.05$ $0.19$ $0.18$ $0.19$ $0.18$ $0.05$ $0.04$ $0.08$ $0.11$ $0.19$ $0.19$ $0.19$ $0.18$ $0.02$ $0.03$ $0.04$ $0.04$ $0.08$ $0.14$ $0.05$ $0.04$ $0.04$ $0.08$ $0.12$ $0.19$ $0.19$ $0.18$ $0.04$ $0.02$ $0.03$ $0.04$ $0.04$ $0.08$ $0.14$ $0.05$ $0.04$ $0.04$ $0.08$ $0.12$ $0.92$ $99.2$ $99.2$ $99.1$ $99.66$ $1.14$ $1.04$ $1.71$ $1.99$ $2.59$ $1.13$ $165$ $125$ $384$ $2.59$ $1.14$ $1.40$ $1.25$ $384$ $2.59$ $1.28$ $114$ $16$ $26$ $1.394$ $2.096$ $1.274$ $1.043$ <tr <td=""><math>1.93</math><math>1.093</math><td>114°37′27″ W. 114°40′ W. 114°39′59″ V</td><td>114°40' W. 114°39'59" V</td><td>114°39′59″ V</td><td></td><td>114°39′55″ W.</td><td>114°38′32″ W.</td><td>114°52′55″ W.</td><td>114°52′55″ W.</td><td>114°08′54″ W.</td></tr> <tr><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td><td></td><td>Major-oxide com</td><td>position</td><td></td><td></td><td></td></tr> <tr><td>11.8         15.7         12.6         16.8         15.4           <math>2.97</math> <math>2.74</math> <math>1.44</math> <math>4.75</math> <math>4.36</math> <math>2.97</math> <math>2.74</math> <math>1.44</math> <math>4.75</math> <math>4.36</math> <math>1.04</math> <math>0.60</math> <math>0.19</math> <math>0.68</math> <math>1.76</math> <math>2.95</math> <math>2.32</math> <math>0.91</math> <math>4.37</math> <math>4.21</math> <math>2.95</math> <math>2.32</math> <math>0.91</math> <math>4.37</math> <math>4.21</math> <math>2.95</math> <math>2.32</math> <math>0.91</math> <math>4.37</math> <math>4.21</math> <math>2.77</math> <math>3.65</math> <math>3.15</math> <math>3.80</math> <math>2.81</math> <math>2.27</math> <math>3.65</math> <math>3.15</math> <math>3.80</math> <math>2.81</math> <math>2.10</math> <math>0.40</math> <math>0.15</math> <math>0.62</math> <math>0.57</math> <math>0.19</math> <math>0.18</math> <math>0.05</math> <math>0.04</math> <math>0.08</math> <math>0.14</math> <math>0.05</math> <math>0.04</math> <math>0.062</math> <math>0.57</math> <math>0.19</math> <math>0.18</math> <math>0.062</math> <math>0.68</math> <math>0.18</math> <math>0.114</math> <math>1.04</math> <math>0.057</math> <math>0.95.6</math> <math>99.6</math> <math>1.43</math> <math>1.65</math> <math>99.52</math> <math>99.1</math>&lt;</td><td>74.8 70.7 67.5</td><td>70.7 67.5</td><td>67.5</td><td></td><td>72.7</td><td>67.6</td><td>75.2</td><td>63.5</td><td>64.9</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>12.7 12.1 13.7</td><td>12.1 13.7</td><td>13.7</td><td></td><td>11.8</td><td>15.7</td><td>12.6</td><td>16.8</td><td>15.4</td></tr> <tr><td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>1.13 1.16 4.10</td><td>1.16 4.10</td><td>4.10</td><td></td><td>2.97</td><td>2.74</td><td>1.44</td><td>4.75</td><td>4.36</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>0.38 0.58 1.33</td><td>0.58 1.33</td><td>1.33</td><td></td><td>1.04</td><td>0.60</td><td>0.19</td><td>0.68</td><td>1.76</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>0.57 1.40 3.95</td><td>1.40 3.95</td><td>3.95</td><td></td><td>2.95</td><td>2.32</td><td>0.91</td><td>4.37</td><td>4.21</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>2.26 0.85 2.80</td><td>0.85 2.80</td><td>2.80</td><td></td><td>2.27</td><td>3.65</td><td>3.15</td><td>3.80</td><td>2.81</td></tr> <tr><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>5.78 6.53 3.43</td><td>6.53 3.43</td><td>3.43</td><td></td><td>3.81</td><td>4.92</td><td>4.86</td><td>2.64</td><td>3.40</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>0.10 0.12 0.58</td><td>0.12 0.58</td><td>0.58</td><td></td><td>0.51</td><td>0.40</td><td>0.15</td><td>0.62</td><td>0.57</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>0.05 0.05 0.22</td><td>0.05 0.22</td><td>0.22</td><td></td><td>0.19</td><td>0.18</td><td>0.05</td><td>0.19</td><td>0.18</td></tr> <tr><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>0.02 0.02 0.02</td><td>0.02 0.02</td><td>0.02</td><td></td><td>0.02</td><td>0.05</td><td>0.04</td><td>0.04</td><td>0.08</td></tr> <tr><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>1.86 5.71 1.58</td><td>5.71 1.58</td><td>1.58</td><td></td><td>1.14</td><td>1.04</td><td>0.93</td><td>1.71</td><td>1.99</td></tr> <tr><td>Trace element composition1431651407011014316512538425949051912538425921281416261622781131361991015138161,3942,0961,2741,0431,096</td><td>99.65 99.22 99.21</td><td>99.22 99.21</td><td>99.21</td><td></td><td>99.4</td><td>99.2</td><td>99.52</td><td>99.1</td><td>99.66</td></tr> <tr><td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td><td></td><td>Trace element com</td><td>iposition</td><td></td><td></td><td></td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>176 191 133</td><td>191 133</td><td>133</td><td></td><td>143</td><td>165</td><td>140</td><td>70</td><td>110</td></tr> <tr><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>217 809 634</td><td>809 634</td><td>634</td><td></td><td>490</td><td>519</td><td>125</td><td>384</td><td>259</td></tr> <tr><td>162         278         113         136         199           10         15         13         8         16           1,394         2,096         1,274         1,043         1,096</td><td>21 17 23</td><td>17 23</td><td>23</td><td></td><td>21</td><td>28</td><td>14</td><td>16</td><td>26</td></tr> <tr><td>10         15         13         8         16           1,394         2,096         1,274         1,043         1,096</td><td>139 146 157</td><td>146 157</td><td>157</td><td></td><td>162</td><td>278</td><td>113</td><td>136</td><td>199</td></tr> <tr><td>1,394 2,096 1,274 1,043 1,096</td><td>18 12 13</td><td>12 13</td><td>13</td><td></td><td>10</td><td>15</td><td>13</td><td>8</td><td>16</td></tr> <tr><td></td><td>1,596 1,195 1,810</td><td>1,195 1,810</td><td>1,810</td><td></td><td>1,394</td><td>2,096</td><td>1,274</td><td>1,043</td><td>1,096</td></tr> | 114°37′27″ W. 114°40′ W. 114°39′59″ V | 114°40' W. 114°39'59" V  | 114°39′59″ V |                    | 114°39′55″ W.     | 114°38′32″ W. | 114°52′55″ W. | 114°52′55″ W. | 114°08′54″ W.        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  | Major-oxide com | position |  |  |  | 11.8         15.7         12.6         16.8         15.4 $2.97$ $2.74$ $1.44$ $4.75$ $4.36$ $2.97$ $2.74$ $1.44$ $4.75$ $4.36$ $1.04$ $0.60$ $0.19$ $0.68$ $1.76$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.77$ $3.65$ $3.15$ $3.80$ $2.81$ $2.27$ $3.65$ $3.15$ $3.80$ $2.81$ $2.10$ $0.40$ $0.15$ $0.62$ $0.57$ $0.19$ $0.18$ $0.05$ $0.04$ $0.08$ $0.14$ $0.05$ $0.04$ $0.062$ $0.57$ $0.19$ $0.18$ $0.062$ $0.68$ $0.18$ $0.114$ $1.04$ $0.057$ $0.95.6$ $99.6$ $1.43$ $1.65$ $99.52$ $99.1$ < | 74.8 70.7 67.5 | 70.7 67.5 | 67.5 |  | 72.7 | 67.6 | 75.2 | 63.5 | 64.9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 12.7 12.1 13.7 | 12.1 13.7 | 13.7 |  | 11.8 | 15.7 | 12.6 | 16.8 | 15.4 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.13 1.16 4.10 | 1.16 4.10 | 4.10 |  | 2.97 | 2.74 | 1.44 | 4.75 | 4.36 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.38 0.58 1.33 | 0.58 1.33 | 1.33 |  | 1.04 | 0.60 | 0.19 | 0.68 | 1.76 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.57 1.40 3.95 | 1.40 3.95 | 3.95 |  | 2.95 | 2.32 | 0.91 | 4.37 | 4.21 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2.26 0.85 2.80 | 0.85 2.80 | 2.80 |  | 2.27 | 3.65 | 3.15 | 3.80 | 2.81 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5.78 6.53 3.43 | 6.53 3.43 | 3.43 |  | 3.81 | 4.92 | 4.86 | 2.64 | 3.40 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.10 0.12 0.58 | 0.12 0.58 | 0.58 |  | 0.51 | 0.40 | 0.15 | 0.62 | 0.57 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.05 0.05 0.22 | 0.05 0.22 | 0.22 |  | 0.19 | 0.18 | 0.05 | 0.19 | 0.18 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.02 0.02 0.02 | 0.02 0.02 | 0.02 |  | 0.02 | 0.05 | 0.04 | 0.04 | 0.08 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.86 5.71 1.58 | 5.71 1.58 | 1.58 |  | 1.14 | 1.04 | 0.93 | 1.71 | 1.99 | Trace element composition1431651407011014316512538425949051912538425921281416261622781131361991015138161,3942,0961,2741,0431,096 | 99.65 99.22 99.21 | 99.22 99.21 | 99.21 |  | 99.4 | 99.2 | 99.52 | 99.1 | 99.66 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  | Trace element com | iposition |  |  |  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 176 191 133 | 191 133 | 133 |  | 143 | 165 | 140 | 70 | 110 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 217 809 634 | 809 634 | 634 |  | 490 | 519 | 125 | 384 | 259 | 162         278         113         136         199           10         15         13         8         16           1,394         2,096         1,274         1,043         1,096 | 21 17 23 | 17 23 | 23 |  | 21 | 28 | 14 | 16 | 26 | 10         15         13         8         16           1,394         2,096         1,274         1,043         1,096 | 139 146 157 | 146 157 | 157 |  | 162 | 278 | 113 | 136 | 199 | 1,394 2,096 1,274 1,043 1,096 | 18 12 13 | 12 13 | 13 |  | 10 | 15 | 13 | 8 | 16 |  | 1,596 1,195 1,810 | 1,195 1,810 | 1,810 |  | 1,394 | 2,096 | 1,274 | 1,043 | 1,096 |
| 114°37′27″ W. 114°40′ W. 114°39′59″ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114°40' W. 114°39'59" V               | 114°39′59″ V             |              | 114°39′55″ W.      | 114°38′32″ W.     | 114°52′55″ W. | 114°52′55″ W. | 114°08′54″ W. |                      |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                          |              |                    | Major-oxide com   | position      |               |               |                      |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| 11.8         15.7         12.6         16.8         15.4 $2.97$ $2.74$ $1.44$ $4.75$ $4.36$ $2.97$ $2.74$ $1.44$ $4.75$ $4.36$ $1.04$ $0.60$ $0.19$ $0.68$ $1.76$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.95$ $2.32$ $0.91$ $4.37$ $4.21$ $2.77$ $3.65$ $3.15$ $3.80$ $2.81$ $2.27$ $3.65$ $3.15$ $3.80$ $2.81$ $2.10$ $0.40$ $0.15$ $0.62$ $0.57$ $0.19$ $0.18$ $0.05$ $0.04$ $0.08$ $0.14$ $0.05$ $0.04$ $0.062$ $0.57$ $0.19$ $0.18$ $0.062$ $0.68$ $0.18$ $0.114$ $1.04$ $0.057$ $0.95.6$ $99.6$ $1.43$ $1.65$ $99.52$ $99.1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74.8 70.7 67.5                        | 70.7 67.5                | 67.5         |                    | 72.7              | 67.6          | 75.2          | 63.5          | 64.9                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.7 12.1 13.7                        | 12.1 13.7                | 13.7         |                    | 11.8              | 15.7          | 12.6          | 16.8          | 15.4                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.13 1.16 4.10                        | 1.16 4.10                | 4.10         |                    | 2.97              | 2.74          | 1.44          | 4.75          | 4.36                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.38 0.58 1.33                        | 0.58 1.33                | 1.33         |                    | 1.04              | 0.60          | 0.19          | 0.68          | 1.76                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.57 1.40 3.95                        | 1.40 3.95                | 3.95         |                    | 2.95              | 2.32          | 0.91          | 4.37          | 4.21                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.26 0.85 2.80                        | 0.85 2.80                | 2.80         |                    | 2.27              | 3.65          | 3.15          | 3.80          | 2.81                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.78 6.53 3.43                        | 6.53 3.43                | 3.43         |                    | 3.81              | 4.92          | 4.86          | 2.64          | 3.40                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10 0.12 0.58                        | 0.12 0.58                | 0.58         |                    | 0.51              | 0.40          | 0.15          | 0.62          | 0.57                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05 0.05 0.22                        | 0.05 0.22                | 0.22         |                    | 0.19              | 0.18          | 0.05          | 0.19          | 0.18                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02 0.02 0.02                        | 0.02 0.02                | 0.02         |                    | 0.02              | 0.05          | 0.04          | 0.04          | 0.08                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.86 5.71 1.58                        | 5.71 1.58                | 1.58         |                    | 1.14              | 1.04          | 0.93          | 1.71          | 1.99                 |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| Trace element composition1431651407011014316512538425949051912538425921281416261622781131361991015138161,3942,0961,2741,0431,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.65 99.22 99.21                     | 99.22 99.21              | 99.21        |                    | 99.4              | 99.2          | 99.52         | 99.1          | 99.66                |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                          |              |                    | Trace element com | iposition     |               |               |                      |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 176 191 133                           | 191 133                  | 133          |                    | 143               | 165           | 140           | 70            | 110                  |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217 809 634                           | 809 634                  | 634          |                    | 490               | 519           | 125           | 384           | 259                  |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| 162         278         113         136         199           10         15         13         8         16           1,394         2,096         1,274         1,043         1,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 17 23                              | 17 23                    | 23           |                    | 21                | 28            | 14            | 16            | 26                   |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| 10         15         13         8         16           1,394         2,096         1,274         1,043         1,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139 146 157                           | 146 157                  | 157          |                    | 162               | 278           | 113           | 136           | 199                  |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
| 1,394 2,096 1,274 1,043 1,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 12 13                              | 12 13                    | 13           |                    | 10                | 15            | 13            | 8             | 16                   |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,596 1,195 1,810                     | 1,195 1,810              | 1,810        |                    | 1,394             | 2,096         | 1,274         | 1,043         | 1,096                |                                                        |  |  |  |  |                 |          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                      |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                       |                |           |      |  |      |      |      |      |      |                                                                                                                                  |                   |             |       |  |      |      |       |      |       |                                                       |  |  |  |  |                   |           |  |  |  |                                                      |             |         |     |  |     |     |     |    |     |                                                      |             |         |     |  |     |     |     |     |     |                                                                                                                                                                                     |          |       |    |  |    |    |    |    |    |                                                                                                                       |             |         |     |  |     |     |     |     |     |                               |          |       |    |  |    |    |    |   |    |  |                   |             |       |  |       |       |       |       |       |

