

Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

J. Roadman and A. Huskey National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Technical Report NREL/TP-5000-58565 July 2013

Contract No. DE-AC36-08GO28308

Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

J. Roadman and A. Huskey National Renewable Energy Laboratory

Prepared under Task No. WE11.0206

	NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC.
	This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 • www.nrel.gov	Technical Report NREL/TP-5000-58565 July 2013
	Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/help/ordermethods.aspx</u>

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721.

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Acoustic Noise Test Report

for the

Viryd CS8 Wind Turbine

at the

National Wind Technology Center

in Boulder, CO

Conducted for

National Renewable Energy Laboratory

15013 Denver West Parkway

Golden, Colorado 80401

Conducted by

National Wind Technology Center

National Renewable Energy Laboratory

15013 Denver West Parkway

Golden, Colorado 80401

Jason Roadman

Arlinda Huskey

19 March 2013

Viryd IEC Acoustic Noise Report 130319

Notice

This report was prepared by the National Renewable Energy Laboratory (NREL), operated for the United States Department of Energy (DOE) by the Alliance for Sustainable Energy, LLC (Alliance), as an account of work sponsored by the United States government. The test results documented in this report define the characteristics of the test article as configured and under the conditions tested.

THIS REPORT IS PROVIDED "AS IS" AND NEITHER THE GOVERNMENT, ALLIANCE, NREL NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY SUCH INFORMATION DISCLOSED IN THE REPORT, OR OF ANY APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Neither Alliance nor the U. S. Government shall be liable for special, consequential or incidental damages. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof or Alliance.

NREL is a DOE Laboratory, and as an adjunct of the United States government, cannot certify wind turbines. The information in this report is limited to NREL's knowledge and understanding as of this date.

NREL is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with the NREL's terms of accreditation unless stated otherwise in the report.

This report shall not be reproduced, except in full, without the written approval of Alliance or successor operator of NREL.

Approval By:	26 APR 2013
Jason Roadman, NREL Test Engineer	Date
Review By: Arlinda Huskey, NREL Test Engineer	26 Apr 2013 Date

Viryd IEC Acoustic Noise Report 130319

Page 5 of 51

Table of Contents

List of Tables	6
List of Figures	6
1 Background	8
2 Test Summary	
3 Test Turbine Configuration	9
4 Test Site Description	
5 Test Equipment	13
5.1 Equipment Descriptions	13
5.2 Instrument Locations	13
6 Results	
6.1 Test Conditions	14
6.2 Standardized Wind Speed Calculation	14
6.3 Apparent Sound Power Level	15
6.4 One-Third Octave Analysis	17
6.5 Tonality	19
6.6 Uncertainty	35
7 Exceptions	
7.1 Exceptions to the Standard	36
7.2 Exceptions to the Quality Assurance System	36
References	
Appendix A. Pictures	
Appendix B. Calibration Sheets	41

List of Tables

Table 1. Test Results Summary	8
Table 2. Viryd Wind Turbine General Data	
Table 3. Measured Blade Pitch Angle Relative to the Hub Plate	
Table 4. Sources of Noise Near the Turbine	12
Table 5. Equipment List for Acoustic Test	
Table 6. Reference Microphone Positions for the Turbine and Background Measurements	
Collected on 05 December 2012	14
Table 7. Test Parameters Used in Calculations	14
Table 8. Sound Pressure and Power Levels for Standardized Integer Wind Speeds (5 m/s Thro	ugh
12 m/s)	16
Table 9. One-Third Octave Analysis for Wind Speed Bins 5 Through 8 m/s	17
Table 10. One-Third Octave Analysis for Wind Speed Bins 9 Through 12 m/s	18
Table 11. Tonality Results (In dBA)	20
Table 12. Tonality Results (In dBA)	
Table 13. Tonality Results (In dBA)	21
Table 14. Tonality Results (In dBA)	21
Table 15. Type B Uncertainty Components for Sound Power Levels and Tonality	35

List of Figures

Viryd IEC Acoustic Noise Report 130319

Figure 5. One-third octave levels	19
Figure 6. Classification of spectral lines for the 1,032 Hz tone (typical in the 5 m/s bin)	
Figure 7. Classification of spectral lines for the 1,293 Hz tone (typical in the 5 m/s bin)	
Figure 8. Classification of spectral lines for the 1,041 Hz tone (typical in the 6 m/s bin)	
Figure 9. Classification of spectral lines for the 1,311 Hz tone (typical in the 6 m/s bin)	
Figure 10. Classification of spectral lines for the 1,047 Hz tone (typical in the 7 m/s bin)	
Figure 11. Classification of spectral lines for the 1,173 Hz tone (typical in the 7 m/s bin)	
Figure 12. Classification of spectral lines for the 1,311 Hz tone (typical in the 7 m/s bin)	
Figure 12. Classification of spectral lines for the 1,047 Hz tone (typical in the 8 m/s bin)	
Figure 14. Classification of spectral lines for the 1,170 Hz tone (typical in the 8 m/s bin)	
Figure 15. Classification of spectral lines for the 1,326 Hz tone (typical in the 8 m/s bin)	
Figure 16. Classification of spectral lines for the 246 Hz tone (typical in the 9 m/s bin)	
Figure 17. Classification of spectral lines for the 1,047 Hz tone (typical in the 9 m/s bin)	
Figure 18. Classification of spectral lines for the 1,173 Hz tone (typical in the 9 m/s bin)	
Figure 19. Classification of spectral lines for the 1,338 Hz tone (typical in the 9 m/s bin)	
Figure 20. Classification of spectral lines for the 246 Hz tone (typical in the 10 m/s bin)	
Figure 21. Classification of spectral lines for the 1,050 Hz tone (typical in the 10 m/s bin)	
Figure 22. Classification of spectral lines for the 1,170 Hz tone (typical in the 10 m/s bin)	
Figure 23. Classification of spectral lines for the 1,329 Hz tone (typical in the 10 m/s bin)	
Figure 24. Classification of spectral lines for the 1,053 Hz tone (typical in the 11 m/s bin)	
Figure 25. Classification of spectral lines for the 1,173 Hz tone (typical in the 11 m/s bin)	
Figure 26. Classification of spectral lines for the 1,341 Hz tone (typical in the 11 m/s bin)	
Figure 27. Classification of spectral lines for the 3,174 Hz tone (typical in the 11 m/s bin)	
Figure 28. Classification of spectral lines for the 1,044 Hz tone (typical in the 12 m/s bin)	33
Figure 29. Classification of spectral lines for the 1,173 Hz tone (typical in the 12 m/s bin)	33
Figure 30. Classification of spectral lines for the 1,326 Hz tone (typical in the 12 m/s bin)	
Figure A1. The sound board during the test	38
Figure A2. Test turbine, as viewed from the reference microphone position	39
Figure A3. Test turbine, as viewed from the meteorological mast	40
Figure B1. Calibration sheet for the microphone 2406812	41
Figure B2. Calibration sheet for the sound level meter	42
Figure B3. Calibration sheet for the acoustic calibrator	43
Figure B4. Calibration sheet for the primary anemometer	
Figure B5. Page 1 of the power transducer calibration sheet	45
Figure B6. Calibration sheet for the pressure transducer	46
Figure B7. Calibration sheet for the temperature sensor	47
Figure B8. Calibration sheet for the wind vane	
Figure B9. Calibration sheet for the 9205 signal conditioning module 14DA726	49
Figure B10. Calibration sheet for the 9217 signal conditioning module 12BFEE2	
Figure B11. Calibration sheet for the 9229 signal conditioning module 12A2037	

1 Background

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) as a part of the Small Wind Turbine Independent Testing project. Acoustic noise testing is one of up to five tests that may be performed on the turbines. Other tests include duration, safety and function, power performance, and power quality. Viryd Technologies, Inc. of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.

The primary goal of this test was to characterize the acoustic emissions of the Viryd CS8 wind turbine in accordance with the International Electrotechnical Commission's (IEC) standard, *Wind Turbine Generator Systems - Part 11: Acoustic Noise Measurement Techniques*, IEC 61400-11, Edition 2.1, 2006-11; hereafter referred to as the "Standard." This test report documents the measurement techniques, turbine configuration, test site, test equipment, and results for the following quantities at integer wind speeds from 5 to 12 m/s:

- Apparent sound power level
- One-third octave band levels
- Tonality.

Engineers at the NWTC conducted this test in accordance with its quality system procedures to ensure that this final test report meets the full requirements accreditation by A2LA. NREL's quality system requires that the test meet all applicable requirements specified by A2LA and ISO/IEC 17025 (or to note any exceptions in the test report).

2 Test Summary

The turbine was tested in accordance with the Standard. Turbine acoustic emissions and meteorological data were collected on 05 December 2012. Standardized wind speed (at 10 meters) was derived from wind speed measured at hub height (24.9 m). Table 1 gives a summary of the test results.

Standardized wind speed at 10 m height, Vs [m/s]	5	6	7	8	9	10	11	12
Electrical power output calculated from power curve	0.0	0.4	1.8	3.3	4.8	5.8	6.5	6.3
Measured pitch angle [°]	Fixed							
Apparent sound power level [dBA]	89.8	90.0	91.5	93.3	94.2	94.5	94.8	95.6
Combined uncertainty in the sound power level, U _c	1.0	1.2	1.5	1.2	1.1	1.0	0.9	1.0
Frequency of the most prevalent tone [Hz]	1,03	1,04	1,04	1,04	1,04	1,05	1,05	1,04
Tonality, ΔL_k [dBA]	0.62	3.41	5.86	7.00	6.78	6.69	5.80	5.63
Tonal audibility, $\Delta L_{a,k}$ [dBA]	3.46	6.26	8.72	9.87	9.64	9.55	8.67	8.49

Table 1. Test Results Summary

Viryd IEC Acoustic Noise Report 130319

3 Test Turbine Configuration

Table 2 lists the configuration of the Viryd turbine that was tested at the NWTC. During commissioning, small shims were inserted between the hub plate and the blade root, thereby pitching the leading edge of the blades into the wind. The pitch angle of each blade with respect to the hub plate is fixed. It was measured and is given in Table 3.

	Viryd Technologies, Inc.
Turbine manufacturer and address	9701 Metric Blvd, Suite 200
	Austin, TX 78758
Model	Viryd CS8
Rated power (kW)	8
Rated wind speed (m/s)	10
Serial number	CS008100X
Blade make, type, serial number	Viryd proprietary design,
	011247-029, 011247-030, 011247-031
Generator make, type, serial number	Marathon, AC induction, I217,
	215TBFW7027DD L
Gearbox make, type, serial number	Boston Gear, 662B-16L-VIR, Helical Gear,
	594189
Control software	Proprietary – PCB
Wind turbine type	Horizontal axis, Upwind
Tower type	Guyed Lattice
Number of blades	3
Hub height (m)	25.0*
Rotor diameter (m)	8.5*
Horizontal distance from rotor center to tower axis (m)	0.66 m
Speed control	Passive stall
Constant or variable speed	Constant
Rotational speed at standardized integer wind speed	119-122
from 6 to 10 m/s (rpm)	
Pitch angle at standardized integer wind speeds from 6	Fixed, see Table 3
to 10 m/s	
Rotor control devices	none

Table 2. Viryd Wind Turbine General Data

*Measurements verified the rotor diameter and hub height.

