

Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model

Gi-Heon Kim and Kandler Smith National Renewable Energy Laboratory Golden, Colorado

NREL/PR-540-46076

This research activity is funded by the U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Batteries for Electrified Vehicles

Electrified drive-train vehicles such as PHEVs and EVs with rangeextenders are believed to be near-term technologies that are

- displacing significant petroleum use in the transportation sector
- diversifying energy sources for mobility

Advances in batteries are critical to realize green mobility technologies

DOE's Energy Storage System Performance Targets for PHEVs

	(January 2007).					
Characteristics at EOL (End-of-Life)	Unit	Minimum PHEV Battery	Maximum PHEV Battery			
Reference Equivalent Electric Range	miles	10	40			
Peak Discharge Pulse Power (2 sec /10 sec) ¹	kW	50/45	46/38			
Peak Regen Pulse Power (10 sec)	kW	30	25			
Max. Current (10 sec pulse)	Α	300	300			
Available Energy for CD (Charge- Depleting) Mode, 10-kW Rate	kWh	3.4	11.6			
Available Energy for CS (Charge- Sustaining) Mode, 10-kW Rate 2	kWh	0.5	0.3			
Minimum Round-trip Energy Efficiency (CS 50 Wh profile)	%	90	90			
Cold cranking power at -30°C, 2 sec, 3 Pulses	kW	7	7			
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58			
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000			
Calendar Life, 35°C	year	15	15			
Maximum System Weight	kg	60	120			
Maximum System Volume	Liter	-40	80			
Maximum Operating Voltage	Vdc	400	400			
Minimum Operating Voltage	Vdc	>0.55 x Vmax 3	>0.55 x Vmax 3			
Maximum Self-discharge	Wh/day	50	50			
Maximum System Recharge Rate at 30°C	kW	1.4 (120V/15A) 4	L4 (120V/15A)4			
Unassisted Operating & Charging Temperature Range 52°C > 100% Available Power 0°C >50% Available Power -10°C >50% Available Power -30°C >10% Available Power	°C	-30 to +52	-30 to +52			
Survival Temperature Range	°C	-46 to +66	-46 to +66			
Maximum System Production Price @ 100k units/vr	s	\$1,700	\$3,400			

Table 1. Energy Storage System Performance Targets for Plug-In Hybrid Electric Vehicles

Batteries for Electrified Vehicles

Electrified drive-train vehicles such as PHEVs and EVs with rangeextenders are believed to be near-term technologies that are

- displacing significant petroleum use in the transportation sector
- diversifying energy sources for mobility

Advances in batteries are critical to realize green mobility technologies

Characteristics at EOL (End-of-Life)	Unit	Minimum PHEV Battery	Maximum PHEV Battery	
Reference Equivalent Electric Range	miles	10	40	
Peak Regen Pulse Power (10 see Max. Current (10 see pulse)	c) kW 30 A 300	25 300		
Available Energy for CD (Charge- Depleting) Mode, 10-kW Rate	kWh	3.4	11.6	Porform
(CS 50 Wh profile) Cold cranking power at -30°C, 7	2 sec, 3 KW7	7		Periori
Maximum System Weight	kg	60	120	Life
Maximum System Volume	Liter	40	80	Cost
Maximum System Volume Maximum Operating Voltage	Liter 40 Vdc 400	80 400		Safaty
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58	Salety
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000	
Calendar Life, 35°C	year	15	15	
-10°C >30% Available P -30°C >10% Available P -30°C >10% Available P	ower ower			
Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400	

DOE's Energy Storage System Performance Targets for PHEVs

Multi-Scale Physics in Li-Ion Battery

- Wide range of length and time scale physics
- Design improvements required at different scales
- Need for better understanding of interaction among different scale physics

Multi-Physics Interaction

Multi-Physics Interaction

Multi-Physics Interaction

Electrode-Scale Performance Model

Charge Transfer Kinetics at Reaction Sites

$$j^{Li} = a_{s}i_{o} \left\{ \exp\left[\frac{\alpha_{a}F}{RT}\eta\right] - \exp\left[-\frac{\alpha_{c}F}{RT}\eta\right] \right\}$$

$$i_{0} = k(c_{e})^{\alpha_{a}}(c_{s,\max} - c_{s,e})^{\alpha_{a}}(c_{s,e})^{\alpha_{c}} \quad \eta = (\phi_{s} - \phi_{e}) - U$$

