1 Tennessee Valley Authority (TVA) has conducted environmental monitoring at Watts Bar

2 Nuclear (WBN) plant since the 1970s (NRC 1995). Currently, TVA conducts thermal,

3 radiological, hydrological, meteorological, ecological, cultural, and chemical monitoring onsite

4 and in the vicinity of WBN plant.

5.1 Thermal Monitoring

TVA monitors the temperature of the receiving water (Chickamauga Reservoir) associated with 5 operating WBN Unit 1 to demonstrate that the thermal limits set in the National Pollutant 6 7 Discharge Elimination System (NPDES) are met by the plant. NPDES permit limits are set to 8 protect aquatic wildlife. TVA also monitors the temperatures of three outfalls where heated 9 water from plant operations is or could potentially be released; Outfall 101, associated with the 10 blowdown discharge from WBN Units 1 and 2 cooling towers and the Yard Holding Pond (YHP); Outfall 102, the emergency overflow for the YHP; and Outfall 113, associated with the 11 Supplemental Condenser Cooling Water (SCCW) system. The NPDES permit has been 12 updated to include discharges associated with the operation of both WBN Units 1 and 2. The 13 revised permit issued by the Tennessee Department of Environment and Conservation (TDEC) 14 15 contains no changes to the thermal monitoring required for Outfalls 101, 102, and 113 at the 16 WBN site (TDEC 2011).

17 TVA measures the temperature of water to be discharged through Outfall 101 using a

18 continuous monitor in the blowdown pipe. State water-quality requirements and the WBN site's

19 NPDES permit (TDEC 2011) established a daily maximum discharge temperature limit of 35°C

20 (95°F) for Outfall 101.

21 The plant discharges water from Outfall 102 infrequently. During discharge events, TVA

22 monitors water temperature with a daily grab sample and as for Outfall 101, the daily maximum 23 discharge temperature limit is 35°C (95°F) (TDEC 2011).

TVA monitors Outfall 113 continuously at the stream bottom to ensure the temperature does not exceed the permitted limit of 33.5°C (92.3°F) at this location. TVA also monitors water temperature in the Chickamauga Reservoir on the Tennessee River to demonstrate that discharges do not exceed permit limits and to verify the temperature models used to manage the cooling system. The NPDES permit identifies two mixing zones for Outfall 113: one for conditions when one or more turbines at Watts Bar Dam operate and one for when the dam discharges little or no water.

1 When TVA operates one or more turbines at Watts Bar Dam, water flows past Outfall 113

2 mixing with the heated discharge water and keeping the plume of heated water moving along

3 the shoreline; as a result, the plant has established a monitoring program for an active mixing

4 zone associated with Outfall 113 (the outfall for the SCCW system). TVA continuously monitors

5 water temperature at the downstream edge of the mixing zone, located 610 m (2,000 ft)

6 downriver from the discharge. Here, TVA suspends temperature sensors from floats in the river

7 and measures the water temperature. Telemeters on the floats transmit temperature data every

8 15 minutes to the plant so operators can adjust the cooling system if the water approaches 9 temperature limits. Sensors are located at 1, 1.5, and 2 m (3, 5, and 7 ft) below the water

10 surface. For comparison, sensors are also located upstream of Outfall 113.

11 When turbines at the dam do not operate and minimal flow exists past the outfall, the NPDES

12 permit allows for a passive mixing zone. Under these conditions, the mixing zone extends

13 300 m (1,000 ft) downriver and includes the entire width of the river. Under these conditions,

14 fish can still pass the heat plume because it resides near the top of the water column. Twice a

15 year, TVA performs a temperature survey along a transect across the river through this mixing

16 zone, and uses these data to verify its models that determine when to alter the operation of the

17 SCCW or release additional water at the dam to comply with discharge permits. TVA reports

18 temperature survey results annually, such as in its *Winter 2006 Compliance Survey for Watts*

19 Bar Nuclear Plant Outfall 113 Passive Mixing Zone (Proctor and Hopping 2007).

5.2 Radiological Monitoring

20 TVA has conducted its radiological environmental monitoring program (REMP) at the WBN site since Unit 1 began operating in 1996, with its preoperational sample collection activities 21 22 beginning in 1976 (TVA 2003a). The REMP includes monitoring the airborne exposure 23 pathway, direct exposure pathway, water exposure pathways, aquatic exposure pathways from 24 the Chickamauga Reservoir, and the ingestion exposure pathway within an 8-km (5-mi) radius 25 of the station. The program also uses indicator locations near the plant perimeter and control 26 locations at distances greater than 16 km (10 mi) from the plant. TVA conducts an annual 27 survey of the surrounding area to verify the accuracy of the assumptions it uses in the analyses, 28 including the occurrence of milk production. The preoperational REMP sampled various media 29 in the environment to determine a baseline from which to observe the magnitude and fluctuation 30 of radioactivity in the environment once the units began operating. The preoperational program 31 included collecting and analyzing samples of air particulates, precipitation, crops, soil, well water, surface water, fish, and silt as well as measuring ambient gamma radiation. After Unit 1 32 33 began operating in 1996, the monitoring program continued to assess the radiological impacts 34 on workers, the public, and the environment. TVA summarizes radiological environmental 35 monitoring data and radioactive effluent release data at the WBN site in two annual reports: the 36 Annual Radiological Environmental Operating Report (e.g., TVA 2008a) and Annual Radioactive 37 Effluent Release Report (e.g., TVA 2008b). WBN Offsite Dose Calculation Manual (ODCM) 38 specifies the limits for all radiological releases (TVA 2008a). The REMP is a sitewide program

1 that monitors the radiological impacts from all radiation sources on the site. Accordingly, TVA

2 does not plan to establish an additional monitoring program for WBN Unit 2. To the greatest

3 extent practicable, the REMP would use the procedures and sampling locations TVA uses for

4 WBN Unit 1. U.S. Nuclear Regulatory Commission (NRC) staff reviewed the documentation for

5 the existing REMP and the WBN ODCM, and determined that the current operational monitoring 6 program is adequate to establish the radiological baseline for comparison with the expected

program is adequate to establish the radiological baseline for comparison with th
 impacts on the environment related to operating and maintaining WBN Unit 2.

8 In support of the Nuclear Energy Institute Ground Water Protection Initiative, TVA's developed a

9 Ground Water Protection Program (GWPP) to monitor the onsite plant environment for

10 indication of leaks from plant systems and buried piping carrying radioactive liquids. The annual

11 radioactive effluent release report for 2010 (TVA 2011a) summarized results of groundwater

12 sampling it performed in various locations around the plant that could be a source of

13 groundwater contamination. Section 2.6 describes the GWPP. The staff reviewed results of

14 tritium monitoring from WBN Unit 1 for a period of 9 years (2003 through 2010). In 2010, the

15 only observations of tritium offsite were trace levels of tritium in six samples collected from two

16 downstream public water sampling locations. The highest downstream water sample was

17 1.8 x 10¹³ pBq/L (597 pCi/L), which is well below the U.S. Environmental Protection Agency

18 (EPA) drinking standard of 7.4 x 10^{14} pBq/L (20,000 pCi/L). Onsite, tritium levels continue to

19 decrease annually following the 2002 leak described in Section 2.2.3.2.

5.3 Hydrological Monitoring

20 Hydrological monitoring consists of surface-water and groundwater monitoring. At the WBN

21 site, TVA monitors the thermal and chemical characteristics of water discharged to surface-

22 water through WBN outfalls. TVA also monitors temperature in Chickamauga Reservoir.

23 Section 5.1 describes thermal monitoring and Section 5.6 describes chemical monitoring,

24 including chemical monitoring in surface water and groundwater.

25 In addition, TVA uses information about the volume of water flowing past the WBN site to make

26 decisions related to operating the cooling system in compliance with the NPDES permit for

27 discharging water from Units 1 and 2 to Chickamauga Reservoir. TVA gathers this flow

28 information at Watts Bar Dam immediately upstream of the WBN site.

29 Groundwater monitoring at WBN includes collecting groundwater samples for analysis of 30 radionuclides and is described in Section 5.5.2.

5.4 Meteorological Monitoring

TVA has collected meteorological data at the WBN site since 1971 (TVA 2009a). It began operating a permanent meteorological data collection system in 1973. The plant has modified

- 1 system instrumentation since then. Section 2.3 of the WBN Final Safety Analysis Report
- 2 (FSAR) (TVA 2009a) describes in detail the data collection system as it currently exists. It
- 3 consists of a 91-m (300-ft) tower with wind and temperature sensors at 10 m (33 ft), 46 m
- 4 (150 ft), and 91 m (300 ft), a ground-level rain gauge, a dewpoint sensor on a separate 10-m
- 5 (33-ft) tower, and associated data processing and recording equipment. The meteorological
- 6 system provides meteorological data to support operating WBN Unit 1 and would support Unit 2.
- 7 During the site audit, TVA indicated its intention to upgrade the meteorological instruments to
- 8 meet the specifications set forth in Revision 1 of Regulatory Guide 1.23 (NRC 2007).
- 9 The NRC staff reviewed the meteorological system in 1994 in conjunction with preparing its
- 10 1995 Supplement No. 1 to the Final Environmental Statement related to the operating license
- 11 (1995 SFES-OL-1) (NRC 1978, 1995). The staff reviewed the system again in preparing for this
- 12 supplemental final environmental statement (SFES) related to operating WBN Unit 2. The staff
- 13 found in both reviews that the measurement location was representative of the WBN site, the
- 14 instrument specifications were consistent with guidance in Regulatory Guide 1.23 (AEC 1972),
- 15 and system calibration and maintenance procedures were sufficient to ensure reliable data for
- 16 meteorological characterization of the site for environmental reviews.

5.5 Ecological Monitoring

5.5.1 Terrestrial Ecology

17 In the 1978 Final Environmental Statement related to the operating license for WBN Units 1 and 18 2 (1978 FES-OL), TVA committed to monitoring the effects of cooling-tower drift, bird collisions 19 with the cooling tower, and maintaining the transmission lines (NRC 1978). TVA also committed 20 to monitoring the effects of total dissolved solids deposition on plants and having gualified personnel inspect vegetation for evidence of damage during the growing season. Also, TVA 21 22 agreed to initiate an aerial remote sensing program to detect terrestrial effects of cooling-tower 23 drift (NRC 1978). TVA developed these two monitoring activities to address the potential for 24 effects related to the WBN plant plume and the Watts Bar Fossil Plant plume merging. Because 25 TVA has never operated these two plants simultaneously, it has not conducted this monitoring 26 (NRC 1995). To determine the existence and extent of serious episodic collision mortality events, the NRC recommended TVA initiate a monitoring program capable of detecting and 27 . 28 reporting such events during migratory periods (NRC 1978). After an unspecified amount of 29 monitoring for bird collisions with the cooling towers without any recorded notable episodes, 30 NRC (1995) deemed this monitoring unnecessary. The NRC also required the applicant to 31 provide an annual report regarding chemical control of vegetation along transmission corridors. 32 TVA does not conduct or propose to conduct any other terrestrial monitoring activities specific to the WBN site. However, TVA has committed to surveying transmission corridors for the 33 34 presence of Federally protected species before conducting maintenance activities (NRC 1995) and continuing to identify ecologically sensitive areas within transmission corridors as part of the 35 36 sensitive area review process (TVA 2009b).

5.5.2 Aquatic Ecology Monitoring

1 TVA has collected monitoring data since 1970. Table 5-1 lists the monitoring studies that have

- already been performed in the vicinity of the WBN site on both the Watts Bar Reservoir and the
 Chickamauga Reservoir.
- 4 TVA conducted characterization studies of aquatic communities in the vicinity of the WBN site 5 as part of the preoperational monitoring program with the following objectives:
- phytoplankton (1973 through 1976) and zooplankton (1973 through 1975) to describe the
 phytoplankton community at seven stations in different locations upstream and downstream
 from the site and study the variation between all four seasons
- benthic organisms (organisms living on the substrate) (1973 through 1976) to describe the
 benthic community by analyzing the colonization of artificial substrates by macrobenthos
 and to identify the species of mussels in the vicinity of the WBN site during July and August
 1975 and May and August 1976
- ichthyoplankton (fish eggs and larvae) (1976 and 1977 spawning seasons) to determine the
 spatial and temporal concentrations and distributions of ichthyoplankton in the vicinity of the
 WBN site
- fish (cove rotenone data from 1970, 1972, and 1973) for Chickamauga Reservoir at a site downstream (Tennessee River Mile [TRM] 505–509) of the WBN site to identify species and biomass. A sports fishing survey was conducted from 1972 through 1975 in Chickamauga Reservoir and from January 1 to June 30, 1977 in Watts Bar Reservoir to estimate the annual average sport harvest.
- The NRC reported these data in the 1978 FES-OL (NRC 1978). This SFES does not discuss
 the data further except to compare them with more recent sampling results. Since the 1978
 FES-OL was published, TVA has conducted additional studies of the aquatic communities in the
 Chickamauga and Watts Bar reservoirs in the vicinity of the WBN site. This SFES describes
 these data to do the following:
- Characterize potential differences between aquatic communities above and below the site and measure the impact of Unit 1 operations on aquatic communities.
- Characterize changes TVA observed in the environment as a result of operating WBN Unit 1
 to measure any potential change that might be expected from operating proposed Unit 2.
- Provide a more thorough characterization of the aquatic communities of Watts Bar Reservoir
- forebay in response to the continued use of the SCCW system, which began operating in 1999 to support WBN Unit 1 operations (after publication of the 1995 SFES-OL-1). The
- 33 SCCW has an intake located above Watts Bar Dam (TRM 529.9). TVA will also use this
- 34 system for WBN Unit 2, as discussed in Section 2.2.1 (Hydrology).
- A description of additional survey studies performed since publication of the 1978 FES-OL, as well as future monitoring planned by TVA follows.

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
Phytoplankton and zooplankton	1973–1976	Preoperational monitoring	Phytoplankton – Mid- channel with 8-L Van Dorn bottle at 0.3, 1, 3 and 5 m (1, 3.3, 10 and 16 ft) depths Zooplankton - 0.5 m (1.6 ft) diameter plankton net fitted with #20 mesh nylon bolting cloth.	Quarterly	TRM 532.1, 529.5, 528.0, 527.4, 518, 506.6, 496.5	TVA (1986)
	1982–1985	Preoperational monitoring	Same as above with samples collected in triplicate.	Quarterly	TRM 532.1, 529.5, 528.0, 527.4, 518, 506.6, 496.5	TVA (1986)
Periphyton	1973–1977	Preoperational monitoring	Plexiglass plates placed in metal or polyvinyl chloride support track, 1.5 dm ² (23 in. ²) exposed area, 0.5 m (1.6 ft) from water surface	May/June; August/September	TRMs 506.6, 518.0, 527.4, 528.0, 529.5; TRM 496.5 (1977 only)	NRC (1978); TVA (1986)
	1982–1985	Preoperational monitoring	See above	Quarterly	TRMs 496.5, 506.6, 518.0, 527.4, 528.0, 529.5;	TVA (1986)
Benthic macroinvertebrates	1973–1976	Preoperational monitoring	Artificial substrates,	Quarterly 1973– 1976; left for 90 days from 1973–winter 1975. Changed to 30 days 1975–1977.	496.5, 506.6, 518.0, 527.4, 528.0 and 529.9	NRC (1978); TVA (1986)

Table 5-1. Aquatic Biota Sampling Studies Performed in the Vicinity of the WBN Site

1

2

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
	1983–1985	Preoperational monitoring	Artificial substrates, Hess sampler or by hand for mussels	Artificial substrates – quarterly 1982–1985. 30-day colonization period. Hess sampler began in autumn 1983 and continued for two seasons.	Artificial substrates – TRM 496.5, 506.6, 518.0, 527.4, 528.0 and 529.5 Hess Sampling – TRM 521.0, 526.3, 527.4, 528.0, and 528.5	TVA (1998a)
	1996–1997	Operational (Unit 1)	Hess sampler	July–September; October–December	TRM 521.0, 526.3, 527.4, 528.0, and 528.5	TVA (1998a)
	1999-current	Operational (Unit 1)	Ponar sampler and Peterson sampler	Annually during the autumn	TRM 533.3; 527.4	Simmons and Baxter (2009)
Mussels	1975–1976; 1978	Preoperational monitoring	Brailing and random scuba dives (1975 – 1976); timed scuba dives (1978)	July 1975–August 1977, June 1978	TRM 520.5–528.5; June 1978 – TRM 514.2 to 528.9	NRC (1978)
	Sept, 1983 Nov, 1983 July 1984 Nov 1984 July 1985 Oct 1985 July 1986 Oct 1986 July 1988 July 1990 1992, 1994	Preoperational	Timed scuba dives – 1983 to 1985 – two pair scuba divers collected for 11 minutes each in four sampling sites in each of three mussel beds. 1985–1994 – two divers 22 minutes each from each of three mussel beds.		TRM 520-521, TRM 526-527, TRM 528–529	TVA (1998a)
	1996, 1997	Operational (Unit 1)	Timed scuba dives – two divers; 22 minutes at each of four sampling sites in each of three mussel beds.			

September 2011

.

5-7

Draft NUREG-0498, Supplement 2

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
	1997	Prior to operation of SCCW	General survey	May	TRM 529.2	TVA (1998b)
	2010	Operational (Unit 1); Preoperational (Unit 2)	Four 100-m long sampling transects at each sampling location; 10-m ² sampling area; additional sampling in boulder sampling site; quantitative samples at end of transect. Total of 120 semi-quantitative and 40 quantitative samples.	September 28 and 30, 2010	TRM 528-529L; TRM 526-527R; TRM 520-521L; Boulder field at approximately TRM 529.5	TVA (2011b)
Fish	1970, 1972, 1973	Preoperational monitoring	Cove rotenone studies		TRM 505-509	NRC (1978)
	1977–1979	Preoperational monitoring	5 electrofishing runs per month; timed 3 minutes per run	Monthly, March 1977–November 1979	TRM 528	NRC (1978) and TVA (1986)
	1982–1985	Update of preoperational monitoring	5 electrofishing runs/month; 100 m (330 ft) per run; included young – of the year – individuals	Monthly, March 1982–December 1985	TRM 528	TVA (1998a)
	1990–1995	TVA Reservoir Vital Signs Monitoring (preoperational)	15 electrofishing runs; 200 m (660 ft) of shoreline/run; did not include young of the year individuals	Once each fall (October– November);	TRM 526-529.9	TVA (1998a)
	1996–1997	TVA Reservoir Vital Signs Monitoring (operational)	15 electrofishing runs; 200 m (660 ft) of shoreline/run; did not include young of the year individuals	Once each fall (October– November);	TRM 526-529.9	TVA (1998a)

,

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
ish	1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008	Continued monitoring as required by WBN's NPDES permit TN0020168. electrofishing; 15 runs, 300 m (980 ft) long, approximately 10 minutes each. Upstream of WBN gill nets – 30.5 m (100.1 ft) mesh sizes vary between 2.5 and 12.7 cm (1 and 5 in.). 10 overnight experimental gill net sets.	Electrofishing – 15 boat runs near the shoreline – each 300 m (980 ft) long with a duration of approximately 10 minutes each. Nearshore area sampled is approximately 4500 m (14,800 ft); Gill nets – Five 6.1 m panels for a total length of 30.5 m (100.1 ft). Mesh size varies between panels; sizes 2.5, 5.1, 7.6, 10.2 and 12.7 cm (1, 2, 3, 4, 5 in.). Set perpendicular to river flow extending from nearshore to main channel of reservoir. Ten overnight gill nets.	Once each fall (October – November)	TRM – 527.4 TRM 533.3; upstream and downstream of WBN	Simmons and Baxter (2009)
	1995–2008	Spring sportfish surveys	Electrofishing – 30 minutes of continuous electrofishing per site.	Annually in the spring (typically March and April)	Watts Bar Reservoir – 12 sites – Watts Bar Dam, Blue Springs and Caney Creek; Chickamauga Reservoir – 12 sites – Harrison Bay, Sale Creek, and Ware Branch.	Simmons and Baxter (2008)

Table 5-1. (contd)

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
Impingement	2005-2006	Demonstration for SCCW intake	Weekly screen wash samples – 24 hour collection	August 2005 to 2007; weekly samples	SCCW intake screens	TVA (2008c)
	1996-1997	Operational monitoring (Unit 1)	Weekly screen washing samples – 24 hour collection	March 1996 – February 1997 (36 samples; March 1997– September 1997 (21 samples)	IPS screens	TVA (1998a)
	2010-2011	Operational monitoring (Unit 1); Preoperational (Unit 2)	Weekly screen wash samples – 24 hour collection	March 26, 2010 – March 17, 2011	IPS screens	TVA (2011e)
Ichthyoplankton and Entrainment	1975	Operational monitoring for Watts Bar Fossil Plant (intake in Watts Bar Reservoir)	Beam net (0.5 m [1.6 ft] square, 1.8 m [5.9 ft] long with 505 micron "nitex" mesh netting) towed upstream at speed of 1.0 m/s (3.3 ft/s) for 10 minutes. Approximately 150 m ³ (5,300 ft ³) of water filtered per 10- minute sample.	10 sampling periods between March 24, 1975 and July 28, 1975; biweekly sampling.	Five transects on the reservoir. Pumped samples from three of the six intake screen wells.	TVA (1976)
	2000	Operational monitoring for WBN Unit 1 (SCCW in Watts Bar Reservoir)	Beam net (0.5 m [1.6 ft] square, 1.8 m [5.9 ft] long with 505 micron "nitex" mesh netting) towed upstream at speed of 1.0 m/s (3.3 ft/s) for 10 minutes. Approximately 150 m ³ (5,300 ft ³) of water filtered per 10- minute sample.	Weekly from April to June 2000	Same transects as the 1975 study	Baxter et al. 2001)

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
	1976–1979	Preoperational monitoring (IPS in Chickamaugua Reservoir)	Beam net (0.5 m [1.6 ft] square, 1.8 m [5.9 ft] long with 505 micron "nitex" mesh netting) towed upstream at speed of 1.0 m/s (3.3 ft/s) for 10 minutes. Approximately 150 m ³ (5,300 ft ³) of water filtered per 10- minute sample.	Biweekly on a diel schedule during March–August	Five stations along a transect perpendicular to river flow upstream of the intake channel (TRM 528)	TVA (1986)
	1982–1985	Update of preoperational monitoring	As described above. In addition, samples in intake were collected (four 4-minute samples from plant intake pump building to mouth of intake channel.	Biweekly on a diel schedule during March–August	Five stations along a transect perpendicular to river flow upstream of the intake channel (TRM 528). In 1984–1985, towed samples also collected in intake channel samples)	TVA (1998a)
	1996–1997	Operational monitoring (Unit 1)	As described above, only the Intake channel samples were four 1-minute samples from trash boom to mouth of channel. Approximately 40-50 m ³ (1,400-1,500 ft ³) of water per intake sample	Biweekly on a diel schedule during April–June	Five stations along a transect perpendicular to river flow upstream of the intake channel (TRM 528); and in intake channel (four 4-minute samples)	TVA (1998a)

Table 5-1. (contd)

•

Type of Sampling	Year	Purpose	Sampling Method	Schedule	Location	Reference
2010	2010	Operational monitoring (Unit 1); preoperational monitoring (Unit 2)	Four tow-net samples; two each during day and night	May 11–12, 2010; May 19–21, 2010; May 25–27, 2010; August 17–18, 2010; August 25–27, 2010; August 30–31, 2010	TRM 530.2; TRM 529.9 (SCCW intake); TRM 528 right descending bank; TRM 528 – 40% of reservoir width from right descending bank; TRM 528 – 60% of reservoir width; TRM 528 – left descending bank TRM 528, bottom of main channel.	TVA (2011c)
	2010	Operational monitoring (Unit 1); preoperational monitoring (Unit 2)	Beam net (0.5 m [1.6 ft] square, 1.8 m [5.9 ft] long with 505 micron "nitex" mesh netting) towed upstream at speed of 1.0 m/s (3.3 ft/s) for 10 minutes. Approximately 150 m ³ (5,300 ft ³) of water filtered per 10- minute sample.	Weekly samples from April through June on a diel schedule	Reservoir samples at five stations along transect TRM 528.4; four intake samples within the IPS canal at TRM 528	TVA (2011d)

IPS = intake pumping station. SCCW = Supplemental Condenser Cooling Water (system).

5.5.2.1 Phytoplankton and Zooplankton

As discussed in Section 2.3.2.1, plankton are small plants or animals that float, drift, or weakly
swim in the water column of any body of water. There are two main categories of plankton;
phytoplankton and zooplankton. Plankton, also known as "microscopic algae," contain
chlorophyll and require sunlight to live and grow. Zooplankton, are small microscopic animals,
mainly invertebrates (animals that are lacking a true vertebrate or backbone). In a balanced
ecosystem phytoplankton and zooplankton form the basis of the food chains and play key
ecosystem roles in the distribution, transfer, and recycling of nutrients and minerals.

8 TVA has conducted two studies to characterize the phytoplankton and zooplankton in the 9 vicinity of the WBN site. The first study occurred from 1973 to 1976 at seven locations from 10 TRM 496.5 to TRM 532.1. Between May 1982 through November 1985, TVA conducted 11 phytoplankton and zooplankton sampling quarterly at the same seven stations. The purpose of 12 the sampling was to obtain data to describe the phytoplankton community in the vicinity of the 13 site in terms of community structure, abundance, biomass, and productivity; and the 14 zooplankton community in terms of taxa, taxon dominance, and densities. TVA also 15 investigated the variations in the communities at different locations upstream and downstream

16 of the site, and look at the variation between all four seasons.

17 TVA continues to measure chlorophyll-a using Secchi depth measurements in the Watts Bar

18 forebay as a part of the Vital Signs Monitoring Studies initiated in 1990 (TVA 2008d). A Secchi

19 disk is a black and white disk that is used to determine the clarity of water. The disk is lowered

by hand into the water and the depth at which it can no longer be seen is recorded. The farther

21 the Secchi disk can be seen in the water, the clearer the water.

5.5.2.2 Periphyton

22 As described in Section 2.3.2, periphyton are organisms that grow on underwater surfaces.

23 They can include algae, bacteria, fungi, and other organisms. Periphyton plays an important

ecological role as a food source for invertebrates, frog larvae (commonly called "tadpoles"), and some types of fish.

Periphyton sampling measurements were conducted between 1973 and 1977 during May/June and August/September initially at five stations, although a sixth station at TRM 496.5 was added in 1977. Sampling was discontinued and then resumed quarterly from 1982 through 1985 at the same six stations. The purpose was to describe the benthic community by analyzing what types of periphyton grew (specifically algal growths) and how quickly they grew on artificial substrates (TVA 1986).

5.5.2.3 Benthic Macroinvertebrates

As described in Section 2.3.2, benthic macroinvertebrates are animals that live all or part of their 1 2 lives on or near the bottom of streams or reservoirs. Invertebrates, as defined previously, are 3 animals that do not have a true backbone. Macroinvertebrates are animals that are large enough to see with the human eye. Macroinvertebrates include animals such as flatworms, 4 5 roundworms, leeches, crustaceans, aquatic insects, snails, clams, and mussels. Benthic 6 macroinvertebrates are an important food source for other aquatic organisms, including fish. 7 Researchers use studies of benthic macroinvertebrate abundance and distribution to detect 8 major environmental changes because these animals do not migrate rapidly and generally do 9 not make major changes in location.

10 TVA conducted four sets of studies. The first was a preoperational study conducted from spring 11 1973 through autumn 1976. Sampling was conducted using artificial substrates that were made 12 of wire barbeque baskets filled with river stones of uniform size. They were placed at each 13 station and left to colonize for 90 days (1973–1975) or 30 days (1975–1977). Six sampling 14 stations were located at TRMs 496.5 to 529.9; however, the upstream station was relocated to 15 529.5 after autumn 1976 because the original site was not consistently exposed to river 16 currents.

During the period from 1983 to1985, TVA conducted a second preoperational study again using
 artificial substrates between TRMs 496.5 and 529.5. Hess samplers (circular frame with an
 attached net of 0.5-mm (0.02-in.) mesh that encloses a surface area of approximately 0.09 m²
 (1 ft²) was used to obtain the samples (TVA 1998a; EPA 2003) were used from 1983 to 1985

21 between TRMs 521 and 528.5.

22 TVA conducted the third set of studies as operational (1996 to 1997) studies using a Hess

23 sampleter during summer (July to September) and fall (October to December) quarters at TRMs

521.0, 526.3, 527.4, 528.0, and 528.5 in the upper Chickamauga Reservoir to determine the structure of the community, spatial distribution, and temporal variability (TVA 1986, 1998a).

26 TVA conducted the fourth set of studies each autumn starting in 1999. TVA collects benthic macroinvertebrates in the forebay of the Watts Bar Dam (TRM 533.3) and in the inflow of the 27 28 Chickamauga Reservoir (TRM 527.4) as part of its annual monitoring program (Simmons and 29 Baxter 2009). TVA staff performs 10 benthic grab samples using a Ponar sampler in most 30 areas and a Peterson sampler when it encounters heavier substrates (Simmons and Baxter 31 2009). The samplers penetrate the substrate and then enclose bottom substrate material with either spring- or gravity-operated mechanisms. The surface area sampled ranges from 0.02 m² 32 (0.21 ft²) for the Ponar to 0.089 m² (0.96 ft²) for the Peterson sampler (EPA 2003). TVA is 33 continuing to conduct benthic macroinvertebrate sampling as part of the Reservoir Vital Signs 34 35 Monitoring program (TVA 2008d, e).

5.5.2.4 Freshwater Mussels

- 1 TVA has conducted two sets of preoperational monitoring and two different operational
- 2 monitoring studies of the mussels in the three known concentrations of mussels (mussel beds)
 3 downstream of the Watts Bar Dam near the WBN site.
- 4 TVA conducted preoperational monitoring, during five qualitative or quantitative collections from
- 5 July 1975 through August 1977 between TRMs 520.5 and 528.5 and in June 1978 between
- 6 TRMs 514.2 and 528.9.
- TVA also conducted a second set of preoperational monitoring surveys 12 times before the start
 of operation of WBN Unit 1 starting in 1983 and continuing to 1994, to identify the species of
 mussels in the vicinity of the site and their abundance. TVA used time scuba dives to sample
 the mussels in three known monitoring sites located from TRM 520 to 521 on the left
 descending bank of the river, from TRM 526 to 527 on the right descending bank, and from
 TRM 528 to 529 on the left descending bank (TVA 1998a). TVA also surveyed the vicinity of
- 13 the SCCW discharge (TRM 529.2) in 1997.
- 14 TVA conducted two operational studies at the same sites and using the same techniques as
- 15 used in the previous sets of preoperational monitoring in 1994 and 1996 after WBN Unit 1
- 16 began operation.
- 17 To supplement the previous studies, TVA conducted additional mussel surveys in 2010 to
- 18 characterize species composition and relative abundance of juveniles and adult freshwater
- 19 mussel fauna (TVA 2011b, d). Section 2.3.2.1 reports the results of the surveys from 2010 with
- 20 provides a comparison with the results of the previous sampling studies. In addition, during
- 21 2010, TVA conducted a survey of the four experimental plots discussed in Section 2.3.2 that
- 22 occur within a boulder field approximately 1.6 km (1 mi) downstream from Watts Bar Dam
- 23 (TRM 528.3 to 528.8) to determine if habitat enhancement has improved the survival of the
- freshwater mussels. However, only two historic sampling stations were located and few mussels were identified, as discussed in Section 2.3.2.1.

5.5.2.5 Fish

- 26 TVA has conducted sampling studies to determine the populations of fish and ichthyoplankton
- 27 (fish eggs and larvae) in the Tennessee River in the vicinity of the WBN site. Sampling of fish
- 28 populations, especially near the WBN site, has occurred fairly consistently over the past 40
- 29 years.
- 30 TVA performed sampling on the fish community in the vicinity of the WBN site prior to the start
- of operations of WBN Unit 1. The first studies, as reported in the FEIS for Watts Bar Unit 1
- 32 (NRC 1978), occurred downstream of the plant (TRM 504 to 509) were sampled using rotenone
- in the early 1970s (1970, 1972, and 1973). Starting in 1977 the sampling was conducted using

1 electrofishing techniques (TVA 2010a, 1998b). TVA conducted a second set of sampling 2 studies from March 1977 through November 1979. The sampling consisted of timed (five 3-3 minute duration) electrofishing runs performed monthly. From March 1982 to December 1985, 4 TVA conducted a third set of sampling studies on a monthly basis to update the preoperational 5 fish community monitoring data. These sampling studies used five distance-based 100-m (328ft) electrofishing runs. Beginning in 1990, the sampling schedule changed to once each fall with 6 7 15 electrofishing runs of 200 m (656 ft). The sampling was continued as a part of the TVA 8 Reservoir Vital Signs Monitoring program (Simmons and Baxter 2009) and continued through 9 1995 as preoperational studies. 10 TVA continued the sampling as part of the Reservoir Vital Signs Monitoring program after the

11 start of WBN Unit 1 operations in 1996. The sampling was similar to that in previous years.

12 Because it takes place after the start of operations of WBN Unit 1, it is operational monitoring

13 (TVA 1998b, 2010).

14 The TVA Reservoir Vital Signs Monitoring program continued from 1999 to the present with

15 additional gill netting in the Watts Bar Reservoir. In addition, as requested by EPA Region IV,

16 TVA conducts additional aquatic community monitoring for facilities, including the WBN plant,

17 that have alternative thermal limits to verify that balanced indigenous populations of aquatic life

18 were being maintained (Simmons and Baxter 2009). Since 1999, TVA researchers have

conducted fish sampling downstream of Watts Bar Dam (and largely downstream of the WBN
 plant discharge) using boat electrofishing and upstream of the Watts Bar Dam using

21 electrofishing and gill netting. Electrofishing samples consist of 15 electrofishing boat runs near

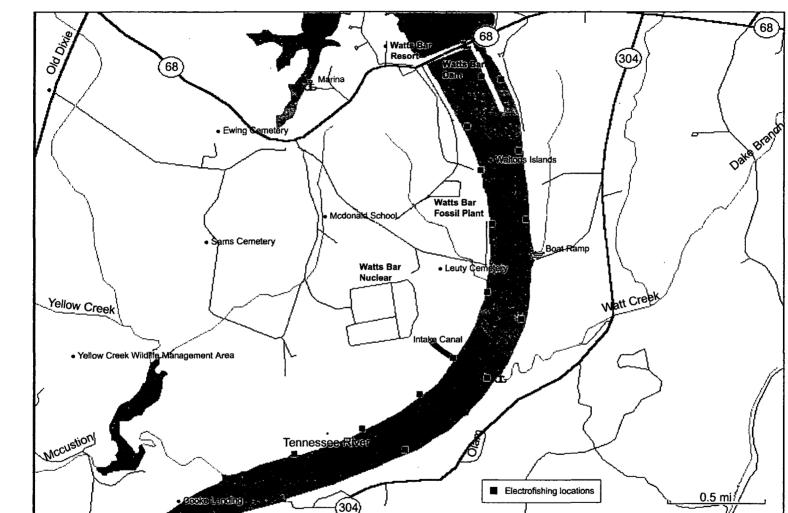
the shoreline. Each run covers about 300 m (980 ft) and takes approximately 10 minutes.

23 Researchers use experimental gill nets to collect fish from deeper habitats above the Watts Bar

24 Dam, which are not easily sampled using electrofishing techniques. TVA does not use gill nets

downstream of the WBN site because of high water velocities. Figure 5-1 and Figure 5-2 show

the locations of electrofishing and gill net sampling (Figures 2 and 3 of Simmons and Baxter

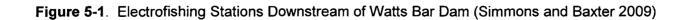

27 2009). Sampling locations on Chickamauga Reservoir occur upstream and downstream of the

28 intake canal, the SCCW system discharge, and the submerged diffuser.

29 TVA also conducts sport fishing surveys annually in March/April on both the Watts Bar and 30 Chickamauga reservoirs using a boat-mounted electrofishing unit. These surveys are 31 conducted to evaluate the sport fish population on the TVA reservoirs. The surveys have been 32 conducted since 1995 and target three species of black bass (largemouth, smallmouth, and spotted bass) and black and white crappie. TVA samples 12 locations on each reservoir at 33 34 three different sites for 30 minutes per location. Sampling sites are located at Harrison Bay, 35 Ware Branch, and Sale Creek on the Chickamauga Reservoir. Sampling sites on the Watts Bar 36 Reservoir are located at Watts Bar Dam, Blue Springs, and Caney Creek (Baxter and Simmons

37 2008).

38

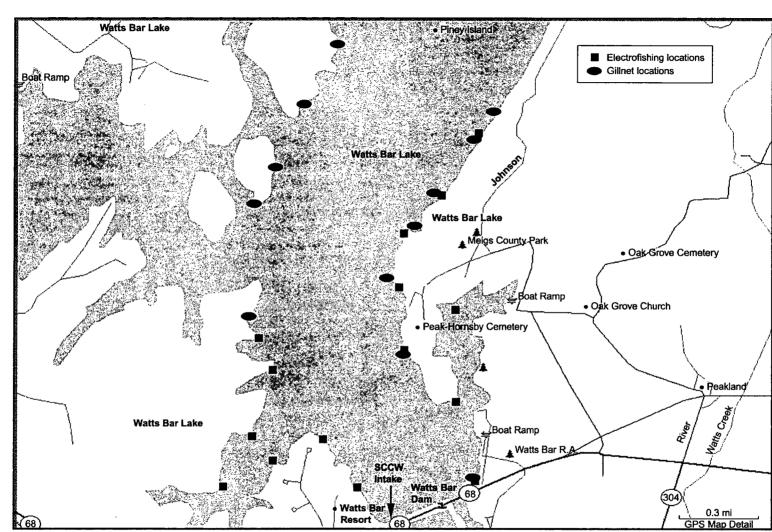


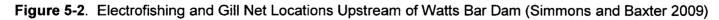
68

Environmental Measurements and Monitoring Programs

3

1 2


(To convert miles [mi] to kilometers [km], multiply by 1.6 km/mi)



1 2

3

(To convert miles [mi] to kilometers [km], multiply by 1.6 km/mi)

5.5.2.6 Impingement

1 TVA conducted a fish impingement demonstration for the SCCW intake as part of the Clean 2 Water Act Section 316(b) monitoring program from August 2005 to August 2007 (TVA 2008c). 3 TVA conducted weekly impingement monitoring by rotating the intake screens and washing 4 them on prearranged schedules. Every 24 hours, TVA rotated and washed the screens, and 5 collected the fish and debris from the sluice pipe with dip nets. It sorted, identified, separated into length classes, enumerated, and weighed the fish. The majority of fish collected were dead 6 7 when processed. TVA did not include fish that appeared to have been dead for more than 8 24 hours in the sample. TVA extrapolated impingement data from the weekly 24-hour samples 9 to estimate the total fish impinged by week and fish impingement for the year.

10 TVA began monitoring impingement at the intake pumping station (IPS) shortly before WBN

11 Unit 1 began producing power (TVA 1998a). TVA collected weekly screen-washing samples.

12 After leaving screens stationary for 24 hours to collect samples, TVA rotated and backwashed 13 them to remove impinged fish. Thirty-six samples were collected from March 1996, through

14 February 1997, and 21 samples from March 1997 through September 1997.

15 TVA conducted impingement monitoring at the IPS from March 26, 2010 through March 17,

16 2011 (TVA 2011e). TVA collected weekly screen-washing samples. TVA followed the same

17 procedures used in the 1996 to 1997 study to ensure consistency between the two studies. As

18 discussed in Section 4.3.2.2, the numbers of fish impinged were so low that the TDEC approved

19 a request by TVA to discontinue sampling as a result of the extremely low numbers of fish

20 impinged (TVA 1998a, 2010a).

21 In addition to conducting weekly impingement mortality sampling at the IPS (TRM 528) for a full

22 24-hour period from March 2010 for at least 1 year for prior to operation, TVA has committed to

23 conduct weekly impingement mortality sampling for one year of operational monitoring following

the start of WBN Unit 2 (TVA 2010b).

5.5.2.7 Entrainment (includes ichthyoplankton studies)

Two studies related to entrainment or ichthyoplankton density on the Watts Bar Reservoir exist for the SCCW system. The first (TVA 1976) was conducted in 1975 when the SCCW system was used as the intake for the Watts Bar Fossil Plant. The flow of water into the intake ranged from 0.45×10^6 m³/d or 5.23 m³/s (185 ft³/s) to 1.11×10^6 m³/d or 12.8 m³/s (452 ft³/s) (TVA 1976), which is almost twice the flow that will be used for both WBN Units 1 and 2. Sampling occurred during 10 sampling periods between March 24, 1975 and July 28, 1975, at 5 transects in the reservoir. TVA obtained pumped samples from three of the six intake screen wells. TVA

32 conducted sampling biweekly.

1 In spring 2000, TVA conducted the second study, a more recent study of ichthyoplankton

2 density to look at the spatio-temporal concentrations of ichthyoplankton near the WBN SCCW

3 intake (Baxter et al. 2001). Sampling was conducted weekly from April through June 2000

4 along the same transect and using equipment similar to that used in the 1975 study.

5 TVA conducted three sets of entrainment or ichthyoplankton density studies in the 6 Chickamauga Reservoir to characterize entrainment from the IPS. In the first set of studies, 7 TVA collected ichthyoplankton samples during preoperational (1976 to 1979, 1984 and 1985) 8 and operational (1996 and 1997) monitoring surveys (TVA 1998a) in the Chickamauga 9 Reservoir adjacent to the WBN site. TVA researchers sampled biweekly on a diel schedule 10 (day and night) at TRM 528.0, just upstream of the IPS intake channel. Sampling occurred from 11 March through August (preoperational) and from April through June (operational). TVA took 12 samples at five stations along a transect perpendicular to river flow using a beam net (0.5 m^2 [1.6 ft], 1.8 m [5.9 ft] long with a 505-micron "nitex" mesh netting). The samples were collected 13 14 by towing the beam net upstream for 10 minutes at a speed of 1.0 m/s (3.3 ft/s). This resulted 15 in approximately 150 m³ (5,300 ft³) of water in each 10-minute sample. In 1984 and during operational monitoring, TVA collected additional samples in the cooling-water intake channel. In 16 17 addition, preoperational samples from 1984 and 1985 also included four, 4-minute samples 18 taken biweekly on a diel schedule from the plant intake pump building to the mouth of the channel. Each intake sample filtered approximately 40 to 50 m³ (1,400 to 1,766 ft³) of water. In 19 comparison, the operational samples consisted of four, 1-minute samples (combined) from the 20

21 intake trash boom to the mouth of the intake channel.

22 In the second study, TVA conducted ichthyoplankton sampling during two hydrothermal surveys

- 23 during May and August 2010 above and below the dam (TVA 2011c). During two of the weeks,
- sampling was conducted during releases from the dam. During one week, there were no

25 releases. TVA estimated abundance, distribution, and taxonomic composition of the

- 26 ichthyoplankton. The samples were taken by tow-net, using tows that were approximately
- 27 10-minutes long. The samples were obtained along a transect at TRM 530.2, in front of the
- 28 SCCW intake, and downstream of the dam at TRM 528.0 near each shoreline at 40 and 60
- 29 percent of the distance across the river. In addition, TVA obtained a bottom-drag sample from
- 30 the middle of the channel.
- 31 In addition, TVA collected weekly ichthyoplankton samples from April through June 2010 to
- 32 estimate entrainment mortality in fish as part of the preoperational monitoring for WBN Unit 2
- 33 (TVA 2011d). TVA collected samples of the reservoir from five stations along a transect at TRM
- 528.4, using the same procedures used in the 1996 and 1997 sampling program discussed
- 35 previously. TVA plans to continue monitoring during 2011 (TVA 2011d). Furthermore, TVA
- 36 plans to continue sampling for at least 2 years after WBN Unit 2 begins operation (TVA 2010b).

5.6 Chemical Monitoring

5.6.1 Surface-Water Monitoring

1 TVA's chemical monitoring focuses on the three WBN facility outfalls. TVA performs semi-

2 annual Whole Effluent Toxicity (WET) tests (also called biotoxicity tests) of Outfall 101 and

3 Outfall 113 samples to confirm compliance with State water-quality criteria (TVA 2008e). WET

4 tests measure the wastewater effects on the test organisms' ability to survive, grow, and

5 reproduce. Section 4.3.2.5 describes the tests in more detail.

6 In addition, TVA monitors chlorine or Total Residual Oxidant (TRO) 5 days per week at Outfall

7 101 and Outfall 113 to ensure it meets discharge limits. The daily maximum discharge limit for

8 chlorine is 0.10 ppm and 0.158 Mg/L for TRO. Results of chemical monitoring are reported in

9 monthly discharge monitoring reports (for example TVA 2003b). Annual non-radiological

10 environmental operating reports (for example TVA 2011f) summarize any noncompliance with

11 monitoring requirements.

12 TVA historically monitored discharge from the construction runoff holding pond (see Section 3.2

13 and Figure 3-3) using an automated sampler at Outfall 112. This pond once received sewage-

14 treatment plant effluent and now receives only stormwater runoff. The NPDES permit for the

15 site (TDEC 2011) no longer requires monitoring this outfall.

5.6.2 Groundwater Monitoring

16 The NRC requires all power reactor licensees to implement a REMP (General Design Criterion 64, "Monitoring Radiological Releases", of Appendix A, "General Design Criteria for Nuclear 17 18 Power Plants" in Title 10 of the Code of Federal Regulations Part 50, "Domestic Licensing of 19 Production and Utilization Facilities"), which provides for groundwater monitoring. At the WBN 20 site, TVA monitors groundwater for radionuclide concentrations at six REMP groundwater 21 monitoring locations. These wells are equipped with automatic samplers. The plant collects 22 samples daily, composites them for 3 months, then analyzes the samples for gross beta, 23 gamma, and tritium. In addition to the six REMP monitoring wells, TVA monitors 19 non-REMP 24 wells to track the onsite groundwater plume to indicate the presence or increase of radioactivity 25 in the groundwater (TVA 2011a).

5.7 Historic and Cultural Resource Monitoring

The National Historic Preservation Act (NHPA) (16 USC 470 et seq.) and the Archaeological Resources Protection Act of 1979 (ARPA) (16 USC 470aa et seq.) address the protection of significant archaeological resources and preservation of historic properties located on Federal lands or Federal undertakings (TVA 2009c). As a result, TVA operates an extensive cultural

1 resources management program and employs several archaeologists, a historian, and a historic

architect to identify, monitor, manage, and protect historic and cultural resources on TVA lands
 or land affected by TVA actions (TVA 2009d).

The TVA Watts Bar Reservoir Land Management Plan examines the potential effects of several alternative ways of managing its public lands on the Watts Bar Reservoir and includes the WBN site (TVA 2009b). The TVA Watts Bar Reservoir Land Management Plan describes the a programmatic agreement (PA) that was signed in 2005 between TVA, the Advisory Council on

8 Historic Preservation, and the Tennessee State Historic Preservation Office/Officer (SHPO).
 9 The PA guides Section 106 (NHPA) compliance for TVA land considered in the Watts Bar

9 The PA guides Section 106 (NHPA) compliance for TVA land considered in the Watts Bar

- 10 Reservoir Land Management Plan (TVA 2009e).
- 11 The TVA cultural resources management program reviews undertakings on its plant
- 12 properties on a project-by-project basis. TVA conducts surveys and completes projects in
- 13 consultation with the SHPO and Federally recognized Indian Tribes. TVA considers
- 14 transmission-line maintenance reviews as sensitive area reviews. TVA conducts the reviews for
- 15 its transmission-line operations and maintenance activities associated with WBN Unit 1 and
- 16 would use them for WBN Unit 2 (TVA 2009f). TVA coordinates the sensitive area reviews with
- 17 TVA cultural resources staff to conduct specific Section 106 reviews. In addition, TVA
- 18 developed erosion control measures for WBN Unit 1, which it would also use for WBN Unit 2
- 19 (TVA 2009e).
- 20 During operation and maintenance of WBN Unit 2, TVA would implement procedures identifying
- 21 actions it would take if historic or cultural resource materials are encountered. TVA follows the
- 22 requirements of implementing regulations of the Native American Graves Protection and
- 23 Repatriation Act (25 USC 3001 et seq.) for the inadvertent discovery of human remains. TVA
- has identified Federally recognized Indian Tribes with a demonstrated interest in the Tennessee
- 25 Valley. When human remains are inadvertently discovered on TVA-managed lands, all work
- ceases, remains secured, and TVA notifies all Tribes within 3 working days of discovery
- 27 (TVA 2009e).

5.8 References

- 10 CFR Part 50. Code of Federal Regulations, Title 10, *Energy*, Part 50, "Domestic Licensing of
 Production and Utilization Facilities."
- 30 Archaeological Resources Protection Act of 1979 (ARPA). 16 USC 470aa et seq.
- 31 Baxter, D.S., K.D. Gardner, and G.D. Hickman. 2001. Supplemental Condenser Cooling Water
- 32 System Fish Monitoring Program. Final Report, January 2001. Tennessee Valley Authority.
- 33 Accession No. ML073510313.

- 1 Baxter, D.S. and J.W. Simmons. 2008. Biological Monitoring of the Tennessee River near
- 2 *Watts bar Nuclear Plant Discharge.* Tennessee Valley Authority. Accession No. ML073510313.
- 3 National Historic Preservation Act. 16 USC 470 et seq.
- 4 Native American Graves and Protection Repatriation Act. 25 USC 3001 et seq.
- 5 Proctor, W.D. and P.N. Hopping. 2007. *Winter 2006 Compliance Survey for Watts Bar Nuclear*
- 6 Plant Outfall 113 Passive Mixing Zone. Tennessee Valley Authority, Knoxville, Tennessee.
- 7 Accession No. ML073510313.
- 8 Simmons, J.W. and D.S. Baxter. 2009. *Biological Monitoring of the Tennessee River Near*
- 9 *Watts Bar Nuclear Plant Discharge, 2008.* Tennessee Valley Authority, Aquatic Monitoring and
- 10 Management, Chattanooga, Tennessee. Accession No. ML073510313.
- 11 Tennessee Department of Environment and Conservation (TDEC). 2011. State of Tennessee
- 12 NPDES Permit No. TN0020168. TVA Watts Bar Nuclear Plant, Spring City, Rhea County, 13 Topposson, Accession No. MI 11215A009
- 13 Tennessee. Accession No. ML11215A099.
- 14 Tennessee Valley Authority (TVA). 1976. Estimates of Entrainment of Fish Eggs and Larvae
- 15 by Watts Bar Steam Plant, 1975, and Assessment of the Impact on the Fisheries Resource of
- 16 *Watts Bar Reservoir.* Norris, Tennessee. Accession No. ML073510313.
- 17 Tennessee Valley Authority (TVA). 1986. *Preoperational Assessment of Water Quality and*
- 18 Biological Resources of Chickamauga Reservoir, Watts Bar Nuclear Plant, 1973-1985.
- 19 TVA/ONRED/WRF-87/1a. Knoxville, Tennessee. Accession No. ML073510313.
- 20 Tennessee Valley Authority (TVA). 1998a. Aquatic Environmental Conditions in the Vicinity of
- 21 Watts Bar Nuclear Plant During Two Years of Operation, 1996-1997. Norris, Tennessee.
- 22 Accession No. ML073510313.
- 23 Tennessee Valley Authority (TVA). 1998b. Watts Bar Nuclear Plant Supplemental Condenser
- 24 Cooling Water Project, Environmental Assessment, August 1998. Knoxville, Tennessee.
- 25 Available at http://www.tva.gov/environment/reports/wattsbar2/related/aug_1998.pdf.
- 26 Tennessee Valley Authority (TVA). 2003a. Watts Bar Nuclear Plant Unit 1 and 2 Annual
- 27 Radiological Environmental Operating Report 2002. Knoxville, Tennessee. Accession No.
 28 ML031400811.
- 29 Tennessee Valley Authority (TVA). 2003b. Watts Bar Nuclear Plant (WBN) National Pollutant
- 30 Discharge Elimination System (NPDES) Permit No. TN0020168 Discharge Monitoring Report
- 31 (DMR) for February 2003 and Notice of Upset. Nashville, Tennessee. Accession No.
- 32 ML030830137.

- 1 Tennessee Valley Authority (TVA). 2008a. Watts Bar Nuclear Plant Unit 1 Annual
- *Radiological Environmental Operating Report 2007.* Knoxville, Tennessee. Accession No.
 ML081430029.
- 4 Tennessee Valley Authority (TVA). 2008b. Watts Bar Nuclear Plant Unit 1 2008 Annual
- 5 Radioactive Effluent Release Report. Tennessee Valley Authority. Accession No.
- 6 ML091260371.
- 7 Tennessee Valley Authority (TVA). 2008c. Letter from Masoud Bajestani (Watts Bar Unit 2,
- 8 Vice President) to U.S. Nuclear Regulatory Commission dated July 2, 2008 in response to NRC
- 9 letter dated June 3, 2008 and TVA letters February 15, 2008 and June 16, 2008, "Watts Bar
- 10 Nuclear Plant (WBN) Unit 2 Final Supplemental Environmental Impact Statement Request
- 11 for Additional Information (TAC MD8203)." Accession No. ML081850460.
- 12 Tennessee Valley Authority (TVA). 2008d. Letter from Jack A. Bailey (Nuclear Generation
- 13 Development, Vice President) to U.S. Nuclear Regulatory Commission dated June 11, 2008 in
- 14 response to TVA letter dated October 30, 2007, "Nuclear Regulatory Commission (NRC) -
- 15 Bellefonte Nuclear Plant (BLN) Response to NRC Information Needs Related to Reservoir
- 16 Vital Signs Monitoring Reports and Coal Gasification Project Environmental Impact Statement."
- 17 Accession No. ML081970366.
- 18 Tennessee Valley Authority (TVA). 2008e. Final Supplemental Environmental Impact
- 19 Statement; Completion and Operation of Watts Bar Nuclear Plant Unit 2, Rhea County,
- 20 Tennessee submitted to NRC as the TVA Environmental Report for an Operating License,
- 21 Knoxville, Tennessee. Accession No. ML080510469.
- 22 Tennessee Valley Authority (TVA). 2009a. Watts Bar Nuclear Plant (WBN) Unit 2 Final
- 23 Safety Analysis Report (FSAR), Amendment 94. Spring City, Tennessee. Accession No.
- 24 ML092460757.
- 25 Tennessee Valley Authority (TVA). 2009b. Watts Bar Nuclear Plant (WBN) Unit 2 Additional
- 26 Information Regarding Environmental Review Cultural Resources. Accession No.
- 27 ML101180044.
- 28 Tennessee Valley Authority (TVA). 2009c. Tennessee Valley Authority, Cultural Resources.
- 29 Accessed December 19, 2009 at
- 30 http://www.tva.gov/river/landandshore/culturalresources/index.htm.
- 31 Tennessee Valley Authority (TVA). 2009d. Watts Bar Reservoir Land Management Plan.
- 32 Knoxville, Tennessee. Available at http://www.tva.gov/environment/reports/wattsbar/index.htm.
- 33 Tennessee Valley Authority (TVA). 2009e. Letter from Masoud Bajestani (Watts Bar Unit 2,
- 34 Vice President) to U.S. Nuclear Regulatory Commission dated December 23, 2009 in response
- to NRC letter dated December 3, 2009 and TVA letters dated February 15, 2008, July 2, 2008,

- 1 and January 27, 2009, "Watts Bar Nuclear Plant (WBN) Unit 2 Additional Information
- 2 Regarding Environmental Review (TAC No. MD8203)." Accession No. ML100210350.
- 3 Tennessee Valley Authority (TVA). 2009f. Final Environmental Impact Statement: Watts Barr
- 4 Reservoir Land Management Plan for Loudon, Meigs, Rea, and Roane Counties, Tennessee.
- 5 Knoxville, Tennessee.
- 6 Tennessee Valley Authority (TVA). 2010a. Letter from Masoud Bajestani (Watts Bar Unit 2,
- 7 Vice President) to U.S. Nuclear Regulatory Commission dated July 2, 2010, "Watts Bar, Unit 2 –
- 8 Submittal of Additional Information Requested during May 12, 2010, Request for Additional
- 9 Information (RAI) Clarification Teleconference Regarding Environmental Review." Accession
- 10 No. ML101930470.
- 11 Tennessee Valley Authority (TVA). 2010b. Letter from Masoud Bajestani (TVA, Watts Bar Unit
- 12 2 Vice President) to U.S. Nuclear Regulatory Commission dated April 9, 2010, "Watts Bar
- 13 Nuclear Plant (WBN) Unit 2 Response to U.S. Nuclear Regulatory Commission (NRC)
- 14 Request for Additional Information Regarding Environmental Review (TAC No. MD8203)."
- 15 Accession No. ML101130393.
- Tennessee Valley Authority (TVA). 2011a. Watts Bar Nuclear Plant -- Unit 1 -- 2010 Annual
 Radioactive Effluent Release Report. Knoxville, Tennessee. Accession No. ML111126A180.
- 18 Tennessee Valley Authority (TVA). 2011b. Letter from Edwin E. Freeman (Watts Bar Unit 2,
- 19 Engineering) to U.S. Nuclear Regulatory Commission dated January 4, 2011, "Watts Bar
- 20 Nuclear Plant (WBN) Unit 2 Additional Information Related to U.S. Nuclear Regulatory
- 21 Commission (NRC) Request for Additional Information (RAI) Regarding Environmental Review."
- 22 Accession No. ML110060510.
- 23 Tennessee Valley Authority (TVA). 2011c. Letter from Marie Gillman (Watts Bar Unit 2 Vice
- 24 President, Acting) to U.S. Nuclear Regulatory Commission dated February 7, 2011, "Submittal
- 25 of 'Hydrothermal Effects on the Ichthyoplankton from the Watts Bar Nuclear Plant Supplemental
- 26 Condenser Cooling Water Outfall in Upper Chickamauga Reservoir' Report." Accession No.
- 27 ML110400383 (submittal), ML110400384 (enclosure).
- 28 Tennessee Valley Authority (TVA). 2011d. Letter from David Stinson (Watts Bar Unit 2, Vice
- 29 President) to U.S. Nuclear Regulatory Commission dated March 24, 2011, "Watts Bar Nuclear
- 30 Plant (WBN) Unit 2 Additional Information Related to U.S. Nuclear Regulatory Commission
- 31 (NRC) Regarding Environmental Review." Accession No. ML110871475.
- Tennessee Valley Authority (TVA). 2011e. Letter from Edwin E. Freeman (Watts Bar Unit 2
 Engineering Manager) to U.S. Nuclear Regulatory Commission dated March 28, 2011, "Watts

- 1 Bar Nuclear Plant (WBN) Unit 2 Additional Information Related to U.S. Nuclear Regulatory
- 2 Commission (NRC) Environmental Review." Accession No. ML110890472.
- 3 Tennessee Valley Authority (TVA). 2011f. Watts Bar Nuclear Plant Annual Non-Radiological
- 4 Environmental Operating Report, February 7, 2010, Through February 6, 2011. Accession No.
- 5 ML11133A364.
- U.S. Atomic Energy Commission (AEC). 1972. Onsite Meteorological Programs. Safety Guide
 23 (Regulatory Guide 1.23), Washington, D.C.
- 8 U.S. Environmental Protection Agency (EPA). 2003. "Appendix G, Aquatic Resources." in EPA
- 9 and Hardrock Mining: A Source Book for Industry in the Northwest and Alaska. Seattle,
- 10 Washington. Available at
- 11 http://yosemite.epa.gov/R10/WATER.NSF/Sole+Source+Aquifers/hardrockmining.
- 12 U.S. Nuclear Regulatory Commission (NRC). 1978. Final Environmental Statement Related to
- 13 Operation of Watts Bar Nuclear Plant Units Nos. 1 and 2. NUREG-0498, Washington, D.C.
- 14 Accession No. ML082540803.
- 15 U.S. Nuclear Regulatory Commission (NRC). 1995. *Final Environmental Statement Related to*
- 16 the Operation of Watts Bar Nuclear Plant Unit 1 and 2. NUREG-0498, Supplement No. 1,
- 17 Washington, D.C. Accession No. ML081430592.
- 18 U.S. Nuclear Regulatory Commission (NRC). 2007. *Regulatory Guide 1.23 Meteorological*
- 19 *Monitoring Programs for Nuclear Power Plants*. Rev. 1, Washington, D.C.

Previous environmental reports and impact statements have evaluated the environmental consequences of postulated accidents related to the construction and operation of Watts Bar Nuclear (WBN) Units 1 and 2. This chapter summarizes those evaluations and presents the results of the U.S. Nuclear Regulatory Commission (NRC) staff's independent review of the consequences of postulated accidents for WBN Unit 2 based on changes occurring since the last NRC assessment.

The term "accident," as used in this chapter, refers to any off-normal event not addressed in
Section 4.6, Radiological Impacts of Normal Operations, resulting in release of radioactive
materials into the environment. The focus of this review is on events that could lead to releases
substantially greater than permissible limits for normal operations. Normal release limits are
specified in Title 10 of the *Code of Federal Regulations* (CFR) Part 20, Appendix B, Table 2.

14 Numerous features combine to reduce the risk associated with accidents at nuclear power 15 plants. Safety features in the design, construction, and operation of the plants, which compose 16 the first line of defense, are intended to prevent the release of radioactive materials from nuclear 17 plants. Additional measures are designed to mitigate the consequences of failures in the first 18 line of defense. These measures include the NRC's reactor site criteria in 10 CFR Part 100, 19 which require the site to have certain characteristics reducing the risk to the public and the 20 potential impacts of an accident, and emergency preparedness plans and protective action 21 measures for the site and environs, as set forth in 10 CFR 50.47, 10 CFR Part 50, Appendix E. 22 and NUREG-0654/FEMA-REP-1 (NRC 1980). All of these safety features, measures, and plans 23 make up the defense-in-depth philosophy to protect the health and safety of the public and the 24 environment.

25 Radioactive material exists in a variety of physical and chemical forms. The majority of the 26 material in reactor fuel is in the form of nonvolatile solids. However, a significant amount of 27 material is in the form of volatile solids or gases. The gaseous radioactive materials include the 28 chemically inert noble gases (e.g., krypton and xenon), which have a high potential for release. 29 Radioactive forms of iodine, created in substantial quantities in the fuel by fission, are volatile. 30 Other radioactive materials formed during the operation of a nuclear power plant have lower 31 volatilities and, therefore, have lower tendencies to escape from the fuel than the noble gases 32 and iodines.

33 Radiation exposure to individuals is determined by their proximity to radioactive material, the

34 duration of their exposure, and the extent to which they are shielded from the radiation.

35 Pathways leading to radiation exposure include (1) external radiation from radioactive material

September 2011

Draft NUREG-0498, Supplement 2

- 1 in the air, on the ground, and in the water; (2) inhalation of radioactive material; and
- 2 (3) ingestion of food or water containing material initially deposited on the ground and in water.

3 Radiation protection experts assume that any amount of radiation may pose some risk of

4 causing cancer or a severe hereditary effect and that the risk is higher for higher radiation

5 exposures. Therefore, a linear, no-threshold dose response relationship is used to describe the

6 relationship between radiation dose and detriments such as cancer induction. A recent report

5 by the National Research Council (2006), the Biological Effects of Ionizing Radiation VII report,

8 uses the linear, no-threshold dose response model as a basis for estimating the risks from low

- 9 doses. This approach is accepted by the NRC as a conservative method for estimating health
- 10 risks from radiation exposure, recognizing the model may overestimate those risks.
- 11 Physiological effects are clinically detectable if individuals receive radiation exposure resulting in
- 12 a dose greater than about 0.25 Sv (25 rem) over a short period (hours). Doses of about 2.5 to
- 13 5 Sv (250 to 500 rem) received over a relatively short period (hours to a few days) can be
- 14 expected to cause some fatalities.

15 6.1 Design Basis Accidents

16 The postulated environmental consequences of design basis accidents (DBAs) for WBN were 17 initially evaluated in the 1972 Tennessee Valley Authority (TVA) Final Environmental Statement 18 related to the construction permit for WBN Units 1 and 2 (1972 FES-CP) (TVA 1972). 19 Appendix D of the 1972 FES-CP describes the evaluation of a full range of accidents ranging 20 from those which "may reasonably be expected to occur during the lifetime of the plant" to 21 accidents with a probability of occurrence that is "very small." This latter group of accidents is 22 currently referred to as DBAs. The predicted dose at the site boundary for each accident was 23 well within the 0.25-Sv (25-rem) limit set in 10 CFR Part 100 and the 80-km (50-mi) population 24 dose commitment for each accident was less than 1 person-Sv (100 person-rem) (TVA 1972). 25 In commenting on the 1972 TVA draft environmental statement, the Atomic Energy Commission (AEC) provided its own estimates of the site boundary doses. These dose estimates, found on 26 27 page 7.1-8 and 7.1-9 of the 1972 FES-CP, are slightly lower than the TVA dose estimates. 28 Dose estimates for DBAs in the NRC's 1978 Final Environmental Statement related to the 29 operating license for WBN Units 1 and 2 (1978 FES-OL) (NRC 1978a) are consistent with and 30 slightly lower than the dose estimates in the AEC comments on the 1972 TVA draft 31 environmental statement.

In preparation of the NRC 1995 Supplement No. 1 to the Final Environmental Statement related to the operating license (1995 SFES-OL-1) (NRC 1995), the staff reviewed its earlier DBA calculations and noted that the only change in technical bases from the original DBA analyses was in the population projection. The staff then added evaluation of an accident involving the failure of a spent fuel resin storage tank. The projected consequence of this accident was also less than 5 mSv (500 mrem).

At the time of the early environmental reviews in the 1970s, a proposed Annex to Appendix D of 1 2 10 CFR Part 50 contained guidance related to the calculation of the consequences of DBAs for 3 environmental reviews. Appendix D of 10 CFR Part 50 has been replaced by 10 CFR Part 51, 4 and the proposed Annex to Appendix D is Appendix I of Regulatory Guide 4.2 (NRC 1976), 5 which is still used. This guidance permits applicants to modify the accident assumptions from 6 those used in the conservative analysis for safety reviews to more realistic assumptions for 7 environmental reviews. This guidance related to evaluation of potential environmental 8 consequences of DBAs indicates the only difference between the conservative DBA dose 9 calculations for the safety review and realistic dose calculations for the environmental review is 10 in the atmospheric dispersion factors (χ/Qs) used in the calculations.

- 11 Table 6-1 lists χ /Qs the NRC staff considers pertinent to the environmental review of DBAs for
- 12 the WBN site. The first column lists the time periods and boundaries for which χ/Q and dose
- 13 estimates are needed. For the exclusion area boundary, the postulated DBA dose and its χ/Q
- 14 are calculated for a short term (i.e., 2 hours), and for the low population zone, they are
- 15 calculated for the course of the accident (i.e., 30 days [720 hours]) composed of four time
- 16 periods. Section 2.8.4 discusses the calculation of the χ /Q values .
- 17 **Table 6-1**. Atmospheric Dispersion Factors for WBN Site Environmental DBA Calculations

Time Period and Boundary	χ/Q (s/m³)
0 to 2 hours, exclusion area boundary	5.78 × 10 ⁻⁵
0 to 8 hours, low population zone	7.15 × 10 ⁻⁶
8 to 24 hours, low population zone	6.16 × 10 ^⁵
1 to 4 days, low population zone	4.46 × 10 ⁻⁶
4 to 30 days, low population zone	2.81 × 10 ⁻⁶

18 Table 6-2 lists the set of DBAs the NRC staff considered and presents estimates of the 19 environmental consequences of each accident in terms of whole body for external radiation and 20 thyroid dose from inhaled radionuclides. The NRC presented the consequences in terms of 21 whole body and thyroid dose because the WBN Unit 2 application was submitted prior to 22 January 1997. The entries in Table 6-2 are from NRC staff dose calculations based on the χ/Qs in Table 6-1 and TVA DBA calculations described in information supplied by TVA in response to 23 24 NRC Requests for Additional Information (RAIs) (TVA 2010a, b). For consistency with the 25 licensing basis, NRC staff based thyroid dose calculations on the thyroid dose factors from International Commission on Radiological Protection Publication 2 listed in Table E-7 of 26 27 Regulatory Guide 1.109 (NRC 1977). The review criteria used in the staff's safety review of 28 DBA doses are included in Table 6-2 to illustrate the magnitude of the calculated environmental 29 consequences (doses) because there are no environmental criteria related to the potential 30 consequences of DBAs. In all cases, the calculated values are considerably smaller than the 31 doses used as safety review criteria. The staff notes that Supplement 21 of the NRC Watts Bar

1 safety evaluation report (NRC 2009a) lists as open items several DBAs that are not discussed in

2 the Final Safety Analysis Report (FSAR). These accidents include Feedwater System Pipe

3 Break, Reactor Coolant Pump Rotor Seizure, Reactor Coolant Pump Shaft Break, and Failure of

Table 6-2. Design Basis Accident Doses for WBN Unit 2

4 Small Line Carrying Coolant Outside Containment. Because the NRC staff's independent

5 review of the DBAs determined that the DBA doses were considerably smaller than the safety

6 review criteria, the NRC staff concluded the environmental consequences are SMALL.

7

		· · · · · · · · · · · · · · · · · · ·		Doses	in rem ^(a)		
	SRP Section ^(b)	EAB		LPZ		Review Criterion	
Accident		Whole Body	Thyroid	Whole Body	Thyroid	Whole Body	Thyroid
Main Steamline Break							
Pre-Existing lodine Spike	15.1.5	0.0024	0.41	0.0007	0.15	25 ^(c)	300 ^(c)
Accident Initiated Spike	15.1.5	0.0068	0.49	0.0066	0.059	2.5	30 ^(c)
Loss-of-Coolant Accident	15.6.5	0.19	3.9	0.18	5.1	25 ^(c)	300 ^(c)
Steam Generator Tube Ru	pture						
Pre-Existing lodine Spike	15.6.3	0.034	2.7	0.0061	0.46	25 ^(c)	300 ^(c)
Accident Initiated Spike	15.6.3	0.038	1.2	0.0068	0.21	2.5	30 ^(c)
Loss of Alternating Current Power ^(e)		<0.0001	<0.0001	<0.0001	<0.0001		
Waste Gas Decay Tank Rupture ^(e)		0.055	0.0017	0.0091	0.0003		
Fuel Handling Accident	15.7.4	0.039	5.2	0.0065	0.86	6 ^(d)	75 ^(d)
Control Rod Ejection Accident ^(f)							

(a) To convert rem to Sv divide by 100.(b) NUREG-0800 (NRC 2007).

(c) 10 CFR 100.11 and 10 CFR 50.34(a)(1) Criterion.

(d) Standard Review Plan (SRP) criterion.

(e) The TVA FSAR evaluated these accidents in the FSAR (TVA 2009) but they do not have a corresponding SRP section. Nevertheless, the doses must meet the 10 CFR 100.11) criteria.

(f) The TVA FSAR discusses the Control Rod Ejection Accident and concludes that the doses from a Control Rod Ejection Accident are bounded by the doses from a Loss-of-Coolant Accident.

