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Electrified drive-train vehicles such as PHEVs and EVs with range-
extenders are believed to be near-term technologies that are 
• displacing significant petroleum use in the transportation sector
• diversifying energy sources for mobility 

Advances in batteries are critical to realize green mobility technologies

DOE’s Energy Storage System Performance Targets for PHEVs
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“Requirements” are usually defined 
in a macroscale domain and terms

Performance
Life
Cost
Safety

Requirements & Resolutions 

Multi-Scale Physics in Li-Ion Battery

• Wide range of length and time scale physics 
• Design improvements required at different scales
• Need for better understanding of interaction among different scale physics
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Multi-Physics Interaction
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Comparison of two 40 Ah 
flat cell designs

This cell is cycled 
more uniformly, can 
therefore use less 
active material ($) 
and has longer life.
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Charge Conservation

r

( ) Ues −−= φφη

Electrode-Scale Performance Model

( ) qTk
t
Tcp ′′′+∇⋅∇=
∂
∂ρ

• Pioneered by Newman group (Doyle, Fuller, 
and Newman 1993)

• Captures lithium diffusion dynamics and charge 
transfer kinetics 

• Predicts current/voltage response of a battery
• Provides design guide for thermodynamics, 

kinetics, and transport across electrodes
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Charge Transfer Kinetics at Reaction Sites

Species Conservation

Energy Conservation • Difficult to resolve heat and electron current 
transport
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Integrated Model Resolving Different Scale Physics
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Li Transport &
Charge Transfer Kinetics

Electron Transport &
Heat Transport

To expand knowledge of the impacts of designs in different scales, 
usages, and management on performance, life, and safety of battery 
systems

Simply Work?
Extend model domain size up to cell scale to capture macroscopic design 
features, while maintaining model resolution to capture Li diffusion dynamics 
in electrode level scale ???  huge computational complexity and cost
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Approach
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Multi-Scale Multi-Dimensional (MSMD) Model

C
ur

re
nt

 C
ol

le
ct

or
 (C

u)

C
ur

re
nt

 C
ol

le
ct

or
 (A

l)

N
eg

at
iv

e
E

le
ct

ro
de

S
ep

ar
at

or

P
os

iti
ve

E
le

ct
ro

de

Simulation
Domain

X

R

x

= Macro Grid Micro Grid
(Grid for Sub-grid Model)

+

• Captures macroscopic electron/heat transports, electrode scale Li 
diffusion dynamics/charge transfer kinetics in separate domains

• Physically couple the solution variables defined in each domain using 
multi-scale modeling schemes

• Runs in tolerable calculation time, practical for battery and system 
engineering design



Present Study
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“Poorly designed electron and heat transport paths can cause excessive 
spatial non-uniformity in battery physics, and then deteriorate the 
performance and shorten the life of the battery.” 

Fixed Microscopic Designs Macroscopic Features as Design Variables

Objectives
Demonstrate the impact of macroscopic design factors on battery …
• Performance : B2 abs# 252 (Kim & Smith)   This talk
• Life:                 B2 abs# 255  (Smith & Kim)



Nominal Design – 10C discharge for 30 sec
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15 m
m

 Stacked prismatic design
 140 x 100 x 15 mm3 form factor
 Tabs on a same side
 20 Ah
 PHEV10 application

 10C constant current discharge
 socini = 90%
 Surface and tab cooling
 hinf = 20 W/m2K
 Tamb = 30oC
 Tini = 30oC
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Electrical Response – 10C Discharge

Current density field at metal collector foils 
after 30 sec discharge at mid-plane
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Electrical Response – 10C Discharge

Current density field at metal collector foils 
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Thermal Response – 10C Discharge
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Thermal Response – 10C Discharge

Temperatures after 30 sec discharge
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Electrochemical Response – 10C discharge
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Virtual 
Battery Design

Vehicle Simulator
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Virtual Design Evaluation



Alternative Cell Designs
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Nominal Design

• 140 x 100 x 15 mm3

• Tabs on a same side
• 20 Ah

Small Capacity

Thin and Wide

Counter Tab

• 3 x (140 x 100 x 5) mm3

• Same tab design
• 3 x 6.67 Ah
• Same electrode area/stack layer
• 1/3 thickness
• ~ 3x surface area

• 200 x 140 x 7.5 mm3

• Same tabs
• 20 Ah
• 2x electrode area/stack layer
• 1/2 thickness
• ~ 2x surface area

• 250 x 120 x 7 mm3

• Wide-counter tab design
• 20 Ah
• ~2x electrode area/stack layer
• ~1/2 thickness
• ~2x surface area

SC

TW

CT



Thermal Behavior Comparison
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mid-size sedan PHEV10 US06 drive



Temperature Imbalance during CD Drive
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Summary

Nonuniform battery physics, which is more probable in large-format 
cells, can cause unexpected performance and life degradations in 
lithium-ion batteries. 

A Multi-Scale Multi-Dimensional model was used for evaluating 
large format prismatic automotive cell designs by integrating micro-
scale electrochemical process and macro-scale transports.

Thin form factor prismatic cell with wide counter tab design would 
be preferable to manage cell internal heat and electron current 
transport, and consequently to achieve uniform electrochemical 
kinetics over a system. 

Engineering questions to be addressed in further discussion include …
What is the optimum form-factor and size of a cell?
Where are good locations for tabs or current collectors?
How different are externally proved temperature and electric signals from non-
measurable cell internal values? 
Where is the effective place for cooling? What should the heat-rejection rate be?
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