NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Numerical Study of Steady and Unsteady Canard-Wing-Body AerodynamicsThe use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.
Document ID
19960047050
Acquisition Source
Ames Research Center
Document Type
Technical Memorandum (TM)
Authors
Eugene, L. Tu
(NASA Ames Research Center Moffett Field, CA United States)
Date Acquired
September 6, 2013
Publication Date
August 1, 1996
Subject Category
Aerodynamics
Report/Patent Number
A-961533
NASA-TM-110394
NAS 1.15:110394
Accession Number
96N32834
Funding Number(s)
PROJECT: RTOP 505-59-53
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available