8 6.2 Severe Accidents

9 TVA briefly addresses severe accidents for WBN Unit 2 in Section 3.1.1 of its Environmental

10 Impact Statement (TVA 2008) and more detailed information in a subsequent submittal on

severe accident mitigation design alternatives (SAMDAs) (TVA 2009b). TVA subsequently 1 2 submitted an updated SAMDA assessment using the latest dual-unit probabilistic risk 3 assessment (PRA) model for WBN (TVA 2010c). Potential impacts are presented for four severe accident release categories - early containment failure, late containment failure, 4 5 containment bypass, and small pre-existing leak. In response to an NRC staff RAI, TVA states 6 that a fifth release category, intact containment, was not used because it accounts for minimal 7 offsite consequences (TVA 2011a). The TVA assessment of the potential environmental 8 consequences incorporates the results of the MELCOR Accident Consequence Code System 9 (MACCS2) computer code (Chanin and Young 1998) run using WBN Unit 2 reactor source-term 10 information and WBN site-specific meteorological, population, and land-use data. WinMACCS 11 Version 3.6.0 was used to assess consequence. WinMACCS is an updated version of the

12 MACCS2 code that has an improved user interface.

13 Following initial review of the TVA ER, the staff asked TVA to provide additional information

14 related to severe accidents. TVA responded by providing the requested information under

15 cover letters dated October 22, 2009 (TVA 2009c), December 23, 2009 (TVA 2009d),

16 February 25, 2010 (TVA 2010a), April 9, 2010 (TVA 2010d), and January 31, 2011 (TVA

17 2011a). In addition to evaluating this information, the staff considered the severe accident

18 analysis for WBN Unit 1 contained in its 1995 SFES-OL-1 and the TVA WBN Unit 2 Individual

19 Plant Examination Summary Report dated February 9, 2010 (TVA 2010e).

20 The MACCS2 computer code was developed to evaluate the potential offsite consequences of

21 severe accidents for the sites covered by NUREG-1150 (NRC 1990). The MACCS2 code

evaluates the consequences of atmospheric releases of material after a severe accident. The

23 pathways modeled include exposure to the passing plume, exposure to material deposited on

the ground and skin, inhalation of material in the passing plume and resuspended from the

25 ground, and ingestion of contaminated food and surface water.

26 NRC staff assessed two types of severe accident consequences: human health and economic

27 costs. The staff expressed human health effects in terms of the number of cancers that might

28 be expected if a severe accident were to occur. These effects are directly related to the

29 cumulative radiation dose received by the general population. NRC staff based population

30 health-risk estimates on the population distribution within an 80-km (50-mi) radius of the WBN

31 site.

32 Economic costs of a severe accident include the costs associated with short-term relocation of

33 people; decontamination of property and equipment; interdiction of food supplies, land, and

34 equipment use; and condemnation of property.

35 Risk is the product of the frequency and the consequences of an accident. For example, the

36 frequency of a severe accident with early containment failure for WBN Unit 2 is estimated to be

 1.26×10^{-6} /reactor-year (Ryr), and the cumulative population dose associated with a severe

1 accident with early containment failure at the site is calculated to be 2.96 × 10⁴ person-Sv (2.96

 2×10^{6} person-rem). The population dose risk for this class of accidents is the product of

3 1.26 × 10⁻⁶/Ryr and 2.96 × 10⁴ person-Sv (2.96 × 10⁶ person-rem), or 3.73×10^{-2} person-Sv/Ryr

4 (3.73 person-rem/Ryr). The following sections discuss the estimated risks associated with each

5 pathway.

6 The risks presented in the following tables are risks per year of reactor operation for WBN

7 Unit 2. However, two of the tables also include an estimate of population dose risk for WBN

8 Unit 1. At multi-unit sites such as the WBN site, where there are few shared support systems,

9 the designs minimize the likelihood that a severe accident affecting one unit will adversely affect

10 other units onsite. Consequently, for this evaluation, the severe accident risk at the site is

11 estimated as the sum of the risks for the individual units.

12 6.2.1 Air Pathway

13 The WinMACCS code directly estimates consequences associated with releases to the air

14 pathway. Table 6-3 presents risks based on results of the combination WinMACCS results

15 provided by TVA (TVA 2011f) and the results of recent PRA insights (TVA 2010d). The core

16 damage frequencies (CDFs) and release frequencies given in these tables are for internally

17 initiated accident sequences while the facility is at power. Internally initiated accident sequences

18 include sequences initiated by human error, equipment failures, loss of offsite power, etc.

Release Category Description (Accident Class)	Release Frequency (per Ryr)	Population Dose Risk (person- rem/Ryr) ^(a)	Latent Fatalities (per Ryr)	Population Dose from Water Ingestion (person- rem/Ryr) ^(a)	Cost ^(b) (\$/Ryr)
Small pre- existing leak	3.8 × 10 ⁻⁶	1.2	7.4 × 10 ⁻⁴	3.8 × 10 ⁻³	2,250
Early containment failure	1.3 × 10 ⁻⁶	3.7	2.2 × 10 ⁻³	4.5 × 10 ⁻²	8,000
Late containment failure	1.3 × 10⁻⁵	14	8.5 × 10 ⁻³	0.12	41,500
Containment bypass	3.5 × 10 ⁻⁷	0.84	5.0 × 10 ⁻⁴	1.4 × 10 ⁻²	1,860
Total	1.8 × 10 ⁻⁵	20	1.2 × 10 ⁻²	0.18	53,600

19**Table 6-3**Staff Estimates of Mean Environmental Risks from a WBN Unit 2 Reactor Severe20Accident

1 Table 6-3 shows the probability-weighted consequences (i.e., risks) of severe accidents for

2 WBN Unit 2 are small for all risk categories considered. For perspective, Table 6-4 Error!

3 **Reference source not found.**compares the health risks from severe accidents for WBN Unit 2

4 with the risk range reported in license renewal applications for current operating plants.

Table 6-4 Comparison of Environmental Risks from Severe Accidents Initiated by Internal
 Events for WBN Unit 2 with Risks Initiated by Internal Events for Current Nuclear
 Power Plants That Have Undergone Operating License Renewal Review and WBN
 Unit 1

	Core Damage Frequency (per year)	50-mi Population Dose Risk (person-rem/Ryr) ^(a)
Current reactor maximum ^(b)	2.4 × 10 ⁻⁴	69
WBN Unit 2	1.8 × 10 ^{-5(c)}	20
Current reactor mean ^(b)	2.6 × 10⁻⁵	17
Current reactor median ^(b)	1.6 × 10⁻⁵	14
WBN Unit 1	5.8 × 10 ⁻⁵	5.3
Current reactor minimum ^(b)	1.9 × 10 ⁻⁶	0.34

(a) To convert person-rem to person-Sv, divide by 100.

(b) Based on MACCS (Chanin et al. 1990) and MACCS2 (Chanin and Young 1998) calculations for 78 current plants at 46 sites.

(c) Sum of the release frequencies presented in Table 6-3.

9 Table 6-4 compares WBN Unit 2 with statistics summarizing the results of contemporary severe

10 accident analyses performed for 78 reactors at 46 sites and with the CDF and population dose

11 estimate for WBN Unit 1. The results of these analyses are included in the final site-specific

12 Supplements 1 through 42 to the Generic Environmental Impact Statement (GEIS) for License

13 Renewal, NUREG-1437 (NRC 1996, 1999), and in the ERs included with license renewal

14 applications for those power stations for which supplements have not been published as yet.

15 The analyses for 74 of the reactors used MACCS2, which was released in 1997. Table 6-4

16 shows the CDF estimated for the WBN Unit 2 reactor is about the same as the mean and

17 median CDFs for currently operating reactors. However, the population doses estimated for

18 WBN Unit 2 are slightly higher than the mean and median values for currently operating

19 reactors that have undergone license renewal. However, the NRC staff does not consider this

20 difference to be significant.

21 6.2.2 Surface-Water Pathway

22 Surface-water dose pathways are an extension of the air pathway and address the effects of

23 radioactive material deposited on open bodies of water. The MACCS2 code provides an

24 evaluation of risks from water ingestion. The water ingestion dose risk calculated for WBN Unit

1 2 of about 1.8×10^{-3} person-Sv/Ryr (1.8×10^{-1} person-rem/Ryr) is small compared to the total dose risk of 0.20 person-Sv/Ryr (20 person-rem/Ryr). 2

3 The surface-water pathways also can include external radiation from (1) submersion in water and activities near the water and (2) ingestion of aquatic food. The GEIS (NUREG-1437; NRC 4 5 1996) relies on the analysis in the Fermi Final Environmental Statement (NUREG-0769; NRC 6 1981) and the Liquid Pathway Generic Study (NUREG-0440; NRC 1978b). These analyses 7 indicate that the aquatic-food pathway dose is about a factor of 20 larger than the water-8 ingestion pathway dose, which is slightly larger than the dose from shoreline activities and 9 significantly larger than the dose from swimming. They also indicate interdiction can reduce doses by as much as a factor of 10. The MACCS2 results in Table 6-3 show that the water-10 ingestion dose is a small fraction of the air-pathway dose. This indicates the doses from 11 12 shoreline activity and swimming would also be small. The staff concludes that the risks 13 associated with shoreline activities and swimming would be significantly smaller than the air-

14 pathway dose risk, particularly if interdiction were considered.

15 The staff notes that Table 5.16 of the GEIS contains an estimate of aquatic-food doses and

dose risks for generic river sites. The GEIS estimates the aquatic food dose risk as about 16

17 0.005 person-Sv/Ryr (0.5 person-rem/Ryr) without interdiction. On this basis, the staff believes

18 that the aquatic-food pathway risk with interdiction would be significantly smaller than the air-

pathway risk. 19

6.2.3 Groundwater Pathway 20

21 The groundwater pathway involves a reactor core melt, reactor vessel failure, and penetration of

the floor (basemat) below the reactor vessel. Ultimately, core debris reaches the groundwater, 22

23 which transports soluble radionuclides. In the GEIS, the staff assumed the frequency of a

severe accident with basemat penetration was 1×10^{-4} /Ryr and concluded that the groundwater 24 25 pathway risks were small.

- 26 The frequency of core melt with a basemat melt-through should be no larger than the total CDF
- estimate for the reactor. Table 6-4 shows the total CDF for WBN Unit 2 as 1.8 × 10⁵/Ryr. 27

28 NUREG-1150 indicates the conditional probability of a basemat melt-through ranges from 0.05

29 to 0.25 for currently operating reactors. On this basis, the staff believes a severe accident with

- basemat melt-through frequency of less than 1×10^{5} /Ryr is conservative and a reasonable 30
- 31 estimate. The groundwater pathway is also more tortuous and affords more time for
- 32 implementing protective actions than the air pathway and, therefore, results in a lower risk to the
- 33 public. As a result, the staff concludes that the risks associated with releases to groundwater
- are sufficiently small that they would not have a significant effect on the overall plant risk. 34

1 6.2.4 Summary of Severe Accident Impacts

The NRC staff conducted an independent review of the severe accident analysis presented by TVA in its ER for completion of WBN Unit 2. The results of the staff review of environmental risks of severe accidents associated with the air exposure pathway are presented in Table 6-3 and Table 6-4 in Section 6.2.1. The staff qualitatively evaluated the environmental risks of severe accidents associated with the surface-water and groundwater pathways in Section 6.2.2 and 6.2.3 and concludes that the environmental consequences of severe accidents are SMALL.

8 6.3 Severe Accident Mitigation Alternatives

9 Pursuant to the Third Circuit's opinion in *Limerick Ecology Action, Inc., v. NRC*, 869 F.2d 719, 723 (3d Cir. 1989), the NRC must analyze Severe Accident Mitigation Design Alternatives 10 (SAMDAs) as part of its National Environmental Policy Act (NEPA) review. As a result, the NRC 11 considers the alternative of plant operations with the installation of SAMDAs in the NEPA review 12 13 for all operating license applications to ensure that plant changes (i.e., hardware, procedures, 14 and training) with the potential for improving severe accident safety performance are identified and evaluated. SAMDAs have not been previously considered by the Tennessee Valley 15 16 Authority (TVA) for the Watts Bar Nuclear Plant Unit 2 (WBN2); therefore, the remainder of 17 Section 6.3 addresses those alternatives. 18 TVA submitted an initial assessment of SAMDAs for WBN2 as part of the Environmental Impact Statement (EIS) (TVA 2009b), based on the then most recently available WBN Unit 1 19 probabilistic risk assessment (PRA), modified to reflect the expected operation for WBN2. 20 Subsequently TVA submitted an updated SAMDA assessment utilizing the latest Computer 21

22 Aided Fault Tree Analysis (CAFTA) based dual unit PRA (TVA 2010c). Both submittals were 23 supplemented by a plant-specific offsite consequence analysis performed using the MELCOR Accident Consequence Code System 2 (MACCS2) computer code and insights from the WBN 24 25 Unit 1 individual plant examination (IPE) (TVA 1992), the WBN Unit 1 individual plant examination of external events (IPEEE) (TVA 1998), and, in the updated assessment, the 26 27 WBN2 IPE (TVA 2010e). In identifying and evaluating potential SAMDAs, TVA considered 28 SAMDAs that addressed the major contributors to core damage frequency (CDF) and large early release frequency (LERF) at WBN, population dose at WBN, as well as severe accident 29 management alternative (SAMA) candidates for operating plants which have submitted license 30 31 renewal applications. TVA initially identified 283 potential SAMDAs, followed by an additional 32 24 in the updated submittal, all of which were reduced to 38 by eliminating ones inapplicable to 33 WBN2 due to design differences; already implemented at WBN2; similar in nature so as to be 34 combined with another SAMDA candidate; excessively costly to implement such that the estimated cost would exceed the dollar value associated with completely eliminating all severe 35 36 accident risk at WBN2; or determined to provide very low benefit. TVA assessed the costs and benefits associated with each of the potential SAMDAs, and concluded in the EIS that several 37 38 are potentially cost-beneficial.

1 Based on its review, the U.S. Nuclear Regulatory Commission (NRC) issued requests for

2 additional information (RAIs) to TVA (NRC 2009b, NRC 2011a; NRC 2011b, NRC 2011c). TVA

3 provided additional information regarding the PRA, information on 30 additional SAMDA

4 candidates, and additional information regarding several specific SAMDAs. The responses also

5 included revised results of the initial SAMDA analysis and updated submittal (TVA 2010f, TVA

6 2010g, TVA 2011a; TVA 2011b, TVA 2011c, TVA 2011d, TVA 2011e, TVA 2011f). TVA's

7 responses addressed the NRC staff's concerns.

8

9 6.3.1 Risk Estimates for Watts Bar Nuclear Plant Unit 2

10 TVA combined two distinct analyses to form the basis for the risk estimates used in the SAMDA 11 analysis: (1) the WBN Level 1 and 2 dual unit PRA model, which is updated from the Unit 2 IPE, 12 and (2) a supplemental analysis of offsite consequences and economic impacts (essentially a 13 Level 3 PRA model) developed specifically for the SAMDA analysis. The updated SAMDA 14 analysis is based on the most recent WBN Level 1 and Level 2 PRA models available at the 15 time of the assessment (TVA 2010c), which does not include external events.

The WBN2 CDF is approximately 1.7 x 10⁻⁵/yr for internal events (including internal flooding) as
determined from quantification of the Level 1 PRA model. The CDF is based on the risk
assessment for internally-initiated events, which includes internal flooding. The breakdown of
CDF by initiating event is shown in the table below, which indicates that events initiated by loss
of offsite power (LOOP) and internal floods are the dominant contributors to CDF (TVA 2011a).

21

Table 6-5. WBN2 Core Damage Frequency for Internal Events						
Initiating Event	CDF (Per Year)	% Contribution to CDF ¹				
Loss of Offsite Power (Grid Related)	3.2 x 10 ⁻⁶	19				
Loss of Offsite Power (Plant Centered)	2.8 x 10 ⁻⁶	16				
Total Loss of Component Cooling Unit 2	1.6 x 10 ⁻⁶	10				
Loss of Offsite Power (Weather Induced) Flood Event Induced by Rupture of Raw	1.1 x 10 ⁻⁶	6				
Cooling Water (RCW) Line in room 772 0 – A8	1.1 x 10 ⁻⁶	6				
Flood Event Induced by Rupture of RCW Line in room 772 0 – A9	1.1 x 10 ⁻⁶	6				
Total Loss of Emergency RCW (ERCW) Cooling	9.6 x 10 ⁻⁷	6				
Small LOCA Stuck Open Safety Relief Valve	6.5 x 10 ⁻⁷	4				
Flood Event Induced by Rupture of high pressure fire protection (HPFP) in Common Areas of the Auxiliary building	3.2 x 10 ⁻⁷	2				

Draft NUREG-0498, Supplement 2

September 2011

Initiating Event	CDF (Per Year)	% Contribution to CDF ¹
Turbine Trip	3.0 x 10 ⁻⁷	2
Others (each 1% or less)	4.1 x 10⁻ ⁶	24
Total CDF (internal events)	1.72 x 10 ⁻⁵	100

MPN2 Core Domago Frequency for Internal Events

May not total to 100 percent due to round off.

2 TVA did not include the contribution from external events in the WBN risk estimates, but rather 3 accounted for their potential risk reduction benefits by multiplying the estimated benefits for 4 internal events by a factor of 2, which was subsequently increased to 2.28 in response to an 5 NRC staff RAI (TVA 2011a).

6

1

7 The Level 2 portion of the SAMDA model represents an updated version of the WBN2 IPE Level 8 2 model, which was based on enhancements to NUREG/CR-6595 (NRC 2004a) and included

9 guantification of containment threats resulting from high pressure failure of the reactor vessel

10 and hydrogen deflagrations/detonations as well as additional detail on the treatment of

11 interfacing system loss of coolant accidents (ISLOCAs) and induced steam generator tube

12 rupture (I-SGTR). Two large containment event trees (CETs) were developed; one for SBO and

13 one for non-SBO sequences. The result of the Level 2 model is a set of four release categories

with their respective frequency and release characteristics and one category for intact 14.

containment, which is considered to have a negligible release. The frequency of each release 15

category was obtained by summing the frequency of the contributing Level 2 sequences. 16

17

18 The offsite consequences and economic impact analyses use the WinMACCS code, the current 19 version of the MACCS2 code, to determine the offsite risk impacts on the surrounding

20 environment and public. Code inputs include plant-specific values for core radionuclide

21 inventory, source term and release characteristics, site-specific meteorological data, projected

22 population distribution (within an 80-kilometer [50-mile] radius) for the year 2040, emergency

23 response evacuation modeling, and economic data. The magnitude of the onsite impacts (in

terms of clean-up and decontamination costs and occupational dose) is based on information 24

25 provided in NUREG/BR -0184 (NRC 1997a). The release characteristics are based on the

26 SEQSOR emulation spreadsheet methodology. TVA estimated the dose to the population

27 within 80 kilometers (50 miles) of the WBN site to be approximately 0.200 person-sievert (Sv) 28 (20.0 person-rem) per year (TVA 2011e). The breakdown of the total population dose by

29 release category is summarized in the following table (TVA 2011e). Late containment over-

30 pressure failure is the dominant contributor to population dose risk at WBN2.

31

	Category		
Containment Release Mode	Population Dose (Person-Rem ^[1] Per Year)	Percent Contribution	
Early Containment Failure	3.7	19	
Containment Bypass	0.8	4	
Late Containment Failure	14.1	71	
Small Pre-existing Leak	1.2	6	
Intact Containment	negligible	negligible	
Total	20.0 ^[2]	100	
0.04 0.(0)	· · · · · · · · · · · · · · · · · · ·		

 Table 6-6.
 Breakdown of Population Dose by Containment Release

¹One person-rem = 0.01 person-Sv (Sievert)

²Total is not equal to the sum of the above due to roundoff

2 6.3.2 Adequacy of the WBN2 PRA for SAMDA Evaluation

3

1

4 Since WBN Units 1 and 2 are essentially identical, the history of both units' PRA models is 5 relevant to this evaluation. There have been eight revisions to the WBN PRA model since the 6 1992 WBN1 IPE submittal (TVA 1992), including the 2009 dual unit model which utilized the 7 CAFTA PRA software, whereas earlier versions utilized the RISKMAN PRA software. A 8 description of the most significant changes made to each revision was provided by TVA in the 9 original and updated assessments and in response to NRC staff RAIs (TVA 2009b, TVA 2010c. 10 TVA 2010f, TVA 2011a, TVA 2011b, TVA 2011c, TVA 2011d). A comparison of internal events 11 CDF between the 1994 Unit 1 IPE (TVA 1994a) update and the initial Unit 2 PRA model (2009) 12 indicates a decrease of approximately 80 percent (from 8.0 x 10^{-5} /yr to 1.5 x 10^{-5} /yr), primarily due to the resolution of various 2001 peer review findings. The WBN2 PRA used for the 13 SAMDA model has a similar internal events CDF (1.7 x 10⁻⁵/yr), which includes credit for cross-14 15 tying Unit1 and Unit 2 shutdown boards and recovery of total loss of Emergency Raw Cooling 16 Water (ERCW) by use of a portable diesel driven fire pump (TVA 2011a).

17 Internal Events CDF

18 TVA states that the Unit 2 IPE is based on the Unit 1 design and operation as of April 1, 2008. 19 Since the IPE 2008 freeze date, a significant number (but not all) of mainly procedural changes 20 that were identified in the initial Unit 2 SAMDA assessment have been implemented and 21 incorporated in the current SAMDA PRA (TVA 2011a). The NRC staff concludes that those 22 changes that have not been incorporated will tend to reduce the CDF and thus make the current 23 results conservative. The NRC staff considered the peer reviews performed for the WBN PRA, 24 and the potential impact of the review findings on the SAMDA evaluation. The most relevant 25 review is that performed by the Westinghouse Owners Group (WOG) in November 2009, for 26 which a summary of the results is provided in the Unit 2 IPE submittal along with a listing of the 27 peer review findings (TVA 2010e). While most of the findings have been resolved as part of the updated SAMDA model, a significant number remain open in two categories: those considered 28 29 by TVA to be documentation-only issues and those pertaining to internal flooding (See Appendix

Draft NUREG-0498, Supplement 2

1 H) (TVA 2011a). TVA also indicated that the changes between the Unit 2 IPE model and the 2 SAMDA model were independently reviewed internally and externally.

3

The WBN CAFTA model utilizes a single fault tree constructed with systems and components for each unit and includes common systems. Shared system initiating events fail the supporting function for both units. Model quantification for each unit accurately tracks the dependent failure for each unit (TVA 2011a). Given that the WBN internal events PRA model has been peerreviewed, the peer review findings have been addressed, and TVA has satisfactorily addressed NRC staff questions regarding the PRA, the NRC staff concludes that the internal events Level 1 WBN2 SAMDA PRA model is of sufficient quality to support the SAMDA evaluation.

11 12

Fire CDF

13 Since the WBN PRA does not include external events, the SAMDA submittals cite the WBN Unit 14 1 IPEEE, submitted in November 1998 (TVA 1998), in response to Supplement 4 of Generic Letter 88-20 (NRC 1991), for which the only vulnerability found has been corrected. The Unit 2 15 16 IPEEE was submitted in April 2010 and uses the same methodology and, to a large extent, the 17 same assessment as the Unit 1 IPEEE, subject to validation that the Unit 1 assessments are applicable to the as built Unit 2 (TVA 2010h). This submittal included a summary of the seismic 18 margin analysis (EPRI 1991), the fire induced vulnerability evaluation (FIVE [EPRI 1992]), and 19 20 the screening analysis for other external events. No fundamental weaknesses or vulnerabilities 21 to severe accident risk were identified in the Unit 1 IPEEE with the exception of one item related 22 to tornado missiles, for which corrective action has been completed. No seismic, fire, high 23 winds, external floods or other external hazard improvements were identified. The NRC staff 24 concluded that the licensee's Unit 1 IPEEE process is capable of identifying the most likely 25 severe accidents and severe accident vulnerabilities, and therefore, that the Watts Bar IPEEE 26 has met the intent of Supplement 4 to Generic Letter 88-20 (NRC 2000).

The dominant fire areas, defined as those having a fire $CDF \ge 3 \times 10^{-7}$ /yr, and their contributions to the fire CDF are listed in the table below. The total fire CDF is not given in the IPEEE submittal, but the total for those subjected to the final stage of screening is stated to be 9.3 x 10^{-6} /yr (TVA 2011a).

31

32 The WNB2 IPEEE did not identify any vulnerabilities due to fire events or any improvements to 33 reduce fire risk.

34

Fire Area Description	CDF (per year)
Main Control Room	9.7 x 10 ⁻⁷
Corridor in Auxiliary Building (713.0-A1 & A2)	9.3 x 10 ⁻⁷
125V Vital Battery Board Room IV	8.4 x 10 ⁻⁷
Refueling Room	7.5 x 10 ⁻⁷
Auxiliary Instrument Room 2	6.8 x 10 ⁻⁷

 Table 6-7.
 Dominant Fire Areas and Their Contribution to Fire CDF

September 2011

Fire Area Description	CDF (per year)
Turbine Building	5.9 x 10 ⁻⁷
Corridor (737.0-A1B)	5.1 x 10 ⁻⁷
Corridor (737.0-A1A)	4.2 x 10 ⁻⁷
Auxiliary Building Roof	3.1 x 10 ⁻⁷
Corridor (737.0-A1C)	2.9 x 10 ⁻⁷
Total	9.3 x 10 ⁻⁶

Table 6-7 Dominant Fire Areas and Their Contribution to Fire CDF

1

2 TVA identified both conservatisms and non-conservatisms in the fire analysis (TVA 2011a), 3 among which are conservative fire ignition frequencies, control room severity factors and non-4 suppression probabilities; non-conservatively assuming that fires do not propagate between 5 analysis volumes and excluding some spurious actuations as well as the increased probability 6 of the 182 gpm per pump seal LOCA. TVA concludes that the conservatisms outweigh the non-7 conservatisms so that the fire contribution to risk is less than that given by the sum of the final 8 screen results. To account for this conservatism, TVA reduced the fire CDF for the dominant 9 fire areas in the IPEEE (9.3 x 10^{-6} /yr) by a factor of 2.29 to yield a fire CDF of 4.1 x 10^{-6} /yr for the SAMDA evaluation. This factor is the ratio of the internal events CDF of 2.68 x 10⁻⁵/yr given 10 by the modified PRA used for the fire analysis with no fire induced failures nor flood failures to 11 the CDF of 1.17 x 10⁻⁵/yr given by the October 2010 SAMDA PRA for internal events only, 12 excluding floods (TVA 2011a). Based on the conservatisms in the fire analysis, the staff 13 concludes that a fire CDF of 4.1 x 10⁻⁶/yr is reasonable for the SAMA analysis. 14

15 16

Seismic CDF

17 The WBN Unit 1 IPEEE used a focused scope Electric Power Research Institute (EPRI) seismic margins analysis, which is qualitative and does not provide numerical estimates of the CDF 18 19 (EPRI 1991). The components in the safe shutdown equipment list were screened using an

20 overall high confidence of low probability of failure (HCLPF) capacity of 0.3g, the review level

earthquake (RLE) value for the plant, and the screening level that would be used for a focused-21 scope plant. No significant seismic concerns were identified, although some maintenance and 22

23 housekeeping items were noted and corrected (TVA 1998, TVA 2010h). While the Unit 2

24 seismic assessment makes considerable use of the Unit 1 assessment, individual aspects are

repeated and/or the Unit 1 results were reviewed to confirm that they are applicable to Unit 2. 25

26 TVA considered this an acceptable approach since the designs of the units are nearly identical 27 and use the same design criteria. The WNB2 IPEEE did not identify any seismic or

28 improvements to reduce seismic risk.

29 To provide insight into the appropriate estimate of the seismic CDF to use for the SAMDA

evaluation, the NRC staff noted that, in the attachments to NRC Information Notice 2010-18, 30 Generic Issue (GI) 199 (NRC 2010), the NRC staff estimated a "weakest link model" seismic

31

^a The remaining contribution from all other fire areas is $\sim 3 \times 10^{-6}$.

1 CDF for WBN 1 of 3.6 × 10–5/yr using updated seismic hazard curves developed by the U.S. Geological Survey (USGS) in 2008 (USGS 2008) and requested TVA provide an assessment of 2 3 the impact of the updated USGS seismic hazard curves on the SAMDA evaluation (NRC 4 2011a). The NRC Information Notice referenced the August 2010 NRC document, "Safety/Risk 5 Assessment Results for Generic Issue 199, Implications of Updated Probabilistic Seismic 6 Hazard Estimates in Central and Eastern United States on Existing Plants" (ADAMS Accession 7 No. ML100270582 (package)), that discusses recent updates to estimates of the seismic hazard 8 in the central and eastern United States. Appendix A of that document describes how the 9 seismic CDF estimate can be acceptably derived using various approaches; including a 10 maximum estimate, averaging estimates, and the weakest link estimate. All these approaches use the plant-specific ground motion characterization (i.e., spectral accelerations at various 11 frequencies and/or peak ground accelerations). For WBN 1, the peak ground acceleration 12 13 estimate is greater than the spectral acceleration estimates derived at 1 Hz, 5 Hz, and 10 Hz. As a result, the peak ground acceleration estimate is equal to the maximum estimate and 14 15 dominates the weakest link model estimate at 3.6×10^{-5} /yr. 16 17 In response to the staff request, TVA noted that the Watts Bar site was used as the test case for

18 closure of GI-194, "Implications of updated probabilistic seismic hazard estimates" (NRC 2003a)

19 (TVA 2011a). For GI 194, the staff initially estimated the seismic CDF using the updated peak 20

ground acceleration and derived a value similar to the latest updated value. However, the staff noted that the Watts Bar site's updated seismic spectral acceleration values differed significantly 21

22 from the design safe shutdown earthquake (SSE) spectrum. To account for the effect of this

23 difference in spectrum shape on the estimated seismic CDF, the Watts Bar plant HCLPF

24 capacity of 0.3g was scaled to the spectral acceleration values at 5 hertz (Hz) and 10 Hz, based

25 on the natural frequency range for most structures and equipment in nuclear power plants being

26 below 10 Hz (NRC 2003a) and used an averaging approach to derive the estimate of the

27 seismic CDF. Based on the GI 194 staff analysis, TVA concluded that 1.8 × 10⁻⁵/yr is an

28 appropriate estimate of the seismic CDF for use in the WBN2 SAMA evaluation.

29

39

30 The seismic CDF estimated by the NRC staff for Watts Bar 1 using the 2008 USGS seismic

hazard curves resulted in seismic CDFs of 1.3 x 10⁻⁵/yr and about 2.8 x 10⁻⁵/yr for spectral 31

32 ground accelerations of 5 Hz and 10 Hz, respectively (NRC 2010). The average of the seismic

CDF for these two acceleration values is about 2.0 x 10^{-5} /yr, which is comparable to the GI-194 33

34 result for Watts Bar based on the same methodology. Based on this being essentially the same

as the spectral-average seismic CDF of 1.8 × 10⁻⁵/yr determined for closure of GI-194, the NRC 35

staff agrees that 1.8×10^{-5} /yr is an acceptable estimate of the seismic CDF for use in the WBN2 36

SAMDA evaluation. 37 38

"Other" External Event CDF

40 The IPEEE analysis of "other" external events, which include high winds, external floods, 41 transportation accidents, etc. (HFO events), followed the screening and evaluation approaches 42 described in Supplement 4 of GL 88-20 (NRC 1991) and focused on demonstrating that the

September 2011

1 design and construction of the plant in the HFO areas met the 1975 Standard Review Plan Criteria (NRC 1975). As a result, TVA completed a corrective action to design and install a steel 2 3 shield to close an opening on the Unit 2 side of the Auxiliary Building that had the potential for 4 allowing tornado missiles to penetrate into the auxiliary building and damage safety related 5 equipment. TVA did not identify any other vulnerabilities or need for improvements. Based on this result, TVA did not consider specific SAMDAs for HFO events. It is noted that the risks from 6 7 deliberate aircraft impacts were explicitly excluded since this was being considered in other 8 forums along with other sources of sabotage. 9

10 Level 2 and LERF

11 The NRC staff reviewed the general process used by TVA to translate the results of the Level 1 12 PRA into containment releases, as well as the results of the Level 2 analysis, as described in the SAMDA submittal and in response to NRC staff requests for additional information (TVA 13 14 2011a, TVA2011b, TVA 2011c, TVA 2011d). Accident progression was modeled using a 32 node containment model in MAAP4.0.7. Two large CETs were developed; one for SBO and 15 16 one for non-SBO sequences (TVA 2010e). The reactor core radionuclide inventory assumes 17 5% enrichment and a burnup of 1000 effective full power days (EFPD) for WBN2 at 3565 MWt as evaluated using the ORIGEN code. TVA states that these conditions bound that expected 18 19 for the WBN2 fuel management program for the license period (TVA 2010f). Each Level 1 core 20 damage sequence is assigned to one of eight plant damage state (PDS) bins, based on 21 characteristics such as bypass containment or not, the type of bypass and high or low reactor coolant pressure. Each core damage sequence is linked to one of 11 Level 2 CET end state 22 groups (plus intact containment), which are then binned into four release categories, used in the 23 24 Level 3 consequence analysis, that represent similar containment failure modes, release 25 magnitudes and timing.

26

27 The frequency of each release category is the sum of the frequencies of the contributing Level 2 28 sequences. Source terms and other release parameters for the Level 3 consequence analysis 29 were determined for eleven scenarios that are representative of the sequences that contribute 30 to the release categories. Based on the NRC staff's review of the Level 2 methodology, the fact that the LERF model was reviewed by the WOG and the review findings have all been 31 32 addressed in the SAMDA Level 2 model, the updated Level 2 model was reviewed by an 33 external contractor and independently reviewed by the TVA PRA team, and TVA has responded 34 to the RAIs concerning the Level 2 model, the NRC staff concludes that the Level 2 PRA

- 35 provides an acceptable basis for evaluating the benefits associated with various SAMDAs.
- 36 37

Level 3 – Population Dose

The process used by TVA to extend the containment performance (Level 2) portion of the PRA to an assessment of offsite consequences (essentially a Level 3 PRA) included consideration of the source terms and other parameters used to characterize fission product releases for the applicable representative release scenarios that contribute to the containment release

42 categories and the major input assumptions used in the offsite consequence analyses. The

1 WinMACCS code, the current version of the MACCS2 code, was utilized to estimate offsite 2 consequences. Plant-specific input to the code includes the source terms for each release 3 category and the reactor core radionuclide inventory; site-specific meteorological data for the 4 2002 calendar year; projected population distribution within an 80-kilometer (50-mile) radius for 5 the year 2040, based on the U.S. Census Bureau population data for 2000; emergency evacuation modeling, which assumed that 99.5 percent of the population would evacuate, 6 7 NUREG-1150 (NRC 1990); and economic data from SECPOP2000 (NRC 2003b, TVA 2010c). 8 9 Sensitivity analyses were performed on some of the WinMACCS input parameters, including variation in the year chosen for meteorological data (data from 2001 through 2005 were 10

- 11 available) and evacuation speed. TVA noted that previous SAMA analyses typically show little
- sensitivity to variations in many of the WinMACCS parameters, e.g., release height and plume 12 13
- buoyancy. The NRC staff concluded that the release parameters, methods and assumptions for
- 14 estimating population, evacuation assumptions, and approach taken for determining the site-15
- specific economic data are acceptable for the purposes of the SAMDA evaluation. The NRC
- 16 staff concludes that the methodology used by TVA to estimate the offsite consequences for 17

WBN provides an acceptable basis from which to proceed with an assessment of risk reduction 18 potential for candidate SAMDAs. Accordingly, the NRC staff based its assessment of offsite risk

- 19 on the CDF and revised offsite doses reported by TVA.
- 20

25

28

29 30

37

38

39

21 6.3.3 Potential Plant Improvements

- 22 TVA's process for identifying potential plant improvements (SAMDAs) consisted of the following 23 elements: 24
 - Review of other industry documentation discussing potential plant improvements as • developed in NEI 05-01 (NEI 2005),
- 26 Review of Phase II SAMAs from license renewal applications for five other U.S. nuclear • 27 sites.
 - Review of potential plant improvements identified in the WBN IPE and IPEEE, •
 - Review of the most significant basic events and systems from the WBN Unit 2 PRA submitted in support of the original Unit 2 SAMDA assessment (TVA 2009b), and
- 31 Review of the most significant basic events from the WBN Unit 2 IPE based PRA • 32 submitted in support of the Updated SAMDA assessment (TVA 2010c). 33
- 34 Based on this process, an initial set of 307 candidate "Phase I" SAMDAs was identified. TVA 35 performed a qualitative screening of this initial list to eliminate 269 SAMDAs, leaving 38 for 36 further evaluation, using the following criteria:
 - The SAMDA is not applicable to the WBN design, ٠
 - The SAMDA or its equivalent has already been implemented at WBN,
 - The SAMDA is similar in nature and can be combined with another SAMDA. •
- 40 • The SAMDA has estimated costs that would exceed the dollar value associated with 41 completely eliminating all severe accident risk at WBN, or

- The SAMDA is related to a non-risk significant system known to have negligible impact on risk.
- For these remaining "Phase II" SAMDAs, TVA performed a detailed evaluation, accounting for the potential impact of external events using a multiplier of 2.28 (TVA 2011a). This was derived as the ratio of the sum of the internal events, fire and seismic CDFs ($1.7 \times 10^{-5} + 4.1 \times 10^{-6} + 1.8 \times 10^{-5} = 3.9 \times 10^{-5}$ /yr) to the internal events CDF (1.7×10^{-5} /yr). The NRC staff agrees that the applicant's use of a multiplier of 2.28 to account for external events is reasonable for the purposes of the SAMDA evaluation.
- 10

1

2

3

11 Overall, TVA's efforts to identify potential SAMDAs focused primarily on areas associated with 12 internal initiating events based on the systems and basic events considered to be important to 13 internal event CDF and LERF from a risk reduction worth (RRW) perspective at WBN. This 14 included selected SAMDAs from prior SAMA analyses for other plants. Also in response to NRC staff RAIs, TVA identified an additional 31 candidate SAMDAs resulting from: the 15 16 enhancements identified in the Watts Bar Unit 1 SAMDA analysis (TVA 1994b), review of the 17 WBN2 PRA down to a lower value of RRW and the dominant fire zones as identified in the IPEEE. All were, however, screened from detailed analysis (TVA 2011a).^a 18

19 The NRC staff reviewed TVA's process for identifying and screening potential SAMDA 20 candidates, as well as the methods for quantifying the benefits associated with potential risk 21 reduction. The NRC staff concludes that the set of SAMDAs evaluated in the EIS, together with 22 those identified in response to NRC staff RAIs, addresses the major contributors to internal 23 events CDF. Based on the licensee's IPEEE and the expected cost associated with further risk 24 analysis and potential plant modifications, the NRC staff further concludes that the opportunity 25 for seismic and fire-related SAMDAs has been adequately explored and that it is unlikely that 26 there are any additional cost-beneficial seismic or fire-related SAMDA candidates. 27 The NRC staff notes that the set of SAMDAs submitted is not all inclusive, since additional, 28 possibly even less expensive, design alternatives can always be postulated. However, the NRC 29 staff concludes that the benefits of any additional modifications are unlikely to exceed the

- 30 benefits of the modifications evaluated and that the alternative improvements would not likely
- 31 cost less than the least expensive alternatives evaluated, when the subsidiary costs associated 32 with maintenance, procedures, and training are considered. The NRC staff further concludes
- 33 that TVA used a systematic and comprehensive process for identifying potential plant
- 34 improvements for WBN, and that the set of potential plant improvements identified by TVA is
- 35 reasonably comprehensive and therefore acceptable. While explicit treatment of external
- 36 events in the SAMDA identification process was limited, it is recognized that the absence of
- external event vulnerabilities reasonably justifies examining primarily the internal events risk
 results for this purpose.

^a TVA subsequently provided a revised Level 3 consequence analysis. In assessing the impact of the corrected consequence analysis on the SAMDA identification process, TVA identified one additional candidate SAMDA, which was screened out (TVA 2011e).

1 6.3.3.1 Risk Reduction

2 TVA evaluated the risk-reduction potential of the 38 Phase-II SAMAs in a bounding fashion by 3 assuming that the SAMDA would completely eliminate the risk associated with the proposed enhancement. Such bounding calculations overestimate the benefit and are conservative. TVA 4 5 used model re-guantification to estimate the risk reduction for each of the evaluated SAMDAs. the estimated risk reduction in terms of percent reduction in CDF and population dose, and the 6 7 estimated total benefit (present value) of the averted risk. The estimated benefits combined 8 benefits in both internal and external events through the use of the external events multiplier, as 9 well as incorporating a number of changes to the analysis methodology subsequent to the 10 original submittal.

11

The NRC staff has reviewed TVA's bases for calculating the risk reduction for the various plant improvements as described in the SAMDA assessments and in response to NRC staff RAIs and concludes that the rationale and assumptions for estimating risk reduction are reasonable and generally conservative (i.e., the estimated risk reduction is higher than what would actually be realized). Accordingly, the NRC staff based its estimates of averted risk for the various

17 SAMDAs on TVA's risk reduction estimates.

18 6.3.3.2 Cost Impacts

19 TVA estimated the costs of implementing the 38 Phase-II SAMAs by focusing on labor (craft, engineering, etc.) and component cost related to installing the proposed physical change. 20 21 Costs do not include lifetime operation; testing or maintenance; procedural development and 22 training associated with the physical changes (except for those SAMDAs which were solely procedural and/or training activities); or contingency for unforeseen obstacles or inflation (TVA 23 24 2011a; TVA 2010f). Concerning per-unit cost savings associated with implementing the changes to both WBN units, TVA stated that the cost of procedural or training module 25 development is only marginally increased to apply to a second unit and that, for physical unit 26 design changes, the costs are for the affected unit only (TVA 2011a). Therefore, TVA opted not 27 to divide the cost of procedural and training SAMDAs in half. The NRC staff concludes that the 28 29 per-unit cost of physical changes (for the scope of the cost estimate as described above) would be less then that given by TVA. However, since the scope of TVA's cost estimates excludes 30 lifetime costs associated with the procedure and training, these should be conservative, as 31 32 borne out by comparison with similar costs given in license renewal SAMA submittals. Therefore, with regard to physical changes, the NRC staff concludes that, while there may be 33 some savings with respect to sharing engineering cost between units, other factors such as 34 35 lifetime costs and procedure and training associated with the change that are not included in TVA's estimate result in a conservative estimate. The NRC staff thereby concludes that the 36 37 cost estimates provided by TVA are sufficient and appropriate for use in the SAMDA assessments. 38

39

1 6.3.3.4 Cost-Benefit Comparison

The methodology used by TVA is based on NEI 05-01, Severe Accident Mitigation Alternatives
 (SAMA) Analysis Guidance Document (NEI 2005), which in turn is based on NRC's guidance for
 performing cost-benefit analysis, i.e., NUREG/BR-0184, Regulatory Analysis Technical
 Evaluation Handbook (NRC 1997b). The guidance involves determining the net value for each
 SAMA according to the following formula:
 Net Value = (APE + AOC + AOE + AOSC) - COE

- 9 where:
- 10 APE = present value of averted public exposure (\$)
- 11 AOC = present value of averted offsite property damage costs (\$)
- 12 AOE = present value of averted occupational exposure costs (\$)

15 If the net value of a SAMDA is negative, the cost of implementing the SAMDA is larger than the benefit associated with the SAMDA and it is not considered cost-beneficial. TVA performed the 16 17 SAMDA analysis using a 7 percent discount rate and provided a sensitivity analysis using a 3 18 percent discount rate to capture SAMDAs that may be cost-effective based on either (TVA 19 2011a). This analysis is sufficient to satisfy NRC policy in Revision 4 of NUREG/BR-0058 (NRC 20 2004b). Using the above equations, TVA estimated the total present dollar value equivalent 21 associated with completely eliminating severe accidents from internal events at WBN2 to be 22 about \$1,930,000. Use of a multiplier of 2.28 to account for external events increases the value to \$4,401,000. This represents the dollar value associated with completely eliminating all 23 24 internal and external event severe accident risk at WBN2, and is also referred to as the Modified 25 Maximum Averted Cost Risk (MMACR).

26 As a result of TVA's baseline analysis, eight SAMDAs (SAMDAs 4, 156, 256, 285, 292, 299, 27 305 and 306) were cost-beneficial. In addition to considering the impact of discount rate, TVA 28 also estimated the effect of incorporating CDF uncertainties and parameter choices on the results of the SAMDA assessment (TVA 2011a). The change in discount rate from 7 percent to 29 30 3 percent changed the conclusion concerning cost-benefit of two SAMDAs (SAMDAs 215 and 31 300). Moreover, these results indicated that the impact of the 3 percent discount rate was less 32 than that of the CDF uncertainty (discussed below). Hence, the SAMDAs that are costbeneficial based on the CDF uncertainty incorporate those that are cost beneficial considering 33 34 the 3 percent discount rate. TVA's limited sensitivity studies relative to the parameter choices for the consequence analysis showed no impact on the calculated risk. Based on the 35

1 parameters used and the results of previous SAMA consequence analysis sensitivity studies,

- 2 the NRC staff concludes that the parameter selection for the consequence analysis is
- 3 acceptable for the purposes of the SAMDA assessment.

4 TVA considered the impact that possible increases in benefits from analysis uncertainties would 5 have on the results of the SAMDA assessment. Since no uncertainty distributions on CDF were available for the CAFTA-based SAMDA model, TVA used the results of the uncertainty analysis 6 7 of the earlier RISKMAN-based PRA model (TVA 2009b) to establish an uncertainty multiplier based on the ratio of the 95th percentile CDF to the mean CDF, or 2.70. TVA subsequently 8 9 determined that six additional SAMDAs (SAMDAs 8, 70, 93, 215, 226 and 300) would be costbeneficial. The NRC staff notes that the CAFTA results are point estimates, not means, and 10 hence the ratio of the 95th percentile CDF to the point estimate CDF, or 2.78, should be used in 11 12 the CDF uncertainty analysis instead of 2.70. However, this difference is small and potentially 13 impacts the cost-benefit analysis only of SAMDA 70, changing it from just slightly below to just 14 slightly above the threshold to render it cost-beneficial. TVA has committed to provide a new 15 capability to allow the operators from the control room to transfer from normal compressed air supply to the station nitrogen system for control of the level control valves (LCVs). This new 16 17 capability, identified as SAMDA 339, will have a greater benefit then that associated with SAMDA 70 and thus supersedes it. TVA also re-examined the initial set of SAMDAs to 18 determine if any additional Phase I SAMDAs would be retained for further analysis if the 19 20 benefits (and Modified Maximum Averted Cost-Risk) were increased by the uncertainty factor of 21 2.70. None were identified (TVA 2011b, TVA 2011c, TVA 2011e). Use of an uncertainty factor 22 of 2.78 would not change this conclusion.

The NRC staff concludes that, with the exception of the potentially cost-beneficial SAMDAs that have been identified, the costs of the other SAMDAs evaluated would be higher than the associated benefits, such that no additional SAMDAs would be expected to be cost-beneficial.

- 26 6.3.4 Cost-Beneficial SAMAs
- 27 Highlighted in **bold italics** in the following table are the potentially cost-beneficial SAMAs:
- 28 29

 Table 6-8.
 SAMDA Cost-Benefit Analysis for WBN2

	% Risk Reduction		Total Benefit (\$)		Cast
SAMDA	CDF	Populatio n Dose	Baseline (Internal + External)	Baseline With Uncertainty	- Cost (\$)
4 Improve DC bus load shedding	1.1	1.2	40K	110K	32K
8 Increase training on response to loss of two 120V AC buses which causes inadvertent actuation signal	0.8	~0	12K	35K	27K

	% Risk	Reduction	Total Benefit (\$)		Cast
SAMDA	CDF	Populatio n Dose	Baseline (Internal + External)	Baseline With Uncertainty	Cost (\$)
26 – Provide an additional high pressure injection pump with independent diesel	1.4	1.4	65K	180K	3.6M
32 – Add the ability to automatically align emergency core cooling system to recirculation mode upon refueling water storage tank depletion	7.4	12	400K	. 1.1 M	2.1M
45 – Enhance procedural guidance for use of cross- tied component cooling or service water pumps	0.3	~0	5K	14K	32K
46 – Add service water pump	7.0	3.7	150K	410K	1.0M
56 – Install an independent reactor coolant pump seal injection system, without dedicated diesel	24	29	1.1M	3.2M	8.2M
70 – Install accumulators for turbine-driven auxiliary feedwater pump flow control valves ^(a,f)	2.5	2.2	100K	280K	260K
71 – Install a new condensate storage tank (auxiliary feedwater storage tank)	~0	~0	~0	~0	1.7M
87 – Replace service and instrument air compressors with more reliable compressors which have self -contained air cooling by shaft driven fans	0.2	~0	2.2K	6.0K	890K
93 – Install an unfiltered hardened containment vent to eliminate the containment overpressure failure ^(d)	0	38	1.2M	3.5M	3.1M

.

	% Risk Reduction		Total Benefit (\$)		Cost
SAMDA	CDF	Populatio n Dose	Baseline (Internal + External)	Baseline With Uncertainty	(\$)
101 – Provide a reactor exterior cooling system to cool a molten core before vessel failure	0	8.5	210K	580K	2.5M
103 – Institute simulator training for severe accident scenarios	33	32	1.4M	3.9M	8.0M
109 – Install a passive hydrogen control system	0	12	300K	840K	3.7M
110 – Erect a barrier that would provide enhanced protection of the containment walls (shell) from ejected core debris following a core melt scenario at high pressure.	0	4.0	100K	290K	1.2M
112 – Add redundant and diverse limit switches to each containment isolation valve	<0.1	0.0	3.2K	8.9K	690K
136 – Install motor generator set trip breakers in the control room	0.9	0.0	13K	37K	240K
156 – Eliminate reactor coolant pump (RCP) thermal barrier dependence on CCW, such that loss of CCW does not result directly in core damage (Enhance procedural guidance for use of ERCW for RCP thermal barrier cooling) ^(b,c)	13	20	780K	2.2M	32K
176 – Provide a connection to alternate offsite power source	19	17	780K	2.2M	9.1M
191 – Provide self-cooled ECCS seals	~0 ^(f)	~0	~0	~0	1.0M

6-23

	% Risk	Reduction	Total Ber	nefit (\$)	Cost (\$)
SAMDA	CDF	Populatio n Dose	Baseline (Internal + External)	Baseline With Uncertainty	
215 – Provide a means to ensure RCP seal cooling so that RCP seals LOCAs are precluded for SBO events ^(d)	26	31	1.3M	3.7M	1.5M
226 – Provide permanent self-powered pump to back up normal charging pump ^(d)	26	31	1.3M	3.7M	2.7M
255 – Install a permanent, dedicated generator for the normal charging pump, one Motor Driven AFW Pump and a Battery Charger	18	20	840K	2.3M	3.2M
256 – Install fire barriers around cables or reroute the cables away from fire sources (Enhance procedure for controlling temporary alternatives to reduce fire risk from temporary cables) ^(b)	25	25	1.1M	3.1M	20K
276 – Provide an auto start signal for the AFW on loss of standby feedwater pump	0.7	0.6	25К	70K	620K
279 – Provide a permanent tie-in to the construction air compressor	1.8	1.6	72K	200K	910K
280 – Add new Unit 2 air compressor similar to the Unit 1 D compressor	1.8	1.6	72K	200K	810K
282 – Provide cross-tie to Unit 1 RWST	1.3	~0	21K	58K	10M
285 – Improve training to establish feed and bleed cooling given no CCPs are running or a vital instrument board fails	6.4	0.3	100К	290K	27K

	% Risk	Reduction	Total Ber	nefit (\$)	
SAMDA	CDF	Populatio n Dose	Baseline (Internal + External)	Baseline With Uncertainty	Cost (\$)
292 – Improve training to reduce failure probability to terminate inadvertent safety injection prior to water challenge to PORVs	4.2	13	400K	1.1M	27K
295 – Increase frequency of containment leak rate testing	0	6.1	144K	400K	2.5M
299 – Initiate frequent awareness training for plant operators/maintenance/tes ting staff on key human actions for plant risk (Initiate frequent awareness training for maintenance and testing staff as on key human actions for plant risk) ^(b)	4.6	6.6	290K	793K	27K
300 – Revise procedure FR-H.1 to eliminate and/or simplify complex decision logic for establishing feed and bleed cooling and to improve operator recovery from initial mistakes	3.4	0.2	57K	160K	100К
303 – Move indicator/operator interface for starting igniters to front MCR panel	0	~0	1.7K	4.8K	50K
304 – Add annunciator or alarm signaling parameters to initiate hydrogen igniters to front panel on MCR	0	~0	1.7K	4.8K	50K
305 – Revise procedure E-1 to include recovery steps for failure to initiate hydrogen igniters ^(e)	0	6.2	150K	420K	100K

.

6-25

· · · · · · · · · · · · · · · · · · ·	% Risk	Reduction	Total Benefit (\$)		Cont
SAMDA	CDF	Populatio n Dose	Baseline (Internal + External)	Baseline With Uncertainty	- Cost (\$)
306 – Improve operator performance by enhancing likelihood of recovery from execution errors ^(e)	2.4	5.3	170K	470K	100K
307 – Make provisions for connecting ERCW to CCP 2B-B	0.1	0.0	0.6K	1.7K	99K
339 – Provide a capability to allow the operators from the control room to transfer from normal compressed air supply to the station nitrogen system for control of the AFW LCVs. ⁽⁷⁾	N/A	N/A	N/A	N/A	N/A
340 – Install flood detection in areas 772.0-A8 and 772.0-A9. ^(g)	N/A	N/A	N/A	N/A	N/A

(a) As discussed in Section 6.3.3, the evaluation of the benefits of this SAMDA is deemed conservative, such that the potential slight exceedance of the cost-beneficial threshold does not render it cost-beneficial. It is therefore not highlighted.

(b) SAMDA title given in parentheses is considered a more accurate description of the actual SAMDA.

(c) Due to time constraints, procedure change envisioned for SAMDA 156 is not considered to be effective; hence the benefit would be essentially negligible. It is therefore not highlighted. Hardware change is considered in SAMDA 215.

(d) SAMDAS 93, 215, and 226 relate to preventing RCP seal failures. TVA has committed to follow the progress and experience with an improved RCP seal package design that has been installed at the Farley Nuclear Power Plant and, if proven reliable during operation, to install it at the earliest refueling outage following startup during normal seal package replacements (TVA 2011a). As a result, final decision as to the disposition of these potentially cost-beneficial SAMDAs is pending, and they are not highlighted.

(e) While potentially cost-beneficial, this SAMDA has already been implemented. It is therefore not highlighted.
(f) TVA has committed to provide a new capability to allow the operators from the control room to transfer from normal compressed air supply to the station nitrogen system for control of the LCVs. This new capability, identified as SAMDA 339, will have a greater benefit then that associated with SAMDA 70 and thus

supersedes it (TVA 2011b).

(g) This SAMDA captures a previous commitment by TVA to install this flood detection equipment.

Draft NUREG-0498, Supplement 2

As stated in the November 1, 2010 submittal, TVA has indicated that the following potentially cost-beneficial SAMDAs will be implemented: SAMDAs 4, 8, 256, 285, 292, 299 and 300.^a For reasons beyond a cost-beneficial analysis, TVA will be implementing SAMDAs 339 and 340 as committed by letters dated May 13 and 25, 2011.

5 6.3.5 Conclusions

TVA compiled a list of SAMDAs based on a review of: the most significant basic events from the 6 7 plant-specific PRA, insights from the plant-specific IPE and IPEEE, Phase I SAMAs from license 8 renewal applications for other plants, and NEI's list of generic SAMAs. An initial screening 9 removed SAMDA candidates that (1) were not applicable to WBN, (2) were already 10 implemented at WBN, (3) were similar to and could be combined with other SAMDAs, (4) had estimated costs that would exceed the dollar value associated with completely eliminating all 11 12 severe accident risk at WBN, or (5) determined to have negligible impact on risk. Based on this screening, a number of these SAMDAs were eliminated leaving the remaining candidate 13 SAMDAs for Phase II evaluation. 14

15

16 For the remaining SAMDA candidates, more detailed design and cost estimates were

17 developed. The cost-benefit analyses showed that eight of the SAMDA candidates were cost-

18 beneficial in the baseline analysis (SAMDAs 4, 156, 256, 285, 292, 299, 305 and 306). TVA

19 performed additional analyses to evaluate the impact of parameter choices and uncertainties on

20 the results of the SAMDA assessment. As a result, six additional SAMDAs (SAMDAs 8, 70, 93,

21 215, 226 and 300) were identified as cost-beneficial. Six of these SAMDAs (SAMDAs 93, 156,

22 215, 226, 305 and 306) have been dispositioned as not needing implementation because (1)

one would not be effective due to time constraints on the operators to perform the action; (2)
 accumulating operating experience with a recently installed, improved RCP seal design at

Farley Nuclear Power Plant may result in TVA installing the same design at WBN2; or (3) two

- 26 have already been implemented at WBN2.^b
- 27

28 The NRC staff reviewed the TVA analysis and concludes that the methods used and the

29 implementation of those methods were sound. The treatment of SAMDA benefits and costs

30 support the general conclusion that the SAMDA evaluations performed by TVA are reasonable

31 and sufficient for the license submittal. Although the treatment of SAMDAs for external events

^a Since the Third Circuit's opinion in *Limerick Ecology Action, Inc., v. NRC*, 869 F.2d 719, 723 (3d Cir. 1989) is not limited by the scope of license renewal, their relationship of these SAMDAs to aging does not affect the decision to implement.

^b SAMDAs 215 and 226 relate to preventing RCP seal failures. TVA has committed to follow the progress and experience with an improved RCP seal package design that has been installed at the Farley Nuclear Power Plant and, if proven reliable during operation, to install it at the earliest refueling outage following startup during normal seal package replacements (TVA 2011a). As a result, final decision as to the disposition of these potentially cost-beneficial SAMDAs is pending.

1 was somewhat limited, the likelihood of there being cost-beneficial enhancements in this area 2 was minimized by improvements that have been realized as a result of the IPEEE process and 3 inclusion of a multiplier to account for external events. The NRC staff concurs with TVA's 4 identification of areas in which risk can be reduced in a cost-beneficial manner through the 5 implementation of the identified, potentially cost-beneficial SAMDAs. TVA has committed to 6 implement all but five cost-beneficial SAMAs, and provided adequate justification for why those 7 five will not be implemented. Therefore, the NRC staff finds that TVA's analysis meets the 8 requirements of NEPA.

9 6.4 References

- 10 10 CFR Part 20. Code of Federal Regulations, Title 10, *Energy*, Part 20, "Standards for 11 Protection Against Radiation."
- 12 10 CFR Part 50. Code of Federal Regulations, Title 10, *Energy*, Part 50, "Domestic Licensing of 13 Production and Utilization Facilities."
- 14 10 CFR Part 51. Code of Federal Regulations, Title 10, *Energy*, Part 51, "Environmental 15 Protection Regulations for Domestic Licensing and Related Regulatory Functions."
- 16 10 CFR Part 100. Code of Federal Regulations, Title 10, *Energy*, Part 100, "Reactor Site 17 Criteria."
- 18 National Research Council. 2006. *Health Risks from Exposure to Low Levels of Ionizing*
- 19 Radiation: BEIR VII Phase 2. Committee to Assess Health Risks from Exposure to Low Levels

20 of Ionizing Radiation, National Research Council, The National Academies Press, Washington,

- 21 D.C.
- Electric Power Research Institute (EPRI). 1991. "A Methodology for Assessment of Nuclear
 Power Plant Seismic Margin," EPRI NP-6041-SL, Revision 1. Palo Alto, CA. August 1991.
- Electric Power Research Institute (EPRI). 1992. "Fire-Induced Vulnerability Evaluation (FIVE),"
 EPRI TR-100370. Palo Alto, CA. April 1992.
- 26 Nuclear Energy Institute (NEI). 2005. "Severe Accident Mitigation Alternatives (SAMA)
- 27 Analysis Guidance document." NEI 05-01, Revision A. November 2005
- 28 Tennessee Valley Authority (TVA). 1972. Final Environmental Statement Watts Bar Nuclear
- 29 Plant, Units 1, 2, and 3. Chattanooga, Tennessee.

1 Tennessee Valley Authority (TVA). 1992. Letter from Mark O. Medford, TVA, to U.S. Nuclear

2 Regulatory Commission. Subject: "Watts Bar Nuclear Plant (WBN) Units 1 and 2 – Generic

3 Letter (GL) 88-20 - Individual Plant Examination (IPE) for Severe Accident Vulnerabilities –

4 Response (TAC M74488)." September 1, 1992. Accessible at ML080070015, ML080070016,

- 5 ML080070017, ML080070018, ML080070019.
- 6 Tennessee Valley Authority (TVA). 1994a. Letter from William J. Museler, TVA, to U.S.
- 7 Nuclear Regulatory Commission. Subject: "Watts Bar Nuclear Plant (WBN) Units 1 and
- 8 Common Generic Letter 88-20 Individual Plant Examination (IPE) Update of Level 1 and 2
- 9 Analysis." May 2, 1994. Accessible at ML080070020, ML080070025, ML080070026.
- 10 Tennessee Valley Authority (TVA). 1994b. Letter from Dwight E. Nunn, TVA, to U.S. Nuclear
- 11 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 12 Units 1 and 2 Severe Accident Mitigation Design Alternatives (SAMDAs) Evaluation from
- 13 Updated Individual Plant Examination (IPE) (TAC Nos. M77222 and M77223)." June 30, 1994.
- 14 Accessible at ML073230670.
- 15 Tennessee Valley Authority (TVA). 1998. Letter from P. L. Pace, TVA, to U.S. Nuclear
- 16 Regulatory Commission document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit
- 17 1 Generic Letter (GL) 88-20, Supplements 4 and 5 Individual Plant Examination of External
- 18 Events (IPEEE) for Severe Accident Vulnerabilities (TAC M83693)." February 17, 1998.
- 19 Accessible at ML073240218.
- 20 Tennessee Valley Authority (TVA). 2006. "Tennessee Multi-Jurisdictional Radiological
- 21 Emergency Response Plan for the Watts Bar Nuclear Plant," Annex H.
- 22 Tennessee Valley Authority (TVA). 2008. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 23 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 24 Unit 2 Final Supplemental Environmental Impact Statement for the Completion and Operation
- of Unit 2" February 15, 2008. Accessible at ML080510469.
- 26 Tennessee Valley Authority (TVA). 2009a. Watts Bar Nuclear Plant (WBN) Unit 2 Final
- 27 Safety Analysis Report (FSAR). Amendment 94, Spring City, Tennessee. Accession 28 No. ML092460757.
- Tennessee Valley Authority (TVA). 2009b. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
 Unit 2 Final supplemental Environmental Impact Statement Severe Accident Management
 Alternatives (TAC MD8203)." January 27, 2009. Accessible at ML090360588 and
- 33 ML090360589.

- 1 Tennessee Valley Authority (TVA). 2009c. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 2 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 3 Unit 2 Additional Information in Support of TVA Final Supplemental Environmental Impact
- 4 Statement (FSEIS) (TAC MD8203)" October 22, 2009. Accessible at ML093510833.
- 5 Tennessee Valley Authority (TVA). 2009d. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 6 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 7 Unit 2 Additional Information Regarding Environmental Review (TAC MD8203)"
- 8 December 23, 2009. Accessible at ML100210358.
- 9 Tennessee Valley Authority (TVA). 2010a. Letter from Masoud Bajestani (Watts Bar Unit 2,
- 10 Vice President) to U.S. Nuclear Regulatory Commission dated February 25, 2010 in response to
- 11 NRC letter dated December 3, 2009 and TVA letters dated July 2, 2008, January 27, 2009, and
- 12 December 23, 2009, "Watts Bar Nuclear Plant (WBN) Unit 2 Additional Information Regarding
- 13 Environmental Review (TAC No. MD8203)." Accession No. ML100630115.
- 14 Tennessee Valley Authority (TVA). 2010b. Letter from Masoud Bajestani (Watts Bar Unit 2,
- 15 Vice President) to U.S. Nuclear Regulatory Commission dated October 14, 2010 in response to
- 16 NRC letter dated June 3, 2009 and TVA letters dated July 2, 2008, and January 27, 2009,
- 17 'Watts Bar Nuclear Plant (WBN) Unit 2 Severe Accident Management Alternatives Using
- 18 Latest Computer Aided Fault Tree Analysis Model Additional Information (TAC MD8203)."
- 19 Accession No. ML103080030.
- 20 Tennessee Valley Authority (TVA). 2010c. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 21 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 22 Unit 2 Severe Accident Management Alternatives Using Latest Computer Aided Fault tree
- 23 Analysis Model Additional Information (TAC MD8203)." November 1, 2010. Accessible at
- 24 ML103080030.
- 25 Tennessee Valley Authority (TVA). 2010d. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 26 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 27 Unit 2 Response to U.S. Nuclear Regulatory Commission (NRC) Request for Additional
- 28 Information Regarding Environmental Review (TAC MD8203)." April 9, 2010. Accessible at
- 29 ML101130392.
- 30 Tennessee Valley Authority (TVA). 2010e. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 31 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 32 Unit 2 Probabilistic Risk Assessment Individual Plant Examination." February 9, 2010.
- 33 Accessible at ML100491535.

- 1 Tennessee Valley Authority (TVA). 2010f. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 2 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 3 Unit 2 Request for Additional Information Regarding Severe Accident Management
- 4 Alternatives (TAC No. MD8203)." July 23, 2010. Accessible at ML102100588.
- 5 Tennessee Valley Authority (TVA). 2010g. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 6 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 7 Unit 2 Response to Request for Additional Information Regarding Severe Accident
- 8 Management Alternatives SECPOP2000 Errors (TAC MD8203)." September 17, 2010.
- 9 Accessible at ML102600582.
- 10 Tennessee Valley Authority (TVA). 2010h. Letter from Masoud Bajestani, TVA, to U.S. Nuclear
- 11 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 12 Unit 2 Individual Plant Examination for External Events Design Report." April 30, 2010.
- 13 Accessible at ML101240992.
- 14 Tennessee Valley Authority (TVA). 2011a. Letter from Marie Gillman, TVA, to U.S. Nuclear
- 15 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 16 Unit 2 Response to Request for Additional Information Regarding Severe Accident
- 17 Management Alternative Review (TAC MD8203)." dated January 31, 2011. Accessible at
- 18 ML110340040.
- 19 Tennessee Valley Authority (TVA). 2011b. Letter from David Stinson, TVA, to U.S. Nuclear
- 20 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 21 Unit 2 Response to Request for Additional Information Regarding Severe Accident
- 22 Management Alternative Review (TAC MD8203)." May 13, 2011. Accessible at ML11145A088.
- 23 Tennessee Valley Authority (TVA). 2011c. Letter from David Stinson, TVA, to U.S. Nuclear
- 24 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) -
- 25 Unit 2 Response to Request for Additional Information Item Numbers 2, 3, 5 and 15
- 26 Regarding Severe Accident Management Alternative Review (TAC MD8203)." May 25, 2011.
- 27 Accessible at ML11147A099.
- 28 Tennessee Valley Authority (TVA). 2011d. Letter from David Stinson, TVA, to U.S. Nuclear
- 29 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) -
- 30 Unit 2 Response to Request for Additional Information Regarding Severe Accident
- 31 Management [Design] Alternative Review (SAMDA) (TAC MD8203)." June 17, 2011.
- 32 Accessible at ML11171A510.

- 1 Tennessee Valley Authority (TVA). 2011e. Letter from David Stinson, TVA, to U.S. Nuclear
- 2 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) -
- 3 Unit 2 Revised Severe Accident Management Design Alternative Review (SAMDA) Response
- 4 (TAC MD8203)." September 16, 2011. Accessible at ML11264A052
- 5 Tennessee Valley Authority (TVA). 2011f. Letter from David Stinson, TVA, to U.S. Nuclear
- 6 Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN)
- 7 Unit 2 Chapter 15.5 Fuel Handling Accident (FHA) Dose Analysis." October 17, 2011.
- 8 Accessible at ML11294A461
- 9 U. S. Geologic Survey (USGS). 2008. "2008 NSHM Gridded Data, Peak Ground Acceleration."
 10 Available online at: <u>http://earthquake.usgs.gov/hazards/products/conterminous/2008/data/</u>.
- U.S. Nuclear Regulatory Commission (NRC). 1975. Standard Review Plan for the Review of
 Safety Analysis Report for Nuclear Power Plants. NUREG-0800. Washington, D.C. November
 1975.
- U.S. Nuclear Regulatory Commission (NRC). 1976. Preparation of Environmental Reports for
 Nuclear Power Stations. Washington, D.C.
- 16 U.S. Nuclear Regulatory Commission (NRC). 1977. Regulatory Guide 1.109 Calculation of
- 17 Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating
- 18 Compliance with 10 CFR Part 50, Appendix I. Rev. 1, Washington, D.C.
- U.S. Nuclear Regulatory Commission (NRC). 1978a. *Final Environmental Statement Related* to Operation of Watts Bar Nuclear Plant Units Nos. 1 and 2. NUREG-0498, Washington, D.C.
 Accession No. ML082540803
- U.S. Nuclear Regulatory Commission (NRC). 1978b. Liquid Pathway Generic Study: Impacts
 of Accidental Radioactive Releases to the Hydrosphere from Floating and Land-Based Nuclear
 Power Plants. NUREG-0440, Washington, D.C.
- 25 U.S. Nuclear Regulatory Commission (NRC). 1980. *Criteria for Preparation and Evaluation of*
- 26 Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power
- 27 Plants (NUREG-0654/FEMA-REP-1). Washington, D.C. Accession No. ML040420012.
- U.S. Nuclear Regulatory Commission (NRC). 1981. *Final Environmental Statement Related to* Operation of Fermi, Unit 2. NUREG-0769, Washington, D.C.
- 30 U.S. Nuclear Regulatory Commission (NRC). 1990. Severe Accident Risks: An Assessment
- 31 for Five U.S. Nuclear Power Plants. NUREG-1150. Washington, D.C.

U.S. Nuclear Regulatory Commission (NRC). 1991. "Individual Plant Examination of External
 Events (IPEEE) for Severe Accident Vulnerabilities." Generic Letter No. 88-20, Supplement 4.
 Washington, D.C. June 28, 1991.

4 U.S. Nuclear Regulatory Commission (NRC). 1995. *Final Environmental Statement Related to* 5 *the Operation of Watts Bar Nuclear Plant, Units 1 and 2.* NUREG-0498, Supplement No. 1,

6 Office of Nuclear Reactor Regulation, Docket Nos. 50-390 and 50-391, Washington, D.C.

7 Accession No. ML081430592.

8 U.S. Nuclear Regulatory Commission (NRC). 1996. Generic Environmental Impact Statement
9 for License Renewal of Nuclear Plants. NUREG-11437. Washington, D.C. Accession No.
10 ML040690705

U.S. Nuclear Regulatory Commission (NRC). 1997a. Regulatory Analysis Technical Evaluation
 Handbook. NUREG/BR-0184. Washington, D.C.

U.S. Nuclear Regulatory Commission (NRC). 1997b. Individual Plant Examination Program:
 Perspectives on Reactor Safety and Plant Performance. NUREG-1560. Washington, D.C.

15 U.S. Nuclear Regulatory Commission (NRC). 2000. Letter from Robert T. Martin, U.S. NRC, to

16 J. A. Scalice, TVA. Subject: "Watts Bar Nuclear Plant, Unit 1 – Review of Individual Plant

Examination of External Events (IPEEE) Submittal (TAC Nos. M83693)." Washington, D.C.
May 19, 2000.