Table 3. Chemical analyses of other Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| Continued.          |
|---------------------|
| volcanic field-     |
| rtheast Nevada      |
| l part of the Noi   |
| rom the central     |
| olcanic rocks fi    |
| other Eocene v      |
| nemical analyses of |
| Table 3. Ch         |

| ocality           | Dolly Varden<br>Mountains | Silver Island | Mountains     |                   | Sanford Springs | area, southern Deep C | Creek Mountains |               |
|-------------------|---------------------------|---------------|---------------|-------------------|-----------------|-----------------------|-----------------|---------------|
| ield No           | 92BDV*                    | 91T3*         | 91T4*         | 91T30             | 91T32           | 91T33                 | 92B13           | 92B14         |
| ab No             | D-522589                  | D-503357      | D-503358      | D-503370          | D-503371        | D-503372              | D516488         | D-516489      |
| atitude           | 40°19′20″ N.              | 40°49′59″ N.  | 40°49′56″ N.  | 39°48'26" N.      | 39°48′23″ N.    | 39°48′35″ N.          | 39°55'27″ N.    | 39°54'24″ N.  |
| ongitude          | 114°31′09″ W.             | 113°56'49″ W. | 113°57′24″ W. | 114°08'15" W.     | 114°08'15" W.   | 114°08'25" W.         | 114°10′47″ W.   | 114°11'06″ W. |
|                   |                           |               |               | Major-oxide com   | oosition        |                       |                 |               |
| iO <sub>2</sub>   | 64.1                      | 59.2          | 68.0          | 60.8              | 59.8            | 60.0                  | 66.0            | 60.6          |
| $M_2O_3$          | 15.2                      | 17.6          | 14.9          | 15.9              | 16.0            | 16.0                  | 15.9            | 16.1          |
| eTO3              | 4.46                      | 6.06          | 2.31          | 5.56              | 5.31            | 5.44                  | 4.28            | 5.41          |
| 1gO               | 2.04                      | 2.79          | 0.88          | 3.71              | 3.80            | 3.61                  | 1.05            | 2.18          |
| aO                | 3.74                      | 6.04          | 2.99          | 5.73              | 5.76            | 5.84                  | 3.13            | 5.25          |
| la <sub>2</sub> O | 2.84                      | 3.14          | 3.15          | 3.38              | 3.03            | 2.76                  | 3.34            | 2.97          |
| ( <sub>2</sub> 0  | 3.03                      | 2.09          | 2.84          | 2.55              | 2.75            | 2.47                  | 4.71            | 3.99          |
| $iO_2$            | 0.55                      | 0.62          | 0.21          | 0.78              | 0.76            | 0.75                  | 0.50            | 09.0          |
| 205<br>205        | 0.15                      | 0.19          | 0.11          | 0.20              | 0.21            | 0.19                  | 0.21            | 0.28          |
| 4nO               | 0.06                      | 0.11          | 0.07          | 0.08              | 0.08            | 0.09                  | 0.09            | 0.12          |
| Į0                | 3.16                      | 1.30          | 3.53          | 0.81              | 1.41            | 2.22                  | <0.01           | 1.69          |
| Total             | 99.33                     | 99.14         | 98.99         | 99.5              | 98.91           | 99.37                 | 99.22           | 99.19         |
|                   |                           |               |               | Trace element com | position        |                       |                 |               |
| .b                | 109                       | 67            | 84            | 83                | 94              | 75                    | 189             | 168           |
| بر                | 230                       | 368           | 275           | 490               | 513             | 463                   | 331             | 383           |
|                   | 24                        | 19            | 6             | 30                | 21              | 24                    | 32              | 21            |
| .r                | 182                       | 132           | 122           | 194               | 190             | 174                   | 234             | 202           |
| 4b                | 19                        | 10            | 15            | 15                | 13              | 5                     | 18              | 11            |
| a                 | 277                       | 1.047         | 1.045         | 1.143             | 1.195           | 679                   | 1.163           | 1.234         |

K18

| ocality                       |               |               | Sanfe         | ord Springs area, south | tern Deep Creek Mour | ntains        |               |               |
|-------------------------------|---------------|---------------|---------------|-------------------------|----------------------|---------------|---------------|---------------|
| eld No                        | 92B15         | 92B16         | 92B19         | 92B21                   | 92B24                | 92B26         | 92B27*        | 92B28         |
| No.                           | D-516490      | D-516484      | D-516485      | D-516491                | D-516486             | D-516487      | D-516498      | D-516495      |
| atitude                       | 39°54'16″ N.  | 39°57'13″ N.  | 39°57′43″ N.  | 39°58'13″ N.            | 39°59′59″ N.         | 39°59'23" N.  | 39°48′39″ N.  | 39°48'24" N.  |
| ongitude                      | 114°11'02″ W. | 114°07′07″ W. | 114°06′42″ W. | 114°07′56″ W.           | 114°07′53″ W.        | 114°04'50″ W. | 114°07'55″ W. | 114°08′14″ W. |
|                               |               |               |               | Major-oxide com         | osition              |               |               |               |
| 02                            | 66.4          | 67.0          | 64.0          | 61.3                    | 65.4                 | 69.0          | 69.2          | 60.9          |
| 1 <sub>2</sub> O <sub>3</sub> | 14.8          | 14.8          | 15.1          | 14.6                    | 14.8                 | 13.8          | 13.7          | 15.7          |
| TO3                           | 4.28          | 3.53          | 4.43          | 5.33                    | 3.63                 | 2.55          | 1.79          | 5.55          |
| [gO                           | 0.80          | 0.94          | 2.03          | 2.13                    | 1.26                 | 0.11          | 1.54          | 3.78          |
| aO                            | 2.95          | 2.63          | 3.64          | 5.59                    | 2.94                 | 3.07          | 2.57          | 5.74          |
| $a_2O$                        | 2.93          | 3.05          | 2.77          | 2.85                    | 2.99                 | 3.28          | 2.51          | 3.28          |
| 2 <sup>0</sup>                | 4.82          | 4.91          | 3.03          | 4.11                    | 4.73                 | 5.22          | 2.84          | 2.54          |
| 02                            | 0.52          | 0.45          | 0.55          | 0.64                    | 0.45                 | 0.20          | 0.24          | 0.77          |
| 05                            | 0.19          | 0.18          | 0.15          | 0.29                    | 0.18                 | 0.10          | 0.12          | 0.20          |
| InO                           | 0.08          | 0.06          | 0.06          | 0.1                     | 0.07                 | 0.08          | 0.04          | 0.09          |
| IO                            | 1.26          | 1.51          | 3.55          | 1.81                    | 2.56                 | 1.48          | 4.46          | 0.80          |
| Total                         | 99.03         | 90.06         | 99.31         | 98.75                   | 99.01                | 98.89         | 99.01         | 99.35         |
|                               |               |               |               | Trace element com       | position             |               |               |               |
| P                             | 198           | 206           | 194           | 167                     | 206                  | 241           | 78            | 77            |
|                               | 269           | 281           | 255           | 350                     | 276                  | 157           | 373           | 474           |
|                               | 27            | 23            | 26            | 21                      | 25                   | 22            | 14            | 20            |
| 5                             | 205           | 210           | 197           | 201                     | 218                  | 192           | 114           | 186           |
| p                             | 21            | 21            | 18            | 16                      | 20                   | 22            | 8             | 13            |
|                               | 1 245         | 1.239         | 1.208         | 1.576                   | 1 141                | 981           | 1 343         | 1 1 2 6       |

| ÷       |
|---------|
| ĭĕ      |
| Ē.      |
| nt      |
| ő       |
| Ĭ       |
| þ       |
| ïe]     |
| C F     |
| Ē       |
| ca      |
| 0       |
| N N     |
| ğ       |
| No.     |
| z       |
| Ľ,      |
| Sas     |
| Ę.      |
| Ĕ       |
| ž       |
| e       |
| 문       |
| of      |
| Ť       |
| 0ai     |
| -       |
| tra     |
| Sn      |
| õ       |
| he      |
| lt      |
| 5       |
| £       |
| ks.     |
| 2       |
| Ľ.      |
| ÷       |
| ar      |
| Ę       |
| ž       |
| Je      |
| ē       |
| ğ       |
| Щ       |
| Jei     |
| 넝       |
| Ę       |
| s o     |
| set     |
| ž       |
| na      |
| a       |
| Cal     |
| ij      |
| en      |
| СР      |
| 0       |
| ~       |
| E -     |
| þ       |
| Ľa      |
| <b></b> |

| tinued. |
|---------|
| Cont    |
| eld—    |
| nic fi  |
| volca   |
| /ada v  |
| t Nev   |
| ortheas |
| the N   |
| nt of   |
| al pa   |
| centr   |
| n the   |
| fron    |
| rocks   |
| canic   |
| e vol   |
| Eocen   |
| ther    |
| s of c  |
| ulyse   |
| al aní  |
| Chemica |
| le 3.   |
| Tab     |

| Locality          |               |               | Sanford Spring | es area, southern Deep | Creek Mountains |               |               |               |  |
|-------------------|---------------|---------------|----------------|------------------------|-----------------|---------------|---------------|---------------|--|
| Field No.         | 92B33         | 92B34         | 92B38          | 92B60                  | 92B62           | 92B69         | 92B70         | 92B71         |  |
| Lab No            | D-516497      | D-516496      | D-516499       | D-516492               | D-516493        | D-516494      | D-516482      | D-516483      |  |
| Latitude          | 39°48'09″ N.  | 39°48'16" N.  | 39°49′29″ N.   | 39°59′20″ N.           | 39°52'30″ N.    | 39°51'39″ N.  | 39°51'40″ N.  | 39°51'10″ N.  |  |
| Longitude         | 114°07'50″ W. | 114°07'44″ W. | 114°07′31″ W.  | 114°08′04″ W.          | 114°10′37″ W.   | 114°09′49″ W. | 114°09′53″ W. | 114°08′01″ W. |  |
|                   |               |               |                | Major-oxide com        | position        |               |               |               |  |
| SiO <sub>2</sub>  | 62.8          | 60.7          | 67.4           | 64.5                   | 65.0            | 65.0          | 70.8          | 62.5          |  |
| $Al_2O_3$         | 15.9          | 16.1          | 11.1           | 14.3                   | 14.6            | 14.9          | 13.9          | 15.5          |  |
| $FeTO_3$          | 4.11          | 4.86          | 1.42           | 5.05                   | 4.45            | 4.51          | 2.07          | 4.28          |  |
| MgO               | 2.66          | 3.01          | 1.12           | 1.93                   | 1.06            | 2.65          | 0.53          | 2.69          |  |
| CaO               | 4.63          | 5.37          | 5.00           | 3.88                   | 3.72            | 4.14          | 2.34          | 4.92          |  |
| Na <sub>2</sub> O | 3.16          | 2.81          | 1.35           | 2.80                   | 2.93            | 3.02          | 3.07          | 2.95          |  |
| $K_2O$            | 2.86          | 2.83          | 3.06           | 4.46                   | 4.82            | 3.43          | 4.90          | 3.14          |  |
| TiO <sub>2</sub>  | 0.61          | 0.72          | 0.20           | 0.55                   | 0.51            | 0.73          | 0.37          | 0.64          |  |
| $P_2O_5$          | 0.19          | 0.20          | 0.11           | 0.23                   | 0.18            | 0.19          | 0.25          | 0.20          |  |
| MnO               | 0.07          | 0.08          | 0.02           | 0.09                   | 0.09            | 0.07          | 0.05          | 0.07          |  |
| IOI               | 2.38          | 2.96          | 8.48           | 1.36                   | 1.49            | 0.55          | 0.79          | 2.23          |  |
| Total             | 99.37         | 99.64         | 99.26          | 99.15                  | 98.85           | 99.19         | 99.07         | 99.12         |  |
|                   |               |               |                | Trace element com      | Iposition       |               |               |               |  |
| Rb                | 91            | 76            | 60             | 195                    | 191             | 136           | 194           | 92            |  |
| Sr                | 513           | 475           | 637            | 226                    | 284             | 383           | 224           | 481           |  |
| Y                 | 15            | 24            | 13             | 26                     | 31              | 23            | 24            | 17            |  |
| Zr                | 182           | 165           | 93             | 198                    | 210             | 225           | 213           | 198           |  |
| Nb                | 16            | 10            | 12             | 24                     | 16              | 15            | 21            | 14            |  |
| Ba                | 1,288         | 827           | 1,761          | 1,138                  | 1,277           | 1,162         | 423           | 1,271         |  |
|                   |               |               |                |                        |                 |               |               |               |  |

