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Batteries for Electrified Vehicles

2NN~
Electrified drive-train vehicles such as PHEVs and EVs withirange- .
extenders are believed to be near-term technologies thaﬁ‘aﬂ*e Ve

 displacing significant petroleum use in the transportation sectqr,v b oy
« diversifying energy sources for mobility NG 4

Advances in batteries are critical to realize green mobility technologies

DOE'’s Energy Storage System Performance Targets for PHEVs
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Batteries for Electrified Vehicles
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Advances in batteries are critical to realize green moblllty te nologies

DOE'’s Energy Storage System Performance Targets for PHEVs
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Multi-Scale Physics in Li-lon Battery

Requirements & Resolutions Performance
“Requirements” are usually defined o
in @ macroscale domain and terms Safety

Design of Transport at Design of Electron &
Electrode/Electrolyte |Heat Transport

Design of Materials Design of Electrode

Architecture

« Wide range of length and time scale physics
« Design improvements required at different scales
* Need for better understanding of interaction among different scale physics
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Multi-Physics Interaction
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Multi-Physics Interaction

[ iBs= Comparison of two 40 Ah [im . il
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Multi-Physics Interaction
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Electrode-Scale Performance Model

Charge Transfer Kinetics at Reaction Sites

Y =ai exp'_a“Fr; —exp —QCF;‘;
L RT RT

iy =k(c)™ (c . —c, )% (c, )% n=(4-6)-U

Species Conservation

b, _D, o [rg éc, * Pioneered by Newman group (Doyle, Fuller,
or ol o) o and Newman 1993)
%: v.(p7 we)+% m —% « Captures lithium diffusion dynamics and charge
t transfer kinetics
Charge Conservation « Predicts current/voltage response of a battery
V- (6Vo, - 5 =0 * Provides design guide for thermodynamics,

| kinetics, and transport across electrodes
V- (x7Ve )+ V. (xFVInc, )+ j% =0

Energy Conservation » Difficult to resolve heat and electron current

oT transport
pcpE:v.(kVT)Jrq ansport -

g = j”(vfs -4, —U+T2—(7J~]+"eﬁws V457V, Vg, + x5 Vinc, Vg,
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Integrated Model Resolving Different Scale Physics

To expand knowledge of the impacts of designs in different scales,
usages, and management on performance, life, and safety of battery
systems

Y
')
|

Li Transport & Electron Transport &

Charge Transfer Kinetics Heat Transport
Simply Work?

Extend model domain size up to cell scale to capture macroscopic design
features, while maintaining model resolution to capture Li diffusion dynamics
in electrode level scale ??? 2> huge computational complexity and cost
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Approach

Multi-Scale Multi-Dimensional (MSMD) Model

Simulation = Macro Grid + Micro Grid
Domain (Grid for Sub-grid Model)

v

Current Collector (Cu)

!

Li Transport & Electron Transport &
Charge Transfer Kinetics Heat Transport

« Captures macroscopic electron/heat transports, electrode scale Li
diffusion dynamics/charge transfer kinetics in separate domains

* Physically couple the solution variables defined in each domain using
multi-scale modeling schemes

* Runs in tolerable calculation time, practical for battery and system
engineering design
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Present Study

“Poorly designed electron and heat transport paths can cause excessive
spatial non-uniformity in battery physics, and then deteriorate the
performance and shorten the life of the battery.”

Lotern] - Poen
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Li Transport &
Charge Transfer Kinetics

Electron Transport &
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Fixed Microscopic Designs

Objectives

Demonstrate the impact of macroscopic design factors on battery ...
» Performance : B2 abs# 252 (Kim & Smith) — This talk

» Life: B2 abs# 255 (Smith & Kim)
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Nominal Design — 10C discharge for 30 sec

700

v’ Stacked prismatic design g“\«\
v 140 x 100 x 15 mm?3 form factor nb
v' Tabs on a same side .
v’ 20 Ah o
v' PHEV10 application ! E

o>
v" 10C constant current discharge v(t)
v soc,;= 90% sl N oo
v Surface and tab cooling a evaluated from volumetric
v h.=20 Wm2K 2 381 average of composition
v T, = 30°C af—
v T.,=30°C

3'20 5 1lo 1I5 2|o 2|5 30

t(s)
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Electrical Response — 10C Discharge

Current density field at metal collector foils Working potential between electrode planes
after 30 sec discharge at mid-plane after 30 sec discharge at mid-plane

Y(mm)
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Electrical Response — 10C Discharge

Current density field at metal collector foils Working potential between electrode planes
after 30 sec discharge at mid-plane after 30 sec discharge at mid-plane
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Thermal Response — 10C Discharge

Temperature Evolution at Mid-Plane
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Thermal Response — 10C Discharge

Temperatures after 30 sec discharge
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Electrochemical Response — 10C discharge
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Virtual Design Evaluation

Virtual o gé
20 7, " o o= ADVISOR 2003 ) — Vehicle Speed
Vehiclenl"ﬁe(rsiving Profile
Vehicle Simulator 00—

Multi-Scale _

Virtual Multi-Dimensional N0
Battery Design Li-ion Battery Model 0w W @ % e
A Battery Power Profile

A — Battery Responses
Feedback
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Alternative Cell Designs

Small Capacity SC

« 3x(140x 100 x 5) mm3

« Same tab design

« 3x6.67 Ah

« Same electrode area/stack layer
« 1/3 thickness

« ~ 3xsurface area

Nominal Design

Thin and Wide TW
e 200x140x 7.5 mm3

« Same tabs

« 20Ah

« 2Xx electrode area/stack layer
* 1/2 thickness

« ~2x surface area

g

e

e 140 x 100 x 15 mm3
« Tabsonasameside

* 20Ah Counter Tab CT
e 250x120 x 7 mm?3

« Wide-counter tab design

« 20Ah

« ~2X electrode area/stack layer
 ~1/2 thickness

« ~2x surface area
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Thermal Behavior Comparison

Battery Power Profile
mid-size sedan PHEV10 USO06 drive * 15-minute drive (CD + CS)

o + 50C,; = 90%
400 « Surface and tab cooling
200 ° hinf= 20 W/m2K
0 « T,.p=30°C
-200 * Tini = 30°C
-400
-600

T@) [C]
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Temperature Imbalance during CD Drive
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Temperature Imbalance during CS drive
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Ah Throughput Imbalance TWvs CT
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Summary

2 Nonuniform battery physics, which is more probable in large-format
cells, can cause unexpected performance and life degradations in
lithium-ion batteries.

23 A Multi-Scale Multi-Dimensional model was used for evaluating
large format prismatic automotive cell designs by integrating micro-
scale electrochemical process and macro-scale transports.

£2 Thin form factor prismatic cell with wide counter tab design would
be preferable to manage cell internal heat and electron current
transport, and consequently to achieve uniform electrochemical
Kinetics over a system.

2 Engineering questions to be addressed in further discussion include ...

What is the optimum form-factor and size of a cell?

Where are good locations for tabs or current collectors?

How different are externally proved temperature and electric signals from non-
measurable cell internal values?

Where is the effective place for cooling? What should the heat-rejection rate be?
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