U.S. Nuclear Regulatory Commission (NRC). 2003a. Memorandum from Nilesh C. Chokshi,
U.S. NRC, to Ashok C. Thadani, U.S. NRC. Subject: "Results of Initial Screening of Generic
Issue 194, 'Implications of Updated Probabilistic Seismic Hazard Estimates.'" September 12,
2003.

U.S. Nuclear Regulatory Commission (NRC). 2003b. SECPOP 2000: Sector Population, Land
 Fraction, and Economic Estimation Program. NUREG/CR-6525, Revision 1. Washington, D.C.,
 August 2003.

26 U.S. Nuclear Regulatory Commission (NRC). 2004a. An Approach for Estimating the

27 Frequencies of Various Containment Failure Modes and Bypass Events. NUREG/CR-6595

28 Revision 1. Washington, D.C. October 2004.

29 U.S. Nuclear Regulatory Commission (NRC). 2004b. Regulatory Analysis Guidelines of the

30 U.S. Nuclear Regulatory Commission. NUREG/BR-0058, Rev. 4. Washington, D.C.

U.S. Nuclear Regulatory Commission (NRC). 2007. Standard Review Plan for the Review of
 Safety Analysis Reports for Nuclear Power Plants, LWR Edition. NUREG-0800, Washington,
 D.C.

U.S. Nuclear Regulatory Commission (NRC). 2009a. Safety Evaluation Report, Related to the
Operation of Watts Bar Nuclear Plant, Unit 2, Docket No. 50-391. NUREG-0847, Supplement
21. Washington, D.C.

- U.S. Nuclear Regulatory Commission (NRC). 2009b. Letter from Joel S. Wiebe, U.S. NRC, to
 Ashok S. Bhatnagar, Tennessee Valley Authority Subject: "Watts Bar Nuclear Plant, Unit 2 Request for Additional Information Regarding Severe Accident Management Alternatives (TAC
 No. MD8203)." Washington, D.C. November 30, 2009. Accessible at ML092230024.
- U.S. Nuclear Regulatory Commission (NRC). 2010. NRC Information Notice 2010-18: Generic
 Issue 199 (GI-199), "Implications of Updated Probabilistic Seismic Hazard Estimates in Central
 and Eastern United States on Existing Plants." Washington, D.C. September 2, 2010.
- 14 Accessible at ML101970221.

15 U.S. Nuclear Regulatory Commission (NRC). 2011a. Letter from Justin C. Poole, U.S. NRC, to

16 Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 -Request for Additional

- 17 Information Regarding Severe Accident Management Alternative Review (TAC No. MD8203)."
- 18 January 11, 2011. Accessible at ML103470681.

19 U.S. Nuclear Regulatory Commission (NRC). 2011b. Letter from Patrick D. Milano, U.S. NRC,

20 to Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 – Supplemental

21 Request for Additional Information Regarding Severe Accident Management Design

22 Alternatives Review (TAC No. MD8203)." March 30, 2011. Accessible at ML110820858.

U.S. Nuclear Regulatory Commission (NRC). 2011c. Letter from Justin C. Poole, U.S. NRC, to
Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 – Supplemental Request
for Additional Information Regarding Severe Accident Management Design Alternatives Review
(TAC No. MD8203)." June 13, 2011. Accessible at ML111530523.

2 The National Environmental Policy Act (NEPA) requires the consideration of reasonable 3 alternatives to the proposed action in an environmental impact statement (EIS). In this case, the proposed action is whether to issue a 40-year operating license to the Tennessee Valley 4 5 Authority (TVA) for Watts Bar Nuclear (WBN) Unit 2. However, a license is just one of a number 6 of conditions that a licensee must meet in order to operate its nuclear plant. After the U.S. 7 Nuclear Regulatory Commission (NRC) issues an operating license, state regulatory agencies and the owners of the nuclear power plant ultimately decide whether the plant will operate, and 8 9 economic and environmental considerations play a primary role in this decision.

10 The NRC is responsible for ensuring the safe operation of commercial nuclear power facilities in

11 the United States and does not formulate energy policy or encourage or deter the development

12 of alternative power generation. The NRC also has no authority or regulatory control over the

13 ultimate selection of alternative power generation and cannot ensure that environmentally

14 preferable energy alternatives are used in the future. While the NRC considers a range of

15 reasonable alternatives to issuing an operating license, the only alternative within NRC's

16 decision-making authority is not to issue it.

17 In this chapter, the NRC has considered the environmental consequences of no-action (i.e., not

18 issuing the license) and various energy alternatives that could replace the generating capacity

19 of WBN Unit 2. The assessment is limited to a description of each energy alternative and its

20 environmental impact. The no-action alternative is discussed in Section 7.1 and alternative

21 power generation in Section 7.2.

1

22 It may be worth noting that if the NRC issues an operating license, all of the alternatives,

23 including the proposed action, would be available to energy-planning decision-makers.

24 Conversely, if NRC does not issue the operating license (or takes no action at all), then energy-

25 planning decision makers would have to resort to finding alternative ways of generating

electricity—which may or may not be one of the energy alternatives discussed in this section—
 to meet their energy needs.

28 In its Final Environmental Statement for the construction of WBN Units 1 and 2 (1972 FES-CP)

29 (TVA 1972), TVA considered a number of alternatives to constructing and operating WBN Units

30 1 and 2. Among those alternatives were construction and operation of coal-fired units,

31 hydroelectric units, gas-fired units, oil-fired units, and the no-action alternative. These

32 alternatives were either deemed not feasible, more costly, and/or more environmentally

detrimental than construction and operation of WBN Units 1 and 2. Since that time, TVA

34 evaluated a range of alternatives as part of its integrated resource planning process, which the

35 NRC considered and evaluated in its Supplement No. 1 to the FES related to the operating

September 2011

1 license (1995 SFES-OL-1) in December 1995 (NRC 1995). In tiering off the original 1972 2 FES-CP, the 1995 SFES-OL-1, and the balance of the environmental record pertinent to WBN, 3 TVA did not identify any new alternatives or resource options beyond those already addressed in previous documents (TVA 1972; NRC 1995). In addition to factors considered in the 4 5 1972 FES-CP, TVA stated that completing WBN Unit 2 would provide baseload power in the 6 region of interest, help reduce fossil plant emissions, and lower the cost of power in its service 7 area (TVA 2008a, 2011a). Since the 1978 FES-OL, TVA has produced two publicly available 8 long-term (i.e., 20 or more years) integrated resource plans (IRPs), which evaluate an 9 assortment of power supply alternatives to meet the power demand in the TVA service area. In December 1995, TVA completed an IRP identifying and selecting long-range electricity 10 generation strategies intended to meet the electricity needs of its customers with a forecast 11 12 period extending from 1996 to 2020 (TVA 1995). On March 2, 2011, TVA issued its most recent 13 IRP with a forecast period extending from 2011 to 2029 (TVA 2011a). On April 14, 2011, the TVA Board of Directors accepted the IRP and authorized the Chief Executive Officer to use its 14 15 recommended planning direction as a guide in energy resource planning and selection. On 16 July 6, 2011, TVA issued its Record of Decision stating that TVA will adopt the preferred 17 alternative in its final EIS for the IRP (76 FR 39470).

18 As discussed in Chapter 1, the purpose for this SFES is to update the prior environmental 19 review and only cover matters that differ from the final EIS or that reflect significant new 20 information concerning matters discussed in the final EIS. Unless determined by the 21 Commission, a supplement will not include a discussion of need for power or of alternative energy sources (10 CFR 51.95(b)). In this case, the Commission has directed NRC staff to take 22 23 to take a "hard look" at new information related to alternative energy sources and to supplement the FES with a discussion of those alternative energy sources if new and significant relevant 24 25 information exists (NRC 2010). While TVA evaluated a set of power generation alternatives as 26 part of the FES (TVA 1972), the evaluation was limited to generation technologies, resources, 27 and information available in 1972. The NRC staff found that energy alternatives have changed 28 substantially in terms of performance and viability since TVA submitted its Watts Bar Unit 2 29 Construction Permit EIS in 1972, almost 40 years ago (TVA 1972). The NRC staff's 30 1978 FES-OL did not address power generation alternatives. As a result, the NRC staff found it 31 appropriate to update, in this SFES, the NRC staff's consideration of energy alternatives and 32 their relative impacts.

33 7.1 No-Action Alternative

As previously discussed, under the no-action alternative the NRC would not issue an operating license to TVA, and WBN Unit 2 would not operate. If the NRC does not issue the operating license, there would be no environmental impacts from operation of WBN Unit 2; the environmental impacts of construction of WBN Unit 2 have largely occurred, and so would not be avoided. Under the no-action alternative, an expected 1,160-MW(e) net electrical output 1 from WBN Unit 2 would not be generated, thus the benefits associated with the proposed new

power production would not be realized in the TVA service area (i.e., no electricity would be
 generated).

4 TVA has indicated that if the WBN Unit 2 operating license is not issued, it would not be able to maintain an adequate reserve margin and would fail to meet its public service obligations to 5 6 provide sufficient power within its service territory. The determination of the need for power in 7 the TVA service area is discussed in Chapter 8 of this FES. TVA would also not be able to 8 meet its obligations to provide capacity to other suppliers of electricity within the Southeastern 9 Electric Reliability Corporation (SERC) region. Therefore, TVA would likely pursue various 10 replacement power options by implementing one or some combination of the following actions (TVA 2008b, 2011a): 11

12 • Demand-side management (DSM): DSM programs consist of planning, implementing, and monitoring activities that enable and encourage consumers to reduce and/or modify their 13 levels and patterns of electricity usage. By reducing customers' demand for energy through 14 energy efficiency, conservation, and load management, the need for additional generation 15 capacity can be reduced, postponed, or even eliminated. In addition to existing and planned 16 17 DSM programs, TVA would need to implement more aggressive programs as conditions 18 necessitate. However, even with additional DSM activities, alternative power sources would 19 need to be acquired. TVA refers to its DSM activities as energy efficiency and demand 20 response. Demand response shifts energy use to periods of lower demand, while energy 21 efficiency reduces energy consumption.

- Purchase power: TVA could attempt to purchase power from other suppliers of electricity
 within the SERC region to fill short-term needs.
- Construct alternative replacement power generation: TVA could pursue the construction
 and operation of a replacement power plant using alternative energy sources, such as a
 coal-fired or combined cycle gas-fired power plant.

27 TVA already offers several DSM programs to its customers to reduce peak electricity demands and daily power consumption. The impacts of these programs have been incorporated in TVA's 28 29 demand forecast and included in its need-for-power analysis, which is discussed in Chapter 8 of 30 this SFES. Current programs provide incentives to install and implement energy-efficient 31 equipment and technologies, weatherization and insulation programs, and programs that 32 provide technical assistance and educational material in an effort to assist customers in 33 conserving energy. TVA anticipates fiscal year 2010 demand reductions from DSM activities to 34 offset approximately 100 MW(e) of power generation capacity. Although these DSM programs play an important role in reducing peak load power, they would not significantly reduce baseload 35 consumption, and would not be a reasonable alternative for the 1,160-MW(e) capacity expected 36 37 from WBN Unit 2 (TVA 2011a).

To the extent that TVA would rely on new or existing resources from outside the TVA region to offset the power that would otherwise be produced by WBN Unit 2, these resources would likely produce impacts (e.g., air, groundwater, socioeconomics) from construction (for new resources) and operations (for new and existing resources) in areas outside the TVA region.

5 7.2 Energy Alternatives

6 The current rule governing environmental review at the operating license stage (10 CFR 51.95) 7 states that, unless otherwise determined by the Commission, a supplement on the operation of a nuclear power plant will not include a discussion of need for power or a discussion of 8 9 alternative energy sources. For WBN Unit 2, the Commission authorized the staff to include 10 those topics if, through its requisite "hard look," the staff concludes that new and significant information is available (NRC 2010). The NRC staff found that energy alternatives have 11 12 changed substantially in terms of performance and viability since TVA submitted its Watts Bar 13 Unit 2 Construction Permit EIS in 1972 (TVA 1972). As a result, the NRC staff found it 14 appropriate to update, in this SFES, the NRC staff's consideration of energy alternatives and 15 their relative impacts.

16 TVA is seeking an operation license for WBN Unit 2 to produce an additional 1,160-MW(e) net 17 electrical baseload power for the TVA service area. This section examines the potential

- 18 environmental impacts associated with constructing and operating replacement baseload power
- 19 plants using alternative energy sources. Alternatives considered, but eliminated from detailed
- study, are described in Section 7.2.1. Section 7.2.2 describes the environmental impacts from
- the natural-gas-fired power generation alternative. A combination alternative is discussed in
- 22 Section 7.2.3. A comparison of the environmental impacts from natural-gas-fired power
- 23 generation and a combination alternative of power generating options at or near the WBN site
- are presented in Section 7.2.4.
- 25 The NRC staff's selection of a reasonable set of energy alternatives to the operation of WBN
- 26 Unit 2 was limited to power-generation technologies that are technically reasonable and
- 27 commercially viable (NRC 2000). The staff's analysis uses information from the Generic
- 28 Environmental Impact Statement (GEIS), as well as other sources including the U.S.
- 29 Department of Energy (DOE), the Environmental Protection Agency (EPA), and TVA.

30 For this analysis, a bounding value of 1,160-MW(e) electrical output replacement baseload

- 31 power was used for comparison purposes, because this is the proposed generation capacity of
- 32 WBN Unit 2. When reasonable, the WBN site would be used as the location for alternative
- 33 replacement power generation and existing structures would be used to support these
- 34 alternatives to minimize impacts and for ease of comparison. The WBN site occupies
- 35 approximately 427 ha (1,055 ac) within the Watts Bar reservation, which is 690 ha (1,700 ac) of
- 36 land owned by the U.S. Federal Government in the custody of the TVA. The reservation

1 includes the WBN site, the Watts Bar Dam and Hydro-Electric Plant, the Watts Bar Fossil Plant,

- 2 the TVA Central Maintenance Facility, and the Watts Bar Resort Area (TVA 2008a). Closed-
- 3 cycle cooling with natural draft or mechanical cooling towers is assumed for all thermal plants.
- 4 It is also assumed that the existing 500-kV electric power transmission lines could be used to
- 5 serve a new baseload power-generation facility at the WBN site.

6 7.2.1 EIA Power Generation Outlook

7 Each year, the Energy Information Administration (EIA), a component of DOE, issues an annual 8 energy outlook. In its Annual Energy Outlook 2011 (DOE/EIA 2010), the EIA reference case 9 projects that coal-fired capacity will account for approximately 43 percent of the total additions of 10 electric generating capacity between 2011 and 2035. The EIA projects that during this period, 11 natural-gas-fired plants, renewable energy sources, and new nuclear plants will account for 12 approximately 25 percent, 14 percent, and 17 percent of new capacity additions, respectively. 13 The EIA projections are based on the assumption that providers of new generating capacity 14 would seek to minimize cost while meeting applicable environmental requirements (DOE/EIA 15 2010).

16 7.2.2 TVA Resource Planning

17 TVA states that the purpose and need of its proposal to operate WBN Unit 2 is to meet the need for additional baseload capacity in the TVA service area (TVA 2008b). TVA's current and 18 planned power generation system uses a range of technologies to produce electricity and meet 19 20 the needs of the TVA service area. In 2010, coal-fired generation made up approximately 40 21 percent of TVA's capacity electricity generation mix, while nuclear generation made up 22 approximately 19 percent, combustion turbines and combined cycle (primarily fueled with 23 natural gas) generation together made up 24 percent, and hydro power provided 8 percent. The 24 remaining 9 percent of TVA's electricity generation capacity was made up of diesel-fired 25 generation, pumped storage, renewable energy sources, and DSM activities (TVA 2011a).

26 In its most recent IRP, TVA evaluated resource options that it considers to be developed and 27 proven technologies, or that have reasonable prospects of becoming commercially available 28 before 2029. TVA also only considers resource technologies that are available to TVA either 29 within the TVA region or importable through market purchases and that are economical and 30 contribute to the reduction of emissions of air pollutants, including greenhouse gases. As part 31 of its IRP process, TVA evaluated 100 supply-side (i.e., generation) and 60 demand-side (i.e., 32 DSM) resource options. By 2020, TVA expects DSM activities to offset approximately 3,600 to 33 5,100 MW(e) of capacity and renewable generation additions to provide approximately 1,500 to 34 2,500 MW(e) of generation capacity. TVA also plans to increase its pumped storage capacity. 35 nuclear, and natural-gas-fired generation capacity. TVA idled three coal-fired units in 2010 for 36 environmental and economic reasons and is considering idling an additional 2,400 to 7,000

1 MW(e) of coal-fired capacity over the next 20 years to reduce emissions. TVA's recommended 2 planning direction includes up to 900 MW(e) of new coal-fired capacity, but these coal-fired

additions consist solely of integrated gasification combined-cycle (IGCC) units equipped with
 carbon capture and sequestration technologies. TVA projects that these units would not come

5 online until 2025 and 2029 (TVA 2011a), well after WBN Unit 2 is needed.

6 7.2.3 Alternatives Considered but Dismissed

7 This section discusses alternatives to licensing WBN Unit 2 that were eliminated from detailed study due to technical, resource availability, or commercial limitations. NRC believes that these 8 9 limitations would continue to exist when WBN Unit 2 begins operation. Any reasonable alternative to WBN Unit 2 would need to generate an equivalent amount of baseload power. 10 11 Under each of the following technology headings, the NRC explains why it dismissed each 12 alternative from further consideration. Offsite coal and gas-fired alternatives were not 13 considered because constructing and operating a new power plant at an offsite location would 14 generally cause greater impacts than constructing and making use of existing infrastructure at 15 the WBN site.

16 7.2.3.1 Alternatives Not Requiring the Construction of New Power Generating Capacity

Four alternatives to the proposed action that do not require the construction of new powergenerating capacity are as follows:

- 19 Purchasing power
- Extending the operating life of existing plants
- Reactivating retired plants
- Implementing DSM programs.

23 TVA is part of SERC, which is the largest of eight regional reliability councils within the North 24 American Electric Reliability Corporation (NERC). TVA regularly reviews purchased power 25 supply options through its Bulk Power Trading Group, and TVA already has entered into several 26 long-term purchase contracts to meet future capacity estimates. As previously discussed, 27 although some percentage of TVA's forecasted baseload replacement power might be met with 28 purchased power (if available), purchased power is already included in TVA's current and future 29 capacity estimates. Therefore, any power that is purchased to replace WBN Unit 2 power would 30 be dependent on the availability of baseload power and would need to be some amount above 31 and beyond what is already accounted for in current and planned purchase power agreements 32 (TVA 2011a).

Under the purchased power alternative, the environmental impacts of power production would
 still occur but would be located elsewhere within the region, nation, or in another country. The

1 environmental impacts would depend on the generation technology and location of the 2 generation site. In addition, new transmission line rights-of-way may be required.

3 TVA currently has purchase power agreements with generators producing power fueled by natural gas, coal, diesel, wind, biomass, munipal waste, and hydroelectricity. These facilities 4 5 are in various locations, including Alabama, Mississippi, Tennessee, Illinois, Kentucky, Iowa, 6 and North Carolina. In addition, TVA has pending power purchase agreements for renewable 7 energy from Iowa, Illinois, Kansas, South Dakota, and North Dakota. TVA notes that the 8 execution of the pending power purchase agreements for renewable energy is dependent on 9 meeting applicable environmental review requirements and securing firm transmission paths for 10 the delivery of the power to the TVA system (TVA 2011a). The construction of new lines could 11 have environmental consequences. Overall impacts from purchased power would be SMALL. when existing transmission line right-of-ways are used and operational impacts are minor (i.e., 12 13 impacts are not noticeable or do not affect important attributes of the resources) to LARGE if 14 acquisition and conversion of new right-of-ways is required, or when operational impacts alone 15 destabilize resources or important attributes of the resources.

TVA's existing nuclear power facilities were initially licensed by the NRC for a period of 40 16 17 years. The operating license can be renewed for up to 20 years, and NRC regulations permit 18 additional license renewal. TVA currently operates three nuclear plants with a combined 19 capacity of 6,900 MW(e); this includes three reactors on the Browns Ferry site in Alabama, two 20 at the Sequoyah Nuclear Plant site in Tennessee, and one on the WBN site. The Browns Ferry Plant has received renewed operating licenses from the NRC (extending the licenses for its 21 22 Unit 1 to 2033, Unit 2 to 2034, and Unit 3 to 2036). The environmental impacts of continued 23 operation of a nuclear power plant are significantly less than construction of a new plant; 24 however, TVA has assumed that these units will continue to operate and has included their 25 continued operation in its forecast, so the NRC staff does not separately consider continued 26 operation of existing nuclear facilities here. The impacts of operating and uprating other nuclear 27 units in the TVA service area either have been examined by the NRC in separate EISs or 28 environmental assessments, or will be so examined if and when TVA applies to NRC for future 29 license renewals or power uprates. The expected generating capacity of all of TVA's nuclear 30 power plants, including the approved uprates at all three nuclear plants, is included in the power 31 supply forecast of the need-for-power assessment included in Chapter 8 of this SFES (TVA 32 2011a).

As previously discussed, three of TVA's coal-fired units were idled in fall 2010, and future idling
of units is anticipated in the coming years. TVA decides which plants to idle based on
environmental compliance costs, operational and maintenance costs, outage rates, waste
disposal costs, operational flexibility, and carbon dioxide and other greenhouse gas emissions.
In August 2010, TVA announced that the following nine coal units with a total capacity of about
1,000 MW(e) would be idled (TVA 2011a):

- Two units at Widows Creek in 2011
- Shawnee Unit 10 in 2011, which will be evaluated for conversion to a dedicated biomass fueled unit
- The remaining four older units at Widows Creek by 2015
- Units 1 and 2 at John Sevier by 2015.

6 Older fossil-fueled power plants needing extensive and costly refurbishment have difficulty 7 meeting current and more restrictive environmental standards, and thus TVA does not have 8 plans to retrofit the idled coal facilities. Also, TVA plans to phase out all petroleum-based (i.e., 9 oil and diesel) generation over the next 20 years (TVA 2011a), although gas-fired generation will 10 retain the capacity to use diesel as a backup fuel (TVA 2011b). TVA has already included the 11 planned capacity of fossil plants in its existing fleet that are upgraded with additional 12 environmental controls in its need-for-power assessment in Chapter 8 of this SFES. According 13 to TVA's IRP, natural-gas-fired plants will be the only fossil-fueled generation TVA plants to be 14 added to its generation mix over the next 10 to 15 years (TVA 2011a).

15 TVA has an existing portfolio of DSM programs, which include energy-efficiency and demand-

16 response programs. Demand-response programs are designed to temporarily reduce a

17 customer's use of electricity, typically during peak periods when demand is highest. Demand-

18 response programs do not typically reduce overall energy consumption, but may help a utility 19 reduce the need for peaking, and in some cases, intermediate duty-cycle facilities. Energy

reduce the need for peaking, and in some cases, intermediate duty-cycle facilities. Energy
 efficiency programs are designed to reduce overall energy consumption without any decrease in

21 services to the customer.

22 By reducing customers' demand for energy through energy-efficiency, conservation, and load

23 management, the need for additional generation capacity can be reduced, postponed, or even

eliminated. The impacts of existing programs are already incorporated in TVA's demand

25 forecast and are included in its need-for-power analysis presented in Chapter 8 of this SFES.

26 Current programs provide incentives to install and implement energy-efficient equipment and

- technologies, weatherization and insulation programs, and programs that provide technical
 assistance and educational material in an effort to assist customers in conserving energy. TVA
- currently has a DSM portfolio that is estimated to reduce peak capacity by approximately

30 770 MW(e) in the 2012 (TVA 2011b). TVA plans to continue supporting DSM programs;

31 however, although the DSM strategies can play an important role in reducing peak load power.

they are not expected to adequately reduce baseload consumption by 2012 to offset WBN Unit

33 2 capacity. As a result, they would not be a reasonable alternative to operating WBN Unit 2.

1 7.2.3.2 Coal-Fired Power Generation

2 Coal-fired power plants are primarily used to provide baseload power. DOE projects that coal-3 fired power plants will account for approximately 43 percent of the total additions of electric generating capacity in the United States between 2011 and 2035 (DOE/EIA 2010). In general, 4 5 a 1,160 MW(e) coal-fired power plant would have noticeable effects on the environment. Some 6 of these effects would include increased sulfur dioxide (SO_2), nitrogen oxides (NO_x), carbon 7 monoxide (CO), carbon dioxide (CO₂) and particulate matter (PM) emissions, water quality and 8 thermal impacts, loss of terrestrial habitat, and potential impacts to cultural resources at WBN 9 Unit 2. Coal-fired power plants also produce a substantial waste stream of ash and scrubber sludge, which would either be disposed of or recycled. Ash and scrubber sludge disposal for a 10 11 1,160 MW(e) plant over a 40-year operating life would require approximately 200 ac (81 ha) of 12 land.

13 Currently, approximately half of TVA's electric power generation is coal-fired; however, TVA 14 idled three coal-fired units in 2010 for environmental and economic reasons and is considering 15 idling an additional 2,400 to 7,000 MW(e) of coal-fired capacity over the next 20 years to reduce 16 emissions of SO₂, NO_x, CO, CO₂, PM, and mercury (Hg) in the TVA service area (TVA 2011a). 17 Reducing fossil fuel emissions in the TVA service area is part of TVA's overarching goal of 18 providing an affordable, clean, and reliable supply of electricity. TVA's Integrated Resource Plan: TVA's Environmental & Energy Future (TVA 2011a) includes five resource planning 19 20 strategies, and only one strategy includes an expansion of coal-fired generation. In addition, the 21 one strategy that includes coal-fired generation specifies that 900 MW(e) of coal-fired capacity could be added between the years 2025 and 2029 and that this capacity would consist entirely 22 23 of integrated gasification combined-cycle (IGCC) units equipped with carbon capture and 24 sequestration technologies (TVA 2011a). IGCC generation technology, which combines 25 modern coal gasification technology with both gas turbine and steam turbine power generation, 26 could reduce some environmental impacts associated with conventional coal-fired generation. The IGCC technology is cleaner than conventional, pulverized coal plants because major 27 28 pollutants can be removed from the gas stream before combustion, and plants produce smaller 29 volumes of wastes. Despite IGCC's environmental advantages when compared to conventional 30 coal facilities, IGCC plants are more expensive than comparable pulverized coal plants, and 31 system reliability and capacity factors of existing IGCC plants (operating without carbon capture 32 and sequestration) have been lower than pulverized coal plants (NETL 2010). In addition, IGCC 33 with carbon capture and sequestration has not yet been implemented anywhere in the United 34 States.

TVA currently has three idled coal-fired units in its generation fleet with a combined capacity of
226 MW (e) (TVA 2011a). If these plants were to be kept online and other older previously
retired coal-fired plants were brought back online, they could potentially serve as alternative
baseload generation to proposed WBN Unit 2. This option, however, would likely prevent TVA

September 2011

1 from achieving its environmental goals to reduce carbon emissions. In addition, any retired

- 2 coal-fired plant would likely need to be refurbished to extend the plant life and meet current
- 3 environmental requirements, which would be costly. The integrated resource strategy
- 4 recommended to the TVA executive board in its EIS for TVA's IRP (TVA 2011b) includes the
- 5 idling of 2,400 to 4,700 MW(e) of coal capacity during the next 20 years as part of its goal to
- 6 reduce carbon dioxide emissions to meet environmental stewardship goals (TVA 2011a,
- 7 2011b). Although the EIS for the IRP recommends a plan that includes a 900-MW(e) expansion
- 8 of coal-fired capacity, this coal-fired option would not come online until the 2025–2029
- 9 timeframe (TVA 2011b). Based on TVA's IRP and recommendations from its EIS for the IRP, 10 as well as the experience to date with IGCC plants, constructing and operating a coal-fired
- 10 as well as the expenence to date with IGCC plants, constructing and operating a coal-fire 11 power plant and or repowering existing retired or idled coal-fired plants would not be a
- reasonable alternative to operating WBN Unit 2 as a baseload power plant by 2012.

13 **7.2.3.3 Oil-Fired Power Generation**

14 The EIA's reference case projects that oil-fired power plants would not account for any new electric power-generation capacity in the United States through 2035 (DOE/EIA 2010). Oil-fired 15 16 generation is more expensive than nuclear, natural-gas-fired, or coal-fired power-generation 17 options. In addition, future increases in oil prices are expected to make oil-fired generation 18 increasingly more expensive. The high cost of oil has resulted in a decline in its use for electricity generation and oil-fired generation currently makes up less than two percent of the 19 20 existing capacity within the SERC region (SERC 2010). Oil-fired plants are designed to start up 21 quickly and are used exclusively during periods of peak power demand. TVA has no additional 22 petroleum-based power generation options proposed for future capacity needs in the TVA

23 service area, and TVA plans to phase out petroleum power purchases by 2029 (TVA 2011a).

For the preceding economic and environmental reasons, constructing and operating an oil-fired
power plant at the WBN site would not be a reasonable alternative to operating WBN Unit 2 as a
baseload power plant.

27 7.2.3.4 Wind Power

28 Estimates of the wind resource potential in a region are expressed in wind power classes ranging from Class 1 (low) to Class 7 (high), with each class representing a range of mean wind 29 30 power density or equivalent mean speed at specified heights above the ground. Areas 31 designated Class 4 or greater are suitable for siting advanced wind turbine technology under 32 development today (USACE 2004). The generation capacity is low within the overall TVA 33 region, which has Class 1 or 2 wind power ratings (DOE 2005). TVA is already using potential wind power-generation sites such as the Buffalo Mountain Ridge in Tennessee, which produces 34 35 29 MW(e) of wind-generated power (TVA 2008b, 2011a). Outside of the TVA service area, TVA 36 has power purchase agreements with a 300-MW(e) windfarm in Illinois, a 115-MW(e) windfarm 37 in lowa, and a pending power purchase agreement with an additional 1,080 MW(e) of wind-

- 1 generated power from six windfarms outside the TVA service area (TVA 2011a). A utility-scale
- 2 wind-generation plant would generally require about 1 ha (2.5 ac) per MW(e) of installed
- 3 capacity, although a portion of this land could be used for other purposes (Denholm et al. 2009).
- 4 Based on regional wind resource studies, it is estimated that approximately 4,200 MW(e) of
- 5 wind capacity energy is available within the TVA service area; however, some of this acreage
- 6 may be in protected areas unavailable for development and the average capacity factor for this
- 7 wind resource would be about 25 percent (TVA 2011a). Newer wind turbines typically operate
- 8 at approximately a 36-percent capacity factor (DOE 2008a). In comparison, the average
- 9 capacity factor for a nuclear power-generation plant in 2009 in the United States was 90.5
- 10 percent (NEI 2010).
- 11 Because of the intermittent nature and limited regional availability of wind resources in the TVA
- region of interest, wind generation would not be a reasonable alternative to the proposed 1,160-
- 13 MW(e) baseload generation. Because some neighboring regions outside of the TVA service
- 14 area, such as Illinois, have higher classes of wind resources and are eligible to receive
- 15 production tax credits for wind generation (TVA is not eligible for such credits), TVA has
- 16 determined that the least-cost solution to integrating more wind into their generation portfolio is
- 17 to purchase wind through power purchase agreements (TVA 2011a, 2011b).

18 7.2.3.5 Energy Storage

- 19 Wind turbines and other renewable generation generally can serve as an intermittent baseload
- 20 power supply and TVA currently generates intermittent wind power in its region of interest.
- 21 Energy storage, such as battery storage, compressed air energy storage (CAES) facility, or a
- 22 pumped storage facility can be coupled with wind or other intermittent power sources to
- simulate baseload generation. A storage facility can capture the power of the wind during low
- 24 load times and use it during higher load times. Because storage facilities do not directly
- 25 generate electricity, but instead convert electric energy to potential (pumped storage and CAES)
- 26 or chemical (batteries) energy, they are not suitable stand-alone alternatives to WBN Unit 2.
- 27 Furthermore, this conversion process results in some efficiency losses, so storage facilities tend
- 28 to have net negative effect on generating capacity.
- 29 TVA has an existing 1,600-MW(e) pumped storage plant at Raccoon Mountain, near
- 30 Chattanooga, Tennessee. An additional pumped-storage resource option of 850 MW(e) was
- 31 included in all five of TVA's IRP future strategies going forward and TVA also includes an
- 32 expanded CAES option as part of its IRP. TVA did not evaluate any electric battery storage
- options because of operational limitations (TVA 2011a). With the Raccoon Mountain facility,
- 34 excess energy from lower cost generating resources is used to pump water from Nickajack
- 35 Reservoir to the upper reservoir during periods of low power demand. The pumps are
- 36 reversible and used as turbines to produce power using water from the upper reservoir during 37 periods of high demand. Additional pumped storage sites are available in the TVA region and

1 could be developed to store excess wind energy from off-peak periods and produce power in 2 periods when wind power is not available; however, these facilities would be associated with 3 noticeable environmental impacts. Pumped storage plants require 2,000 to 3,000 ac for the upper pool, the generating plant, and a lower pool if another reservoir is not available. There 4 5 would be impacts on terrestrial and aquatic resources as well as socioeconomic and cultural 6 resource impacts. Additional operational impacts for pumped storage facilities include 7 environmental impacts of the operation of thermal plants that might be used to supply power to 8 the plant in pumping mode (TVA 2010a). 9

With CAES, the wind turbines provide the power to compress the air into a storage volume. 10 such as an underground salt cavern or aquifer. The compressed air is discharged from the 11 storage volume into a set of gas turbines that are fired with natural gas. The efficiency of the 12 turbines is improved because compression of the inlet air is provided by the CAES facility 13 instead of by the turbine itself. The only operating CAES system in the United States is the 110 MW(e) facility in Alabama, the McIntosh Power Plant (TVA 2010a). Although coupling wind with 14 15 CAES reduces the problem of intermittency, it increases the air quality impacts by combusting 16 natural gas. In addition, CAES technology is still in the demonstration phase and is not 17 technologically mature.

18 Although it is technically feasible to couple wind or other intermittent resources with energy 19 storage to reduce intermittency, doing so increases environmental impacts (particularly for 20 pumped storage facilities), creates a net loss in energy (because some energy is lost in the 21 operation of the energy storage facility), and many storage technologies (e.g., CAES and 22 batteries) are not yet available in the capacities necessary to support an intermittent 23 replacement for WBN Unit 2. As a result, the NRC staff does not consider any intermittent 24 generating options coupled to energy storage technologies as an alternative to WBN Unit 2 in 25 this SFES.

26 7.2.3.6 Solar Power

27 There are currently two practical methods of producing electricity from solar energy:

28 photovoltaics and solar thermal power. Photovoltaics (also referred to as solar cells) convert

sunlight directly into electricity using semiconducting materials. Solar thermal technologies use

30 concentrating devices to create temperatures suitable for power production. Concentrating

31 thermal technologies are currently less costly than photovoltaics for bulk power production.

32 They also can be provided with energy storage or auxiliary boilers to allow operation during

33 periods when the sun is not shining (NWPCC 2006).

34 Solar technologies produce more electricity with more intense and direct sunlight. For solar

35 power generation using concentrating solar power, the annual average amount of solar energy

reaching the ground needs to be 6 kWh/m² per day or higher (NREL 2002). Based on solar

37 radiation maps developed by the National Renewable Energy Laboratory, TVA has an

- 1 estimated average solar radiation of 4.9 kWh/m² per day (TVA 2011a). Average annual
- 2 capacity factors for solar power systems in the TVA region are about 24 percent for
- 3 photovoltaics and 30 to 32 percent for solar thermal power (TVA 2008b). In comparison, the
- 4 average capacity factor for a nuclear power plant in 2009 in the United States was 90.5 percent
- 5 (NEI 2010). The lands with the best solar resources are usually arid and semi-arid. In the
- 6 United States, the largest operational solar thermal plant is the 64 MW(e) Nevada Solar One
- 7 plant located near Las Vegas, Nevada (DOE/EIA 2009).
- 8 TVA currently has experience with solar power technologies through its Green Power Switch 9 Generation Partners. As part of this program, TVA owns 15 photovoltaic installations with a 10 combined capacity of about 400 kW (TVA 2011a) and pays consumers for energy generated by 11 renewable resource technologies, such as solar photovoltaics. In early 2010, 172 facilities with 12 a total generating capacity of about 2 MW(e) were enrolled in the program and generating about 13 34,000 kWh per month (TVA 2011a).
- 14 Because of solar power generation's intermittent nature as well as the regional solar radiation
- 15 characteristics, the acreage requirements, and expense of solar power generation, a solar-
- 16 energy facility at the WBN site would not currently be a reasonable alternative to operating WBN
- 17 Unit 2.

18 **7.2.3.7 Hydropower**

19 TVA currently operates 110 conventional hydroelectric generating units at 29 dams with a 20 combined capacity of 3,538 MW(e). TVA hydroelectric plants are primarily operated to provide 21 peaking power; during periods of abundant precipitation, they may also be operated to provide 22 intermediate power (TVA 2011a). In addition, their availability is dependent on the availability of 23 water and the necessity to control water flow to meet broad multi-purpose goals as established 24 in TVA's Reservoir Operations Policy. Approximately 10 percent of TVA's current generation 25 capacity is met with hydropower. TVA currently has an ongoing effort to gain megawatt 26 capacity through modernization of aging hydropower systems, and this additional capacity is 27 included in TVA's forecast as presented in the assessment of the need for power, found in 28 Chapter 8 of this SFES (TVA 2011a).

A 2006 study by the Idaho National Engineering and Environmental Laboratory identified an
approximate additional 1,770 MW(e) of undeveloped hydropower resource in the TVA service
area (INEEL 2006). However, none of the feasible capacity is categorized as large power
sources (greater than 60 MW(e)). Approximately 70 percent of the feasible hydropower
capacity was categorized as small hydro and the remaining 30 percent was categorized as low
power resources (less than 2 MW(e)) (TVA 2011a).

Because of the relatively low amount of undeveloped hydropower resource in the TVA region
 and the large land-use and related environmental and ecological resource impacts associated

3 with siting hydroelectric facilities large enough to produce 1,160 MW(e), hydropower is not a

4 feasible alternative to operating WBN Unit 2.

5 7.2.3.8 Geothermal Energy

Geothermal energy has an average capacity factor of 90 percent and can be used for baseload
power where available. Hydrothermal resources (i.e., steam or hot water), which are the most
common geothermal resources, are available primarily in the western states, Alaska, and
Hawaii. Other geothermal resources, e.g., hot dry rock and magma, are awaiting further
technology development (DOE 2006). Geothermal technology is not widely used for baseload
power generation because of the limited geographical availability of the resource and immature
status of the technology (NRC 1996). The TVA region of interest does not have high-

13 temperature geothermal reservoirs available to produce geothermal power (DOE 2006).

14 Because of the lack of regionally available hydrothermal resources and the current status of

15 geothermal technology, a geothermal-energy facility at the WBN site would not be a reasonable

16 alternative to operating WBN Unit 2.

17 7.2.3.9 Wood Waste

18 As part of its generation mix, TVA co-fires wood waste in a boiler at Colbert Fossil Plant and

19 also has power purchase agreement for 70 MW(e) of biomass wood waste power from

20 Columbus, Mississippi and 3.2 MW(e) from Jackson, Mississippi (TVA 2011a). Approximately

21 11 million tons of wood waste are generated each year in the TVA service area (TVA 2003).

22 In the GEIS for license renewal (NRC 1996), the NRC determined that a wood-burning facility 23 can provide baseload power and operate with an average annual capacity factor of around 70 to 24 80 percent and with 20 to 25 percent efficiency. The fuels required are variable and site-25 specific. A significant impediment to the use of wood waste to generate electricity is the high 26 cost of fuel delivery and high construction cost per megawatt of generating capacity. The 27 largest wood-waste power plants are only 40 to 50 MW(e) in size. Estimates in the GEIS for 28 license renewal suggest that the overall level of construction impacts per megawatt of installed 29 capacity would be approximately the same as that for a coal-fired plant, although facilities using 30 wood waste for fuel would be built at smaller scales (NRC 1996). Similar to coal-fired plants, wood-waste plants require large areas for fuel storage and processing and involve the same 31

32 type of combustion equipment.

1 Because of uncertainties associated with obtaining sufficient wood and wood waste to fuel a

- 2 baseload power plant, the ecological impacts of large-scale timber cutting (for example, soil
- 3 erosion and loss of wildlife habitat), and high inefficiency, wood waste would not be a
- 4 reasonable alternative to operating WBN Unit 2.

5 7.2.3.10 Municipal Solid Waste

6 Municipal solid-waste combustors incinerate waste and use the resultant heat to produce 7 steam, hot water, or electricity. The combustion process can reduce the volume of waste by up 8 to 90 percent and the weight by up to 75 percent (EPA 2009). Municipal waste combustors use 9 three basic types of technologies: mass burn, modular, and refuse-derived fuel (DOE/EIA 2001). Mass-burning technologies are most commonly used in the United States. This group of 10 11 technologies processes raw municipal solid waste "as is," with little or no sizing, shredding, or separation before combustion. In the GEIS for license renewal (NRC 1996), the NRC determined 12 13 that the initial capital cost for municipal solid-waste plants is greater than for comparable steam-14 turbine technology at wood-waste facilities because of the need for specialized waste-separation 15 and waste-handling equipment for municipal solid waste.

- Municipal solid-waste combustors generate an ash residue that is buried in landfills. The ash
 residue is composed of bottom ash and fly ash. Bottom ash refers to that portion of the
 unburned waste that falls to the bottom of the grate or furnace. Fly ash represents the small
 particles that rise from the furnace during the combustion process. Fly ash is generally
 removed from flue gases using fabric filters and/or scrubbers (DOE/EIA 2001).
- In 2010, 86 waste-to-energy plants operated in the United States. These plants generated
 approximately 2,572 MW(e), or an average of approximately 30 MW(e) per plant (IWSA 2010).
 TVA does not plan to construct or operate facilities using municipal solid waste in the next 20
 years; however, it would consider purchasing power from such a facility (TVA 2011b). Given
 the small size of existing plants, generating electricity from municipal solid waste would not be a
 reasonable alternative to operating WBN Unit 2.

27 7.2.3.11 Other Biomass-Derived Fuels

28 In addition to wood and municipal solid-waste fuel, several other biomass-derived fuels are 29 available for fueling electric generators, including burning crops, converting crops to a liquid fuel 30 such as ethanol, and gasifying crops. Biomass power plants can provide baseload power and 31 are one of few renewable power plants with generation that can be scheduled. EIA estimates that hydropower, wind, and biomass will be the three largest sources of renewable electricity 32 generation renewable fuels through 2035 (DOE/EIA 2010). TVA also considers biomass to be 33 one of its largest renewable energy resources in the Tennessee River valley. Crops grown 34 specifically to produce biomass for use as fuels (dedicated energy crops) are a potentially 35 important commodity in the TVA region. Studies project that approximately 10 million tons of 36

September 2011

1 switchgrass, a native, high-yielding grass, could be grown annually as an energy crop in the 2 TVA service area. TVA estimates that in combination, these biomass resources (including 3 wood waste, see Section 7.2.1.9) could potentially produce an energy equivalent of 4 approximately 900 MW(e) in the TVA service area. However, the cost of converting some of 5 these biomass resources to electricity is twice the cost of coal on an energy basis (TVA 2003). 6 TVA currently integrates biomass-derived fuels into the generation mix by co-firing methane 7 from a nearby sewage treatment plant at Allen Fossil Plant (TVA 2011a). TVA currently 8 purchases about 80 MW(e) of biomass-fueled generation and has purchased power 9 agreements for 11 MW(e) of biomass-fired generation from corn milling residue. In 10 addition. TVA plans to evaluate the Shawnee 10 fossil-plant for conversion to a dedicated 11 biomass-fueled unit (TVA 2011b). In the GEIS for license renewal (NRC 1996), the NRC 12 determined that none of these biomass conversion technologies has progressed to the point of 13 being competitive on a large scale or of being reliable enough to replace a large baseload 14 power-generation plant. Nevertheless, TVA included up to 490 MW(e) of biomass generation 15 and landfill gas generation as a potential resource option for evaluation over the next 20 years 16 in its Integrated Resource Plan (TVA 2011a). The NRC staff notes that this is less than half the 17 proposed capacity of WBN Unit 2, and will not be available until long after WBN Unit 2 is 18 proposed for operation.

19 Construction of a biomass-fired plant would have an environmental impact that would be similar 20 to that for a coal-fired plant, although facilities using wood waste and agricultural residues for 21 fuel would be built on smaller scales. Like coal-fired plants, biomass-fired plants require areas 22 for fuel storage, processing, and waste (i.e., ash) disposal. Additionally, operation of biomass-23 fired plants has environmental impacts, including potential impacts on the aquatic environment 24 and air; however, biomass feedstocks have lower levels of sulfur and sulfur compounds 25 compared with coal (DOE/EIA 2010). Because of the limited availability and environmental 26 impacts, biomass-derived fuels do not offer a reasonable alternative to operating WBN Unit 2.

27 7.2.3.12 Fuel Cells

Fuel cells work without combustion and its associated environmental side effects. Power is produced electrochemically by passing a hydrogen-rich fuel over an anode, air over a cathode, and then separating the two by an electrolyte. The only byproducts are heat, water, and CO₂. Hydrogen is typically derived from hydrocarbon-based fuels, such as natural gas, by subjecting them to steam reforming or partial oxidation, through gasification of coal or biomass, or through the electrolysis of water.

Phosphoric-acid fuel cells are generally considered first-generation technology. During the past
 three decades, significant efforts have been made to develop more practical and affordable fuel
 cell designs for stationary power applications and the first-generation technologies have given

37 way to membrane and solid-oxide-based fuel cells operating consistently at above 50-percent

- 1 electrical efficiency (DOE 2008b). High-temperature, second-generation fuel cells have
- 2 achieved increased fuel-to-electricity and thermal efficiencies, giving second-generation fuel-cell
- 3 systems the ability to generate steam for cogeneration such as in distributed generation type
- 4 combined heat and power applications.
- 5 Research in both stationary and transportation-based fuel cells is intended to provide continuing
- 6 improvements of both materials and components as they relate to system cost and durability.
- 7 Currently, the cost of fuel-cell power systems must be reduced before they can be competitive
- 8 with conventional technologies (DOE 2008c). At the present time, fuel cells are not
- 9 economically or technologically competitive with other alternatives for baseload electricity
- 10 generation. Because fuel cells have not been developed to the point where they are capable of
- 11 supplying power equal to 1,160 MW(e), fuel-cell-based electricity generation does not offer a
- 12 reasonable alternative to operating WBN Unit 2.

13 7.2.4 Natural-Gas-Fired Power Generation

- 14 For the natural-gas-fired alternative, the NRC assumed construction and operation of a natural-
- 15 gas-fired plant with a closed-cycle cooling system and cooling towers located at the WBN site.
- 16 The natural-gas-fired plant would use combined-cycle combustion turbines and two units would
- 17 be needed with a net capacity of 580 MW(e) per unit for a total capacity of 1,160 MW(e). The
- 18 natural-gas-fired alternative would use existing transmission lines and rights-of-way to the WBN
- 19 site, as discussed in Section 3.2 of this SFES.
- 20 TVA currently operates 11 natural-gas-fired generating facilities 9 combustion turbine plants
- 21 with a total capacity of 5,326 MW(e) and 2 combined cycle plants with a total capacity of
- 22 1,327 MW(e). TVA is constructing the John Sevier combined cycle plant with a proposed
- 23 capacity of 880 MW(e) (TVA 2011a, 2010b).

24 7.2.4.1 Air Quality

- 25 Natural gas is a relatively clean-burning fuel. A natural-gas-fired plant releases similar types of
- 26 emissions as a coal-fired plant, but in lower quantities. A new natural-gas-fired power plant in
- 27 the WBN region would likely need a Prevention of Significant Deterioration (PSD) and an
- 28 operating permit under the Clean Air Act. PSD is an EPA program in which state or Federal
- 29 permits are required to restrict air emissions from new or modified sources in places where air
- 30 quality currently meets ambient air quality standards.
- 31 A new natural-gas-fired, combined-cycle plant also would be subject to the new source
- 32 performance standards specified in Title 40 of the Code of Federal Regulations (CFR) Part 60,
- 33 Subpart KKKK ("Standards of Performance for Stationary Combustion Turbines"). This subpart
- 34 establishes standards for SO₂ and NO_x.

- 1 The EPA has various regulatory requirements for visibility protection in 40 CFR Part 51.
- 2 Subpart P ("Protection of Visibility"), including a specific requirement for review of any new
- 3 major stationary source in areas designated as in attainment or unclassified under the Clean Air
- 4 Act. Most of the "designated areas" around the WBN site are designated as
- 5 "Unclassifiable/Attainment" for all criteria pollutants. However, the area around Chattanooga,
- 6 Tennessee-Georgia (Hamilton County) and the area around Knoxville, Tennessee (Anderson,
- 7 Blount, Knox, London, and part of Roane counties) are "Nonattainment" for PM25 (40 CFR
- 8 81.343).
- 9 Section 169A(a)(2) of the Clean Air Act (42 USC 7491) establishes a national goal of preventing
- 10 future, and remedying existing, impairment of visibility in mandatory Class I Federal areas when
- impairment occurs because of air pollution resulting from human activities. The Great Smokey 11
- 12 Mountains National Park and the Joyce Kilmer Slickrock Wilderness are identified Mandatory
- 13 Class I Federal Areas and, where visibility is an important value (40 CFR 81.428). The Great
- 14 Smoky Mountains National Park comprises 514,758 ac overall, of which 273,551 ac are in North
- 15 Carolina, and 241,207 ac are in Tennessee. Joyce Kilmer Slickrock Wilderness comprises

16 14,033 ac overall, of which 10,201 ac are in North Carolina, and 3,832 ac are in Tennessee.

17 They are located approximately 80 km (50 mi) from the site to the west and northwest,

- 18 respectively. If a new gas-fired power-generation facility were located near a mandatory Class I
- 19 area, additional air-pollution control requirements could be imposed.
- 20 The emissions from the natural-gas-fired alternative at the WBN site, based on EPA emission
- 21 factors and performance characteristics for this alternative and its emission controls, would be 22 as follows:
- 23 • SO₂ – 91 T/yr (83 MT/yr)
- 24 • NO_x – 291 T/yr (264 MT/yr)
- 25 CO – 61 T/yr (55 MT/yr)
- 26 PM₁₀ – 51 T/yr (44 MT/yr) (all particulates are PM₁₀).

27 A natural-gas-fired power plant also would have unregulated CO₂ emissions that could 28 contribute to global warming. The NRC staff estimates that the natural-gas-fired alternative

- 29 would emit approximately 3.1 million T/yr (2.8 MT/yr) of CO₂.
- 30 The combustion turbine portion of the combined-cycle plant would be subject to EPA's National
- Emission Standards for Hazardous Air Pollutants for Source Categories (40 CFR 63) if the site 31
- 32 is a major source of hazardous air pollutants. Major sources have the potential to emit 10 T/yr
- 33 (9 MT/yr) or more of any single hazardous air pollutant or 25 T/yr (23 MT/yr) or more of any
- 34 combination of hazardous air pollutants (40 CFR 63.6085(b)).

1 The fugitive dust emissions from construction activities could impact air quality on or near the

- 2 WBN site; however, these impacts would be temporary and mitigated using best management
- 3 practices. In addition, exhaust emissions would come from vehicles and other motorized
- 4 equipment used during the construction of the plant.

5 The impacts of emissions from a natural-gas-fired power plant could be noticeable, but given

6 the variety of air quality regulations with which the plant must comply, the impacts would not

7 destabilize air quality. Overall, air quality impacts resulting from construction and operation of

8 new natural-gas-fired power plant at the WBN site would be SMALL to MODERATE.

9 7.2.4.2 Water Use and Quality

The impacts on water use and quality from operating a natural-gas-fired plant at the WBN site would be comparable to the impacts associated with operating a nuclear power plant on the site. Closed-cycle cooling with cooling towers is assumed. The impacts on water quality from sedimentation during construction of a natural-gas-fired plant are characterized in NUREG-1437 as SMALL (NRC 1996). NRC also noted in NUREG-1437 that the impacts on water quality from operations are similar to, or less than, the impacts from other generating technologies. Overall, water use and quality impacts would be SMALL.

17 **7.2.4.3** Aquatic and Terrestrial Resources

18 Much of the aquatic and terrestrial resource impacts that would occur from constructing and 19 operating and gas-fired plant on the WBN site would occur in areas previously disturbed during 20 the construction of WBN Unit 2. Constructing a new underground gas pipeline to the site would 21 cause temporary ecological impacts. Construction and operation of a natural-gas pipeline 22 would be subject to various state and Federal environmental requirements depending on how 23 and where it would be constructed. Ecological impacts on the plant site and utility easements 24 would not affect threatened and endangered species, although some wildlife habitat loss and 25 fragmentation, reduced productivity, and local reduction in biological diversity would be likely. Withdrawal and discharge of makeup water for the cooling system could affect aquatic 26 27 resources, and drift of condensation from the cooling towers could affect terrestrial ecology. 28 Overall, the NRC concludes that ecological impacts would be SMALL to MODERATE.

29 7.2.4.4 Human Health

In NUREG-1437, the NRC identified cancer and emphysema as potential health risks from natural-gas-fired plants (NRC 1996). The risk may be attributable to NO_x emissions that

32 contribute to ozone formation, which in turn contributes to health risk. The Tennessee

33 Department of Environment and Conservation (TDEC) would regulate air emissions from a

34 natural-gas-fired power plant located at the WBN site. The human health effect would be

1 expected to be either undetectable or minor. Overall, the NRC concludes that the impacts on 2 human health from natural-gas-fired power generation would be SMALL.

3 7.2.4.5 **Socioeconomics**

4 Land Use

- 5 The GEIS generically evaluates the onsite and offsite impacts of nuclear power plant
- construction and operation on land use. This analysis of land-use impacts focuses on the land 6 7
- area that would be affected by the construction and operation of a natural-gas-fired power plant
- 8 at the WBN site.
- 9 Based on GEIS estimates, approximately 128 ac (51 ha) of land would be needed to support a
- 10 natural-gas-fired alternative to replace WBN Unit 2. This amount of land use would include
- 11 other plant structures and associated infrastructure. Land-use impacts from construction would
- 12 be SMALL.
- 13 In addition to onsite land requirements, land would be required offsite for natural-gas wells,
- 14 collection stations, and gas pipelines. Most of this land requirement would occur on land where
- 15 gas extraction already occurs. In addition, some natural gas could come from outside the
- 16 United States and be delivered as liquefied gas.
- 17 The elimination of uranium fuel for WBN Unit 2 could partially offset offsite land requirements
- 18 needed for mining and processing uranium during the operating life of the plant. Overall
- 19 land-use impacts from a gas-fired power plant would be in the range of SMALL to MODERATE.

20 Socioeconomics

- 21 Socioeconomic impacts are defined in terms of changes to the demographic and economic
- 22 characteristics and social conditions of a region. For example, the number of jobs created by
- 23 the construction and operation of a new natural-gas-fired power plant could affect regional
- 24 employment, income, and expenditures. Two types of jobs would be created by this alternative:
- 25 (1) construction-related jobs, which are transient, short in duration, and less likely to have a
- 26 long-term socioeconomic impact; and (2) operation-related jobs in support of power plant
- 27 operations, which have the greater potential for permanent, long-term socioeconomic impacts.
- Workforce requirements for the construction and operation of the natural-gas-fired power plant 28
- 29 alternative were evaluated in order to measure their possible effects on current socioeconomic
- 30 conditions.
- 31 In its application for two combined licenses at the Bellefonte plant site, TVA indicated that
- 32 construction of a new natural-gas-fired power plant would require approximately 400 workers
- 33 over a 3-year period (TVA 2008b). The NRC staff finds that these estimates to be similar to

- 1 other TVA estimates related to construction of the John Sevier gas-fired plant (TVA JS EA) and
- 2 considers the estimates to be in reasonable for construction of a gas-fired power plant at the
- 3 WBN Unit 2 site. During construction of a natural-gas-fired plant, the communities surrounding
- 4 the power plant site would experience increased demand for rental housing and public services.
- 5 The relative economic effect of construction workers on the local economy and tax base would
- 6 vary over time.
- 7 After construction, the loss of construction jobs and associated loss in demand for business
- 8 services may temporarily affect local communities. Additionally, the rental housing market could
- 9 experience increased vacancies and decreased prices. Since WBN is located near the
- 10 relatively populous cities of Knoxville and Chattanooga, these effects would be smaller because
- 11 workers are likely to commute instead of relocating closer to the construction site. Because of
- 12 the WBN site's proximity to this large population center, the impact of construction on
- 13 socioeconomic conditions could range from SMALL to MODERATE.
- 14 Operating a natural-gas-fired plant would require approximately 50 workers. (TVA 2008b).
- 15 During plant operations, demand for housing and public services would diminish due to the
- 16 relatively small workforce required to operate the plant and considering the surrounding
- 17 population and infrastructure. Overall, the socioeconomic impacts from constructing and
- 18 operating a gas-fired plant would be noticeably less than impacts associated with the
- 19 construction and operation of a coal-fired alternative due to the smaller size of the construction
- 20 and operations workforce. Operational impacts would be SMALL.

21 Transportation

- 22 Transportation impacts associated with construction and operation of a gas-fired power plant
- 23 would consist of commuting workers and truck deliveries of construction materials to the WBN
- site. During periods of peak construction activity, up to 400 workers could be commuting daily
- to the site. In addition to commuting workers, trucks would be transporting construction
- 26 materials and equipment to the worksite, thus increasing the amount of traffic on local roads.
- 27 The increase in vehicular traffic would peak during shift changes, resulting in temporary levels of
- 28 service impacts and delays at intersections. Pipeline construction and modification to existing
- 29 natural-gas pipeline systems could also have an impact. Traffic-related transportation impacts
- 30 during construction would likely be MODERATE.
- 31 During plant operations, traffic-related transportation impacts would almost disappear.
- 32 Operating a gas-fired plant would require approximately 50 workers. Since fuel is transported
- 33 by pipeline, the transportation infrastructure would experience little to no increased use from
- 34 plant operations. Overall, the gas-fired alternative transportation impacts would be SMALL
- 35 during plant operations.

1 Aesthetics

2 The aesthetics impact analysis focuses on the degree of contrast between the natural-gas-fired 3 alternative and the surrounding landscape and the visibility of the natural-gas-fired plant.

4 The gas-fired units could be approximately 100 ft (30 m) tall, with four exhaust stacks up to 5 200 ft (61 m) tall. The facility would be visible offsite during daylight hours, and some structures 6 may require aircraft warning lights. The power plant would be smaller and less noticeable than 7 that of WBN Unit 2. Cooling towers would continue to generate condensate plumes and 8 operational noise. Additional noise during power plant operations would be limited to industrial 9 processes and communications. Pipelines delivering natural-gas fuel could be audible offsite 10 near compressors.

In general, aesthetic changes would be limited to the immediate vicinity of the WBN site andwould be SMALL.

13 Historic and Cultural Resources

14 Cultural resources are the indications of human occupation and use of the landscape as defined 15 and protected by a series of Federal laws, regulations, and guidelines. Prehistoric resources 16 are physical remains of human activities that predate written records; they generally consist of 17 artifacts that may alone or collectively yield information about the past. Historic resources 18 consist of physical remains that postdate the emergence of written records; in the United States, they are architectural structures or districts, archaeological objects, and archaeological features 19 20 dating from 1492 and later. Ordinarily, sites less than 50 years old are not considered historic, 21 but exceptions can be made for such properties if they are of particular importance, such as 22 structures associated with the development of nuclear power (e.g., Shippingport Atomic power Station) or Cold War themes. American Indian resources are sites, areas, and materials 23 24 important to American Indians for religious or heritage reasons. Such resources may include 25 geographic features, plants, animals, cemeteries, battlefields, trails, and environmental features. 26 The cultural resource analysis encompassed the power plant site and adjacent areas that could 27 potentially be disturbed by the construction and operation of alternative power plants.

28 The potential for historic and archaeological resources can vary greatly depending on the 29 location of the proposed site. To consider a project's effects on historic and archaeological 30 resources, any affected areas would need to be surveyed to identify and record historic and 31 archaeological resources, identify cultural resources (e.g., traditional cultural properties), and 32 develop possible mitigation measures to address any adverse effects from ground disturbing 33 activities. The cultural resource analysis encompassed the power plant site and adjacent areas 34 that could be disturbed by the construction and operation of a replacement gas-fired plant at the 35 WBN site.

1 A cultural resources survey would be needed for any onsite property not previously surveyed.

2 Additionally, other lands acquired to support the plant would likely need to be surveyed to

3 identify and record historic and archaeological resources. These surveys would be needed for

4 all areas of potential disturbance, both onsite and offsite (e.g., mining and waste-disposal sites).

5 If project activities adversely affect historic and cultural resources, mitigation measures would 6 be taken in consultation with the State Historic Preservation Officer (SHPO). Historic and

cultural resource impacts would be SMALL to MODERATE depending on the location of the

8 power plant. However, cultural resource surveys may reveal important cultural resources that

9 could result in greater impacts.

10 Environmental Justice

11 The environmental justice impact analysis evaluates the potential for disproportionately high and

adverse human health and environmental effects on minority and low-income populations that
 could result from the construction and operation of a new natural-gas-fired power plant.

Adverse health effects are measured in terms of the risk and rate of fatal or nonfatal adverse

15 impacts on human health. Disproportionately high and adverse human health effects occur

16 when the risk or rate of exposure to an environmental hazard for a minority or low-income

17 population is significant and exceeds the risk or exposure rate for the general population or for

18 another appropriate comparison group. Disproportionately high environmental effects refer to

19 impacts or risk of impacts on the natural or physical environment in a minority or low-income

20 community that are significant and appreciably exceed the environmental impact on the larger

21 community. Such effects may include biological, cultural, economic, or social impacts. Some of

22 these potential effects have been identified in resource areas evaluated in this SFES. For

23 example, increased demand for rental housing during power plant construction could

24 disproportionately affect low-income populations. Minority and low-income populations are

25 subsets of the general public residing in the vicinity of WBN, and all are exposed to the same

26 hazards generated from constructing and operating a new natural-gas-fired power plant.

27 As discussed in Section 2.4.3.1 of this SFES, within the 80-km (50-mi) region of the WBN site,

28 approximately 11 percent of the population identified themselves as a minority. Approximately

29 206 census block groups wholly or partly within the 80-km (50-mi) radius of the WBN site were

30 determined to have a minority population of 11 percent of the total population (see **Error!**

31 **Reference source not found.**). Of these 206 block groups, 70 had aggregate minority

32 population percentages that exceed the regional (within 80-km [50-mi] radius of the WBN site)

average by 20 percentage points or more, and 54 census block groups had aggregate minority

34 population percentages that exceed 50 percent. These block groups are primarily located near

35 the town centers of Maryville (Blount County), Oak Ridge (Anderson County), Athens (McMinn

36 County), Cleveland (Bradley County), and the City of Chattanooga (Hamilton County). Some

37 more rural concentrations are located in Knox County, Tennessee, and Whitfield County,

1 Georgia. No block groups with high-density minority populations were found in Rhea or Meigs 2 county (USCB 2000).

3 Based on 2000 Census data, 38 block groups exceeded the 80-km (50-mi) average 4 (12 percent) by 20 percent or more, while only 3 block groups had low-income populations of 5 50 percent or more (see Section 2.4.3.2). These block groups are distributed throughout the 80-km (50-mi) radius in relatively rural areas of Scott, Morgan, Cumberland, Grundy, Roane, 6 7 and Knox counties. In addition, some low-income concentrations are found near the town 8 centers of Oak Ridge (Anderson County), Athens (McMinn County), Cleveland (Bradley 9 County), and the City of Chattanooga (Hamilton County). No high-density low-income block 10 groups were found in Rhea and Meigs counties (USCB 2000). Potential impacts on minority and 11 low-income populations from the construction and operation of a new natural-gas-fired power 12 plant at WBN would mostly consist of environmental and socioeconomic effects (e.g., noise, 13 dust, traffic, employment, and housing impacts). Noise and dust impacts from construction 14 would be short-term and primarily limited to onsite activities. Minority and low-income 15 populations residing along site access roads would also be affected by increased commuter 16 vehicle traffic during shift changes and truck traffic. However, these effects would be temporary 17 during certain hours of the day and not likely to be high and adverse. Increased demand for 18 rental housing during construction in the vicinity of the WBN could affect low-income 19 populations. However, given the close proximity to populated areas, most construction workers 20 would likely commute to the site thereby reducing the potential demand for rental housing.

21 Based on this information and the analysis of human health and environmental impacts from a

22 natural-gas-fired alternative presented in this section of the SFES, the construction and

23 operation of a new natural-gas-fired power plant would not have disproportionately high and

adverse human health and environmental effects on minority and low-income populations

residing in the vicinity of the WBN site.

26 7.2.4.6 Waste Management

27 According to the 1996 GEIS (NUREG-1437), waste generation from natural-gas-fired 28 technology would be minimal (NRC 1996). The only significant waste generated at a natural-29 gas-fired power plant would be spent Selective Catalytic Reduction (SCR) catalyst, which is 30 used to control NO_x emissions. The spent catalyst would be regenerated or disposed of offsite. 31 Other than spent SCR catalyst, waste generation at an operating natural-gas-fired plant would 32 be largely limited to typical operations and maintenance waste. Construction-related debris 33 would be generated during construction activities. Overall, waste impacts from natural-gas-fired 34 power generation would be SMALL.

The impacts of natural-gas-fired power generation at the WBN site are summarized in

36 Table 7-1.

	Natural Gas Combined- Cycle Generation	
Air quality	SMALL to MODERATE	
Water use and quality	SMALL	
Aquatic and terrestrial resources	SMALL to MODERATE	
Human health	SMALL	
Socioeconomics (including land, cultural resources, and environmental justice)	SMALL to MODERATE	
Waste management	SMALL	

Table 7-1. Summary of Environmental Impacts of the Natural Gas-Fired Alternative

2 7.2.5 Combination of Alternatives

3 Individual alternatives to the operation of an additional nuclear unit at the proposed site might not be sufficient on their own to generate the equivalent of 1,160 MW(e), because of the small 4 size of the resource or lack of cost-effective opportunities. Nevertheless, it is conceivable that a 5 combination of alternatives might be cost-effective. There are many possible combinations of 6 7 alternatives. Based, in part, on resources identified in TVA's IRP (TVA 2011a), the NRC staff 8 has assembled a combination of alternatives that could reasonably serve as a generation option for WBN Unit 2, considering the proposed capacity of WBN Unit 2 (1,160 MW(e) operated as 9 baseload plant), the proposed start date (2012), proposed license period (40 years), and the 10 11 availability of resources in the TVA service area.

12 Any combination of alternative sources that incorporates renewable sources of energy (e.g., solar or wind power) also would need to be combined with some form of 100 percent load 13 14 capacity fossil-fuel-fired power generation to accommodate the intermittent power generation 15 from renewable sources. The natural-gas-fired power generation option, evaluated as part of 16 the baseload alternatives, would be the most likely fossil fuel-generated option in the TVA region of interest. The impacts of natural-gas-fired power generation previously discussed 17 18 would form the basis of evaluating this portion of the combination of power generating 19 alternatives. When considering the combined environmental impacts (e.g., land-use, aesthetics) from a natural-gas-fired generation unit, solar, wind, biomass sources, or any 20 number of renewable alternatives, the combination of alternatives, would likely have 21 22 environmental impacts that exceed the environmental impacts of operating WBN Unit 2. 23 Construction and operation of two natural-gas-fired, combined-cycle generating units

(generating 580 MW(e) each) at the WBN site using closed-cycle cooling with cooling towers
 was discussed in Section 7.2.2. For a combined alternatives option, the environmental impacts
 of two 380-MW(e) natural-gas-fired, combined-cycle power generating units at the WBN site
 using closed-cycle cooling with cooling towers was considered. In addition, it is assumed that a
 combination of alternatives could reasonably include 400 MW(e) of wind energy (assuming a 36

7-25

1

1 percent capacity factor), 100 MW(e) from biomass sources, and 150 MW(e) from energy

2 efficiency programs. Due to wind availability limitations, it TVA would likely purchase some

3 portion of the wind energy from neighboring regions. A summary of the environmental impacts

4 associated with the construction and operation of this combination of alternatives is provided in

5 Table 7-2.

6

Impact Category	Impact	Comment	
Air Quality SMALL MODERA		Emissions from the natural-gas-fired plant and biomass facilities could affect air quality.	
Water Use and Quality	SMALL	Impacts would be comparable to the impacts for a new power plant located at the WBN site.	
Ecology	SMALL to MODERATE	Many of the impacts would occur in areas previously disturbed during the construction of WBN Units 1 and 2; however, biomass plant would require areas for fuel storage, processing, and waste (i.e., ash) disposal. Impacts on terrestrial ecology from cooling tower drift could occur. Land requirements for wind farm could result in habitat loss and some avian mortality.	
Human Health	SMALL	Regulatory controls and oversight would be protective of human health.	
Socioeconomics	SMALL to LARGE	Construction and operations workforces would be relatively small. However, construction related impacts would be noticeable. Impacts during operation would be minor because of the small workforce involved. Wind farm and new transmission lines associated with generation would create aesthetic impacts.	
Land Use	MODERATE	A biomass plant and natural-gas-fired plant would require land for the powerblock, fuel storage/natural-gas pipeline, and waste disposal. Wind farms and associated transmission lines would require a large amount of land.	
Historic and Cultural Resources	SMALL to LARGE	Most of the facilities and infrastructure at the site would likely be built on previously disturbed ground. Site surveys would have to be conducted and the effects to cultural resources assessed and mitigated, if necessary, prior to any ground disturbing activities.	
Environmental Justice	SMALL	Depending on their location, construction and operation of these facilities may affect minority and low-income populations.	
Waste Management	SMALL to MODERATE	Waste would be from spent SCR catalyst used for control of NO_x emissions from natural-gas-fired plant and ash from biomass waste sources.	

Table 7-2. Summary of Environmental Impacts of a Combination of Power Sources

1 7.2.5.1 Air Quality

2 As discussed in Section 7.2.2, although natural gas is a relatively clean-burning fossil fuel, any

gas-fired generation option would be associated with emissions of SO₂, NO_x, CO, CO₂ and PM.
 Similarly, biomass-powered plants produce emissions in the form of NO_x, CO₂ and a small

Similarly, biomass-powered plants produce emissions in the form of NO_x, CO₂ and a small
 amount of SO₂. The amounts emitted depend on the type of biomass burned and generator

6 used. Wood waste is relatively abundant in the TVA service area, with approximately 11 million

7 tons of wood waste generated each year (TVA 2003). If wood waste fueled a 100-MW(e)

8 biomass plant, the NRC staff calculates that it could produce 124 T (112 MT) of SO₂ per year,

9 608 T (552 MT) of NO_x, 744 T (675 MT) of CO, 370 T of PM₁₀, and 968,000 T (878,000 MT) of

10 CO₂ per year, based on likely fuel and power plant characteristics. Wind generation and

11 energy efficiency programs would not affect air quality in the TVA region of interest.