K20

| yses of other Eocene volcanic rocks from the central part of the Northeast Nevada | id.        |
|-----------------------------------------------------------------------------------|------------|
| other Eocen                                                                       |            |
| al analyses of c                                                                  | ntinued.   |
| . Chemic                                                                          | : field-Co |
| Table 3                                                                           | volcanic   |

|                   | Sanford Springs |               |                |               |               |
|-------------------|-----------------|---------------|----------------|---------------|---------------|
| Locality          | area            | Gold H        | ill area       | Coal Min      | e Canyon      |
| Field No.         | 92B67           | 91CP30*       | 91CP33*        | 12247         | 12624*        |
| Lab No            | D-516500        | D-522592      | D-522593       | D-559062      | D-559063      |
| Latitude          | 39°48'15" N.    | 40°11′23″ N.  | 40°12′18″ N.   | 41°07′ N.     | 41°06′52″ N.  |
| Longitude         | 114°11'32″ W.   | 114°58'15″ W. | 114°58'15″ W.  | 115°37′57″ W. | 115°37'46″ W. |
|                   |                 | Major-oxide   | composition    |               |               |
| SiO <sub>2</sub>  | 65.6            | 62.2          | 68.5           | 65.7          | 65.6          |
| $Al_2O_3$         | 12.6            | 15.8          | 15.0           | 15.4          | 15.2          |
| FeTO <sub>3</sub> | 1.62            | 5.16          | 1.68           | 3.46          | 3.54          |
| MgO               | 1.81            | 2.68          | 0.72           | 1.04          | 1.17          |
| CaO               | 5.88            | 5.19          | 2.47           | 2.92          | 3.11          |
| Na <sub>2</sub> O | 2.58            | 2.82          | 2.87           | 2.61          | 2.58          |
| $K_2 O$           | 2.44            | 2.73          | 3.95           | 5.16          | 4.85          |
| TiO <sub>2</sub>  | 0.22            | 0.63          | 0.33           | 0.67          | 0.65          |
| $P_2O_5$          | 0.12            | 0.15          | 0.12           | 0.23          | 0.23          |
| MnO               | 0.03            | 0.1           | 0.05           | 0.04          | 0.08          |
| IOI               | 6.23            | 2.06          | 2.93           | 1.79          | 2.39          |
| Total             | 99.13           | 99.52         | 98.62          | 99.02         | 99.4          |
|                   |                 | Trace elemer  | nt composition |               |               |
| Rb                | 85              | 115           | 115            | 130           | 138           |
| Sr                | 412             | 279           | 206            | 366           | 372           |
| Y                 | 17              | 29            | 36             | 16            | 20            |
| Zr                | 111             | 191           | 209            | 157           | 164           |
| Nb                | 6               | 15            | 16             | 16            | 15            |
| Ba                | 1,373           | 931           | 080            | 2,252         | 1.527         |

**Table 4.** Summary of  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field.

[Location of areas shown in figure 1*A*. Ferguson Mountain sampled by J. Welsh for  ${}^{40}$ Ar/ ${}^{39}$ Ar date, (12659), resampled by C. Thorman for rock chemistry (92T21). Dolly Varden Mountains sampled by J. Zamudio for  ${}^{40}$ Ar/ ${}^{39}$ Ar date (3233), resampled by Brooks for rock chemistry (92BDV). All analyses performed by the U.S. Geological Survey, Denver]

|                                                      |                |               | А          | pparent age (Ma         | a)                                                                                              |
|------------------------------------------------------|----------------|---------------|------------|-------------------------|-------------------------------------------------------------------------------------------------|
| Area                                                 | Sample no.     | Rock type     | Mineral    | and error (1 $\sigma$ ) | Character of spectrum                                                                           |
| Nanny Creek                                          | 91T10          | Dacite        | Hornblende | 39.23 <u>+</u> 0.5      | Plateau date; 87 percent of total <sup>39</sup> Ar <sub>K</sub>                                 |
| Nanny Creek                                          | 90 <b>B</b> 9B | Ash-flow tuff | Biotite    | 39.61 <u>+</u> 0.13     | Plateau date; 60 percent of total $^{39}Ar_{K}$                                                 |
| Nanny Creek                                          | 88T55          | Ash-flow tuff | Biotite    | 39.89 <u>+</u> 0.12     | Plateau date; 94 percent of total $^{39}Ar_{K}$                                                 |
| Nanny Creek                                          | 88T56          | Ash-flow tuff | Biotite    | 41.08 <u>+</u> 0.11     | Plateau date; 86 percent of total ${}^{39}Ar_{K}$                                               |
| Southern Snake Mountains                             | 88T36          | Ash-flow tuff | Biotite    | 39.5 <u>+</u> 0.2       | Plateau date; 95 percent of total <sup>39</sup> Ar <sub>K</sub>                                 |
| Southern Snake Mountains                             | 88T42          | Dacite        | Biotite    | 39.7 <u>+</u> 0.1       | Preferred date for disturbed spectrum;<br>60 percent of total ${}^{39}Ar_{K}$                   |
| Southern Snake Mountains                             | 88T41          | Ash-flow tuff | Biotite    | 39.76 <u>+</u> 0.13     | Plateau date; 63 percent of total $^{39}Ar_{K}$                                                 |
| Southern Snake Mountains                             | 88T38          | Ash-flow tuff | Biotite    | 39.85 <u>+</u> 0.15     | Preferred date for disturbed spectrum;<br>80 percent of total ${}^{39}Ar_{K}$                   |
| Northern East Humboldt Range                         | 90B31B         | Ash-flow tuff | Biotite    | 38.0 <u>+</u> 0.5       | Preferred date for disturbed spectrum; 54 percent of total ${}^{39}Ar_{K}$ ; probably a minimum |
| Southern East Humboldt Range                         | 91T12          | Dacite        | Hornblende | 38.8 <u>+</u> 0.4       | Plateau date; 71 percent of total $^{39}Ar_{K}$                                                 |
| Southern East Humboldt Range                         | 91T17          | Dacite        | Hornblende | 39.5 <u>+</u> 0.3       | Plateau date; 92 percent of total $^{39}Ar_{K}$                                                 |
| Southern East Humboldt Range                         | 91T19          | Dacite        | Biotite    | 40.98 <u>+</u> 0.1      | Plateau date; 52 percent of total $^{39}Ar_{K}$                                                 |
| Deadman Creek Area,<br>Windermere Hills <sup>2</sup> | WC-6           | Dacite        | Hornblende | 39.87 <u>+</u> 0.1      | Plateau date; 77 percent of total ${}^{39}Ar_{K}$                                               |
| Deadman Creek Area,<br>Windermere Hills <sup>2</sup> | WC-1           | Ash-flow tuff | Biotite    | 40.38 <u>+</u> 0.1      | Plateau date; 64 percent of total $^{39}Ar_{K}$                                                 |
| Wood Hills                                           | 92BWH1         | Ash-flow tuff | Biotite    | 39.7 <u>+</u> 0.1       | Preferred date for disturbed spectrum; excess argon, maximum estimate                           |
| Ferguson Mountain                                    | 12659-92T21    | Dacite        | Hornblende | 39.80 <u>+</u> 0.1      | Plateau date; 62 percent of total $^{39}Ar_{K}$                                                 |
| Dolly Varden Mountains                               | 3233-92BDV     | Dacite        | Biotite    | 39.08 <u>+</u> 0.11     | Plateau date; 94 percent of total $^{39}Ar_{K}$                                                 |
| Silver Island Mountains                              | 91 <b>T</b> 3  | Andesite      | Hornblende | 42.6 <u>+</u> 0.3       | Plateau date; 81 percent of total $^{39}Ar_{K}$                                                 |
| Silver Island Mountains                              | 91T4           | Rhyolite      | Biotite    | 42.61 <u>+</u> 0.8      | Preferred date for disturbed spectrum                                                           |
| Sanford Springs                                      | 92B27          | Ash-flow tuff | Biotite    | 40.64 <u>+</u> 0.07     | Plateau date; 92 percent of total ${}^{39}Ar_{K}$                                               |
| Gold Hill                                            | 91CP33         | Rhyolite      | Biotite    | 39.58 <u>+</u> 0.10     | Plateau date; 74 percent of total ${}^{39}Ar_{K}$                                               |
| Gold Hill                                            | 93CP30         | Dacite        | Hornblende | 39.6 <u>+</u> 0.2       | Plateau date; 63 percent of total ${}^{39}Ar_{K}$ (recalculated)                                |
| Coal Mine Canyon                                     | 12624          | Ash-flow tuff | Hornblende | 40.4 <u>+</u> 0.2       | Plateau date; 93 percent of total $^{39}Ar_{K}$                                                 |

<sup>1</sup>Dacite clast in basal conglomerate.

<sup>2</sup>Mueller, (1992).

## NORTHEAST NEVADA VOLCANIC FIELD

K23

**Table 5.** Abbreviated  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field.

[Location of areas shown in figure 1*A*; reactor package (table 6) is given following sample number. Age-spectrum data for Deadman Creek are given in Mueller (1992). <sup>40</sup>Ar<sub>R</sub>, radiogenic <sup>40</sup>Ar; <sup>39</sup>Ar<sub>K</sub>, potassium-derived <sup>39</sup>Ar; F, <sup>40</sup>Ar<sub>R</sub> divided by <sup>39</sup>Ar<sub>K</sub>; Ma error to 1 $\sigma$ . Leaders (--) indicate unmeasurable; asterisk (\*) indicates step used in plateau-date or preferred-date calculation]

| Temperatu | re                          |                                |                 |                                    |                                         |                                         | Apparent age     |
|-----------|-----------------------------|--------------------------------|-----------------|------------------------------------|-----------------------------------------|-----------------------------------------|------------------|
| (°C)      | 40Ar <sub>R</sub>           | <sup>39</sup> Ar <sub>K</sub>  | F               | <sup>39</sup> Ar/ <sup>37</sup> Ar | <sup>40</sup> Ar <sub>R</sub> (percent) | <sup>39</sup> Ar <sub>K</sub> (percent) | and error (Ma)   |
|           |                             |                                | NAN             | NY CREEK                           |                                         |                                         |                  |
| Sample 9  | 1T10/66/DD37; dacite        | e; 289.2 mg hornbl             | ende; measure   | d 40Ar/36Ar=29                     | 6; plateau date=39.                     | .23±0.5 Ma;                             |                  |
| J-value=0 | 0.007781±0.1 percent (      | (1σ); lat 41°1'28" l           | N., long 114°3  | 0'10" W.                           |                                         |                                         |                  |
| 800       | 0.12980                     | 0.04291                        | 3.025           | 2.5                                | 23.2                                    | 2.3                                     | 42±1             |
| 900       | 0.02139                     | 0.00710                        | 3.01            | 1.10                               | 20.9                                    | 0.4                                     | 42±8             |
| 1,000     | 0.01992                     | 0.00949                        | 2.10            | 0.41                               | 27.4                                    | 0.5                                     | <b>29±</b> 7     |
| 1,050     | 0.03779                     | 0.00977                        | 3.87            | 0.34                               | 61.8                                    | 0.5                                     | 54±5             |
| *1,100    | 0.11208                     | 0.03966                        | 2.82            | 0.20                               | 65.2                                    | 2.1                                     | 39±2             |
| *1,150    | 1.2323                      | 0.43526                        | 2.831           | 0.15                               | 85.8                                    | 22.9                                    | 39.3±0.2         |
| *1,175    | 1.7275                      | 0.61377                        | 2.815           | 0.15                               | 93.2                                    | 32.4                                    | 39.08±0.11       |
| *1,200    | 0.59157                     | 0.20750                        | 2.851           | 0.15                               | 88.2                                    | 10.9                                    | 39.6±0.4         |
| *1,250    | 0.97129                     | 0.34404                        | 2.823           | 0.15                               | 92.8                                    | 18.1                                    | 39.2±0.2         |
| 1,350     | 0.54260                     | 0.18741                        | 2.895           | 0.15                               | 93.6                                    | 9.9                                     | 40.2±0.5         |
|           | Total gas                   |                                | 2.839           |                                    |                                         |                                         | 39.4±0.3         |
| Sample 90 | 0 <b>B9B/32/DD28:</b> ash-f | low tuff: 58 mg bio            | otite: measured | $1^{40}$ Ar/ $^{36}$ Ar=296        | 5.6: plateau date=3                     | 9.61±0.13 Ma:                           |                  |
| J-value=0 | 0.007317±0.1 percent (      | $(1\sigma)$ : lat 41°1'23" l   | N., long 114°3  | 1'40" W.                           |                                         | ,                                       |                  |
| 650       | 0.01982                     | 0.02023                        | 0.98            |                                    | 9.0                                     | 0.5                                     | 13±2             |
| 750       | 0.06042                     | 0.03948                        | 1.530           |                                    | 27.6                                    | 1.0                                     | $20\pm 2$        |
| 850       | 0.37870                     | 0.12920                        | 2.931           |                                    | 47.6                                    | 3.3                                     | $38.28 \pm 0.15$ |
| 900       | 0.85369                     | 0.27621                        | 3.091           |                                    | 76.6                                    | 7.0                                     | $40.34 \pm 0.08$ |
| 950       | 0.63085                     | 0.20521                        | 3.074           |                                    | 86.7                                    | 5.2                                     | $40.1 \pm 0.3$   |
| 1,000     | 1.4416                      | 0.47145                        | 3.058           |                                    | 94.2                                    | 12.0                                    | 39.92±0.09       |
| 1.050     | 1.3049                      | 0.42834                        | 3.046           |                                    | 92.2                                    | 10.9                                    | $39.77 \pm 0.06$ |
| *1.100    | 1.6431                      | 0.54138                        | 3.035           |                                    | 90.8                                    | 13.7                                    | $39.62 \pm 0.13$ |
| *1,150    | 3,3623                      | 1.1085                         | 3.033           |                                    | 90.9                                    | 28.1                                    | $39.60 \pm 0.07$ |
| *1,300    | 2,1992                      | 0.72483                        | 3.034           |                                    | 92.2                                    | 18.4                                    | 39.6±0.2         |
| ,         | Total gas                   |                                | 3.015           |                                    |                                         | 10.1                                    | 39.4±0.2         |
| Sample 88 | 8T55/21/DD9. ash-flo        | w tuff <sup>,</sup> 89.8 mg bi | otite: measured | $40 \Delta r/^{36} \Delta r - 208$ | 9. nlateau date=3                       | 9 89+0 12 Ma                            |                  |
| I-value=0 | 007447+0 25 percent         | $(1\sigma)$ : lat 41°1'29"     | N long 114°     | 20'41" W                           | , plateau auto-5.                       |                                         |                  |
| 500       | 0 15838                     | 0 10844                        | 1 470           | 241 11.                            | 5.0                                     | 0.8                                     | 19.6+0.3         |
| 600       | 0.23313                     | 0.10217                        | 2 282           | 64                                 | 8.6                                     | 0.8                                     | $30.4 \pm 0.8$   |
| 700       | 1 6435                      | 0.55134                        | 2.202           | 201                                | 32.1                                    | 4.1                                     | 39 61+0 12       |
| *750      | 3 6428                      | 1 2111                         | 3 008           | 417                                | 58.0                                    | 9.1                                     | 39 96+0 11       |
| *800      | 3 7730                      | 1 2561                         | 3 004           | 483                                | 61.7                                    | 94                                      | 39.91+0.15       |
| *850      | 3 0798                      | 1 0239                         | 3 008           | 542                                | 58.0                                    | 77                                      | 39 96+0 11       |
| *900      | 3 5829                      | 1 1930                         | 3 003           | 433                                | 61.3                                    | 9.0                                     | 39 90+0 11       |
| *950      | 5 7707                      | 1 9131                         | 3.005           | 253                                | 67.5                                    | 14.4                                    | $40.08\pm0.13$   |
| *1.000    | 9,8746                      | 3.2973                         | 2.995           | 176                                | 73 1                                    | 24.8                                    | 39 79+0 11       |
| *1.050    | 5 8823                      | 1 9644                         | 2.993           | 101                                | 76.3                                    | 14.8                                    | 39 79+0 11       |
| *1.150    | 1.9717                      | 0 65648                        | 3 003           | 27                                 | 78.6                                    | 49                                      | 39 90+0 13       |
| 1.300     | 0.04820                     | 0.01555                        | 3 10            | 2,<br>8 1                          | 10.9                                    | 0.1                                     | 41+6             |
| 1,000     | Total gas                   | 0.01000                        | 2.984           | 0.1                                | 10.7                                    | 0.1                                     | 39.65±0.13       |
|           |                             |                                |                 |                                    |                                         |                                         |                  |