Table 3. Measured Blade Pitch Angle Relative to the Hub Plate

Blade	Pitch Angle		
1	1.4°		
2	1.1°		
3	1.4°		

Figure 1. Viryd CS8 test turbine at the NWTC (Photo by Mark Murphy, NREL 22258)

Page **10** of **51**

4 Test Site Description

The Viryd CS8 wind turbine is located at test site 3.3 of the NWTC, approximately 8 km south of Boulder, Colorado. The site consists of mostly flat terrain with short vegetation (see Appendix A for photos) and has prevailing winds bearing 292° relative to true north. Figure 2 shows the turbine and meteorological tower locations, as well as nearby obstructions. NREL limited assessments of power and energy production to data obtained when winds were within the measurement sector of 211° to 38°. In this measurement sector, the influence of terrain and obstructions on the anemometer is small and meets the requirements in accordance with IEC 61400-12-1 without conducting a site calibration test.

Table 4 lists the nearby turbines and whether or not they were operating during data collection.

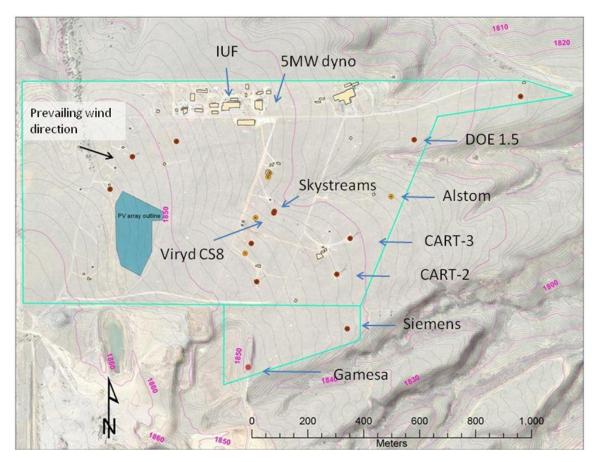


Figure 2. Map of the test site

Source	Location	Shutdown for Noise Test
DOE 1.5	4.0	Yes
Alstom ECO100 3.0 MW	4.1	Yes
CART-3	4.3	Yes
CART-2	4.3	Yes
Siemens 2.3MW	4.4	Yes
Southwest Windpower	3.2	Yes
Skystream (two turbines)		
NW100	1.2	No
Test shed heating, ventilating, and air conditioning (HVACs)	3.1, 3.2, 3.3	Yes
Building A60 Hydraulics	Industrial User Facility	Yes
Southwest Windpower Whisper (two turbines)	1E.2	No

Table 4. Sources of Noise Near the Turbine

5 Test Equipment

5.1 Equipment Descriptions

Table 5 shows the list of equipment used for the test. All instruments meet the requirements defined by the Standard.

Instrument	Manufacturer	Model Number	Serial	Calibration
			Number	Due Date
Digital recorder and	Delta Acoustics	NoiseLab	1283B54	19 Dec 2013
signal analyzer				
Microphone	Bruel & Kjaer	4189	2406812	18 Dec 2013
Preamplifier	Bruel & Kjaer	2671	2373722	18 Dec 2013
Calibrator	Bruel & Kjaer	4231	2388951	19 Dec 2012
Anemometer	Thies	First Class	0609006	17 Sep 2013
Wind vane	Met One	020C	W5515	17 Sep 2013
Pressure sensor	Vaisala	PTB101B	C10400014	13 Feb 2013
Temperature sensor	Met One	T200A	0603-1	17 Sep 2013
Power transducer	Secondwind	Phaser-5-485-	01091	15 Sep 2013
		4A20		
Data acquisition	National	CompactDAQw		
	Instruments	/LabView		
		cDAQ-9172	0x1339A69	NA
		NI 9229	011333703	
		INI 9229	12A2037	27 Jun 2013
		NI 9217		
			12BFEE2	27 June 2013
		NI 9205	4404706	
			14DA726	27 June 2013

Table 5. Equipment List for Acoustic Test

5.2 Instrument Locations

The primary anemometer on the meteorological tower was used to derive the standardized wind speed. This tower was located 22.9 meters (m) from the test turbine, at a bearing of 283° true, with the top-mounted anemometer at a height of 24.9 m. The wind vane was mounted at a height of 23.0 m on the meteorological tower on a cross boom that was approximately perpendicular to the predominant wind direction. The turbine was 2.9 rotor diameters from the meteorological tower, within the range of 2 and 4 rotor diameters specified in the Standard.

Table 6 provides the location of the microphone for the measurement sessions.

Viryd IEC Acoustic Noise Report 130319

Recording	Distance Turbine [m]	Slant Distance [m]	Position Relative to Turbine [deg true]
Recording 1–7	29.2	39.0	115
Recording 8	29.2	39.0	95

Table 6. Reference Microphone Positions for the Turbine and Background Measurements Collected on 05 December 2012

6 Results

6.1 Test Conditions

The analysis was done using the measured wind speed and 10-second averages of the data. NREL engineers have found that using 10-second averages instead of 1-minute averages better characterizes the dynamic nature of small turbines. The range of standardized wind speeds and wind directions used for the analysis were 3.3 to 15.1 m/s and 260 to 310 degrees, respectively. The range of temperature and pressure were 12.7°C to 18.8°C and 80.7 kPa to 80.9 kPa, respectively.

6.2 Standardized Wind Speed Calculation

Standardized wind speed, V_s, was calculated according to Equation 1 and the values in Table 7, where V_z is the measured wind speed.

$$V_{s} = V_{z} \left[\frac{\ln\left(\frac{z_{ref}}{z_{0ref}}\right) \ln\left(\frac{H}{z_{0}}\right)}{\ln\left(\frac{H}{z_{0ref}}\right) \ln\left(\frac{z}{z_{0}}\right)} \right]$$
(1)

)

Parameter	Name	Value
Hub height, (m)	Н	25.0
Roughness length, (m)	Zo	0.05
Anemometer height, (m)	Z	24.9
Reference roughness length, (m)	Zoref	0.05
Reference height, (m)	Z _{ref}	10.00

Table 7. Test Parameters	Used in Calculations
--------------------------	----------------------

6.3 Apparent Sound Power Level

Sound pressure levels were binned by wind speed. Sound pressure levels at integer wind speed values were calculated using interpolation between bin averages and extrapolation at the ends. The sound pressure levels were then background corrected according to the Standard. Figure 3 shows the scatter plot of the sound pressure levels of the validated total (operating plus background) and background noise along with the binned sound pressure levels. The measured and background corrected apparent sound pressure level at standardized wind speeds of 5 through 12 m/s are shown in Table 8 along with the calculated sound power levels. Figure 4 shows sound power levels graphed against standardized wind speed.

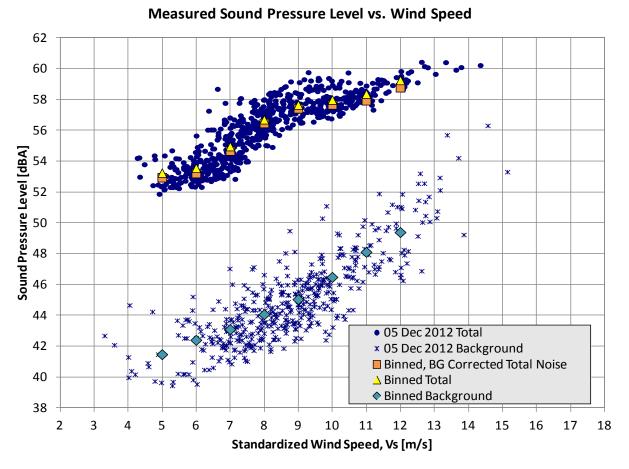


Figure 3. Measured and binned sound pressure levels as a function of the standardized wind speed

Viryd IEC Acoustic Noise Report 130319

Page 15 of 51

Wind Speed Bin [m/s]	Total Sound Pressure Level [dBA)]	Background Sound Pressure Level [dBA]	Background Corrected Sound Pressure Level [dBA]	Sound Power Level [dBA]	Type A Uncert. [dBA]	Type B Uncert. [dBA]	Combined Uncert. [dBA]
5	53.3	41.5	53.0	89.8	0.7	0.7	1.0
6	53.6	42.4	53.2	90.0	0.9	0.7	1.2
7	55.0	43.1	54.7	91.5	1.3	0.7	1.5
8	56.7	44.1	56.5	93.3	0.9	0.7	1.2
9	57.7	45.1	57.4	94.2	0.8	0.7	1.1
10	58.0	46.5	57.7	94.5	0.8	0.7	1.0
11	58.4	48.1	58.0	94.8	0.6	0.7	0.9
12	59.3	49.4	58.8	95.6	0.6	0.8	1.0

Table 8. Sound Pressure and Power Levels for Standardized Integer Wind Speeds(5 m/s Through 12 m/s)

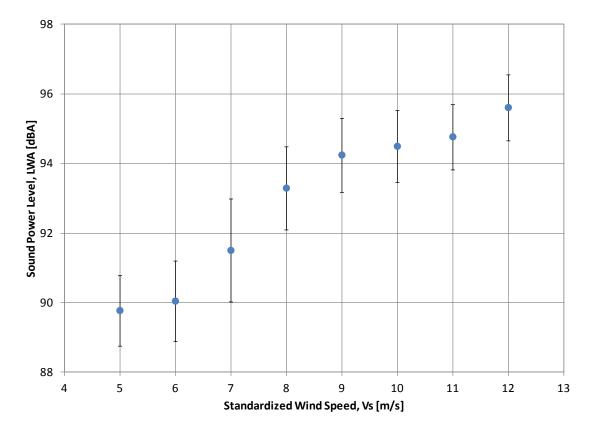


Figure 4. Sound power levels as a function of the standardized wind speed

Page 16 of 51

6.4 One-Third Octave Analysis

One-third octave levels were analyzed at standardized wind speeds of 5 through 12 m/s. The results (with uncertainty) are provided in Table 9, Table 10, and Figure 5.

Center	5 m/s One-	6 m/s One-	7 m/s One-	8 m/s One-
Frequency	Third Octave	Third Octave	Third Octave	Third Octave
	Levels	Levels	Levels	Levels
[Hz]	[dBA]	[dBA]	[dBA]	
50	NR	NR	NR	NR
63	NR	NR	NR	NR
80	26.7* ± 2.0	26.4* ± 2.0	NR	26.6* ± 2.0
100	29.0* ± 2.0	30.4* ± 2.0	31.4* ± 2.0	32.6* ± 2.0
125	37.4 ± 1.9	39.8 ± 1.9	42.0 ± 1.8	43.4 ± 1.8
160	33.5* ± 2.0	33.3* ± 2.0	32.9* ± 2.0	34.4* ± 2.0
200	40.0 ± 1.9	39.7 ± 1.9	39.0* ± 2.0	38.9* ± 2.0
250	41.5 ± 1.8	41.6 ± 1.8	42.3 ± 1.8	43.9 ± 1.8
315	37.6 ± 1.9	36.6 ± 1.9	36.7* ± 2.0	39.0 ± 2.0
400	41.4 ± 1.9	39.4 ± 1.9	39.1 ± 1.9	40.8 ± 1.9
500	42.1 ± 2.0	39.1 ± 1.8	39.4 ± 1.8	41.6 ± 1.9
630	41.3 ± 1.8	40.4 ± 1.8	41.4 ± 1.8	43.2 ± 1.8
800	40.6 ± 1.8	40.5 ± 1.8	41.2 ± 1.8	42.3 ± 1.8
1,000	45.6 ± 1.8	48.3 ± 1.9	51.6 ± 1.9	53.9 ± 1.8
1,250	44.0 ± 1.8	44.6 ± 1.8	45.3 ± 1.8	46.9 ± 1.8
1,600	40.9 ± 1.8	40.1 ± 1.8	38.7 ± 1.8	38.8 ± 1.8
2,000	40.1 ± 1.8	39.0 ± 1.8	37.5 ± 1.8	37.5 ± 1.8
2,500	39.1 ± 1.8	38.5 ± 1.8	37.9 ± 1.8	37.8 ± 1.8
3,150	37.6 ± 1.8	37.5 ± 1.8	37.3 ± 1.8	37.4 ± 1.8
4,000	34.9 ± 1.8	34.4 ± 1.8	34.0 ± 1.8	33.6 ± 1.8
5,000	27.6* ± 2.0	27.1* ± 2.0	26.9* ± 2.0	27.0* ± 2.0
6,300	NR	NR	NR	NR
8,000	NR	NR	NR	NR
10,000	NR	NR	NR	NR

Table 9. One-Third Octave Analysis for Wind Speed Bins 5 Through 8 m/s

* The difference between total and background noise was less than 6 dB but greater than 3 dB. A standard background correction of 1.3 dB was applied per Section 8.2 of the Standard.