12 In addition to operation impacts, the construction of this combination of alternatives would

13 produce temporary fugitive dust emissions from construction activities. The exhaust emissions

14 from vehicles and other motorized equipment used during the construction of the facilities would

15 also have temporary air-quality impacts in the TVA region of interest.

The impacts of emissions from a natural-gas-fired power plant and biomass/municipal waste generation would be noticeable, but would not be sufficient to destabilize air resources. Overall, air quality impacts resulting from construction and operation of the combination of alternatives would be MODERATE.

20 7.2.5.2 Water Use and Quality

The impacts on water use and quality from operating a natural-gas-fired and biomass plant at the WBN site would be comparable to the impacts discussed in NUREG-1437 associated with the operation of a nuclear power plant. Closed-cycle cooling with cooling towers would be used. The impacts on water quality from sedimentation during construction are characterized in NUREG-1437 as SMALL (NRC 1996). NRC also noted in NUREG-1437 that the impacts on water quality from operations are similar to, or less than, the impacts from other generating technologies.

Wind generation and energy efficiency would not have noticeable impacts on water use or
 quality in the TVA region of interest. Overall, water use and quality impacts would be SMALL.

30 7.2.5.3 Aquatic and Terrestrial Resources

31 Constructing a new underground gas pipeline to the WBN site would cause temporary

32 ecological impacts. Impacts on the plant site and utility easements would not affect threatened

33 and endangered species, although some wildlife habitat loss and fragmentation, reduced

34 productivity, and local reduction in biological diversity would be likely. Like coal-fired plants,

1 biomass-fired plants require areas for fuel storage, processing, and waste (i.e., ash) disposal,

2 which could potentially impact aquatic and terrestrial resources on the site. Most of the aquatic

3 and terrestrial resource impacts of constructing and operating and gas-fired plant and biomass

4 plant on the WBN site would occur in areas previously disturbed during construction of WBN

5 Unit 2. Withdrawal and discharge of makeup water for the cooling system could affect aquatic

6 resources, and drift of condensation from the cooling towers could affect terrestrial ecology.

A wind farm would also affect terrestrial resources. The total impact would depend on the
location and acreage. Wind generation with a capacity of 400 MW(e) would permanently impact
approximately 290 ac (120 ha), and temporarily impact an additional 690 ac (280 ha) during
construction (Denholm et al. 2009). The energy efficiency programs would not have any impact
on aquatic and terrestrial resources in the region of interest. Overall, the NRC concludes that

12 ecological impacts from the combination of alternatives would be SMALL to MODERATE.

13 7.2.5.4 Human Health

In NUREG-1437, the NRC identified cancer and emphysema as potential health risks from
 natural-gas-fired plants (NRC 1996). Health risks from the gas-fired plant and biomass plant

16 may be attributable to NO_x emissions. TDEC would regulate air emissions from the natural-gas-

17 fired and biomass power plants located at the WBN site. No human health effects are

18 associated with wind generation and energy efficiency components. The human health effect

19 would be expected to be either undetectable or minor. Overall, the NRC concludes that the

20 impacts on human health from the combination of alternatives would be SMALL.

21 7.2.5.5 Socioeconomics

22 Land Use

23 The GEIS generically evaluates the onsite and offsite impacts of nuclear power plant

24 construction and operation on land use. This analysis of land-use impacts focuses on the land

area that would be affected by the construction and operation of a natural-gas-fired power plant

and a biomass power plant at the WBN site, as well as the construction and operation of a wind

27 farm located offsite but within the TVA service area.

Based on TVA estimates, approximately 80–100 ac (30–40 ha) of land would be needed to

29 support a natural-gas-fired and biomass plants (TVA 2011b). In addition, the biomass-fired

30 plant would require areas for fuel storage, processing, and waste (i.e., ash) disposal. In addition

31 to onsite land requirements, land would be required offsite for natural-gas wells, collection

32 stations, and gas pipelines. The construction of wind turbines and associated transmission lines

33 would require a large amount of land spread over several offsite locations. Wind generation

34 with a capacity of 400 MW(e) would permanently affect approximately 290 ac (120 ha), and

temporarily affect an additional 690 ac (280 ha) during construction (Denholm et al. 2009). The

- 1 elimination of uranium fuel for WBN Unit 2 could partially offset offsite land requirements;
- 2 however the combined land-use impacts from the construction and operation of a gas-fired
- 3 plant, wind farm, and biomass plant would be noticeable in the region of interest.
- 4 Energy efficiency programs could have minor land use impacts if they involve the rapid
- 5 replacement and disposal of old energy inefficient appliances and other equipment that would
- 6 generate waste material and could increase the size of landfills. However, given the time for
- 7 program development and implementation, the cost of replacements, and the average life of
- 8 equipment, the replacement process would probably be gradual. More efficient appliances and
- 9 equipment would replace older equipment (especially in the case of frequently replaced items,
- 10 such as light bulbs). In addition, many items (such as home appliances and industrial
- equipment) have recycling value and would not be disposed of in landfills. Overall land-use
- 12 impacts from the combination of alternatives would be MODERATE.

13 Socioeconomics

- 14 As previously discussed, socioeconomic impacts are defined in terms of changes to the
- 15 demographic and economic characteristics and social conditions of a region. For example, the
- 16 number of jobs created by the construction and operation of new power plants could affect
- 17 regional employment, income, and expenditures. Two types of jobs are created by this
- 18 alternative: (1) construction-related jobs, which are transient, short in duration, and less likely to
- 19 have a long-term socioeconomic impact; and (2) operation-related jobs, which have greater
- 20 potential for permanent, long-term socioeconomic impacts.
- 21 Section 7.2.2.5 states that the socioeconomic impacts from the construction of two gas-fired
- 22 units at the WBN site would be SMALL to MODERATE. Similarly, the construction of a gas-
- 23 fired and biomass plant onsite would require a construction workforce to commute to the site.
- 24 Additional construction workers would be required offsite for the construction of a wind farm.
- 25 These workers could cause a short-term increase in the demand for services and temporary
- 26 (rental) housing in the region around the construction site.
- 27 After construction, the loss of construction jobs and associated loss in demand for business
- 28 services may temporarily affect local communities. Additionally, the rental housing market could
- 29 experience increased vacancies and decreased prices. However, these effects would likely be
- 30 spread over a large area, as the wind farms may be constructed in more than one location. The
- 31 combined effects of these construction activities would range from SMALL to MODERATE.
- Additional estimated operations workforce requirements for this combination alternative would include operations workers for the natural-gas-fired and biomass energy power plants and wind farm. Given the small number of operations workers at these facilities, socioeconomic impacts associated with operation of the natural-gas-fired and biomass power plant at the WBN site, and the wind farm would be SMALL. Socioeconomic effects of energy efficiency programs would be SMALL.

1 Transportation

2 Construction and operation of natural-gas-fired and biomass energy power plants, and a wind 3 farm would increase the number of vehicles on the roads near these facilities. During 4 construction, cars and trucks would deliver workers, materials, and equipment to the worksites. 5 The increase in vehicular traffic would peak during shift changes, resulting in temporary levels of 6 service impacts and delays at intersections. Transporting components of wind turbines could 7 have a noticeable impact, but is likely to be spread over a large area. Pipeline construction and 8 modification to existing natural-gas pipeline systems could also have transportation impacts to 9 the extent that transportation and pipeline networks intersect. Traffic-related transportation 10 impacts during construction could range from SMALL to MODERATE depending on the location 11 of the wind farm site, current road capacities, and average daily traffic volumes.

12 During plant operations, transportation impacts would not be noticeable. Given the small 13 numbers of operations workers at these facilities, the levels of service traffic impacts on local 14 roads from the operation of the gas-fired power plant at the WBN site, biomass energy facility, 15 and at the wind farm would be SMALL. Transportation impacts at the wind farm site or sites 16 would also depend on current road capacities and average daily traffic volumes, but are likely to 17 be small given the low number of workers employed by that component of the alternative. Any 18 transportation effects from the energy efficiency component would be widely distributed across 19 the state and would not be noticeable.

20 Aesthetics

21 The aesthetics impact analysis focuses on the degree of contrast between the surrounding

- 22 landscape and the visibility of the power plant. In general, aesthetic changes would be limited
- to the immediate vicinity of the WBN site and the wind farm facilities.

24 Aesthetic impacts from the gas-fired power plant component of the combination alternative 25 would be essentially the same as those described for the gas-fired alternative in Section 7.2.2.5. 26 of this SFES. Power plant infrastructure would be generally smaller and less noticeable than 27 WBN Unit 1 and Unit 2 containment, cooling tower, and turbine buildings. The natural draft 28 cooling towers would continue to generate condensate plumes and operational noise. Noise 29 during power plant operations would be limited to industrial processes and communications. In 30 addition to the power plant structures, construction of natural-gas pipelines would have a short-31 term aesthetic impact. Noise from the pipelines could be audible offsite near compressors. 32 However, In general, aesthetic changes would be limited to the immediate vicinity of the WBN 33 site and would be SMALL.

The wind farm would have the greatest visual impact. The wind turbines, up to 450 ft (137 m) tall and spread across multiple sites, would dominate the view and likely become the major

- 1 focus of attention. Depending on its location, the aesthetic impacts from the construction and 2 operation of the wind farm would be MODERATE to LARGE.
- 3 Impacts from the energy efficiency programs would be SMALL. Some noise impacts could
- 4 occur in instances of energy conservation and efficiency upgrades to major building systems,
- 5 but this impact would be intermittent and short lived.

6 *Historic and Cultural Resources*

- 7 The same considerations discussed in Section 7.2.2.5 of this SFES for the impact of the
- 8 construction of two gas-fired plants on historic and cultural resources apply to the construction
- 9 activities that would occur on the WBN site for a new gas-fired power generating plant. As
- 10 previously noted, the potential for historic and archaeological resources can vary greatly
- 11 depending on the location of the power plant. To consider a project's effects on historic and
- 12 cultural resources, any affected areas would need to be surveyed to identify and record historic
- 13 and archaeological resources, identify cultural resources (e.g., traditional cultural properties),
- 14 and develop possible mitigation measures to address any adverse effects from ground-
- 15 disturbing activities.
- 16 As discussed earlier, much of the WBN site has been previously disturbed by the construction of
- 17 WBN Units 1 and 2. In addition, previous WBN site cultural resource surveys have already
- 18 resulted in the identification of archaeological sites.
- 19 Surveys would be needed to identify evaluate and address mitigation of potential impacts prior
- 20 to the construction of any new power generating facility. Studies would be needed for all areas
- 21 of potential disturbance (e.g., roads, transmission corridors, or other rights-of-way). Areas with
- 22 the greatest sensitivity should be avoided. Because TVA would conduct a survey and apply its
- 23 established protection plan for future resources, the impact of a new gas-fired power plant and
- biomass plant at the WBN site on historic and cultural resources would be SMALL.
- 25 Depending on the resource richness of the wind farm site chosen, the impacts could range
- 26 between SMALL to LARGE. Therefore, the overall impacts on historic and cultural resources
- 27 from the combination alternative could range from SMALL to LARGE. However, cultural
- resource surveys may reveal important cultural resources that could result in greater impacts.
- 29 Impacts to historic and cultural resources from implementing energy efficiency programs would
- 30 be SMALL and would not likely affect land use or historic or cultural resources elsewhere in the
- 31 State.

1 Environmental Justice

2 The environmental justice impact analysis evaluates the potential for disproportionately high and 3 adverse human health and environmental effects on minority and low-income populations that 4 could result from the construction and operation of a new natural-gas-fired power plant at the 5 WBN site, biomass energy facility, wind farm, and energy efficiency programs. Adverse health 6 effects are measured in terms of the risk and rate of fatal or nonfatal adverse impacts on human 7 health. Disproportionately high and adverse human health effects occur when the risk or rate of 8 exposure to an environmental hazard for a minority or low-income population is significant and 9 exceeds the risk or exposure rate for the general population or for another appropriate 10 comparison group. Disproportionately high environmental effects refer to impacts or risk of 11 impact on the natural or physical environment in a minority or low-income community that are 12 significant and appreciably exceeds the environmental impact on the larger community. Such 13 effects may include biological, cultural, economic, or social impacts. Some of these potential 14 effects have been identified in resource areas discussed in this SFES. For example, increased 15 demand for rental housing during power plant construction could disproportionately affect low-16 income populations. Minority and low-income populations are subsets of the general public 17 residing around a power plant, and all are exposed to the same hazards generated from 18 constructing and operating gas-fired and biomass energy power plants and wind farm. 19 As mentioned previously in this chapter, of the approximately 206 census block groups with the

20 50-mi radius of the WBN site, 70 block groups that have high concentrations of minority 21 populations (see Section 2.4.3.1). These block groups are primarily located near the town centers of Maryville (Blount County), Oak Ridge (Anderson County), Athens (McMinn County), 22 23 Cleveland (Bradley County), and the City of Chattanooga (Hamilton County). Some more rural 24 concentrations are located in Knox County, Tennessee, and Whitfield County, Georgia. No 25 block groups with high-density minority populations were found in Rhea or Meigs county (USCB 26 2000). There are also 38 block groups that have relatively high concentrations of low-income 27 populations (see Section 2.4.3.2). These block groups are distributed throughout the 80-km 28 (50-mi) radius in relatively rural areas of Scott, Morgan, Cumberland, Grundy, Roane, and Knox 29 counties. In addition, some low-income concentrations are found near the town centers of Oak 30 Ridge (Anderson County), Athens (McMinn County), Cleveland (Bradley County), and the City 31 of Chattanooga (Hamilton County). No high-density low-income block groups were found in 32 Rhea and Meigs counties (USCB 2000).

Low-income families could benefit from energy efficiency programs related to residential weatherization and insulation improvements, as lower-income households pay a relatively high proportion of their household income for home energy expenses. Overall impacts to minority and low-income populations from energy conservation and efficiency programs would be nominal, depending on program design and enrollment. Potential impacts to minority and lowincome populations from the construction and operation of a natural-gas-fired and biomass

1 power plant at the WBN site, and a wind farm offsite would mostly consist of environmental and socioeconomic effects (e.g., noise, dust, traffic, employment, and housing impacts). Noise and 2 dust impacts from construction would be short-term and primarily limited to onsite activities. 3 4 Minority and low-income populations residing along site access roads would also be affected by 5 increased commuter vehicle traffic during shift changes and truck traffic. However, these effects 6 would be temporary during certain hours of the day and not likely to be high and adverse. 7 Increased demand for rental housing during construction in the vicinity of the WBN site, and the 8 wind farm could affect low-income populations. Given the close proximity to relatively populous 9 cities, Knoxville and Chattanooga, most construction workers would likely commute to the site thereby reducing the potential demand for rental housing. 10

11 Based on this information and the analysis of human health and environmental impacts

12 presented in this SFES, the construction and operation of a natural-gas-fired power plant,

13 biomass energy facility, and the wind farm (depending on its location) would not have a

14 disproportionately high and adverse human health and environmental effects on minority and

15 low-income populations.

16 7.2.5.6 Waste Management

17 According to the NUREG-1437, waste generation from natural-gas-fired technology would be minimal (NRC 1996). The only significant waste generated at a natural-gas-fired power plant 18 would be spent SCR catalyst, which is used to control NO_x emissions. The spent catalyst would 19 20 be regenerated or disposed of offsite. Biomass based power plants produce a fly ash waste 21 stream; however, much of this waste could be recycled. Other waste would be largely limited to 22 typical operations and maintenance waste. The operation of wind generation and energy 23 efficiency activities would not produce waste streams. Construction-related debris would be generated during construction activities. Overall, waste impacts from the combination of 24 25 alternatives would be SMALL to MODERATE.

26 **7.2.6 Summary Comparison of Alternatives**

Table 7-3 contains a summary of the NRC's environmental impact characterizations for
constructing and operating a natural-gas-fired power plant alternative and a combination of
power generation alternatives. Both alternatives would have an impact on air quality. There
would also be construction impacts to terrestrial resources and socioeconomic impacts. Based
on this information, neither of the viable energy alternatives would be preferable to the operation
of WBN Unit 2.

Table 7-3. Summary of Environmental Impacts of Construction and Operation of Natural-Gas Fired Generating Units and Combination of Alternatives

Impact Category	Natural Gas	Combination of Alternatives
Air quality	SMALL to MODERATE	SMALL to MODERATE
Water use and quality	SMALL	SMALL
Aquatic and terrestrial resources	SMALL to MODERATE	SMALL to MODERATE
Human health	SMALL	SMALL
Socioeconomics (including land, cultural resources, and environmental justice)	SMALL to MODERATE	SMALL to LARGE
Waste management	SMALL	SMALL to MODERATE

3 7.3 References

- 4 10 CFR Part 51. Code of Federal Regulations, Title 10, *Energy*, Part 51, "Environmental 5 Protection Regulations for Domestic Licensing and Related Regulatory Functions."
- 40 CFR Part 51. Code of Federal Regulations, Title 40, *Protection of Environment*, Part 51,
 "Requirements for Preparation, Adoption, and Submittal of Implementation Plans."
- 40 CFR Part 60. Code of Federal Regulations, Title 40, *Protection of Environment*, Part 60,
 "Standards of Performance for New Stationary Sources."
- 10 40 CFR Part 63. Code of Federal Regulations, Title 40, *Protection of Environment*, Part 63,
- 11 "National Emission Standards for Hazardous Air Pollutants for Source Categories."
- 40 CFR Part 81. Code of Federal Regulations, Title 40, *Protection of Environment*, Part 81, "Air
 Quality Control Regions (AQCRs)."
- 76 FR 39470. July 6, 2011. "Tennessee Valley Authority: Integrated Resource Plan." *Federal Register.* Tennessee Valley Authority.
- 16 Clean Air Act. 42 USC 7401 et seq.
- 17 Denholm, P., M. Hand, M. Jackson, and S. Ong. 2009. Land-Use Requirements of Modern
- 18 Wind Power Plants in the United States. NREL/TP-6A2-4583. National Renewable Energy
- 19 Laboratory, Golden, Colorado.
- Idaho National Engineering and Environmental Laboratory (INEEL). 2006. U.S. Hydropower
 Resource Assessment for Tennessee. DOE/ID-10430(TN). Idaho Falls. Idaho.

- 1 Integrated Waste Services Association (IWSA). 2010. The 2010 ERC Directory of Waste-to-
- 2 Energy Plants. Accessed January 24, 2011 at
- 3 http://www.wte.org/userfiles/file/ERC_2010_Directory.pdf
- 4 National Environmental Policy Act of 1969 (NEPA), as amended. 42 USC 4321, et seq.
- 5 National Energy Technology Laboratory (NETL). 2010. Cost and Performance Baseline for
- 6 Fossil Energy Plants. Volume 1: Bituminous Coal and Natural Gas to Electricity, Rev. 2.
- 7 DOE/NETL-2010/1397. November 2010. Accessed January 9, 2011 at:
- 8 http://www.netl.doe.gov/energy-analyses/pubs/BitBase_FinRep_Rev2.pdf.
- 9 National Renewable Energy Laboratory (NREL). 2002. Fuel from the Sky: Solar Power's
- 10 Potential for Western Energy Supply. NREL/SR-55-32160. Golden, Colorado.
- 11 Northwest Power and Conservation Council (NWPCC). 2006. *Biennial Assessment of the Fifth*
- 12 Power Plan: Assessment of Other Generating Technologies. Accessed August 20, 2008 at
- 13 http://www.nwppc.org/energy/Biennial/BiennialOther%20gen.pdf.
- 14 Nuclear Energy Institute (NEI). 2010. Resources & Stats. Accessed January 4. 2011 at
- 15 http://www.nei.org/resourcesandstats/documentlibrary/reliableandaffordableenergy/graphicsand
- 16 charts/usnuclearindustrycapacityfactors/.
- 17 SERC Reliability Corporation (SERC). 2010. Information Summary. SERC Reliability
- 18 Corporation, Charlotte, North Carolina. Accessed on January 24, 2011 at
- 19 http://www.serc1.org/documents/SERC/SERC%20Publications/Information%20Summary/2010
- 20 %20Information%20Summary%20Brochure%20%28July%202010%29.pdf.
- 21 Tennessee Valley Authority (TVA). 1972. Final Environmental Statement Watts Bar Nuclear
- *Plant, Units 1, 2, and 3.* TVA-OHES-EIS-72-9, Chattanooga, Tennessee. Accession No.
 ML073470580.
- 24 Tennessee Valley Authority (TVA). 1995. Energy Vision 2020: Integrated Resource Plan
- 25 *Environmental Impact Statement. Volume 1.* Available online at:
- 26 <u>http://www.tva.gov/environment/reports/energyvision2020/index.htm</u>. Accessed on August 21,
- 27 2011.
- 28 Tennessee Valley Authority (TVA). 2003. The Role of Renewable Energy in Reducing
- 29 Greenhouse Gas Buildup. Accessed September 30, 2008 at
- 30 http://www.tva.gov/environment/air/ontheair/renewable.htm.
- 31 Tennessee Valley Authority (TVA). 2008a. Final Supplemental Environmental Impact
- 32 Statement; Completion and Operation of Watts Bar Nuclear Plant Unit 2, Rhea County,

September 2011

- 1 *Tennessee*. Submitted to NRC as the TVA Environmental Report for an Operating License,
- 2 Knoxville, Tennessee. Accession No. ML080510469.
- 3 Tennessee Valley Authority (TVA). 2008b. Bellefonte Nuclear Plant Units 3 & 4 COL
- 4 Application Part 3 Environmental Report. Revision 1. Accession No. ML083100559.
- 5 Tennessee Valley Authority (TVA). 2010a. Final Supplemental Environmental Impact
- 6 Statement, Single Nuclear Unit at the Bellefonte Plant Site. May 2010. Available online at
- 7 http://www.tva.gov/environment/reports/blnp/index.htm#FEIS.
- 8 Tennessee Valley Authority (TVA). 2010b. John Sevier Fossil Plant Addition of Gas-Fired
- 9 Combustion Turbine/Combined-Cycle Generating Cap[acity and Associated Gas Pipeline.
- 10 March 2010. Available online at
- 11 <u>http://www.tva.gov/environment/reports/johnsevier_ct/index.htm</u>.
- 12 Tennessee Valley Authority (TVA). 2011a. Integrated Resource Plan: TVA's Environmental &
- 13 Energy Future. March 2011. Accessed March 2011 at
- 14 <u>http://www.tva.gov/environment/reports/irp/index.htm.</u>
- 15 Tennessee Valley Authority (TVA). 2011b. Environmental Impact Statement for TVA's
- 16 Integrated Resource Plan. Volume I. Accessed September 2011 at
- 17 <u>http://www.tva.gov/environment/reports/irp/pdf/IRP_FEIS_V2_ToC.pdf</u>.
- U.S. Army Corps of Engineers (USACE). 2004. Appendix 3 A: Wind Energy as a Siting Criteria
 for Potential Wind Parks. ESS, Inc., Hackensack, New Jersey.
- U.S. Census Bureau (USCB). 2000. "Total Population [1] Universe: Total Population
 Dataset. Census 2000 Summary File (SF1) 100-Percent Data."
- U.S. Department of Energy (DOE). 2005. *Wind Energy Resource Potential*. Accessed September 30, 2008 at http://www1.eere.energy.gov/windandhydro/wind_potential.html.
- U.S. Department of Energy (DOE). 2006. U.S. Geothermal Resource Map. Accessed
 September 8, 2008 at http://www.eere.energy.gov/geothermal/geomap.html.
- U.S. Department of Energy (DOE). 2008a. 20% Wind Energy by 2030. DOE/GO-102008-2567. Accessed January 21, 2009 at http://www1.eere.energy.gov/windandhydro/.
- U.S. Department of Energy (DOE). 2008b. *Hydrogen Fuel Cells.* DOE Hydrogen Program,
 Washington, D.C. Accession No. ML100280723.

- 1 U.S. Department of Energy (DOE). 2008c. *Hydrogen, Fuel Cells & Infrastructure Technologies*
- 2 Program Fuel Cell Technology Challenges. Accessed at January 24, 2011 at
- 3 http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_challenges.html. Accession No.
- 4 100280888.
- 5 U.S. Department of Energy-Energy Information Administration (DOE/EIA). 2001. *Renewable* 6 *Energy 2000: Issues and Trends*. Washington, D.C.
- 7 U.S. Department of Energy, Energy Information Administration (DOE/EIA). 2009. Solar
- 8 *Thermal and Photovoltaic Collector Manufacturing Activities 2008.* Accessed January 22, 2011 9 at http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solar.html.
- 10 U.S. Department of Energy, Energy Information Administration (DOE/EIA). 2010. Annual
- 11 Energy Outlook 2011 with Projections to 2035. DOE/EIA-0383(2010). Available at
- 12 http://www.eia.gov/oiaf/archive/aeo10/index.html.
- 13 U.S. Environmental Protection Agency (EPA). 2009. "Non-Hazardous Waste." Accessed
- 14 December 27, 2009 at http://www.epa.gov/waste/basic-solid.htm. Accession No.
- 15 ML100280908.
- 16 U.S. Nuclear Regulatory Commission (NRC). 1995. *Final Environmental Statement Related to*
- 17 the Operation of Watts Bar Nuclear Plant, Units 1 and 2. NUREG-0498, Supplement No. 1,
- 18 Washington, D.C. Accession No. ML081430592.
- U.S. Nuclear Regulatory Commission (NRC). 1996. Generic Environmental Impact Statement
 for License Renewal of Nuclear Plants. NUREG-1437, Vols. 1 and 2, NRC, Washington, D.C.
- 21 U.S. Nuclear Regulatory Commission (NRC). 2000. Environmental Standard Review Plan-
- 22 Review Plans for Environmental Reviews for Nuclear Power Plants. NUREG-1555,
- 23 Washington, D.C.
- 24 U.S. Nuclear Regulatory Commission (NRC). 2010. In the Matter of Tennessee Valley
- 25 Authority (Watts Bar Nuclear Plant, Unit 2) Docket No. 50-391-OL, CLI-10-29, Memorandum
- 26 and Order. Washington D.C.

.

·

.

8.0 Need for Power

The current rule governing environmental review at the operating license stage (10 CFR 51.95) states that, unless otherwise determined by the Commission, a final environmental statement (FES) supplement on the operation of a nuclear power plant will not include a discussion of need for power. For Watts Bar Unit 2, the Commission authorized the staff to include need for power if, through its requisite "hard look," the staff concludes that new and significant information is available (NRC 2010).

8 The Nuclear Regulatory Commission's (NRC's) original 1978 FES Operating License (FES-OL)

9 included a need-for-power assessment for Watts Bar Nuclear (WBN) Units 1 and 2 (NRC 1978).

10 The 1978 assessment was based on electric load estimates from 1978 and included load

11 forecasts out to 1983. Since 1979, the Tennessee Valley Authority (TVA) has updated its

12 analysis of its overall need for power. TVA annually undertakes a long-term capacity expansion

13 planning effort focused on achieving a least-cost portfolio plan that identifies the long- and short-

14 term actions (TVA 2008a). In addition, since the 1978 FES-OL TVA has produced two

15 publically available long-term (i.e., 20 or more years) Integrated Resource Plans (IRPs). In

16 December, 1995, TVA completed an IRP identifying and selecting long-range electricity

17 generation strategies intended to meet the electricity needs of its customers with a forecast

18 period extending from 1996 to 2020 (TVA 1995). On March 2, 2011, TVA issued its most recent

IRP, with a forecast period extending from 2011 to 2029. On April 14, 2011, the TVA Board of
 Directors accepted the IRP and authorized the Chief Executive Officer to use its recommended

21 planning direction as a guide in energy resource planning and selection. On July 6, 2011, TVA

issued its Record of Decision stating that TVA will adopt the preferred alternative in its final

23 environmental impact statement (EIS) for the IRP (76 FR 39470).

24 The purpose of this Supplemental FES (SFES) is to present new and significant information 25 related to the need for power in the TVA service area, including information related to current 26 and projected electricity demand and supply within the timespan proposed for operation of WBN Unit 2. This chapter presents the conclusion of the need-for-power analysis, which is that the 27 28 TVA service area has a need for baseload power to meet increased demand and to support the 29 displacement of power from older, less economical, and less environmentally favorable 30 generating capacity. The NRC staff's evaluation of alternatives in Chapter 7 of this SFES did 31 not reveal any viable energy generation alternatives that would be clearly environmentally 32 preferable to the operation of WBN Unit 2.

The following sections describe TVA's need for electric generating capacity. Section 8.1 reviews the current power system, including geographic considerations, and describes the regional characteristics. Section 8.2 provides a review of the demand for power, including an assessment of aspects that can affect the demand for power (e.g., energy efficiency and

1

Need For Power

1 demand-side management [DSM], and econometric indicators). Section 8.3 discusses power

2 supply, including a review of past, present, and future generating capacity in the TVA service

3 area. Section 8.4 presents some conclusions regarding the need-for-power analysis.

4 8.1 Description of Power System

5 TVA provides service to an 80,000-mi² (207,200-km²) region encompassing almost all the State

6 of Tennessee and portions of the States of Kentucky, Mississippi, Alabama, Georgia, North

7 Carolina, and Virginia (Figure 8-1). This is the approximately the same size as TVA's service

territory identified in the 1978 FES-OL (NRC 1978). TVA's service area includes the area
mandated by the TVA Act, as amended, in 1959 and the area in which TVA has transmission

10 capability, and is the region for which TVA demonstrated a need for power (TVA 2008a). TVA

11 states that the purpose and need of its proposal to operate WBN Unit 2 is to meet the need for

12 additional baseload capacity in the TVA service area and maximize the use of existing assets

- 13 (TVA 2008b). TVA is proposing to operate a four-loop pressurized-water nuclear reactor
- 14 (WBN Unit 2) (NRC 1995) that is wholly owned by TVA (TVA 2009). WBN Unit 2 would be

15 operated on the WBN site in Rhea County, Tennessee, and would operate at 3,425 MW(t). The

16 net electrical output would be 1,160 MW(e), and the gross electrical output would be

17 1,218 MW(e) for the rated core power (TVA 2009). Although TVA originally expected to

18 complete Unit 2 by April 2012, it recently announced that completion is delayed until July to

19 September 2012, with a proposed operation of WBN Unit 2 beginning in 2013 (NRC 2011).

20 In 2008, the population of the service territory was estimated to be 9 million (TVA 2010), while in

21 1978, the population was approximately 6.7 million (NRC 1978). TVA currently serves

22 155 municipal and cooperative customers as their sole wholesale supplier of electricity, and

23 58 directly served industries as retail customers. The total number of businesses and

residential customers served in 2008 was 4,571,600. TVA supplies almost all electricity needs

25 (99 percent) in Tennessee, 31 percent in Mississippi, 24 percent in Alabama, and 26 percent in

26 Kentucky. TVA contributes 3 percent or less to meeting the electricity needs in the States of

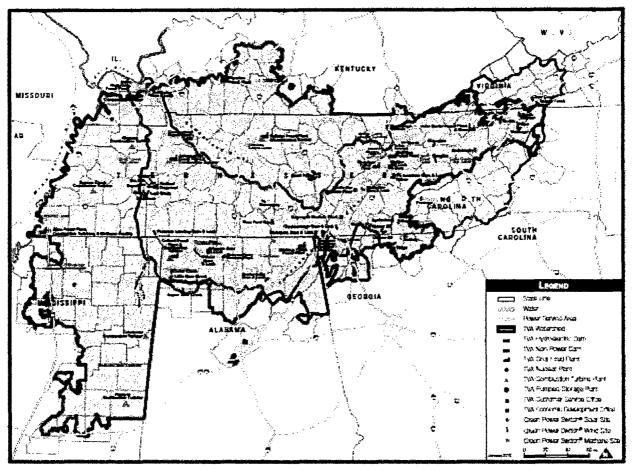
27 Virginia, North Carolina, and Georgia (TVA 2010). The major load centers are the cities of

28 Memphis, Nashville, Chattanooga, and Knoxville, Tennessee, and Huntsville, Alabama

29 (TVA 2008a), while the load centers that were identified by TVA in 1978 included Paducah,

30 Kentucky, and Columbia, Tennessee (NRC 1978).

31 TVA is not subject to the jurisdiction of the Federal Energy Regulatory Commission (FERC)


32 under the Federal Power Act, but it is subject to certain limited aspects of FERC jurisdiction,

33 including the provision of open access transmission service, interconnections, and compliance

34 with FERC-approved reliability standards. In addition, TVA has voluntarily chosen to follow

35 FERC rules and orders to the extent they remain consistent with meeting TVA's obligations

36 under the TVA Act (TVA 2008a).

1

2 Figure 8-1. Geographical and Political Boundaries of the TVA Power Service Area (TVA 2011)

3 Figure 8-2 illustrates the electrical transfer capabilities between TVA and neighboring utilities.

4 TVA has interconnection agreements with its neighboring systems, and these agreements

5 typically provide for emergency backup power. The TVA service area composes one of five

6 major geographical sub-regions of the Southeastern Electric Reliability Corporation (SERC) that

7 are identified as Entergy, Gateway, Southern Company, TVA (also referred to as the Central

8 sub-region), and the Virginia-Carolinas Area (see Figure 8-3). SERC, a regional reliability

9 organization within the North American Electric Reliability Corporation (NERC), promotes,

10 coordinates, and ensures the reliability and adequacy of the bulk power supply systems in the

11 service areas of its member systems.

Need For Power

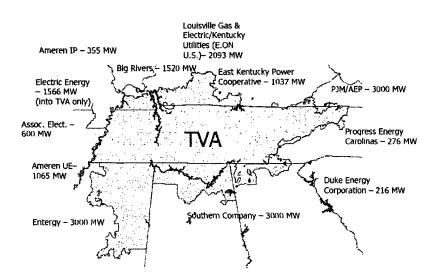
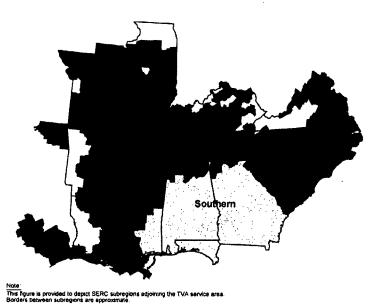



Figure 8-2. TVA's Electrical Transfer Capabilities (TVA 2008a)

3

1 2

Figure 8-3. Major Geographical Sub-Regions of the Southeastern Electric Reliability
 Corporation (TVA 2008a)

Being a SERC member obligates TVA to exchange information on planning and operating its
systems with other sub-regions to ensure continued reliability of the interconnected systems and
facilitate periodic reviews of reliability-related activities within the SERC Region. SERC's
Reliability Review Subcommittee (RRS) conducts seasonal and annual reliability assessments
of the SERC Region by reviewing the data and studies submitted by SERC member systems
and performing related tasks in the assessment of the reliability of the SERC Region's

1 interconnected bulk power system. The RRS also assesses future reliability and adequacy of

- 2 the region based on the region's data collection efforts. In addition, the RRS independently
- 3 assesses the ability of the region and sub-regions to serve their obligations, given the demand
- 4 growth projections and overall capacity in the system (SERC 2008, TVA 2008a).

5 Although the Federal Power Act requires NERC to conduct annual reliability assessments to

perform these analyses, NERC must rely on reports its component regional entities create.
References to the "NERC Assessment" in this section should be interpreted as the SERC report
within the NERC Assessment. NERC results are used to confirm the applicant's conclusions
regarding the need for power in the TVA service area. NERC forecasts are subject to peer
review and adhere to academic standards for the analysis and reporting of scientific information
(NERC 2010).

8.2 Long-Term Capacity Expansion Planning and Power
 Demand

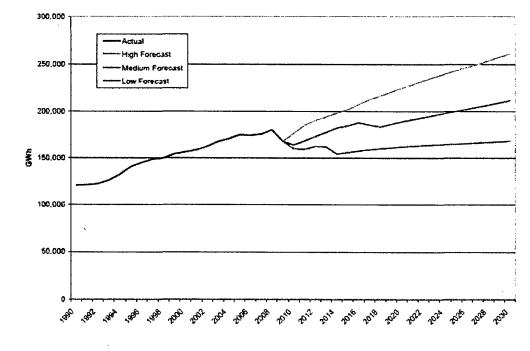
The 1992 National Energy Policy Act (EPACT) directs TVA to use a least-cost energy planning 14 15 process (also referred to as integrated resource planning) to add new energy resources to its 16 power system, with congressional oversight. The EPACT also requires TVA to provide 17 distributors of its power an opportunity to participate in the planning process. TVA continues to 18 use least-cost energy planning today per EPACT requirements, carried out under congressional 19 oversight. As part of the Federal oversight process, the U.S. General Accounting Office (GAO; 20 now the Government Accountability Office) in 1995 reviewed TVA's financial conditions, 21 including its integrated planning load forecasting methodology. While GAO expressed concern 22 about TVA's financial condition, it concluded that TVA's forecasting methodology was 23 "reasonable and state of the art when compared to other forecasting tools available in the electric 24 utility industry" (GAO 1995). The NRC defers to independent integrated planning efforts 25 implemented or overseen by regional. State, or other public authorities in analyzing the need for 26 power. Although a state or regional utility regulatory commission does not regulate TVA, it is 27 structured and self-regulated in a manner similar to a regulated utility monopoly, with Federally 28 mandated least-cost planning requirements, congressional oversight, and a board of directors.

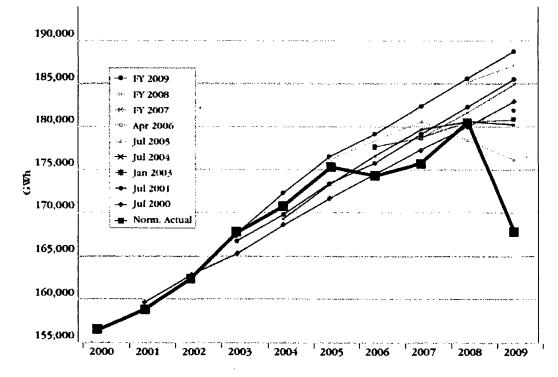
- 29 TVA annually undertakes a long-term capacity expansion planning effort focused on achieving a
- 30 least-cost portfolio plan that identifies the long- and short-term actions (TVA 2008a). TVA
- 31 anticipates additional baseload generation is necessary to meet the future demand for peak
- load and overall energy needs (TVA 2008b, 2011). The last NRC staff review of TVA's need for
 power from the WBN Unit 2 project occurred when NRC developed the FES-OL in 1978. TVA's
- 35 power from the WBN Onit 2 project occurred when NRC developed the PES-OL in 1978. TVA's 36 forecast period ended in 1983. Thus, the last NRC evaluation of the need for power from WBN
- 35 Unit 2 is more than 30 years old, and the period it included has long passed.

Need For Power

1 Today, the NRC staff finds that TVA systematically prepares near-term and long-term forecasts 2 of demand and energy use applying methods tailored to the available data and customer 3 requirements. TVA uses several quantitative models, including econometric and economic end-4 use models, to evaluate the relationship between major causal factors and the corresponding 5 impacts on future electricity consumption. The variety of models used by TVA allows for 6 comprehensive forecasting. TVA executives review and approve all outcomes and 7 assumptions. Various forecasting outcomes also are subject to confirmation by external parties 8 such as SERC's RRS. The load forecast represents a critical element of the process to 9 establish SERC Region capacity obligations. As a result, TVA and the SERC RRS scrutinize the load forecast to ensure it represents a reliable estimate of future peak loads and provides 10 basis upon which to evaluate future capacity requirements (SERC 2008). The NRC staff further 11 addresses TVA's forecast in the section titled "Factors Affecting Demand." 12

13 Figure 8-4 illustrates the actual and forecasted net system demand requirements for the TVA 14 service area through 2030. Historically, net system requirements grew at an average rate of 15 2.3 percent (1990 through 2008) before the 2009 economic downturn. TVA uses a medium-16 load forecast, which shows a 1.3 percent average annual growth from 2010 through 2030, to 17 project future power needs. It also uses high and low forecasts to help make more informed 18 power supply decisions. These high, medium, and low forecasts address the uncertainty 19 associated with a future outside of normal expectations. The NRC staff finds these forecasts to 20 be acceptable for purposes of this need-for-power analysis.




Figure 8-4. Actual and Forecast Net System Requirements (TVA 2010)

Draft NUREG-0498, Supplement 2

21 22

September 2011

1 Figure 8-5 compares actual and forecasted net system requirements expressed in total annual 2 energy in terms of gigwatt-hours (GWh). The annual forecast error for the TVA net system 3 requirements has remained 1 percent over the 10-year time period from 1999 to 2008 (TVA 2008a, 2011). However, as shown in Figure 8-5, the sharp decline in energy usage in 4 5 2009, primarily due to the sudden regional economic downturn, presented an anomaly in energy trends not well characterized by previous forecasts. TVA expects future growth to be lower than 6 7 historical averages for a number of reasons, including impacts of the 2008 to 2009 recession 8 and subsequent recovery, declining U.S. manufacturing, and projected loss of some TVA 9 customer load. TVA indicates that increased financial market regulation, tighter credit conditions, and large Federal budget deficits may all restrain growth to a level lower than 10 11 previously predicted. All long-term planning forecasts consider the most current economic 12 indicators (TVA 2010).

13

14 **Figure 8-5**. Comparison of Actual and Forecast Net System Requirements (TVA 2011)

15 Factors Affecting Demand

16 In general, economic and demographic trends, price and rate structure, energy efficiency and

17 substitution, and DSM programs all affect demand. The following paragraphs provide the

18 NRC's review of TVA's demand forecast methodology and the NRC staff's findings based on

19 this review.

September 2011

Need For Power

1 TVA indicates that economic growth remains the single most important driver of electricity sales.

2 TVA uses Gross Regional Product forecasts to estimate power demand forecasts. Population

3 and demographic factors also represent key variables in forecasting energy demand. TVA

4 develops energy forecasts for each economic sector (e.g., commercial, industrial, and

5 residential) based on factors and trends relevant to each sector. Based, in part, on these

forecasts, TVA develops annual near- and long-term forecasts. It bases near-term forecasts
 primarily on the number of customers, employment, and usage trends, adjusted for seasons and

primarily on the number of customers, employment, and usage trends, adjusted for seasons and
 abnormal weather. TVA bases long-term forecasts primarily on the growth in the economy,

9 price of electricity, price of natural gas as a competing fuel, and expected growth or decline in

10 direct served customers (TVA 2008a, 2010). The NRC staff finds that TVA's power demand

11 forecasts are comprehensive because they incorporate key factors such as regional economic

12 and demographic trends, price of electricity, energy efficiency and substitution effects, and

13 weather. The NRC staff finds that TVA's approach to demand forecasting is systematic

14 because it occurs on an annual basis and includes similar classes of information as inputs in

15 each demand forecasting effort.

16 To quantify overall uncertainty in the load forecast, TVA indicates that it evaluates the

17 potentialuncertainty in future values of the input drivers (e.g., demographic variables) to the

18 forecast model. To address the uncertainty inherent in single-point forecasts, TVA evaluates

19 inputs such as inflation rates, electricity prices, and the price of fuel across probable ranges to

20 develop high, medium, and low future scenarios (TVA 2010).

TVA notes that electricity use varies inversely with the retail price of electricity. Prices and rate structure play a key role in determining energy demand. TVA uses its published rates (constant

23 wholesale prices) for current prices and then forecasts future prices based on revenue

requirements, including targeted net income and debt repayment. The applicant simulated the

25 impact of adding an additional generation unit on overall system demand using an iterative

26 production cost model. TVA also used advanced analytical techniques, such as Monte Carlo

- 27 simulation of select key random variables (e.g., load, fuel prices, weather) to assess the overall
- 28 robustness of its long-term plans (TVA 2008a; PNNL 2009).

29 TVA indicates that natural gas competes with electricity for a number of end-uses in the 30 residential, commercial, and manufacturing sectors. TVA incorporates substitution effects that occur when higher gas prices encourage more use of electrically powered equipment, and vice 31 versa, into its energy demand forecasts. TVA uses Henry Hub^(a) natural gas price forecasts as 32 input to the energy demand forecast to determine the natural gas and electricity market shares 33 34 for various end-uses (e.g., heating, cooling, water heating). TVA also factors in trends in 35 household appliance usage and substitution to more efficient systems and appliances for 36 heating, cooling, water heating, and other household uses (TVA 2008a).

so nearing, cooling, water nearing, and other household uses (TVA 2006a).

⁽a) Henry Hub is the pricing point for natural gas futures contracts traded on the New York Mercantile Exchange.

- 1 DSM programs, which are essentially interventions in the market to promote adopting more
- 2 efficient end-uses and changing consumer behavior, also can influence electricity demand.
- 3 Programs that reduce customers' energy usage through energy-efficiency, conservation, and
- 4 load management can significantly affect demand and demand growth. TVA offers several
- 5 conservation and DSM programs to its customers to reduce peak electricity demands and daily
- 6 power consumption. The effects of these DSM programs are included in the forecast for net
- 7 system requirements and summer peak load (PNNL 2009; TVA 2011).
- 8 The NRC staff finds that TVA's demand forecasts consider variations in multiple factors that 9 contribute to forecasting uncertainty. TVA presents these forecasts as low-, medium-, and high-
- 10 demand cases. As a result, the NRC staff finds that TVA's forecasts are both comprehensive
- 11 and responsive to forecasting uncertainty.

12 SERC develops a supply forecast for the Central/TVA sub-region in terms of reserve 13 requirements, measured by the margin of generation resources held in reserve for unexpected 14 outages of any kind. SERC does not implement a regional reserve requirement for the SERC 15 Central sub-region, but TVA's desired total reserve margin is 15 percent, which aligns with 16 established reserve margins in the utility industry (TVA 2011). This means that for every 17 100 kW of power needed to meet demand service area demand, TVA must be able to produce 18 at least 115 kW of electricity at any time. This reserve margin allows TVA to address 19 unexpected plant outages, take units offline for maintenance or repair, and to address higher-20 than-expected peak loads. SERC's RRS committee conducts seasonal and annual reliability 21 assessments by reviewing the data and studies submitted by SERC member systems, which 22 include TVA (SERC 2008). In addition, the EPACT 1992 directs TVA to use a least-cost energy 23 planning process with congressional oversight, which included a comprehensive review of 24 TVA's methodology by the GAO (GAO 1995). Because TVA systematically submits 25 comprehensive power demand forecasts and supporting data to regulatory authorities including 26 SERC, NERC, GAO and U.S. Congress, the NRC staff finds that TVA's demand forecasts are 27 subject to confirmation.

28 8.3 Power Supply

In developing the power supply or capacity forecasts for the TVA service area, TVA factors in its present and planned generating capabilities as well as present and planned purchases and sales of power and planned retirements. As noted in Section 8.2, the last forecast NRC staff reviewed in preparing the FES-OL included forecasts through 1983 (NRC 1978), which could not adequately address present and planned capabilities, purchases, or sales in the TVA system.

TVA, as directed by EPACT, uses a least-cost generation planning approach that includes a mix of baseload, intermediate, and peak load resources. Generating capacity comes from a

September 2011

Need For Power

1 combination of existing TVA-owned resources, budgeted and approved projects (such as new

2 plant additions), and purchased power arrangements (PPAs). TVA includes monetary costs,

3 risk assessments, and environmental impacts as part of its cost minimization assessment.

4 Baseload generators are primarily used to meet TVA service area energy needs during most

5 hours of the year due to their relatively lower operating costs and high availability (TVA 2011).

6 TVA states that the purpose and need of its proposal to operate WBN Unit 2 is to meet the need

7 for additional baseload capacity in the TVA service area (TVA 2008b). TVA's power generation

8 system uses a range of technologies to produce electricity and meet the needs of the TVA

9 service area. In 2010, coal-fired generation (which primarily serves baseload and intermediate

duty cycles) made up approximately 40 percent of TVA's capacity electricity generation mix,
 while nuclear generation made up approximately 19 percent, combustion turbines and

12 combined cycle (primarily fueled with natural gas) generation together made up 24 percent, and

13 hydro power provided 8 percent. The remaining 9 percent of TVA's electricity generation

14 capacity was made up of diesel-fired generation, pumped storage, renewable energy sources,

15 and DSM activities.

16 TVA's current forecasts already account for license renewal and power uprates for all

17 operational TVA nuclear plants (TVA 2011). TVA also included in its capacity estimates

18 potential generation from renewable energy sources (e.g., wind power). In addition, TVA

19 assessed the generation potential of distributed- and self-generation (e.g., solar power). TVA

20 currently operates a demonstration program, Green Power Switch Generation Partners, that

21 pays participating consumers for energy generated by renewable resource technologies

22 (e.g., solar photovoltaics). TVA continues to collect data from this program for its system

23 capacity estimates (TVA 2008a, 2011).

24 TVA's long-term capacity resources decline over time as a result of planned generation plant

retirements, including idling approximately 2,400 MW to 4,700 MW of coal-fired electricity

26 generation over the next 5 years. (TVA 2011). TVA's strategic planning goal to reduce carbon

27 generation sources to less than 50 percent of the electricity generation mix by 2020 influences

the capacity retirement/expansion decisions (PNNL 2009). As the NRC staff noted in

29 Chapter 7, TVA chooses which coal-fired plants to idle based on environmental compliance 30 costs, economic operational and maintenance costs, outage rates, waste disposal costs,

costs, economic operational and maintenance costs, outage rates, waste disposi
 operational flexibility, and potential carbon dioxide emissions costs.

32 Although TVA belongs to a power pool with no standing arrangements for ongoing exchange of

33 power or joint ownership of generating facilities, its current and future capacity forecasts

34 consider purchased power potential (TVA 2010). Any location can generate power for purchase

and transmit it to the TVA system. Purchased power can contribute to TVA's regional capacity,

36 provided it is technically and economically viable. TVA regularly reviews purchased supply

options through its Bulk Power Trading Group, which currently holds several long-term purchase

38 contracts to obtain firm capacity (TVA 2008a).

8.4 Need-for-Power Assessment and Conclusions

In the foregoing sections of this chapter, the NRC staff addressed TVA's processes for demand
 and supply forecasts. Both demand and supply forecasts are crucial to the NRC staff's
 consideration of need for power from WBN Unit 2.

The NRC staff notes that TVA assesses the need for power in its service area systematically
and comprehensively on an annual basis, while occasionally documenting its long-term planning
processes in an IRP. TVA provides documentation and results of its most recent long-term
expansion planning process in its 2011 IRP, *Integrated Resource Plan: TVA's Environmental & Energy Future* (TVA 2011).

10 The NRC staff, in reviewing TVA's need-for-power assessment, found the following:

- 11 TVA has a systematic iterative process for load forecasting that is updated annually. TVA 12 maintains a forecasting department that develops annual load forecasts. TVA's internal 13 review process includes an analysis and explanation of the historical predictive capability of 14 TVA's load forecast for its service area. Figure 8-4 and Figure 8-5 illustrate the accuracy of 15 TVA's energy and demand forecasts (1990-2009) (TVA 2011). GAO has reviewed TVA's 16 process and determined that it uses power industry best practices and methodological 17 approaches to determine its need for power. The NRC staff also finds that, as required by 18 EPACT 1992, TVA continues to use least-cost energy planning with congressional 19 oversight. The NRC staff finds that TVA's need-for-power assessment is systematic.
- 20 TVA power demand estimates and forecasts, as noted in this Section 8.2 of this chapter. 21 incorporate key factors such as regional economic and demographic trends, price of 22 electricity, energy efficiency and substitution effects, and weather. TVA generates different 23 forecasts for each sector of the economy and develops separate forecasts to determine 24 long-term and near-term demand. Power supply forecasts include a comprehensive 25 evaluation of present and planned generating capabilities in the TVA service area as well as 26 present and planned power purchases and sales. TVA also considers the potential of DSM 27 strategies and distributed generation in the analysis. TVA performed all analyses with 28 forecasting and statistical modeling and methodological approaches appropriate for the 29 utility industry. The NRC staff finds that power demand estimates and forecasts are thus 30 comprehensive.
- 31 TVA's forecasting department subjects its processes and models to peer review, as well as 32 review and approval by the TVA board of directors. In addition, external parties, including 33 SERC's RRS, confirm various outcomes of TVA's energy forecasts. The RRS conducts 34 seasonal and annual reliability assessments of the SERC Region by reviewing data and 35 studies member systems submit (SERC 2008). The SERC's annual reliability review and 36 NERC's annual long-term reliability assessment confirm TVA's forecast estimates and 37 generation needs. The NRC staff finds that TVA's need-for-power assessment is subject to 38 confirmation

8-11

September 2011

Need For Power

1 As the NRC staff discussed earlier in this chapter, TVA quantifies uncertainty in the load 2 forecast by evaluating uncertainty in the future values of the input drivers and evaluating 3 uncertainty in relationships among input drivers. TVA evaluates the impact of alternative 4 demand-forecast levels (high, medium, and low) on key variables to determine impacts on 5 future electricity consumption. TVA develops forecasts under a range of scenarios, and 6 analyzes and explains the historical predictive capability of its load forecast for its service 7 area. TVA also uses advanced analytical techniques such as Monte Carlo simulation of 8 select key random variables, including load, fuel prices, and weather to assess the overall 9 robustness of its long-term plans (TVA 2011). The NRC staff finds that TVA's forecasts and 10 estimates are responsive to forecasting uncertainty.

In reviewing TVA's need-for-power analysis, the NRC staff found that TVA determines need for power in its service area by comparing forecasted power capacity with forecasted demand. It factors planning and operating power reserve margins into these estimates. TVA's desired total reserve margin is 15 percent. TVA considers need for capacity to be demonstrated when forecasted actual reserve margins are less than desired reserve margins. To determine baseload needs, TVA compares existing and planned resources to the average loads (peak and base) (TVA 2008a).

18 The NRC staff also looked to non-TVA data in examining and confirming the results of TVA's 19 need-for-power analysis. The NERC 2009 Long-Term Reliability Assessment reported a 20 decline in the net winter capacity resource margins in the TVA region from 26 percent in 2010 to 17 percent over a 10-year period, considering only existing and planned^(a) capacity. The report 21 22 also showed a decline in net summer capacity resource margins from 25 percent in 2010 to 23 6 percent over a 10-year period, considering only existing and planned capacity. The report 24 considers WBN Unit 2 a "planned" capacity addition and assumes plant operation to begin in 25 2012. Without WBN Unit 2 operation, the report estimates a decline in the winter reserve 26 margin to approximately 18 percent in 2014. Without WBN Unit 2's added capacity, the NERC 27 report projects the summer reserve margin to decline to approximately 12 percent in 2014 28 (NERC 2010, which is less than TVA's reserve margin goal. These numbers are based on 29 demand and planned capacity (including retirements) forecasts in the TVA service area. 30 SERC's evaluation confirms that WBN Unit 2 will address a need for power in the Central sub-31 region. Table 8-1 provides a comparison of the supply and demand forecast in the TVA service 32 area based on maintaining the targeted 15 percent reserve margin.

⁽a) Where "planned capacity" includes both capacity that is under construction and existing units that are to be retired and deactivated or reactivated during the specified year.

SERC Central Sub-Region Projections for 2014	MW
Final Electricity Demand for Service Area (winter)	45,662
Final Electricity Demand for Service Area (summer)	46,314
TVA Service Area Winter Capacity Without WBN Unit 2 (net of 15 percent reserve)	44,769
TVA Service Area Summer Capacity Without WBN Unit 2 (net of 15 percent reserve)	42,762
Expected Excess Winter Supply/Capacity (Demand) Assuming 15 percent Reserve Margin Maintained	(893)
Expected Excess Summer Supply (Demand) Assuming 15 percent Reserve Margin Maintained	(3,551)
Rated Capacity of the Proposed Project (Proposed Operation in 2013)	1,160
Net Excess Winter Supply (Demand) if Proposed Project Goes Online in 2013 and (assuming 15 percent reserve maintained)	267
Net Excess Summer Supply (Demand) if Proposed Project Goes Online in 2013 and (assuming 15 percent reserve maintained)	(2,390)

Table 8-1. Comparison of the Supply and Demand Forecasts for Service Area (NERC 2010)

2 The results of TVA's need-for-power analysis suggests that additional baseload generation

3 capacity from operating WBN Unit 2 could maintain reserve margins above 15 percent, which

4 would allow TVA to meet the expected growing demand for electricity in its service area. TVA

5 proposes to operate WBN Unit 2 with an expected baseload net electrical rating of 1,160 MW(e)

6 (TVA 2008b). Under the medium load forecast, TVA estimates the total capacity needs by 2012

7 will equal the capacity of WBN Unit 2. Under the low-load forecast, TVA estimates this capacity

8 would not be needed until 2014 (TVA 2011). TVA's current timeline for WBN Unit 2 operation

9 calls for a facility to be in operation by the end of 2012 (NRC 2011).

10 Based on NRC's independent review of the need-for-power analysis presented in TVA's ER

11 (TVA 2008b), TVA's IRP (TVA 2011), the Final Supplemental Environmental Impact Statement

12 for Bellefonte Unit 1 (TVA 2008a), discussions with TVA (PNNL 2009), and the foregoing

13 analysis presented in this chapter, the NRC staff concludes that TVA provided a need-for-power

14 determination with a process that is (1) systematic, (2) comprehensive, (3) subject to

15 confirmation, and (4) responsive to forecasting uncertainty. The need-for-power assessment

16 suggests that a need for baseload power exists in the TVA service area to meet increased

17 demand and to support the displacement of power from older, less economical, and less

18 environmentally favorable generating capacity (TVA 2011). Chapter 7 of this SFES evaluates

and discusses viable energy alternatives to the operation of WBN Unit 2. This evaluation of

alternatives did not reveal any viable alternatives that would be clearly environmentally

21 preferable to the operation of WBN Unit 2.

22 8.5 References

10 CFR Part 51. Code of Federal Regulations, Title 10, *Energy*, Part 51, "Environmental
 Protection Regulations for Domestic Licensing and Related Regulatory Functions."

September 2011

Draft NUREG-0498, Supplement 2

Need For Power

- 1 76 FR 39470. July 6, 2011. "Tennessee Valley Authority: Integrated Resource Plan." Federal
- 2 *Register.* Tennessee Valley Authority.
- 3 Energy Policy Act of 1992 (EPACT). 42 USCS 13201 et seq.
- 4 Federal Power Act. 16 USCS 791a et seq. North American Electric Reliability Corporation
- 5 (NERC). 2010. 2010 Long-Term Reliability Assessment. Accessed December 20, 2010 at
- 6 http://www.nerc.com/files/2010%20LTRA.pdf.
- 7 Pacific Northwest National Laboratory. 2009. Letter from J.A. Stegen (Pacific Northwest
- 8 National Laboratory) to U.S. Nuclear Regulatory Commission dated November 12, 2009, "Final
- 9 Watts Bar Site Audit Trip Report for JCN J-4261, 'Technical Assistance for Operating License
- 10 Environmental Review Watts Bar Unit 2 Reactivation." Accession No. ML100220022.
- 11 Southeastern Electric Reliability Corporation (SERC). 2008. SERC Reliability Review
- 12 Subcommittee (RRS) Procedural Manual. February 28, 2008. Charlotte, North Carolina.
- 13 Available online at:
- 14 http://www.serc1.org/documents/RRS%20%28Reliability%20Review%20Subcommittee%29/Pro
- 15 cedures/SERC%20RRS%20Procedural%20Manual_EC%20Approved%2002-28-08.pdf.
- 16 Tennessee Valley Authority (TVA). 1995. Energy Vision 2020: Integrated Resource Plan
- 17 Environmental Impact Statement. Volume 1. Accessed August 21, 2011 at
- 18 http://www.tva.gov/environment/reports/energyvision2020/index.htm.
- 19 Tennessee Valley Authority (TVA). 2008a. Bellefonte Nuclear Plant Units 3 & 4 COL
- 20 Application Part 3 Environmental Report. Revision 1. Accession No. ML083100486
- 21 Tennessee Valley Authority (TVA). 2008b. Final Supplemental Environmental Impact
- 22 Statement; Completion and Operation of Watts Bar Nuclear Plant Unit 2, Rhea County,
- 23 Tennessee, submitted to NRC as the TVA Environmental Report for an Operating License,
- 24 Knoxville, Tennessee. Accession No. ML080510469.
- 25 Tennessee Valley Authority (TVA). 2009. Watts Bar Nuclear Plant (WBN) Unit 2 Final
- 26 *Safety Analysis Report (FSAR)*. Amendment 94, Spring City, Tennessee. Accession 27 No. ML092460757.
- 28 Tennessee Valley Authority (TVA). 2010. Final Supplemental Environmental Impact
- 29 Statement, Single Nuclear Unit at the Bellefonte Plant Site. May 2010. Available at
- 30 http://www.tva.gov/environment/reports/blnp/index.htm#FEIS.

- 1 Tennessee Valley Authority (TVA). 2011. Integrated Resource Plan: TVA's Environmental &
- 2 Energy Future. March 2011. Available at
- 3 http://www.tva.gov/environment/reports/irp/index.htm.
- 4 Tennessee Valley Authority Act of 1933 (TVA Act), as amended. 16 USC 831 et seq.
- 5 U.S. General Accounting Office (GAO). 1995. *Tennessee Valley Authority: Financial Problems*
- 6 *Raise Questions about Long-Term Viability.* Washington, D.C. Available at
- 7 http://www.gao.gov/products/AIMD/RCED-95-134.
- 8 U.S. Nuclear Regulatory Commission (NRC). 1978. *Final Environmental Statement Related to*
- 9 *Operation of Watts Bar Nuclear Plant Units Nos. 1 and 2.* NUREG-0498, Washington, D.C. 10 Accession No. ML082540803.
- 11 U.S. Nuclear Regulatory Commission (NRC). 1995. *Final Environmental Statement Related to*
- 12 the Operation of Watts Bar Nuclear Plant, Units 1 and 2. NUREG-0498 Supplement No. 1,
- 13 Washington, D.C
- 14 U.S. Nuclear Regulatory Commission (NRC). 2010. In the Matter of Tennessee Valley
- 15 Authority (Watts Bar Nuclear Plant, Unit 2) Docket No. 50-391-OL, CLI-10-29, Memorandum
- 16 *and Order*. Washington D.C.
- 17 U.S. Nuclear Regulatory Commission (NRC). 2011. "Forth Report on the Status of
- 18 Reactivation of Construction and Licensing for Watts Bar Nuclear Plant, Unit 2." Policy Issue,
- 19 SECY-11-0102. July 28, 2011. Available at http://www.nrc.gov/reading-rm/doc-
- 20 collections/commission/secys/2011/2011-0102scy.pdf.

.

.

This supplemental final environmental statement (SFES) provides the results of the
U.S. Nuclear Regulatory Commission (NRC) staff's preliminary analyses, which consider and
weigh the environmental effects of operating one new unit (Unit 2) at the Watts Bar Nuclear
(WBN) plant in Rhea County, Tennessee.

6 This chapter summarizes (1) any adverse environmental impacts that cannot be avoided if the 7 proposed action were implemented, (2) the relationship between local short-term uses of the 8 environment and maintaining and enhancing long-term productivity, (3) any irreversible and 9 irretrievable commitments of resources involved if the proposed action were implemented, 10 (4) the environmental impacts of alternatives to the proposed action, (5) the benefits and costs 11 of the proposed action, and (6) the NRC staff's recommendation regarding the proposed action 12 based on its environmental review.

9.1 Unavoidable Adverse Environmental Impacts During Operation

15 The NRC's regulations in Title 10 of the Code of Federal Regulations (CFR) Part 51 implement 16 Section 102(2)(C)(ii) of the National Environmental Policy Act of 1969, as amended (NEPA), 17 which requires an environmental impact statement (EIS) include a discussion about any 18 adverse environmental effects that cannot be avoided if the proposed action is implemented. 19 Under NEPA, unavoidable adverse environmental impacts at WBN Unit 2 would be those 20 potential impacts of operation for which no practical means of mitigation are available. 21 Construction of Watts Bar Unit 2 has been proceeding since the 1970s under a construction 22 permit that was issued through a regulatory action that is separate from the currently proposed 23 operating license.

24 In 1972, Section 3.0 of TVA (1972) discussed the following adverse environmental effects that 25 could not be avoided: (1) water pollution, (2) air pollution, (3) impact on land use, (4) damage to 26 life systems, and (5) threats to health. TVA (1972) discussed both construction and operation of 27 Watts Bar and methods to mitigate the impacts. Six years later, when evaluating the operating 28 license request, NRC (1978) did not identify any additional adverse effects that would be 29 caused by operation of Unit 2. During consideration of the operating license in 1995, NRC 30 (1995) once again did not identify any additional adverse environmental effects that would be 31 caused by operation of WBN Unit 2.

In the present review, the NRC staff sought additional information developed on unavoidable adverse environmental effects, and Chapter 4 provides a detailed discussion of the potential impacts from operating WBN Unit 2. In terms of the five unavoidable adverse environmental impacts identified by TVA (1972), the NRC staff makes the following conclusions based on review of additional information.

6 Regarding water pollution, assessments in Chapter 4 indicate that unavoidable adverse 7 environmental impacts due to operation would be small. Consumption of surface water from the 8 Tennessee River would increase due to evaporation, but the rate of consumptive water loss 9 would be small compared to the flow of the Tennessee River. Discharge of chemicals and heat 10 due to operation would continue to meet the requirements of the National Pollutant Discharge 11 Elimination System (NPDES) permit, so that the impact on surface-water quality would be 12 minimal. Potential physical impacts of the discharge would be mitigated by a diffuser system 13 and by a concrete incline at the Supplemental Condenser Cooling Water discharge, and the 14 physical effects of the discharge on surface-water quality would also be small. Changes in 15 groundwater withdrawal and groundwater quality due to operation of WBN Unit 2 would also be 16 small.

Air pollution is primarily a consideration during construction, and changes in air quality due to
operation would be minimal. Regarding land use, operation of the plant would not change
present land use on the site or in transmission corridors from that prior to operation, so
operation would not result in additional unavoidable adverse environmental impacts.

21 Chapter 4 speaks to "damage to life systems" in terms of impacts on terrestrial and aquatic 22 natural resources. The unavoidable impacts of operating WBN Unit 2 on terrestrial resources, 23 including Federally and State-listed species, would be small. Some loss of surface water 24 through evaporation is unavoidable, but the the total withdrawal and the consumptive withdrawal 25 would have a very minor impact, if any, on the aquatic biota in Watts Bar Reservoir, 26 Chickamauga Reservoir, and downstream. Although some entrainment and impingement of 27 fish is unavoidable, after an extensive review including new information. NRC staff found that 28 the adverse effects of entrainment and impingement would be small and would not destabilize or noticeably alter the aquatic biota of the Chickamauga Reservoir. Mitigation measures and 29 30 the requirements of the NPDES permits would minimize the physical and thermal effects of the 31 heated discharge on aquatic resources.

Regarding threats to human health, NRC staff concluded in Chapter 4 that the information
 provided by TVA and the NRC's own independent evaluation indicated no observable health
 impacts on the public would result from normal operation of Unit 2 and the health impacts would
 be small. The staff concludes that unavoidable adverse environmental impacts for all resource
 areas are of SMALL significance.

9.2 Relationship Between Short-Term Uses and Long-Term Productivity of the Human Environment

3 The Commission, in implementing Section 102(2) of NEPA through 10 CFR Part 51, requires an 4 EIS to include a discussion of the relationship between short-term uses of the environment and 5 the maintenance and enhancement of long-term productivity. As called for in the Council on 6 Environmental Quality (CEQ) Guidelines, the NRC staff evaluated the relationship between 7 local, short-term uses of the environment and the maintenance and enhancement of long-term 8 productivity of WBN Unit 2. Most of the short-term uses of the site will result in no significant 9 effect on the long-term productivity of the land, and the operation of Watts Bar Unit 2 will not 10 result in any significant long-term environmental degradation. All effluents discharged to the air, 11 water, and land will be within levels allowed by permits so they are considered acceptable by 12 regulatory agencies for short-term uses of the environment. Environmental monitoring programs discussed in Chapter 5 provide a means for detecting and evaluating concentrations 13 14 of monitored parameters that, if out of permitted ranges could lead to long-term effects, so that

15 timely corrective action could be taken if required.

16 In the staff's 1978 FES, the staff reevaluated the assessment performed in consideration of the

17 Final Environmental Statement related to the construction permit for WBN Units 1 and 2 (FES-

18 CP) and concluded that presence of this plant in Rhea County, Tennessee, would continue to

19 influence the future use of other land in its immediate environs as well as the continued removal

20 of county land from agricultural use as the result of any increased industrialization.

21 Subsequently, in 1995, the staff determined there were no changes to this conclusion.

22 The local use of the human environment by the operation of WBN Unit 2 can be summarized in

23 terms of the unavoidable adverse environmental impacts of operation of the unit and the

24 irreversible and irretrievable commitments of resources. With the exception of the consumption

25 of depletable resources as a result of operation, these uses may be classed as short term. The

26 principal short-term benefit of the plant is represented by the production of electrical energy.

27 The site is already used for power generation through the operation of WBN Unit 1. WBN 2

structures already occupy the land, effectively precluding the land from other productive uses.

29 Initiating operation of Unit 2 and is a more productive use of the facility than not starting the unit.

30 The maximum long-term impact on productivity would result if the plant is not immediately

31 dismantled at the end of the period of plant operation, and, consequently, the land occupied by

32 the plant structures would not be available for any other use. In addition, most long-term

33 impacts resulting from land-use preemption by plant structures can be eliminated by removing

34 these structures or by converting them to other productive uses. Once the units are shutdown

35 the plant would be decommissioned according to NRC regulations. Once decommissioning is

36 complete and the NRC license is terminated, the land would be available for other uses.

9.3 Irreversible and Irretrievable Commitments of Resources

The NRC's rules in 10 CFR Part 51 implementing Section 102(2)(C) of NEPA require an EIS to
 include a discussion of any irreversible or irretrievable commitments of resources that would be
 involved in the alternative if it is implemented.

In 1972, the FES-CP discussed the extent to which operation of the facility curtails the range of
beneficial uses of the environment. The FES-CP presumed that the site on the Watts Bar
Reservation will continue to be dedicated to power production for the foreseeable future. The
FES-CP noted the construction and operation of the WBN plant would involve the use of a

- 9 certain amount of air, water, and land. Furthermore, except for the plant site itself, the range of
- 10 beneficial uses of the environment would not be curtailed. The FES-CP discussed the use of
- fuel oil, industrial chemicals, and nuclear fuel consumption as examples of irreversible and irretrievable uses of resources. It presumed that land and construction materials were
- irretrievable uses of resources. It presumed that land and construction materials were
 irreversibly and irretrievably committed for the foreseeable future. The FES-CP concluded that
- 14 the commitments were small when evaluated against the production of electricity from the plant.
- 15 The NRC staff re-evaluated the commitment of resources in its 1978 Final Environmental
- 16 Statement related to the operating license for WBN Units 1 and 2 (1978 FES-OL) and
- 17 concluded no changes have occurred since then, except for the continuing escalation of costs,
- 18 which have increased the dollar values of materials used for fueling the station (NRC 1978).
- 19 As discussed in the 1978 FES-OL and the 1995 supplemental FES (NRC 1995), uranium is the
- 20 principal natural resource irretrievably consumed by operating the WBN facility (NRC 1978).
- 21 Other materials consumed, for practical purposes, include fuel-cladding materials, reactor
- 22 control elements, other replaceable reactor core components, chemicals used in water
- 23 treatment, ion-exchange resins, and minor quantities of materials used in maintenance and
- operation. The resource commitment for WBN Unit 2 is not particularly large when compared to
- the consumption of these resources worldwide. Approximately 0.9 m³/s (32 cfs) of cooling water
- from the Tennessee River would be lost through consumptive use (i.e., evaporation) through
- 27 operation of WBN Unit 2. In addition, some aquatic biota would be lost through entrainment or
- 28 impingement; however, the losses would not destabilize populations.
- During operations, vehicle exhaust emissions would continue in the vicinity of the plant and the facility would release other air pollutants and chemicals, including very low concentrations of radioactive gases and particulates, into the air and surface water. Because these releases would conform to applicable Federal and State regulations, their impact on the public health and the environment would be limited. The resources associated with WBN Unit 2 and associated plant structures are already committed through the construction of the facilities. The additional resources required to operate the plant are small in comparison.