| Temperatur    | е<br><sup>40</sup> дга    | <sup>39</sup> A r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                | $^{39}\Delta r/^{37}\Delta r$ | 40 Arp (percent)    | <sup>39</sup> Ar <sub>K</sub> (percent) | Apparent age           |
|---------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|---------------------|-----------------------------------------|------------------------|
|               |                           | 74K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NANNY CI         | REEK—Continu                  | ied                 |                                         |                        |
| Sample 88     | T56/16/DD12: ash-fl       | ow tuff: 79 3 mg h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | viotite: measure | $d^{40}Ar/^{36}Ar=20$         | 8.9. nlateau date=  | 41.08+0.11 Ma                           |                        |
| L-value-0     | $007342 \pm 0.25$ percent | t (1 <b>a</b> ): lat /1°1'30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 'N long 11/0     | 20'7'' W                      | o., plateau date-   | 41.00±0.11 Ma,                          |                        |
| 500           | 0.05826                   | 0.03447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 60             | 20                            | 12.9                | 03                                      | 22+2                   |
| 600           | 0.07291                   | 0.02416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.02             | 20<br>40                      | 36.6                | 0.2                                     | 40+2                   |
| 700           | 0.38815                   | 0.12254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 168            | 40<br>66                      | 40.6                | 1.0                                     | 41 5+0 6               |
| 750           | 0.64068                   | 0.20074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 192            | 118                           | 79.0                | 1.7                                     | 41.8+0.3               |
| 800           | 1.2601                    | 0.39691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 175            | 162                           | 84.6                | 3.4                                     | $41.57 \pm 0.15$       |
| 850           | 2.4142                    | 0.76145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 169            | 227                           | 91.0                | 6.5                                     | $41.50 \pm 0.13$       |
| *900          | 3.6391                    | 1.1572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.145            | 277                           | 93.0                | 9.9                                     | $41.18 \pm 0.12$       |
| *950          | 4.6752                    | 1.4903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.137            | 272                           | 92.9                | 12.7                                    | $41.08 \pm 0.11$       |
| *1.000        | 6.0889                    | 1.9407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.138            | 163                           | 89.9                | 16.5                                    | $41.09 \pm 0.11$       |
| *1.050        | 7.3773                    | 2.3564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.131            | 88                            | 85.3                | 20.1                                    | 41.00±0.11             |
| *1.150        | 9.7167                    | 3.0952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,139            | 50                            | 87.7                | 26.4                                    | 41.11±0.11             |
| 1,300         | 0.50310                   | 0.15804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.183            | 28                            | 54.4                | 1.3                                     | 41.7±0.4               |
| ,             | Total gas                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.138            |                               |                     |                                         | 41.09±0.13             |
|               | <u> </u>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOUTHERN S       | NAKE MOUNT                    | TAINS               |                                         |                        |
| Sample 88     | T36/18/DD12; ash-fl       | ow tuff; 87 mg bio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | otite; measured  | $^{40}$ Ar/ $^{36}$ Ar=298.   | 9; no plateau; pref | erred date=39.5±                        | 0.2 Ma;                |
| J-value=0.    | 007163±0.25 percent       | t (1 <b>σ</b> ); lat 41°9'57"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N., long 114°5   | 57'6" W.                      |                     |                                         | ·                      |
| 500           | 0.30420                   | 0.17163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.772            | 30                            | 27.8                | 1.4                                     | 22.76±0.07             |
| 600           | 0.77060                   | 0.29229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.667            | 13                            | 63.5                | 2.4                                     | 34.1±0.2               |
| 700           | 6.6119                    | 2.1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.101            | 72                            | 85.9                | 17.3                                    | 39.63±0.11             |
| 750           | 5.7352                    | 1.8427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.112            | 230                           | 94.0                | 14.9                                    | 39.78±0.11             |
| 800           | 4,1256                    | 1.3290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.104            | 210                           | 94.1                | 10.8                                    | 39.68±0.11             |
| 850           | 2.6844                    | 0.86756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.094            | 161                           | 91.9                | 7.0                                     | 39.55±0.15             |
| 900           | 1.8721                    | 0.61022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.068            | 98                            | 87.0                | 4.9                                     | 39.21±0.15             |
| 950           | 0.79985                   | 0.26451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.024            | 85                            | 83.5                | 2.1                                     | 38.7±0.3               |
| *1,000        | 4.5589                    | 1.4774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.086            | 65                            | 85.4                | 12.0                                    | 39.44±0.14             |
| *1,050        | 5.6361                    | 1.8242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.090            | 25                            | 90.7                | 14.8                                    | 39.49±0.11             |
| *1,150        | 4.3953                    | 1.4164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.103            | 9.9                           | 93.2                | 11.5                                    | 39.66±0.11             |
| *1,300        | 0.33488                   | 0.10708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.127            | 9.2                           | 76.6                | 0.9                                     | 40.0±0.7               |
|               | Total gas                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.067            |                               |                     |                                         | 39.21±0.12             |
| <b>G</b> 1 00 |                           | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 40 .           | 364 000 0                     | . 40 .              | 6 11/ 20                                | 7.0116.                |
| Sample 88     | 142/20/DD12; dacite       | (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - | ; measured "A    | r/**Ar=298.9; n               | ninor excess "Ar;   | preferred date=39                       | $9.7\pm0.1$ Ma;        |
| J-value=0.    | $00/268\pm0.25$ percent   | $(1\sigma); lat 41°12'2''$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N., long 114°:   | 54'43" W.                     | 17.0                | 17                                      | 007.00                 |
| 500           | 0.37846                   | 0.23817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.589            | 21                            | 17.8                | 1.7                                     | $20.7\pm0.2$           |
| 600           | 0.61035                   | 0.31737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.923            | 16                            | 38.3                | 2.2                                     | $25.0\pm0.3$           |
| /00           | 1.5013                    | 0.5/354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.618            | 27                            | 52.0                | 4.0                                     | 34.00±0.13             |
| /50           | 1.6668                    | 0.55909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.981            | 48                            | /2.6                | 3.9                                     | $38.0/\pm0.14$         |
| 800           | 2.0437                    | 0.03/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.110            | 12                            | 83./<br>00 2        | 4.0                                     | 40.32±0.13             |
| 820           | 2.2285                    | 0./1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.135            | 91                            | 88.3<br>80 5        | 5.0                                     | 40.03±0.12             |
| 900           | 2.0020                    | 0.8396/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.099            | 100                           | 00.J<br>07 2        | ۶.۶<br>۲ م                              | $40.10\pm0.12$         |
| 930           | 5.//44                    | 1.22/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.076            | 114                           | 0/.3                | 0./                                     | 39.09±0.11             |
| 1,000         | 0.8910                    | 2.2531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.039            | 114                           | 83.8<br>89 7        | 13.9                                    | 39.00±0.11             |
| 1,050         | 5.9272                    | 1.9190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.089            | 110                           | ōð./                | 13.3                                    | $40.03\pm0.11$         |
| 1,150         | 15.040                    | 4.2898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.107            | /ð<br>47                      | 92.3<br>86 A        | 21                                      | 40.2720.11             |
| 1,500         | 1.321/                    | 0.48327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.149            | 4/                            | 00.4                | 5.4                                     | 40.0±0.2<br>30 17±0 12 |
|               | rotal gas                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.020            |                               |                     |                                         | JJ.17E0.12             |

**Table 5.** Abbreviated  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| Temperatu             | re                            |                               |                      |                                    |                                         |                                         | Apparent age                 |
|-----------------------|-------------------------------|-------------------------------|----------------------|------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|
| (°C)                  | <sup>40</sup> Ar <sub>R</sub> | <sup>39</sup> Ar <sub>K</sub> | F                    | <sup>39</sup> Ar/ <sup>37</sup> Ar | <sup>40</sup> Ar <sub>R</sub> (percent) | <sup>39</sup> Ar <sub>K</sub> (percent) | and error (Ma)               |
|                       | ext:                          | SOUT                          | HERN SNAKE           | MOUNTAINS                          | -Continued                              |                                         |                              |
| Sample 8              | 8T41/14/DD12; ash-flo         | ow tuff; 101.6 mg             | biotite; measur      | red $4^{40}$ Ar/ $3^{6}$ Ar=2      | 98.9; plateau date                      | =39.76±0.13 Ma;                         |                              |
| J-value=0             | 0.007208±0.25 percent         | (1o); lat 41°12'4"            | N., long 114°5       | 4'36" W.                           |                                         |                                         |                              |
| 500                   | 0.17167                       | 0.11099                       | 1.547                | 58                                 | 22.1                                    | 0.7                                     | 20.0±0.6                     |
| 600                   | 0.39633                       | 0.17888                       | 2.216                | 66                                 | 42.2                                    | 1.2                                     | $28.6 \pm 0.2$               |
| 650                   | 0.67225                       | 0.24434                       | 2.751                | 80                                 | 58.2                                    | 1.6                                     | 35.4±0.3                     |
| 700                   | 2.1099                        | 0.67874                       | 3.108                | 101                                | 74.1                                    | 4.5                                     | 40.0±0.2                     |
| 750                   | 4.6088                        | 1.4847                        | 3.104                | 125                                | 91.9                                    | 9.9                                     | 39.92±0.11                   |
| 800                   | 5.3092                        | 1.7032                        | 3.117                | 157                                | 94.5                                    | 11.4                                    | 40.08±0.11                   |
| 850                   | 3.7568                        | 1.2060                        | 3.115                | 164                                | 92.1                                    | 8.1                                     | 40.06±0.13                   |
| *900                  | 2.9802                        | 0.96075                       | 3.102                | 156                                | 93.8                                    | 6.4                                     | 39.89±0.12                   |
| *950                  | 2.6491                        | 0.85635                       | 3.093                | 120                                | 91.7                                    | 5.7                                     | $39.78 \pm 0.13$             |
| *1,000                | 3.8378                        | 1.2472                        | 3.077                | 120                                | 91.0                                    | 8.3                                     | 39.57±0.12                   |
| *1,050                | 6.6500                        | 2.1593                        | 3.080                | 158                                | 91.7                                    | 14.4                                    | 39.61±0.11                   |
| *1,150                | 10.867                        | 3.5066                        | 3.099                | 105                                | 92.2                                    | 23.4                                    | 39.85±0.11                   |
| *1,300                | 1.9346                        | 0.62283                       | 3.106                | 119                                | 79.0                                    | 4.2                                     | 39.9±0.2                     |
|                       | Total gas                     |                               | 3.071                |                                    |                                         |                                         | 39.50±0.12                   |
| <b>a</b> 1.0          |                               |                               |                      | 40 4 36 4 90                       |                                         | 6 I.I. 20 (                             | 0.15.16                      |
| Sample 8              | 8138/11/DD12; ash-flo         | ow tuff; 97.7 mg b            | iotite; measure      | $d^{40}Ar/^{50}Ar=29$              | 8.9; no plateau; pr                     | eterred date=39.8                       | 35±0.15 Ma;                  |
| J-value=0             | $0.007100 \pm 0.25$ percent   | $(1\sigma)$ ; lat 41°10'6"    | N., long 114°5       | 6'59" W.                           | <b>a</b> a (                            |                                         | 10 50 0 15                   |
| 500                   | 0.46200                       | 0.29833                       | 1.549                | 27                                 | 23.6                                    | 2.2                                     | 19.73±0.15                   |
| 600                   | 0.65700                       | 0.26223                       | 2.505                | 31                                 | 47.1                                    | 1.9                                     | $31.8\pm0.2$                 |
| */00<br>* <b>7</b> 50 | 5.0628                        | 1.6003                        | 3.164                | 45                                 | /5.5                                    | 11.6                                    | $40.07\pm0.11$               |
| */50                  | 6.3761                        | 2.0151                        | 3.164                | 62                                 | 89.4                                    | 14.6                                    | $40.08\pm0.11$               |
| *800<br>*850          | 4.1359                        | 1.3108                        | 3.155                | 67                                 | 90.9                                    | 9.5                                     | $39.97\pm0.11$               |
| *830                  | 2.8251                        | 0.8996                        | 3.140                | 61                                 | 88.9                                    | 6.5                                     | 39.8±0.2                     |
| *900                  | 2.2411                        | 0.72269                       | 3.101                | 46                                 | 82.7                                    | 5.2                                     | $39.29 \pm 0.15$             |
| *950                  | 2.6114                        | 0.83810                       | 3.116                | 45                                 | 79.1                                    | 6.1                                     | $39.47\pm0.11$               |
| *1,000<br>*1.050      | 5.9991                        | 1.9146                        | 3.133                | 56                                 | 82.6                                    | 13.9                                    | $39.09 \pm 0.11$             |
| *1,050                | 7.0790                        | 2.2519                        | 3.144                | 50                                 | 80.1                                    | 10.3                                    | $39.82 \pm 0.11$             |
| *1,150                | 4.9505                        | 1.5710                        | 3.151                | 35                                 | 88.5                                    | 11.4                                    | $39.92 \pm 0.11$             |
| *1,300                | 0.42176                       | 0.13207                       | 3.194                | 27                                 | 75.4                                    | 1.0                                     | $40.4\pm0.4$                 |
| · · · · · ·           | Total gas                     | NO                            | 3.099                |                                    |                                         |                                         | 39.27±0.12                   |
| Sample 0              | 0D21D/42/DD29. ash            | flour tuffe 62.2 mg           | histites masses      |                                    | KANGE                                   | minimum data-2                          | 8 0+0 5 Ma                   |
| Sample 9              | 0031B/42/DD28; asn-           | 100  turr;  02.3  mg          | Diotite; measu       | red Ar/ Ar=.                       | 296.6; no plateau;                      | minimum date=3                          | 8.0±0.3 Ma,                  |
| J-value=0             | $1.007318\pm0.1$ percent (    | $10$ ; $1at 41^{-2} 30^{-1}$  | N., long $115^{-41}$ | 10 <sup>°</sup> W.                 | 20.2                                    | 27.0                                    | $28.01\pm0.14$               |
| 700                   | 1.0729                        | 0.48007                       | 2.207                |                                    | 29.3                                    | 27.0                                    | $26.91\pm0.14$<br>26.20±0.16 |
| 700<br>*750           | 0.90034                       | 0.32307                       | 2.770                |                                    | 32.Z<br>24.4                            | 10.0                                    | $30.20\pm0.10$               |
| *200                  | 0.43033                       | 0.13239                       | 2.933                |                                    | 34.4<br>25.4                            | 0.J<br>5.6                              | $38.0\pm0.4$                 |
| *850                  | 0.29304                       | 0.10100                       | 2.925                |                                    | 33.4<br>29.4                            | 3.0                                     | $36.2\pm0.9$                 |
| *000                  | 0.17908                       | 0.00138                       | 2.918                |                                    | 30.4<br>26.9                            | 3.4                                     | 36.1±0.3                     |
| *050                  | 0.20100                       | 0.07133                       | 2.81/                |                                    | 25.0                                    | 4.0<br>6.0                              | 37 1+0 6                     |
| *1 000                | 0.30074                       | 0.10802                       | 2.840                |                                    | 33.0<br>26.0                            | 0.0<br>7 °                              | 38 26±0 16                   |
| *1.000                | 0.40901                       | 0.13983                       | 2.929                |                                    | 20.9                                    | 1.0                                     | 38.2020.10                   |
| *1 100                | 0.40313                       | 0.10387                       | 2.923                |                                    | 57.5<br>A1 7                            | 7.4<br>6.8                              | 38 0+0 1                     |
| *1 150                | 0.33793                       | 0.12307                       | 2.900                |                                    | 41.7                                    | 28                                      | 38 5+0 5                     |
| 1 300                 | 0.1407/                       | 0.04960                       | 2.740<br>1 88        |                                    | 47.0<br>27 A                            | 2.0<br>1 1                              | 25+3                         |
| 1,500                 | Total gas                     | 0.01701                       | 2.685                |                                    | 27. <del>4</del>                        | 1.1                                     | 35.1+0.3                     |
|                       | i otar gao                    |                               | 2.005                |                                    |                                         |                                         | 0011-010                     |