NR The difference between total and background noise was less than 3 dB. According to Section 8.2 of the Standard, the wind turbine noise was less than the background noise.

Center	9 m/s One-	10 m/s One-	11 m/s One-	12 m/s One-
	Third Octave	Third Octave	Third Octave	Third Octave
Frequency	Levels	Levels	Levels	Levels
[U-1				
[Hz]	[dBA]	[dBA]	[dBA]	[dBA]
50	NR	NR	22.4* ± 2.1	25.0* ± 2.1
63	NR	NR	NR	29.8* ± 2.0
80	NR	28.0* ± 2.0	29.6* ± 2.1	32.7* ± 2.1
100	33.5* ± 2.0	34.5 ± 1.9	34.6* ± 2.0	36.0* ± 2.0
125	44.4 ± 1.8	45.1 ± 1.8	44.5 ± 1.8	43.1 ± 1.9
160	35.6* ± 2.0	37.9* ± 2.0	39.4* ± 2.0	41.1* ± 2.1
200	40.0* ± 2.0	40.4* ± 2.0	41.8* ± 2.0	43.1* ± 2.0
250	45.3 ± 1.8	46.4 ± 1.8	46.0 ± 1.8	45.7 ± 1.9
315	41.3 ± 1.9	42.5 ± 1.9	43.1 ± 1.9	44.6 ± 1.9
400	42.4 ± 1.9	43.3 ± 1.9	43.7 ± 1.9	45.0 ± 1.9
500	43.1 ± 1.8	44.0 ± 1.8	44.3 ± 1.9	45.5 ± 1.9
630	44.4 ± 1.8	45.3 ± 1.8	46.1 ± 1.8	47.2 ± 1.8
800	43.4 ± 1.8	44.4 ± 1.8	45.6 ± 1.9	47.1 ± 1.9
1,000	54.7 ± 1.8	54.2 ± 1.8	54.3 ± 1.8	55.3 ± 1.8
1,250	48.0 ± 1.8	48.6 ± 1.8	48.9 ± 1.8	48.8 ± 1.8
1,600	39.9 ± 1.8	41.1 ± 1.8	42.3 ± 1.9	43.8 ± 1.9
2,000	38.3 ± 1.8	39.2 ± 1.8	40.2 ± 1.9	41.6 ± 1.9
2,500	38.0 ± 1.8	38.5 ± 1.8	39.0 ± 1.8	40.3 ± 1.9
3,150	37.7 ± 1.8	38.1 ± 1.8	38.6 ± 1.8	39.1 ± 1.9
4,000	33.5 ± 1.8	33.7 ± 1.9	34.2 ± 1.9	34.6 ± 2.0
5,000	27.3* ± 2.0	NR	NR	NR
6,300	NR	NR	NR	NR
8,000	NR	NR	NR	NR
10,000	NR	NR	NR	NR

Table 10 One Third Octove Ar	nalvaia far Wind Chaod	Dine O Three of A0 m/s
Table 10. One-Third Octave Ar	nalysis for wind Speed	i Dills 9 Through 12 m/s

* The difference between total and background noise was less than 6 dB but greater than 3 dB. A standard background correction of 1.3 dB was applied per Section 8.2 of the Standard.

NR The difference between total and background noise was less than 3 dB. According to Section 8.2 of the Standard, the wind turbine noise was less than the background noise.

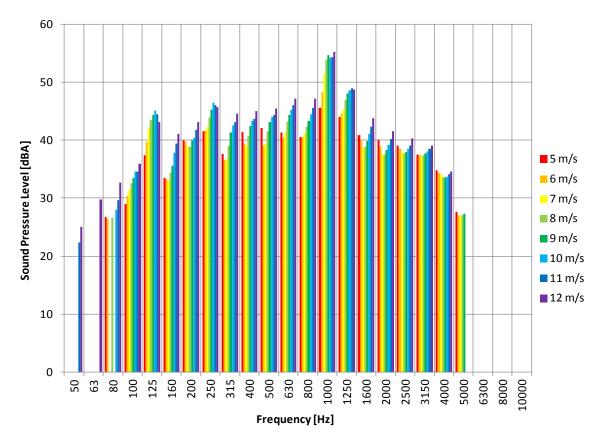


Figure 5. One-third octave levels

6.5 Tonality

The tonality analysis resulted in reportable tones for wind speed bins 5 through 12 m/s, detailed in Table 11 through Table 14. Figure 6 through Figure 30 show 10-second energy averaged spectra indicating the classification of spectral lines for each of the identified tones.

Wind speed:	5 m/s		6 m/s			7 m/s	
f [Hz]	1,032	1,293	1,041	1,311	1,047	1,173	1,311
Δ Ltn,1	3.14	-0.89	9.07	-3.35	4.01	-1.72	-6.60
Δ Ltn,2	-0.99	-2.93	-0.03	-0.62	7.40	3.61	-9.21
∆Ltn,3	3.83	0.55	1.95	3.75	8.23	2.91	-8.74
∆Ltn,4	-1.84	-0.34	2.96	3.43	1.32	1.81	-9.55
Δ Ltn,5	2.67	-1.90	4.16	1.71	7.29	-1.25	-6.80
∆Ltn,6	-2.68	3.33	2.99	1.17	6.34	-16.02	-16.43
Δ Ltn,7	-2.70	-8.65	3.19	-3.87	8.49	3.74	-12.74
∆Ltn,8	-0.34	-4.49	1.04	1.73	4.96	2.69	-16.43
∆Ltn,9	1.75	-3.98	4.18	2.80	2.44	2.41	-12.14
∆Ltn,10	0.78	-0.57	1.12	-1.94	4.73	3.97	-16.43
∆Ltn,11	-5.23	0.20	-0.02	-0.25	4.96	-0.20	-11.24
Δ Ltn,12	0.24	-5.42	-0.67	0.72	4.06	1.43	-9.68
ΔLk	0.62	-1.11	3.41	1.04	5.86	-1.91	1.77
Δ La,k	3.46	1.96	6.26	4.12	8.72	1.06	4.85
U _A	2.9	3.4	3.3	2.5	2.8	2.5	2.9
U _B	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Uc	3.4	3.8	3.8	3.0	3.3	3.1	3.4

Table 11. Tonality Results (In dBA)

Table 12. Tonality Results (In dBA)

Wind speed:	Wind speed: 8 m				9 r	n/s	
f [Hz]	1,047	1,170	1,326	246	1,047	1,173	1,338
Δ Ltn,1	5.88	4.11	2.04	0.14	6.08	0.76	-4.39
Δ Ltn,2	5.37	0.66	1.06	-0.03	4.30	-0.43	-3.91
∆Ltn,3	9.26	-16.02	-0.76	-13.55	8.09	-16.02	-0.09
Δ Ltn,4	6.37	-1.63	-16.43	-1.58	7.11	3.25	1.43
Δ Ltn,5	9.72	4.08	-0.01	-13.55	5.85	1.67	-0.47
Δ Ltn,6	6.82	-2.27	2.37	-1.17	8.82	2.08	-0.53
∆Ltn,7	5.79	0.25	-0.14	-13.55	5.75	0.12	-3.62
Δ Ltn,8	7.07	2.79	1.00	-13.55	5.77	1.31	1.05
∆Ltn,9	6.11	3.21	0.91	-13.55	6.64	-16.02	-0.20
Δ Ltn,10	6.04	-3.43	-2.26	-13.55	7.63	1.61	2.36
Δ Ltn,11	7.29	-0.05	3.95	-13.55	7.11	-16.02	0.02
∆Ltn,12	5.54	-0.86	1.39	-1.35	6.26	1.72	-1.83
Δ Lk	7.00	0.95	0.78	-4.23	6.78	0.24	-0.39
∆La,k	9.87	3.92	3.87	-2.17	9.64	3.21	2.70
U _A	1.9	3.1	2.2	0.9	1.2	1.2	2.1
U _B	1.8	1.8	1.8	2.0	1.8	1.8	1.8
Uc	2.6	3.6	2.8	2.2	2.1	2.1	2.7

Page **20** of **51**

Wind speed:		10	m/s			11	m/s	
f [Hz]	246	1,050	1,170	1,329	1,053	1,173	1,341	3,174
∆Ltn,1	1.03	5.36	0.56	-4.13	4.13	1.99	-0.73	-4.86
∆Ltn,2	-0.43	7.67	2.15	-0.84	7.71	0.90	-7.89	-8.01
∆Ltn,3	-1.58	5.37	0.79	-0.97	6.30	0.13	-4.11	-7.06
∆Ltn,4	-2.65	8.37	2.73	-1.31	4.89	2.40	-1.52	-4.01
∆Ltn,5	-4.09	6.63	-0.62	-4.14	3.69	3.26	-0.15	-12.12
∆Ltn,6	-1.76	2.78	-2.01	-3.43	6.32	2.12	-0.88	-9.23
∆Ltn,7	-1.42	7.04	1.38	-2.60	4.53	-0.34	-2.93	-9.16
∆Ltn,8	-0.15	5.85	1.49	0.35	6.98	1.96	-5.87	-4.09
∆Ltn,9	-4.31	4.81	0.85	-1.67	5.07	-0.12	-2.97	-6.92
∆Ltn,10	-3.06	8.28	1.69	-6.24	6.22	1.21	-3.45	-20.54
∆Ltn,11	-0.32	7.61	1.54	-4.07	6.61	2.82	0.45	-5.33
∆Ltn,12	0.51	7.34	3.61	0.74	5.27	2.58	-0.14	-3.57
Δ Lk	-1.21	6.69	1.39	-1.92	5.80	1.72	-1.93	-6.45
Δ La,k	0.85	9.55	4.37	1.18	8.67	4.69	1.16	-2.45
U _A	1.8	1.9	1.6	2.3	1.1	1.2	2.6	2.9
U _B	1.9	1.8	1.8	1.8	1.8	1.8	1.8	1.9
Uc	2.6	2.6	2.4	2.9	2.1	2.1	3.2	3.5

Table 13. Tonality Results (In dBA)

Table 14. Tonality Results (In dBA)