Species Conservation

$$\begin{split} & \frac{\partial c_s}{\partial t} = \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right) \\ & \frac{\partial (\varepsilon_e c_e)}{\partial t} = \nabla \cdot \left(D_e^{\text{eff}} \nabla c_e \right) + \frac{1 - t_+^{\circ}}{F} j^{\text{Li}} - \frac{\mathbf{i}_e \cdot \nabla t_+^{\circ}}{F} \end{split}$$

$$\begin{split} & Charge\ Conservation \\ & \nabla \cdot \left(\sigma^{e\!f\!f} \nabla \phi_{s} \right) - j^{\text{Li}} = 0 \\ & \nabla \cdot \left(\kappa^{e\!f\!f} \nabla \phi_{e} \right) + \nabla \cdot \left(\kappa^{e\!f\!f}_{D} \nabla \ln c_{e} \right) + j^{\text{Li}} = 0 \end{split}$$

Energy Conservation $\rho c_{p} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q'''$ $q''' = j^{Li} \left(\phi_{s} - \phi_{e} - U + T \frac{\partial U}{\partial T} \right) + \sigma^{eff} \nabla \phi_{s} \cdot \nabla \phi_{s} + \kappa^{eff} \nabla \phi_{e} \cdot \nabla \phi_{e} + \kappa^{eff}_{D} \nabla \ln c_{e} \cdot \nabla \phi_{e}$

- Pioneered by Newman group (*Doyle, Fuller, and Newman 1993*)
- Captures lithium diffusion dynamics and charge transfer kinetics
- Predicts *current/voltage response* of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve *heat* and *electron current* transport

Integrated Model Resolving Different Scale Physics

To expand knowledge of the impacts of *designs in different scales*, usages, and management on performance, life, and safety of battery systems

Charge Transfer Kinetics

Electron Transport & Heat Transport

Simply Work?

Extend model domain size up to cell scale to capture macroscopic design features, while maintaining model resolution to capture Li diffusion dynamics in electrode level scale ??? \rightarrow huge computational complexity and cost

Approach

Multi-Scale Multi-Dimensional (MSMD) Model

- Captures macroscopic electron/heat transports, electrode scale Li
 diffusion dynamics/charge transfer kinetics in separate domains
- Physically couple the solution variables defined in each domain using multi-scale modeling schemes
- Runs in tolerable calculation time, practical for battery and system engineering design

Present Study

"Poorly designed electron and heat transport paths can cause excessive spatial non-uniformity in battery physics, and then <u>deteriorate the performance and shorten the life of the battery."</u>

Objectives

Demonstrate the impact of macroscopic design factors on battery ...

- Performance : B2 abs# 252 (Kim & Smith) → This talk
- Life: *B2 abs# 255* (Smith & Kim)

Nominal Design – 10C discharge for 30 sec

Electrical Response – 10C Discharge

Current density field at metal collector foils after 30 sec discharge at mid-plane

Working potential between electrode planes after 30 sec discharge at mid-plane

Electrical Response – 10C Discharge

Current density field at metal collector foils after 30 sec discharge at mid-plane

Working potential between electrode planes after 30 sec discharge at mid-plane

Thermal Response – 10C Discharge

Temperature Evolution at Mid-Plane

Thermal Response – 10C Discharge

Electrochemical Response – 10C discharge

Virtual Design Evaluation

Alternative Cell Designs

Thermal Behavior Comparison

Temperature Imbalance during CD Drive

Temperature Imbalance during CS drive

Ah Throughput Imbalance TW vs CT

120

C7

Summary

Nonuniform battery physics, which is more probable in large-format cells, can cause unexpected performance and life degradations in lithium-ion batteries.

A Multi-Scale Multi-Dimensional model was used for evaluating large format prismatic automotive cell designs by integrating micro-scale electrochemical process and macro-scale transports.
 Thin form factor prismatic cell with wide counter tab design would be preferable to manage cell internal heat and electron current transport, and consequently to achieve uniform electrochemical kinetics over a system.

Engineering questions to be addressed in *further discussion* include ... What is the optimum form-factor and size of a cell? Where are good locations for tabs or current collectors? How different are externally proved temperature and electric signals from nonmeasurable cell internal values? Where is the effective place for cooling? What should the heat-rejection rate be?

Vehicle Technology Program at DOE

Dave Howell

NREL Energy Storage Task

• Ahmad Pesaran