**Table 5.** Abbreviated  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| Temperature   | 40                            | 20                             |                                 | 20 27                                  | 40                          | 20                                      | Apparent age         |
|---------------|-------------------------------|--------------------------------|---------------------------------|----------------------------------------|-----------------------------|-----------------------------------------|----------------------|
| (°C)          | <sup>40</sup> Ar <sub>R</sub> | <sup>39</sup> Ar <sub>K</sub>  | <u> </u>                        | <sup>39</sup> Ar/ <sup>37</sup> Ar     | 40Ar <sub>R</sub> (percent) | <sup>39</sup> Ar <sub>K</sub> (percent) | and error (Ma)       |
|               |                               | SC                             | DUTHERN EAS                     | T HUMBOLDI                             | <b>RANGE</b>                |                                         |                      |
| Sample 91T12  | 2/67/DD33; dacite:            | ; 190.3 mg hornbl              | ende; measured                  | $1^{40}$ Ar/ $^{36}$ Ar=290            | 5.6; plateau date=3         | 38.8±0.4 Ma;                            |                      |
| J-value=0.007 | 750±0.1 percent (             | 1σ); lat 40°42'11''            | N., long 115°4                  | "22" W.                                |                             |                                         |                      |
| 800           | 0.0241                        | 0.0107                         | 2.26                            | 0.39                                   | 5.4                         | 1.2                                     | 31±3                 |
| 900           | 0.0081                        | 0.0058                         | 1.41                            | 0.51                                   | 25.3                        | 0.6                                     | 20±2                 |
| 950           | 0.0089                        | 0.0085                         | 1.05                            | 0.30                                   | 31.0                        | 0.9                                     | $15\pm8$             |
| 1,000         | 0.0430                        | 0.0139                         | 3.09                            | 0.15                                   | 70.6                        | 1.5                                     | 43±4                 |
| 1,025         | 0.0892                        | 0.0329                         | 2.71                            | 0.12                                   | 73.1                        | 3.6                                     | 37±2                 |
| *1,050        | 0.20204                       | 0.07275                        | 2.777                           | 0.12                                   | 82.2                        | 7.9                                     | $38.4 \pm 0.4$       |
| *1,075        | 0.27813                       | 0.10068                        | 2.762                           | 0.12                                   | 86.9                        | 10.9                                    | $38.2 \pm 0.4$       |
| *1,100        | 0.34620                       | 0.12429                        | 2.785                           | 0.12                                   | 90.1                        | 13.5                                    | 38.5±0.5             |
| *1,125        | 0.59076                       | 0.20926                        | 2.823                           | 0.12                                   | 92.8                        | 22.7                                    | $39.0 \pm 0.3$       |
| *1,150        | 0.41827                       | 0.14800                        | 2.826                           | 0.12                                   | 92.0                        | 16.1                                    | $39.1 \pm 0.3$       |
| 1,200         | 0.43733                       | 0.15202                        | 2.877                           | 0.12                                   | 94.5                        | 16.5                                    | 39.8±0.4             |
| 1,250         | 0.06277                       | 0.02121                        | 2.96                            | 0.12                                   | 88.3                        | 2.3                                     | 41±2                 |
| 1,350         | 0.06355                       | 0.02110                        | 3.011                           | 0.12                                   | 78.3                        | 2.3                                     | 41.6±0.8             |
| Te            | otal gas                      |                                | 2.793                           |                                        |                             |                                         | 38.6±0.8             |
| G             |                               | 0(0.0 1                        |                                 | 40 4 36 4 20                           |                             | 0.5.0214                                |                      |
| Sample 9111/  | 759/DD37; dacite;             | 268.3 mg hornbl                | ende; measured                  | $1^{-1} \text{Ar}/^{-1} \text{Ar}=290$ | 5.6; plateau date=3         | 9.5±0.3 Ma;                             |                      |
| J-value=0.007 | $482\pm0.1$ percent (         | $1\sigma$ ; lat 40°40'4" I     | N., long $115^{\circ}6^{\circ}$ | 22" W.                                 | 2.5                         | 0.5                                     | 05.5                 |
| 800           | 0.0133                        | 0.0071                         | 1.87                            | 0.73                                   | 2.5                         | 0.5                                     | 25±5                 |
| 900           | 0.0167                        | 0.0052                         | 3.22                            | 0.58                                   | 15.9                        | 0.3                                     | 43±7                 |
| 950           | 0.0038                        | 0.0015                         | 2.4                             | 0.28                                   | 14.3                        | 0.1                                     | 33±24                |
| 1,000         | 0.0062                        | 0.0016                         | 3.7                             | 0.19                                   | 25.1                        | 0.1                                     | 50±35                |
| 1,050         | 0.0150                        | 0.0046                         | 3.25                            | 0.15                                   | 41.7                        | 0.3                                     | 43±10                |
| 1,100         | 0.27736                       | 0.09039                        | 3.068                           | 0.14                                   | 86.8                        | 5.9                                     | 41.0±0.6             |
| *1,125        | 0.59974                       | 0.20398                        | 2.940                           | 0.14                                   | 89.3                        | 13.4                                    | 39.2±0.4             |
| *1,150        | 0.72717                       | 0.24471                        | 2.972                           | 0.14                                   | 93.4                        | 16.1                                    | 39.67±0.14           |
| *1,175        | 1.0586                        | 0.35924                        | 2.947                           | 0.14                                   | 95.0                        | 23.6                                    | $39.34 \pm 0.11$     |
| *1,200        | 0.73829                       | 0.24966                        | 2.957                           | 0.13                                   | 93.5                        | 16.4                                    | $39.5 \pm 0.2$       |
| *1,250        | 0.77600                       | 0.26172                        | 2.965                           | 0.13                                   | 95.6                        | 17.2                                    | 39.6±0.3             |
| *1,350        | 0.23507                       | 0.07968                        | 2.950                           | 0.13                                   | 90.0                        | 5.2                                     | 39.4±0.6             |
| 1,450         | 0.0397                        | 0.0145                         | 2.73                            | 0.15                                   | 44.2                        | 1.0                                     | 37±4                 |
| То            | otal gas                      |                                | 2.957                           |                                        |                             |                                         | 39.5±0.4             |
| Sample 01T10  | /68/DD37: dacita              | clast in conglome              | rate: 54.5 mg h                 | iotite: nlateau d                      | 1ate=40 98+0 10 N           | As: measured $40^{\circ}$               | $r/^{36}Ar = 296.6$  |
| J-value=0.007 | $818\pm0.1$ percent (         | $(\sigma)$ : 1at 40°41'48"     | N., long 115°4                  | '44" W                                 | aute-+0.70±0.10 M           | na, measured A                          | ., <u>11</u> =270.0, |
| 600           | 0.03695                       | 0.01958                        | 1.89                            | 13                                     | 18.5                        | 0.5                                     | 26±3                 |
| 800           | 0.18778                       | 0.14897                        | 1.260                           | 19                                     | 20.7                        | 4.1                                     | $17.69 \pm 0.15$     |
| 900           | 1 1766                        | 0 42345                        | 2 778                           | 98                                     | 71.5                        | 11.5                                    | 38.8+0.2             |
| 1.000         | 1 2428                        | 0.42579                        | 2 919                           | 87                                     | 84 3                        | 11.6                                    | 40.70+0.10           |
| 1,050         | 0 82265                       | 0.28726                        | 2.212                           | 57                                     | 80.0                        | 7.8                                     | 39 94+0 13           |
| 1 100         | 1 2821                        | 0.44705                        | 2.004                           | 56                                     | 81.9                        | 12.2                                    | 39 9+0 3             |
| 1,100         | 1.2021                        | $\nabla \cdot \tau \tau / J J$ | 2.002                           | 50                                     | 01.7                        | 1 4.4                                   | 57.7±0.5             |

2.942

2.829

31

95.2

31.3

41.02±0.09

39.47±0.16

Table 5. Abbreviated <sup>40</sup>Ar/<sup>39</sup>Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field-Continued.