Wind speed:		12 m/s	
f [Hz]	1,044	1,173	1,326
ΔLtn,1	4.70	-0.43	-0.48
Δ Ltn,2	3.42	-15.23	-7.55
Δ Ltn,3	4.70	-3.89	-16.02
Δ Ltn,4	5.62	-1.58	-16.02
Δ Ltn,5	6.54	-2.64	-2.07
Δ Ltn,6	6.10	-1.06	-6.91
Δ Ltn,7	7.08	-15.23	-16.02
Δ Ltn,8	6.19	3.35	-16.02
Δ Ltn,9	5.69	0.93	-4.50
ΔLtn,10	5.41	-1.00	-4.13
∆Ltn,11	5.09	-0.71	-5.95
∆Ltn,12	5.86	-1.04	-6.04
ΔLk	5.63	-1.14	-5.70
Δ La,k	8.49	1.83	-2.61
U _A	1.1	1.4	2.5
U _B	1.8	1.8	1.8
Uc	2.1	2.3	3.1

Viryd IEC Acoustic Noise Report 130319

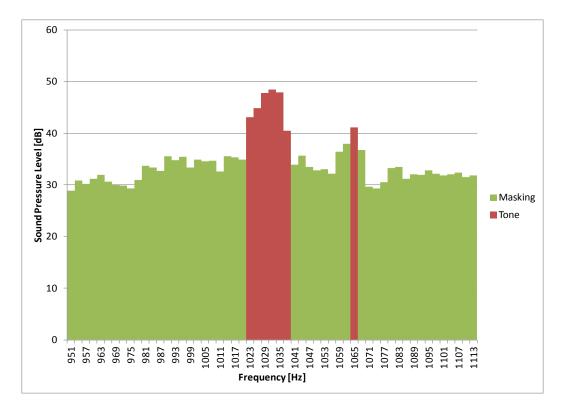


Figure 6. Classification of spectral lines for the 1,032 Hz tone (typical in the 5 m/s bin)

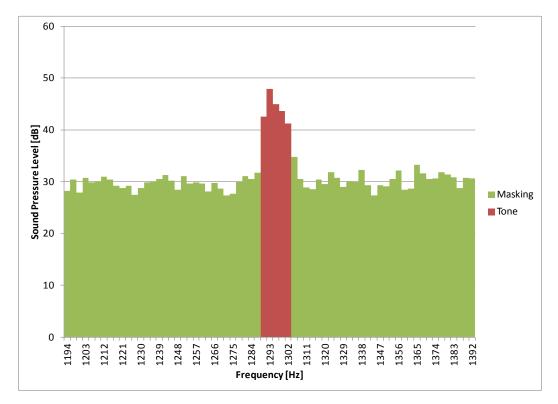


Figure 7. Classification of spectral lines for the 1,293 Hz tone (typical in the 5 m/s bin)

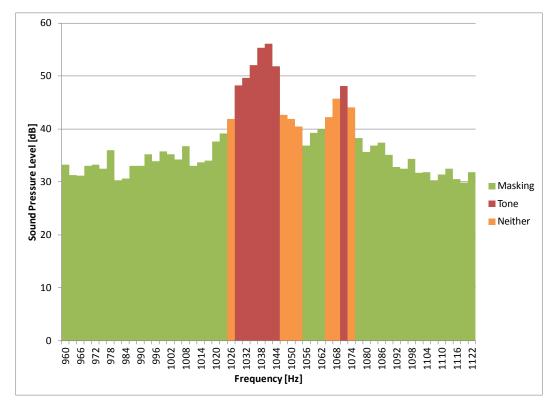


Figure 8. Classification of spectral lines for the 1,041 Hz tone (typical in the 6 m/s bin)

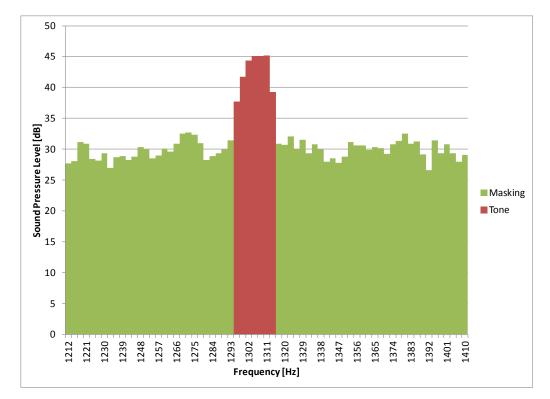


Figure 9. Classification of spectral lines for the 1,311 Hz tone (typical in the 6 m/s bin)

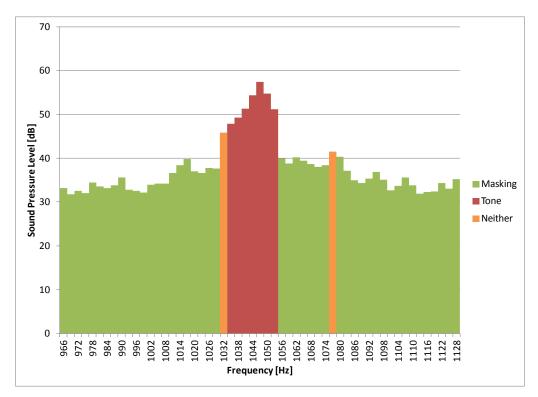


Figure 10. Classification of spectral lines for the 1,047 Hz tone (typical in the 7 m/s bin)

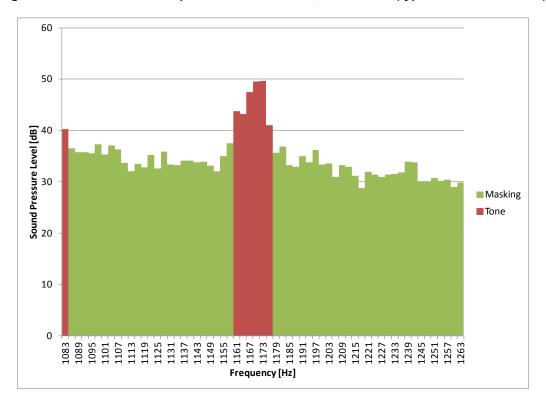


Figure 11. Classification of spectral lines for the 1,173 Hz tone (typical in the 7 m/s bin)

Page 24 of 51

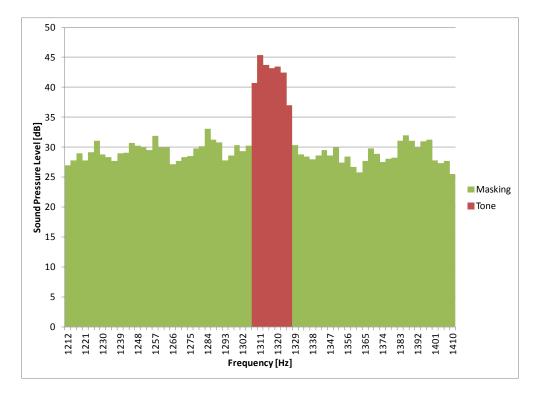


Figure 12. Classification of spectral lines for the 1,311 Hz tone (typical in the 7 m/s bin)

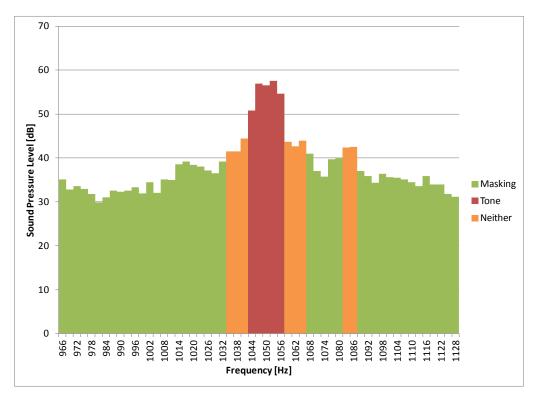


Figure 13. Classification of spectral lines for the 1,047 Hz tone (typical in the 8 m/s bin)

Page 25 of 51

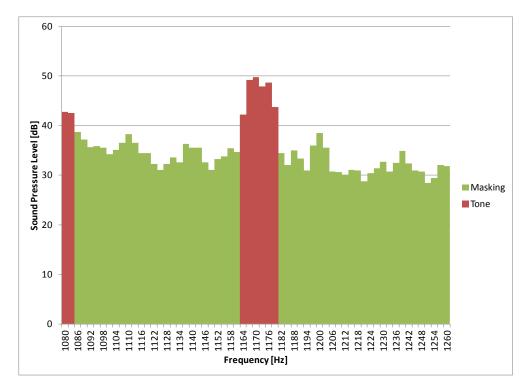


Figure 14. Classification of spectral lines for the 1,170 Hz tone (typical in the 8 m/s bin)

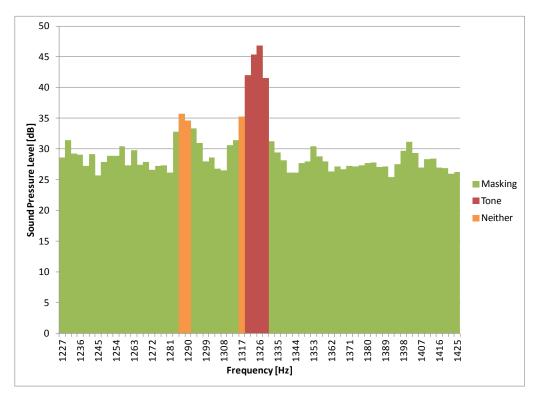


Figure 15. Classification of spectral lines for the 1,326 Hz tone (typical in the 8 m/s bin)

Page 26 of 51

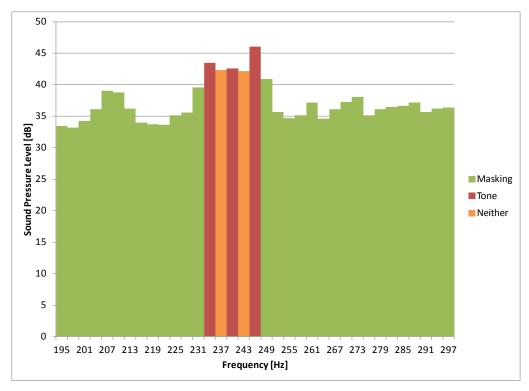


Figure 16. Classification of spectral lines for the 246 Hz tone (typical in the 9 m/s bin)

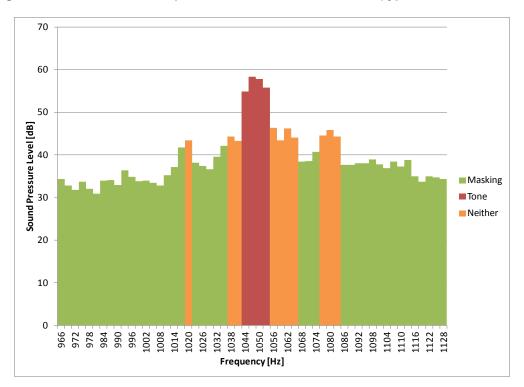


Figure 17. Classification of spectral lines for the 1,047 Hz tone (typical in the 9 m/s bin)

Page 27 of 51

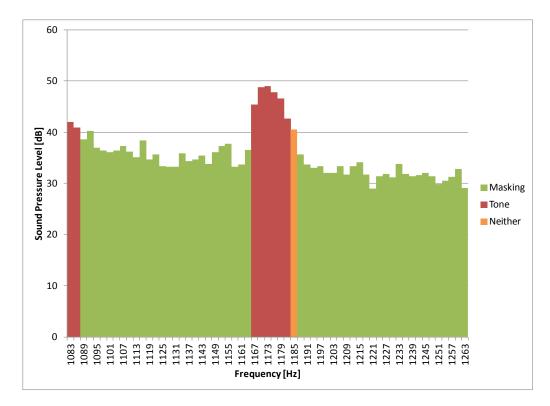


Figure 18. Classification of spectral lines for the 1,173 Hz tone (typical in the 9 m/s bin)