9.4 Environmental Impacts of Alternatives

The NRC staff characterized the environmental impacts of constructing and operating a naturalgas-fired power plant alternative and a combination of power generation alternatives. Both alternatives would have an impact on air quality. There would also be construction impacts to terrestrial resources and socioeconomic impacts. Based on this information, neither of the viable energy alternatives would be preferable to the operation of WBN Unit 2.

7 9.5 Benefit-Cost Balance

NEPA and the CEQ require that all agencies of the Federal government prepare detailed
environmental statements on proposed major Federal actions significantly affecting the quality
of the human environment. One of NEPA's principal objectives is to require each Federal
agency to consider, in its decision-making process, the environmental impacts of each proposed
major action. In particular, as stated below, Section 102 of NEPA requires all Federal agencies
to the fullest extent possible to
"(B) identify and develop methods and procedures, in consultation with the Council

15 on Environmental Quality established by Title II of this Act, which will insure that

16 presently unquantified environmental amenities and values may be given appropriate

17 consideration in decision making along with economic and technical considerations."

18 (42 USC 4321)

19 However, neither NEPA nor CEQ requires the benefits and costs of a proposed action to be

20 guantified in dollars or any other common metric. NUREG-1555 (NRC 2000), Section 10.4.2

21 recommends the staff "... express all internal costs, either provided by the applicant or estimated

22 by the staff, in monetary terms."

The intent of this section is not to identify and quantify all potential societal benefits of the proposed action and compare them to potential costs. Rather, it focuses only on those benefits and costs of such magnitude or importance that including them in this analysis can inform the decision-making process. This section compiles and compares the pertinent analytical conclusions reached in earlier chapters of this SFES. It gathers the expected impacts from operations of the proposed Unit 2 and aggregates them into two final categories: (1) the expected costs and (2) the expected benefits derived from approving the proposed action.

30 General issues related to TVA's financial viability are outside of NRC's mission and authority 31 and, thus, this SFES will not consider them. The NRC will address issues related to the

32 applicant's financial qualifications in the staff's safety evaluation report. It is not possible to

33 quantify and assign a value to all benefits and costs associated with the proposed action.

34 However, this analysis attempts to identify, quantify, and provide monetary values for benefits

35 and costs when reasonable estimates are available.

Section 9.5.1 discusses the benefits associated with the proposed action. Section 9.5.2
 discusses the costs associated with the proposed action. Table 9-1 summarizes the benefits
 and costs of the proposed action. Internal costs include annual costs of operating and
 maintaining WBN Unit 2. Section 9.5.3 summarizes the impact assessments and brings
 previous sections together to establish a general impression of the relative magnitude of the

6 proposed project's costs and benefits.

Benefit-Cost Impact Assessment^(a) Category Description **Benefits** 9,145,440 MWh per year for the 40-year life of the plant Electricity generated (assuming 90% capacity factor) Generating capacity 1,160 MW(e) Fuel diversity WBN Unit 2 would increase TVA's nuclear fleet. TVA's generation mix is heavily coal-fired. Progress toward Avoidance of sulfur dioxide, nitrogen oxide, carbon TVA's monoxide, carbon dioxide, and particulate emissions typical environmental for other alternative fossil-fuel burning baseload power, as stewardship goals nuclear generation has neglible air-guality impacts. Long-term price Historically, the price of nuclear power generation has been stability relatively stable. Tax revenues Tax-equivalent "impact payment" distributions from TVA to SMALL to the counties of Rhea, Meigs, McMinn, Roane, and Monroe MODERATE during construction period and 3 years after construction is complete. Rhea County property tax revenues would also increase over the 40-year life of the units (see Sections 2.4 and 4.4.2). Increased jobs would benefit the area economically and SMALL Local economy increase economic diversity of region (see Sections 2.4 and 4.4.2). Costs Internal Costs⁽⁰⁾ Annual fixed Estimated based on cost of staffing, materials, insurance, \$49.1 million operating and fees, and O&M projects (TVA 2010). per year maintenance (O&M) costs Scheduled maintenance outage costs^(c) (TVA 2010). Variable O&M costs \$18 million per year

Table 9-1. Summary of Benefits and Costs of the Proposed Action

8

7

September 2011

Benefit-Cost Category	Description	Impact Assessment ^{(a}
Fuel expenses	TVA has allocated \$126 million for WBN initial core fueling (TVA 2010). Recent fuel costs on average (throughout the United States) are approximately 0.7 cents per kWh (WNA 2010; MIT 2009).	0.7 cents per kWh
Spent fuel management	Estimated, on average, throughout U.S. industry as 0.1 cent per kWh ^(d)	0.1 cents per kWh
Decommissioning	TVA estimates annual decommissioning expenses (in 2008 dollars) of \$5.45 million based on average net megawatts expected for WBN Unit 2 (TVA 2010).	\$5.45 million annually
Tax payments	In-lieu taxes paid by TVA to State of Tennessee based on power sales and book value of property.	
Land use	TVA will acquire no additional land as part of this proposal.	\$0
External Costs		
Land use	Negligible impacts on previously disturbed land (Sections 2.1 and 4.1).	SMALL
Air-quality	Negligible air-quality impacts (see Sections 2.8 and 4.8).	SMALL
Terrestrial ecology	Terrestrial ecology impacts expected to be small (see Sections 2.3.1 and 4.3.1).	SMALL
Aquatic ecology	Aquatic ecology impacts expected to be small (see Sections 2.3.2 and 4.3.2).	SMALL
Hydrology	Hydrological impacts expected to be small (Sections 2.2.2 and 4.2).	SMALL
Socioeconomic	Potential short-term strains on local schools, but the overall impact is expected to be small (see Sections 2.4.2 and 4.4)	SMALL
Cultural resources	Negligible impacts on historical and cultural resources (see Sections 2.5 and 4.5).	SMALL

Table 9-1. (contd)

assessments are found, in the indicated sections of this SFES.

(b) Internal costs are costs incurred by TVA to implement proposed construction and operation of the WBN site. Note that no impact assessments are provided for these private financial impacts.

(c) Scheduled maintenance outages occur approximately every 18 months.

(d) A 0.1-cent/kWh levy funds the United States used fuel program (WNA 2010).

1 9.5.1 Benefits

2 The most apparent benefit from operating a power plant is generating power that provides 3 electricity to thousands of residential, commercial, and industrial consumers in almost all of 4

Tennessee and portions of Kentucky, Mississippi, Alabama, Georgia, North Carolina, and

5 Virginia. For the electricity to benefit the region, however, the region of interest must have a

6 demonstrated need for baseload power.

7 TVA's load forecast indicates a need for additional baseload power in the region of interest by 8 the years 2012–2013. The proposed WBN Unit 2 would generate approximately 1,160 MW(e) 9 net, which would meet a portion of the baseload needs in the TVA service area. Chapter 8 of 10 this SFES discusses the need for power in the TVA service area. Assuming a capacity factor of 11 90 percent, the plant's average annual electrical energy generation would be more than

12 9,145,440 MWh.

13 9.5.1.1 **Societal Benefits**

14 From a societal perspective, nuclear power offers three primary benefits relative to most other

15 power generating systems: long-term price stability fuel diversity, and avoidance of green-

16 house gas emissions (relative to fossil-based power generation).

17 Nuclear power has relatively low and nonvolatile fuel costs. Historically, the price of nuclear 18 generation has been relatively stable as well. Uranium fuel constitutes only 3 percent to 5 19 percent of the cost of a kilowatt-hour of nuclear-generated electricity (WNA 2010). In 2010, 20 coal-fired generation made up approximately 40 percent of TVA's capacity electricity generation 21 mix, while nuclear generation made up approximately 19 percent, combustion turbines and 22 combined cycle (primarily fueled with natural gas) generation together made up 24 percent, and 23 hydro power provided 8 percent. The remaining 9 percent of TVA's electricity generation 24 capacity was made up of diesel-fired generation, pumped storage, renewable energy sources, 25 and demand-side management activities. The operation of WBN Unit 2 along with the recent 26 idling of 3 coal power plants would modestly increase the percent of nuclear power generation 27 in the fleet while modestly decreasing the coal-fired (TVA 2011). Unlike electricity generated 28 from coal and natural gas, operating a nuclear power plant does not result in emissions of air 29 pollutants associated with global warming and climate change (e.g., nitrogen oxides, sulfur 30 dioxide, carbon dioxide) or methyl mercury.

31 9.5.1.2 **Regional Benefits**

32 The tax-equivalent payments TVA makes to the State of Tennessee related to existence and

33 operation of WBN Unit on the WBN site are redistributed to contribute property tax revenues to

34 Rhea County and other neighboring counties in the vicinity of WBN Unit 2 (see Section 4.4.2).

35 TVA expects operating WBN Unit 2 would maintain and slightly increase property in-lieu tax

- 1 payments distributed to Rhea County. Operations workers' retail expenditures (e.g.,
- 2 restaurants, hotels, merchant sales) would generate sales, use, and income taxes for the
- 3 county. Although a small local sales and use tax exists, the State would collect most of this,
- 4 both from individual workers and corporate entities in the general region of the site. No estimate
- 5 of day-to-day expenditures in the region during Unit 2 operations currently exists.

6 Operating WBN Unit 2 would require an operational workforce of about 200 people (see

- 7 Section 4.4.2 of this SFES) and would generate additional income and value for the State of
- 8 Tennessee and local economies for a period of at least 40 years. The economic multiplier effect
- 9 of increased spending by the direct and indirect workforce created as a result of one new unit
- 10 would increase the economic activity in the region, most noticeably in Rhea County. Section
- 11 4.4.2 provides additional information about the economic impacts of operating WBN Unit 2.
- 12 Table 9-1 summarizes benefits.

13 9.5.2 Costs

14 Nuclear power plants are expensive to construct relative to other power generation sources, but 15 have lower fuel costs relative to fossil-fired generation. TVA had completed about 80 percent of 16 WBN Unit 2 when construction work halted in 1985. In 2007, TVA resumed construction of 17 WBN Unit 2 with the aim of completing construction by 2012 and operating the plant by 2013 18 (TVA 2008). Although substantial construction costs and environmental impacts are associated 19 with constructing WBN Unit 2, they are sunk costs and are not relevant to the question of 20 whether the plant should operate. The relevant economic decision variables NRC considered 21 for this SFES are costs for operation and maintenance (O&M) fuel, waste disposals, and 22 decommissioning, because these expenses could be potentially avoided if the NRC did not 23 grant TVA an operating license for WBN Unit 2. The costs of construction were addressed in 24 NRC's Final Environmental Statement for the construction of WBN Units 1 and 2 (1978 FES-25 CP) (NRC 1978).

TVA would incur internal costs and external costs to the surrounding region and environment during operation of WBN Unit 2.

28 9.5.2.1 Internal Costs

Internal costs include O&M costs, fuel costs, waste disposal costs, and the cost of
 decommissioning the facility at the end of its operating life.

31 **Operating and Maintenance Costs**

- 32 TVA provided annual fixed and variable O&M costs associated with the operation of WBN
- 33 Unit 2, which are included in Table 9-1. Fixed O&M costs include the cost of staffing, materials,
- 34 insurance, fees, and other miscellaneous maintenance and contract services. Variable O&M

1 costs include the cost of performing scheduled refueling and maintenance outages, which occur

2 approximately every 18 months. Operating costs would also include the cost of nuclear fuel.

3 TVA has estimated a fuel cost of approximately \$126 million for the initial core fueling of WBN

4 Unit 2.

5 Studies from 2003 through 2005 have estimated that the levelized cost (i.e., price per kilowatt 6 hour of producing electricity, including the levelized cost of capital) to operate a new-generation 7 nuclear plant would be in the range of \$36 to \$65 per MWh (3.8 to 6.5 cents per kWh)

8 (University of Chicago 2004; MIT 2003; DOE 2004; OECD/IEA 2005). The Massachusetts

Institute of Technology (MIT) updated its results in 2009 (MIT 2009) estimating the levelized

10 cost of electricity at 8.4 cents per kWh (2007\$). Factors affecting the range include choices for

11 discount rate, construction duration, plant life span, capacity factor, cost of debt and equity, and

12 split between debt and equity financing, depreciation time, tax rates, and premium for

13 uncertainty. Levelized operation cost estimates include decommissioning costs; however,

14 because of the effect of discounting a cost that would occur as much as 40 years in the future,

15 decommissioning costs have relatively little effect on the levelized cost. Because the

16 construction of WBN Unit 2 has taken places over the past 30 years, TVA has not calculated a

17 levelized cost analogous to those presented in the previously mentioned studies; however, TVA

18 has estimated its annual ongoing cost of capital (financing of debt) for WBN Unit 2 during

19 operation to be \$15.3 million (2008 dollars), based on \$13 million per 1,000 MW(e) capacity

20 (TVA 2010). Table 9-1 presents O&M costs associated with operating WBN Unit 2.

21 Fuel Costs

The calculation of levelized cost includes the cost of fuel. Nuclear fuel costs have increased in recent years, from about 0.48 cents per kWh in 2002 to 0.69 cents per kWh in 2007. The most recent MIT (2009) report on nuclear operation costs indicates that the cost of nuclear fuel in 2007 was, on average, 0.69 cents per kWh. The MIT estimate corresponds with World Nuclear

Association (WNA) estimates of 0.71 cents per kWh based on January 2010 spot prices for

27 uranium (WNA 2010).

28 Waste Disposal

29 Waste disposal costs of nuclear power contribute a small share of total cost of operating a

30 nuclear plant because of the long lifetime of a nuclear reactor and because provisions for waste-

31 related costs can be accumulated over that time. Radioactive nuclear waste poses unique

32 disposal challenges for long-term management, however. The WNA and U.S. Department of

33 Energy estimate spent fuel management costs to be 0.1 cents per kWh (WNA 2010).

1 Decommissioning

2 The NRC requires licensees at CFR 50.75 to provide reasonable assurance that funds would be 3 available for the decommissioning process. Because of the effect of discounting a cost that 4 would occur as much as 40 years in the future, decommissioning costs have relatively little 5 effect on the levelized cost of electricity generated by a nuclear power plant. The WNA 6 estimates decommissioning costs to be about 9 to 15 percent of the initial capital cost of a 7 nuclear power plant. However, when discounted, decommissioning costs contribute only a few 8 percent to the investment cost and even less to the generation cost. In the United States, they 9 account for 0.1 to 0.2 cents per kWh, which is no more than 5 percent of the cost of the electricity produced (WNA 2010). TVA has estimated its annual decommissioning expenses 10 related to the operation of WBN Unit 2 to be approximately \$5.5 million (2008 dollars) annually 11 12 (TVA 2010).

13 9.5.2.2 External Costs

14 External costs are those social and/or environmental effects resulting from operating Unit 2 at

15 the WBN site and could include such things as the loss of regional productivity, environmental

16 degradation, or the loss of habitat for wildlife. This SFES includes the NRC staff's analysis that

17 considers and weighs the environmental impacts of operating WBN Unit 2 and mitigation

18 measures available for reducing or avoiding these adverse impacts.

19 Although available information does not exist to assign monetary values to the impacts of

20 operating WBN Unit 2, Chapter 4 identifies and analyzes these impacts and assigns a

21 significance level of potential adverse impacts (i.e., SMALL, MODERATE, or LARGE).

22 Chapter 4 also addresses the environmental impacts from the (1) uranium fuel cycle and solid

23 waste management, (2) transportation of radioactive material, and (3) decommissioning of WBN

24 Unit 2. Table 9-1 summarizes projected internal and external costs for WBN Unit 2. Unlike

25 electricity generated from coal and natural gas, operating a nuclear power plant does not result

in emissions of air pollutants associated with global warming and climate change (e.g., nitrogen

27 oxides, sulfur dioxide, carbon dioxide) or methyl mercury; however, the radioactive nuclear

28 waste associated with nuclear power generation poses a unique disposal challenge for long-

term management. Chapter 7 of this SFES provides a comparison of the environmental

30 impacts of various power generation alternatives.

31 9.5.3 Summary

32 As discussed in Chapter 8, the need-for-power assessment suggests that a need for baseload

33 power exists in the TVA service area to meet increased demand and to support the

34 displacement of power from older, less economical, and less environmentally favorable

35 generating capacity (TVA 2011). WBN Unit 2 would help meet the increasing baseload demand

in the region by supplying an average annual electrical-energy generation capacity of about

9,000,000 MWh. Table 9-1 summarizes both internal and external costs of operating WBN Unit
 2 and the identified benefits. The table references other sections of this SFES when more

3 detailed analyses and impact assessments are available for specific topics.

4 Although the NRC staff cannot reasonably assign any specific monetary values to the identified 5 societal benefits, it would appear that the potential societal benefits of operating WBN Unit 2, in

6 addition the power generated, would include reducing the coal-fired dependence of TVA's

7 power generation fleet and, thus, furthering TVA's environmental stewardship goals to reduce

8 greenhouse gas emissions in its service area (TVA 2011). Local benefits would include the

9 addition of jobs and tax revenues in the region. In comparison, the external socio-

10 environmental costs imposed on the region are relatively small.

11 9.6 Conclusions and Recommendations

12 This SFES contains the environmental review of the TVA application for an operating license for

13 WBN Unit 2 as required by the 10 CFR Part 51 and NRC regulations that implement the NEPA.

14 This section presents conclusions and recommendations from the environmental review and

15 summarizes environmental impacts from operation of WBN Unit 2 identified during the review.

16 The staff's evaluations are based on (1) the application, including the Environmental Report

17 (TVA 2008), previous EISs, and historical documents submitted by TVA; (2) consultation with

18 Federal, State, Tribal, and local agencies; (3) the staff's independent review; and (4) the staff's

19 consideration of comments related to the environmental review received during the public

20 scoping process. The staff based its conclusions on changes in the environment, plant design,

and proposed methods of plant operation since the publication of the 1978 FES-OL.

22 The staff concludes that impacts from operation of WBN Unit 2 associated with water use,

23 aquatic ecology, terrestrial resources, design basis accidents, socioeconomics, the radiological

24 exposure and nonradiological wastes and effluents, decommissioning, air quality, and land use

are generally consistent with those reached in the 1978 FES-OL and the 1995 Final

26 Environmental Statement Related to the Operation of Watts Bar Nuclear Plant, Units 1 and 2,

27 Supplement No. 1 (NRC 1995). In some cases, the impacts are less than those identified in the

28 1978 FES-OL.

29 Groundwater quality, public services, noise, transportation infrastructure, historic and cultural

30 resources, environmental justice, greenhouse gas emission, severe accidents, severe accident

31 mitigation alternatives, and cumulative impacts were not addressed in the1978 FES-OL but are

32 addressed in this SFES. NRC staff concludes impacts associated with operation of WBN Unit 2

33 on groundwater quality, public services, noise, transportation infrastructure, cultural and

34 historical resources, greenhouse gas emission, and severe accidents would be SMALL. In

addition, staff concludes that operation of the WBN Unit 2 would not result in a

- disproportionately high and adverse human health or environmental effect to any of the minority
 and low-income communities near the WBN site.
- 3 Staff also considered cumulative impacts from past, present, and reasonably foreseeable future
- 4 actions. The staff concludes that although one of the cumulative impacts is LARGE, as the
- 5 result of other activities that affected the environment, the incremental impact from operation of
- 6 WBN Unit 2 would be, in all cases, minor and not noticeable in comparison to the other impacts.

The NRC staff's preliminary recommendation to the Commission related to the environmental
aspects of the proposed action is that the environmental impacts are not significant enough to
forego issuing the operating license for WBN Unit 2.

10 9.7 References

10 CFR Part 50. Code of Federal Regulations, Title 10 *Energy*, Part 50, "Domestic Licensing of 12 Production and Utilization Facilities."

- 13 10 CFR Part 51. Code of Federal Regulations, Title 10, *Energy*, Part 51, "Environmental
- 14 Protection Regulations for Domestic Licensing and Related Regulatory Functions."
- 15 Massachusetts Institute of Technology (MIT). 2003. The Future of Nuclear Power: An
- 16 Interdisciplinary MIT Study. Cambridge, Massachusetts. Available at
- 17 http://web.mit.edu/nuclearpower/.
- 18 Massachusetts Institute of Technology (MIT). 2009. Update of The Future of Nuclear Power:
- 19 An Interdisciplinary MIT Study. Accessed July 23, 2009 at
- 20 http://web.mit.edu/nuclearpower/pdf/nuclearpower-update2009.pdf.
- 21 National Environmental Policy Act of 1969 (NEPA). 42 USC 4321 et seq.
- 22 Organization for Economic Co-Operation and Development and International Energy Agency
- 23 (OECD/IEA). 2005. Projected Costs of Generating Electricity, 2005 Update. International
- 24 Energy Agency (IEA), Paris, France.
- 25 Tennessee Valley Authority (TVA). 1972. Final Environmental Statement, Watts Bar Nuclear
- 26 Plant Units 1, and 2. TVA-OHES-EIS-72-9. Chattanooga, Tennessee. Available at
- 27 http://www.tva.gov/environment/reports/wattsbar2/related/nov_1972.pdf.
- 28 Tennessee Valley Authority (TVA). 2008. Final Supplemental Environmental Impact
- 29 Statement; Completion and Operation of Watts Bar Nuclear Plant Unit 2, Rhea County,
- 30 *Tennessee*. Submitted to NRC as the TVA Environmental Report for an Operating License,
- 31 Knoxville, Tennessee. Accession No. ML080510469.

- 1 Tennessee Valley Authority (TVA). 2010. Letter from Masoud Bajestani (Watts Bar Unit 2, Vice
- 2 President) to U.S. Nuclear Regulatory Commission dated February 25, 2010 in response to
- 3 NRC letter dated December 3, 2009 and TVA letters dated July 2, 2008, January 27, 2009, and
- 4 December 23, 2009, "Watts Bar Nuclear Plant (WBN) Unit 2 Additional Information Regarding
- 5 Environmental Review (TAC No. MD8203)." Accession No. ML100630115.
- 6 Tennessee Valley Authority (TVA). 2011. Integrated Resource Plan: TVA's Environmental &
- 7 Energy Future. March 2011. Accessed March 2011 at
- 8 http://www.tva.gov/environment/reports/irp/index.htm.
- 9 University of Chicago. 2004. The Economic Future of Nuclear Power. Accessed at
- 10 http://www.ne.doe.gov/np2010/reports/NuclIndustryStudy-Summary.pdf.
- 11 U.S. Department of Energy (DOE). 2004. Study of Construction Technologies and Schedules,
- 12 O&M Staffing and Cost, Decommissioning Costs and Funding Requirements for Advanced
- 13 Reactor Designs. Vol. 1 MPR-2610, prepared by Dominion Energy, Inc., Bechtel Power
- 14 Corporation, TLG, Inc., and MPR Associates. Accession No. ML10182632.
- 15 U.S. Nuclear Regulatory Commission (NRC). 1978. Final Environmental Statement Related to
- 16 Operation of Watts Bar Nuclear Plant Units Nos. 1 and 2. NUREG-0498, Washington, D.C. 17 Accession No. ML082540803.
- 18 U.S. Nuclear Regulatory Commission (NRC). 1995. Final Environmental Statement Related to
- 19 the Operation of Watts Bar Nuclear Plant, Units 1 and 2. NUREG-0498, Supplement No. 1,
- 20 Office of Nuclear Reactor Regulation, Docket Nos. 50-390 and 50-391, Washington, D.C.
- 21 Accession No. ML081430592.
- 22 U.S. Nuclear Regulatory Commission (NRC). 2000. Environmental Standard Review Plan-
- 23 Standard Review Plans for Environmental Reviews for Nuclear Power Plants. NUREG-1555,
- 24 Vol. 1, Washington, D.C. Accession No. MLs ML003702134, ML003701937, ML003702019.
- 25 World Nuclear Association (WNA). 2010. The Economics of Nuclear Power. Accessed May
- 26 14, 2010 at http://www.world-nuclear.org/info/default.aspx?id=410&terms=economics.
- 27 Accession No. ML100600712.

Appendix A

Contributors to the Supplement

Appendix A

Contributors to the Supplement

1 The overall responsibility for the preparation of this supplemental final environmental statement

2 (SFES) was assigned to the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory

3 Commission (NRC). Members of the Office of Nuclear Reactor Regulation prepared the SFES

4 with assistance from other NRC organizations and the Pacific Northwest National Laboratory.

~
5

Name	Affiliation	Function or Qualifications	
	NUCLEAR REGULA	TORY COMMISSION	
Joel Wiebe	Nuclear Reactor Regulation	Project Manager	
Patrick Milano	Nuclear Reactor Regulation	Project Manager	
Justin Poole	Nuclear Reactor Regulation	Project Manager	
Laurel Bauer	Nuclear Reactor Regulation	Branch Chief	
Andrew Imboden	Nuclear Reactor Regulation	Branch Chief, Air Quality	
Dennis Beissel ^(a)	Nuclear Reactor Regulation	Environmental Team Lead, Hydrology, Nonradiologica Human Health	
Dennis Logan	Nuclear Reactor Regulation	Environmental Team Lead, Ecology	
Jeffrey Rikhoff	Nuclear Reactor Regulation	Socioeconomics, Benefit-cost, Environmental Justice	
Kevin Folk	Nuclear Reactor Regulation	Hydrology	
Ray Galluci	Nuclear Reactor Regulation	Severe Accident Mitigation Alternatives	
Andrew Stuyvenberg	Nuclear Reactor Regulation	Need for Power, Alternatives, Benefit-Cost	
Jennifer Davis	Federal and State Materials and Environmental Management	Cultural Resources	
Allison Travers	Nuclear Reactor Regulation	Cultural Resources	
Stephen Klementowicz	Nuclear Reactor Regulation	Health Physics, Nonradiological Human Health	
<u> </u>	PACIFIC NORTHWEST N	ATIONAL LABORATORY ^(b)	
Rebekah Krieg	······································	Project Manager, Aquatic Ecology	
Amanda Stegen		Task Leader	
Tonya Keller		Deputy Task Leader	
Robert Bryce		Hydrology, Groundwater, Surface Water	
Corey Duberstein Terrestrial Ecology		Terrestrial Ecology	
Katherine Cort		Land Use, Socioeconomics, Environmental Justice, Benefit-Cost, Need for Power, Alternatives	
Tara O'Neil		Cultural Resources	
Eva Eckert Hickey		Health Physics	

September 2011

Appendix A

Name	Affiliation	Function or Qualifications	
Richard Traub		Health Physics	
James V. Ramsdell, Jr		Air Quality, Meteorology, Design Basis Accidents Severe Accidents	
Steve Short		Severe Accidents	
Amoret Bunn		Nonradiological Human Health	
Lara Aston		Nonradiological Human Health	
Tom Anderson		Cumulative Impacts	
Georganne O'Connor		Program Specialist	
Lubov Lavrentiev		Assistant	
Dave Payson		Technical Editing, Document Coordinator	
Susan Ennor		Technical Editing	
Michael Parker		Technical Editing, Document Design	
Tomiann Parker		References	
Sharon Johnson		References	
Kathy Neiderhiser		Document Design	
Rose Zanders		Graphics	
Donna Austin-Workman		Graphics	

(b) Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

1 2

Appendix B

Organizations Contacted

.

Appendix B

Organizations Contacted

1 The following Federal, State, Tribal, regional, and local organizations were contacted during the

2 course of the U.S. Nuclear Regulatory Commission staff's independent review of potential

3 environmental impacts from operation of one new nuclear unit at the Watts Bar Nuclear site in

- 4 Rhea County, Tennessee:
- 5 Absentee Shawnee Tribe of Oklahoma, Shawnee, Oklahoma
- 6 Advisory Council on Historic Preservation, Washington, D.C.
- 7 Alabama-Coushatta Tribe of Texas, Wetumka, Oklahoma
- 8 Alabama-Quassarte Tribal Town, Wetumka, Oklahoma
- 9 Cherokee Nation, Tahlequah, Oklahoma
- 10 Choctaw Nation of Oklahoma, Durant, Oklahoma
- 11 Dayton City School System, Dayton, Tennessee
- 12 Department of Interior, Office of Environmental Policy and Compliance, Atlanta, Georgia
- 13 Eastern Band of Cherokee Indians, Cherokee, North Carolina
- 14 Eastern Band of the Cherokee Indians, Bryson City, North Carolina
- 15 Eastern Shawnee Tribe of Oklahoma, Seneca, Missouri
- 16 Harmon, Curran, Spielberg & Eisenberg, L.L.P., Washington, D.C.
- 17 Jena Band of Choctaw Indians, Jena, Louisiana
- 18 Kialegee Tribal Town, Wetumka, Oklahoma
- 19 Meigs County School System, Decatur, Tennessee
- 20 Muscogee (Creek) Nation of Oklahoma, Okmulgee, Oklahoma

September 2011

Draft NUREG-0498, Supplement 2

Appendix B

- 1 Shawnee Tribe, Miami, Oklahoma
- 2 Southeast Tennessee Development District, Chattanooga, Tennessee
- 3 Southern Alliance for Clean Energy, Washington, D.C.
- 4 Tennessee Department of Agriculture, Nashville, Tennessee
- 5 Tennessee Department of Economic and Community Development, Nashville, Tennessee
- 6 Tennessee Department of Environment and Conservation, Chattanooga Field Office,
- 7 Chattanooga, Tennessee
- 8 Tennessee Department of Environment and Conservation, Nashville, Tennessee
- 9 Tennessee Department of Transportation, Nashville, Tennessee
- 10 Tennessee Historical Commission, Nashville, Tennessee
- 11 Tennessee Wildlife Resource Agency, Nashville, Tennessee
- 12 The Chickasaw Nation, Ada, Oklahoma
- 13 Thlopthlocco Tribal Town, Okemah, Oklahoma
- 14 United Keetoowah Band Headquarters, Tahlequah, Oklahoma
- 15 U.S. Army Corps of Engineers, Nashville, Tennessee
- 16 U.S. Environmental Protection Agency, Atlanta, Georgia
- 17 U.S. Fish and Wildlife Service, Cookeville, Tennessee
- 18 Watts Bar Utility District, Kingston, Tennessee

Appendix C

Chronology of NRC Staff Environmental Review Correspondence Related to Tennessee Valley Authority Application for an Operating License for Watts Bar Nuclear Plant Unit 2

• ·

.

Appendix C

Chronology of NRC Staff Environmental Review Correspondence Related to Tennessee Valley Authority Application for an Operating License for Watts Bar Nuclear Plant Unit 2

1 This appendix contains a chronological list of correspondence between the U.S. Nuclear

2 Regulatory Commission (NRC) and the Tennessee Valley Authority (TVA) and other

3 correspondence related to the NRC staff's environmental review, under Title 10 of the Code of

4 Federal Regulations (CFR) Part 51, for TVA's application for an operating license (OL) at the

5 Watts Bar Nuclear (WBN) plant Unit 2 site in Rhea County, Tennessee.

6 All documents, with the exception of those containing proprietary information or otherwise

7 exempt from disclosure, have been placed in the NRC's Public Document Room, at One White

8 Flint North, 11555 Rockville Pike (first floor), Rockville, Maryland, and are available

9 electronically from the Public Electronic Reading Room found on the Internet at the following

10 web address: http://www.nrc.gov/reading-rm.html. The public can use this site to gain access

11 to the NRC's Agencywide Document Access and Management System (ADAMS), which

12 provides text and image files of NRC's publicly available documents. The ADAMS accession

13 numbers for each document are included below.

Author	Recipient	Date of Letter/Email
Tennessee Valley Authority	U.S. Nuclear Regulatory	February 15, 2008
(M. Bajestani)	Commission	(ML080510469)
U.S. Nuclear Regulatory Commission	Tennessee Valley Authority	June 3, 2008
(J.F. Williams)	(A. Bhatnagar)	(ML081210270)
U.S. Nuclear Regulatory Commission	Tennessee Valley Authority	June 20, 2008
(J.F. Williams)	(A. Bhatnagar)	(ML081500030)
Tennessee Valley Authority	U.S. Nuclear Regulatory	July 2, 2008
(M. Bajestani)	Commission	(ML081850460)
Tennessee Valley Authority	U.S. Nuclear Regulatory	January 27, 2009
(M. Bajestani)	Commission	(ML090360588)
U.S. Nuclear Regulatory Commission	U.S. Fish and Wildlife Service	September 2, 2009
(J. Wiebe)	(M. Jennings)	(ML092100088)

September 2011

Draft NUREG-0498, Supplement 2

Appendix C

Author	Recipient	Date of Letter/Email
U.S. Nuclear Regulatory Commission (J. Wiebe)	Southern Alliance for Clean Energy (D. Curran and M. Fraser)	September 4, 2009 (ML092440217)
U.S. Nuclear Regulatory Commission	Advisory Council on Historic	September 10, 2009
(J. Wiebe)	Preservation (D. Klima)	(ML092120105)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Cherokee Nation (R. Allen)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Eastern Band of the Cherokee Indians (T. Howe)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Eastern Band of the Cherokee Indians (R. Townsend)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission	United Keetoowah Band	September 10, 2009
(J. Wiebe)	Headquarters (L.Larue-Stopp)	(ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	The Chickasaw Nation (V. (Gingy) Nail)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Choctaw Nation of Oklahoma (T. Cole)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Choctaw Nation of Oklahoma (G. Pyle)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission	Jena Band of Choctaw Indians	September 10, 2009
(J. Wiebe)	(L. Strange)	(ML092110475)
U.S. Nuclear Regulatory Commission	Muscogee (Creek) Nation of	September 10, 2009
(J. Wiebe)	Oklahoma (J. Bear)	(ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Alabama-Coushatta Tribe of Texas (B. Battise)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission	Alabama-Quassarte Tribal Town	September 10, 2009
(J. Wiebe)	(A. Asbury)	(ML092110475)
U.S. Nuclear Regulatory Commission	Kialegee Tribal Town	September 10, 2009
(J. Wiebe)	(E. Bucktrot and G. Bucktrot)	(ML092110475)
U.S. Nuclear Regulatory Commission	Thlopthlocco Tribal Town	September 10, 2009
(J. Wiebe)	(C. Coleman)	(ML092110475)
U.S. Nuclear Regulatory Commission	Absentee Shawnee Tribe of	September 10, 2009
(J. Wiebe)	Oklahoma (K. Kaniatobe)	(ML092110475)
U.S. Nuclear Regulatory Commission	Eastern Shawnee Tribe of	September 10, 2009
(J. Wiebe)	Oklahoma (R. DuShane)	(ML092110475)
U.S. Nuclear Regulatory Commission	Eastern Shawnee Tribe of	September 10, 2009
(J. Wiebe)	Oklahoma (G.J. Wallace)	(ML092110475)
U.S. Nuclear Regulatory Commission	Shawnee Tribe	September 10, 2009
(J. Wiebe)	(R. Sparkman)	(ML092110475)

September 2011

Author	Recipient	Date of Letter/Email
J.S. Nuclear Regulatory Commission J. Wiebe)	Shawnee Tribe (B. Pryor)	September 10, 2009 (ML092110475)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Historical Commission (J.Y. Garrison)	September 10, 2009 (ML092120097)
J.S. Nuclear Regulatory Commission J. Wiebe)	U.S. Army Corps of Engineers (R. Gatlin)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Office of Environment Policy and Compliance, Department of Interior (G.L. Hogue)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Sam Nunn Atlanta Federal Center (A.S. Meiburg and S. Gordon)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Environment and Conservation (M. Apple)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Environment and Conservation (S. Baxter)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Environment and Conservation (B. Bowen)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Economic and Community Development (M. Atchinson)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Environment and Planning Environmental Division (E. Cole)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Agriculture (K. Givens)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Environment and Conservation (P. Davis)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Water Supply (R. Foster)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Environment and Conservation (J. Fyke)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission (J. Wiebe)	Division of Radiological Health (L.E. Nanney)	September 10, 2009 (ML092110147)
J.S. Nuclear Regulatory Commission J. Wiebe)	Tennessee Department of Environment and Conservation (B. Stephens)	September 10, 2009 (ML092110147)

.

•

Author	Recipient	Date of Letter/Emai
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (M. Tummons)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission	Groundwater	September 10, 2009
(J. Wiebe)	(A. Schwendimann)	(ML092110147)
U.S. Nuclear Regulatory Commission	Tennessee Wildlife Resource	September 10, 2009
(J. Wiebe)	Agency (E. Carter)	(ML092110147)
U.S. Nuclear Regulatory Commission	Resource Management Division	September 10, 2009
(J. Wiebe)	(A. Marshall)	(ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Transportation (Commissioners Office)	September 10, 2009 (ML093080084)
Tennessee Historical Commission	U.S. Nuclear Regulatory	September 22, 2009
(E.P. McIntyre)	Commission (J. Wiebe)	(ML093510985)
Eastern Band of Cherokee Indians	U.S. Nuclear Regulatory	September 29, 2009
(T. Howe)	Commission	(ML0928605910)
U.S. Fish and Wildlife Services	U.S. Nuclear Regulatory	October 9, 2009
(M. Jennings)	Commission (J. Wiebe)	(ML0929301820)
Tennessee Valley Authority	U.S. Nuclear Regulatory	October 22, 2009
(M. Bajestani)	Commission	(ML093510833)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Valley Authority (A. Bhatnagar)	December 3, 2009 (ML093030148/ ML093290073)
Tennessee Valley Authority	U.S. Nuclear Regulatory	December 23, 2009
(M. Bajestani)	Commission	(ML100210358)
Tennessee Valley Authority	U.S. Nuclear Regulatory	February 25, 2010
(M. Bajestani)	Commission	(ML100630116)
Tennessee Historical Commission	U.S. Nuclear Regulatory	March 5, 2010
(E. Patrick McIntyre, Jr)	Commission (J. Wiebe)	(ML100770290)
Tennessee Valley Authority	U.S. Nuclear Regulatory	April 9, 2010
(M. Bajestani)	Commission	(ML101130392)
Tennessee Valley Authority	U.S. Nuclear Regulatory	May 12, 2010
(M. Bajestani)	Commission	(ML101340589)
Tennessee Valley Authority	U.S. Nuclear Regulatory	July 2, 2010
(M. Bajestani)	Commission	(ML101930470)
Tennessee Valley Authority	U.S. Nuclear Regulatory	July 6, 2010
(R.M. Krich)	Commission	(ML101890069)
Tennessee Valley Authority	U.S. Nuclear Regulatory	January 4, 2011
(E.E. Freeman)	Commission	(ML110060510)

September 2011

.

Author	Recipient	Date of Letter/Email
Tennessee Valley Authority	U.S. Nuclear Regulatory	February 7, 2011
(M. Gillman)	Commission	(ML110400384)
Tennessee Valley Authority	U.S. Nuclear Regulatory	March 24, 2011
(E.E. Freeman)	Commission	(ML110871475)
Tennessee Valley Authority	U.S. Nuclear Regulatory	March 28, 2011
(E.E. Freeman)	Commission	(ML110890472)
Tennessee Valley Authority	U.S. Nuclear Regulatory	May 19, 2011
(D. Stinson)	Commission	(ML11143A083)
Tennessee Valley Authority	U.S. Nuclear Regulatory	May 20, 2011
(D. Stinson)	Commission	(ML11146A044)
Tennessee Valley Authority	U.S. Nuclear Regulatory	May 26, 2011
(D. Stinson)	Commission	(ML11152A160)
Tennessee Valley Authority	U.S. Nuclear Regulatory	July 28, 2011
(R.M Krich)	Commission	(ML11215A098)

·

Appendix D

· · · ·

Scoping Comments and Responses

•

.

.

WATTS BAR NUCLEAR PLANT, UNIT 2 – COMPLETE LIST OF COMMENTS, SUGGESTIONS, AND STAFF RESPONSES CONDENSED FROM THE OCTOBER 6, 2009, PUBLIC SCOPING MEETING

On October 6, 2009, a Category 3 public meeting (two sessions) was held between the U.S. Nuclear Regulatory Commission (NRC) and interested public at the Magnuson Hotel, 1421 Murrays Chapel Road, Sweetwater, Tennessee 37874. The purpose of the meeting was to present an overview of the environmental review process for Watts Bar Unit 2 operating license application and to obtain public comments regarding the scope of the environmental review.

Scoping meeting attendees provided either written statements or oral comments that the NRC recorded and a certified court reporter transcribed. In addition, during the scoping period, the NRC received four letters and five emails providing comments on the proposed action. The staff considered all comments and suggestions received.

The meeting summary was issued on October 21, 2009, and is available electronically from the Publicly Available Records component of NRC's Agencywide Documents Access and Management System (ADAMS) under accession number ML092880764. ADAMS documents can be found at https://www.nrc.gov/reading-rm/adams.html.

The following selection of public comments has been broken down into two categories:

- 1) Public comments that are covered in the supplemental final environmental statement (SFES) (equivalent to an environmental impact statement [EIS])
- 2) Public comments concerning issues that are outside the scope of review

Table A-1 identifies the individuals providing comments in alphabetical order; their affiliation, if given; the ADAMS accession number that can be used to locate the correspondence; and the correspondence identification number (ID). Table A-2 identifies individual comments covered in the SFES and those comments outside the scope of review.

Commenter	Affiliation (if stated)	Comment Source and ADAMS Accession #	Correspon- dence ID
Burris, Shane	Monroe County	Meeting Transcript (ML092870331)	0003
Cobb, Jim	Tennessee House District 31	Meeting Transcript (ML092870331)	0003
Curran, Diane	Harmon, Curran, Spielberg & Eisenberg, LLP	Letter (ML093080581)	0010
Gottfried, Yolande		Letter (ML093090656)	0008
Harris, Ann		Meeting Transcript (ML092870331)	0003
Harris, Ann	•	Meeting Transcript (ML092870338)	0004
Howe, Tyler	Eastern Band of Cherokee	Letter (ML092860591)	0006
Jennings, Mary	U.S. Fish and Wildlife Service	Letter (ML092930182)	0005
Jones, Ken	Meigs County	Meeting Transcript (ML092870338)	0004
Kurtz, Sandy		Meeting Transcript (ML092870338)	0004
Mastin, Mary		Meeting Transcript (ML092870331)	0003

Table A-1. Individuals Providing Comments During the Comment Period

Appendix D

McCluney, Ross Paddock, Brian	BREDL Sierra Club, Tennessee Chapter	Meeting Transcript (ML092870331) Meeting Transcript (ML092870331)	0003 0003
Reynolds, Bill Reynolds, Bill Safer, Don		Meeting Transcript (ML092870331) Meeting Transcript (ML092870338) Email (ML093060311)	0003 0004 0013
Safer, Don Smith, Stewart Yager, Ken	Tennessee Senatorial District	Meeting Transcript (ML092870331) Meeting Transcript (ML092870338) Letter (ML093090655)	0003 0004 0007
Zeller, Lou	Blue Ridge Environmental Defense League	Letter (ML093080360)	0015
Zeller, Lou	Blue Ridge Environmental Defense League	Meeting Transcript (ML092870331)	0003

.

.

Table A-2Category No. 1Public Comments that are Covered in the Supplemental Final Environmental Statement(SFES) (Equivalent to an EIS)

Comment: The Organizations [Southern Alliance for Clean Energy, the Sierra Club, Blue Ridge Environmental Defense League, Tennessee Environmental Council, and We the People] respectfully submit that the EIS should consider, at a minimum, the environmental concerns raised in their hearing request to the NRC, which is now pending before the Atomic Safety and Licensing Board. (0010 [Curran, Diane])

Response: When preparing the SFES, the NRC staff will consider concerns expressed by commenter's that are within the scope of the environmental review.

Comment: Given all those concerns and the fact that things have certainly changed since 1978, when the first Environmental Impact Statement was done and those supplements in 1995, I think NRC should recommend to TVA that they start all over with a new, from ground zero, Environmental Impact Statement. (0004 [Kurtz, Sandy])

Comment: The National Environmental Policy Act requires that before undertaking a major federal action, an agency must take a "hard look" at the environmental consequences of the action (Baltimore Gas and Elec. Co. v. Natural Resources Defense Council, Inc., 462 U.S. 87, 97 (1983)). Where an agency has not yet taken the major federal action, it must consider "new and significant information" that bears on the environmental impacts of the proposed action [Marsh v. Oregon Natural Resources Council, 490 U.S. 360, 371-72(1989)]. Also, federal regulations require supplementation where the proposed action has not been completed, if: "(1) there are substantial changes in the proposed action that are relevant to environmental concerns; or (2) there are significant new circumstances or information relevant to environmental concerns and bearing on the proposed action or its impacts." [10 C.F.R. 51.92(a)] The environmental effects of the two side-by-side Watts Bar facilities raise the issues of segmentation and cumulative impacts. (0015 [Zeller, Lou])

Response: The commission expects the staff to take the requisite "hard look" at new information on the need for power and alternative sources of energy and has authorized the staff to supplement the SFES if there is new and significant information relevant to these matters. The NRC staff will prepare the SFES in accordance with NEPA and 10 CFR Part 51. The analysis will address the environmental effects of operating the proposed WBN Unit 2.

Comment: I am really concerned about the water quality in the Tennessee River, and I think that as TVA goes forward with this

Environmental Impact Statement, they are going to be required to take a hard look at the new information on water quality, discharges of heavy metals, and serious long-term consequences from the Kingston coal ash spill. (0003 [Mastin, Mary])

Comment: Please, as you go forward with the environmental work on this, consider the water quality and the new information – I mean, not only is there – are there sediments on the bottom where the Clinch River comes into TVA, coming down from Oak Ridge, there apparently is some other stuff from some old paper mill or lumbering operations; there has been a huge concern about doing that very carefully. (0003 [Mastin, Mary])

Response: Operating a nuclear plant involves discharging some effluents to nearby water bodies. The Clean Water Act designated the U.S. Environmental Protection Agency (EPA) as the Federal agency responsible for regulating effluent discharges to the Nation's waters. Although the NRC does not regulate effluents, it is responsible under NEPA to assess and disclose the expected impacts of the proposed action on water quality throughout the plant's life. The staff will assess water quality issues related to operating the proposed WBN Unit 2. Chapter 4 of the SFES will present the NRC staff's assessment of the nonradiological impacts to water quality. Chapter 4 will also address any cumulative effects of the proposed action.

Comment: There's a whole lot of assumptions about what's a normal condition in the river and what's a normal year, and I think if you've noticed, the last decade we've seen increasing changes, perhaps due to climate change, where the definition of what's normal needs to be re-examined. (0003 [Paddock, Brian])

Comment: Operating Watts Bar 1 nuclear plant requires 188.2 million gallons per day of water drawn from the river. Each day, of that amount, 14.3 million gallons is evaporated into the air, not returned to the river. Yet another reactor, a second reactor here, drawing out so much water causes me to ask how much can we draw out of the river on any given day in the same reservoir. (0004 [Kurtz, Sandy])

Comment: The Tennessee River is already overstressed and does not need additional warm water discharge and water lost from evaporative cooling. (0008 [Gottfried, Yolande])

Response: Nuclear plants consume water due to the evaporation of some of the water used to cool plant components. The NRC staff will address the impact of consumptive water losses on the sustainability of local and regional water resources. Although the NRC does not regulate or manage water resources, it is responsible, under NEPA, to assess and disclose the impacts of the proposed action on water resources. Chapter 4 of the SFES will assess impacts on water resource sustainability related to operating the proposed WBN Unit 2

Comment: The second point in the scope of the environmental assessment is that there's an interaction here, because the State of Tennessee has just released the draft NPDES, National Pollution Discharge Elimination System, permit for the Watts Bar nuclear

plant. That seems to be talking just about Unit 1, but in fact the way TDEC has written the draft permit, it's not clear if you could turn the switch on Watts Bar 2 if it were ready and use that same permit. And there are a number of defects and concerns specifically with that permit. We're going to talking with TDEC about this, and the time for public comment has been extended, so that permit is probably not going to be coming down the road until early next year, at the best, but here are some of the difficulties: And we're assuming -- and I think TVA asserts this in their comments on the NPDES -- that the phase 2 regulations don't apply here; that the content of this permit under Section 316 is remitted to TDEC in terms of its best professional judgment. That could change if EPA puts the phase 2 regulations back into effect following the most recent Supreme Court decision. But right now it's up to TDEC, and there are limitations in both the Clean Water Act and in the state regulations. One of the main problems is that most of the environmental information that TVA brought to TDEC for the renewal and extension of the NPDES for the nuclear plant basically was ten and twelve years old. (0003 [Paddock, Brian])

Response: The NRC staff will discuss current surface water quality in Chapter 2 of the SFES and impacts from operating the proposed WBN Unit 2 in Chapter 4. TVA has indicated in its application that the discharge from WBN Units 1 and 2 will meet discharge limits stated in the current National Pollutant Discharge Elimination System (NPDES) permit. The NRC staff will consider discharge limits in its evaluation of impacts on the Tennessee River.

Comment: There is, we think right now, a clear failure of TVA with respect to the NPDES, and we think if they were held to this in the EIS for the additional thermal impacts from Watts Bar 2, that they simply have not been able to show that they won't violate the water quality criteria. They don't provide data on the drift community, the spacial or temporal distribution of the plankton in the mixing zones. The mixing zones, by the way, according to the diagram, as I read it -- and I admittedly am no expert on this -- seem to be substantially larger. And by the way, the initial mixing zone in the renewed permit that's proposed actually goes border to border in the river. There is no way for aquatic life to go down the river without being in either what essentially is a dead zone immediately next to the discharges or on the cooler but active side of the river where they would have impacts. (0003 [Paddock, Brian])

Response: The NRC staff will consider water quality impacts from operating the proposed WBN Unit 2 on the Tennessee River, including the effects of thermal discharge on aquatic life. Chapter 4 of the SFES will present results of this analysis.

Comment: As was mentioned earlier, you now have operating six nuclear plants plus one thermal plant on the same river system, and you're now about to add a seventh, and the cumulative impacts of this amount of cooling water, cooling water loss from evaporation, thermal -- cumulative thermal effects and so forth, needs to be looked at. TVA has already experienced the situation where, during summer peaks, it had to derate downstream nuclear plants. Building another one toward the top of the river system, when it simply, as a consequence of the thermal discharge, will then have to shut down the plants lower on the river system during the hottest times of the peak loads, is not going to make any sense at all. So TVA may have run out of running room in terms of thermal discharges. Let's identify that now before we go ahead and license this plant. In fact, let's make sure that we do it in such a way that those of us who are ratepayers don't wind up for another white elephant that's never licensed to operate. (0003 [Paddock,

Brian])

Response: Chapter 4 of the SFES will address consumptive use and water quality impacts on the Tennessee River, including the thermal impacts of discharge to the Tennessee River, from operating the proposed WBN Unit 2. Chapter 4 also will present cumulative impacts to the Tennessee River from operating WBN Units 1 and 2 and other facilities.

Comment: The Tennessee River is stressed already -- the quality of the river. It has fish that are not safe to eat. There is the impact of the Kingston toxic fly ash spill which must be taken into consideration when assessing water quality, because we all live downstream. (0004 [Kurtz, Sandy])

Response: Chapter 4 of the SFES will address impacts on Tennessee River water quality from operating the proposed WBN Unit 2. Chapter 4 also will present cumulative impacts to the Tennessee River from operating WBN Units 1 and 2 and other facilities.

Comment: I am very afraid that we are killing the aquatic life in the Tennessee River and that the thermal discharges from Watts Bar 1, Watts Bar 2, then you go down to Nickajack or Sequoyah, and Nickajack, you start up there where Oak Ridge – there are still sediments with radionuclides – I don't know the technical language on this, but I know that TDEC and EPA and TVA have been very concerned about the dredging as they are trying to clean up the Kingston coal ash spill and not getting down to the bottom and stirring up all of this really terrible stuff that's there. (0003 [Mastin, Mary])

Comment: I'm working with scientists who have talked to us about the discharges from selenium; you got arsenic and mercury; you got heavy metals; you've got fragile fish; you've got mollusks. You have got a whole downstream river system and people who are dependent on your doing this with a great amount of care. (0003 [Mastin, Mary])

Response: The NRC staff will address the cumulative impact on the aquatic biota in the Tennessee River in Chapter 4 of the SFES. The staff will consider thermal discharges from facilities, including WBN Unit 1, Sequoyah Nuclear Plant, and Kingston Fossil Plant, as part of the cumulative impact analysis. The staff also will discuss water quality issues related to radionuclides and heavy metals that exist in river sediments as a result of past operations at Oak Ridge, and the Kingston coal ash spill and subsequent cleanup activities.

Comment: There are a lot of questions with respect to the mortality of mussels downstream, even though TVA has spent a good deal of effort over the years relocating mussels. I'm not sure when we started rebuilding natural populations in different places in order to allow this kind of project to go forward, but it seems to me that the impact on mussels and the impact of mussel relocation needs to be documented currently. (0003 [Paddock, Brian])

Response: The NRC staff will assess the impacts of operating the proposed WBN Unit 2 on the aquatic biota in the Chickamauga Reservoir including any plans for future relocation of mussels and impacts from relocation. Chapter 4 of the SFES will address impacts on aquatic biota from operating the proposed WBN Unit 2.

Comment: The temperature of the water returned is hotter, not good for aquatic life, and in droughts it can't be cooled enough and so has to be shut down, just as has happened summer before last, I think it was. (0004 [Kurtz, Sandy])

Response: Chapter 4 of the SFES will address impacts on the aquatic biota in the Chickamauga Reservoir from thermal discharges from the proposed WBN Unit 2.

Comment: So the point I'd like to make in response to my enormous sympathy to the economic problems of the area, and the mention of jobs in solid-state and other areas, is that renewable energy is a really labor-intensive operation, so that your intensive worker group that comes in to build the nuclear power plant, usually from outside the region, most of those leave when the plant is built, and a moderately small task force remains. Whereas if you instead focused on attracting some of this new technology development and factories, you could build up this region enormously, building and making environmentally benign technology to provide what electricity is needed. (0003 [McCluney, Ross])

Comment: Our unemployment rate in Monroe County right now is over 16 percent, so we would like to see jobs from that plant as it is being constructed and then once it's completed. (0003 [Burris, Shane])

Comment: Also, if they run out of money, there are provisions in the technical specifications to shut the plants down and put them in a safe condition so the public is not threatened. That being said, I really admire Mr. Burris for the comments he made about the economic impact this will have on our area, but I can tell you that the Nuclear Regulatory Commission does not have compassion at the level that they're really concerned about jobs. (0003 [Cobb, Jim])

Comment: So anyway, the green economy is how we're going to get back, and part of that green economy is to learn how to reintegrate our rural areas, our smaller towns with our urban centers and create the -- you know, in Nashville people are nuts about local produce. There's a whole industry of local growers that is growing up all around Nashville, and people are making a living at it. It's hard work; it's honest work. You get your fingernails dirty, but it's just an old-fashioned way to do it. And, you know, getting back to more locally based economies with an eye toward creating jobs in our rural counties is definitely something that we need to do, but these nuclear plants don't create very many jobs after construction. (0003 [Safer, Don])

Comment: The project will generate thousands of jobs during construction period and 250 permanent jobs in a region characterized by double digit unemployment. (0007 [Yager, Ken])

Response: Chapter 4 of the SFES will address regional socioeconomic impacts of the proposed action, including impacts to the local economy, employment, transportation, aesthetics and recreation, housing, education, community infrastructure, and social services.

Comment: [A]s an economic developer in the state of Tennessee, most economic developers know that the United States and the state of Tennessee's manufacturing base runs on cheap power. And if your cap and trade bill passes in Congress, the electric bill will go up about 300 percent, and also that will end manufacturing in this country as we know it, and we will only be one mass distribution center. (0003 [Burris, Shane])

Comment: Our community is suffering economically, and it's important for future economic development and the future health of our community that we have reliable -- cheap, reliable power so that we can continue to bring industry in to this community. (0004 [Smith, Stewart])

Response: The price of electricity is outside the regulatory scope of licensing actions; however, the NRC staff will evaluate the regional socioeconomic impacts of the proposed action in Chapter 4 of the SFES, including impacts to the local economy, transportation, aesthetics and recreation, housing, education, community infrastructure, and social services.

Comment: The Tribal Historic Preservation Office of the Eastern Band of Cherokee Indians is in receipt of the notification to act as a consulting party for the above-referenced project information and would like to thank you for the opportunity to comment on this proposed Section 106 activity. The EBCI THPO accepts the invitation to act as a consulting party on the above referenced Section 106 undertaking(s) as mandated under 36 C.F.R. 800. (0006 [Howe, Tyler])

Comment: The project's location is within the aboriginal territory of the Cherokee People. Potential cultural resources important to the Cherokee people may be threatened due to adverse effects expected from the level of ground disturbance required for this project. (0006 [Howe, Tyler])

Comment: Please send all related archaeological, cultural resource and historical investigatory materials, completed by the applicant to this office for review so we can make proper comments that pertain to accomplishing our NHPA requirements. (0006 [Howe, Tyler])

Response: As outlined in 36 CFR 800.8, "Coordination with the National Environmental Policy Act of 1969," and Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA), the NRC will fulfill the requirements of NEPA and NHPA by consulting with and requesting input from the Eastern Band of Cherokee Indians. Chapters 2 and 4 of the SFES will provide historic and cultural resources information. The NRC will consult with the Eastern Band of Cherokee Indians to identify cultural resources

September 2011

important to the Tribe to avoid or minimize any potential adverse effects to historic properties from this undertaking.

Comment: Talking about a community, I don't see you taking this up to Farragut and putting the nuclear plant in the middle of Farragut, where the houses all cost like \$750,000 or 2 or 3 million. (0004 [Harris, Ann])

Response: Chapter 4 of the SFES will specifically address potential impacts of the proposed action on low income and minority populations.

Comment: Nuclear plants do have radioactive leaks into the water, which they say is insignificant, but since radiation is cumulative, how much is too much for humans and other life to absorb without health impacts? (0004 [Kurtz, Sandy])

Comment: The sources of the contamination include leaks from pipes and vales and other water-bearing components and airborne discharges from cooling towers. These radioactive discharges are difficult to quantify and may be underestimated. (0015 [Zeller, Lou])

Response: The NRC staff will evaluate the release of radioactive materials into the environment from WBN Units 1 and 2. Chapter 4 of the SFES will address the cumulative impacts from releases of radioactive effluents from WBN Units 1 and 2.

Comment: I think as -- since this reactor was proposed in the '60s, designed in the -- or licensed in the '70s, we had a lot of opportunity to have all these nuclear plants that have been operating. And I haven't seen any public health studies about the communities that are downwind, you know, with the windrows of where the wind blows, and if it's true that nobody is getting sick, that their cancer rates and leukemia rates are not elevated, wonderful; I would love to see it. But I haven't seen it. I've looked for it. It's not easy to find. I think in this Environmental Impact Statement we need to have a clear study of Watts Bar 1; Sequoyah, the two units, and -- well, in particular those three, because they're the same design of reactor. (0003 [Safer, Don])

Comment: I read of a study completed in Germany. Since 1991 in fact they have done several studies in Europe regarding the health of children who live within ten miles of nuclear facilities, primarily in England and Wales. And what they found out was that there was a statistically significant increased incident rate - I want to say that right, because these are studies -- significant increased incident rate for leukemia's among children within the five-kilometer zones around the sites. That is, the closer -- and it seemed that the closer you got to the plant, the more -- the higher the incidence. This is of great concern and I think should be looked into before we add another reactor. (0004 [Kurtz, Sandy])

Comment: I know that the lady before me made mention of a high incidence of leukemia within a close proximity of the plant. I'm somehow unaware of that. We have children in Meigs County -- I have a son that grew up in Meigs County, went to high school in

Meigs County, and I've never heard of a high incidence of leukemia; that's -- but I will investigate that to see if there are. (0004 [Jones, Ken])

Comment: I was born and raised in Meigs County, but I won't live there anymore. There's more to radiation exposure than cancer, and there's a lot of it. (0004 [Harris, Ann])

Response: These comments refer to health effects to populations around nuclear power plants. The NRC's primary mission is to protect the public health and safety and the environment from the effects of radiation from nuclear reactors, materials, and waste facilities. The NRC's regulatory limits for radiation protection are set to protect workers and the public from the harmful health effects of radiation on humans. The limits are based on the recommendations of standards-setting organizations. Radiation standards reflect extensive scientific study by national and international organizations. The NRC has reviewed a number of studies that looked at the incidence of cancers in the vicinity of nuclear power plants in the United States. The studies did not observe a correlation between the radiation dose from nuclear power facilities and cancer incidence in the general public. Some studies the NRC recognized include those conducted by the following organizations: the National Cancer Institute, the University of Pittsburgh, the Illinois Public Health Department, the Connecticut Academy of Sciences and Engineering, the American Cancer Society, and the Florida Bureau of Environmental Epidemiology. Chapter 4 of the SFES will evaluate the impacts to human health from radioactive emissions.

Comment: You don't have -- there's no water testing in this river of radionuclides by an outside source. That's according to TDEC's own mouth. That's not my opinion. They trust TVA. Well, we trusted TVA up at Kingston. There's tritium in the soil and the water, above legal limits. It's sitting there, and nobody's doing anything about it; you're just pumping more. And this idea that tritium won't hurt you -- why do we use it to make bombs go off faster than what they did when just a normal bomb? There's no wastewater program to stop the radionuclides going into the Chattanooga and others' drinking water. (0003 [Harris, Ann])

Comment: There is also -- there is radiation already in the river sediment, and another nuclear reactor will only add more. Nuclear plants put radionuclides in the water that no one tests for. (0004 [Kurtz, Sandy])

Comment: The NRC -- when you go to the website, look up the word tritium, and you go down through there, and you go and see what all the things are. There's a statement there -- it's very short; I think it's got -- I'll count them in a minute -- like a dozen words in the statement. The NRC does not believe that there's any safe level of exposure to radiation. (0004 [Harris, Ann])

Comment: We respectfully submit that the EIS should consider the issue of tritium releases into the Tennessee River by the proposed reactor. (0013 [Safer, Don])

Comment: Nuclear power plants generate tritium in the course of their operation and release it both to the atmosphere and to water bodies. Tritium releases have also occurred as a result of malfunctions. (0013 [Safer, Don])

Comment: Tritium, a radioactive form of hydrogen . . .combines with oxygen to make radioactive water. As radioactive water, tritium can cross the placenta, posing some risk of birth defects and early pregnancy failures. Ingestion of tritiated water also increases cancer risk. (0013 [Safer, Don])

Comment: Tritium releases generally constitute the largest routine releases from nuclear power plants and as such have caused widespread contamination of water bodies at low-levels. (0013 [Safer, Don])

Comment: All of this is particularly relevant to public health issues considering the widespread usage of the water from the Tennessee River especially as the municipal drinking water supply downstream in Chattanooga. (0013 [Safer, Don])

Comment: The NRC must include in its SEIS the impacts of tritium emissions from both Watts Bar Unit 1 and Unit 2 upon the environment and public health. (0015 [Zeller, Lou])

Comment: Tritium releases are the largest routine radioactive emissions from nuclear power plants. The chemical compound H2O with a radioactive H3 (Tritium) is virtually impossible to contain because nuclear plants are thermoelectric units which rely upon the heating of water to drive steam turbine-powered electric generators. (0013 [Safer, Don])

Comment: Nuclear power plants contaminate the water bodies used for cooling water. Watts Bar Unit 2, like Unit 1, would be cooled by cooling towers drawing makeup water from Chickamauga Reservoir. The contamination of the area surrounding Watts Bar is as follows [Annie Makhijani and Arjun Makhijani, Science for Democratic Action Vol. 16, No. 1, August 2009 (Sources by plant from Annual Radiological Environmental Operating Reports for 2006. Sourcelink at http://www.nrc.gov/reactors/operating/ops-experience/tritium/plant-info.html)]:

	Drinking water	Surface Water
Picocuries per liter	606	588

These levels of tritium contamination of drinking water and the river are found 24 and 9.9 miles from the Watts Bar reactor, respectively. They are excessive and harmful to human health. (0015 [Zeller, Lou])

Comment: That tritium emissions are released to the environment is well known and even acknowledged in NRC "lessons learned" documents. At minimum, the NRC must account for these releases in its EIS. Further, the agency should undertake a top to bottom review of its monitoring and control of tritium emissions. (0015 [Zeller, Lou])

Response: The NRC staff will review and evaluate the monitoring for radionuclides in the environs around the WBN plant and the Tennessee River. Chapters 2 and 5 of the SFES will address radiological monitoring of all pathways, including water. Chapter 5 also will discuss tritium monitoring at the WBN site. Chapter 4 will present results from the radiological monitoring and any potential

environmental impacts.

Comment: Tennessee Valley Authority is irradiating Tritium-Producing Burnable Absorber Rods (TPBARs) for the U.S. Department of Energy (DOE). The production of radioactive tritium for defense purposes is authorized by License Amendment No. 48 issued October 8, 2003. However, the tests conducted during the sixth cycle of irradiation revealed disturbingly high levels of tritium to the reactor coolant system outside of acceptable limits; in fact, the emissions were 9.6 times higher than predicted by TVA's analytical model. (0015 [Zeller, Lou])

Comment: The questions which NRC must address are: (1) How were predictions by TVA and DOE nearly an order of magnitude too low? (2) What was the impact upon the local environment caused by the unexpected excess before it was discovered? (3) What are the implications for Watts Bar Unit 2? (4) What evidence do we have that TVA's predictive analysis is now reliable? (0015 [Zeller, Lou])

Response: This comment is related to tritium production from WBN Unit 1 and is not within the scope of the environmental review for the proposed WBN Unit 2. However, the cumulative impacts from the releases (including tritium) from WBN Unit 1 will be considered and addressed in Chapter 4 of the SFES.

Comment: And the situation, as I understand it, in the environmental assessment that's being done right now is that indefinite onsite retention of spent fuel is proposed. So I hope you folks locally are prepared to take care of this stuff for at least a quarter of a million years, because with respect to spent fuel, it's pretty clear that Yucca Mountain is dead. I'm not sure exactly the state of the post mortem and rites, but it appears that the federal government is not going to invest more in the development of that site, and no other site has as yet been suggested even as a possible target. (0003 [Paddock, Brian])

Comment: TVA, of course, has no right, even if Yucca Mountain were to open, to send the waste from Watts Bar 2, as I understand it, to that repository, even if it were to open, and it simply has, as far as I can see, no real plan other than just keep stacking it up locally. (0003 [Paddock, Brian])

Comment: I'm going to start by going into the storage casks -- the spent-fuel storage casks that are being placed by the river right now. They're going to be placed there with greater frequency if this second plant goes on line. (0003 [Safer, Don])

Comment: I think it's important to know that inside of those casks the radiation is far worse than what went in. The radionuclides in there, there's plutonium, which didn't even exist on the face of the earth until we started fooling with the atom 60, 70 years ago, and that's one of the most awful substances on the face of the earth. It is bomb-making material, but one atom of that that gets into your lungs, if it gets airborne, will give you lung cancer; it will kill you. It burns on contact with the air, spontaneously. It's sitting in there. (0003 [Safer, Don])

Comment: It's not a whole big lot of plutonium in there; that's why reprocessing is such a nightmare, because to get enough plutonium to make it work, you've got to create a lot of other waste. But inside of there is just this cauldron of about 500 degrees -- it's too hot at the beginning, for the first five years, to put these fuels rods into these dry casks; they have to be put into the storage pools, which are overloaded currently and have had to be modified because of the lack of any real storage solution. And then after five years they go into these concrete-steel dry cask storage that are not hardened, and they are out -- I've seen them at Browns Ferry; they are just out in the open. (0003 [Safer, Don])

Comment: [I]n those casks, that cauldron of 500-degree Fahrenheit radioactive material that's 1000 or 100,000 times more radioactive than the original fuel rods is doing who knows what. I mean, I asked -- I've forgotten your name, but I asked three gentlemen from the NRC earlier today, in private, or in a conversation at the open house, What's going on inside of those casks? Has anybody taken one of those apart after ten years? To my knowledge, nobody has, and what I've heard is that it's all sort of, you know, just kind of decomposing. Nothing stays the same. You put it in there, and its 500 degrees of boiling radioactive science experiment. And they were supposed to last for about or 30 years at first; now they're saying, well, they'll go for 50 and probably a hundred. Well, it's your community here that is the guinea pig on this, as well as the community at every other nuclear reactor site, because that's what's happening with all of these; there's no plan at all to move them away from your community, and these things, as Mr. Paddock said, they remain toxic for literally several hundred thousand years. (0003 [Safer, Don])

Comment: [T]hey [nuclear plants] leave these legacy of these storage casks that our grandchildren, our great-grandchildren and those beyond that will not remember us will curse us for those storage casks.

Comment: [T]here is the storage of radioactive waste and the legacy it leaves for the future; there is no solution now, and we hear people say, We're going to figure it out. They've been working on it for a long time, and so far we actually seem to be going backwards. Yucca Mountain is closed and, in fact, if it were open, it would be immediately filled up, as I have heard, because we've already stored enough to fill it up. Where does our radioactive waste go? (0003 [Safer, Don])

Comment: Somehow somebody's got to start stopping and looking, because you haven't dealt with the waste. (0004 [Harris, Ann])

Comment: There is still no solution to the problem of storing nuclear waste. (0008 [Gottfried, Yolande])

Response: The NRC evaluated the safety and environmental effects of long-term storage of spent fuel and, as set forth in the Waste Confidence Rule at 10 CFR 51.23 (available at http://www.nrc.gov/reading-rm/doc-collections/cfr/part051/part051-0023.html), the NRC generically determined that "if necessary, spent fuel generated in any reactor can be stored safely and without significant environmental impacts for at least 30 years beyond the licensed life for operation (which may include the term of a revised or renewed license) of that reactor at its spent fuel storage basin or at either onsite or offsite independent spent fuel installations. Further, the Commission believes there is reasonable assurance that at least one mined geologic repository will be available within the first quarter of the twenty-first century and sufficient repository capacity will be available within 30 years beyond

Draft NUREG-0498, Supplement 2

D-14

the licensed life for operation of any reactor to dispose of the commercial high-level waste and spent fuel originating in any such reactor and generated up to that time." On October 9, 2008, the NRC published for public comment a proposal to amend its generic determination of no significant environmental impact for the temporary storage of spent fuel after cessation of reactor operation codified at 10 CFR 51.23(a) (73 FR 59547) and a related update and proposed revision of its 1990 Waste Confidence Decision (73 FR 59551). Chapter 4 of the SFES will address the impact of the uranium fuel cycle, including disposal of low level radioactive waste and spent fuel.

Comment: And some people have said that the electricity you get from the nuclear reactor is not really the primary component or the primary outcome; it's really all this nuclear waste, because the electricity you generate, we use it or we don't, and it's gone. (0003 [Safer, Don])

Response: According to 10 CFR 51.95(b), the SFES, which is a supplement to the FES-OL, will only cover matters regarding radioactive waste material (low-level, high-level, and transuranic wastes) that differ from the FES-OL or provide significant new information concerning issues discussed in the FES-OL. Chapter 4 of the SFES will discuss issues related to radioactive waste management.