\*1,350

3.3878

Total gas

1.1517

| Temperature<br>(°C) | <sup>40</sup> Ar <sub>R</sub>       | <sup>39</sup> Ar <sub>K</sub>          | F                | <sup>39</sup> Ar/ <sup>37</sup> Ar | <sup>40</sup> Ar <sub>R</sub> (percent) | <sup>39</sup> Ar <sub>K</sub> (percent) | Apparent age<br>and error (Ma) |
|---------------------|-------------------------------------|----------------------------------------|------------------|------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|
|                     |                                     |                                        | wo               | OD HILLS                           |                                         |                                         |                                |
| Sample 92BW         | 'H1/8/DD49; ash-f                   | flow tuff; 54.6 mg                     | g biotite; measu | red $40$ Ar/ $36$ Ar=2             | 298.9; no plateau;                      | preferred date=39                       | 0.7±0.1 Ma;                    |
| J-value=0.007       | 967±0.1 percent (                   | $1\sigma$ ); lat 41°4'53" 1            | N., long 114°52  | 2'55" W.                           |                                         | •                                       |                                |
| 600                 | 0.05061                             | 0.02522                                | 2.01             | 15                                 | 11.2                                    | 0.4                                     | 28.6±1.1                       |
| 700                 | 0.15604                             | 0.06264                                | 2.491            | 18                                 | 30.4                                    | 0.9                                     | 35.4±0.3                       |
| 750                 | 0.19724                             | 0.07046                                | 2.799            | 19                                 | 41.1                                    | 1.1                                     | 39.8±0.5                       |
| 800                 | 0.24367                             | 0.07927                                | 3.074            | 20                                 | 41.3                                    | 1.2                                     | 43.6±0.4                       |
| 850                 | 0.45604                             | 0.15490                                | 2.944            | 22                                 | 69.8                                    | 2.3                                     | 41.8±0.2                       |
| 900                 | 0.63587                             | 0.21578                                | 2.947            | 24                                 | 85.6                                    | 3.2                                     | 41.86±0.10                     |
| 950                 | 1.1200                              | 0.39217                                | 2.856            | 28                                 | 89.7                                    | 5.9                                     | 40.59±0.07                     |
| 1.000               | 0.98496                             | 0.34639                                | 2.843            | 34                                 | 91.7                                    | 5.2                                     | $40.41 \pm 0.14$               |
| 1.050               | 1.2199                              | 0.43316                                | 2.816            | 40                                 | 92.0                                    | 6.5                                     | $40.03 \pm 0.07$               |
| 1,100               | 1.9483                              | 0.69260                                | 2.813            | 52                                 | 92.3                                    | 10.4                                    | $39.98 \pm 0.13$               |
| 1,150               | 3.0700                              | 1.0943                                 | 2.805            | 71                                 | 90.6                                    | 16.4                                    | 39.88±0.06                     |
| *1,200              | 4.0152                              | 1.4337                                 | 2,801            | 83                                 | 90.4                                    | 21.4                                    | 39.81±0.07                     |
| *1,350              | 4.7112                              | 1.6885                                 | 2.790            | 25                                 | 89.4                                    | 25.2                                    | 39.66±0.06                     |
| To                  | otal gas                            |                                        | 2.812            |                                    |                                         |                                         | 39.97±0.09                     |
|                     |                                     |                                        | FERGUS           | ON MOUNTAIN                        | N                                       |                                         |                                |
| Sample 12659        | _02T21/57/DD31·                     | dacite: 307.3 mg                       | hornblende: m    | $\frac{40}{4} \text{ Ar}/36$       | Ar-208 Q. plateau                       | date-39 80+0 10                         | ) Ma:                          |
| Lyphan 0.007        | -5212175770051,<br>656+01 percent ( | $1_{\sigma}$ : let $40^{\circ}26'15''$ | N long 114°      |                                    | AI-290.9, plateau                       | uaic-59.80±0.10                         | , wia,                         |
| 700                 | 0.10505                             | 0.06724                                | 1N., 1011g 114 0 | ) J4 W.<br>25                      | 22 /                                    | 2.1                                     | 20 6±0 2                       |
| 800                 | 0.17520                             | 0.00734                                | 2.90             | 2.3                                | 20.0                                    | 2.1                                     | 39.0±0.3                       |
| 800                 | 0.17550                             | 0.00337                                | 2.77             | 1.4                                | 20.9                                    | 2.0                                     | 37.0±0.7                       |
| 900                 | 0.02904                             | 0.01411                                | 2.00             | 0.41                               | 10.9                                    | 0.4                                     | 2013                           |
| 1 000               | 0.02155                             | 0.01111                                | 1.94             | 0.34                               | 11.1                                    | 0.4                                     | $27\pm0$<br>27+1               |
| 1,000               | 1 1096                              | 0.03322                                | 2.09             | 0.19                               | 44.0                                    | 1.7                                     | $3/\pm 1$                      |
| 1,030               | 1,1080                              | 0.38812                                | 2.80             | 0.16                               | 70.3                                    | 12.5                                    | $39\pm1$                       |
| 1,073               | 1.7045                              | 0.39050                                | 2.887            | 0.16                               | /9.5                                    | 18.7                                    | $39.43 \pm 0.07$               |
| *1,100              | 1.2910                              | 0.44162                                | 2.923            | 0.16                               | 87.0                                    | 14.0                                    | $39.93 \pm 0.06$               |
| *1,150              | 3,1788                              | 1.0922                                 | 2.911            | 0.16                               | 80.9                                    | 34.3                                    | $39.70\pm0.00$                 |
| *1,250              | 1.2245                              | 0.42034                                | 2.913            | 0.16                               | 80.4                                    | 13.3                                    | 39.8±0.2                       |
| 1,550               | 0.00/18                             | 0.02097                                | 3.20             | 0.18                               | 80.8                                    | 0.7                                     | $44\pm 2$                      |
| 1(                  | Stal gas                            |                                        | 2.889            |                                    |                                         |                                         | 39.3±0.2                       |
| <u> </u>            |                                     |                                        | DOLLY VAR        | DEN MOUNTA                         |                                         | 20.00.04434                             |                                |
| Sample 3233-9       | 92BDV/54/DD26;                      | dacite; 48.2 mg b                      | piotite; measure | a "Ar/"Ar=29                       | 8.9; plateau date=                      | 39.08±0.11 Ma;                          |                                |
| J-value=0.006       | $182\pm0.25$ percent                | $(1\sigma)$ ; lat 40°19'20             | " N., long 114°  | 31'9" W.                           |                                         |                                         | <b></b>                        |
| 600                 | 0.01061                             | 0.00551                                | 1.93             | 1.5                                | 2.5                                     | 0.1                                     | 21±4                           |
| 700                 | 0.02629                             | 0.00771                                | 3.41             | 3.8                                | 34.8                                    | 0.2                                     | .38±3                          |
| 800                 | 0.11411                             | 0.02993                                | 3.812            | 13                                 | 27.9                                    | 0.7                                     | 42.0±0.9                       |
| 900                 | 0.65604                             | 0.18019                                | 3.641            | 34                                 | 90.9                                    | 4.5                                     | 40.2±0.4                       |
| *1,000              | 4.1651                              | 1.1738                                 | 3.548            | 233                                | 97.3                                    | 29.4                                    | 39.14±0.11                     |
| *1,050              | 3.6756                              | 1.0403                                 | 3.533            | 343                                | 98.0                                    | 26.0                                    | $38.98 \pm 0.11$               |
| *1,100              | 2.4423                              | 0.68975                                | 3.541            | 40                                 | 95.9                                    | 17.3                                    | 39.06±0.11                     |
| *1,150              | 1.5050                              | 0.42405                                | 3.549            | 115                                | 86.7                                    | 10.6                                    | <b>39.15±0.11</b>              |
|                     | 1 5909                              | 0 44 507                               | 3 545            | 192                                | 78 7                                    | 11.2                                    | 39 10+0 11                     |
| *1,300              | 1.5606                              | 0.++577                                | 5.545            | 172                                | 70.7                                    | 11.2                                    | 57.10±0.11                     |

**Table 5.** Abbreviated  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| Temperature  |                                   |                               |                  |                                     |                                         |                                         | Apparent age     |
|--------------|-----------------------------------|-------------------------------|------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|------------------|
| (°C)         | $\frac{40}{\text{Ar}_{\text{R}}}$ | <sup>39</sup> Ar <sub>K</sub> | F                | <sup>39</sup> Ar/ <sup>37</sup> Ar  | <sup>40</sup> Ar <sub>R</sub> (percent) | <sup>39</sup> Ar <sub>K</sub> (percent) | and error (Ma)   |
|              |                                   |                               | SILVER ISL       | AND MOUNTA                          | INS                                     |                                         |                  |
| Sample 91T3  | /60/DD37; andesite                | e; 255.3 mg hornl             | olende; measure  | $d^{40}Ar/^{36}Ar=29$               | 6.0; plateau date=                      | 42.6±0.3 Ma;                            |                  |
| J-value=0.00 | 7595±0.1 percent (                | 1σ); lat 40°49'59'            | ' N., long 113°5 | 6'49" W.                            |                                         |                                         |                  |
| 800          | 0.11850                           | 0.04696                       | 2.52             | 0.59                                | 24.3                                    | 3.9                                     | 34±3             |
| 900          | 0.10432                           | 0.03909                       | 2.67             | 0.23                                | 23.7                                    | 3.2                                     | 36±2             |
| 925          | 0.02896                           | 0.01029                       | 2.81             | 0.20                                | 48.2                                    | 0.9                                     | 38±5             |
| 950          | 0.02547                           | 0.00769                       | 3.31             | 0.17                                | 57.4                                    | 0.6                                     | 45±5             |
| 1000         | 0.00965                           | 0.00427                       | 2.26             | 0.15                                | 32.6                                    | 0.4                                     | 31±14            |
| 1025         | 0.01097                           | 0.00409                       | 2.68             | 0.15                                | 34.8                                    | 0.3                                     | 36±10            |
| 1075         | 0.02506                           | 0.00936                       | 2.68             | 0.14                                | 45.8                                    | 0.8                                     | 36±5             |
| 1,100        | 0.06174                           | 0.01977                       | 3.12             | 0.13                                | 65.5                                    | 1.6                                     | 42±3             |
| 1,125        | 0.26794                           | 0.08724                       | 3.071            | 0.12                                | 78.1                                    | 7.2                                     | 41.6±0.4         |
| 1,150        | 0.43486                           | 0.13881                       | 3.133            | 0.12                                | 86.2                                    | 11.5                                    | $42.42 \pm 0.14$ |
| 1,175        | 0.96583                           | 0.30592                       | 3.157            | 0.12                                | 92.6                                    | 25.4                                    | 42.75±0.11       |
| 1,200        | 0.73636                           | 0.23403                       | 3.146            | 0.12                                | 93.6                                    | 19.4                                    | 42.60±0.13       |
| 1,225        | 0.32291                           | 0.10260                       | 3.147            | 0.11                                | 92.7                                    | 8.5                                     | $42.6 \pm 0.8$   |
| 1,250        | 0.23418                           | 0.07446                       | 3.145            | 0.11                                | 92.3                                    | 6.2                                     | 42.59±0.16       |
| 1,350        | 0.37716                           | 0.12065                       | 3.126            | 0.11                                | 92.0                                    | 10.0                                    | 42.3±0.5         |
|              | Fotal gas                         |                               | 3.090            |                                     |                                         |                                         | 41.8±0.7         |
|              | Ç                                 |                               |                  |                                     |                                         |                                         |                  |
| Sample 91T4  | /61/DD37; rhyolite                | ; 70.8 mg biotite;            | measured 40 Ar   | / <sup>36</sup> Ar=296.0; nc        | o plateau; excess <sup>40</sup>         | Ar; preferred dat                       | e=42.61±0.08 Ma; |
| J-value=0.00 | 7803±0.1 percent ()               | σ); lat 40°49'56'             | ' N., long 113°5 | 7'24" W.                            | -                                       | -                                       |                  |
| 650          | 0.20173                           | 0.09652                       | 2.090            | 32                                  | 32.7                                    | 2.0                                     | 29.2±0.5         |
| 750          | 0.25269                           | 0.09054                       | 2.791            | 51                                  | 42.2                                    | 1.8                                     | $38.9 \pm 0.2$   |
| 850          | 0.76432                           | 0.24405                       | 3.132            | 103                                 | 84.6                                    | 4.9                                     | 43.56±0.20       |
| *950         | 1.6035                            | 0.52348                       | 3.063            | 174                                 | 89.3                                    | 10.6                                    | $42.61 \pm 0.10$ |
| *1.000       | 2.3902                            | 0.78041                       | 3 063            | 281                                 | 92.0                                    | 15.8                                    | $42.61 \pm 0.07$ |
| 1.050        | 3.5278                            | 1.1321                        | 3 1 1 6          | 255                                 | 90.8                                    | 22.9                                    | $43.34 \pm 0.07$ |
| 1,000        | 3 2635                            | 1.0319                        | 3 163            | 155                                 | 90.1                                    | 20.9                                    | 43 98+0 11       |
| 1,150        | 2 6182                            | 0.81507                       | 3 212            | 82                                  | 91.8                                    | 16.5                                    | 44 66+0 09       |
| 1 350        | 0.73826                           | 0 22428                       | 3 292            | 16                                  | 91.4                                    | 4 5                                     | 45 8+0 3         |
| 1,550        | Fotal gas                         | 0.22120                       | 3 1 1 0          | 10                                  | ,,,,,                                   | 1.5                                     | 43 26+0 11       |
|              | totul guo                         |                               | SANFO            | RD SPRINGS                          |                                         |                                         | 10.2020.11       |
| Sample 92B2  | 7/61/DD42: ash-flc                | w tuff <sup>•</sup> 58 9 mg l | viotite: measure | $d^{40}\Delta r/^{36}\Delta r = 29$ | 8 9: plateau date=                      | 40 64+0 07 Ma                           |                  |
| I-value=0.00 | 8156+0.1 percent (1               | (m): lat 39°48'39'            | N long 114°7     | "55" W                              | 0.9, plateau dute-                      | 10.0120.07 1114,                        |                  |
| 600          | 1 2902                            | 0 49008                       | 2 633            | 43                                  | 724                                     | 83                                      | 38 33+0.06       |
| 750          | 2 8101                            | 1.0077                        | 2.035            | 54                                  | 76.4                                    | 17.0                                    | 40 57+0 35       |
| 800          | 0.91643                           | 0 32024                       | 2.783            | 87                                  | 85.0                                    | 56                                      | 40.50+0.08       |
| 850          | 0.64531                           | 0.22724                       | 2.783            | 70                                  | 84.2                                    | 3.0                                     | $40.48 \pm 0.23$ |
| 900          | 0.62326                           | 0.23171                       | 2.785            | 50                                  | 873                                     | 3.9                                     | 40.56+0.06       |
| 950          | 0.02520                           | 0.22557                       | 2.760            | 68                                  | 84.4                                    | 47                                      | $40.26\pm0.00$   |
| *1 000       | 1 3734                            | 0.27000                       | 2.707            | 156                                 | 07.7                                    | 80                                      | $40.20\pm0.13$   |
| *1,000       | 2 6201                            | 0.47289                       | 2.799            | 254                                 | 05 5                                    | 15.0                                    | $40.68\pm0.06$   |
| *1.100       | 2.0271                            | 1 1604                        | 2.790            | 234                                 | 95.5<br>Q6 1                            | 10.5                                    | 40.59+0.06       |
| *1.150       | 5.2577                            | 0.55/19                       | 2.790            | 110                                 | 05 3                                    | 0/                                      | 40.57±0.00       |
| *1 300       | 0.62725                           | 0.33418                       | 2.173            | 119                                 | 95.5<br>01 <b>5</b>                     | 30                                      | 40.55+0.06       |
| · 1,500      | U.UJ/2J                           | 0.22801                       | 2.100<br>2777    | 17                                  | 71.5                                    | 5.7                                     | 40.00±0.00       |
| 1            | iotal gas                         |                               | 2.111            |                                     |                                         |                                         | 40.4020.12       |