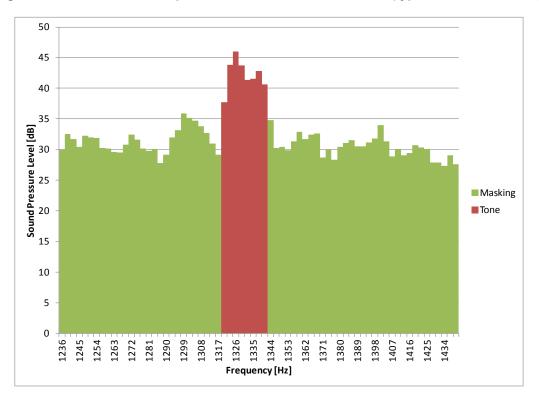


Figure 19. Classification of spectral lines for the 1,338 Hz tone (typical in the 9 m/s bin)

Page 28 of 51

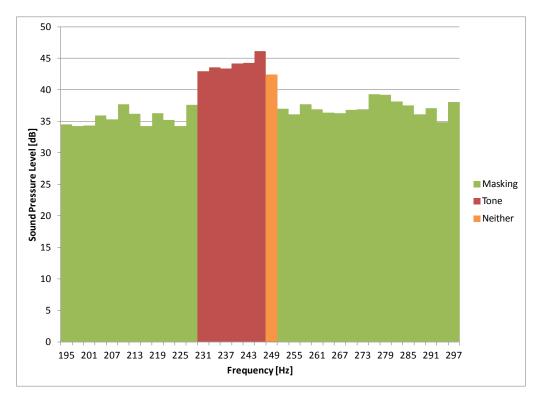


Figure 20. Classification of spectral lines for the 246 Hz tone (typical in the 10 m/s bin)

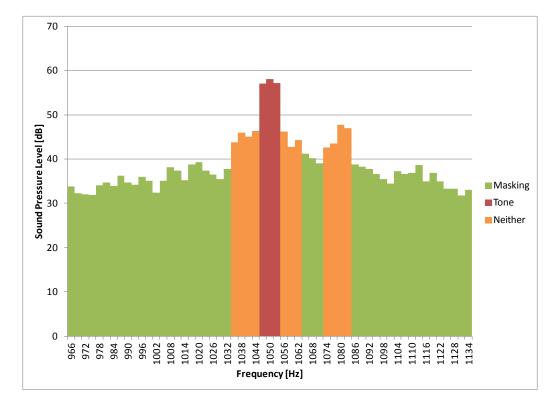


Figure 21. Classification of spectral lines for the 1,050 Hz tone (typical in the 10 m/s bin)

Page 29 of 51

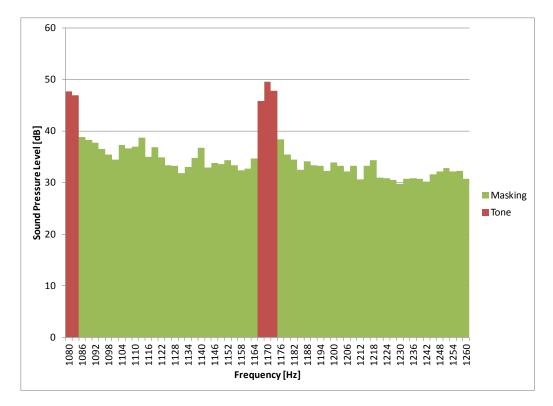


Figure 22. Classification of spectral lines for the 1,170 Hz tone (typical in the 10 m/s bin)

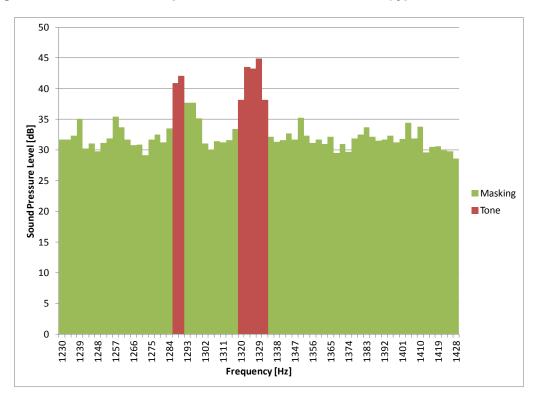


Figure 23. Classification of spectral lines for the 1,329 Hz tone (typical in the 10 m/s bin)

Page **30** of **51**

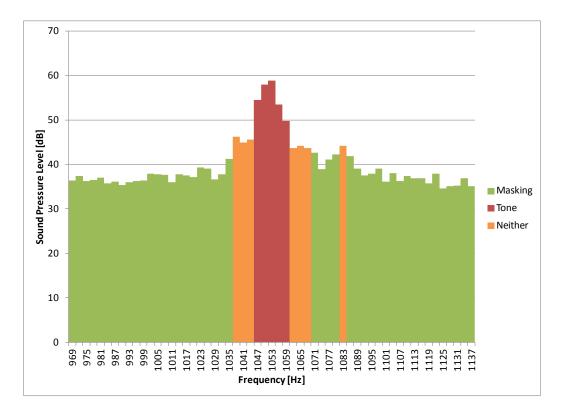
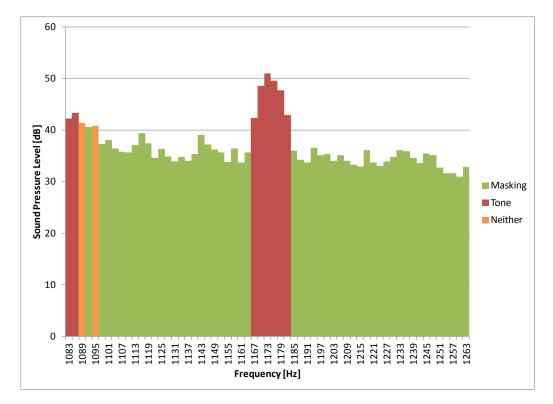
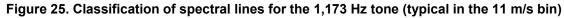




Figure 24. Classification of spectral lines for the 1,053 Hz tone (typical in the 11 m/s bin)

Page **31** of **51**



Figure 26. Classification of spectral lines for the 1,341 Hz tone (typical in the 11 m/s bin)

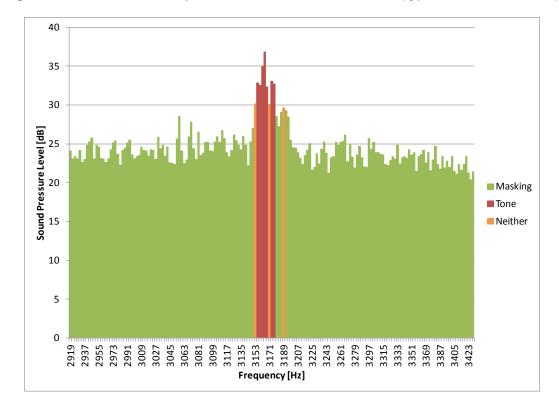


Figure 27. Classification of spectral lines for the 3,174 Hz tone (typical in the 11 m/s bin)

Page 32 of 51

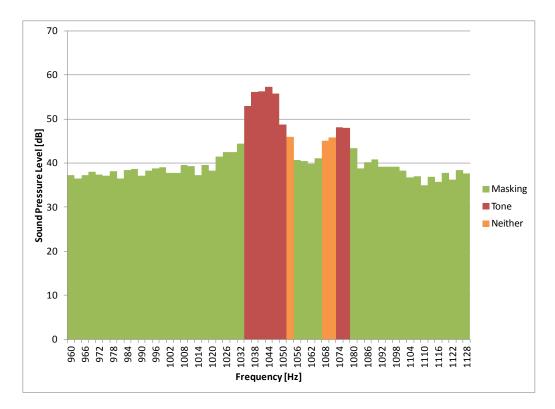


Figure 28. Classification of spectral lines for the 1,044 Hz tone (typical in the 12 m/s bin)

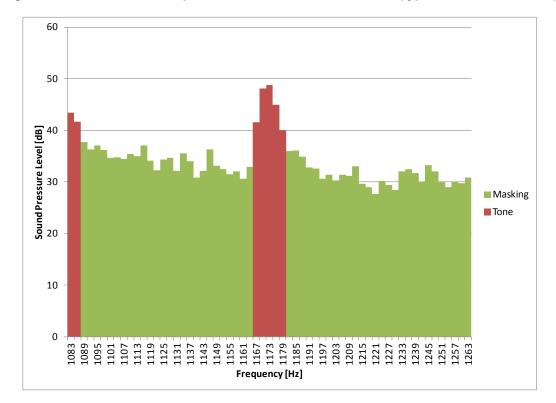


Figure 29. Classification of spectral lines for the 1,173 Hz tone (typical in the 12 m/s bin)

Page **33** of **51**

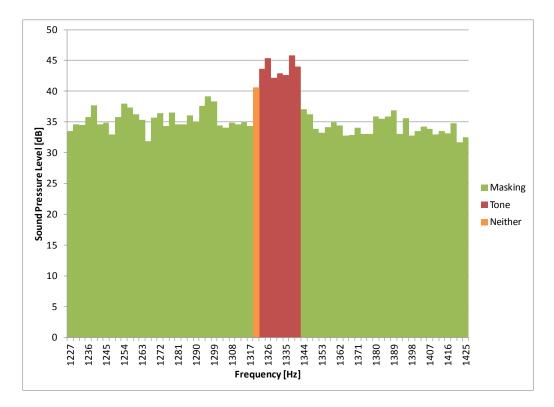


Figure 30. Classification of spectral lines for the 1,326 Hz tone (typical in the 12 m/s bin)

6.6 Uncertainty

The type A uncertainties for sound power levels, one-third octave levels, and tonality were calculated using the methods prescribed in the Standard. The type B uncertainty components are shown in Table 15.

Var	Description	Type B Uncertainty for Sound Power Level	Type B Uncertainty for One-Third Octave Levels	Type B Uncertainty for Tonality	Comment
U _{B1}	Calibration	0.2	0.2	0.1	Assumption, used typical value
U _{B2}	Instrument	0.2	0.2	0.2	Assumption, used typical value
U _{B3}	Board	0.3	1.7	1.7	The board was placed well, used typical value
U _{B4}	Distance	0.1	0.1	0.05	Assumption, used typical value
U ₈₅	Impedance	0.1	0.1	0.1	Assumption, used typical value
U ₈₆	Turbulence	0.4	0.4	0.2	Assumption, used typical value
U ₈₇	Wind speed, measured	Varies with wind speed	Varies with wind speed and one- third octave center frequency bin	0.6	Calculated per IEC 61400-12- 1 Ed. 1.0, 205-12 and converted to dBA for SPL and TOB. Typical value for tonality
U ₈₈	Direction	0.3	0.3	0.3	Assumption, used typical value
U _{B9}	Background	Varies with wind speed	Varies with wind speed and one- third octave center frequency bin	Varies by tone	Standard deviation of the applied correction

Table 15. Type B Uncertainty Components for Sound Power Levels and Tonality

7 Exceptions

7.1 Exceptions to the Standard

NREL engineers altered the analysis for the small wind turbine. Ten-second averages were used in the analysis instead of 1-minute averages to better characterize the dynamic nature of this small wind turbine. In addition, binning by wind speed was used instead of regression analysis, and the integer values were calculated by interpolating between bins and extrapolating at the ends.