Comment: [T]he Watts Bar Lake area already is highly polluted, particularly at the junction with the Clinch River and is already a designated Superfund site. And I have not had a chance to review the documents, but it's not clear to me that the -- what happened - if there's any mobilization of those upstream legacy sediments from that Superfund site and moving down into the cooling-water intakes for this plant. The same thing is true with respect to the coal ash spill, because we've already seen the coal ash migrate during high-water events. They now they're going to get it out of there by -- worst of it out of there by next year, but they also say there won't even be the phase 2's plan for getting some of the rest of it cleaned up until next year. To the extent that those heavy metals are in solution, are in compounds and can travel freely with the flow of the river, you essentially have a different condition in the river at the point that you hit the cooling-water intakes, and we're not sure that the environmental assessment at this point has recognized that condition and has looked at the consequences of having heavy metals in solution in larger proportions at the point of intake and discharge from the cooling water. (0003 [Paddock, Brian])

Comment: These proposed [tritium] releases should be considered as an addition to the existing releases from Watts Bar Unit 1 which have been increased by the production of weapons grade tritium for the DOE. (0013 [Safer, Don])

Comment: The requirements of NEPA may not be avoided by segmentation of a project [River v. Richmond Metropolitan Authority, 481 F.2d 1280 (4th Cir. 1973)]. Segmentation arises when the comprehensive environmental impact of a project is not given full consideration or that analysis of the impact is done after permitting agency decisions are made and the project is underway [Daniel R. Mandelker, NEPA Law and Litigation, 9-25 (2nd ed. 2004)]. The principal criteria for the determination segmentation are whether the parts of a project are interdependent, the original intent and whether the parts may be considered alone. Watts Bar Units 1 and 2

are co-located facilities. They share certain structures, systems and components. Cumulative actions are those which have significantly greater impacts when viewed with other actions or which have increasing effect caused by successive additions. Council of Environmental Quality Regulations Implementing NEPA [Sec. 1508.7 Cumulative impact. "Cumulative impact" is the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time provided that reasonably foreseeable future actions are to be considered in a cumulative impact analysis. The consecutive licensing of Watts Bar Units 1 and 2 in close proximity are actions which are plainly foreseeable. Therefore, NRC must account for the combined impact of Watts Bar Units 1 and 2 in its EIS. (0015 [Zeller, Lou])

Response: The NRC staff determines cumulative impacts by evaluating results from the proposed action in combination with other past, present and reasonably foreseeable actions, regardless of who takes the actions. The NRC staff will evaluate cumulative impacts associated with operating the proposed WBN Unit 2 for each affected resource. Chapter 4 of the SFES will present the results of cumulative impact analyses.

Comment: So my concern is that there are lots of moves afoot to reduce our needs for electricity in the Tennessee Valley and around the country that aren't really addressed in TVA's Environmental Impact Statements, that I've been able to find. In particular, I'll refer to sections relating to alternatives, alternatives to building the plant. And sometimes TVA will put a little bit in about that, in other cases, so I searched the most recent Environmental Impact Statement prior to this meeting, and what I found was a statement that referred back to that 1995 -- December 1995 earlier Environmental Impact Statement for finding something about alternatives. (0003 [McCluney, Ross])

Comment: We don't know -- because I couldn't find that document -- whether those alternatives were just alternatives to the design of the plant, alternatives to mitigate environment impact, or whether it actually included alternative power sources or other options for reducing the need for the plant in the first place. So I believe TVA is fairly deficient in that area. Even if the 1995 report addresses the subject, a whole lot has happened since then, in 14 years. There's been an enormous amount of research, development, and promulgation of energy-efficient technology and renewable energy choices. It doesn't take a particularly astute observer to know about a lot of this. If you watch TV, and especially if you go to the science channels -- Discovery, National Geographic, and these channels -- if you read the paper, read magazines, you'll see about this, because everybody's excited about these relatively pollution-free or somewhat benign alternatives -- energy alternatives. (0003 [McCluney, Ross])

Comment: Millions and even billions of private money have been spent to explore, develop and actually commercialize an enormous variety of technologies we still don't know too much about unless you really dig in. A good -- some good searches on the internet will reveal a lot of this technology, a lot more about it, and yet we see nothing about this in TVA's reports. So the question is, Do they fail to include it because they've already decided, years ago, that solar can't work here, or whatever decision they make, and so because they made that decision -- and if we trace it back, we may have to go back to the original -- I fear we have to go back to

the original Environmental Impact Statement in 1978. So I glanced through this document to see if I could find a reference to that, and there was nothing there. So I fear that the really viable alternatives in renewable energy and energy efficiency have not been addressed and therefore the decision could be one based on inadequate information that will endanger the public. (0003 [McCluney, Ross])

Comment: But even if the demand is lower, that doesn't mean they won't have to build new plants, because hopefully they'll be taking out of operation all those dirty coal plants, and so they'll need to replace some of those, and I admit that. But I'd hate to see it with nuclear, when abundant natural energy is available from the sun and from other sources, outside this region, with long distance transport of energy as well as within this region, and yet TVA is silent on this. So what I urge the Nuclear Regulatory Commission to do is insist that, before they give any permit to this Unit 2, that TVA do a truly comprehensive study of these other alternatives: improved energy efficiency and renewable energy development. (0003 [McCluney, Ross])

Comment: They [TVA] can put the solar systems out and lease the rooftops of customers in a whole new mode of power plant production which is called distributed energy. The beauty of distributed energy is they're relatively small; they're distributed over the region. They're not terror-susceptible, because you want to take out the power in the region? How many rooftops do you have to go and knock out in order to have an event? So distributed power has an inherently higher security factor to it. And the utility can participate; in fact, it already is, in very tiny, little minuscule power programs, where the homeowner pays to put the solar power on their roof, and then the utility pays them a double price for the electricity that's generated. So I think if they could look at that model more, look at these new technologies, including battery storage -- battery storage is amazing; I thought it was the unsolvable problem, because solar power, we know, is intermittent, and therefore we need a way to store electricity or some other form that can be turned into electricity and then produce it where it's needed. TVA has a facility for that near my home in Chattanooga; it's pump storage on the top of a mountain, and then they pull the water down when the need the power at peak periods. So there are options available, and so I urge NRC to insist that TVA do this truly comprehensive study. If they do that, I suspect that what TVA will discover is they can withdraw their application for this new plant. (0003 [McCluney, Ross])

Comment: But one of the things I think TVA should be held to respond to in its environmental assessment is how poor its energy efficiency and conservation programs are. And I say that with respect to the staff who I've sat with a number of times and discussed with them the activities that they're rolling out, including the home energy audits and retrofits and so forth, and with respect to the State of Tennessee, which is going to I think not only get on board with solar generation but is going to join the national effort to invigorate the purchase of Energy Star appliances. Unfortunately, TVA, in its approach to energy efficiency and conservation, has made a number of missteps. If you'll remember the strategic plan, the first thing it did was to fail to have a target even for efficiency and conservation. After a good deal of public debate and lobbying, it put in, I believe, a 1400-megawatt cumulative demand reduction target, and as it has carried that out, by limiting its instructions to its consultants, the reports of which have not been released to the public on energy efficiency and conservation and the limited results that have probably come if you tell them only to look at a very narrow slice of the issue, is that you now have programs that really go to peak shaving only. There has been no effort really to engage with reducing baseload demand, and clearly the Watts Bar 2 plant is about baseload demand, not just about peaks. And it seems to me that as part of the environmental assessment, TVA should be made to explain why it does not expect the baseload

objective point of view about nuclear energy and went through to the completion of entirely comprehensive studies and assessments and found the opposite to that claim to be true. The folks who have done these studies are high experts in the fields of energy production technologies and the economics of operating these technologies. They know what they're talking about, and their studies have been thorough. The Institute of Energy and Environmental Research is a primary and star example, and this book that they've produced contains excellent documentation of the massive data and analysis that supports the view that alternative sources to both coal-burning and nuclear power can meet our future energy needs. The scope of NRC's Environmental Impact Statement for Watts Bar 2 should therefore include full attention to and genuine consideration of what's in this report, and don't expect it to be an easy read; it's highly technical and deep; but also in addition to this report, the other comprehensive studies that have been done. (0004 [Reynolds, Bill])

Comment: In particular, in looking at these other studies that started out objective and neutral about nuclear energy, they should look at — in the EIS process, they ought to look first at the real-world potential for renewals and implementation of more efficient enduse energy practices and conservation to displace the need for a Watts Bar 2. That would be component of a responsible and honest Environmental Impact Statement about the proposed licensing Watts Bar 2. (0004 [Reynolds, Bill])

Comment: Secondly, in particular this EIS should fully assess the comparative financial cost of Watts Bar 2 – capital cost and operating cost over the life of the plant – in contrast to those same costs from meeting future energy needs while protecting environmental health and climate stability through applications of renewable resources and proved efficiencies in end-use energy use and conservation. (0004 [Reynolds, Bill])

Comment: The money would be better spent on less dangerous alternative energy technologies and energy conservation. (0008 [Gottfried, Yolande])

Response: The commission expects the staff to take the requisite "hard look" at new information on the need for power and alternative sources of energy and has authorized the staff to supplement the SFES if there is new and significant information relevant to these matters. Alternative energy sources, including energy-efficiency programs, conservation, and renewable energy sources, will be considered and discussed in the SFES.

Comment: Information available to the Service does not indicate that wetlands exist in the vicinity of the proposed project. However, our wetland determination has been made in the absence of a field inspection and does not constitute a wetland delineation for the purposes of Section 404 of the Clean Water Act. The Corps of Engineers and Tennessee Department of Environment and Conservation should be contacted if other evidence, particularly that obtained during an on-site inspection, indicates the potential presence of wetlands. (0005 [Jennings, Mary])

Response: The applicant is responsible for obtaining a Section 404 permit, and the U.S. Army Corps of Engineers is responsible for ensuring the applicant's compliance with its permit. Although Chapters 2 and 4 of the SFES will describe onsite habitats, including

wetlands, this level of wetland information does not constitute a wetland delineation. If a Section 404 permit is needed, the U.S. Army Corps of Engineers will require a wetland delineation.

Category No. 2 Public Comments Concerning Issues that are Outside the Scope of Review

Comment: They don't want anybody there. I mean, this is quite obvious that the public -- this is another way to shut out the public, and it's a constant thing that we have going here. I mean, you're talking about computer usage. Does anybody see any big overwhelming public libraries over there in Spring City that people can go and pull up on -- the Federal Register? I mean, I get notices because I have hounded you people for years to stay on the mailing list, but not everybody knows to do that, or people suddenly find out things. (0004 [Harris, Ann])

Comment: And this visit by the ACRS in the Federal Register -- do you all not all work together? Is this another group of people that's got their own little fiefdoms hanging around through the agency? (0004 [Harris, Ann])

Response: The NRC's mission is to regulate the safe uses of radioactive materials for civilian purposes to ensure the protection of public health and safety and the environment. As part of this mission, the NRC is responsible for reviewing and issuing licenses for nuclear power facilities. The Advisory Committee on Reactor Safeguards (ACRS) is an advisory committee mandated by the Atomic Energy Act of 1954, as amended, under the Federal Advisory Committee Act (FACA). The ACRS is independent of the NRC staff and reports directly to the Commission, which appoints its members. The provisions of the FACA govern ACRS operational practices. The ACRS comprises recognized technical experts in their fields. It is structured so that experts representing many technical perspectives can provide independent advice, which can be factored into the Commission's decision-making process. Most Committee meetings are open to the public, and any member of the public may request an opportunity to make an oral statement during a Committee meeting.

Comment: We've paid billions of dollars out through DOE at these nuclear facilities to people that are really dying. We have two in our family that's already died from cancer that worked in Oak Ridge. One of them did not die from --- a third one did not die from cancer; he died from Parkinson's disease, and that was a miserable time to watch. (0004 [Harris, Ann])

Response: The commenter is referring to the National Institute for Occupational Safety and Health's Dose Reconstruction Project for Department of Energy Sites. The NIOSH program is not related to any NRC-licensed activities. This comment will not be addressed in the SFES.

Comment: And the final note is that the decommissioning funds that TVA already has set aside for its existing nuclear operations were badly depleted by the change in the economy and the stock market decline. TVA is already trying to figure out ways to steal money from within its operating budget and perhaps pass through charges to ratepayers to rebuild that decommissioning fund, along with the retirement funds for its employee retirees, and the whole issue of an adequate decommissioning fund and how that's to be accomplished and whether it's really adequate in an age when you don't have nearly the options for the disposal of high-level radioactive materials which come when you disassemble a plant -- unless they're planning to just, you know, build a mountain over the thing, which I guess is the other option. (0003 [Paddock, Brian])

Comment: But I would again ask that decommissioning – both its costs and its practicability – be listed as one of the environmental concerns that has to be addressed. (0003 [Paddock, Brian])

Comment: And they're in DC now, asking for more funds. That doesn't even address the issue of decommissioning funds, which they had a major start on back in 1995, but somehow those funds got – nobody could ever tell me what they spent them on. So at that point they had \$257 million. The last time I asked, they had 42 million, so you -- I'll let you adjust your own mind as to where that money went. (0003 [Harris, Ann])

Response: These comments concern decommissioning. Requirements for providing reasonable assurance that funds will be available for the decommissioning are provided in 10 CFR 50.75.

Comment: I'm also concerned about the high cost and the delayed return on that investment of a nuclear power plant. It's required to go through a lot of work like this meeting in preparation, a lot of analysis, and even when you get close to construction, it takes quite a while to get the plant operating and then tested and presumed safe enough to turn it on and finally start generating revenue. Well, in this economic time it's rather risky, and I'm sure – I believe not a very good idea to invest so much money in something that may not be needed. (0003 [McCluney, Ross])

Comment: I see this is quite a problem to accomplish, in other words, a gargantuan challenge, at the very least. And environmental protection plan that could be fail-safe for eons to come would obviously run into costs over much time adding up to multi-trillions of dollars, I would imagine. Part of the gargantuan challenge, then, is creating such a plan that it provides and requires a funding system that will never fail. It will cost lots of dollars. If the funding system fails, the regulation enforcement will not be done, and it will present an unacceptable risk to the public. The Environmental Impact Statement must contain assessment of how these funds will be guaranteed. To me it is obvious those funds will have to come out of the pockets of either the ratepayers who buy the power or the taxpayers who bail out when the funds aren't there, or both, which is the kind of situation we have now, those of us who are ratepayers, in particular, with -- dealing with the cleanup of the toxic ash spill. (0003 [Reynolds, Bill])

Comment: Couple of things that I want to address up front that Brian talked about earlier: TVA's debt that they admit to today is at

\$29.5 billion. That's not my assessment anymore; that's what they admit to, but it's more like 42 billion whenever you take all that other rinky-dink stuff they don't count in; it's called creative bookkeeping. (0003 [Harris, Ann])

Comment: Now they're asking us to believe -- or at least you to believe; they don't want to ask me -- that they can do Unit 2 at Watts Bar for less than \$4 billion or thereabouts. Well, they started out telling people that they -- that Watts Bar 1 was \$7 billion. That is not true. When you add in the interest, the amortized part of Unit 1 that you -- or Unit 2 that you already paid for, it comes up to closer to \$12-1/2 billion. So now you're going to ask to be paid for probably another 6 to \$8 billion on this one. (0003 [Harris, Ann])

Response: The commission has authorized the staff to supplement the SFES if there is new and significant information relevant to these matters. In the SFES, the NRC staff will consider the cost of power produced by the proposed licensing action and the overall benefits and costs of operating the proposed WBN Unit 2. However, general issues related to the applicant's financial viability are outside of the NRC's regulatory scope, and the SFES will not consider them. The NRC has requirements for licensees at 10 CFR 50.75 to provide reasonable assurance that funds will be available for the decommissioning process.

Comment: We fully support licensing Watts Bar Number 2. (0003 [Burris, Shane])

Comment: They [the NRC] are concerned about the health and safety of the public, the environmental impact, the physical security of the plants, and I firmly stand behind the continued construction and moving forward with Unit 2. (0003 [Cobb, Jim])

Comment: And my recommendation to you folks from NRC is that you give serious consideration to issuing license for Watts Bar Unit 2. (0004 [Jones, Ken])

Comment: As a member of this community or a member of the community that this plant serves, I would just like to speak out favorably for licensing of this plant. (0004 [Smith, Stewart])

Comment: I fully support the decision of the Tennessee Valley Authority to complete construction of Unit 2 at the Watts Bar Nuclear Reactor site and urge favorable consideration from the NRC. (0007 [Yager, Ken])

Comment: TVA's decision to complete construction of Unit 2 results from detailed studies of not only cost and energy needs, but environmental impacts as well. These studies satisfy me that the project is feasible and environmentally responsible. (0007 [Yager, Ken])

Response: These comments provide general information in support of the application. They do not provide any specific information related to the environmental effects of the proposed action and will not be evaluated in the SFES.

Comment: I think that internationally scientists have, for my mind, proven that carbon emissions do have an effect on the environment, and I think that nuclear energy should play an important role in providing the energy that this country and this world needs, particularly this country: clean energy that does not contribute to global warming. (0004 [Smith, Stewart])

Comment: I know that we have in this country had an incident that was certainly a serious incident. I'm getting on up there, a middle-age guy, and I can barely remember when that happened, and with the technology and as far as technology has come, I feel like this -- that we need to follow up with nuclear energy. (0004 [Smith, Stewart])

Response: These comments provide general information in support of nuclear power. They do not provide any specific information related to the environmental effects of the proposed action and will not be evaluated in the SFES.

Comment: I heard concerns about, you know, we need to keep a scorecard that accepts nothing less than 100 percent, and I agree with that. The fact is that the Nuclear Regulatory Commission and Tennessee Valley Authority have a standard that the average person's 100 percent is probably the TVA and NRC's 50 percent. So I think that they go above and beyond the call of duty to make sure that we have safe power. (0003 [Cobb, Jim])

Comment: I have lived with it for 35 years. I believe that TVA has proven to us that they can operate a nuclear plant in a safe, environmentally friendly manner. (0004 [Jones, Ken])

Comment: I'd just like to say that the history of the Tennessee Valley Authority in operating nuclear plants has been very successful. (0004 [Smith, Stewart])

Response: These comments express support for the applicant. They do not provide any specific information related to the environmental effects of the proposed action and will not be evaluated in the SFES.

Comment: I start from the national policy of the Sierra Club, which is that nuclear power plants should not be expanded as a source of energy in this country until we've solved the waste-disposal problem. (0003 [Paddock, Brian])

Comment: This reactor should not be built. (0003 [Zeller, Lou])

Comment: I have compiled a list of reasons, that I have just put together, as to why there should not be a second Watts Bar reactor. (0004 [Kurtz, Sandy])

Comment: I am a concerned citizen living in eastern Tennessee and I wish to register my opposition to building (or continuing to

build) the second reactor at Watts Bar. (0008 [Gottfried, Yolande])

Response: These comments provide general information in opposition to the proposed action. They do not provide any specific information related to the environmental effects of the proposed action and will not be evaluated in the SFES.

Comment: In addition to my general concerns about nuclear power -- I won't list all the concerns and fears; they're in the media. They've been examined quite a bit, and there's a lot of controversy about most of it, but I think the dangers are real; the potential environmental impact in the event of accidental releases of materials, either fuels or waste, are severe and consequential. What we're counting on is the probability, hopefully, of that happening being low, but as the number of these power plants and materials being transported across the country increase, the probability may change that something can happen, and if it does, it could spell serious consequences. (0003 [McCluney, Ross])

Comment: This spells danger to people in Rhea County, eastern Tennessee, if and when one of these reactors was to be breached. Combined with the fundamental problems of nuclear power, this presents an unacceptable risk in this case. (0003 [Zeller, Lou])

Response: These comments provide general information in opposition to nuclear power. They do not provide any specific information related to the environmental effects of the proposed action and will not be evaluated in the SFES.

Comment: TVA overall has a very mixed and, I think, unbalanced, poor environmental record, and I would invite the Commission to look at the inspector general's report on Kingston, which found a culture in TVA of dispersed responsibility, lack of accountability, lack of internal communication --- it was always somebody else's job. (0003 [Paddock, Brian])

Comment: I went to work for TVA at Watts Bar Nuclear Plant in nuclear construction in January 1982. They told me I'd be there nine months. It was nine years before I got a paycheck that did not have overtime on it. And I left under -- for me it was quite a -- I don't want to way victory, because I didn't really win anything; what I did is I turned some magnificently strong lights into some really dark areas of TVA's management, their money, their funding, how they spend that money, and how they abuse not only ratepayers, but they abuse each other, they abuse the public, they abuse their future, and they abuse my children and my grandchildren's future. (0003 [Harris, Ann])

Comment: Browns Ferry Nuclear Plant is listed by Region 2 as the worst nuclear plant program in America. Now, the same person that was over Browns Ferry's fiasco is heading up the Unit 2 fiasco at Watts Bar. The amount of money that was spent at Browns Ferry was two times the original designated amount, and longer term, so if – TVA's habits have not changed in the past 25 years, the way I – according to what TVA puts out. (0003 [Harris, Ann])

Comment: I mean, there were leaks; there were wet spots. There were studies that \$26 million could have saved that whole billiondollar nightmare. One of the ten worst environmental disasters on the planet is what that was called by Newsweek, and it could have been saved with \$26 million worth of investment, and TVA would not spend it because of their slavish devotion to the bottom line and keeping our electric rates low, which I appreciate, but it's given everybody the wrong message. (0003 [Safer, Don])

Comment: There's other security guards at TVA that none of them knew anything about each other until they came to me; one from Browns Ferry, two from Sequoyah, one from Watts Bar, and then this woman out of corporate. This is the beginning of the same pattern that TVA went through back in the late '80s and the '90s, and I don't see why that we have to go over that same road and travel that same absolute harassing, demeaning, humiliating practice again, because the only people that come out on top of this is the media, and the only way that we can get anything done is through the media.NRC doesn't want to listen; TVA won't listen; the Inspector General won't listen, and the only people that we've got to go to is to the media and the Congress, and we're there. (0004 [Harris, Ann])

Response: These comments express opposition to the applicant. They do not provide any specific information related to the environmental effects of the proposed action and will not be evaluated in the SFES.

Comment: I'm told by inside sources that are working with the engineers that we have engineers on site that don't know the difference between a code plant and a noncode plant. Maybe the NRC can describe to the engineers that are working on Unit 2 at Watts Bar what the difference is and how they need to -- how they can see that what they're doing is not working. Browns Ferry is a noncode plant. Watts Bar Unit 2 is a code plant. And for those of you that don't know and didn't work at the plant, you'll just have to look it up and trust me on that one. I find that the evacuation plan -- and this is just kind of silly. I'm appalled that the NRC even lets this get put in print. But in the evacuation plan, that they're going to take the people that live north of the plant, in Spring City and ten miles on both sides of the river, and they're going to move them up the valley 20 miles downwind; that means north of -- the prevailing winds all move north in this valley. You can't -- it's just common sense -- and if you live here, you would know that and wouldn't question it. But to take people that would be evacuated from Watts Bar Nuclear Plant or the surrounding community and move them 20 miles up the valley to put them in storage in a gymnasium at the junior college -- I mean, I live there, in the connecting community. This is just beyond the pale. I mean, I just -- I don't know if the NRC -- if they just really and truly don't care anymore or if they're just too ignorant to ask anybody besides themselves, who don't trust each other. (0003 [Harris, Ann])

Comment: My mother lives in a direct line of eight miles from Watts Bar Nuclear Plant. She's blind. She's 86 years old, and she's in severe bad health. I take care of her. in fact, somebody's hired today so I could be here with y'all. I know that you're going to enjoy what I have to say, but this is the truth. My mother gets a calendar; it's this size (indicating). She didn't know what it was, because she couldn't read it. And then we put all of the announcements on Knoxville and Chattanooga radios. What's the problem with putting it out on the local radios? My mother doesn't listen to Chattanooga and Knoxville; she can't even get them. She listens to Athens; she listens to Dayton; she listens to Crossville. What is it with you guys? My mother cannot read this calendar, and I go into it, and I find

something that is so disgusting y'all all ought to get up and walk out; I think you ought to be fired now, because in this calendar it says, Take this calendar and keep it with you wherever you go, so that whenever the accident happens, you'll know which direction to go in. And part of the direction is to come back toward the area that will be so bad that it'll be blocked off. What is it with you people? Don't y'all read what you write? Don't you ever look at it? I mean, it's just really disgusting. This is what you're doing to my family. Think about -- there's other -- I'm not -- my mother's not the only elderly woman in these communities; she's not the only one. There's little children. I've got great-grandchildren that will be affected by this, sitting in close proximity to Watts Bar. (0003 [Harris, Ann])

Response: These comments relate to the adequacy of emergency plans, which is a safety issue that is outside the scope of the environmental review. As part of its site safety review, the NRC staff will determine, after consultation with the Department of Homeland Security and the Federal Emergency Management Agency, whether the emergency plans submitted by the applicant are acceptable.

Comment: I admit that TVA will need electricity, not necessarily because it expects a growth in demand -- I really don't think because of all this technology is getting out there that the demand will be as high as they think it's going to be; I think the lower growth in their Environmental Impact Statement, the one that's slightly negative, may be closer to the truth. (0003 [McCluney, Ross])

Comment: You know, the electric power that it will generate is very necessary. There's something that most people in this room may not know. They're going to build a company, Beikler, in Cleveland, Tennessee, that will build solar panels; they will also make semiconductors, but mostly solar panels. That build out, that plant will require a quarter to a third of a nuclear power plant to run its full operation. (0003 [Burris, Shane])

Comment: The second thing is basically the -- and this goes to the question of whether or not a license should be granted at all under NEPA standards, but also to the environment assessment, is options and alternatives, as Dr. McCluney addressed. Basically you have a situation where, according to the reports to the Tennessee Valley board of directors, power production and sales have dropped approximately 9 percent during the current economic downturn, the end of which one can debate if it's begun to happen, let alone any true date for that. In the past TVA, in its power projection demands, including those I assume that were used when the board decided to go ahead and restart construction on Watts Bar Unit 2, was that there would be an annual 2 percent increase in demand. That in fact hasn't happened; the reverse has happened. And if in fact we were to have effective conservation and efficiency programs, it would never happen. We would go into a flat or declining demand usage, and we would have reduced energy intensity on a per capita basis in the TVA service area. (0003 [Paddock, Brian])

Comment: [D]emand for electricity is down. (0004 [Kurtz, Sandy])

Comment: [S]outheast Tennessee probably is one of the fastest growing areas from a standpoint of population in this state. In the last five or six years, we have seen a tremendous spurt of growth. And certainly when we experience those things, then we're going

to see a higher demand for energy. (0004 [Jones, Ken])

Comment: completion of Unit 2 makes good sense, because it uses an existing asset to meet the growing power needs of the Tennessee Valley. (0007 [Yager, Ken])

Comment: There is no guarantee that the demand for power would justify the cost of this plant by the time it is completed. (0008 [Gottfried, Yolande])

Response: In accordance with 10 CFR 51.95(b), unless otherwise determined by the Commission, this SFES will not include a discussion of need for power, or of alternative energy sources, or of alternative sites, or of any aspect of the storage of spent fuel for the nuclear power plant within the scope of the generic determination in § 51.23(a) and in accordance with § 51.23(b), and will only be prepared in connection with the first licensing action authorizing full-power operation. Therefore, this issue is outside the scope of the environmental review and will not be analyzed in the SFES.

Comment: One percent slackness on enforcement is a failing grade. Why? – Because of what it can do to human beings and their lives and their health. People's lives and future genetic transmission, by the way, is on the line with radioactive pollution. Necessary ramifications, lesson learned, is the assertion that and Environmental Impact Statement that omits responsible, honest accounting for perpetual vigilance through the eons to come, continuously and consistently, is not worth the paper it's written on. So I'm here encouraging NRC to make sure they get all that covered, all that protection of human health and life in perpetuity, as long as the waste will last. (0003 (Reynolds, Bill))

Comment: I went there for an NRC hearing about the unscheduled shutdowns of that unit that they brought back on line, the five of them in the first five or six months. It caused a big, huge slap on the wrist by the NRC. I will have to support some of what Ann said about the NRC seems to be the enabler of the nuclear industry and not the watchdog, and that's not any news for people that have been following this issue for quite a while. (0003 [Safer, Don])

Response: The NRC's mission is to regulate the safe uses of radioactive materials for civilian purposes to ensure the protection of public health and safety and the environment. The NRC has established an extensive regulatory process to ensure the integrity of each application review. The NRC can deny an application for an operating license based on the findings of its review. These comments do not provide specific information related to the environmental review and will not be addressed in the SFES.

Comment: This bears saying in a scoping session for the environmental impact assessment of a new nuclear power plant here, because the most noble and honorable Union of Concerned Scientists, who are not antinuclear, by the way, but they do totally responsible scientific evaluation and assessment of the nuclear power industry and, upon close scrutiny of the Nuclear Regulatory Commission's track record and their oversight of nuclear power plant operation, concluded as follows: Nuclear power is riskier than it

should and could be. The United States has strong regulations on the books, but the Nuclear Regulatory Commission does not enforce them consistently. I agree with the implication in this statement that emphasizes the consistency. TVA has done a lot of good things; we all know that. We appreciate the great service they've done, but -- and it's not all their fault, because the regulations were not in place regarding the coal ash spill. Regulations are, according to the UCS, in place for strong management of nuclear power, so consistency is what's needed, unfailing consistency. NRC cannot be given a passing grade on their regulation enforcement for anything less than a perfect 100. (0003 [Reynolds, Bill])

Comment: How do you think this makes me feel, to know that I'm paying your salaries, and you're not doing your job. You're just accepting whatever TVA hands you, and TVA will hand you a bunch of garbage, because they will lie. Got it? I don't even want to have to say it anymore: You can't trust TVA. You can't trust TVA. How long do you have to have that said to you? And now you can't trust the NRC, because the NRC, they are so close in bed with TVA, that you're beginning to look a bit foolish, even from other people, not just me. Somehow or another this Environmental Impact Statement has to address these issues that concern and deal with people's lives on a day-to-day basis, and if these jobs are the best that TVA can provide, somebody else needs to be running TVA besides somebody that's running a bunch of serfdoms. (0003 [Harris, Ann])

Comment: I'm telling you, Region 2, we're asking for Congressional hearings on you and your inability to deal with TVA. This is a repeat of the 1985 and '86 hearings, and you can look for these to be just as disgusting whenever we uncover that pile of crap. (0003 [Harris, Ann])

Comment: We're not going to back down off of this, because the persecution of this -- she's a little, ol' grandmother; she's a clerk. She had a 18-year career in personnel, and nobody ever -- she never made a mistake. She had wonderful -- but the bottom line is that there's two women involved that come through the revolving door from the NRC, and they both lost their jobs and were removed from TVA, but then they went back to work for the NRC in in-house security. Now, what does that say about you, NRC? I can't trust you to do what you need to do, because you've still got the mentality that the workers don't know what we're doing, because management is always right. And what you found out after -- what was it? -- From 1984 to 1996 -- how many years is that? -- 12 years? You couldn't get it right, and TVA couldn't get it right, because everybody was talking about somebody; they wasn't talking to anybody, and nobody -- neither one of you were listening, and then the NRC -- I don't know what it's going to take. (0003 [Harris, Ann])

Response: These comments are outside the scope of this review and do not provide specific information related to the environmental effects of the proposed action; therefore, they will not be evaluated further.

Comment: I daresay I've learned a lot of valid lessons in my studies and private individual studies through the years, and I think I just recently, within the past year, less than a year, have learned a most important new lesson that I think a lot of folks, including TVA itself, probably has learned as a result of the horrible disaster of the Kingston ash spill, not far from here, that you all probably are very well informed with the great disaster, and I'm not going to go into details about it. I bring this up at this time because I think it's a lesson learned that should be known and paid attention to in the practice of producing nuclear power plants and managing nuclear

power plants and so on. (0003 [Reynolds, Bill])

Comment: I want to define a lesson learned that I think we should all apply, particularly to the scoping of building a new nuclear power plant here. And here's my definition: Regulations, monitoring inspection regimens, and compliance enforcement must absolutely be maintained and sustained with absolute unwavering consistency in perpetuity, as long as the waste remains. And we -- those who are informed about nuclear power waste products, some of those waste products remain lethal to human life and health for multiple centuries. There must never be a single occurrence of slacking in maintaining and sustaining protection of our supremely precious air, land, and water from exposure to the poisons contained in the waste produced by electrical power generation. Nothing akin to the Kingston coal ash spill should ever happen with nuclear power plants, whose waste is even more toxic than coal ash. (0003 [Reynolds, Bill])

Comment: And you cannot really think that you're going to have a safe 40- to 60-year operation of a nuclear plant in a culture where plant operations suffer from those same defects. Now, that was respect to a fossil plant, where, if something goes wrong, ordinarily you think it's not going to be a big deal. Of course, that was a miscalculation, because when you lose 5 million tons of coal ash, it is a big deal. In fact, it's probably one of the biggest environmental disasters on the North American continent in our lifetimes. But please do look at the inspector general's report on the culture in TVA and decide what you have to do in terms of building that into the evaluation of environmental impacts. (0003 [Paddock, Brian])

Comment: Watts Bar Unit 2, as its sister reactor, Number 1, would utilize an ice-condenser containment structure -- many people have referred to this as an eggshell-type containment -- in order to reduce costs of construction, concrete and steel, in the construction of the containment vessel, that large domed structure. Ice-condenser units employ baskets of ice. During an event inside of a nuclear reactor, excess heat and pressure are created. Ice-condenser reactors are designed to reduce that heat and pressure by using baskets of ice. There are relatively few of these reactors in operation, and they are fraught with fundamental engineering flaws and also real-world difficulties in keeping baskets of ice free, operating over a period of decades, which they are required to do. The ice-condenser system should not be constructed in the 21st century; it should not have been constructed at all. (0003 [Zeller, Lou])

Comment: I am told by workers – this is not engineers; this is workers, from the inside – that the 21 million that you paid Bechtel to go in and see if Unit 2 could be brought up to speed, they spent their \$21 million, walked around, and said, Yeah, we can do it; y'all have a good time. Then, guess what? Bechtel turned around and said, Okay; we're going to start letting them decide what all needs to be done. Bechtel's still looking at what needs to be done; they're still looking at it, because they're finding such massive amounts of rust and corrosion and equipment that cannot be used, won't be used, and cannot be replaced with what is there, because those people left and seen better days somewhere else that got the money, that took it and run. (0003 [Harris, Ann])

Comment: The cost-cutting measures designed to make construction cheaper result in some of the most dangerous reactors on the planet. A Sandia study which is memorialized in Nuclear Regulatory's own guidance documents, NUREG/CR-6427, in April 2000, states that ice-condenser plants are at least two orders of magnitude more vulnerable to early containment failure than other

types of pressurized water reactors. Two orders of magnitude: ten times ten, 100 times more vulnerable to a catastrophic disaster. Hydrogen buildup during an event inside of a nuclear reactor is one of the reasons for this vulnerability. Measures over the years, which have been added to or retrofitted to existing ice-condenser reactors have addressed part of the problem. Buildup of hydrogen is why the pressure gets so high and can cause a rupture in the containment structure. Backfitting of hydrogen igniters over the years have not addressed the full problem. Ice condenser reactors are still vulnerable to hydrogen ignition during a reactor event which would otherwise be contained inside a more robust containment structure. (0003 [Zeller, Lou])

Comment: So that's what going on inside those storage casks, which are going to be more and more along the river. They are not designed to be flooded. I don't know this particular site; I haven't seen it. I know at Browns Ferry they're not that high off of the river, and if they're flooded, then the cooling that is just a convection cooling with vents gets clogged with debris and what-not, and who knows what can happen. (**0003** [Safer, Don])

Comment: Getting into that reactor design, that design dates from the 1960s. I was in high school when that thing was first proposed. I'm retired now. A lot of things have changed. You know, a lot of people in this room are not that much different in age from me; many are younger. But, my gosh, that design comes from the middle '60s; that was when the Mustang – the first iteration of the Mustang was the hottest car going. You wouldn't buy the Mustang if it was in the showroom – the 1965 – well, you might buy it as an antique, but it's not going to perform up to environmental standards or whatever; the point being that this design was put together was an idea of cost containment and not safety. When it was originally designed and approved, there was – Chernobyl had not happened. They thought an event like Chernobyl, an event like Three-Mile Island was not even possible; it was not in the design criteria for the original design, so that there – and that's why they've had to go back with this hydrogen, you know, ignition system and how you take care of all that hydrogen. This was the cheapest reactor TVA could build at the time. It's a clear indication of the same culture that put that ash into the river. TVA was dumping that ash into that pile for 50 years. They had plenty of indications that the ash pile was suspect. (0003 [Safer, Don])

Comment: Back to that ice-condenser design, who can imagine putting 3 million pounds of ice in a nuclear reactor so that you can make the containment structure half as thick? My gosh, that's a fabulous idea. I applaud whoever came up with it. It's a wonderful idea. It's just like Rube Goldberg, though; it's stupid. You know, I mean, you have all that ice, which has problems with subsidence. I went on line, you know, last few days, and somebody patented an idea of what do you do with the ice that's compacted in there? The ice, from what I read, it's one-foot wide cylinders that are 50-feet tall, and they're wrapped with these steel containment things that are sort of straps. And so they can't get in there to replace the ice very easily, and somebody invented some sort of a -- I didn't look at the design, but some sort of a contraption to replace the ice, because they were having problems with the ice just melting away, which it does naturally, and not having the million pounds they needed to survive an incident, which is really a core meltdown, and to keep that containment structure, however fragile it is, from melting down. (0003 [Safer, Don])

Comment: For example, the most complete and recent probabilistic risk assessment suggests core melt frequencies in the range of 1 in 1000 per reactor year to 1 in 10,000 per reactor. A typical value is 3 in 10,000. I'm reading from David Lochbaum's monograph which quotes a Nuclear Regulatory Commission statement to US Congress, and that's what I am citing here. This is the NRC to the

Congress: Were this the industry average, then in a population of 100 reactors, which we have today, over a period of 20 years, the crude cumulative probability of a severe reactor accident would be 45 percent. That is for all reactors combined, including the more robust designs. The ice-condenser reactor can withstand half the pressure of the more robust old designs, not talking about the new AP-1000 and other designs which have not yet been built under CFR Part 52. (0003 [Zeller, Lou])

Comment: [T]his reactor plan relies on an outdated ice condenser plan that brings with it far more risk than is necessary. (0004 [Kurtz, Sandy])

Comment: That's not reliable power if you have to shut down the nuclear plants because of droughts and hot weather, an issue associated perhaps with climate change. (0004 [Kurtz, Sandy])

Comment: Most nuclear accidents happen due to human error. In the light of the Kingston fly ash spill, do you believe that TVA can avoid human error? And do you believe that TVA is choosing to use this old nuclear reactor design because it's the best technology available or because it's cheaper? (0004 [Kurtz, Sandy])

Comment: This reactor would use old technology, the ice condenser reactor, which is considered to have design flaws already. (0008 [Gottfried, Yolande])

Response: The issues raised in these comments are safety issues, and as such, are outside the scope of the environmental review and will not be addressed in the SFES. TVA provided a safety assessment for the proposed licensing action as part of its application. The NRC is developing a Safety Evaluation Report that analyzes all aspects of reactor and operational safety.

Comment: And in this letter it talks about this woman who worked at corporate security for TVA. She was drummed out because she asked too many questions, and she wanted to go by the rules. And the bottom line is that after a two year period, the young lady and TVA came to a mutually agreeable settlement, and then the NRC's Region 2 – I don't know who they are; we keep getting all these different names of who they are, what they represent and what their agenda is. The bottom line is the NRC is going after this woman because they said that she was unauthorized to use documents when she was protesting her termination as retaliation against the issues that she had raised. TVA agreed, and they redacted the documents. Nobody was identified outside; no documents were taken off the jobsite. The bottom line is that the NRC's Office of Investigation, they're still pursuing this woman for criminal charges under federal – they say federal laws; they can't tell us what they're looking for. I suspect that it's more of a fishing expedition than it is anything because somebody needs to keep a job, or they're doing something that they don't know what they're doing, or they're just totally incompetent and needed someplace to hide themselves. We went to the NRC's Office of Inspector General to try to stop it, and they told us that as long as there was an allegation against this woman by somebody at TVA, that they would pursue the issue, and they would not do any kind of investigation. Then, whenever we questioned that, TVA's Inspector General, they just didn't do anything. Of course, that's not unusual; that's their record of decision-making. And now we've been forced to file legal documents with the Commission over this issue. (0004 [Harris, Ann])

Comment: But the other thing is if I can't trust you to keep the security at these nuclear facilities and it's not even up and running, why should I trust you to do right whenever it's up and running? (0004 [Harris, Ann])

Response: Comments related to security and terrorism are not within the scope of the environmental review. The NRC is devoting substantial time and attention to terrorism-related matters, including coordination with the Department of Homeland Security. While these are legitimate matters of concern, they will continue to be addressed through the ongoing regulatory process as a current and generic regulatory issue that affects all nuclear facilities and many of the activities conducted at nuclear facilities. The Commission has affirmed that the National Environmental Policy Act (NEPA) does not require the NRC to consider the environmental consequences of hypothetical terrorist attacks on NRC-licensed facilities.

Comment: I would like to see more development in recycling of our nuclear waste so that we can use that to the best of its ability. (0004 [Smith, Stewart])

Response: The recycling of nuclear waste is a national policy issue that is outside the scope of the environmental review of WBN Unit 2.

Appendix E

Draft Supplemental Final Environmental Statement Comments and Responses (Reserved) · ·

.

.

Appendix E

Draft Supplemental Final Environmental Statement Comments and Responses (Reserved)

1 Pending

September 2011

Key Consultation Correspondence Regarding the Watts Bar Nuclear Unit 2 Operating License

1	Appendix F
2	
3	Key Consultation Correspondence
4	Regarding the Watts Bar Nuclear Unit 2
5	Operating License
6	The Endangered Species Act of 1973, as amended, the Magnuson-Stevens Fisheries

Conservation and Management Act of 1996, as amended; and the National Historic
 Preservation Act require that Federal agencies consult with applicable State and Federal

Preservation Act require that Federal agencies consult with applicable State and Federal
 agencies and groups prior to taking action that may affect threatened and endangered species,

10 essential fish habitat, or historic and archaeological resources, respectively. This appendix

11 contains consultation documentation.

r contains consultation documentation.

12 Table F-1 provides a list of the consultation documents sent between the U.S. Nuclear

13 Regulatory Commission (NRC) and other agencies. The NRC staff is required to consult with

14 these agencies based on the National Environmental Policy Act of 1969 requirements.

15

Table F-1.	Consultation	Correspondences
------------	--------------	-----------------

Author	Recipient	Date of Letter/Emai
U.S. Nuclear Regulatory Commission (J. Wiebe)	U.S. Fish and Wildlife Service (M. Jennings)	September 2, 2009 (ML092100088)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Advisory Council on Historic Preservation (D. Klima)	September 10, 2009 (ML092120105)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Cherokee Nation (R. Allen)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Eastern Band of the Cherokee Indians (T. Howe)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Eastern Band of the Cherokee Indians (R. Townsend)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	United Keetoowah Band Headquarters (L. Larue-Stopp)	September 10, 2009 (ML092110475)
U.S. Nuclear Regulatory Commission (J. Wiebe)	The Chickasaw Nation (V. (Gingy) Nail)	September 10, 2009 (ML092110475)

16

Table F-1. (contd)

· ·		
Author	Recipient	Date of Letter/Email
U.S. Nuclear Regulatory Commission	Choctaw Nation of Oklahoma	September 10, 2009
(J. Wiebe)	(T. Cole)	(ML092110475)
U.S. Nuclear Regulatory Commission	Choctaw Nation of Oklahoma	September 10, 2009
(J. Wiebe)	(G. Pyle)	(ML092110475)
U.S. Nuclear Regulatory Commission	Jena Band of Choctaw Indians	September 10, 2009
(J. Wiebe)	(L. Strange)	(ML092110475)
U.S. Nuclear Regulatory Commission	Muscogee (Creek) Nation of	September 10, 2009
(J. Wiebe)	Oklahoma (J. Bear)	(ML092110475)
U.S. Nuclear Regulatory Commission	Alabama-Coushatta Tribe of Texas	September 10, 2009
(J. Wiebe)	(B. Battise)	(ML092110475)
U.S. Nuclear Regulatory Commission	Alabama-Quassarte Tribal Town	September 10, 2009
(J. Wiebe)	(A. Asbury)	(ML092110475)
U.S. Nuclear Regulatory Commission	Kialegee Tribal Town	September 10, 2009
(J. Wiebe)	(E. Bucktrot and G. Bucktrot)	(ML092110475)
U.S. Nuclear Regulatory Commission	Thlopthlocco Tribal Town	September 10, 2009
(J. Wiebe)	(C. Coleman)	(ML092110475)
U.S. Nuclear Regulatory Commission	Absentee Shawnee Tribe of	September 10, 2009
(J. Wiebe)	Oklahoma (K. Kaniatobe)	(ML092110475)
U.S. Nuclear Regulatory Commission	Eastern Shawnee Tribe of	September 10, 2009
(J. Wiebe)	Oklahoma (R. DuShane)	(ML092110475)
U.S. Nuclear Regulatory Commission	Eastern Shawnee Tribe of	September 10, 2009
(J. Wiebe)	Oklahoma (G.J. Wallace)	(ML092110475)
U.S. Nuclear Regulatory Commission	Shawnee Tribe	September 10, 2009
(J. Wiebe)	(R. Sparkman)	(ML092110475)
U.S. Nuclear Regulatory Commission	Shawnee Tribe	September 10, 2009
(J. Wiebe)	(B. Pryor)	(ML092110475)
U.S. Nuclear Regulatory Commission	Tennessee Historical Commission	September 10, 2009
(J. Wiebe)	(J.Y. Garrison)	(ML092120097)
U.S. Nuclear Regulatory Commission	U.S. Army Corps of Engineers	September 10, 2009
(J. Wiebe)	(R. Gatlin)	(ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Office of Environment Policy and Compliance, Department of Interior (G.L. Hogue)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission	Sam Nunn Atlanta Federal Center	September 10, 2009
(J. Wiebe)	(A.S. Meiburg and S. Gordon)	(ML092110147)

.

.

Table F-1. (contd)

Author	Recipient	Date of Letter/Email
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (M. Apple)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (S. Baxter)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (B. Bowen)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Economic and Community Development (M. Atchinson)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Commissioners Office, Tennessee Department of Transportation	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Environment and Planning Environmental Division (E. Cole)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Agriculture (K. Givens)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (P. Davis)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Water Supply (R. Foster)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (J. Fyke)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Division of Radiological Health (L.E. Nanney)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (B. Stephens)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Department of Environment and Conservation (M. Tummons)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Groundwater (A. Schwendimann)	September 10, 2009 (ML092110147)
U.S. Nuclear Regulatory Commission (J. Wiebe)	Tennessee Wildlife Resource Agency (E. Carter)	September 10, 2009 (ML092110147)

Draft NUREG-0498; Supplement 2

1

Table F-1. (contd)

Author	Recipient	Date of Letter/Email
U.S. Nuclear Regulatory Commission	Resource Management Division	September 10, 2009
(J. Wiebe)	(A. Marshall)	(ML092110147)
Tennessee Historical Commission	U.S. Nuclear Regulatory	September 22, 2009
(E.P. McIntyre)	Commission (J. Wiebe)	(ML093510985)
Eastern Band of Cherokee Indians	U.S. Nuclear Regulatory	September 29, 2009
(T. Howe)	Commission	(ML0928605910)
U.S. Fish and Wildlife Services	U.S. Nuclear Regulatory	October 9, 2009
(M. Jennings)	Commission (J. Wiebe)	(ML0929301820)
Tennessee Historic Commission	U.S. Nuclear Regulatory	March 5, 2010
(E. Patrick McIntyre, Jr.)	Commission (J. Wiebe)	(ML100770290)

Biological Assessment

.

Biological Assessment

U.S. Fish and Wildlife Service

Watts Bar Unit 2 Nuclear Power Plant

Rhea County, Tennessee

U.S. Nuclear Regulatory Commission Operating License Application Docket No. 50-391

> Gray Bat (*Myotis gresescens*) Pink mucket (*Lampsilis abrupt*a) Eastern fanshell pearlymussel (*Cyprogenia stegaria*) Rough pigtoe (*Pleurobema plenum*) Dromedary pearlymussel (*Dromus dromas*) Orangefoot pimpleback (*Plethobasus cooperianus*) Snail darter (*Percina tanasi*)

> > September 2011

U.S. Nuclear Regulatory Commission Rockville, Maryland

Draft NUREG-0498, Supplement 2

September 2011

.

.

.

.

•

Acronyms

°C	degree(s) Celsius
°F	degree(s) Fahrenheit
ac	acre(s)
BA	Biological Assessment
Btu	British thermal units
Btu/hr	British thermal unit(s) per hour
CCW	condenser circulating water
cfs	cubic feet per second
cm	centimeter(s)
EIS	Environmental Impact Statement
ER	Environmental Report
ERCW	essential raw cooling water
ESA	Endangered Species Act
FES-CP	Final Environmental Statement related to the construction permit for WBN Units 1 and 2
FES-OL	Final Environmental Statement related to Operation
FSAR	Final Safety Analysis Report
ft	foot (feet)
FWS	U.S. Fish and Wildlife Service
gpm	gallon(s) per minute
ha	hectare(s)
hr	hour
in.	inch(es)
IPS	intake pumping station
km	kilometer(s)
kV	kilovolt(s)
L/s	liter(s) per second
m 3.	meter(s)
m³/s	cubic meter(s) per second
mi	mile(s)
MW(e)	megawatts electric
NPDES	National Pollutant Discharge Elimination System
NRC	U.S. Nuclear Regulatory Commission
ppm	parts per million
PWR	pressurized water reactor
RAI	request for additional information
RCW	raw cooling water
S	second(s)

Supplemental Condenser Cooling Water
Tennessee River Mile
Tennessee Valley Authority
Watts Bar Nuclear

F.1-iv

Contents

Acror	nyms			iii
1.0	Intro	duction	and Purpose	1
2.0 Proposed Action and History				
3.0	WBN	N Site D	Description	7 *
	3.1	Intakes	S	10
		3.1.1	Water Consumption	12
		3.1.2	Intake Pumping Station	12
		3.1.3	Supplemental Condenser Cooling Water Intake	12
	3.2	Discha	arge Systems	13
		3.2.1	Outfall 101 – Discharge Diffusers	13
		3.2.2	Outfall 113 – SCCW Discharge	15
		3.2.3	Outfall 102 – Yard Holding Pond Emergency Overflow	15
		3.2.4	Thermal Effects from Discharges	16
		3.2.5	Physical Effects from Scouring at the Discharges	17
		3.2.6	Chemical Discharges from Outfalls	17
4.0	Asse	essmen	t of Listed Species	21
	4.1	Gray E	Bat (Myotis grisescens)	21
		4.1.1	Life History of the Gray Bat	21
		4.1.2	Status of the Gray Bat in the Vicinity of the WBN Site	21
	4.2	Aquati	c Biota	21
		4.2.1	Life History	23
		4.2.2	Status of Listed Species	24
5.0	Envi	ronmen	ntal Effects of WBN Unit 2 on Listed Species	29
	5.1	Gray E	3at	29
	5.2 Freshwater Mussels and Snail Darters		water Mussels and Snail Darters	
		5.2.1	Water Consumption	30
		5.2.2	Entrainment and Impingement	
		5.2.3	Thermal and Chemical Effects	32
	5.3	Summ	ary	
6.0	Cum	nulative	Impacts	35

Draft NUREG-0498, Supplement 2

.

٥

	6.1 Terrestrial Species (Gray Bat)	35
	6.2 Aquatic Species	35
7.0	Conclusions	37
8.0	References	39

Figures

1-1	The WBN Site and the 80-km (50-mi) Vicinity	3
	WBN Site (TVA 2008)	
	Major Components of the Cooling System for WBN Units 1 and 2 (TVA 2008)	
4-1	Known Caves Occupied by Gray Bats in the Vicinity of the WBN Site	. 22
4-2	Mussel Beds and Monitoring Stations (TVA 1998b)	. 25

Tables

1-1	Federally Listed Terrestrial Species Occurring in the Vicinity of the WBN Site	4
3-1	Anticipated Water Use	
3-2	NPDES Temperature Limits for WBN Outfalls to the Tennessee River from TVA	. 16
3-3	Raw Water Chemical Additives at WBN	. 18
3-4	Potential Chemical Discharge to NPDES Outfalls at the WBN Site	20
4-1	Results of 15 Native Mussel Surveys from TRM 520 to TRM 528.9 (includes one survey from TRM 529.2)	26
5-1	Percent Composition of Dominant Larval Fish Taxa Collected in the CCW Intake Channel during 1984 and 1985 and 1996 and 1997	31
5-2	Actual and Estimated Numbers of Fish Impinged at WBN Plant during Sample Periods from March 1996 through March 1997, March 1997 through October 7, 1997 and during March 2010 through March 2011	

1.0 Introduction and Purpose

Under the Endangered Species Act of 1973, as amended, each Federal agency shall, in consultation with, and with the assistance of the Secretary of the Interior, the Secretary of Commerce, or the Secretary of Agriculture (as appropriate), ensure that any action authorized by such agency is not likely to jeopardize the continued existence of any endangered species or threatened species or result in the destruction or adverse modification of habitat of such species. Each agency shall use the best scientific and commercial data available. Each Federal agency requests of the Secretary information about whether any species that is listed or proposed to be listed may be present in the area of such proposed action. If the Secretary advises, based on the best scientific and commercial data available, that such species may be present, such agency shall conduct a *biological assessment* (BA) for the purpose of identifying any endangered species or threatened species that is likely to be affected by such action.

The Federal agency uses the the BA to determine whether formal consultation or a conference is required. If the BA indicates that there are no listed species or critical habitat present that are likely to be adversely affected by the action and the Director (Fish and Wildlife Service regional director, or the appropriate authorized representative) concurs, then formal consultation is not required. If the BA indicates that the action is not likely to jeopardize the continued existence of proposed species or result in the destruction or adverse modification of proposed critical habitat, and the Director concurs, then a conference is not required. Note that the Director may use the results of the BA in (1) determining whether to request the Federal agency to initiate formal consultation or a conference, (2) formulating a biological opinion, or (3) formulating a preliminary biological opinion.

The U.S. Nuclear Regulatory Commission (NRC) is currently considering a request by the Tennessee Valley Authority for an operating license for Watts Bar Nuclear (WBN) Unit 2, located on the northwest shore of Chickamauga Reservoir (on the Tennessee River) in Rhea County, Tennessee (see Figure 1-1). The site has two Westinghouse-designed pressurized water reactors (PWRs). In early 1996, the NRC issued an operating license for WBN Unit 1. The Tennessee Valley Authority (TVA) operates the WBN site. TVA has not yet completed WBN Unit 2. On August 3, 2007, TVA informed the NRC of its intention to complete construction activities at WBN Unit 2 under the existing construction permit (TVA 2007a). On March 4, 2009, TVA submitted to the NRC a request to reactivate its application for a license to operate a second light-water nuclear reactor at the WBN site (TVA 2008).

The NRC staff requested in a letter dated September 2, 2009 (NRC 2009) that the U.S. Fish and Wildlife Service (FWS) provide information on Federally-listed endangered or threatened species, proposed or candidate species, and designated critical habitats that may occur in the vicinity of the WBN site. The FWS responded to NRC's request in a letter dated October 9, 2009 (FWS 2009), which provided a list of seven Federally listed threatened and endangered

September 2011

species near the WBN site. This BA examines the potential impacts of the proposed actions on the seven Federally listed species within FWS's jurisdiction (see Table 1-1). The list included one mammal, the gray bat (*Myotis grisescens*); one fish, the snail darter (*Percina tanasi*); and five species of mussel. The mussels include the pink mucket (*Lampsilis abrupta*), the Eastern fanshell pearly mussel (*Cyrpogenia stegaria*), the rough pigtoe (*Pleurobema plenum*), the dromedary pearlymussel (*Dromus dromas*), and the orangefoot pimpleback (*Plethobasus cooperianus*). No critical habitat areas are designated near the Watts Bar site. FWS indicated that the staff "should assess potential impacts and determine if the proposed project may affect these species."

On January 19, 2011, the sheepnose mussel (*Plethobasus cyphyus*) was proposed for listing (76 FR 3392). The sheepnose mussel occurs in the Southeast and the Midwest, but has been eliminated from two-thirds of the streams where it had been known to occur. The sauger is the only known host for the sheepnose mussel (FWS 2011). The sheepnose mussel is known to occur in the vicinity of the Watts Bar site. In September 2010, TVA found a specimen, judged to be approximately 20 years old, during sampling (TVA 2011a).

Therefore, the NRC prepared this BA to support the draft supplemental final environmental statement related to the operating license for WBN Unit 2.

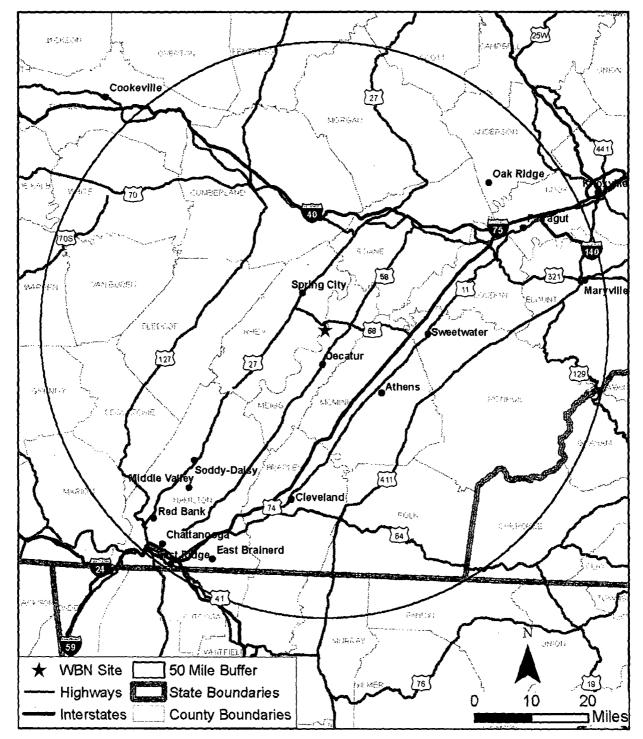


Figure 1-1. The WBN Site and the 80-km (50-mi) Vicinity

September 2011

F.1-3

Draft NUREG-0498, Supplement 2

Scientific Name	Common Name	Federal Status
Terrestrial Species	······································	
Mammals		
Myotis grisescens	gray bat	E
Aquatic Species		
Fish		
Percina tanasi	snail darter	Т
Freshwater mussels		
Lampsilis abrupta	pink mucket	Е
Cyprogenia stegaria	Eastern fanshell pearly mussel	Е
Pleurobema plenum	rough pigtoe	Е
Dromus dromas	dromedary pearlymussel	E
Plethobasus cooperianus	 orange pimpleback 	Е

Table 1-1. Federally Listed Terrestrial Species Occurring in the Vicinity of the WBN Site

2.0 Proposed Action and History

The proposed action is for the NRC to issue an operating license for WBN Unit 2 at the WBN site.

WBN Units 1 and 2 possess a unique licensing history and regulatory framework. On May 14, 1971, TVA submitted a request for issuance of construction permits for WBN Units 1 and 2. TVA issued its Final Environmental Statement related to the construction permit for WBN Units 1 and 2 (FES-CP) in November 1972 (TVA 1972). The FES mentioned the bald eagle (*Haliaeetus leucocephalus*) as a relatively common visitor to the WBN area and addressed potential impacts on freshwater mussel species. On January 23, 1973, the Atomic Energy Commission issued Construction Permits for WBN Units 1 and 2.

In late 1976, TVA submitted an application requesting operating licenses for Units 1 and 2 (TVA 1976). Subsequently, on December 1, 1978, the NRC issued the 1978 Final Environmental Statement related to Operation (FES-OL), which evaluated operation of WBN Units 1 and 2 (NRC 1978). The 1978 FES-OL addressed the bald eagle and two endangered freshwater mussel species (pink mucket and dromedary pearly mussel). NRC concluded that operation of WBN would not affect these species (TVA 1972).

In 1994 following several construction delays, NRC determined that the units were nearing completion. In a letter dated April 1, 1995, NRC issued Supplement No. 1 to the 1978 FES-OL re-examining environmental considerations before issuance of an operating license for WBN Units 1 and 2 (NRC 1995). NRC entered into Section 7 consultation with FWS by submitting a BA, completed by TVA, to FWS on October 28, 1994. The BA included four species of freshwater mussel (i.e., pink mucket, dromedary pearly mussel, Eastern fanshell pearly mussel, and rough pigtoe), the snail darter, the bald eagle, and the gray bat. It also identified three additional aquatic species that FWS had designated as active candidates. TVA concluded that the operation of WBN Units 1 and 2 was not likely to affect individuals or populations of any of the listed species or candidate species or their critical habitats. NRC agreed with the "no effect" determination but requested a formal consultation. On January 25, 1995, NRC indicated that its staff and TVA had become aware of the existence of a fourth candidate species in the vicinity of the WBN site. In a biological opinion, FWS indicated that the action was not likely to jeopardize the continued existence of the listed species. TVA received the full power-operating license for Unit 1 on February 7, 1996.

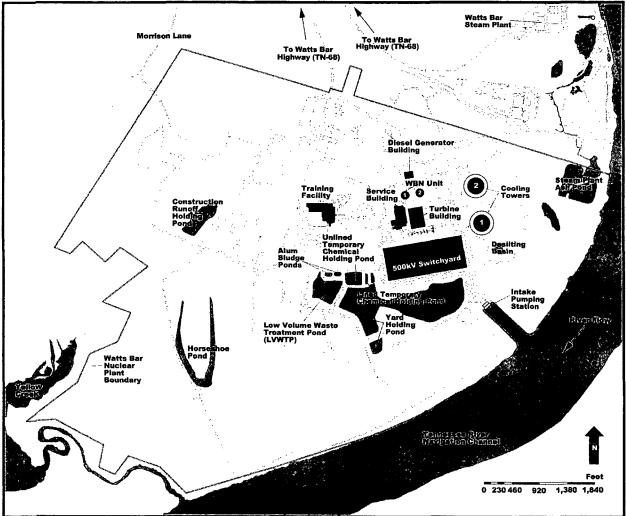
As indicated in Section 1.0, TVA submitted an updated application on March 4, 2009 for a facility-operating license from NRC to possess, use, and operate WBN Unit 2 (TVA 2009a) and the NRC requested consultation with the FWS in a letter dated September 2, 2009 (NRC 2009).

.

.

·

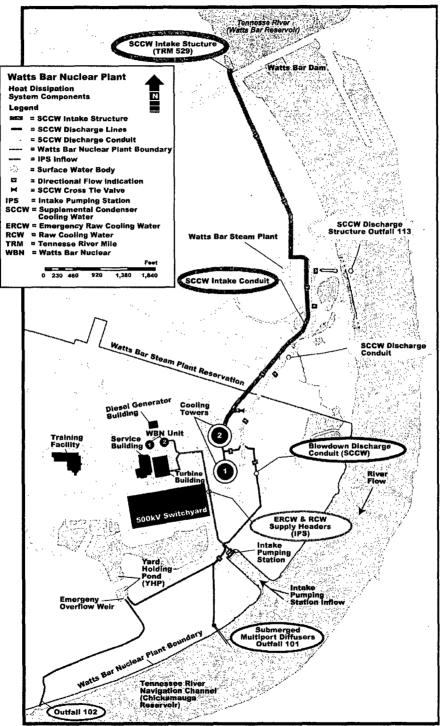
3.0 WBN Site Description


TVA owns the 427 ha (1,055 ac) WBN site, located in southeastern Tennessee. The WBN site contains structures to support the operation of two nuclear units. WBN Unit 1 is currently operating and WBN Unit 2 is partially constructed. Figure 3-1 shows the layout of the site. A rural road, Morrison Lane, and forested land form the western border of the site, while TN-68 (also known as Watts Bar Highway) makes up the northern border. The WBN site is bounded by Chickamauga Reservoir (an impoundment of the Tennessee River) to the east and south of the site. The WBN site lies entirely within an unincorporated area of Rhea County, Tennessee, approximately 13 km (8 mi) southeast of Spring City.

TVA originally designed the WBN site as a two-unit PWR nuclear plant with a total electrical generating capacity of 2,540 megawatts (MWe). Unit 1 began operating in 1996. In addition to the reactors, the WBN site consists of two reactor containment buildings, a diesel generator building, a training facility, a turbine building, a service building, an intake pumping station, a water treatment plant, two cooling towers, 500-kV and 161-kV switchyards, and associated parking facilities. Figure 3-2 shows the reactor buildings and associated facility layout (NRC 1995). The United States owns the existing facilities at the WBN site, and TVA is the custodian . (TVA 2008).

TVA terminated construction of Unit 2 in 1985 when the unit was 80 percent complete (TVA 2008). Since then, TVA has used many Unit 2 components to replace portions of Unit 1 and other TVA facilities. As a result, at the time of the operating license application, Unit 2 was approximately 60 percent complete. Completing Unit 2 may result in some additional ground-disturbing activities, but these activities would be mostly restricted to the existing disturbed portion of the property (TVA 2008). Because the facility (including the intakes and discharge systems used by Unit 1) was essentially completed, the only impacts that will affect aquatic and terrestrial biota include those from operations.

The original cooling system constructed for the WBN units was a closed-cycle system to transfer heat from the main condenser of each unit to the natural-draft cooling tower basin associated with that unit. In its 2008 environmental report (ER) (TVA 2008), TVA identified this system as the condenser circulating water (CCW) system. During normal plant operation, the CCW system for each unit would dissipate up to 7.8×10^9 Btu/hr of waste heat (TVA 1972, TVA 2009b). The Essential Raw Cooling Water (ERCW) system and the Raw Cooling Water (RCW) system remove additional heat from the plant components. Water from both of these systems discharges to the cooling tower basins for the CCW.


September 2011

(To convert feet [ft] to meters [m], multiply by 0.3048 m/ft)

Figure 3-1. WBN Site (TVA 2008)

The WBN cooling water system uses natural-draft cooling towers to dissipate waste heat from the plant. Two single cooling towers, one for each unit, would serve the WBN site. Each tower is 108 m (354 ft) in diameter and 146 m (478 ft) high (TVA 1972). Most excess heat in the cooling water transfers to the atmosphere by evaporative and conductive cooling in the cooling tower. In addition to evaporative losses, a small percentage of water is lost in the form of droplets (drift) from the cooling tower. The water that does not evaporate or drift from the tower routes back to the cooling tower basin.

(To convert feet [ft] to meters [m], multiply by 0.3048 m/ft)

Figure 3-2. Major Components of the Cooling System for WBN Units 1 and 2 (TVA 2008)

September 2011

Evaporation of cooling water system water from the cooling tower increases the concentration of dissolved solids in the cooling water system. In most closed-cycle wet-cooling systems, a portion of the cooling water is removed and replaced with makeup water from the source (for WBN, the Tennessee River) to limit the concentration of dissolved solids in the cooling system and in the discharge to the receiving water body.

Because the WBN cooling towers cannot remove the desired amount of heat from the circulating water during certain times of the year, TVA added the Supplemental Condenser Cooling Water (SCCW) system to the cooling system for the WBN reactors. The SCCW draws water from behind Watts Bar Dam and delivers it by gravity flow to the cooling tower basins to supplement cooling of WBN Unit 1. Unit 1 currently uses the SCCW system. Unit 2 will also use the SCCW system. The temperature of the water from the SCCW intake is usually lower than the temperature of the water in the cooling tower basin and, as a result, lowers the temperature of the water used to cool the steam in the condensers. Approximately the same volume of water that enters the cooling tower basins through the SCCW intake leaves the cooling tower basins and flows through the SCCW discharge structure into Chickamauga Reservoir (TVA 2008). Since the SCCW has been operating, elevated total dissolved solids in blowdown water have not been a concern because a large volume of water enters and leaves the cooling tower basins continually (PNNL 2009).

Table 3-1 lists the anticipated water usage parameters associated with current operation of Unit 1, the anticipated parameters for Unit 2 and the increment from the added operation of Unit 2.

3.1 Intakes

WBN Unit 1 uses two intakes. The first is the SCCW intake, which withdraws water from Watts Bar Reservoir. The second is the intake pumping station (IPS) for the CCW, which withdraws water from Chickamauga Reservoir. Unit 2 would also operate with two intakes.

The intake for the SCCW system, which TVA originally used for its Watts Bar Fossil Plant, is located above Watts Bar Dam. The intake canal for the IPS, which supplies water to the CCW system, is located at Tennessee River Mile (TRM) 528.0, which is approximately 3.1 km (1.9 mi) below the dam.

ltem	WBN Unit 1 Current Operations	Anticipated WBN Units 1 and 2	WBN Unit 2 Added Increment
Circulating Water System			
Heat discharged	7.8 × 10 ⁹ Btu/hr ^(c)	1.5 × 10 ¹⁰ Btu/hr ^(c)	7.7 × 10 ⁹ Btu/hr
Waste heat to atmosphere	6.9 × 10 ⁹ Btu/hr ^(c)	1.4 × 10 ¹⁰ Btu/hr ^(c)	7.1 × 10 ⁹ Btu/hr
Waste heat via liquid discharges to outfall 101	1.5 × 10 ⁸ Btu/hr ^(b)	1.7 × 10 ⁸ Btu/hr ^(b)	2×10^7 Btu/hr ^(b)
Intake Pumping Station			
Normal maximum makeup water flow rate	2.5 m³/s (88 cfs) ^(c)	4.93 m³/s (174 cfs) ^(c)	2.4 m ³ /s (86 cfs)
Consumptive use			
Evaporation rate	0.82 m³/s (29 cfs) ^(c)	1.73 m ³ /s (61.1 cfs) ^(c)	0.87 m³/s (31 cfs)
Drift rate	2.8 L/s (45 gpm) ^(a)	5.7 L/s (90 gpm) ^(a)	2.8 L/s (45 gpm)
Blowdown Flow Rate			
Normal	1.5 m³/s (53 cfs) ^(c)	1.8 m³/s (64 cfs) ^(c)	0.3 m³/s (11 cfs)
Maximum when discharging from yard holding pond and cooling tower basins	3.82 m ³ /s (135 cfs) ^(b)	4.81 m ³ /s (170 cfs) ^(b)	0.99 m³/s (35 cfs)
Maximum allowable blowdown temperature	35°C (95°F) ^(b)	35°C (95°F) ^(b)	No change
SCCW System			
Waste heat via liquid discharges	7.5 × 10 ⁸ Btu/hr ^(b)	8.6 × 10 ⁸ Btu/hr ^(b)	1.1 × 10 ⁸ Btu/hr ^(b)
Intake flow rate	7.31 m³/s (258 cfs) ^(c)	7.1 m ³ /s (250 cfs) ^(c)	Intake flow rate will decline because elevation of water surface in Unit 2 coolin tower will be higher when plant is in operation.
Discharge flow rate	7.48 m³/s (264 cfs) ^(c)	8.46 m ³ /s (299 cfs) ^(c)	A portion of the water entering the system through the IPS will be discharged through the SCCW discharge
Temperature of discharge	35°C (95°F) also 33.5°C (92.3°F) in receiving stream bottom) ^(b)	35°C (95°F) also 33.5°C (92.3°F) in receiving stream bottom) ^(b)	No change

.