**Table 5.** Abbreviated  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| Temperature   | 40 A r -                | <sup>39</sup> A r                     | <br>E                      | <sup>39</sup> A r/ <sup>37</sup> A r    | 40 Ar- (percent)    | <sup>39</sup> Ar. (percent) | Apparent age                     |
|---------------|-------------------------|---------------------------------------|----------------------------|-----------------------------------------|---------------------|-----------------------------|----------------------------------|
|               |                         |                                       | F                          |                                         | AIR (percent)       | Aik (percent)               |                                  |
| Sample 01CP3  | 3/21/DD36: rhvo         | lite: 18.6 mg bioti                   | te: measured <sup>40</sup> | $\Delta r/^{36} \Lambda r = 208 \Omega$ | nlateau date-30 4   | 58+0.10 Ma                  |                                  |
| L value=0.005 | $305\pm0.1$ percent (   | $1 \sigma$ ): lot $40^{\circ}12'18''$ | N long 11/05               | A17 A1 = 230.0                          | , plateau date=59.  | $00\pm0.10$ Wia,            |                                  |
| 650           | 0.0415                  | 0.0216                                | 1 02                       | 37                                      | 13.5                | 0.0                         | 18+2                             |
| 750           | 0.0413                  | 0.0210                                | 1.92                       | 10                                      | 10.0                | 2.5                         | 38/1+0.3                         |
| 850           | 0.2422                  | 0.0397                                | 4.039                      | 123                                     | 49.2                | 2.5                         | 30.4±0.5                         |
| 950           | 1 2850                  | 0.22101                               | 4.200                      | 140                                     | 80.3                | 120                         | 39.86+0.07                       |
| *1 000        | 1,2850                  | 0.30708                               | 4 192                      | 168                                     | 90.0                | 13.0                        | 397+02                           |
| *1.050        | 1 9930                  | 0.30708                               | 4.192                      | 140                                     | 92.9                | 20.1                        | 39 60+0 11                       |
| *1 100        | 1.7783                  | 0.47035                               | 4 185                      | 66                                      | 92.5                | 17.9                        | 39.62+0.06                       |
| *1 150        | 1.7705                  | 0.42515                               | 4 165                      | 78                                      | 93.9                | 18.0                        | $39.02\pm0.00$<br>$39.42\pm0.07$ |
| *1 350        | 0.52902                 | 0.12623                               | 4.103                      | 70<br>24                                | 83.1                | 53                          | 39.67±0.06                       |
| 1,550<br>To   | otal gas                | 0.12025                               | 4 161                      | <b>4</b> -1                             | 05.1                | 0.0                         | 39.42+0.13                       |
|               | Jun Bus                 |                                       | 11101                      |                                         |                     |                             | 0711220110                       |
| Sample 91CP3  | 30/22/DD36: dacit       | e: 242.4 mg horn                      | olende: measur             | $ed^{40}Ar/^{36}Ar=29$                  | 96.6: plateau date= | =39.6±0.2 Ma:               |                                  |
| J-value=0.005 | 318±0.1 percent (       | $1\sigma$ ): lat 40°11'23"            | N., long 114°5             | 58'15" W.                               | , <b>F</b>          | ,                           |                                  |
| 700           | 0.1485                  | 0.02615                               | 5.68                       | 0.62                                    | 27.2                | 2.3                         | 54±2                             |
| 800           | 0.03057                 | 0.00907                               | 3.37                       | 0.31                                    | 34.8                | 0.8                         | 32±1                             |
| 900           | 0.0189                  | 0.00435                               | 4.35                       | 0.31                                    | 48.5                | 0.4                         | 41±4                             |
| 1,000         | 0.04364                 | 0.01074                               | 4.06                       | 0.23                                    | 53.0                | 0.9                         | 39±3                             |
| 1,025         | 0.04991                 | 0.01257                               | 3.97                       | 0.18                                    | 70.4                | 1.1                         | 38±3                             |
| 1,050         | 0.20502                 | 0.05046                               | 4.063                      | 0.16                                    | 82.8                | 4.5                         | 38.6±0.5                         |
| 1,075         | 0.2893                  | 0.0706                                | 4.099                      | 0.16                                    | 87.0                | 6.2                         | 38.9±0.5                         |
| *1,100        | 1.1110                  | 0.26461                               | 4.199                      | 0.15                                    | 93.7                | 23.3                        | 39.8±0.2                         |
| *1,125        | 1.8807                  | 0.45134                               | 4.167                      | 0.15                                    | 95.8                | 39.8                        | 39.54±0.08                       |
| *1,150        | 0.02452                 | 0.0586                                | 4.180                      | 0.15                                    | 91.5                | 5.2                         | 39.7±0.4                         |
| *1,200        | 0.61772                 | 0.14796                               | 4.175                      | 0.15                                    | 95.4                | 13.1                        | 39.6±0.2                         |
| 1,350         | 0.11054                 | 0.02693                               | 4.10                       | 0.13                                    | 83.2                | 2.4                         | 39±2                             |
| To            | otal gas                |                                       | 4.192                      |                                         |                     |                             | 39.8±0.4                         |
|               |                         |                                       | COAL M                     | IINE CANYON                             |                     |                             |                                  |
| Sample 12624  | /56/DD31; ash-flo       | w tuff; 267.4 mg                      | hornblende; me             | easured <sup>40</sup> Ar/ <sup>36</sup> | Ar=298.9; plateau   | date=40.4±0.2 M             | la;                              |
| J-value=0.007 | $631 \pm 0.1$ percent ( | 1σ); lat 40°6'52" l                   | N., long 115°37            | 7'46" W.                                | × 1                 |                             |                                  |
| 700           | 0.0287                  | 0.0085                                | 3.37                       | 0.64                                    | 2.5                 | 0.3                         | 46±10                            |
| 800           | 0.0227                  | 0.00579                               | 3.91                       | 0.55                                    | 14                  | 0.2                         | 53±14                            |
| 900           | 0.0321                  | 0.01020                               | 3.15                       | 0.20                                    | 39                  | 0.4                         | 43±7                             |
| 950           | 0.04995                 | 0.01711                               | 2.92                       | 0.16                                    | 52                  | 0.6                         | 40±4                             |
| *1,000        | 0.29047                 | 0.09773                               | 2.972                      | 0.16                                    | 64                  | 3.5                         | $40.5 \pm 1.1$                   |
| *1,025        | 0.95399                 | 0.32126                               | 2.970                      | 0.16                                    | 80                  | 11.6                        | 40.4±0.2                         |
| *1,050        | 3.0453                  | 1.0264                                | 2.967                      | 0.16                                    | 91                  | 36.9                        | 40.39±0.10                       |
| *1,100        | 2.7655                  | 0.92929                               | 2.976                      | 0.16                                    | 94                  | 33.4                        | 40.51±0.11                       |
| *1,150        | 0.65701                 | 0.22110                               | 2.972                      | 0.15                                    | 87                  | 8.0                         | 40.4±0.3                         |
| *1,350        | 0.42209                 | 0.14267                               | 2.959                      | 0.14                                    | 79                  | 5.1                         | 40.3±0.4                         |
| Тс            | otal gas                |                                       | 2.974                      |                                         |                     |                             | 40.5±0.3                         |

**Table 5.** Abbreviated  ${}^{40}$ Ar/ ${}^{39}$ Ar age-spectrum data for middle Eocene volcanic rocks from the central part of the Northeast Nevada volcanic field—Continued.

| Reactor       | 26 25                     | 20 25                                             |                                                   | 40 20                                            | 27 20                                       | 20 20                                         |
|---------------|---------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------------|
| package       | $(^{36}Ar/^{37}Ar)_{Ca}$  | $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}}$ | $({}^{38}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}}$ | $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\text{K}}$ | $({}^{3}/{\rm Ar}/{}^{39}{\rm Ar})_{\rm K}$ | $({}^{38}\text{Ar}/{}^{39}\text{Ar})_{\rm K}$ |
| DD9           | 2.55×10 <sup>-4</sup>     | $1.25 \times 10^{-3}$                             | 6.91×10 <sup>-5</sup>                             | $1.26 \times 10^{-2}$                            | 4.48×10 <sup>-4</sup>                       | 1.30×10 <sup>-2</sup>                         |
| DD12          | 2.66×10 <sup>-4</sup>     | 6.99×10 <sup>-4</sup>                             | $2.75 \times 10^{-5}$                             | $9.07 \times 10^{-3}$                            | $1.82 \times 10^{-4}$                       | $1.30 \times 10^{-2}$                         |
| DD26          | 2.70×10 <sup>-4</sup>     | 6.48×10 <sup>-4</sup>                             | 3.7×10 <sup>-5</sup>                              | $1.011 \times 10^{-2}$                           | $2.35 \times 10^{-4}$                       | $1.31 \times 10^{-2}$                         |
| DD28          | 2.61×10 <sup>-4</sup>     | 7.68×10 <sup>-4</sup>                             | $3.02 \times 10^{-5}$                             | 8.78×10 <sup>-3</sup>                            | 8.30×10 <sup>-5</sup>                       | $1.306 \times 10^{-2}$                        |
| DD31          | 2.70×10 <sup>-4</sup>     | 6.36×10 <sup>-4</sup>                             | $3.17 \times 10^{-5}$                             | 9.18×10 <sup>-3</sup>                            | $8.20 \times 10^{-5}$                       | $1.306 \times 10^{-2}$                        |
| DD33          | $2.70 \times 10^{-4}$     | 6.81×10 <sup>-4</sup>                             | $2.64 \times 10^{-5}$                             | $9.76 \times 10^{-3}$                            | 1.10×10 <sup>-4</sup>                       | $1.307 \times 10^{-2}$                        |
| DD36          |                           |                                                   |                                                   |                                                  |                                             |                                               |
| DD37          | $2.80 \times 10^{-4}$     | $6.94 \times 10^{-4}$                             | 3.67×10 <sup>-5</sup>                             | $8.99 \times 10^{-3}$                            | 1.49×10 <sup>-4</sup>                       | $1.313 \times 10^{-2}$                        |
| DD42          | 2.90×10 <sup>-4</sup>     | 6.30×10 <sup>-4</sup>                             | $2.11 \times 10^{-5}$                             | $7.5 \times 10^{-3}$                             | 9.9×10 <sup>-5</sup>                        | $1.318 \times 10^{-2}$                        |
| DD49          | 2.70×10 <sup>-4</sup>     | 5.95×10 <sup>-4</sup>                             | 2.4×10 <sup>-5</sup>                              | 7.8×10 <sup>-3</sup>                             | 1.1×10 <sup>-4</sup>                        | $1.306 \times 10^{-2}$                        |
| Approx. error | $\pm 0.01 \times 10^{-4}$ | ±0.03×10 <sup>-4</sup>                            | $\pm 0.2 \times 10^{-5}$                          | $\pm 0.4 \times 10^{-3}$                         | $\pm 0.6 \times 10^{-4}$                    | $\pm 0.01 \times 10^{-2}$                     |

| Table 6.   | Production ratios for interfering isotopes of argon produced during irradiation. |
|------------|----------------------------------------------------------------------------------|
| [Leaders ( | ) indicate not available]                                                        |

| canic field.   | 5×10 <sup>-11</sup> yr <sup>-1</sup> ;                                 |  |
|----------------|------------------------------------------------------------------------|--|
| t Nevada vol   | ; <sup>232</sup> Th=4.937                                              |  |
| of Northeas    | 485×10 <sup>-10</sup> yr <sup>-1</sup>                                 |  |
| , central part | rr <sup>-1</sup> ; <sup>235</sup> U=9.8                                |  |
| boldt Range    | 55125×10 <sup>-10</sup> )                                              |  |
| ern East Hum   | tants: <sup>238</sup> U=1.<br>6:38.80]                                 |  |
| ble 3), south  | <ul> <li>Pecay cons<br/>=1:18.10:15.6</li> </ul>                       |  |
| ple 91T22, ta  | :ommun., 1992<br><sup>5</sup> Pb: <sup>207</sup> Pb: <sup>208</sup> Pf |  |
| diorite (sam)  | trvey, written o<br>to be <sup>204</sup> Pb: <sup>20</sup>             |  |
| om pyroxene    | Geological Su<br>I lead assumed                                        |  |
| of sphene fro  | Zartman (U.S.<br>on of commor                                          |  |
| sotopic ages   | ats from R.E. 2<br>pric compositi                                      |  |
| U-Th-Pb i      | decay constan<br>=137.88. Isotc                                        |  |
| Table 7.       | Ages and <sup>138</sup> U/ <sup>235</sup> U=                           |  |

|                  | $^{208}\text{Pb}/^{232}\text{Th}$    | 39.5±0.4     | 37.8±0.3    |
|------------------|--------------------------------------|--------------|-------------|
| -annum)          | <sup>207</sup> Pb/ <sup>206</sup> Pb | 54±65        | 20±50       |
| Age (meg         | <sup>207</sup> Pb/ <sup>235</sup> U  | 39.3±1.7     | 38.3±1.2    |
|                  | <sup>206</sup> Pb/ <sup>238</sup> U  | 39.1±0.3     | 38.6±0.2    |
| ercent)          | $^{208}Pb$                           | 53.53        | 54.11       |
| of lead (atom pe | <sup>207</sup> Pb                    | 17.31        | 16.26       |
| composition (    | $^{206}Pb$                           | 28.08        | 28.63       |
| Isotopic         | $^{204}\text{Pb}$                    | 1.0799       | 1.0073      |
| er million)      | Pb                                   | 1.293        | 1.255       |
| tration (parts p | Тћ                                   | 86.2         | 112.9       |
| Concen           | U                                    | 21.17        | 25.30       |
| Sample           | designation                          | Light yellow | Dark yellow |

## **REFERENCES CITED**

- Armstrong, R.L., 1970, Geochronology of Tertiary igneous rocks, eastern Basin and Range Province, western Utah, eastern Nevada, and vicinity, U.S.A.: Geochimica et Cosmochimica Acta, v. 34, p. 203–232.
- Axelrod, D.I., 1966, Potassium-argon ages of some western Tertiary floras: American Journal of Science, v. 264, p. 497–506.
- Berger, B.R., Ridley, W.I., and Tingley, J.V., 1991, Interrelationship of mineralization, volcanism, and tectonism, northern Tuscarora Mts., Elko County, Nevada, *in* Thorman, C.H., ed., Some current research in eastern Nevada and western Utah by the U.S. Geological Survey: U.S. Geological Survey Open-File Report 91–386, p. 13–19.
- Boden, D.R., Struhsacker, E.M., and Wright, B.A., 1993, Structurally controlled volcanism and contrasting types of mineralization, Tuscarora mining district and vicinity, Nevada: Geological Society of America Abstracts with Programs, v. 25, no. 5, p. 11.
- Brooks, W.E., 1986, Distribution of anomalously high K<sub>2</sub>O volcanic rocks in Arizona—Metasomatism at the Picacho Peak detachment fault: Geology, v. 14, p. 339–342.
- Brooks, W.E., Snee, L.W., and Scott, R.B., 1994, Timing and effect of detachment-related potassium metasomatism on <sup>40</sup>Ar/<sup>39</sup>Ar dates from the Windous Butte ash-flow tuff, Grant Range, east-central Nevada: Geological Society of America Abstracts with Programs, v. 26, no. 2, p. 41.
- Brooks, W.E., Thorman, C.H., Mueller, K.J., and Snee, L.W., 1992, Regional correlation, chemistry, and setting of basal Tertiary (Middle Eocene) volcanic rocks, northeast Nevada: Geological Society of America Abstracts with Programs, v. 24, no. 6, p. 4.
- Brooks, W.E., Thorman, C.H., and Snee, L.W., 1995a, The <sup>40</sup>Ar/<sup>39</sup>Ar ages and tectonic setting of the middle Eocene northeast Nevada volcanic field: Journal of Geophysical Research, v. 100, no. B7, p. 10,403–10,416.
- Christiansen, R.L., and Yeats, R.S., 1992, Post-Laramide geology of the U.S. Cordilleran region, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., eds., The Cordilleran orogen—Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 261–406.