7.2 Exceptions to the Quality Assurance System

There were no exceptions to NREL's quality assurance system.

References

International Electrotechnical Commission (IEC). (2006). Wind Turbine Generator Systems – Part 11 Acoustic Noise Measurement Techniques, IEC 61400-11, Ed 2.1, 2006-11, Geneva, Switzerland.

Roadman, J., Murphy, M., Huskey, A., van Dam, J. (2011). Internal report. *Acoustic Noise Test Plan for the Viryd CS8 Wind Turbine*.

Appendix A. Pictures

Figure A1. The sound board during the test (Photo by Jason Roadman, NREL)

Viryd IEC Acoustic Noise Report 130319

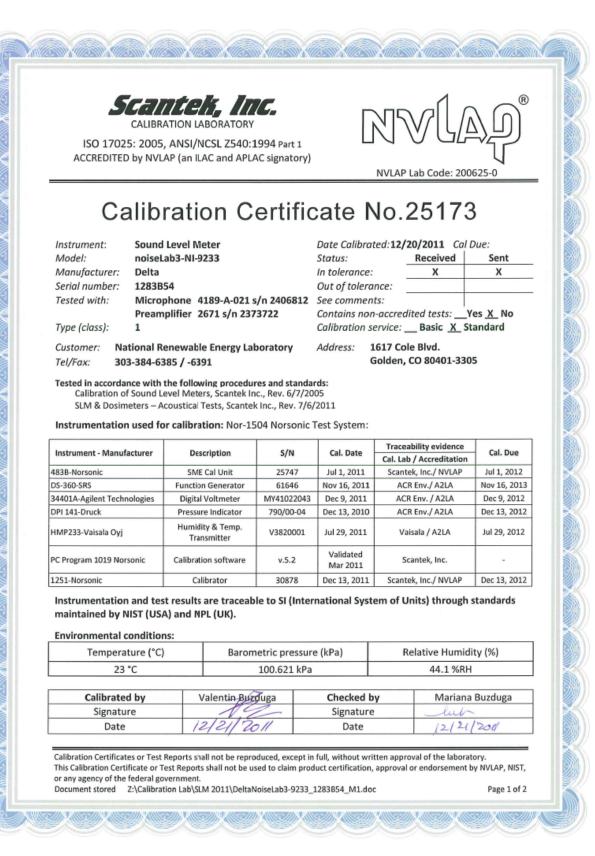
Figure A2. Test turbine, as viewed from the reference microphone position (*Photo by Jason Roadman, NREL*)

Viryd IEC Acoustic Noise Report 130319

Page **39** of **51**

Figure A3. Test turbine, as viewed from the meteorological mast (Photo by Jason Roadman, NREL)

Viryd IEC Acoustic Noise Report 130319


Page **40** of **51**

Appendix B. Calibration Sheets

	alibr	ation C	ortifi		INVLAP L	ab Code: 2006	
Instrument:			Jerun	cate N	lo.2	5174	230
Manufacturer: Serial number: Composed of:	4189-A- Brüel & 2406812 Microph	Kjær	95210	Date Calibrated Status: In tolerance: Out of tolerance See comments: Contains non-ac	Re	X	Sent X
	onal Rene 384-6385	ewable Energy La 5 / -6391	boratory		7 Cole Bl den, CO 8	vd. 80401-3305	
Procedure for M		ne calibration usin	0		itek, Inc.,	Rev. 10/7/201	.0
Instrumentation u		Description	s/N	Cal. Date		bility evidence	Cal. Due
Instrument - Manufac		Description	s/N	Cal. Date	Cal. Lab	/ Accreditation	
Instrument - Manufac 183B-Norsonic	acturer	Description SME Cal Unit	S/N 25747	Cal. Date Jul 1, 2011	Cal. Lab Scante	/ Accreditation k, Inc./ NVLAP	Jul 1, 2012
Instrument - Manufac 183B-Norsonic DS-360-SRS	acturer	Description SME Cal Unit Function Generator	S/N 25747 61646	Cal. Date Jul 1, 2011 Nov 16, 2011	Cal. Lab Scante ACR	/ Accreditation k, Inc./ NVLAP Env./ A2LA	Jul 1, 2012 Nov 16, 201
Instrument - Manufac 183B-Norsonic	ologies	Description SME Cal Unit	S/N 25747	Cal. Date Jul 1, 2011 Nov 16, 2011	Cal. Lab Scante ACR	/ Accreditation k, Inc./ NVLAP	Jul 1, 2012 Nov 16, 201 Dec 9, 201
Instrument - Manufac 183B-Norsonic DS-360-SRS 84401A-Agilent Technol	ologies	Description SME Cal Unit Function Generator Digital Voltmeter	S/N 25747 61646 MY41022043	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011	Cal. Lab Scante ACR ACR ACR	/ Accreditation k, Inc./ NVLAP Env./ A2LA Env. / A2LA	Jul 1, 2012 Nov 16, 201 Dec 9, 201 Dec 13, 201
Instrument - Manufac 1838-Norsonic DS-360-SRS 34401A-Agilent Technol DPI 141-Druck 1MP233-Vaisala Oyj PC Program 1017 Norso	ologies	Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Calibraticn software	S/N 25747 61646 MY41022043 790/00-04 V3820001 v.5.2	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Validated Mar 2011	Cal. Lab Scante ACR ACR ACR Vai	/ Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA sala / A2LA antek, Inc.	Jul 1, 2012 Nov 16, 201 Dec 9, 201 Dec 13, 201 Jul 29, 201
Instrument - Manufac 183B-Norsonic 25-360-SRS 84401A-Agilent Technol DPI 141-Druck 1MP233-Vaisala Oyj PC Program 1017 Norso 1253-Norsonic	ologies	Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Calibration software Calibrator	S/N 25747 61646 MY41022043 790/00-04 V3820001 v.5.2 28326	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Validated Mar 2011 Dec 13, 2010	Cal. Lab Scante ACR ACR Vai Scante	/ Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA sala / A2LA antek, Inc. k, Inc./ NVLAP	Jul 1, 2012 Nov 16, 201 Dec 9, 201 Dec 13, 201 Jul 29, 201 Dec 13, 201
Instrument - Manufac 1838-Norsonic DS-360-SRS 34401A-Agilent Technol DPI 141-Druck 1MP233-Vaisala Oyj PC Program 1017 Norso	ologies	Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Calibraticn software	S/N 25747 61646 MY41022043 790/00-04 V3820001 v.5.2	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Validated Mar 2011	Cal. Lab Scante ACR ACR Vai Scante	/ Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA sala / A2LA antek, Inc.	Jul 1, 201 Nov 16, 20 Dec 9, 201 Dec 13, 20 Jul 29, 201 Dec 13, 20
Instrument - Manufac 183B-Norsonic 25-360-SRS 34401A-Agilent Technol DPI 141-Druck 1MP233-Vaisala Oyj 2C Program 1017 Norso 1253-Norsonic 1203-Norsonic 1203-Norsonic 1180-Brüel&Kjær Instrumentation a and NIST (USA)	acturer	Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Calibration software Calibrator Preamplifier Microphone results are tracea	S/N 25747 61646 MY41022043 790/00-04 V3820001 v.5.2 28326 14059 2246115 able to SI - BI	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Validated Mar 2011 Dec 13, 2011 Jan 5, 2011 Nov 21, 2011	Cal. Lab Scante ACR ACR Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal	/ Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA sala / A2LA sala / A2LA antek, Inc. k, Inc./ NVLAP k, Inc./ NVLAP -UK / UKAS naintained by	Jul 1, 2012 Nov 16, 201 Dec 9, 201 Jul 29, 201 - Dec 13, 201 Jan 5, 2012 Nov 21, 201
Instrument - Manufac 183B-Norsonic 25-360-SRS 34401A-Agilent Technol DPI 141-Druck 1MP233-Vaisala Oyj 2C Program 1017 Norso 1253-Norsonic 1203-Norsonic 1280-Brüel&Kjær Instrumentation a	acturer	Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Calibration software Calibrator Preamplifier Microphone	S/N 25747 61646 MY41022043 790/00-04 V3820001 v.5.2 28326 14059 2246115 able to SI - BI	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Validated Mar 2011 Dec 13, 2011 Jan 5, 2011 Nov 21, 2011	Cal. Lab Scante ACR ACR Vai Scante Scante Scante NPL	/ Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA sala / A2LA antek, Inc. k, Inc./ NVLAP -UK / UKAS	Jul 1, 2012 Nov 16, 203 Dec 9, 201 Dec 13, 201 Jul 29, 201 Dec 13, 201 Jan 5, 2013 Nov 21, 203 NPL (UK)