(c) TVA (2010a)

3.1.1 Water Consumption

The maximum normal makeup water flow rate through the IPS from Chickamauga Reservoir would be 4.93 m³/s (174 cfs) (TVA 2010a), which is 0.6 percent of the mean annual flow of the Tennessee River at Watts Bar Dam (i.e., 778 m³/s [27,500 cfs]). The average monthly intake flow rate through the SCCW intake from above Watts Bar Dam in the Watts Bar Reservoir would be 7.1 m³/s (250 cfs), which is slightly less than that currently withdrawn for WBN Unit 1 and is 0.91 percent of the mean flow of the Tennessee River at the dam (TVA 2010a). Combined, this total withdrawal is 1.3 percent of the mean flow of the Tennessee River at Watts Bar Dam. However, much of this water returns to the river in the discharge. The maximum annual plant consumption rate represents 0.1 percent of the mean annual flow of the Tennessee River at Watts Bar Dam. The NRC staff considers the total withdrawal and the consumptive withdrawal to have a slight, if any, affect on the aquatic biota in Watts Bar Reservoir, Chickamauga Reservoir, and the Tennessee River downstream. Data collected during the preoperational and operational periods for Unit 1 also indicate that the number of species in the reservoir and numbers of individuals per species in the reservoir did not change significantly from the preoperational period to the operational period.

3.1.2 Intake Pumping Station

TVA originally designed the IPS to supply water to both WBN Units 1 and 2; however, since 1996, it has supplied water only to WBN Unit 1. It is located about 3.1 km (1.9 mi) below Watts Bar Dam at TRM 528.0. The IPS is located at the end of an intake channel approximately 240 m (800 ft) from the shoreline of the reservoir (TVA 2009b). The IPS has two sump areas with two intake bays each. Each intake bay is 1.58 m (5.17 ft) wide at the traveling screens and 5.3 m (17.5 ft) high, resulting in an opening of 8.40 m² (90.4 ft²). The open area through the trash racks at each bay opening in the IPS is approximately 8.8 m² (95.1 ft²), for a total of 35.3 m² (380 ft²) open for the passage of water through the trash racks.

Currently, Unit 1 withdraws approximately 2.5 m^3 /s (88 cfs) of water from Chickamauga Reservoir for normal operations (TVA 2010a). TVA estimates normal maximum operations for WBN Units 1 and 2 would require withdrawal of 4.93 m^3 /s (174 cfs) of water from the reservoir (TVA 2010a). Under these conditions, while drawing water through all four bays in the IPS, the maximum water velocity through the openings in the traveling screens would be 0.21 m/s (0.67 ft/s) in the winter and 0.19 m/s (0.62 ft/s) in the summer for the portion of the intake structure with four RCW pumps operating (TVA 2011b). The maximum water velocity through the openings in the traveling screens would be 0.24 m/s (0.8 ft/s) (TVA 2010b).

3.1.3 Supplemental Condenser Cooling Water Intake

The intake facility for the SCCW is located above Watts Bar Dam at TRM 529.9. The SCCW has six intake bays and uses three for operation of WBN Unit 1. No additional bays are

required for operation of both units. Each intake bay is 2.17 m (7.13 ft) wide at the traveling screens and 9.37 m (30.75 ft) high, resulting in an opening of 20.3 m² (219.1 ft²). The traveling screens and their support structures occupy a portion of the opening leaving 9.16 m² (98.6 ft²) open to the passage of water in each bay for a total of 27.48 m² (295.8 ft²) for the passage of water through the screens into the SCCW intake. The open area through the trash racks at each bay opening in the SCCW intake structure is approximately 11.5 m² (124 ft²), for a total of 34.6 m² (372 ft²) (TVA 2010a). Figure 3-2 shows the locations of the IPS and SCCW water intakes.

The SCCW system operates by gravity flow, so the flow through the intake structure fluctuates as the water-level elevation in Watts Bar Reservoir changes. TVA estimates that the average monthly SCCW intake flow from Watts Bar Reservoir to Unit 1 is approximately 7.31 m³/s (258 cfs) (TVA 2010a). For the operation of both Units 1 and 2, TVA estimates that the average monthly flow through the SCCW intake would be 7.1 m³/s (250 cfs) of water from Watts Bar Reservoir (TVA 2010a). The lower flow rate for two units in operation is anticipated because water moves through the system under gravity flow, and the water level in the cooling tower basin for Unit 2 would be 0.6 m (2 ft) higher when the unit is operating (TVA 2010a). This reduces the water level elevation difference between Watts Bar Reservoir and the cooling tower basin, resulting in a reduction of flow rate.

The normal intake flow rates are higher in the summer months when TVA maintains the elevation of Watts Bar Reservoir at 225.7 m (740.5 ft) above mean sea level. Normal flow rates during summer months with both units operating would be approximately 7.6 m³/s (270 cfs), resulting in a water velocity of 0.22 m/s (0.73 ft/s) through the open areas in the trash racks in the SCCW. The water velocity through the openings in the traveling screens at the SCCW would be 0.28 m/s (0.91 ft/s) under these conditions (TVA 2010a).

3.2 Discharge Systems

WBN Unit 1 uses three discharge systems and three outfalls for discharge from the cooling water systems. TVA holds permits through the National Pollutant Discharge Elimination System (NPDES) permit process for the three outfalls. All three outfalls empty into Chickamauga Reservoir. The outfalls include Outfall 101, which uses discharge diffusers; Outfall 102, which uses a shoreline discharge; and Outfall 113, which also uses an emergency overflow weir that flows into a local stream channel and empties into Chickamauga Reservoir.

3.2.1 Outfall 101 – Discharge Diffusers

TVA plans to discharge cooling water from the main cooling-water system for WBN Units 1 and 2 to Chickamauga Reservoir through a diffuser system located approximately 3.2 km (2 mi) below Watts Bar Dam at TRM 527.9 (TVA 2008). The National Pollutant Discharge Elimination

System (NPDES) permit for the WBN site identifies the diffuser discharge as Outfall 101 (TDEC 2011). TVA (1997) describes this diffuser system as consisting of two pipes branching from a central conduit at the right bank of Chickamauga Reservoir and extending perpendicular to the river flow of the Tennessee River. Each pipe is controlled by a butterfly valve located a short distance from the junction with the central conduit.

The downstream leg of the diffuser consists of 49 m (160 ft) of unpaved 1.37-m (4.5-ft)-diameter corrugated steel diffuser pipe at the end of approximately 91 m (297 ft) of paved corrugated steel approach pipe of the same diameter. The diffuser pipe is half buried in the river bottom and has two 2.54-cm (1-in.)-diameter ports per corrugation. The centroid of the ports is angled up at 45 degrees from horizontal in a downstream direction (TVA 1997).

The upstream leg of the diffuser system consists of 24 m (80 ft) of unpaved 1.07-m (3.5ft)-diameter corrugated steel diffuser pipe at the end of approximately 136 m (447 ft) of paved corrugated steel approach pipe of the same diameter. The upstream diffuser pipe section is half buried in the river bottom and extends its entire length beyond the dead end of the downstream diffuser pipe section. The port diameter, spacing, and orientation of the upstream leg are the same as those of the downstream leg (TVA 1997). TVA document Figure 3 (1977) illustrates the diffuser configuration. TVA does not plan to make any upgrades or changes to the diffuser design in preparation for operating Unit 2 (TVA 2010c).

TVA maintains operational procedures for this system to ensure adequate dilution of the plant effluent. The 2008 TVA ER explains the process as follows:

To provide adequate dilution of the plant effluent, discharge from the diffusers is permitted only when the release from Watts Bar Dam is at least 3,500 cubic feet per second (cfs). To ensure this happens, an interlock is provided between the dam and WBN that automatically closes the diffusers when the flow from the hydroturbines at Watts Bar Dam drops below 3,500 cfs. To provide temporary storage of water during these events, the blowdown discharge conduit also is connected to a yard holding pond. When the flow from Watts Bar Dam drops below 3,500 cfs, thereby closing the diffuser valves, the blowdown is automatically routed to the yard holding pond. When hydro operations resume with releases of at least 3,500 cfs, the interlock is 'released' and the diffuser valves can be opened. When this occurs, the discharge from the diffusers would contain blowdown from the cooling towers and blowdown from the yard holding pond. To protect the site from the consequences of exceeding the capacity of the yard holding pond, an emergency overflow weir is provided for the pond, which delivers the water to a local stream channel that empties into the Tennessee River at TRM 527.2. The operation of Watts Bar Dam and the WBN

blowdown system are very carefully coordinated to avoid unexpected overflows from the yard holding pond (TVA 2008).

3.2.2 Outfall 113 – SCCW Discharge

The SCCW system discharges water through a discharge structure originally constructed for the Watts Bar Fossil Plant. The NPDES permit for the WBN site identifies the SCCW discharge as Outfall 113 (TVA 2008). Water leaving the cooling tower basins flows through a pipe to the discharge structure approximately 1.8 km (1.1 mi) upstream of the IPS. TVA describes the discharge structure as an "open discharge canal, an overflow weir drop structure, and a below water discharge tunnel" (TVA 1998a). TVA describes the discharge tunnel as a "rectangular culvert 7 feet wide by 10 feet high at the discharge point" (TVA 1998a). The elevation of the culvert outlet is 205.7 m (675 ft) above mean sea level. To reduce the impact of the discharge on the river bottom, TVA installed a concrete incline to direct flow toward the river surface as it leaves the outfall (TVA 1998a, PNNL 2009).

TVA designed and constructed the SCCW system so it could operate the cooling system for WBN Units 1 and 2 with or without the SCCW. If the temperature of the discharge water exceeds allowable release limits, TVA can shut down the SCCW system. TVA also included a crosstie and control valve in the system that allows part of the flow from the SCCW intake to bypass the cooling tower basins and mix with the effluent in the discharge pipeline. When the possibility of exceeding the NPDES river temperature limit exists, TVA opens a bypass valve to allow cooler water in the intake pipeline to mix with water in the discharge line, thus cooling the effluent before it is discharged to the reservoir (TVA 2008). The bypass is necessary during winter months when the water temperature in the Tennessee River is cooler, and a possibility exists of exceeding the instream temperature rate of change limit in the NPDES permit. TVA opens the crosstie around November 1, and it remains open until the end of April (PNNL 2009).

3.2.3 Outfall 102 – Yard Holding Pond Emergency Overflow

TVA uses the unlined yard holding pond (Figure 3-2), which is approximately 8.9 ha (22 ac) in area (TVA 2005a), for temporary storage of cooling tower blowdown when the flow from the hydroturbines at Watts Bar Dam is less than 99 m³/s (3500 cfs). When dam operations resume with releases of at least 99 m³/s (3,500 cfs), diffuser valves allow the yard-holding pond to discharge into Chickamauga Reservoir through the diffusers (TVA 2008).

The yard-holding pond has an emergency overflow weir at 215.3 m (706. 5 ft) above mean sea level. This weir design prevents the yard-holding pond from overflowing the capacity of the pond. In the event that water rises above the height of the weir, it flows into a local stream channel that empties into Chickamauga Reservoir at TRM 527.2 (TVA 2008). The NPDES permit for the WBN site identifies this discharge as Outfall 102 (TVA 2008).

3.2.4 Thermal Effects from Discharges

WBN Unit 2 would continue to discharge water via three outfalls. Table 3-2 shows the current NPDES temperature limits for the three outfalls used during operation for Unit 1. The NPDES permit issued by the State of Tennessee for Unit 1 specifies limits on the amount of thermal effluent the plant may discharge into the Tennessee River. The permit also establishes an active mixing zone and defines in-stream monitoring and reporting requirements necessary to comply with effluent limitations. Table 3-1 provided the increment added for waste heat discharged to the river for both Outfall 113 (i.e., the SCCW system shoreline discharge) and Outfall 101 (i.e., the diffuser discharge). The additional increment for flow is approximately 14 percent of the current amount of heat discharged. The mixing zone dimensions for the outfall to the SCCW (i.e., Outfall 113) are based on a physical hydrothermal model test of the discharge. TVA has confirmed the model output with actual measurements (TVA 2005b, 2006, 2007b, 2007c). The model and measurements indicate that the plume rises after hitting the concrete pad located at the end of the discharge. The model results also predict a zone of passage for fish along the bottom of the river especially in the area of the navigation channel (TVA 2004). The location of the plume from the SCCW discharge does not prohibit fish from swimming past the plant, and the plume would likely not reach the river's mussel beds.

Outfall	Effluent Parameter	Daily Report	Limit
101	Effluent Temperature	Daily Avg	35.0°C (95°F)
102	Effluent Temperature	Grab	35.0°C (95°F)
113	Instream Temperature ^(a) Instream Temperature Rise ^(b) Instream Temperature Rate-of-Change ^(a) Instream Temperature Receiving Stream Bottom ^(c)	Max Hourly Avg Max Hourly Avg Max Hourly Avg Max Hourly Avg	30.5°C (86.9°F) 3.0°C (5.4°F) ±2°C/hr (±3.6°F/hour 33.5°C (92.3°F)

Table 3-2. NPDES	Temperature Limits for WBN Outfalls to the Tennessee River from TVA	
------------------	---	--

(a) Downstream edge of mixing zone.

(b) Upstream ambient to downstream edge of mixing zone.

(c) Mussel relocation zone at SCCW outlet.

TVA relocated freshwater mussels from an area 46 m by 46 m (150 ft by 150 ft) at Outfall 113. TVA relocated the mussels to the mussel bed directly across the river in order to prevent adverse impacts during operation of the SCCW. In addition, TVA placed a ramp on the invert of the SCCW outfall to deflect the discharge upward, and away from the bottom of the river (TVA 2004). The analysis of instream data collected by TVA for Outfall 113 showed that heat from the SCCW effluent does not reach the river bottom in significant amounts (TVA 2004).

Discharge from the emergency overflow (i.e., Outfall 102) is infrequent. The current NPDES permit also specifies a discharge temperature limit of 35°C (95°F) for Outfall 102 (TVA 2008).

3.2.5 Physical Effects from Scouring at the Discharges

No impacts are anticipated to benthic organisms in the vicinity of, or immediately downstream of, the outfalls from scouring of the bottom of the reservoir by adding WBN Unit 2. TVA indicates that water flow from the SCCW discharge would not increase, and the concrete structure at the discharge of the SCCW (i.e., Outfall 113) continues to reduce the affect the discharge has on the river bottom and directs the flow of water toward the river surface as it leaves the outfall (TVA 1998a). The use of a diffuser that discharges at an angle of 45 degrees above horizontal in the downstream direction for Outfall 101 minimizes the amount of scouring discharge from this outfall. Use of Outfall 102, which discharges into a local stream channel that empties into the Chickamauga Reservoir. The NRC staff determines that physical changes at the outfalls as a result of the additional operation of Unit 2 would not affect the aquatic biota of Watts Bar Reservoir.

3.2.6 Chemical Discharges from Outfalls

Another discharge-related stressor involves chemical treatment of the cooling water. TVA would control water chemistry for various plant water uses by adding biocides, algaecides, corrosion inhibitors, pH buffering, scale inhibitors, and dispersants. The NPDES permit requires that TVA follow the TDEC-approved Biocide/Corrosion Treatment Plan (B/CTP) (TDEC 2011). WBN's current B/CTP was approved in 2009 (TDEC 2011) based on the list of chemicals included in the permit modification request submitted by TVA in April 2009 (TVA 2010e). Table 3-3 lists chemicals and their discharge quantities included in the WBN site's NPDES permit request submitted for the WBN site on April 2009 (TVA 2009c).

TVA discharges water containing chemical and biocidal additives for the condenser cooling system and the SCCW system to the Chickamauga Reservoir through Outfalls 101 and 113, respectively. Chemical and biocidal additives and waste streams from various other water-treatment processes and drains are returned to the Yard Holding Pond (YHP) where they are subjected to dilution, aeration, vaporization, and chemical reactions. The plant then discharges the YHP water to Chickamauga Reservoir through Outfall 101 or 102, subject to the limitations of the WBN site's existing NPDES permit (TDEC 2011).

The NPDES permit (TDEC 2011) provides additional detail about the chemicals that may be in water discharged through the outfalls. In addition to the chemicals added as biocide and for corrosion-treatment, other chemical additives are used in a variety of plant processes. These chemicals may occur in trace quantities at Outfall 101 or Outfall 102. The potential discharge of these chemicals is through the cooling-tower blowdown line to Outfalls 101 and 102 so Outfall 113 would not receive these discharges. The summary of potential chemicals discharged by NPDES outfall number is shown in Table 3-4.

Product	Purpose	Frequency of Discharge	Active Ingredients	Discharge Concentration ^(a) (ppm active ingredients)
Depositrol PY5200 (replaces Nalco 73200) ^(b)	Dispersant to facilitate iron corrosion inhibition	Continuous	copolymer	< 0.2
Inhibitor AZ8100 (replaces Nalco 1336) ^(b)	Copper corrosion Inhibition	Periodic	sodium tolyltriazole	< 0.25
Sprectrus ED 1500 (replaces Naico 73551) ^(b)	Surfactant to facilitate oxidizing biocides	Periodic	nonionic surfactant	< 2.0
Towerbrom 60 m (replaces Towerbrom 960) ^(b)	Oxidizing biocide (chlorination)	Periodic	sodium bromide and sodium dichloroisocyanurate	0.10 chlorine (total residual)
Spectrus OX 1200 (replaces Nalco 901 G) ^(b)	Oxidizing biocide (chlorination)	Continuous	bromo-chloro, dimethyl hydantoin	0.10 chlorine (total residual)
Spectrus DT 1404 (replaces Nalco CA-3S) ^(b)	De-chlorination	Periodic ^(c)	sodium bisulfite	< 10
Spectrus CT1300 ^(d) (repla ces H150M) ^(b) or	Nonoxidizing biocide (mollusk control)	Periodic	Alkyl dimethyl benzyl ammonium chloride	< 0.001 active ingredient in stream after mixing < 0.05 measured in effluent
Spectrus NX1104 ⁴ (replaces Spectrus NX 104) ^(b)	Nonoxidizing biocide (mollusk control)	Periodic	dimethylbenzylam- monium chloride and dodecylguanidine hydrochloride	< 0.001 total active ingredient in stream after mixing < 0.031 quaternary ammonium compound measured in effluent
Bentonite clay ^(b)	Detoxification of nonoxidizing biocides	Periodic ^(c)	sodium silicate (bentonite clay)	< 10
Liquid bleach ^(b)	Oxidizing biocide (chlorination)	Continuous	sodium hypochlorite	0.10 chlorine (total residual)
H150M ^(e)	Nonoxidizing biocide	Minimum of 4 times per year	25 percent dimethyl benzyl ammonium chloride and 25 percent dimethyl ethylbenzyl ammonium chloride.	< 0.05 ppm

Table 3-3. Raw Water Chemical Additives at WBN

Product	Purpose	Frequency of Discharge	Active Ingredients	Discharge Concentration (ppm active ingredients)
Flogard MS6209 (replaces MSW- 109, 2010) ^(g)	Iron Corrosion Inhibitor	Continuous when river temperature is above 15.6°C (60°F).	zinc chloride, orthophosphate	< 0.2 total zinc < 0.2 total phosphorus

Table 3-3. (contd)

Source: From Table in TVA (2009d)

(a) The maximum discharge concentration is indicated except where noted. Concentrations are achieved through a combination of dilution and dechlorination with sodium bisulfite or detoxification with bentonite clay.

(b) Denotes chemicals previously approved by the division (Tennessee Department of Environment & Conservation, Division of Water Pollution Control).

(c) Dechlorination and detoxification chemicals are applied as needed to ensure the discharge limitations identified in this table are met.

(d) Non-oxidizing biocide treatments are not applied at the same time as oxidizing biocide treatments.

(e) Application information from TVA 2008

(f) SCCW and river flow conditions have a significant impact on these discharge concentrations.

(g) Active ingredient information from TVA 2008.

2) iffuser Discharge /HP Overflow Weir .ow-Volume Waste	ammonium hydroxide, ammonium chloride, alpha cellulose, asbestos after 5 micron filter, boric acid, sodium tetraborate, bromine, chlorine, copolymer dispersant, ethylene oxide, propylene oxide copolymer, ethylene glycol, hydrazine, laboratory chemical wastes, lithium, molybdate, monoethanolamine, molluscicide, oil and grease, phosphates, phosphate cleaning agents, paint compounds, sodium bisulfite, sodium hypochlorite, sodium hydroxide, surfactant, tolyltriazole, x-ray film processing rinse water, zinc chloride orthophosphate, zinc sulfate, phosphino-carboxylic acid copolymer, diethylenetriaminepenta-methylene phosphonic acid, sodium salt, sodium chloride, ethylenediamine tetracetic acid. Alternate discharge path for Outfall 101
	Alternate discharge path for Outfall 101
.ow-Volume Waste	
reatment Pond	ammonium hydroxide, ammonium chloride, boric acid, sodium tetraborate, bromine, chlorine copolymer dispersant, ethylene glycol, hydrazine, laboratory chemical wastes, lithium, molybdate, monoethanolamine, molluscicide, oil and grease, phosphates, phosphate cleaning agents, paint compounds, sodium hydroxide, surfactant, tolyltriazole, x-ray film processing rinse water, zinc sulfate
ined Pond and Jnlined Pond	metals – mainly iron and copper, acids and caustics, ammonium hydroxide, ammonium chloride, asbestos after 5 micron filter, boric acid, sodium tetraborate, bromine, chlorine, copolymer dispersant, hydrazine, laboratory chemical wastes, molybdate, molluscicide, oil and grease, phosphates, phosphate cleaning agents, sodium, sodium hydroxide, surfactant, tolyltriazole, zinc sulfate
SCCW Discharge	some contact with chemicals listed for outfall 101, alpha cellulose, bromine, chlorine, copolymer, molluscicide, zinc chloride orthophosphate

Table 3-4. Potential Chemical Discharge to NPDES Outfalls at the	e WBN Site

4.0 Assessment of Listed Species

4.1 Gray Bat (Myotis grisescens)

4.1.1 Life History of the Gray Bat

The gray bat, listed as endangered by FWS (41 FR 17736) and the State of Tennessee, is a migrant colonial bat. The distribution of gray bats is centered by limestone karst areas within the southeastern United States (Brady et al. 1982). The gray bat possesses very specific microclimate requirements and use caves during both winter and summer. Colonies may travel over 100 km (60 mi) between winter and summer habitats (NatureServe 2010). Summer colonies occupy traditional home ranges that include a maternal cave and several roost caves usually within 1 km (0.6 mi) of a river or reservoir (NatureServe 2010).

Adult gray bats feed on insects almost exclusively over water bodies (Brady et al. 1982). They a have been known to forage more than 19 km (12 mi) from summer roost caves and are known to forage over and along the Tennessee River. FWS has not designated critical habitat for the gray bat.

4.1.2 Status of the Gray Bat in the Vicinity of the WBN Site

Gray bats have not been observed on the WBN Site. In 1982, three caves in the State of Tennessee served as major winter hibernacula for gray bats (Brady et al. 1982). Two caves (see Figure 4-1) within 16 km (10 mi) from the WBN site serve as summer roosts for gray bats (NRC 1995). A cave located approximately 4 km (2.5 mi) from of the WBN site contained 385 gray bats in 2002, while another cave almost 13 km (8 mi) from the WBN site contained 340 gray bats during the same year (Harvey and Britzke 2002). Although no direct observations of gray bats foraging over the Tennessee River immediately adjacent to the WBN site or under transmission lines that service the site have been recorded, the staff concludes gray bats routinely forage at these locations based on habitat preferences and proximity to known active summer roost caves.

4.2 Aquatic Biota

Federally listed aquatic biota that could potentially reside in the vicinity of the WBN site include freshwater mussels (pink mucket mussel [*Lampsilis abrupta*], Eastern fanshell pearlymussel [*Cyprogenia stegaria*], rough pigtoe [*Pleurobema plenum*], dromedary pearlymussel [*Dromus dromas*] and orangefoot pimpleback [*Plethobasus cooperianus*]) and the snail darter (*Percina tanasi*).

September 2011

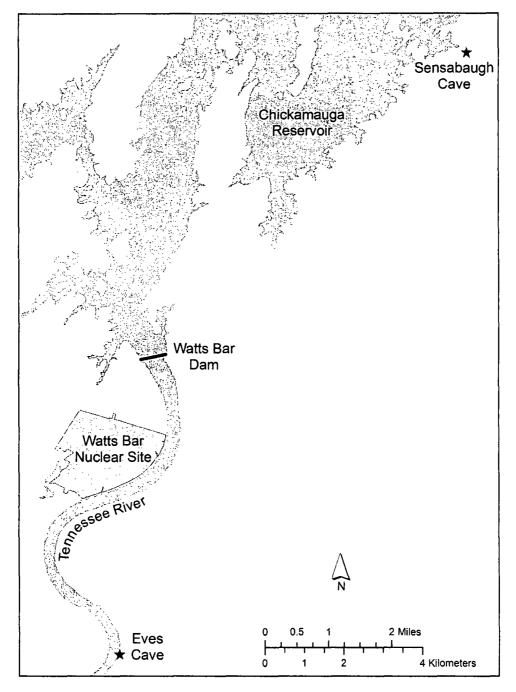


Figure 4-1. Known Caves Occupied by Gray Bats in the Vicinity of the WBN Site

4.2.1 Life History

.

The life histories of the freshwater mussels and the snail darter are discussed separately.

4.2.1.1 Life History of Freshwater Mussels

Mussels spend their entire juvenile and adult lives buried either partially or completely in the substrate. Although mussels are able to change their position and location, they rarely move more than a few hundred yards during their lifetime unless dislodged. Native freshwater mussels have an unusual reproductive cycle. Although some species are hermaphroditic, the species discussed in this BA have separate sexes. The eggs of female mussels move from the ovaries to the gills where fertilization occurs. Sperm is released to the water by male mussels and is carried into the female's body through the incurrent aperture. The gills, or a portion of the gills, serve as brood pouches, called marsupia. The fertilized eggs develop into small larvae, called glochidia, which release into the water. At the time of their release from the marsupia, the glochidia possess only the embryonic stages of a mouth, intestines, a foot, and a heart. If the glochidia do not encounter a passing fish and attach to its gills, skin, or fins then they fall to the bottom and die a short time later. The glochidia usually remain on the fish from one to six weeks (sometimes longer) and then fall off and begin their growth into adulthood. Each mussel species has specific species of fish that serve as a host fish for the glochidia (Parmalee and Bogan 1998). The survival of freshwater mussel species depends not only on the environmental conditions for the mussel, but on the survival and health of the host fish populations.

Pink mucket mussel – Pink muckets prefer free-flowing reaches of large rivers, typically in siltfree and gravel substrates. Fishes that reportedly serve as hosts for glochidia include the smallmouth bass (*Micropterus dolomieu*), spotted bass (*M. punctulatus*), and largemouth bass (*M. salmoides*) as well as freshwater drum (*Aplodinotus grunniens*), and possibly sauger (*Sander canadensis*) (Mirarchi et al. 2004).

Eastern fanshell pearlymussel – Fanshells are usually found on coarse sand and gravel less than 0.9 m (3 ft) deep (Parmalee and Bogan 1998). The glochidial hosts have been reported to be banded sculpin (*Cyprogenia stegaria*), mottled sculpin (*Cottus bairdi*), greenside darter (*Etheostoma blennioides*), Tennessee snubnose darter (*E. simoterum*), banded darter (*E. zonale*), tangerine darter (*Percina aurantiaca*), blotchside logperch (*P. burtoni*), logperch (*P. caprodes*), and the Roanoke darter (*P. roanoka*).

Rough pigtoe – The rough pigtoe is found primarily in large rivers inhabiting a mixture of sand and gravel in areas kept free of silt by moderate to strong currents. A fish host for the glochidia has not been identified (Mirarchi et al 2004).

Dromedary pearlymussel –The dromedary pearly mussel inhabits small-to-medium, lowturbidity, high-to-moderate-gradient streams. In recent studies, FWS has identified the fantail darter (*Etheostoma flabellare*) as the host species. Other potential hosts include the banded darter, tangerine darter (*Percina aurantiaca*), logperch, gilt darter (P. *evides*), black sculpin (*Cottus baileyi*), greenside darter, Tennessee snubnose darter, blotchside logperch, channel darter (*P. copelandi*), and the Roanoke darter (FWS 2010a).

Orangefoot pimpleback – The orangefoot pimpleback is primarily a big river species found in silt-free areas in a mixture of sand and gravel. The species still survives in the tailwaters of some Tennessee River dams, such as Pickwick Dam. A glochidial host has not been identified (Mirarchi et al. 2004).

4.2.1.2 Snail Darter

Snail darters inhabit larger creeks where they frequent sand and gravel shoal areas in lowturbidity water. They also inhabit deeper portions of rivers and reservoirs in areas where there is a current. Snail darters are known to burrow beneath the substrate, possibly for concealment or to conserve energy. Snail darters spawn early with their spawning season extending from February to mid-April in shoal areas. Females contain an average of 600 mature eggs and may mate with several males during the mating season. Eggs hatch in 15 to 20 days depending on the water temperature. The larvae of snail darters may drift considerable distances to deeper water areas downstream, although by late summer they have migrated upstream again toward the spawning habitat. Snail darters prefer small pleurocerid river snails although they may also feed on caddis fly larvae, midge, and blackfly larvae (Etnier and Starnes 1993).

4.2.2 Status of Listed Species

Federally listed aquatic species include freshwater mussels and the snail darter.

4.2.2.1 Freshwater Mussels

The Tennessee River is home to both introduced and native mussel and clam species. Approximately 130 of nearly 300 species of freshwater mussels in the United States live or have lived in waters within Tennessee (Parmalee and Bogan 1998). The numbers of native mussels in the Tennessee River have been declining since the early 1940s when TVA filled the Chickamauga and Watts Bar reservoirs. Based on studies of shell midden material and evaluations conducted before the impoundments were built, ecologists believe a total of 64 freshwater mussel species occurred near the WBN site prior to impoundment of the river (TVA 1986). Surveys conducted by TVA between 1983 and 1997 identified only 30 native mussel species (TVA 1998b).

Because of the loss of diversity in mussel species, the State of Tennessee created a freshwater mussel sanctuary in Chickamauga Reservoir in the vicinity of the WBN site. The freshwater

mussel sanctuary, in which harvesting mussels is illegal, currently extends 16 km (10 river mi from TRM 520.0 to TRM 529.9) (TVA 1998a). Figure 4-2 shows the extent of the freshwater mussel sanctuary, as well as the approximate locations of the mussel beds and the locations of TVA's mussel sampling stations.

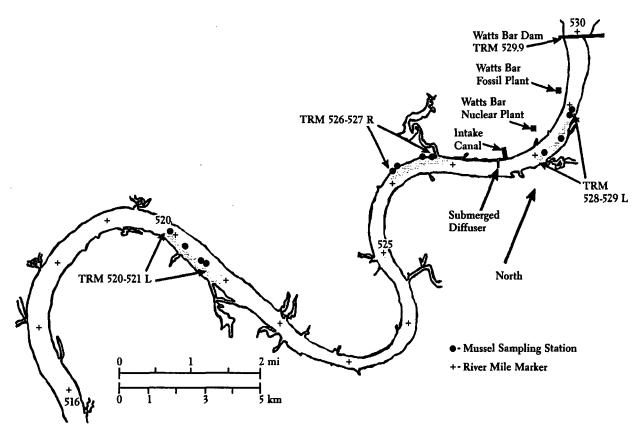


Figure 4-2. Mussel Beds and Monitoring Stations (TVA 1998b)

TVA has monitored three known concentrations of mussels (mussel beds) within this sanctuary since 1983. The beds are all located on submerged gravel and cobble bars in water 2.7 m to 6.4 m (9 ft to 21 ft) deep (TVA 2010b). The furthest bed downstream is located at TRM 520 to TRM 521 on the left descending bank of the river. This bed is 10 km (6 mi) downstream of the WBN site and on the opposite side of the river. A second bed is roughly from TRM 526 to TRM 527 on the right descending bank, and the third from TRM 528 to TRM 529 on the left descending bank (TVA 1998b). The most recent data reported is from surveys from 2010 (TVA 2011a, 2011c).

September 2011

Table 4-1 provides the results of 15 mussel surveys over a period of 14 years (1983-1997) adjacent to or downstream of the site between TRM 520 and TRM 529.2. The table includes only those species considered in this BA. TVA sampled the same locations in 2010 but did not observe any of the listed species (TVA 2011a), with the exception of a single pink mucket mussel.

Species	Common Name	1983 (Sep/Nov)	1984 (Jul/Nov)	1985 (Jul/Oct)	1986 (Jul/Oct)	1988 (July)	1990 (July)	1992	1994	1996 (July)	1997 (July)	1997 at TRM 529.2 (TVA 1998a)
Lampsilis abrupta	Pink mucket	3/7	6/2	1/7	6/2	12	4	6	2	4	0	1
Cyprogenia stegaria	Eastern fanshell	2/1	0/1	1/0	0/0	0	0	0	0	0	0	0
Dromus dromas	Dromedary pearlymussel	1/0	0/0	0/0	0/0	0	0	0	0	0	0	0
Pleurobema plenum	Rough pigtoe	1/1	2/0	1/0	0/0	0	0	0	0	0	0	0
Plethobasus cooperianus	Orangefoot pimpleback	0/0	0/0	0/0	0/0	0	0	0	0	0	0	0

Table 4-1.	Results of 15 Native Mussel Surveys from TRM 520 to TRM 528.9 (includes of	one
	survey from TRM 529.2)	

Pink mucket mussel – The FWS designated the pink mucket mussel as endangered in 1976 (41 FR 24062) and wrote a recovery plan in 1985 (FWS 1985). Historically, this species inhabited the entire reach of the Tennessee River across northern Alabama. Currently, it occurs only in the riverine reaches downstream of Wilson Dam in Tennessee and Guntersville Dam in Alabama. However, FWS considers the species to be uncommon to rare. Researchers report specimens younger than 10 years of age as rare in the Wilson and Guntersville dam tailwaters. TVA found the pink mucket in the vicinity of the WBN site during every mussel survey from 1986 to 1997, although the number of specimens was never more than 10 (1988) in the surveys from TRM 528.2 to TRM 528.9 (TVA 1998b) as shown in Table 4-1. The occurrence data provided by TVA (TVA 2010a) indicated that nine specimens were found in the 1990 survey, six specimens in the 1992 survey as well as two specimens in the vicinity of the SCCW discharge (TRM 529.2). The most recent sighting was of a single individual located between TRM 526 and 527 during the most recent survey conducted in 2010 (TVA 2011a).

Eastern Fanshell Pearlymussel – The FWS has listed the Eastern fanshell pearlymussel, also known simply as the fanshell, as endangered since 1990 (55 FR 25591). According to the Fanshell Recovery Plan (FWS 1991), the species is known from only three reproducing populations. The closest population to the WBN Site is in the Clinch River in Tennessee, although it also inhabits the Green and Licking rivers in Kentucky. This species generally is

distributed in the Tennessee and Cumberland river systems. The fanshell is generally considered a big river species, though it also may be found inhabiting shallow, unimpounded upper stretches of the Clinch River, and in unimpounded portions of the Tennessee and Cumberland rivers. Researchers think fanshells may be reproducing below Pickwick Landing Dam on the Tennessee River (Parmalee and Bogan 1998). Many factors have caused the decline of this species, including impoundment, navigation projects, water quality degradation, and other forms of habitat alternation such as gravel and sand dredging. These habitat modifications either directly affected the species or reduced or eliminated the fish hosts (55 FR 25591). TVA last found the fanshell in 1985 in the mussel bed nearest the WBN site (TRM 528.2 to TRM 528.9) (TVA 1998b). In addition, three specimens were observed in 1983 and a single specimen in 1984. The occurrence data provided by TVA (TVA 2010a) indicated that a single individual was reported from survey years 1983 to 1984 and that two individuals were confirmed from a survey in 1983.

Dromedary Pearlymussel – The FWS listed the dromedary pearlymussel as endangered in 1976 throughout its entire range in Kentucky, Tennessee, and Virginia (41 FR 24062), and its recovery plan was published in 1983 (FWS 1983a). This species was historically widespread in the Cumberland and Tennessee river systems. The dromedary pearlymussel commonly is found near riffles on sand and gravel substrates with stable rubble. Individuals also have been found in slower waters and up to a depth of 5.5 m (18 ft). Most historic populations apparently were lost when the river sections they inhabited were impounded. The more than 50 impoundments on the Tennessee and Cumberland Rivers eliminated the majority of riverine habitat for this species in its historic range. TVA did not find the dromedary pearlymussel in the bed closest to the WBN site (TRM 528.2 to TRM 528.9) in surveys conducted between 1983 and 1997, but it did find one specimen in the bed located at TRM 520.0 to TRM 520.8 once in 1983 (TVA 1998a). The occurrence data provided by TVA did not show this siting (TVA 2010a).

Rough Pigtoe – The FWS listed the rough pigtoe as endangered in 1976 (41 FR 24062), and published a recovery plan in 1984 (FWS 1984a). Researchers have identified extant populations in the Tennessee River tailwaters of Wilson Dam, where they are very rare, and possibly in the tailwaters of Guntersville Dam (Mirarchi et al. 2004). During surveys conducted near the WBN site, TVA found a single rough pigtoe in each of two surveys in 1983 and two in the early survey of 1984. TVA reported a single individual rough pigtoe as recently as 1985 in the mussel bed closest to the site (TRM 528.2 to TRM 528.9). The occurrence data from TVA (TVA 2010a) indicated the presence of only one specimen from the surveys conducted between 1983 and 1984 at TRM 528.9.

Orangefoot Pimpleback – The FWS has listed the orangefoot pimpleback, also known as the Cumberland pigtoe (Mirarchi et al. 2004), as endangered since 1976 (41 FR 24062), and a recovery plan was published in 1984 (FWS 1984b). The orangefoot pimpleback is primarily a big river species found in silt-free areas in a mixture of sand and gravel. The species still survives in the tailwaters of some Tennessee River dams, such as Pickwick Dam. TVA has not

September 2011

found the orangefoot pimpleback near the WBN site during surveys conducted in 1983 or since that time (TVA 1998b). The occurrence data provided TVA shows that the nearest occurrence of the orangefoot pimpleback was at TRM 595.0 in Watts Bar Reservoir in 1978 (TVA 2010a).

4.2.2.2 Snail Darter

The snail darter was classified as endangered on October 9, 1975 (40 FR 47506) and was reclassified to threatened on July 5, 1984 (49 FR 27510). The FWS wrote a recovery plan in 1979, and updated it in 1982 (FWS 1983b). FWS believes that snail darters originally inhabited the main stem of the Tennessee River and possibly ranged from the Holston, French Broad, Lower Clinch, and Hiwassee Rivers downstream in the Tennessee drainage to northern Alabama (FWS 1992). Etnier and Starnes (1993) report that it is likely that the snail darter inhabited the main channel of the upper Tennessee River and the lower reaches of its major tributaries; however, impoundments fragmented much of the species' range. In 1973, the snail darter was thought to be restricted to the lower Little Tennessee River, with some additional individuals dispersed into Watts Bar Reservoir below Loudon Dam. In 1975, TVA biologists transplanted snail darters into the Nolichucky River until another jeopardized fish species was found in that vicinity. In 1976, they transplanted snail darters into the lower Hiwassee River and, during 1979 and 1980, into the lower Holston and Middle Elk Rivers. Subsequently, in 1988 and 1989, snail darters were collected from the lower French Broad and lower Holston Rivers, respectively. However, the transplant attempts into the lower Holston and Middle Elk rivers did not appear to be successful (Etnier and Starnes 1993). In 1980, an additional population was discovered (estimated to number between 200 to 400 individuals) in South Chickamauga Creek (between Creek Mile 5.6 in Tennessee [Hamilton County] and Creek Mile 19.3 in Georgia [Catoosa County]) (Etnier and Starnes 1993; TVA 2010a). Biologists also found a few darters in the Tennessee River mainstream just below Chickamauga and Nickajack Dams (FWS 1992). The upper Watts Bar Reservoir contained a population of snail darters, but the population did not appear to be reproducing subsequent to the impoundment of the Tellico Reservoir (Etnier and Starnes 1993). Individuals were found at TRM 591.4 as recently as 1976 and at TRM 597.2 as recently as 1982. They were also found as recently as 1979 in the Little Tennessee River, which empties into the Watts Bar Reservoir. As recently as 1985, snail darters inhabited Sewee Creek (Meigs County), which empties into the Tennessee River just south of the WBN site (TVA 2010a). They were identified as living from Creek Mile 3.2 to Creek Mile 5.7. TVA has not observed snail darters since 1975 in any sampling they have conducted in the upper Chickamauga Reservoir (TVA 1998b; Simmons and Baxter 2009).

5.0 Environmental Effects of WBN Unit 2 on Listed Species

Listed species could potentially be affected by the addition of the second nuclear unit as a result of operational noise, water consumption, entrainment or impingement of fish or fish hosts from the intake or as a result of chemical or thermal discharges to Guntersville Reservoir. The potential environmental impact on the gray bat is discussed separately from that of the aquatic species (freshwater mussels and snail darter).

5.1 Gray Bat

Because gray bats do not occur on the WBN site, the potential affect from WBN Unit 2 operations is minimal. The proximity of caves used by gray bats in summer to the site likely means gray bats forage over the Tennessee River immediately adjacent to the site. In a previous biological opinion for the operation of WBN Units 1 and 2, FWS determined that the discharge of excess heat, chemicals, and radionuclides into the river would likely be the primary threat to this species from the operation of WBN Units 1 and 2 (Widlak 1995). Discharge of radioactive materials, chemicals, and other substances could have detrimental effects on larvae of insect species that make up the gray bats' diet. Standards established within the NPDES permit issued by the State of Tennessee are designed to prevent water quality degradation that would result from unregulated discharge of pollutants into the Tennessee River. The NPDES permit also governs monitoring and testing of discharges to ensure continued compliance with permit requirements.

Operational noise also may preclude use of habitats near the WBN site by gray bats. Gray bats forage while flying over open water, and emit sounds to detect flying insects via echolocation. Bats may avoid noise when foraging (Schaub et al. 2008). Greater mouse-eared bats (*Myotis myotis*) foraged most often in experimental chambers where neither broadband noise, traffic noise, nor noise recorded in a noisy outdoor setting was broadcast. However, unlike gray bats, mouse-eared bats forage by listening for sounds produced by non-flying prey while using echolocation for navigation only. Anthropogenic (i.e., traffic) noise may mask sounds made by ground-dwelling insects, while call frequencies of echolocating bats like the gray bat are above frequencies produced by traffic (Jones 2008). Sound frequencies of operational noise and the degree that operational noise may affect foraging gray bats are not known. However, the portion of the Tennessee River adjacent to the WBN site that might experience operational noise from Units 1 and 2 has not been identified as an especially important foraging area for gray bats. Additionally, the displacement of gray bats from using this portion of the Tennessee River adjacent to the as an especially important foraging area for gray bats. Additionally, the displacement of gray bats populations that spend summers in nearby caves.

September 2011

Therefore, the staff concludes, as did FWS in 1995, that although the operation of WBN Unit 2, within the bounds of the NPDES permit, may affect the Tennessee River, it would not jeopardize the continued existence of the gray bat in the vicinity of the WBN site.

5.2 Freshwater Mussels and Snail Darters

Operations at the WBN Unit 2 site have the potential to affect freshwater mussels and fish in the vicinity of the site as a result of water consumption, entrainment, impingement, and thermal and chemical effects.

5.2.1 Water Consumption

As discussed in Section 3, the maximum annual plant consumption rate (amount of water that will be consumed by WBN Unit 2) represents 0.1 percent of the mean annual flow of the Tennessee River at Watts Bar Dam. This is small and will not measurably affect the habitat available for Federally listed species.

5.2.2 Entrainment and Impingement

The SCCW intake pulls water from the reservoir above Watts Bar Dam. As a result, snail darters or freshwater mussels residing below the dam would not be affected by continued operation of the SCCW.

Although adult mussels are not susceptible to entrainment or impingement by the IPS, the fish host on which the glochidia implants could be entrained or impinged. Hosts for the rough pigtoe and the orange pimpleback have not been identified. The hosts for the pink mucket include smallmouth, spotted, and largemouth bass, as well as freshwater drum and sauger. Less than 10 percent of the larval fish in the intake canal were drum, sauger, or bass (see Table 5-1).

Other fish present in the vicinity of the intakes, including any snail darters potentially present in the Watts Bar or Chickamauga Reservoirs, also could be subject to entrainment and impingement. As shown in Table 5-2, very small numbers of fish are impinged overall by the IPS, with the exception of shad impinged between January 2011 and the first week of March (TVA 2011d). As a result, the NRC staff considers the likelihood that entrainment or impingement from operation of WBN Unit 2 would affect the host for pink mucket glochidia would be minimal. A variety of darters and sculpins are hosts for larval Eastern fanshell pearlymussel and the dromedary pearlymussel. Except for the logperch, which is a host for the Eastern fanshell, the other host fish for these two mussel species are not present based on sampling studies as far back as 1975. Snail darters are not known to be present in the vicinity of the WBN site.

		Percent Composition of Larval Fish Taxa				
	-	Preoperational Operation			rational	
Taxon	Common name	1984	1985	1996	1997	
Aplodinotus grunniens	Freshwater drum	0.1	0.2	0.8	0.4	
Centrachidae	Sunfish	0.9	12.5	7.7	8.2	
Clupeidae	Unidentified shad	97.8	86.4	90.5	84.7	
Dorosoma sp.	Threadfin or gizzard shad	0.09		0.8	0.2	
Morone (not saxatilis)	Bass (not striped)	0.6	0.5	0.09	0.9	
Morone sp.	Bass	0.5	0.5	0.09	5.6	
Source: TVA 1998b						

 Table 5-1.
 Percent Composition of Dominant Larval Fish Taxa Collected in the CCW Intake

 Channel during 1984 and 1985 and 1996 and 1997

Table 5-2.Actual and Estimated Numbers of Fish Impinged at WBN Plant during Sample
Periods from March 1996 through March 1997, March 1997 through October 7,
1997 and during March 2010 through March 2011

			1996 - N h 1997 –				March	n 2010 Mar	ch 2011
-	Actu Num Impin	ber	Total A Estim Num	ated	Perce Compos			T _4_1	
Common	Samp Peri		Samp Peri		Samp Perio		Actual Number	Total Annual Estimated	Percent
Name	1	2	1	2	1	2	Impinged	Number	Composition
Gizzard shad	4	0	41	0	25%	0%	1,172	8,204	60.4%
Threadfin shad	2	0	20	0	12.5%	0%	766	5,362	39.5%
Freshwater drum	3	3	30	31	18.7%	75%	0	0	0%
Channel catfish	1	0	10	0	6.3%	6.3%	0	0	0%
Flathead catfish	1	0	10	0	6.3%	0%	0	0	0%
Bluegill	2	0	20	0	12.5%	0%	0	0	0%
Redear sunfish	1	0	10	0	6.2%	0%	0	0	0%
White crappie	2	0	20	0	12.5%	0%	0	0	0%

	March 1996 - March 1997 and March 1997 – October 1997							March 2010 – March 2011			
- Common	Actu Num Impin	ber	Total A Estim Num	ated	Perc Compo			Total			
	Sampling Period		Sampling Period		Sampling Period		Actual Number	Annual Estimated	Percent		
Name	1	2	1	2	1	2	Impinged	Number	Composition		
Log perch	0	1	0	10	0%	25%	0	10.2	0%		
Inland silverside	0	0	0	0	0%	0%	1		0.1%		
Total	16	4	161	41	100%	100%	1,939	13,573	100%		
Source: TVA	1998a; T	VA 2011	d				· · · · · · · · · · · · · · · · · · ·		,		

Table 5-2. (contd)

5.2.3 Thermal and Chemical Effects

The current NPDES permit issued by the State of Tennessee for Unit 1 specifies limits on the amount of thermal effluent the plant may discharge into the Tennessee River, establishes an active mixing zone, and defines in-stream monitoring and reporting requirements necessary to comply with effluent limitations. The additional increment for flow of the SCCW is approximately 14 percent of the current amount of heat discharged. The measurements and model indicate that the plume rises after hitting the concrete pad located at the end of the discharge, allowing room underneath for fish passage and not directly affecting the freshwater mussels.

In an effort to limit the impact to the mussels in the vicinity of the SCCW discharge, a mussel relocation zone was established that extended 46 m (150 ft) from the right bank and 23 m (75 ft) upstream and downstream of the centerline of Outfall 113. The area was surveyed for mussels in 1997. The only Federally protected mussel identified was a single specimen of the pink mucket. The freshwater mussels that were in an area of 46 m by 46 m (150 ft by 150 ft) at the outlet to the SCCW system (23 m [75 ft] upstream and downstream of the centerline of Outfall 113) were relocated before the startup of the SCCW (TVA 1999). TVA moved these mussels in an effort to prevent adverse effects from operation of the SCCW system discharge. In addition, TVA placed a ramp on the invert of the SCCW outfall to deflect the discharge upward, and away from the bottom of the river (TVA 2004a). The analysis of in-stream data collected by TVA for Outfall 113 showed that heat from the SCCW effluent does not reach the bottom in significant amounts (TVA 2004a).

TVA also conducted field studies to confirm the diffuser performance for Outfall 101 (TVA 1998a). To provide adequate dilution of the plant effluent, TVA permits the diffusers to discharge water only when Watts Bar Dam releases at least 99 m³/s (3,500 cfs). This policy will remain the same when both units are operating. The location and design of the diffuser discharge should not impede fish passage up and down the Tennessee River. Fish (including darters) and other organisms likely would avoid the warmer water, but mussels and benthic organisms would not be able to avoid the elevated temperatures. However, as indicated, the diffuser's plume angles upward at 45 degrees above horizontal in the downstream direction, and as a result, the plume would not have much of an effect on the mussels and other benthic organisms in the area of or immediately downstream of the diffuser.

TVA conducted hydrothermal surveys (combined with ichthyoplankton surveys) in May 2010 to coincide with the period of expected peak abundance of ichthyoplankton and in August 2010 to coincide with the near maximum ambient water temperatures. TVA mapped and tracked the thermal plume from discharge Outfall 113 at a time when there were no releases from the Watts Bar Dam, showing that the plume remained near the surface and spread across the river. During periods of normal release from Watts Bar Dam, the plume remains near the right descending bank. Based on the ichthyoplankton taxa collected, thermal tolerance data, river temperatures, and exposure times, TVA concluded, "there is essentially no risk of thermal damage to ichthyoplankton during no-flow conditions" from the dam (TVA 2011e)

According to NPDES permit requirements, TVA conducts biotoxicity tests (i.e., 3-brood *Ceriodaphnia dubia* survival and reproduction tests and 7-day fathead minnow (*Pimephales promelas*) larval survival and growth tests) on samples of final effluent from Outfalls 101, 102, 112, and 113. The NRC staff reviewed 12 years of toxicity testing data provided in the NPDES permit request (TVA 2009c). The data showed that percentage survival in the highest concentration tested for 96-hour survival was a mean of 92.8 percent for Outfall 101 and 99 percent survival for Outfall 113. Based on the results of these tests and the lack of changes from the quantity of chemicals that would be discharged, the NRC staff determined that the aquatic biota of Chickamauga Reservoir would not be affected by chemical discharges resulting from the additional operation of WBN Unit 2.

5.3 Summary

Based on the information provided in this section of the BA, the staff determines that there would be no adverse impact to threatened and endangered species from noise, cooling tower operation, water consumption, entrainment, impingement, and thermal, and chemical discharge operations of WBN Unit 2.

.

.

·

.

.

6.0 Cumulative Impacts

The NRC staff considered potential past, present, and reasonably foreseeable activities that could have cumulative effects on Federally protected species in conjunction with operating another nuclear unit at the WBN site.

6.1 Terrestrial Species (Gray Bat)

For this analysis, the geographic area of interest includes all of Rhea and Meigs Counties and Iands of Hamilton, Bradley, McMinn, Roane, Anderson, Knox, Blount, and Loudon Counties that occur within 0.8 km (0.5 mi) of the transmission line system that would support WBN Unit 2. Based on the nature of the potential impacts and attributes of the affected terrestrial resources, these counties would bound the area expected to be affected by the operation of WBN Unit 2.

WBN Unit 2 is co-located with WBN Unit 1. Operation of Unit 1 produces a visible vapor plume and operational noise. However, because of the nature of the effects from operating Unit 2, the synergistic effect of operating both units is not expected to affect the gray bat any more than the operation of a single unit.

Little is known about a phenomenon known as white-nose syndrome that has caused massive mortality of many bat species in the northeastern United States. (Cohn 2008). The name comes from a white *Geomyces* fungus that grows on affected bats' muzzles. White-nose syndrome has affected at least six species of bats and has been confirmed in at least eight U.S. states, including Tennessee, and three Canadian provinces (FWS 2010b). The mortality rate of affected bats is high, with bat colony reductions in infected caves over 90 percent. White-nose syndrome afflicts at least six bat species, and it may be affecting gray bats (FWS 2010c). Because little is known about white-nose syndrome, the extent that it may affect the gray bat population is still unknown.

6.2 Aquatic Species

Historically, the Tennessee River was free flowing and flooded annually. Before 1936, the few power dams that obstructed streams in Tennessee backed up relatively small impoundments. In 1936, TVA completed Norris Reservoir, its first reservoir on the Tennessee River. Currently, TVA operates nine dams on the Tennessee River. The dams have fragmented the watershed, and the isolation and stress dams have imposed on tributaries of the river have caused and will continue to cause extirpation of fish (such as the snail darter) and freshwater mussels.

Historically, species introduced after building the dams, over fishing of species such as paddlefish, harvesting of mussels, toxic spills, mining, and agriculture have affected the fish fauna.

Impacts on aquatic biota from operations at both WBN Unit 1 and Unit 2 are difficult for NRC staff to separate, because both units share the same intake and discharge systems. The makeup flow rate through the IPS would be almost twice that for the single unit operation. The intake flow rate for the SCCW when both units are operating would be less than that for operating a single unit. The volume of water returned to the river through the SCCW discharge would be less because of greater amounts of water evaporation. Watts Bar Units 1 and 2 together would consume 1.7 m³/s (61 cfs) of water, which is approximately 0.2 percent of the mean flow past the WBN site. This would result in an increase of less than 10 percent from the current consumptive use of WBN Unit 1 (see Table 3.1).

Other facilities also have adverse impacts on the aquatic biota of Watts Bar and Chickamauga Reservoirs by entrainment, impingement, or thermal, chemical, or physical discharges. These facilities include Watts Bar Dam (TRM 529.9), which is immediately upstream of the facility (the SCCW intake is located on the dam); Sequoyah Nuclear Plant, which is located on the Chickamauga Reservoir (TRM 484.5); the Kingston Fossil Plant, which is located at the junction of Emory River and Clinch River (approximately 69 river kilometers [42 river miles]); and Oak Ridge National Laboratory, which is located on the Clinch River (approximately 89 river kilometers [55 river mile]) upstream of Watts Bar Dam. The facility that has the greatest effect on the freshwater mussels would be the Watts Bar Dam. Watters (1999) points to impoundments, dredging, snagging, and channelization as having long-term detrimental effects on freshwater mussels. The impoundments result in silt accumulation, loss of shallow-water habitat, stagnation, pollutant accumulation, and nutrient-poor water.

7.0 Conclusions

The potential impacts of the operation of WBN Unit 2 on Federally protected species near the site have been evaluated. This BA considers the known distributions and records of those species, and the potential ecological impacts of facility operations on those species. Based on this review, the NRC staff reached the following conclusions:

- Operation of proposed Unit 2 at the WBN site may affect foraging for a small number of gray bats. However, the portion of the Tennessee River adjacent to the WBN site that may receive operational noise has not been identified as an especially important foraging area for gray bats. Gray bat avoidance of this portion of the Tennessee River for foraging would not noticeably affect populations that spend summers in nearby caves. Therefore, the staff concludes, as did FWS in 1995, that although the operation of WBN Unit 2 may affect the Tennessee River, it would not jeopardize the continued existence of the gray bat in the vicinity of the WBN Site. Therefore, the NRC staff concludes that direct, indirect, or cumulative impacts from the operation of WNB Unit 2 are not likely to adversely affect the gray bat.
- Operation of the proposed Unit 2 may affect the pink mucket mussel that is known to potentially be present in the vicinity of the WBN site. The impact of entrainment or impingement is not likely to affect the survival of the pink mucket because of the low fraction of water withdrawn and the low demonstrated rates of entrainment and impingement from the intake in the Chickamauga Reservoir. Although thermal discharges may affect the pink mucket, this is unlikely from the discharge of the SCCW as a result of the relocation of freshwater mussels near the outlet of the SCCW discharge system. It is also unlikely at the IPS discharge because of mitigative strategies enacted by the applicant, such as the use of diffusers only when Watts Bar Dam releases at least 99 m³/s (3,500 cfs) and the orientation of the diffuser plume (45 degrees above horizontal in the downstream direction). Further, based on a review of 12 years of toxicity testing data provided in the NPDES permit request (TVA 2009b) it is unlikely that chemical discharges will affect the pink mucket mussel. Thus, the NRC staff concludes that operation of the proposed Unit 2, even in addition to the operation of Unit 1, is not likely to adversely affect the pink mucket.
- Operation of the proposed Unit 2 is not likely to affect the Eastern fanshell mussel because they are likely no longer present in the vicinity of the WBN site. The last Eastern fanshell was found in 1985 in the mussel bed nearest the WBN site (TRM 528.2 to TRM 528.9). It was not seen in any of the following 10 surveys that were conducted in the vicinity or downstream of the WBN site between 1985 and 1997, or in the survey conducted in 2010. Therefore, the NRC staff concludes that operation of WNB Unit 2, even in addition to the operation of Unit 1, will have no effect on the Eastern fanshell mussel.

September 2011

- Operation of the proposed Unit 2 is not likely to affect the rough pigtoe because the species probably is no longer present in the vicinity of the WBN site. The last rough pigtoe was observed in Chickamauga Reservoir near the site in 1985. TVA conducted seven additional surveys of the mussel beds downstream of the WBN site between 1985 and 1997, and one in 2010 without observing a live rough pigtoe mussel. Therefore, the NRC staff concludes that operation of WNB Unit 2 will have no effect on the rough pigtoe mussel.
- Operation of the proposed Unit 2 is not likely to affect the dromedary pearly mussel because they probably are no longer present in the vicinity of the WBN site. The most recent observation of a dromedary pearly mussel occurred in 1983. Additional surveys were conducted annually over the next 14 years, with an additional survey in 2010 and no specimens of the dromedary pearly mussel were identified. Therefore, the NRC staff concludes that operation of WNB Unit 2 will have no effect on the dromedary pearly mussel.
- The orangefoot pimpleback mussel has not been reported from the vicinity of the proposed Unit 2 during any of the surveys conducted since 1983. Therefore, the NRC staff concludes that operation of WNB Unit 2 will have no effect on the orangefoot pimpleback mussel.
- Operation of the proposed Unit 2 is unlikely to affect the snail darter because they have not been observed in Chickamauga Reservoir in the vicinity of the WBN site. The population that was identified as recently as 1985 as living in Sewee Creek from Creek Mile 3.2 to Creek Mile 5.7 could possibly still be located in the creek since no additional studies were found to have been conducted since that time. However, operation of the proposed Unit 2 would be unlikely to affect a population located in Sewee Creek. Therefore, the NRC staff concludes that operation of WNB Unit 2 will have no effect on the snail darter.

8.0 References

40 FR 47506. October 9, 1975. "Amendment Listing the Snail Darter as an Endangered Species". *Federal Register*. U.S. Department of the Interior.

41 FR 17736. April 28, 1976. "Determination that Two Species of Butterflies are Threatened Species and Two Species of Mammals are Endangered Species." *Federal Register.* U.S. Department of the Interior.

41 FR 24062. June 14, 1976. "Endangered and Threatened Wildlife and Plants; Endangered Status for 159 Taxa of Animals." *Federal Register*. U.S. Department of the Interior.

49 FR 27510. November 10, 1975. "Endangered and Threatened Wildlife and Plants: Final Rule Reclassifying the Snail Darter (*Percina tanasi*) from an Endangered Species to a Threatened Species and Rescinding Critical Habitat Designation." *Federal Register.* U.S. Department of the Interior.

55 FR 25591. June 21, 1990. "Endangered and Threatened Wildlife and Plants; Designation of the Freshwater Mussel, the Fanshell as an Endangered Species." *Federal Register.* U.S. Department of the Interior.

76 FR 3392. January 19, 2011. "Endangered and Threatened Wildlife and Plants; Endangered Status for the Sheepnose and Spectaclecase Mussels. Proposed Rule." *Federal Register.* U.S. Department of the Interior.

Brady, J., T. Kunz, M.D. Tuttle, and D. Wilson. 1982. *Gray Bat Recovery Plan.* Fish and Wildlife Reference Service, Denver, Colorado.

Cohn, J.P. 2008. "White-nose Syndrome Threatens Bats." BioScience 58(11).

Endangered Species Act, as amended. 16 USC 1531 et seq.

Etnier, D.A. and W.C. Starnes. 1993. *The Fishes of Tennessee*. University of Tennessee Press, Knoxville, Tennessee.

Harvey, M.J. and E.R. Britzke. 2002. *Distribution and Status of Endangered Bats in Tennessee*. Tennessee Wildlife Resources Agency, Nashville, Tennessee.

Jones, G. 2008. "Sensory Ecology: Noise Annoys Foraging Bats." *Current Biology* 18(23):R1099.

Mirarchi, R., J. Garner, M. Mettee, and P. O'Neil, eds. 2004. *Alabama Wildlife, Volume 2, Imperiled Aquatic Mollusks and Fishes*. University of Alabama Press, Tuscaloosa, Alabama.

NatureServe. 2010. *NatureServe Explorer: An Online Encyclopedia of Life*. Version 7.1. NatureServe, Arlington, Virginia. Accessed July 1, 2010 at http://www.natureserve.org/explorer.

Pacific Northwest National Laboratory (PNNL). 2009. Letter from JA Stegen (Pacific Northwest National Laboratory) to U.S. Nuclear Regulatory Commission dated November 12, 2009. "Final Watts Bar Site Audit Trip Report for JCN J-4261, 'Technical Assistance for Operating License Environmental Review – Watts Bar Unit 2 Reactivation." Accession No. ML100220022.

Parmalee, P.W. and A.E. Bogan. 1998. *Freshwater Mussels of Tennessee*. University of Tennessee Press, Knoxville, Tennessee.

Schaub, A., J. Ostwald, and B.M. Siemers. 2008. "Foraging Bats Avoid Noise." *The Journal of Experimental Biology* 211:3174-3180.

Simmons, J.W. and D.S. Baxter. 2009. *Biological Monitoring of the Tennessee River Near Watts Bar Nuclear Plant Discharge, 2008.* Tennessee Valley Authority, Aquatic Monitoring and Management, Chattanooga, Tennessee. Accession No. ML073510313.

Tennessee Department of Environment and Conservation (TDEC). 2011. *State of Tennessee NPDES Permit No. TN0020168*. Nashville, Tennessee. Accession No. ML11215A099.

Tennessee Valley Authority (TVA). 1972. *Final Environmental Statement, Watts Bar Nuclear Plant Units 1 and 2.* TVA-OHES-EIS-72-9, Office of Health and Environmental Science, Chattanooga, Tennessee. Accession No. ML073470580.

Tennessee Valley Authority (TVA). 1976. *Tennessee Valley Authority Environmental Information Watts Bar Nuclear Plant Units 1 and 2, November 18, 1976.* Chattanooga, Tennessee. Accession No. ML073230776.

Tennessee Valley Authority (TVA). 1986. *Preoperational Assessment of Water Quality and Biological Resources of Chickamauga Reservoir, Watts Bar Nuclear Plant, 1973-1985.* TVA/ONRED/WRF-87/1a. Knoxville, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 1997. Watts Bar Nuclear Plant Supplemental Condenser Cooling Water Project, Thermal Plume Modeling. Norris, Tennessee.

Tennessee Valley Authority (TVA). 1998a. Watts Bar Nuclear Plant Supplemental Condenser Cooling Water Project, Environmental Assessment. Knoxville, Tennessee. Tennessee Valley Authority (TVA). 1998b. Aquatic Environmental Conditions in the Vicinity of Watts Bar Nuclear Plant During Two Years of Operation, 1996-1997. Norris, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 1999. July 1999 Verification Study of Thermal Discharge for Watts Bar Nuclear Plant Supplemental Condenser Cooling Water System. WR99-2-85-143. Norris, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 2004. *Proposed Modifications to Water Temperature Effluent Requirements for Watts Bar Nuclear Plant Outfall 113*. WR2004-3-85-149. Knoxville, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 2005a. Letter from Betsy M. Eiford (Tennessee Valley Authority, Environmental Support Manager) to Ed Polk (Tennessee Department of Environmental Conservation, Manager) dated July 22, 2005, "Tennessee Valley Authority (TVA) - Watts Bar Nuclear Plant (WBN) - NPDES Permit No. TN0020168 - Phase 11 316(b) Rule for Existing Facilities - Proposal for Information Collection for Supplemental Condenser Cooling Water (SCCW) System." Accession No. ML052150033.

Tennessee Valley Authority (TVA). 2005b. *Winter 2005 Compliance Survey for Watts Bar Nuclear Plant Outfall 113 Passive Mixing Zone.* WR2005-2-85-151. Knoxville, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 2006. *Summer 2005 Compliance Survey for Watts Bar Nuclear Plant Outfall 113 Passive Mixing Zone.* WR2005-85-152. Knoxville, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 2007a. Letter from William R. McCollum (Tennessee Valley Authority, Chief Operating Officer) to U.S. Nuclear Regulatory Agency dated August 3, 2007, "Watts Bar Nuclear Plant (WBN) – Unit 2 – Reactivation of Construction Activities." Accession No. ML072190047.

Tennessee Valley Authority (TVA). 2007b. *Summer 2006 Compliance Survey for Watts Bar Nuclear Plant Outfall 113 Passive Mixing Zone.* Knoxville, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 2007c. *Winter 2006 Compliance Survey for Watts Bar Nuclear Plant Outfall 113 Passive Mixing Zone*. Knoxville, Tennessee. Accession No. ML073510313.

Tennessee Valley Authority (TVA). 2008. Final Supplemental Environmental Impact Statement; Completion and Operation of Watts Bar Nuclear Plant Unit 2, Rhea County,

September 2011

Tennessee, submitted to NRC as the TVA Environmental Report for an Operating License, Knoxville, Tennessee.

Tennessee Valley Authority (TVA). 2009a. Letter from Masoud Bajestani (Watts Bar Unit 2, Vice President) to U.S. Nuclear Regulatory Commission dated March 4, 2009, "Watts Bar Nuclear Plant (WBN) Unit 2 – Operating License Application Update." Accession No. ML090700378.

Tennessee Valley Authority (TVA). 2009b. *Watts Bar Nuclear Plant (WBN) - Unit 2 - Final Safety Analysis Report (FSAR)*. Amendment 94, Spring City, Tennessee.

Tennessee Valley Authority (TVA). 2009c. Letter from Darrin Hutchison (Tennessee Valley Authority, Environmental Technical Support Manager) to Vijin Janjic (Tennessee Department of Environment & Conservation, Permit Writer) dated April 15, 2009, "Watts Bar Nuclear Plant (WBN) – National Pollutant Discharge Elimination System (NPDES) Permit No. TN0020168 – Request for Raw Water Treatment Modification." Accession No. ML091190175.

Tennessee Valley Authority (TVA). 2010a. Letter from Masoud Bajestani (Watts Bar Unit 2, Vice President) to U.S. Nuclear Regulatory Commission dated February 25, 2010 in response to NRC letter dated December 3, 2009 and TVA letters dated July 2, 2008, January 27, 2009, and December 23, 2009, "Watts Bar Nuclear Plant (WBN) Unit 2 – Additional Information Regarding Environmental Review (TAC No. MD8203)." Accession No. ML100630115.

Tennessee Valley Authority (TVA). 2010b. Letter from Masoud Bajestani (Watts Bar Unit 2) to U.S. Nuclear Regulatory Commission dated July 2, 2010, "Watts Bar Nuclear Plant (WBN) Unit 2 – Submittal of Additional Information Requested During May 12, 2010, Request for Additional Information (RAI) Clarification Teleconference Regarding Environmental Review (TAC No. MD8203)." Accession No. ML101930470

Tennessee Valley Authority (TVA). 2010c. Letter from Lindy Johnson (Tennessee Valley Authority, Water Permits and Compliance) to Richard Urban (Tennessee Department of Environment & Conservation) dated August 17, 2010, "Tennessee Valley Authority (TVA) - Watts Bar Nuclear Plant (WBN) – NPDES Permit No. TN0020168 – Permit Modification Request – Addition of Unit 2 Operation."

Tennessee Valley Authority (TVA). 2010d. Letter from R.M. Krich (Nuclear Licensing, Tennessee Valley Authority) to U.S. Nuclear Regulatory Commission dated July 6, 2010, "Notification of National Pollutant Discharge Elimination System Permit Renewal." Accession No. ML101890069.

Tennessee Valley Authority (TVA). 2010e. 2009 Annual Non-Radiological Environmental Operating Report. Chattagnooga, Tennessee. Accession No. ML101310204.

Draft NUREG-0498, Supplement 2

Tennessee Valley Authority (TVA). 2011a. Letter from Edwin E. Freeman (Watts Bar Unit 2, Engineering) to U.S. Nuclear Regulatory Commission dated January 4, 2011, "Watts Bar Nuclear Plant (WBN) Unit 2 – Additional Information Related to U.S. Nuclear Regulatory Commission (NRC) Request for Additional Information (RAI) Regarding Environmental Review." Accession No. ML110060510.

Tennessee Valley Authority (TVA). 2011b. Letter from David Stinson (Watts Bar Unit 2) to U.S. 11 Nuclear Regulatory Commission dated May 19, 2011, "Watts Bar Nuclear Plant (WBN) Unit 2 –Intake Pumping Station Water Velocity – Response to Request for Additional Information." Accession No. ML11143A083.

Tennessee Valley Authority (TVA). 2011c. Letter from David Stinson (Watts Bar Unit 2, Vice President) to U.S. Nuclear Regulatory Commission dated March 24, 2011, "Watts Bar Nuclear Plant (WBN) Unit 2 – Additional Information Related to U.S. Nuclear Regulatory Commission (NRC) Regarding Environmental Review." Accession No. ML110871475.

Tennessee Valley Authority (TVA). 2011d. Letter from Edwin E. Freeman (Watts Bar Unit 2 Engineering Manager) to U.S. Nuclear Regulatory Commission dated March 28, 2011, "Watts Bar Nuclear Plant (WBN) Unit 2 – Additional Information Related to U.S. Nuclear Regulatory commission (NRC) Environmental Review." Accession No. ML110890472

Tennessee Valley Authority (TVA). 2011e. Letter from Marie Gillman (Watts Bar Unit 2, Vice President, Acting) to U.S. Nuclear Regulatory Commission dated February 7, 2011, "Submittal of 'Hydrothermal Effects on the Ichthyoplankton from the Watts Bar Nuclear Plant Supplemental Condenser Cooling Water outfall in Upper Chickamauga Reservoir' Report." Accession Nos. ML110400383, ML110400384.