Coats, R.R., 1964, Geology of the Jarbridge quadrangle, Nevada-Idaho: U.S. Geological Survey Bulletin 1141-M, 24 p.

- -------1971, Geologic map of the Owyhee quadrangle, Nevada-Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-665, scale 1:48,000.
- Compton, R.R., 1983, Displaced Miocene rocks on the west flank of the Raft River–Grouse Creek core complex, Utah, *in* Miller, D.M., Toss, V.R., and Howard, K.A., eds., Tectonic and stratigraphic studies in the eastern Great Basin: Geological Society of America Memoir 157, p. 271–279.

- Crittenden, Jr., M.D., Stuckless, J.S., Kistler, R.W., and Stern, T.W., 1973, Radiometric dating of intrusive rocks in the Cottonwood area, Utah: U.S. Geological Survey Journal of Research, v. 1, no. 2, p. 173–178.
- Dubiel, R.F., Good, S.C., Potter, C.J., and Snee, L.W., 1993, Sedimentologic and biostratigraphic implications for Early Eocene lacustrine systems, eastern Great Basin, Nevada: Geological Society of America Abstracts with Programs, v. 25, no. 5, p. 32.
- Elsass, F., and du Bray, E.A., 1982, Energy-dispersive X-ray fluorescence spectrometry with the Kevex 7000 system, Saudi Arabian Deputy Ministry of Mineral Resources Open File Report USGS-OF-02-52, 53 p.
- Gans, P.B., Mahood, G.A., and Schermer, E., 1989, Synextensional magmatism in the Basin and Range province; a case study from the eastern Great Basin: Geological Society of America Special Paper 233, 49 p.
- Glazner, A.F., and Bartley, J.M., 1990, Contrasting Cenozoic tectonomagmatic histories of the northern and southern Basin and Range: Geological Society of America Abstracts with Programs, v. 22, no. 3, p. 25.
- Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 523–548.
- James, A.H., Smith, W.H., and Welsh, J.E., 1961, General geology and structure of the Bingham district, Utah: Utah Geological Society Guidebook to the Geology of Utah, v. 16, p. 49–70.
- Ketner, K.B., and Ross, R.J., Jr., 1990, Geologic map of the northern Adobe Range, Elko County, Nevada: U.S. Geological Survey Map I–2081, scale 1:24,000.
- Le Bas, M.J., and Streckeisen, A.L., 1991, The IUGS systematics of igneous rocks: Journal of the Geological Society, London, v. 148, p. 825–833.
- Lindsey, D.A., 1982, Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah: U.S. Geological Survey Professional Paper 1221, 71 p.
- Maher, B.J., Browne, Q.J., and McKee, E.H., 1990, Chronology of Tertiary igneous and hydrothermal events, Roberts Mountains, Eureka County, Nevada: Geological Society of Nevada and U.S. Geological Survey, Geology and Ore Deposits of the Great Basin Symposium, Reno, Nevada, April 1–5, 1990, Program with Abstracts, p. 48.
- McKee, E.H., and Coats, R.R., 1975, K-Ar age of ore deposition, Tuscarora mining district, Elko County, Nevada: Isochron/West, no. 13, p. 11–12.
- McKee, E.H., Tarshis, A.L., and Marvin, R.F., 1976, Summary of radiometric ages of Tertiary volcanic and selected plutonic rocks in Nevada, Part V—Northeastern Nevada: Isochron/West, no. 16, p. 15–27.
- Miller, D.M., 1984, Sedimentary and igneous rocks of the Pilot Range and vicinity, Utah and Nevada, *in* Kerns, G.J., and Kerns, R.L., Jr., eds., Geology of northwest Utah, southern Idaho and northeast Nevada: Utah Geological Association Publication 13, p. 45–63.
- Moore, W.J., and McKee, E.H., 1983, Phanerozoic magmatism and mineralization in the Tooele 1°×2° quadrangle, Utah, *in* Miller, D.M., Todd, V.R., and Howard, K.A., eds., Tectonic and

stratigraphic studies in the Eastern Great Basin: Geological Society of America Memoir 157, p. 183–190.

- Mueller, K.J., 1992, Tertiary basin development and exhumation of the northern East Humboldt–Wood Hills metamorphic complex, Elko County, Nevada: Laramie, University of Wyoming, Ph.D. dissertation, 250 p.
- Nutt, C.J., and Brooks, W.E., 1994, Geologic map of parts of the Tippett Canyon and Spring Creek Flat NW, Nevada, and Georgetta Ranch, Nevada-Utah, quadrangles, emphasizing Tertiary rocks and including chemical analyses: U.S. Geological Survey Open-File Report 94–632, scale 1:50,000.
- Potter, C.J., Dubiel, R.F., Snee, L.W., and Good, S.C., 1995, Eocene extension of early Eocene lacustrine strata in a complexly deformed Sevier-Laramide hinterland, northwest Utah and northeast Nevada: Geology, v. 23, p. 181–184.
- Sawyer, D.A., and Sargent, K.A., 1989, Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field: Journal of Geophysical Research, v. 94, p. 6021–6040.
- Sawyer, D.A., Sweetkind, D., Rye, R.O., Siems, D.F., Reynolds, R.L., Rosenbaum, J.G., Lipman, P.W., Boylan, J.A., Barton, P.B., Bethke, P.M., and Curtin, G.C., 1989, Potassium metasomatism in the Creede mining district, San Juan Volcanic Field, Colorado, *in* Continental magmatism abstracts, General Assembly, Santa Fe, New Mexico, June 25–July 1, 1989: New Mexico Bureau of Mines and Mineral Resources Bulletin 131, p. 234.
- Scott, R.B., 1965, The Tertiary geology and ignimbrite petrology of the Grant Range, east central Nevada: Houston, Texas, Rice University, Ph.D. dissertation, 116 p.
- Shawe, D.R., and Lepry, L.B., 1985, Analytical data for rock samples from the Round Mountain and Manhattan quadrangles, Nye County, Nevada: U.S. Geological Survey Open-File Report 85–538, 38 p.
- Sidder, G.B., 1994, PETRO.CALC.PLOT, Microsoft Excel macros to aid petrologic interpretation: Computers & Geosciences, v. 20, no. 6, p. 1041–1061.
- Steele, Grant, 1960, Pennsylvanian-Permian stratigraphy of east-central Nevada and adjacent Utah: Intermountain Association of Petroleum Geologists Annual Field Conference, 11th, Guidebook, p. 93–106.
- Taggart, J.E., Lindsay, J.R., Scott, B.A., Vivit, D.V., Bartel, A.J., and Stewart, K.C., 1987, Analysis of geologic materials by X-ray fluorescence spectrometry, *in* Baedecker, P.A., ed., Methods for geochemical analysis: U.S. Geological Survey Bulletin 1770, p. E1–E19.
- Thorman, C.H., and Brooks, W.E., 1991, The basal Tertiary unconformity in central Elko County, *in* Thorman, C.H., ed., Some current research in eastern Nevada and western Utah: U.S. Geological Survey Open-File Report 91–386, p. 9.
- Thorman, C.H., Brooks, W.E., Snee, L.W., Potter, C.J., Dubiel, R.J., and Ketner, K.B., 1993, Late Middle Eocene Nanny Creek calc-alkaline volcanic field, NE Nevada and NW Utah; age, extent and implications for Eocene tectonics: Geological Society of America Abstracts with Programs, v. 25, no. 5, p. 155.
- Wallace, A.R., 1993, Geologic map of the Snowstorm Mountains and vicinity, Elko and Humboldt Counties, Nevada: U.S.

Geological Survey Miscellaneous Investigations Map I-2394, scale 1:50,000.

- Wingate, F.W., 1983, Palynology and age of the Elko Formation (Eocene) near Elko, Nevada: Palynology, v. 7, p. 93–132.
- Zamudio, J.A., 1992, A synthesis of geologic mapping and remote sensing data analysis for the Dolly Varden Mountains and Currie Hills, Elko County, Nevada: Boulder, University of Colorado, Ph.D. dissertation, 181 p.

Published in the Central Region, Denver, Colorado Manuscript approved for publication June 21, 1995 Edited by Judith Stoeser Graphics by Gayle M. Dumonceaux and the author Photocomposition by Gayle M. Dumonceaux •

### Periodicals

Earthquakes & Volcanoes (issued bimonthly). Preliminary Determination of Epicenters (issued monthly).

### **Technical Books and Reports**

**Professional Papers** are mainly comprehensive scientific reports of wide and lasting interest and importance to professional scientists and engineers. Included are reports on the results of resource studies and of topographic, hydrologic, and geologic investigations. They also include collections of related papers addressing different aspects of a single scientific topic.

**Bulletins** contain significant data and interpretations that are of lasting scientific interest but are generally more limited in scope or geographic coverage than Professional Papers. They include the results of resource studies and of geologic and topographic investigations; as well as collections of short papers related to a specific topic.

Water-Supply Papers are comprehensive reports that present significant interpretive results of hydrologic investigations of wide interest to professional geologists, hydrologists, and engineers. The series covers investigations in all phases of hydrology, including hydrology, availability of water, quality of water, and use of water.

**Circulars** present administrative information or important scientific information of wide popular interest in a format designed for distribution at no cost to the public. Information is usually of short-term interest.

Water-Resources Investigations Reports are papers of an interpretive nature made available to the public outside the formal USGS publications series. Copies are reproduced on request unlike formal USGS publications, and they are also available for public inspection at depositories indicated in USGS catalogs.

**Open-File Reports** include unpublished manuscript reports, maps, and other material that are made available for public consultation at depositories. They are a nonpermanent form of publication that may be cited in other publications as sources of information.

### Maps

Geologic Quadrangle Maps are multicolor geologic maps on topographic bases in 7 1/2- or 15-minute quadrangle formats (scales mainly 1:24,000 or 1:62,500) showing bedrock, surficial, or engineering geology. Maps generally include brief texts; some maps include structure and columnar sections only.

Geophysical Investigations Maps are on topographic or planimetric bases at various scales, they show results of surveys using geophysical techniques, such as gravity, magnetic, seismic, or radioactivity, which reflect subsurface structures that are of economic or geologic significance. Many maps include correlations with the geology.

Miscellaneous Investigations Series Maps are on planimetric or topographic bases of regular and irregular areas at various scales; they present a wide variety of format and subject matter. The series also includes 7 1/2-minute quadrangle photogeologic maps on planimetric bases which show geology as interpreted from aerial photographs. The series also includes maps of Mars and the Moon. **Coal Investigations Maps** are geologic maps on topographic or planimetric bases at various scales showing bedrock or surficial geology, stratigraphy, and structural relations in certain coal-resource areas.

Oil and Gas Investigations Charts show stratigraphic information for certain oil and gas fields and other areas having petroleum potential.

Miscellaneous Field Studies Maps are multicolor or black-andwhite maps on topographic or planimetric bases on quadrangle or irregular areas at various scales. Pre-1971 maps show bedrock geology in relation to specific mining or mineral-deposit problems; post-1971 maps are primarily black-and-white maps on various subjects such as environmental studies or wilderness mineral investigations.

**Hydrologic Investigations Atlases** are multicolored or black-andwhite maps on topographic or planimetric bases presenting a wide range of geohydrologic data of both regular and irregular areas; the principal scale is 1:24,000, and regional studies are at 1:250,000 scale or smaller.

### Catalogs

Permanent catalogs, as well as some others, giving comprehensive listings of U.S. Geological Survey publications are available under the conditions indicated below from USGS Map Distribution, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225. (See latest Price and Availability List.)

"Publications of the Geological Survey, 1879-1961" may be purchased by mail and over the counter in paperback book form and as a set microfiche.

"Publications of the Geological Survey, 1962-1970" may be purchased by mail and over the counter in paperback book form and as a set of microfiche.

"Publications of the U.S. Geological Survey, 1971-1981" may be purchased by mail and over the counter in paperback book form (two volumes, publications listing and index) and as a set of microfiche.

**Supplements** for 1982, 1983, 1984, 1985, 1986, and for subsequent years since the last permanent catalog may be purchased by mail and over the counter in paperback book form.

State catalogs, "List of U.S. Geological Survey Geologic and Water-Supply Reports and Maps For (State)," may be purchased by mail and over the counter in paperback booklet form only.

"Price and Availability List of U.S. Geological Survey Publications," issued annually, is available free of charge in paperback booklet form only.

Selected copies of a monthly catalog "New Publications of the U.S. Geological Survey" is available free of charge by mail or may be obtained over the counter in paperback booklet form only. Those wishing a free subscription to the monthly catalog "New Publications of the U.S. Geological Survey" should write to the U.S. Geological Survey, 582 National Center, Reston, VA 22092.

Note.–Prices of Government publications listed in older catalogs, announcements, and publications may be incorrect. Therefore, the prices charged may differ from the prices in catalogs, announcements, and publications.