Figure B1. Calibration sheet for the microphone 2406812

Viryd IEC Acoustic Noise Report 130319

Figure B2. Calibration sheet for the sound level meter

Viryd IEC Acoustic Noise Report 130319

CALIBRA ISO 17025: 2005, ANSI/		Y Part 1 ACCR	REDITI	ED	N	VL	<u>A</u> D®
by NVLAP (an	ILAC and APLAC sig	natory)			NVLA	P Lab Code: 20	00625-0
Calibr	ration C	ertif	ïca	ate N	lo.2	25175	
Model: 42 Manufacturer: Br	coustical Calibrator 31 üel and Kjær 88951		St In Oi Se	tatus: 1 tolerance: 1ut of toleran ee comments		9/2011 Cal D Received X ed tests: Yes	Sent X
Customer: National Re Tel/Fax: 303-384-63	enewable Energy La 85 / -6391	aboratory	, , ,		517 Cole olden, C	O 80401-3305	
Tested in accordance with Calibration of Acoustica	th the following pro al Calibrators, Scant	ek Inc., Re	v. 10/	andards: /1/2010			
Tested in accordance wit	th the following pro al Calibrators, Scant	ek Inc., Re	v. 10/	andards: /1/2010		bility evidence	Cal. Due
Tested in accordance with Calibration of Acoustica Instrumentation used for	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description	sek Inc., Rev 504 Norso s/N	onic Te	candards: /1/2010 est System: Cal. Date	Cal. Lab	bility evidence / Accreditation	- Cal. Due
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer	th the following pro al Calibrators, Scant r calibration: Nor-1	ek Inc., Re 504 Norso	v. 10/ onic Te	andards: /1/2010 est System:	Cal. Lab Scante	bility evidence	
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit	rek Inc., Rev 504 Norso <u>s/N</u> 25747	v. 10/ onic Te	andards: /1/2010 est System: Cal. Date Jul 1, 2011	Cal. Lab Scante ACF	bility evidence / Accreditation :k, Inc./ NVLAP	- Cal. Due Jul 1, 2012
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator	sek Inc., Rev 504 Norso <u>s/N</u> 25747 61646	v. 10/ onic Te	andards: /1/2010 est System: Cal. Date Jul 1, 2011 Nov 16, 2011	Cal. Lab Scante ACF ACR	bility evidence / Accreditation 2k, Inc./ NVLAP 8 Env./ A2LA	Cal. Due Jul 1, 2012 Nov 16, 2013
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS 34401A-Agilent Technologies	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp.	sek Inc., Rev 504 Norso 5/N 25747 61646 MY410220	v. 10/ onic Te	andards: /1/2010 est System: Gal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011	Cal. Lab Scante ACF ACR	bility evidence / Accreditation ek, Inc./ NVLAP R Env./ A2LA Env./ A2LA	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS 34401A-Agilent Technologies DPI 141-Druck	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator	sek Inc., Rev 504 Norso 5/N 25747 61646 MY410220 790/00-0	v. 10/ onic Te , , , , , , , , , , , , , , , , , , ,	candards: /1/2010 est System: Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010	Cal. Lab Scante ACF ACF ACF Vai	bility evidence / Accreditation k, Inc./ NVLAP R Env./ A2LA Env./ A2LA R Env./ A2LA	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS 34401A-Agilent Technologies DPI 141-Druck HMP233-Vaisala Oyj 8903A-HP	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter	ek Inc., Rei 504 Norso 5/N 25747 61646 MY41022(790/00-0 V382000	v. 10/ onic Te , , , , , , , , , , , , , , , , , , ,	randards: /1/2010 est System: Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011	Cal. Lab Scante ACF ACR ACR Vai	bility evidence / Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA sala / A2LA	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012 Jul 29, 2012
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS 34401A-Agilent Technologies DPI 141-Druck HMP233-Vaisala Oyj 8903A-HP PC Program 1018 Norsonic 4134-Brüel&Kjær	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Audio Analyzer Calibration software Microphone	ek Inc., Rei 504 Norso 25747 61646 MY410220 790/00-0 V382000 2514A056 v.5.2 173368	v. 10/ onic Te 043 04 01 691	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Dec 1, 2010 Validated March 2011 Dec 13, 2011	Cal. Lab Scante ACR ACR Vai ACR Scante	bility evidence / Accreditation k, Inc./ NVLAP R Env./ A2LA Env./ A2LA Env./ A2LA isala / A2LA antek, Inc. k, Inc. / NVLAP	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012 Jul 29, 2012
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS 34401A-Agilent Technologies DPI 141-Druck HMP233-Vaisala Oyj 8903A-HP PC Program 1018 Norsonic 4134-Brüel&Kjær	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Audio Analyzer Calibration software Microphone Preamplifier	ek Inc., Rev 504 Norso 25747 61646 MY410220 790/00-0 V382000 2514A056 v.5.2 173368 14059	v. 10/ onic Te 043 04 01 691	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Dec 1, 2010 Validated March 2011 Dec 13, 2010 Jul 29, 2011 Dec 1, 2010 Validated March 2011 Dec 13, 2011 Jan 5, 2011	Cal. Lab Scante ACF ACR ACR Vai Scarte Scante	bility evidence / Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA isala / A2LA Renv./ A2LA antek, Inc. k, Inc./ NVLAP k, Inc./ NVLAP	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012 Jul 29, 2012 Dec 1, 2013 - Dec 13, 2012 Jan 5, 2012
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 483B-Norsonic DS-360-SRS 34401A-Agilent Technologies DPI 141-Druck HMP233-Vaisala Oyj 8903A-HP PC Program 1018 Norsonic 4134-Brüel&Kjær 1203-Norsonic Instrumentation and test	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Audio Analyzer Calibration software Microphone Preamplifier t results are traceal) and NPL (UK)	ek Inc., Rei 504 Norso 25747 61646 MY410220 790/00-0 2514A056 v.5.2 173368 14059 ble to SI (Ir	v. 10/ onic Te 043 04 01 691	randards: /1/2010 est System: Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Dec 1, 2010 Validated March 2011 Dec 13, 2011 Jan 5, 2011 ational System	Cal. Lab Scante ACR ACR Vai ACR Scante Scante	bility evidence / Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA isala / A2LA antek, Inc. k, Inc./ NVLAP hits) through s	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012 Jul 29, 2012 Dec 1, 2013 - Dec 13, 2012 Jan 5, 2012 tandards
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 4838-Norsonic DS-360-SRS 34401A-Agilent Technologies DPI 141-Druck HMP233-Vaisala Oyj 8903A-HP PC Program 1018 Norsonic 4134-Brüel&Kjær 1203-Norsonic Instrumentation and test maintained by NIST (USA	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Audio Analyzer Calibration software Microphone Preamplifier	ek Inc., Rei 504 Norso 25747 61646 MY410220 790/00-0 2514A056 v.5.2 173368 14059 ble to SI (Ir	v. 10/ onic Te 043 04 01 691	Cal. Date Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Dec 1, 2010 Validated March 2011 Dec 13, 2010 Validated March 2011 Jan 5, 2011 ational System	Cal. Lab Scante ACR ACR Vai ACR Scante Scante	bility evidence / Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA isala / A2LA Renv./ A2LA antek, Inc. k, Inc./ NVLAP k, Inc./ NVLAP	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012 Jul 29, 2012 Dec 1, 2013 - Dec 13, 2012 Jan 5, 2012 tandards
Tested in accordance with Calibration of Acoustica Instrumentation used for Instrument - Manufacturer 4838-Norsonic DS-360-SR5 34401A-Agilent Technologies DPI 141-Druck HMP233-Vaisala Oyj 8903A-HP PC Program 1018 Norsonic 4134-Brüel&Kjær 1203-Norsonic Instrumentation and test maintained by NIST (USA Calibrated by	th the following pro- al Calibrators, Scant r calibration: Nor-1 Description SME Cal Unit Function Generator Digital Voltmeter Pressure Indicator Humidity & Temp. Transmitter Audio Analyzer Calibration software Microphone Preamplifier t results are traceal) and NPL (UK)	ek Inc., Rei 504 Norso 25747 61646 MY410220 790/00-0 2514A056 v.5.2 173368 14059 ble to SI (Ir	v. 10/ onic Te 043 04 01 691	randards: /1/2010 est System: Jul 1, 2011 Nov 16, 2011 Dec 9, 2011 Dec 13, 2010 Jul 29, 2011 Dec 1, 2010 Validated March 2011 Dec 13, 2011 Jan 5, 2011 ational System	Cal. Lab Scante ACR ACR Vai ACR Scante Scante	bility evidence / Accreditation k, Inc./ NVLAP Env./ A2LA Env./ A2LA Env./ A2LA isala / A2LA antek, Inc. k, Inc./ NVLAP hits) through s	Cal. Due Jul 1, 2012 Nov 16, 2013 Dec 9, 2012 Dec 13, 2012 Jul 29, 2012 Dec 1, 2013 - Dec 13, 2012 Jan 5, 2012 tandards

Figure B3. Calibration sheet for the acoustic calibrator

Svend Ole Hansen ApS

SCT. JØRGENS ALLÉ 7 · DK-1615 KØBENHAVN V · DENMARK TEL: (+45) 33 25 38 38 · FAX: (+45) 33 25 38 39 · WWW.SOHANSEN.DK

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

 Certificate number: 12.02.6727
 Date of issue: August 24, 2012

 Type: Thics 4.3351.10.000
 Serial number: 0609006

 Manufacturer: ADOLF THIES GmbH & Co.KG, Hauptstrasse 76, 37083 Göttingen, Germany

 Client: National Renewable Energy Lab, 1617 Cole Boulevard, Golden, Colorado 80401-3393, USA

Anemometer received: August 13, 2012 Calibrated by: asj Certificate prepared by: ca Anemometer calibrated: August 23, 2012 Calibration procedure: IEC 61400-12-1, MEASNET Approved by: Calibration engineer, ml

Marli Liller 1

Calibration equation obtained: $v [m/s] = 0.04654 \cdot f [Hz] + 0.15404$

Standard uncertainty, slope: 0.00114

Covariance: -0.0000006 (m/s)2/Hz

Barometric pressure: 1009.3 hPa

Standard uncertainty, offset: 0.07713

Coefficient of correlation: $\rho = 0.999993$

Absolute maximum deviation: -0.036 m/s at 13.844 m/s

Relative humidity: 27.6%

Succession	Velocity	Tempe	rature in	Wind	Frequency,	Deviation,	Uncertainty
	pressure, q. [Pa]	wind tunnel [°C]	control room	velocity, v. [m/s]	f. [Hz]	d. [m/s]	u _c (k=2)
2	100000	33.4	25.5		and the second s		[m/s]
	9.65			4.112	85.1908	-0.007	0.021
4	14.95	33.3	25.5	5.119	106.6331	0.002	0.025
6	21.07	33.1	25.4	6.075	127.4800	-0.012	0.029
8	28.26	33.1	25.4	7.035	147.5747	0.012	0.033
10	36.34	33.0	25.4	7.977	168.1495	-0.003	0.037
12	45.88	33.0	25.4	8.962	189,1365	0.005	0.042
13-last	56.70	32.9	25.4	9.963	210.5526	0.009	0.046
11	68.46	33.0	25.4	10.948	231.7626	0.007	0.051
9	80.56	33.1	25.4	11.878	251.6408	0.012	0.055
7	94.56	33.1	25.4	12.870	273.2038	0.000	0.059
5	109.38	33.2	25.4	13.844	294.9135	-0.036	0.064
3	125.53	33.4	25.5	14.833	315.5930	-0.009	0.068
1-first	141.94	33.6	25.5	15.780	335.3141	0.020	0.073

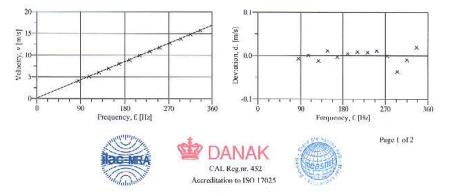


Figure B4. Calibration sheet for the primary anemometer

Viryd IEC Acoustic Noise Report 130319

Page 44 of 51

NREL METROLOGY LABORATORY

TEST REPORT

Test Instrument:	Phaser Power Transducer	DOE #:	04195C
Model #:	Phaser-5-485-4A20	S/N:	01091
Calibration Date:	9/13/2012	Date Due	: 9/13/2014

Test No.	Function Tested	Nominal Input	Measured Output	ut at 250 Ohm (DCV)	() Mfr Specs
rest no.		-	As Found	As Left	(X)Data Only
1.	Analog Output 1: Powe	er in Watt applied to Ph	ase A&B with 120V @	0 Hz	
		-24000	1.008		
		-12000	2.004		
		0	2.999		
		12000	3.996		
		24000	4.993		
2.	Analog Output 2: Powe	er Factor at 1200 W @ /	A&B with 120V @ 60	Hz	
		1	5.000		
		0.8	4.155		
		0.6	3.342		
		0.4	2.534		
		0.2	1.731		
		0	1.068		
3.	Analog Output 3: THD	for current in % at 100/	A @ A&B with 120V @	9 60 Hz	
		0	1.004		
		5	1.198		
		10	1.397		
		15	1.595		
		20	1.786		
		25	1.975		
		30	2.152		
4.	Analog Output 4: Volta	ge in volts between A8	B @ 60 Hz	•	
		0	2.998		
		80	3.613		
		160	4.229		
		240	4.607		

Figure B5. Page 1 of the power transducer calibration sheet

Viryd IEC Acoustic Noise Report 130319

Branch #: 5000

Sheet: 1 of: 1

NREL METROLOGY LABORATORY

Test Report

Test Instrument: Pressure Transmitter

DOE,#: 03510C S/N : C1040014

Model # : PTB101B

Due Date: 02/13/2013

Calibration Date: 02/13/2012

No	Function Tested	Nominal Value	Measured Output Voltage (VDC)		()Mfr. Specs. OR
		(kPa)	As Found	As Left	(X)Data only (mb
+	Absolute Pressure				
		65	0.2704	Same	
		70	0.5427	in .	
		75	0.8146	16	
		80	1.0862	Ĥ.	
		85	1.3577	-	
		90	1.6291	H	
		95	1.9005	п	
_		100	2.1722	н	
+					
	Notes: 1. Expanded Uncertainty of 2. Calibration was performe 3. Calibration was performe	d at 24°C and 43% F	RΗ.	T. DOE Numbers:	128120 and 02301C.

Calibrated By: P. Morse Date: 02/13/2012 Approved By: Reda Date: 02/13/2012

Figure B6. Calibration sheet for the pressure transducer

Viryd IEC Acoustic Noise Report 130319

NREL METROLOGY LABORATORY

TEST REPORT

Test Instrument: RTD

Model #: T200A

Calibration Date: 7/20/2012

Test No.	Function Tested	Applied Value	Measured	Values (Ω)	() Mfr Specs
est No.	Function resteu	(°C)	As Found	As Left	(X)Data Only
1.					
	Temperature	-15	94.126		
		0	100.025		
		15	105.892		
	2				
		30	111.724		
			2		
tes:					
		ng instruments that are			8604.
- Calibrat	ion was performed at a	temperature of 23°C a	nd Relative Humidity o	f 41%	
Uncerta	inty of Nominal Values	= ± 0.02°C, k = 2.			
					× .
					1

Calibrated By: Reda Date: 7/20/2012 Approved By: Preston Date: 7/20/2012

Figure B7. Calibration sheet for the temperature sensor

This report is available at no cost from the National Renewable Energy Laboratory (NREL)

at www.nrel.gov/publications.

DOE #: 03465C

S/N:

0603-1

Date Due: 7/20/2013

Wind Vane Calibration Report

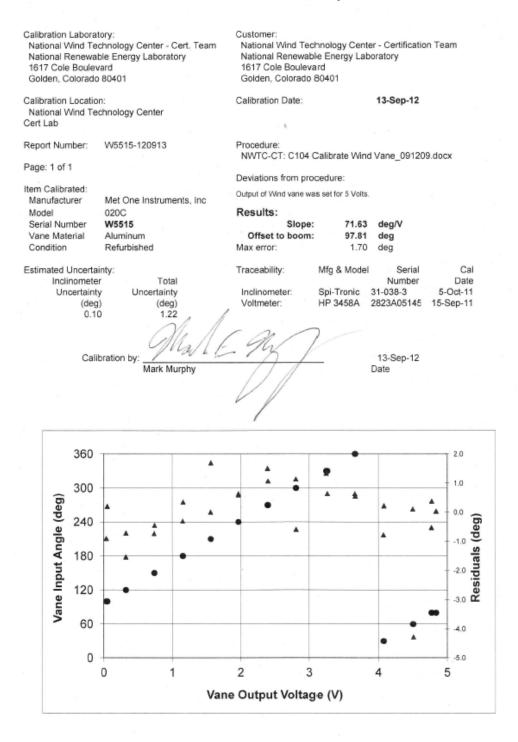


Figure B8. Calibration sheet for the wind vane

Viryd IEC Acoustic Noise Report 130319

Certificate #:	2225020003
----------------	------------

DOF# 04373 L

ACCREDITED

F

17025 Accredited Certificate of Calibration

Calibration Laboratory Certificate #: 2516.01

Manufacturer: National Instruments Acct #: 101320 National Renewable Energy Laboratory Model: 9205 Customer: 1861169 Shipper #: Description: 32 Channel Analog Input Module 16253 Denver West Parkway Address: Serial Number: 14DA726 Golden, CO, 80401 Asset Number: Contact: 14DA726 NI RMA PO #: Barcode: As Dessined As Detwood Astion Taken

	As Received		As Returned		Action	Taken		Cal Date:	06/27/2012
	In Tolerance	х	In Tolerance	X	Fu	Il Calibration	X	Due Date:	06/27/2014
	Out of Tolerance		Out of Tolerance		Speci	al Calibration		Temperature:	70.30 deg. F
	Malfunctioning		Malfunctioning		Oper	Verification		Humidity:	44.00 %
	Operational		Operational			Adjusted	X	Baro. Press.:	
	Damaged		N/A		e giore	Repaired		Procedure:	DCN 09381
	N/A					Charted		Reference:	manufacturer's manual
Incoming	Remarks:				1	Returned As Is			

ndo

Domestic Accredited Calibration w/antistatic bag

Technical Remarks:

		Calibr	ation Standards Utilized			
Cert. 21826	# Manufacture 20002 Fluke	Model # 5700A	Description Multifunction Calibrator	Cal Date 05/09/2012	Due Date 08/07/2012	

checked, Rid zinha

The above identified unit was calibrated in our laboratory at the address shown below.

The above identified unit was cantorrated in our informatory at the aboreasy and the above information.

This report applies only to the item(s) identified above as that not be reproduced, except in full, without the written approval of Dynamic Technology. Inc: This unit has been calibrated utilizing standards with a feat
Uncerning Ratio (TUR) of greater than 4.1 approximating a 92 % confidence between written approval of Dynamic Technology. Inc: This unit has been calibrated utilizing standards with a feat
references traceable to the S1 through NIST or other recognized national laboratory, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards. Dynamic
Exchnology warrants all material and labor performed for nitery (90) days unless covered under a separate policy
* Any number of factors may cause the calibrated into oth for out of tolerance before the interval has expired 5 Signatory

Technician Name/Date: James Nimri, 06/27/2012

antest Allers

QA Approved.

3201 West Royal Lane, Suite 150, Irving, TX 75063 (214) 723-5600 FAX (214) 723-5601 Page 1 of 1

Figure B9. Calibration sheet for the 9205 signal conditioning module 14DA726

Viryd IEC Acoustic Noise Report 130319

Page 49 of 51

Certific	cate #:	2225020002
	- 7000	and a start with

DOEA 038910

Iac-MRA ACCREDITED

17025 Accredited Certificate of Calibration

Calibration Laboratory Certificate #: 2516.01

F

Acct #:	101320	Manufacturer:	National Instruments
Customer:	National Renewable Energy Laboratory	Model:	9217
Shipper #:	1861169	Description:	4 Channel 100ohm RTD Analog Input N
Address:	16253 Denver West Parkway	Serial Number:	12BFEE2
Contact: PO #:	Golden, CO, 80401 NI RMA	Asset Number: Barcode:	12BFEE2

As Received As Returned Action Taken

As Received		As Returned	Action Taken		Cal Date:	06/27/2012
In Tolerance	x	In Tolerance X	Full Calibration	х	Due Date:	06/27/2013
Out of Tolerance		Out of Tolerance	Special Calibration		Temperature:	70.30 deg. F
Malfunctioning		Malfunctioning	Oper. Verification		Humidity:	44.00 %
Operational		Operational	Adjusted		Baro. Press.:	
Damaged		N/A	Repaired		Procedure:	DCN 09480
N/A			Charted		Reference:	manufacturer's manual
and the Demonstration			Returned As Is			

Incoming Remarks:

ndo, Domestic Accredited Calibration, w/antistatic bag

Technical Remarks:

Calibration Standards Utilized							
Cert. #	Manufacturer	Model #	Description	Cal Date	Due Date		
2062190010	ESI	RS925	Decade Resistance Standard	01/05/2012	01/05/2013		
2182620007	Agilent Technologi	3458A	DMM	05/23/2012	08/23/2012		

Werter Car Hull

The above identified unit was calibrated in our laboratory at the address shown below.

The above intention units was calibrated in our laboratory at the autoratory at our above and shill be average in fully without the write approximation provides and an interval provides and an interval of provide except in fully without the write approximation approximation of calibration. The calibration was performed using information of the resonance of the service and the access in fully without the write approximation and an one Report of Calibration. The calibration was performed using inferences threable to the S1 through NIST or other recognized national blocatory, accepted fundamental or national blocatory, accepted fundamental or national blocatory is calibration program in its compliance with Econology calibration program in its compliance with performed for inner (00) does under a separate policy. Any number of factors may cause the calibrated sine to other recognized in using stress covered using a separate of the interval has expired.

stantiger Valoro QA Approved:

3201 West Royal Lane, Suite 150, Irving, TX 75063 (214) 723-5600 FAX (214) 723-5601 Page 1 of 1

Signatory:

Figure B10. Calibration sheet for the 9217 signal conditioning module 12BFEE2

Viryd IEC Acoustic Noise Report 130319

Technician Name/Date: James Nimri, 06/27/2012

Page 50 of 51

Certificate #: 2225020001

DOE# 038926

17025 Accredited Certificate of Calibration

Calibration Laboratory Certificate #: 2516.01

F

Acct #: 101320 Customer: National Renewable Energy Laboratory Shipper #: 1861169 Address: 16253 Denver West Parkway Contact: Golden, CO, 80401 NI RMA PO #:			oratory Mo De: Ser As:	nufacturer: del: scription: tial Number: set Number: rcode:	National Instruments 9229 4 Channel Analog Input Module 12A2037 12A2037		
0	Received In Tolerance X ut of Tolerance Malfunctioning Operational Damaged N/A	As Returned In Tolerance X Out of Tolerance Malfunctioning Operational N/A	Action Taken Full Calibratio Special Calibratio Oper. Verification Adjuste Repaire Chartes	n X D h T h H d B d Pr	al Date: ue Date: emperature: umidity: aro. Press.: rocedure: eference:	06/27/2012 06/27/2013 70.00 deg. F 44.00 % DCN 09375 manufacturer's manual	
ncoming Remaindo.	arks:		Returned As I		cierence.	manadatare 5 manada	

Domestic Accredited Calibration w/antistatic bag

Technical Remarks:

Calibration Standards Utilized							
Cert. #	Manufacturer	Model #	Description	Cal Date	Due Date		
2182620002	Fluke	5700A	Multifunction Calibrator	05/09/2012	08/07/2012		

Checked , feel 7/11/2

The above identified unit was calibrated in our laboratory at the address shown below.

The above notable to the St through MIST of other recognized national laboratory at the advortatory at the above as stated in the reproduct accept in full, without he written approval of Dynamic Technology. Inc: This unit has been calibrated utilizing standards with a Test Uncertainty Ratio (TUR) of greater than 4.1 approximating a 9.5 is confidence level with a Centrage factor of 2 utilized advection of a stated drive or as stated on the Report of Calibration. The calibration was performed using references traceable to the St Horizable Total St of other recognized national laboratory, accepted fundamental op and advection attained three or as stated on the Report of Calibration. The calibration was performed using references traceable to the St Horizable Total St of other recognized national laboratory, accepted fundamental op and the state drive or as stated on the Report of Calibration. The calibration was performed using references traceable to the St Horizable Total St of the recognized national laboratory, accepted fundamental op and the state drive of calibration, or by comparison to consensus standards Dynamic Technology warmans all material and labor performed for interty (90) days unless covered under a separate policy.

* Any number of factors may cause the calibrated item to drift out of tolerance before the interval has expired

Stuntley Delmo. QA Approved Technician Name/Date: James Nimri, 06/27/2012 Signatory: 3201 West Royal Lane, Suite 150, Irving, TX 75063 (214) 723-5600 FAX (214) 723-5601 Page 1 of 1

Figure B11. Calibration sheet for the 9229 signal conditioning module 12A2037

Viryd IEC Acoustic Noise Report 130319

Page 51 of 51