U.S. Fish and Wildlife Service (FWS). 1983a. *Dromedary Pearly Mussel Recovery Plan*. Atlanta, Georgia.

U.S. Fish and Wildlife Service (FWS). 1983b. Snail Darter Recovery Plan. Atlanta, Georgia.

U.S. Fish and Wildlife Service (FWS). 1984a. Rough *Pigtoe Pearly Mussel Recovery Plan*. Atlanta, Georgia.

U.S. Fish and Wildlife Service (FWS). 1984b. Orange-footed Pearly Mussel Recovery Plan. Atlanta, Georgia.

U.S. Fish and Wildlife Service (FWS). 1985. *Recovery Plan for the Pink Mucket Pearly Mussel,* Lampsilis obiculata (*Hildreth, 1828*). Atlanta, Georgia.

7

U.S. Fish and Wildlife Service (FWS). 1991. *Recovery Plan for Fanshell* (Cyprogenia stegaria (= C. irrorata)). Atlanta, Georgia.

U.S. Fish and Wildlife Service (FWS). 1992. "Species Accounts, Snail Darter (Percina (Imostoma) tanasi)." In *Endangered and Threatened Species of the Southeastern United States: The Red Book.* Accessed December 22, 2009 at http://www.fws.gov/cookeville/docs/endspec/snldtrsa.html.

U.S. Fish and Wildlife Service (FWS). 2009. Letter from Mary E. Jennings (Field Supervisor) to U.S. Nuclear Regulatory Commission dated October 29, 2009, "FWS #2009-SL-0885. Watts Bar Nuclear Plant, Unit 2 – Request for list of Protected Species, Rhea County, Tennessee." Accession No. ML0929301820.

U.S. Fish and Wildlife Service (FWS). 2010a. "Dromedary Pearlymussel - *Dromus dromas*." Accessed May 17, 2010 at http://ecos.fws.gov/docs/life_histories/F00K.html.

U.S. Fish and Wildlife Service (FWS). 2010b. *White-Nose Syndrome*. Accessed May 26, 2010 at http://www.fws.gov/WhiteNoseSyndrome/about.html.

U.S. Fish and Wildlife Service (FWS). 2010c. *The White-nose Syndrome Mystery-Something is Killing Our Bats.* Available at http://www.fws.gov/WhiteNoseSyndrome/pdf/White-nose_mystery.pdf.

U.S. Fish and Wildlife Service (FWS). 2011. "Sheepnose (a freshwater mussel) – *Plethobasus cyphyus*)." Accessed March 28, 2011 at http://www.fws.gov/midwest/endangered/clams/sheepnose/SheepnoseFactSheetJan2011.html.

U.S. Nuclear Regulatory Commission (NRC). 1978. *Final Environmental Statement Related to Operation of Watts Bar Nuclear Plant Units Nos. 1 and 2.* NUREG-0498, Washington, D.C. Accession No. ML082540803, ML082560293, ML082560292, ML082560291, ML082560289.

U.S. Nuclear Regulatory Commission (NRC). 1995. *Final Environmental Statement Related to the Operation of Watts Bar Nuclear Plant, Units 1 and 2.* NUREG-0498 Supplement No. 1, Washington, D.C. Accession No. ML081430592.

U.S. Nuclear Regulatory Commission (NRC). 2009. Letter from U.S. Nuclear Regulatory Commission to M.E. Jennings (Field Supervisor, U.S. Fish and Wildlife Service) dated September 2, 2009. "Watts Bar Nuclear Plant, Unit 2- Request for List of Protected Species within the Area under Evaluation for the Operating License Application Environmental Review." Accession No. ML092100088. Watters, G.T. 1999. "Freshwater Mussels and Water Quality: A Review of the Effects of Hydrologic and Instream Habitat Alterations." In *Proceedings of the First Freshwater Mollusk Conservation Society Symposium*. Ohio Biological Survey, Columbus, Ohio.

Widlak, J.C. 1995. *Biological Opinion for the Proposed Operation of the Watts Bar Nuclear Plant-Rhea County, Tennessee.* U.S. Fish and Wildlife Service. Ecological Services Field Office, Cookeville, Tennessee.

.

Appendix G

List of Authorizations, Permits, and Certifications

. .

. .

Appendix G

List of Authorizations, Permits, and Certifications

!

· .

.

Agency	Authority	Phase/Requirement/Status	Activity Covered
U.S. Nuclear Regulatory Commission (NRC)	Title 10 of the Code of Federal Regulations (CFR) Part 50	Preconstruction. Construction Permit CPPR-92 EXP: 31DEC2013.	Permit for construction of a utilization facility.
NRC	10 CFR Part 50	OL Submittal. Updated license application filed 04MAR2009.	Operation of a utilization facility for commercial purposes.
U.S. Fish and Wildlife Service (FWS)	16 U.S.C. §§ 1531 et seq.	SFES. Concurrence. 1995 consultation with FWS, cited in SFES Appendix D, applied to WBN Unit 1 and WBN Unit 2. 2007 SFES also found no impacts.	Consultation concerning potential impacts to Federal threatened & endangered species.
U.S. Department of the Interior (DOI)	42 U.S.C. § 1996; 25 U.S.C. § 3001 et seq.	SFES. Consultation. Consultation not required as SFES did not identify any items of cultural significance to Native American tribes.	Identification, protection, and repatriation of items of cultural significance to Native American tribes.
Federal Aviation Administration (FAA)	14 CFR Part 77	Preconstruction. Notification not required as no activities affect structures over 60 m (200 ft).	Preconstruction letter of notification to FAA results in a written response certifying that no hazards exist or recommending project modification.
U.S Coast Guard	14 U.S.C. §§ 81, 83, 85, 633; 49 U.S.C. § 1655(b).	Preconstruction. Authorization not required as no activities affect navigation.	Navigation markers authorization to protect river navigatio from hazards connected with temporary construction activities in a river.
Tennessee Department of Environment and Conservation	Water Quality Control Act, TCA §§ 69-3-101 et seq.	Preoperation. Certification. TVA will seek any required certification from TDEC prior to issuance of the OL.	Aquatic resource alteration permit for any alteration of the properties of State waters. This permit also serves as a Section 401 water quality certification, which is required prior to seeking a Federal permit or license, including an operating license from the NRC.

Draft NUREG-0498, Supplement 2

1

G-2

2

(TDEC)

≻
σ
σ
O
D.
ž.
12
G

л.

Table G-1. (contd)

.

Agency	Authority	Phase/Requirement/Status	Activity Covered
U.S. Army Corps of Engineers (USACE)	33 U.S.C. § 1344; 33 U.S.C. §§ 1341	Preconstruction. Permit. USACE stated, as listed in SFES Appendix D, that a Section 404 permit is not required as no work requires discharge of dredged or fill material.	Section 404 permit required for discharge of dredged and fill material. A Section 401 certification that the action does not violate state water quality standards is required prior to obtaining a Section 404 permit.
TDEC Air Division	Tennessee Air Quality Act, TCA §§ 68-201-101 et seq. 42 U.S.C. §§ 7401 et seq.	Preconstruction. Construction permit. Permit 957606P held by TVA. EXP: 01JAN2007 Renewal pending. Requested update and consolidation with operating permit 448529 on 23JAN2007.	Construction permit for prevention of significant deterioration of air quality required to construct an air contaminant source.
TDEC Air Division	TCA §§ 68-201-101 42 U.S.C. §§ 7401 et seq.	Preoperation. Operating permit. Permit 448529 held by TVA. EXP: 01SEP2010.	This permit covers emissions from the WBN site for both Unit 1 and Unit 2 equipment. TVA - WBN opted out of major source - Not a Title V Permit.
TDEC Water Division	42 U.S.C. § 1342; TCA §§ 69-3-101 et seq.	Continuing permit requirement. National Pollutant Discharge Elimination System Permit TN0020168 held by TVA. EXP: 31DEC2011.	Facility permit for point source discharges of wastewater to surface waters and in-stream monitoring Unit 1 only - Permit modification request to include Unit 2 was filed in with TDEC in August 2010.
TDEC Water Division	33 U.S.C. §1342; TCA §§ 69-3-101 et seq.	Continuing permit requirement. Industrial Storm Water Multi-Sector General Permit TNR050000 held by TVA. EXP: 14MAY2014.	Permit for discharge of storm water associated with land disturbance and industrial activity.
TDEC Water Division	33 U.S.C. §1342; TCA §§ 69-3-101 et seq.	Preconstruction. Permit. Not required, as no construction activities planned that would result in storm water discharge.	Permit for discharge of storm water associated with construction involving clearing, grading or excavation that result in an area of disturbance of one or more acres, and activities that result in the disturbance of less than one acre if it is part of a larger common plan of development.

.

Table G-1. (contd)

.

Agency	Authority	Phase/Requirement/Status	Activity Covered
TDEC Division of Solid and Hazardous Waste Management (SHW)	Tennessee Solid Waste Disposal Act, TCA §§ 68-211-101 et seq.	Preoperation. Permit. Permit number DML72-103-0025 held by TVA. EXP: N/A.	Site Permit for operation of a Class IV disposal facility (onsite construction & demolition landfill).
TDEC Division of SHW	TCA §§ 68-212	EPA Facility ID TN2640030035 Construction Demolition Landfill Permit Number DML 721030025 EXP: N/A.	Transportation of waste.
Alabama Department of Environmental Management (ADEM)	ADEM Admin. Code R. 335-14	Ongoing. Permit. Operation Permit AL2-640-090-005 held by TVA. EXP: 06MAY2011.	Storage of hazardous waste at the hazardous waste storage facility in Muscle Shoals, AL.
TDEC Division UST or Solid and Hazardous Waste	TCA §§ 68-212	Preconstruction/operation. Permit. Not required as no underground storage tanks as defined by TDEC.	Installation/operation of underground storage tanks that store regulated substances.
Tennessee Historical Commission (THC) (State Historic Preservation Officer)	16 U.S.C. §§ 470 et seq. 36 CFR Part 800	Preoperation. Consultation. Consultation with THC completed and documented in SFES Appendix D (TVA ER 2008).	Review and analysis of cultural and historic resources, including completion of National Historic Preservation Act of 1966, as amended, Section 106 consultation.
Tennessee Public Service Commission		Operation. Certification not required.	Certificate of public convenience and necessity.

Agency	Authority	Phase/Requirement/Status	Activity Covered		
TVA	Executive Order 11514 (Protection and Enhancement of Environmental Quality) 40 CFR Parts 1500-1508	SFES. Completed.	Protect and enhance the quality of the environment; develop procedures to ensure the fullest practicable provision of timely public information and understanding Federal plans and programs that may have potential environmental impacts that the views of interested partie can be obtained.		
TVA	Executive Order 11988 (Floodplain Management) TVA Procedure for Compliance With NEPA, Section 5.7	SFES. Completed.	Floodplain impacts to be avoided to the extent practicable.		
TVA	Executive Order 11990 (Protection of Wetlands) TVA Procedure for Compliance With NEPA, Section 5.7	SFES. Completed.	Requires Federal agencies to avoid any short- and long- term adverse impacts on wetlands wherever there is a practicable alternative.		

.

1

.

· · ·

.

· ·

.

ы

Appendix H

.

Severe Accident Mitigation Design Alternatives

July 2011

.

.

۲

.

Appendix H

U.S. Nuclear Regulatory Commission Staff Evaluation of Severe Accident Mitigation Design Alternatives (SAMDAs) for Watts Bar Nuclear Plant Unit 2 in Support of Operating License Application Review

H.1 Introduction

Tennessee Valley Authority (TVA) submitted an initial assessment of severe accident mitigation design alternatives (SAMDAs)¹ for the Watts Bar Nuclear Plant Unit 2 (WBN2) as part of the Final Supplemental Environmental Impact Statement for the Completion and Operation of WBN Unit 2 (TVA 2009). This assessment was based on the most recent WBN Unit 1 probabilistic risk assessment (PRA) available at the time of the assessment modified to reflect expected two unit operation. Subsequently TVA submitted an updated SAMDA assessment utilizing the latest Computer Aided Fault Tree Analysis (CAFTA) based dual unit PRA (TVA 2010a). In addition to these plant-specific PRAs, the SAMDA assessments were based on a plant-specific offsite consequence analysis using the MELCOR Accident Consequence Code System 2 (MACCS2) computer code, as well as insights from the WBN Unit 1 individual plant examination (IPE) (TVA 1992), the WBN Unit 1 individual plant examination of external events (IPEEE) (TVA 1998), and, in the updated assessment, the WBN Unit 2 IPE (TVA 2010b). In identifying and evaluating potential SAMDAs, TVA considered SAMDA candidates that addressed the major contributors to core damage frequency (CDF) and large early release frequency (LERF) at WBN, as well as severe accident mitigation alternative (SAMA) candidates for operating plants which have submitted license renewal applications. TVA identified 283 potential SAMDA candidates in the original submittal and 24 additional SAMDA candidates in the updated submittal. This combined list was reduced to 38 unique SAMDAs by eliminating SAMDAs that (1) are not applicable at WBN because of design differences, (2) have already been implemented at WBN, (3) are similar in nature and could be combined with another SAMDA candidate, (4) have estimated costs that would exceed the dollar value associated with completely eliminating all severe accident risk at WBN or (5) were determined to provide very low benefit. TVA assessed the costs and benefits associated with each of the potential SAMDAs, and concluded that several of the candidate SAMDAs evaluated are potentially cost-beneficial.

Based on a review of the SAMDA assessments, the U.S. Nuclear Regulatory Commission (NRC) issued requests for additional information (RAIs) to TVA by letters dated November 30,

¹ While the TVA submittals generally refer to potential enhancements at WBN2 as severe accident mitigation alternatives (SAMAs), which is the phrase used in license renewal applications, this appendix refers to the potential enhancements as severe accident mitigation design alternatives (SAMDAs). The term SAMDA is the appropriate phrase for the WBN2 assessment since it is for the operating license stage.

2009 (NRC 2009), January 11, 2011 (NRC 2011a), March 30, 2011 (NRC 2011b) and June 13, 2011 (NRC 2011c). Key questions concerned: major plant and modeling changes incorporated within each evolution of the PRA model; justification for the multiplier used for external events; binning and structure of the Level 2 and Level 3 analyses; resolution of peer review findings; basis for the source term used for the release categories; incorporation of computer code corrections into the Level 3 analysis; process for identifying plant-specific SAMDAs to address internal event risk; identification of SAMDAs to mitigate fire risk; and further information on several specific candidate SAMDAs and low cost alternatives. TVA submitted additional information by letters dated July 23, 2010 (TVA 2010c), September 17, 2010 (TVA 2010d), January 31, 2011 (TVA 2011a), May 13, 2001 (TVA 2011b), May 25, 2011 (TVA 2011c), June 17, 2011 (TVA 2011d), June 17, 2011 (TVA 2011e), September 16, 2011 (TVA 2011f), and October 17, 2011 (TVA 2011g). In response to the RAIs, TVA provided: additional information regarding the PRA model development and resultant changes to dominant risk contributors to CDF; additional justification for the treatment of external events; a more detailed description of the Level 2 and Level 3 analyses; justification for the release categories and associated consequence development; information on resolution of peer review findings; information on 31 additional SAMDA candidates; additional information regarding several specific SAMDAs; and the impact of uncertainty on the Phase I screening of SAMDAs. The responses also included revised results of the SAMDA analysis (incorporating updated computer codes, revised release category characterization, a revised external events multiplier and a revised Level 3 consequence analysis) based on several corrections/changes to the SAMDA analysis contained in the original and updated submittal (TVA 2011a, TVA 2011f, TVA 2011g). TVA's responses and the revised SAMDA analysis addressed the NRC staff's concerns.

An assessment of the SAMDAs for WBN2 is presented below.

H.2 Estimate of Risk for WBN Unit 2

TVA's estimates of offsite risk at WBN Unit 2 are summarized in Section H.2.1. The summary is followed by the NRC staff's review of TVA's risk estimates in Section H.2.2.

H.2.1 TVA's Risk Estimates

Two distinct analyses are combined to form the basis for the risk estimates used in the SAMDA analysis: (1) the WBN Level 1 and 2 dual unit PRA model, which is updated from the Unit 2 IPE, and (2) a supplemental analysis of offsite consequences and economic impacts (essentially a Level 3 PRA model) developed specifically for the SAMDA analysis. The updated SAMDA analysis is based on the most recent WBN Level 1 and Level 2 PRA models available at the time of the assessment, referred to as the WBN_U1_U2_FLOOD_SAMA model (TVA 2010a). This model is referred to as the SAMDA model throughout this appendix. The scope of the WBN PRA does not include external events.

The WBN2 CDF is approximately 1.7 x 10⁻⁵ per year for internal events as determined from quantification of the Level 1 PRA model. The CDF is based on the risk assessment for internally-initiated events, which includes internal flooding. TVA did not include the contribution from external events in the WBN risk estimates; however, it did account for the potential risk

Appendix H

reduction benefits associated with external events by multiplying the estimated benefits for internal events by a factor of 2. This factor was subsequently increased to 2.28 in response to an NRC staff RAI (TVA 2011a). This is discussed further in Sections H.2.2 and H.6.2.

The breakdown of CDF by initiating event is provided in Table H-1. As shown in this table, events initiated by loss of offsite power (LOOP) and internal floods are the dominant contributors to CDF. Station blackout (SBO) sequences, a subset of sequences initiated by LOOP, make up 27 percent (4.7×10^{-6} per year) of the CDF while anticipated transient without scram (ATWS) sequences make up approximately 4 percent (6.2×10^{-7} per year) of the CDF (TVA 2011a).

Initiating Event	CDF (Per Year)	% Contribution to CDF ¹
Loss of Offsite Power (Grid Related)	3.2 x 10 ⁻⁶	19
Loss of Offsite Power (Plant Centered)	2.8 x 10 ⁻⁶	16
Total Loss of Component Cooling Unit 2	1.6 x 10 ⁻⁶	10
Loss of Offsite Power (Weather Induced)	1.1 x 10 ⁻⁶	6
Flood Event Induced by Rupture of Raw Cooling Water (RCW) Line in room 772 0 – A8	1.1 x 10 ⁻⁶	6
Flood Event Induced by Rupture of RCW Line in room 772 0 – A9	1.1 x 10 ⁻⁶	6
Total Loss of Emergency RCW (ERCW) Cooling	9.6 x 10 ⁻⁷	6
Small Loss of Coolant Accident (LOCA) Stuck Open Safety Relief Valve	6.5 x 10 ⁻⁷	4
Flood Event Induced by Rupture of high pressure fire protection (HPFP) in Common Areas of the Auxiliary building	3.2 x 10 ⁻⁷	2
Turbine Trip	3.0 x 10 ⁻⁷	2
Others (each 1% or less)	4.1 x 10 ⁻⁶	24
Total CDF (internal events)	1.72 x 10 ⁻⁵	100

Table H-1. WBN2 Core Damage Frequency for Internal Events²

¹May not total to 100 percent due to round off.

•

² Information provided in response to NRC staff RAIs (TVA 2010a, 2011a).

The Level 2 portion of the SAMDA model represents an updated version of the WBN2 IPE Level 2 model. The IPE model was based on enhancements to NUREG/CR-6595 (NRC 2004a) and included quantification of containment threats resulting from high pressure failure of the reactor vessel and hydrogen deflagrations/detonations as well as additional detail on the treatment of interfacing system loss of coolant accidents (ISLOCAs) and induced steam generator tube rupture (I-SGTR). Two large containment event trees (CETs) were developed: one for SBO and one for non-SBO sequences.

The result of the Level 2 model is a set of four release categories [I - Early Containment Failure (LERF), II - Containment Bypass (BYPASS), III – Late Containment Failure (LATE) and IV – Small Pre-existing Leak (ISERF)] with their respective frequency and one category for intact containment, which is considered to have a negligible release. The frequency of each release category was obtained by summing the frequency of the individual Level 2 sequences assigned to each release category. The results of this analysis for WBN2 are provided in Table 2.a.iv-1 of the January 31, 2011 RAI responses (TVA 2011a). The four release categories were characterized by a total of eleven representative scenarios with their associated release parameters (source terms, release heights, release times and release energies). The source terms for the representative scenarios were based on a SEQSOR emulation spreadsheet methodology. The release parameters for the eleven representative sequences are provided in Table 2.a.iv-5 of the June 17, 2011 RAI responses (TVA 2011d).

The offsite consequences and economic impact analyses use the WinMACCS code, the current version of the MACCS2 code, to determine the offsite risk impacts on the surrounding environment and public. Inputs for these analyses include plant-specific and site-specific input values for core radionuclide inventory, source term and release characteristics, site meteorological data, projected population distribution (within an 80-kilometer [50-mile] radius) for the year 2040, emergency response evacuation modeling, and economic data. The magnitude of the onsite impacts (in terms of clean-up and decontamination costs and occupational dose) is based on information provided in NUREG/BR -0184 (NRC 1997a).

The consequence analysis was performed for each of the eleven representative scenarios and the results in terms of person-rem and off-site economic consequence weighted by the contribution each representative scenario makes to the release category to obtain the consequences for the four release categories. This average consequence for the release category times the frequency of the release category yields the annual population dose and offsite economic consequence for each release category.

TVA estimated the dose to the population within 80 kilometers (50 miles) of the WBN site to be approximately 0..20 person-sievert (Sv) (20.0 person-rem) per year (TVA 2011f). The breakdown of the total population dose by release category is summarized in Table H-2. Late containment over-pressure failure is the dominant contributor to population dose risk at WBN2.

Containment Release Category	Population Dose (Person-Rem ¹ Per Year)	Percent Contribution		
I - Early Containment Failure (LERF)	3.7	19		
II - Containment Bypass (BYPASS)	0.8	4		
III – Late Containment Failure (LATE)	14.1	71		
IV – Small Pre-existing Leak (ISERF)	1.2	6		
V – Intact Containment (Intact)	negligible	negligible		
Total	20.0 ²	100		

Table H-2. Breakdown of Population Dose by Containment Release Category

One Person-Rem = 0.01 person-Sv

²Total is not equal to the sum of the above due to round off

H.2.2 Review of TVA's Risk Estimates

TVA's determination of offsite risk at WBN Unit 2 is based on the following major elements of analysis:

- the Level 1 and 2 risk models that form the bases for the WBN Unit 2 IPE submittal (TVA 2010b), the external event analyses of the WBN Unit 2 IPEEE submittal (TVA 2010e), and the modifications to the IPE model that have been incorporated into the latest WBN Unit 2 model, WBN_U1_U2_FLOOD_SAMA, and
- the WinMACCS analyses performed to translate fission product source terms and release frequencies from the Level 2 PRA model into offsite consequence measures (essentially this equates to a Level 3 PRA).

Each of these analyses was reviewed to determine the acceptability of TVA's risk estimates for the SAMDA analysis, as summarized below.

The NRC staff's review of the WBN2 IPE is described in an NRC report dated August 12, 2011 (NRC 2011d). Based on a review of the IPE submittal and responses to RAIs, the NRC staff found that TVA's definition of vulnerability and its conclusion that no severe accident vulnerabilities exist at WBN2 to be reasonable. Consequently the staff found the WBN2 IPE to be consistent with the intent of Generic Letter (GL) 88-20 "Initiation of the Individual Plant Examination for Severe Accident Vulnerabilities – 10 CFR [Title 10, *Code of Federal Regulations*] 50.54(f)," (NRC 1988), subject to the completion of the applicable commitments and TVA's plan to confirm that, prior to Unit 2 start up, the Unit 2 PRA model matches the as-

built, as-operated plant. Although no severe accident vulnerabilities were identified in the WBN2 IPE, the IPE did cite cost beneficial SAMDAs identified in the original Final Supplemental Environmental Impact Statement submittal (TVA 2009). Each of these improvements is addressed by a SAMDA in the current evaluation and is discussed further in Section H.3.2.

The CDF value from the WBN2 IPE submittal $(3.3 \times 10^{-5} \text{ per year})$ is near the average of the CDF values reported in the IPEs for other Westinghouse 4-loop plants. Figure 11.6 of NUREG-1560 shows that the IPE-based total internal events CDF for these plants ranges from 3×10^{-6} to 2×10^{-4} per year, with an average CDF for the group of 6×10^{-5} per year (NRC 1997b). It is recognized that other plants have updated the values for CDF subsequent to the IPE submittals to reflect modeling and hardware changes. The current internal event CDF result for WBN2 (1.7 $\times 10^{-5}$ per year, including internal flooding) is comparable to that for other plants of similar vintage and characteristics.

Since WBN Units 1 and 2 are essentially identical, the history of both units' PRA models is relevant to this evaluation. There have been eight revisions to the WBN PRA model since the 1992 WBN1 IPE submittal, including the 2009 dual unit model which utilized the CAFTA PRA software, whereas earlier versions utilized the RISKMAN PRA software. A description of the most significant changes made to each revision was provided by TVA in the original and updated assessments and in response to NRC staff RAIs (TVA 2009, TVA 2010a, TVA 2010c, TVA 2011a and TVA 2011b), and is summarized in Table H-3.

A comparison of internal events CDF between the 1994 Unit 1 IPE update and the initial Unit 2 PRA model (WBN4SAMA) indicates a decrease of approximately 80 percent (from 8.0×10^{-5} per year to 1.5×10^{-5} per year). This reduction is attributed to the resolution of various 2001 peer review F&Os. The approximate factor of two increase for the Unit 2 IPE (from 1.5×10^{-5} per year to 3.3×10^{-5} per year) is attributed primarily to the removal of credit for LOOP recovery factors from switchyard cross-ties which are no longer feasible. The factor of two reduction in CDF from the Unit 2 IPE (3.3×10^{-5} per year) to the SAMDA model (1.7×10^{-5} per year) is attributed to taking credit for cross-tying Unit1 and Unit 2 shutdown boards and recovery of total loss of ERCW by use of a portable diesel driven fire pump (TVA 2011a). A comparison of the contributors to the total CDF between theWBN4SAMA model and the current SAMDA model indicates that some have increased while others have decreased. A summary listing of those changes that resulted in the greatest impact on the internal events CDF and, in particular, the changed risk profile was provided in response to an NRC staff RAI and is included in Table H-3 (TVA 2011a, TVA 2011b).

Table H-3. WBN PRA Historical Summary

.

PRA Version	Summary of Changes from Prior Model	CDF (per year)
Unit 1 IPE (1992)	Unit 1 IPE Submittal	3.3 x 10 ⁻⁴
Unit 1 IPE Revision 1 (1994)	 Revised success criteria for the component cooling water system to one of two pumps being successful Provided for the use of nitrogen bottles for steam generator power-operated relief valves (PORVs) and auxiliary feedwater (AFW) flow control valves under SBO conditions Revised human reliability analysis (HRA) to reflect updated procedures and training 	8.0 x 10 ⁻⁵
Unit 1 Revision 2 (1997)	 Enhanced recovery from loss of offsite power through use of Unit 2 equipment and changing certain emergency diesel generator (EDG) cooling valves from normally closed to locked open Credited improved operator actions resulting from changes in emergency operating procedures (EOPs) associated with high pressure recirculation Revised component cooling water system (CCS) model to credit Unit 2 pump and reduced loss of CCS initiating event frequency 	4.4 x 10 ⁻⁵
Unit 1 Revision 3 (2001) Unit 1	 Integrated Level 1 and 2 models to allow calculation of LERF Revised seal LOCA model to reflect new high temperature seals Incorporated plant specific data Updated initiating event data 	4.5 × 10 ⁻⁵
Revision 4	 Incorporated latest maintenance rule data Incorporated comments by WBN system engineers 	
Unit 2 WBN4SAMA (2008)	 Revised core damage arrest model in Level 2 to be consistent with Level 1 model Revised bleed and feed success criteria to indicate two PORVs required with one safety injection (SI) pump Added loss of plant compressed air initiating event Revised ventilation system recovery modeling Accounted for dual unit operation by removing credit for Unit 2 component cooling water pumps from Unit 1 model and changing ERCW success criteria. 	1.5 x 10 ⁻⁵

ī.

PRA Version	Summary of Changes from Prior Model	CDF (per year)
Dual Unit WBN_U1_U2_ FLOOD (Nov. 2009)	 Updated PRA model to be dual unit and to use CAFTA software package Developed from WBN4SAMA event trees and fault trees Removed LOOP recovery factors from switchyard cross-ties no longer feasible Replaced previous CETs with updated models 	2.9 x 10 ⁻⁵
Unit 2 IPE WBN_U1_U2_ FLOOD (Feb. 2010)	 Resolved selected findings from Westinghouse Owner's Group (WOG) 2009 review Updated LOOP model so that all batteries were not failed at time zero Corrected basic event coding for turbine-driven auxiliary feedwater (TD AFW) pump failure to start Revised the linking of steam generator condition after core damage to the correct plant damage state 	3.3 x 10 ⁻⁵
Dual Unit WBN_U1_U2_ FLOOD_SAMA (Oct. 2010)	 Prepared for the updated Unit 2 SAMDA analysis Added cross-tie of Unit1 and Unit 2 shutdown boards Credited recovery of total loss of ERCW by use of portable diesel driven fire pump 	1.7 x 10 ⁻⁵

Table H-3. WBN PRA Historical Summary

The Unit 2 IPE is stated to be based on the Unit 1 design and operation as of April 1, 2008. In response to an NRC staff RAI, TVA discussed the design and procedural changes since the IPE 2008 freeze date with potential PRA significance (TVA 2011a). A significant number of mainly procedural changes that were identified in the initial Unit 2 SAMDA assessment have been implemented and incorporated in the current SAMDA PRA. The NRC staff concludes that those changes that are assumed to have not been incorporated into the PRA will tend to reduce the CDF and thus make the current results conservative.

The NRC staff considered the peer reviews performed for the WBN PRA, and the potential impact of the review findings on the SAMDA evaluation. The most relevant review is that performed by the WOG in November 2009. A summary of the results of this peer review is provided in the Unit 2 IPE submittal along with a listing of the peer review findings(TVA 2010b). Of the 326 supporting requirements of the ASME PRA standard, nine were judged to not be applicable, 272 were judged to meet Capability Category (CC) I/II or greater, 19 met CC I, and 26 were judged as not met. In response to a NRC Staff RAI, TVA discussed the status of the peer review findings relative to the SAMDA model (TVA 2011a). While most of the findings have been resolved as part of the updated SAMDA model, a significant number of findings

remain open. These are in two categories: those considered by TVA to be documentation-only issues and those pertaining to internal flooding.

In response to an NRC staff RAI, TVA discussed three specific findings considered by TVA to be documentation related. With regard to the finding concerning the diesel generator load sequencer modeling, additional information from the finding was presented including the reviewer's conclusion that the missing failure modes would be expected to have minimal impact on the PRA results. Also, the peer review indicated that Capability Category II was met. With regard to the finding concerning the lack of simulator observations to support the human reliability analysis, TVA pointed out that the PRA standard required either simulator observations or talk-throughs with the operators. The talk-throughs with several members of the operations staff conducted for the WBN PRA model are considered by TVA to meet the PRA standards requirements. With regard to the finding concerning optimistic mission times used for room heatup calculations, TVA identified those systems or functions for which a mission time of less than 24 hours was assumed. These include Emergency Boration, electric power equipment related to 4-hour battery coping time, Residual Heat Removal, Reactor Protection System (RPS) and Emergency Safety Features Actuation System (ESFAS). The NRC staff considers the mission time used for each of these systems acceptable for determining the need for room cooling.² TVA stated that, except for two cases, for those areas where the heatup analysis showed that the temperatures for affected components/functions exceeded the equipment qualification (EQ) temperature prior to the desired mission time, cooling was considered necessary and included in the model. For Room 757-01, Auxiliary Control Room, the room temperature reaches the EQ temperature of 104 °F at just over 21 hours into the event and peaks at 105.8 °F. Room 757-24, 6.9 kV Shutdown Board Room B reaches 104 °F at 23 hours and exceed this by less than one degree. TVA concludes that these small differences will not lead to failure of the associated equipment in the 24 hour mission time (TVA 2011c, TVA 2011d). The NRC staff agrees with this conclusion.

With regard to the findings concerning the internal flooding analysis, TVA provided, in response to an NRC staff RAI, a general discussion of the open findings including identifying those that could be resolved by additional documentation or supporting analysis and those that represent conservatisms in the flooding CDF (TVA 2011a). Based on the exclusion of recovery actions for many of the important flooding contributors, TVA concludes that the flooding analysis is conservatively bounding for the present application. The NRC staff review of the available information indicates that it is not clear if the overall impact of the resolution of the findings will increase or decrease the flooding CDF. Several findings indicate the results are clearly conservative, while for others the impact of the finding resolution is not clear. Further, additional credit for recovery actions would reduce the flood CDF for those scenarios where recovery can be credited. As discussed below, TVA has addressed the two important flood induced sequences by committing to add flood detection equipment in the rooms where floods are

² In TVA's June 17 submittal (TVA 2011d) it is stated that the mission time for the RPS, ESFAS and instrumentation is 12 hours. Subsequently TVA clarified that this reference to instrumentation was meant to refer to instruments associated with a reactor trip but are not specifically classified as RPS or ESFAS.

They further stated that instrumentation necessary and sufficient to monitor safe shutdown is considered to have a mission time of 24 hours (TVA 2011e).

important contributors (Rooms 772.0-A8 and 772.0-A9). In addition, as discussed below for SAMDAs 70 and 339, TVA has committed to provide the capability to transfer normal compressed air supply to the station nitrogen system. This addresses flooding sequences that cause loss of the station air system. Further, SAMDA identification has considered and adequately disposed of other less important flooding risk contributors. Based on this, the NRC staff concludes that updating the internal flooding analysis to resolve the remaining peer review findings is unlikely to result in any additional cost beneficial SAMDAs.

TVA also indicated that the changes between the Unit 2 IPE model and the SAMDA model were independently reviewed internally by the contractor making the changes, by an independent contractor, and by TVA.

In response to NRC staff RAIs, TVA identified the systems shared between Units 1 and 2, and described the modeling of these systems and how Unit 1 outages potentially impacting these systems are accounted for in the Unit 2 model. WBN Units 1 and 2 share the electric power, ERCW, CCS, plant and control air, and heating, ventilation and air conditioning (HVAC) systems (TVA 2010c). The WBN CAFTA model is described as a single fault tree constructed with systems and components for each unit and common systems modeled. The impact of the unavailability of Unit 1 components/systems with respect to mitigation and to initiating events (unit-specific and dual-unit) is incorporated in the model for Unit 2. Model quantification for each unit accurately tracks the dependent failure for each unit (TVA 2011a). The test and maintenance unavailability of Unit 1 components impacting the Unit 2 CDF includes the unavailability of these components when Unit 1 is operating as well as when it is shutdown. Testing and maintenance (T&M) unavailability is based on Unit 1 experience data. Since it is TVA's practice to perform T&M with the unit on line, the unavailability data include routine testing as well as infrequent but more extensive maintenance activities (TVA 2011b, TVA 2011c, and TVA 2011d).

Given that the WBN internal events PRA model has been peer-reviewed and the peer review findings were all addressed, and that TVA has satisfactorily addressed NRC staff questions regarding the PRA, the NRC staff concludes that the internal events Level 1 PRA model, WBN_U1_U2_ FLOOD_SAMA, is of sufficient quality to support the SAMDA evaluation.

As indicated above, the WBN PRA does not include external events. The SAMDA submittals cite the WBN Unit 1 IPEEE which indicates that the only vulnerability found has been corrected and no longer impacts either unit. The WBN Unit 1 IPEEE was submitted in November 1998 (TVA 1998), in response to Supplement 4 of GL 88-20 (NRC 1991). The Unit 2 IPEEE was submitted in April 2010 (TVA 2010e).

The Unit 2 IPEEE uses the same methodology and to a large extent the same assessment as the Unit 1 IPEEE, subject to validation that the Unit 1 assessments are applicable to the as built Unit 2. This submittal included a summary of the seismic margin analysis, the fire induced vulnerability evaluation (FIVE), and the screening analysis for other external events, all subject to validation for Unit 2 when construction is complete. No fundamental weaknesses or vulnerabilities to severe accident risk in regard to external events were identified in the Unit 1 IPEEE with the exception of one item related to tornado missiles discussed below. No seismic,

fire, high winds, external floods or other external hazard improvements were identified. In a letter dated May 19, 2000, the NRC staff concluded that the licensee's Unit 1 IPEEE process is capable of identifying the most likely severe accidents and severe accident vulnerabilities, and therefore, that the Watts Bar IPEEE has met the intent of Supplement 4 to GL 88-20 (NRC 2000). The NRC staff's review of the WBN2 IPEEE is described in an NRC letter dated September 20, 2011 (NRC 2011e). Based on a review of the IPEEE submittal and responses to RAIs, the NRC staff found that TVA's definition of vulnerability and its conclusion that no severe accident vulnerabilities exist at WBN2 to be reasonable. Consequently the staff found the WBN2 IPEEE to be consistent with the intent of GL 88-20 (NRC 1988), subject to the completion of validation activities to confirm that the assumptions concerning the Unit 2 design are valid for the as-built, as-operated plant.

The WBN Unit 1 IPEEE used a focused scope Electric Power Research Institute (EPRI) seismic margins analysis (EPRI 1991). This method is qualitative and does not provide numerical estimates of the CDF contributions from seismic initiators. For this assessment, the seismic walkdown took advantage of the extensive walkdowns performed prior to the issuance of the WBN Unit 1 low power operating license including: the Corrective Action Program in which the plant structures were reevaluated against more recent seismic criteria, the Hanger and Analysis Update Program, the Integrated Interaction Program, and the Equipment Seismic Qualification program. The components in the safe shutdown equipment list were screened using an overall high confidence of low probability of failure (HCLPF) capacity of 0.3g, the review level earthquake (RLE) value for the plant, and the screening level that would be used for a focused-scope plant. No significant seismic concerns were identified. A small number of maintenance and housekeeping items were noted and corrected (TVA 1998, TVA 2010e).

While the Unit 2 seismic assessment makes considerable use of the Unit 1 assessment, individual aspects are repeated and/or the Unit 1 results were reviewed to confirm that they are applicable to Unit 2. TVA considered this an acceptable approach since the designs of the units are nearly identical and use the same design criteria.

The WNB2 IPEEE did not identify any vulnerabilities due to seismic events or any improvements to reduce seismic risk.

To provide insight into the appropriate estimate of the seismic CDF to use for the SAMDA evaluation, the NRC staff noted that, in the attachments to NRC Information Notice 2010-18, Generic Issue (GI) 199 (NRC 2010), the NRC staff estimated a "weakest link model" seismic CDF for WBN 1 of 3.6 × 10⁻⁵ per year using updated seismic hazard curves developed by the U.S. Geological Survey (USGS) in 2008 (USGS 2008) and requested TVA to provide an assessment of the impact of the updated USGS seismic hazard curves on the SAMDA evaluation (NRC 2011a). The NRC Information Notice referenced the August 2010 NRC document, "Safety/Risk Assessment Results for Generic Issue 199, Implications of Updated Probabilistic Seismic Hazard Estimates in Central and Eastern United States on Existing Plants" (ADAMS Accession No. ML100270582 (package)), that discusses recent updates to estimates of the seismic hazard in the central and eastern United States. Appendix A of that document describes how the seismic CDF estimate can be acceptably derived using various approaches; including a maximum estimate, averaging estimates, and the weakest link estimate. All these

approaches use the plant-specific ground motion characterization (i.e., spectral accelerations at various frequencies and/or peak ground accelerations). For WBN1, the peak ground acceleration estimates derived at 1 Hz, 5 Hz, and 10 Hz. As a result, the peak ground acceleration estimate is equal to the maximum estimate and dominates the weakest link model estimate at 3.6×10^{-5} per year.

In response to the staff request, TVA noted that the Watts Bar site was used as the test case for closure of GI-194, "Implications of Updated Probabilistic Seismic Hazard Estimates" (NRC 2003a) (TVA 2011a). In the staff evaluation supporting the closure of GI-194, the NRC staff used new seismic hazard curves for the East Tennessee Seismic Zone (ETSZ), which includes the Watts Bar site, to develop the updated seismic CDF estimate for the Watts Bar site. Initially, the staff estimated the seismic CDF using the updated peak ground acceleration and derived a value similar to the latest updated value. However, the staff noted that the Watts Bar site's updated seismic spectral acceleration values differed significantly from the design safe shutdown earthquake (SSE) uniform hazard spectrum. In order to account for the difference in the uniform hazard spectrum shape of the new hazard curves, the Watts Bar plant HCLPF capacity of 0.3g was scaled to the spectral acceleration values at 5 hertz (Hz) and 10 Hz, based on the natural frequency range for most structures and equipment in nuclear power plants being below 10 Hz (NRC 2003a). The average of the seismic CDF for these two seismic acceleration values resulted in the seismic CDF of 1.8×10^{-5} per reactor-year for the Watts Bar site. Based on the GI-194 staff analysis, TVA concluded that 1.8×10^{-5} per year is an appropriate estimate of the seismic CDF for use in the WBN2 SAMDA evaluation.

The seismic CDF estimated by the NRC staff for Watts Bar 1 for soil (vs. bedrock – NRC GI-199 estimates CDF for both), using the 2008 USGS seismic hazard curves, for spectral acceleration values of 5 and 10 Hz is 1.3×10^{-5} per year and 2.8×10^{-5} per year, respectively (NRC 2010). The average of the seismic CDF for these two acceleration values is 2×10^{-5} per year. Based on the spectral-averaged seismic CDF of 2×10^{-5} per year using the 2008 USGS data being essentially the same as the spectral-average seismic CDF of 1.8×10^{-5} per year determined for closure of GI-194, the NRC staff agrees that 1.8×10^{-5} per year is an acceptable estimate of the seismic CDF for use in the WBN2 SAMDA evaluation.

For the analysis of plant vulnerability to fire, the WBN Unit 2 IPEEE used the Fire-Induced Vulnerability Evaluation (FIVE) (EPRI 1992) methodology and modified versions of the WBN Unit 2 IPE. The methodology consists of a series of progressive screens. In the first phase of screening, fire areas are screened based on area fire boundary integrity, the absence of safe shutdown components, and the lack of plant trip initiators. The second phase of screening consists of an initial, bounding quantitative analysis followed by a more detailed quantitative evaluation for those areas not screened out based on a fire CDF of 1 x 10⁻⁶ per year. The initial quantification consisted of generating an area specific fire ignition frequency and a conditional core damage probability from the IPE model assuming all components in the fire area were damaged. In the detailed quantification further evaluation was performed which included consideration of fire severity, zones of fire influence, and fire suppression probability. The NRC staff review of the WBN2 IPEEE fire analysis notes that while the approach was somewhat unique and deviated from the traditional FIVE methodology in some respects, the methods used

and the implementation of those methods are adequate to meet the IPEEE objectives. The staff also concluded that the fire analysis incorporated a degree of conservatism (NRC 2011e). The WNB2 IPEEE did not identify any vulnerabilities due to fire events or any improvements to reduce fire risk.

In response to an NRC Staff RAI, TVA provided more information concerning the modified PRA used in the fire evaluation (TVA 2011a). These modifications consisted mainly of changes to conform to the FIVE analysis screening assumptions. The changes were unique to the fire analysis or of little importance to non-fire scenarios. It is noted that the changes made to the Unit 2 model to create the SAMDA model were not incorporated in the modification used in the fire analysis. This results in a degree of conservatism in the FIVE results. This is discussed more below.

The dominant fire areas, defined as those having a fire CDF greater than 3×10^{-7} per year, and their contributions to the fire CDF are listed in Table H-3. The total fire CDF is not given in the IPEEE submittal, but the total for those subjected to the final stage of screening is stated to be 9.3×10^{-6} per year (TVA 2011a).

Fire Area Description	CDF (per year).
Main Control Room	9.7 x 10 ⁻⁷
Corridor in Auxiliary Building (713.0-A1 & A2)	9.3 x 10 ⁻⁷
125V Vital Battery Board Room IV	8.4 x 10 ⁻⁷
Refueling Room	7.5 x 10 ⁻⁷
Auxiliary Instrument Room 2	6.8 x 10 ⁻⁷
Turbine Building	5.9 x 10 ⁻⁷
Corridor (737.0-A1B)	5.1 x 10 ⁻⁷
Corridor (737.0-A1A)	4.2 x 10 ⁻⁷
Auxiliary Building Roof	3.1 x 10 ⁻⁷

Table H-3. Dominant Fire Areas and Their Contribution to Fire CDF¹

¹Information provided in responses to NRC staff RAIs (TVA 2010e and TVA 2011a).

In response to an NRC staff RAI, TVA identified 15 conservatisms and 8 non-conservatisms in the WBN fire analysis (TVA 2011a). The conservative items included: most fire ignition frequencies, triple counting fires in one area, conservative fire severity factors in the control room, conservative fire suppression failure probabilities, conservative treatment of core damage given control room evacuation, the assignment of fire impacts to the individual fire scenarios, and not incorporating model changes credited in the SAMDA model, principally recovery actions

for station blackout and loss of ERCW. Non-conservatisms included: not modeling fire propagation between analysis volumes, not modeling some spurious equipment actuations, assumption that reactor coolant pump (RCP) seal return valves would not transfer closed as a result of fires, and not including the increased probability of the 182 gallons per minute (gpm) per pump seal LOCA on loss of seal cooling. TVA concludes that the conservatisms outweigh the non-conservatisms so that the fire contribution to risk is less than that given by the sum of the final fire screen results.

TVA used a fire CDF of 4.1×10^{-6} per year for the SAMDA evaluation. This value is based on the sum of the detailed CDF quantification of the previously unscreened fire areas as given in the IPEEE and updated in response to an NRC staff RAI, or 9.3×10^{-6} per year as discussed previously (TVA 2010e, TVA 2011a), which is reduced by a factor of 2.29 to account for the conservatisms in the fire analysis. This factor only accounts for the conservatisms in the PRA model used to evaluate the conditional core damage probabilities compared to the SAMDA model and does not account for conservatisms in the FIVE methodology or those conservatisms discussed above. This factor is the ratio of the internal events CDF of 2.68 x 10^{-5} per year given by the modified PRA used for the fire analysis with no fire induced failures nor flood failures to the CDF of 1.17×10^{-5} per year given by the October 2010 SAMDA PRA for internal events only, excluding floods (TVA 2011a). Based on the conservatisms in the fire analysis.³

The IPEEE analysis of high winds, floods, and other (HFO) external events followed the screening and evaluation approaches described in Supplement 4 of GL 88-20 (NRC 1991) and focused on demonstrating that the design and construction of the plant in the HFO areas met the 1975 Standard Review Plan Criteria (NRC 1975). During the HFO walkdown it was noted that there was an opening on the Unit 2 side of the Auxiliary Building that had the potential for allowing tornado missiles to penetrate into the auxiliary building and damage safety related equipment. A corrective action to design and install a steel shield to eliminate this concern for both Units 1 and 2 was completed. TVA did not identify any other vulnerabilities and did not identify any improvements. Based on this result, TVA did not consider specific SAMDAs for these events.

³An alternative method of assessing the potential conservatism in the TVA fire CDF due to the PRA model used for the SAMDA analysis is to ratio the total internal events CDF of the PRA that was the basis for the WBN2 fire analysis to the internal event CDF of the PRA used for the SAMDA analysis. Using the IPE CDF of 3.3E-05 per year (TVA 2010b) as the internal events CDF on which the fire CDF was based and the WBN_U1_U2_FLOOD_SAMA CDF of 1.7E-05 per year results in a fire CDF reduction factor of 3.3E-05/1.7E-05 = 1.94. This yields an adjusted WBN2 fire CDF of 9.3E-06/1.94 = 4.8E-06 per year versus TVA's value of 4.1E-06 per year. While higher than TVA's value, the difference is well within the approximate nature of the adjustment methodology. Use of the higher value of fire CDF would increase the external events multiplier (and, therefore, the potential benefit), but would not change the ultimate disposition of the various SAMDAs. The staff considers TVA's result, but not necessarily the approach, as acceptable for use in the SAMDA evaluations.

In the original and updated SAMDA submittals, TVA assumed that the estimated benefits from external events was equivalent to the estimated benefits from internal events. This was based on the SAMA submittals for license renewal applications for several other four loop Westinghouse plants. Accordingly, TVA applied an external events multiplier of 2 to the internal events results to account for the additional benefits from fire, seismic and other external events. In an RAI, the NRC staff questioned the basis for this multiplier and asked TVA to use a higher multiplier that is supported by WBN specific information relative to the seismic and fire contributors to CDF (NRC 2011a). In response to the RAI, TVA developed a new external events multiplier of 2.28 based on the aforementioned results (based on a seismic CDF of 1.8 x 10⁻⁵ per year, a fire CDF of 4.1 x 10⁻⁶ per year, and an internal events CDF of 1.7 x 10⁻⁵ per year) (TVA 2011a). In a revised SAMDA analysis submitted in response to the RAI, TVA multiplied the benefit that was derived from the internal events model by a factor of 2.28 to account for the combined contribution from internal and external events. The NRC staff agrees with the applicant's overall conclusion concerning the impact of external events and concludes that the applicant's use of a multiplier of 2.28 to account for external events is reasonable for the purposes of the SAMDA evaluation.

The NRC staff reviewed the general process used by TVA to translate the results of the Level 1 PRA into containment releases, as well as the results of the Level 2 analysis, as described in the SAMDA submittal and in response to NRC staff requests for additional information (TVA 2011a, TVA2011b, TVA2011c, TVA 2011d). As indicated above, the Level 2 portion of the SAMDA model represents an updated version of the WBN2 IPE Level 2 model. The IPE model was based on enhancements to NUREG/CR-6595 (NRC 2004a) and included quantification of containment threats resulting from high pressure failure of the reactor vessel and hydrogen deflagrations/detonations as well as additional detail on the treatment of ISLOCA and Induced Steam Generator Tube Rupture (I-SGTR). The accident progression was modeled using a 32 node containment model in MAAP4.0.7. Two large CETs were developed; one for SBO and one for non-SBO sequences (TVA 2010b).

In response to NRC staff RAIs, TVA provided additional information on the linking of the Level 1 and Level 2 models, the binning of CET end states and their assignment to release categories, the dominant sequences for each release category, and the determination of the release characteristics for each release category. Each of the Level 1 core damage sequences is assigned to one of eight plant damage state (PDS) bins, based on characteristics such as bypass containment or not, the type of bypass and high or low reactor coolant pressure. Each core damage sequence is linked to the Level 2 CET in accord with the PDS bin. The CETs consisted of 18 questions (or events or nodes), the first 5 of which link each PDS to the appropriate portion of the CET. The remainder of the questions determine the appropriate containment failure type, the CET end states and release category. This results in 11 CET end state groups (plus the INTACT end state) which are then assigned to the release categories used in the Level 3 consequence analysis. It is noted that some changes/corrections were made to the IPE PDS bin assignments for the SAMDA model. The CET end states are binned into release categories that represent similar containment failure modes and release timing. The frequency of each release category was obtained by summing the frequency of the individual Level 2 sequences assigned to each release category.

The NRC staff noted that the sum of the frequencies of release categories I through IV of 1.85 x 10⁻⁵ per year is greater than the CDF of 1.72 x 10⁻⁵ per year even without the inclusion of release category V for containment intact sequences. In response to an NRC staff RAI to explain this greater value and to provide the frequency for release category V, TVA explained the reason for the sum of release category I through IV frequencies being greater than the CDF as due to not excluding release category IV (a small preexisting containment leak) from the other branches of the containment event tree that are subsequently assigned to the other release categories. While the NRC staff agrees that this leads to double counting of release category IV frequency, the degree of conservatism in risk is not clear since the presence of a small preexisting containment leak would not necessarily preclude the other containment failure modes, particularly those early failures due to high pressure reactor vessel failures. TVA further indicated that the CAFTA based Level 2 model did not calculate the intact containment frequency correctly. A proportion of the late containment failure sequences (release category III) was inadvertently included in the intact category and thus a correct value for the intact containment frequency is not available. This does not impact the risk results since the containment intact category has negligible impact on the results.

TVA stated that the large early release frequency (LERF) for the latest SAMDA model is 1.70×10^{-6} per year (TVA 2011a). In an NRC staff RAI, the staff noted that this is different from the sum of the frequencies of release categories I and II of 1.61×10^{-6} per year (NRC 2011b). In response, TVA indicated that the correct value for LERF is the sum of the frequencies of release categories I and II or 1.61×10^{-6} per year (TVA 2011b).

Source terms for use in the Level 3 consequence analysis are based on representative accident scenarios that reflect the post core damage behavior for the dominant sequence or sequences within a PDS that contribute to each release category. The release fractions were determined for each representative scenario using a spreadsheet version of the SEQSOR computer code. SEQSOR was used to calculate the release fractions for the NUREG-1150 analysis of the Sequoyah plant (NRC 1990b). The SEQSOR methodology determines release fractions using a parametric approach with probabilistic data blocks based on supporting first principle analyses as well as expert panel judgments. SEQSOR determines the mean release fractions for each representative sequence that makes up each release category using input release characteristics describing the representative scenario and parametric data included in the code. The release characteristics used for the WBN2 analysis are reported in Table 2.a.iv-3, which was provided in response to an NRC staff RAI (TVA 2011a). Since the SEQSOR data blocks were developed for the Sequoyah plant, a sister plant to WBN2, the use of SEQSOR was considered appropriate by TVA for the WBN2 SAMDA analysis. TVA indicated that the same data blocks and data were used in the SEQSOR emulator used for the WBN2 analysis as in the NUREG-1150 SEQSOR code except where process or equipment that needed to be considered in the WBN2 analysis were not included in the NUREG-1150 analysis. TVA states that the SEQSOR emulator was independently reviewed prior to its use in the SAMDA analysis (TVA 2011c, TVA 2011d).

Based on the NRC staff's review of the Level 2 methodology and the fact that (1) the LERF model was reviewed by the WOG and the review findings have all been addressed in the

SAMDA Level 2 model, (2) the updated Level 2 model was reviewed by an external contractor and independently reviewed by the TVA PRA team, and (3) TVA has adequately addressed NRC staff RAIs concerning the Level 2 model, the NRC staff concludes that the Level 2 PRA provides an acceptable basis for evaluating the benefits associated with various SAMDAs.

The reactor core radionuclide inventory used in the consequence analysis contained in the EIS is for 5 percent enrichment and a burnup of 1000 effective full power days (EFPD) for WBN2 at 3565 megawatt thermal (MWt) as evaluated using the ORIGEN code. TVA states that these conditions bound that expected for the WBN2 fuel management program for the license period (TVA 2010c).

The NRC staff reviewed the process used by TVA to extend the containment performance (Level 2) portion of the PRA to an assessment of offsite consequences (essentially a Level 3 PRA). This included consideration of the source terms used to characterize fission product releases for the applicable containment release categories and the major input assumptions used in the offsite consequence analyses. The WinMACCS code, the current version of the MACCS2 code, was utilized to estimate offsite consequences. Plant-specific input to the code includes the source terms for each release category and the reactor core radionuclide inventory (both discussed above), site-specific meteorological data, projected population distribution within an 80-kilometer (50-mile) radius for the year 2040, emergency evacuation modeling, and economic data. This information is provided in Section 4.6 of the SAMDA submittal (TVA 2010a).

TVA used site-specific meteorological data for the 2002 calendar year as input to the WinMACCS code. The data were collected from the onsite meteorological tower. Data from 2001 through 2005 were also considered, but the 2002 data were chosen because they were found to give the largest risk based on sampling the population dose consequences for each year with a reference set of fission product releases. Missing data were obtained by linear interpolation from the recorded data. The NRC staff notes that previous SAMA analyses results have shown little sensitivity to year-to-year differences in meteorological data and concludes that the use of the 2002 meteorological data in the SAMDA analysis is reasonable. In response to an NRC staff RAI, TVA stated that the WinMACCS evaluation for WBN2 applied a large rainfall boundary condition that results in conservative deposition of radionuclides in the last spatial interval (40 to 50 miles) (TVA 2010c). The NRC staff notes that previous SAMA analyses in offsite consequences.

All releases were modeled as occurring at a height of 10 meters, and buoyant plume rise appropriate to the release category was modeled. TVA did not perform a sensitivity analysis on these assumptions, instead citing previous SAMA analyses as indicating relatively small changes in overall risk. Of the two SAMA analyses cited (i.e., Vogtle and Wolf Creek), one shows an increase in population dose risk of up to 10 percent while the other shows a decrease of 17 percent in population dose risk with an increase in release elevation from ground level to the top of the containment building and/or heat release rates of 1 to 10 megawatts (MW) (SNC 2007, WCNOC 2006). The NRC staff notes that previous SAMA analyses have shown only minor sensitivities to release height and buoyancy. The staff concludes that the release parameters utilized are acceptable for the purposes of the SAMDA evaluation.

The population distribution the licensee used as input to the WinMACCS analysis was estimated for the year 2040, based on the U.S. Census Bureau population data for 2000. A map was prepared displaying county and census tract boundaries partly or entirely within the 50-mile boundary. A grid of concentric circles and radii were overlaid on this map to display the 160 zones or sectors needed. County population data for 2000 were allocated to the appropriate sectors, using census tracts to the extent feasible. Block groups were used where census tracts crossed the sector boundaries. For sectors near the plant, aerial photographs and local knowledge were used. Projected county growth rates to the year 2030 were then used and extended using linear trend lines to the years 2040, 2050, and 2060 and the results applied to each sector. Transient population was included based on peak recreation visitation estimates at the various sites around the Tennessee River system. The numbers were estimated from TVA recreational facility information and extrapolated to the year 2040 using population projections for an eleven county region around the site. The NRC staff considers the methods and assumptions for estimating population reasonable and acceptable for purposes of the SAMDA evaluation.

The emergency evacuation model was modeled as a single sheltering and evacuation zone extending out 16 kilometers (10 miles) from the plant. It was assumed that 99.5 percent of the population would evacuate. This assumption is consistent with the NUREG-1150 study (NRC 1990b). The NRC staff notes that previous SAMA analyses have shown only minor sensitivities to the percent of population evacuated within the range of 95 and 100 percent. The evacuation speed used in the SAMDA analysis of 2.2 miles per hour (mph) (1.0 meters per second) was selected considering average evacuation speeds under adverse weather conditions using evacuation data from the multi-jurisdictional emergency response plan for WBN (TVA 2006). The evacuation was assumed to start after a sheltering and evacuation delay time of 45 minutes and 2.5 hours respectively. These values were obtained from the multi-jurisdictional emergency response plan and the NUREG-1150 model.

A sensitivity analysis was performed in which the evacuation speed was decreased from 2.2 mph to 1.6 mph and then increased to 3.4 mph. The result was a small change in the population dose risk (a maximum of approximately an 8% increase when the speed is reduced to 1.6 mph) and no change in the offsite economic cost risk for each release category for the baseline consequence analysis (TVA 2011f). The NRC staff estimates that this increases the MACR by approximately 0.5 percent. The NRC staff notes that the TVA analysis did not account for the reduced evacuation speed that would result from population growth from the time the evacuation time estimates were made to 2040. While this may decrease the speed below that considered in the sensitivity study, the staff concludes that the impact on the risk results will be small in light of the above result and since other studies have shown that population dose is not very sensitive to evacuation speed and population dose risk contributes only a relatively small part of the total maximum benefit. The NRC staff concludes that the spone shown that the evacuation assumptions and analysis are reasonable and acceptable for the purposes of the SAMDA evaluation.

The site-specific economic data input to WinMACCS2 code used for the SAMDA analysis was provided from SECPOP2000 (NRC 2003b) by specifying the data for each of the counties surrounding the plant to a distance of 50 miles. The original SAMDA submittal utilized SECPOP2000 version 3.12 which was found to have several problems that could lead to erroneous data being used. In response to an NRC staff RAI, TVA corrected the earlier analysis using the results from SECPOP2000 version 3.13.1 which corrects the previous version's errors (TVA 2010d). TVA utilized the corrected version in the updated and subsequent SAMDA analysis. SECPOP2000 version 3.13.1 utilizes data from the 2000 census and the 2002 Census of Agriculture to determine the population, land fractions and region index, and associated economic data for each sector around the plant for use in WinMACCS. The dollar values were increased by a factor of 1.15 to account for inflation from 2002 to 2007. This was determined from the United States Bureau of Labor Statistics CPI (consumer price index) Inflation Calculator (BLS 2010). The sector population from SECPOP2000 was replaced with the TVA generated values discussed above. The NRC staff concludes that the approach taken for determining the site-specific economic data is appropriate for the SAMDA analysis.

Since SECPOP2000 provides only generic values for the number of watersheds, the watershed index, the watershed definition and the crop seasons and share, definitions and values more appropriate for the WBN site were utilized. TVA described these changes and their basis (TVA 2010a) and the NRC staff concludes that their use is appropriate for the SAMDA analysis.

The MACCS2 analysis described above was performed for each of the representative scenarios that contribute to each of the four release categories. The consequences in terms of personrem and offsite economic costs were then combined using the relative contribution each representative scenario makes to its release category, as provided in Table 2.a.iv-3 of the January 31, 2011 TVA submittal (TVA 2011a). There are 11 representative scenarios: four for release category I, one for release category II, four for release category were then used to assess the risk associated with each SAMDA. In response to an NRC staff RAI, TVA provided the source terms, other release parameters and the person-rem and off-site economic results for each of the 11 representative scenarios. The revised consequences given in Table 2.a.iv-6 of the September 16, 2011 submittal (TVA 2011f) for the 11 representative scenarios were averaged using the relative contributions cited above to yield the consequences for the four release categories that were used in the cost benefit analysis of each SAMDA.

The NRC staff noted that this approach, while valid for the base case, may not be valid for the determination of the risk reduction for a given SAMDA. The methodology assumes that the relative contribution of the representative scenarios for a SAMDA remains the same as for the base case. If a given SAMDA decreases the relative importance of a high consequence scenario while not impacting other lower consequence scenarios, then the benefit of the SAMDA would be underestimated. To assess the impact of this assumption on the determination of a SAMDA cost-benefit TVA performed a sensitivity study which applied the worst accident scenario consequences of the representative scenarios making up a release category to the entire release category to the evaluation of each SAMDA (TVA 2011c). The impact of this sensitivity study is discussed in Section H.6.2.

Subsequent to TVA's responses to all NRC staff RAIs, TVA determined that all the prior consequence analysis were based on a misinterpretation of the consequence model (MACCS2) output for the total person-rem for each of the several release categories (and representative scenarios) and on two less significant source term errors (TVA 2011f). This misinterpretation lead to an underestimate of the total person-rem for the base case and all SAMDAs. Revised consequence and cost benefit results and a summary the impact of these changes on the SAMDA evaluations and the responses to the prior RAI responses are provided in TVA's September 16, 2011 (TVA 2011f) and October 17, 2011 (TVA 2011g) submittals. The revised consequence analysis are cited in the above discussions.

The NRC staff concludes that the corrected methodology used by TVA to estimate the offsite consequences for WBN provides an acceptable basis from which to proceed with an assessment of risk reduction potential for candidate SAMDAs. Accordingly, the NRC staff based its assessment of offsite risk on the CDF and revised offsite doses reported by TVA.

H.3 Potential Plant Improvements

The process for identifying potential plant improvements, an evaluation of that process, and the improvements evaluated in detail by TVA are discussed in this section.

H.3.1 Process for Identifying Potential Plant Improvements

TVA's process for identifying potential plant improvements (SAMDAs) consisted of the following elements:

- Review of other industry documentation discussing potential plant improvements as developed in NEI 05-01 (NEI 2005),
- Review of Phase II SAMAs from license renewal applications for five other U.S. nuclear sites,
- Review of potential plant improvements identified in the WBN IPE and IPEEE,
- Review of the most significant basic events and systems from the WBN Unit 2 PRA submitted in support of the original Unit 2 SAMDA assessment (TVA 2009a), and
- In response to NRC staff RAIs, review of the most significant basic events from the WBN Unit 2 IPE based PRA submitted in support of the Updated SAMDA assessment (TVA 2010a).

Based on this process, an initial set of 307 candidate SAMDAs, referred to as Phase I SAMDAs, was identified. In Phase I of the evaluation, TVA performed a qualitative screening of the initial list of SAMDAs and eliminated SAMDAs from further consideration using the following criteria:

• The SAMDA is not applicable to the WBN design,

- The SAMDA or its equivalent has already been implemented at WBN,
- The SAMDA is similar in nature and can be combined with another SAMDA,
- The SAMDA has estimated costs that would exceed the dollar value associated with completely eliminating all severe accident risk at WBN, or
- The SAMDA is related to a non-risk significant system known to have negligible impact on risk

Based on this screening, 269 SAMDAs were eliminated leaving 38 for further evaluation. The remaining SAMDAs, referred to as Phase II SAMDAs, are discussed in Section 8 and listed in Table 16 of the updated SAMDA submittal (TVA 2010a). In Phase II, a detailed evaluation was performed for each of the 38 remaining SAMDA candidates, as discussed in Sections H.4 and H.6 below. To account for the potential impact of external events, the estimated benefits based on internal events were initially multiplied by a factor of 2. As discussed above, in response to an NRC staff RAI, an external events multiplier of 2.28 was used in a subsequent reassessment (TVA 2011a).

In response to NRC staff RAIs, TVA addressed the potential for SAMDAs resulting from: the enhancements identified in the Watts Bar Unit 1 SAMDA analysis (TVA 1994b), the review of the WBN2 PRA down to a lower value of Risk Reduction Worth (RRW), and the dominant fire zones as identified in the IPEEE. In this process 31 additional candidate SAMDAs were identified. All were, however, screened from detailed analysis (TVA 2011a). In assessing the impact of the corrected consequence analysis on the SAMDA identification process TVA identified one additional candidate SAMDA⁴. This SAMDA was screened out (TVA 2011f). These additional SANDA candidates are discussed further below.

H.3.2 Review of TVA's Process

TVA's efforts to identify potential SAMDAs focused primarily on areas associated with internal initiating events, but also, in response to an RAI, included explicit consideration of potential SAMDAs for fire events. The initial list of SAMDAs generally addressed the systems and basic events considered to be important to CDF and LERF from a risk reduction worth (RRW) perspective at WBN, and included selected SAMDAs from prior SAMA analyses for other plants.

TVA provided a tabular listing of PRA basic events sorted according to their CDF RRW (TVA 2011a, TVA 2011f). SAMDAs impacting these basic events would have the greatest potential for reducing risk. TVA reviewed the list down to a RRW cutoff of 1.006 (after accounting for the impact of revised consequence on the MACR) for potential SAMDAs that could reduce operator error such as enhanced procedures, training, etc. A RRW of 1.006, which corresponds to about

⁴ The September 16, 2011 submittal (TVA 2011f) designated this new SAMDA candidate as SAMDA 340. In the May 25, 2011 RAI responses (TVA 2011c) a different SAMDA candidate was designated as SAMDA 340. The May 25, 2011 SAMDA candidate, to install flood detection in areas 772.0-A8 and 772.0-A9, is referred to in this report as SAMDA 340. The new September 16, 2011 candidate SAMDA is not referred to by a number in this review to avoid confusion.

a 0.6 percent change in CDF given 100-percent reliability of the SAMDA in eliminating the risk due to the basic event, was selected as the threshold because it is approximately equivalent to a benefit of \$27,000 (the minimum cost for the types of enhancements mentioned above), utilizing the revised MACR and an external event multiplier of 2.28. TVA reviewed the RRW list down to 1.0227 (a 2.27% change in CDF) for hardware based modifications. This corresponds to a \$100,000 maximum benefit (TVA 2011a, TVA 2011f).

TVA also provided and reviewed the large early release frequency (LERF)-based RRW basic events down to a RRW of 1.029. This was determined using the definition of LERF as the sum of release categories I and II and corresponds to a benefit of \$27,000 assuming that all changes in frequency occurred in release category II since this release category has the greatest consequences (TVA 2011b). It is noted that with the revised consequence analysis this screening value increases to 1.044 due to changes in offsite economic costs since the original assessment (TVA 2011f).

Based on the review of these basic events and the important basic events in the WBN2 IPE (TVA 2010b), TVA identified 49 new WBN2 specific SAMDAs. This number does not include the SAMDAs previously identified from the generic SAMAs, from the review of other SAMA assessments or from the WBN IPE or IPEEE insights and enhancements which also addressed the WBN2 important basic events. In response to a NRC staff RAI, TVA correlated the Phase I SAMDAs with the basic events having the highest risk importance in the Level 1 and 2 PRA. With a few exceptions, all of the significant basic events (excluding the basic events which represent "tag events" - not actual equipment or operator failure events - or physical parameters) are addressed by one or more SAMDAs. Of the basic events of high risk importance that are not addressed by SAMDAs, each is closely tied to other basic events that had been addressed by one or more SAMDAs. The staff noted that no SAMDAs were identified that directly address two emergency diesel generator sequencer failures which contribute a total of about 2.3% to the CDF. In response to the RAI, TVA discusses the failure modes and modeling of the sequencers and states that no credit is taken for emergency diesel generator recovery in the WBN PRA. TVA also discusses the existence of plant procedures and training that address some of the sequencer failure modes (TVA 2011b). Considering that the modeling is conservative and procedures not credited in the PRA address sequencer failure, the NRC staff concludes that no additional SAMDA to address sequencer failures is likely to be cost beneficial.

The WBN Unit 2 IPE did not result in the identification of any vulnerability. The IPE submittal did cite three SAMDAs from the original WBN2 SAMDA assessment as providing a risk reduction for internal events (TVA 2010b). The NRC staff noted that the WBN2 IPE submittal cited two sets of sensitivity studies concerning internal flooding, including one which was intended to evaluate alternative design/procedural changes that would significantly impact the flood related CDF. In response to an RAI, TVA described these sensitivity studies which supported the decision that, in addition to replacing carbon steel piping on the raw cooling water piping in certain plant areas with stainless steel piping, TVA planned to install leak detection instrumentation in these areas (TVA 2011c). See the discussion concerning SAMDAs 293 and 294 below.

The review of the generic list of SAMAs as developed in NEI 05-01 (NEI 2005) led to 153 Phase I SAMDAs for WBN2. The review of Phase I SAMAs contained in the license renewal applications for Cook, Catawaba, McGuire, Wolf Creek, and Vogtle led to the identification of 105 additional Phase I SAMDAs for WBN2.

Although no vulnerabilities were identified in the Unit 1 IPE, twelve procedural and hardware enhancements and additional insights and recommendations were identified (TVA 1992). These twelve were included in the SAMDA Phase I list. The Unit 1 IPE update identified thirteen additional insights and recommendations (TVA 1994). In response to an NRC staff RAI, TVA discusses each of these by indicating the Phase I SAMDA which addresses the item or stating that it had been implemented at WBN (TVA 2010c).

In 1994, TVA performed a SAMDA analysis for WBN Unit 1 (TVA 1994b). A number of potential enhancements were identified in this analysis and in the NRC's review of the analysis (NRC 1995). TVA, in response to an NRC staff RAI indicated that all of these enhancements have been either implemented at WBN or included in the current Phase I SAMDA list (TVA 2010c).

Based on this information, the NRC staff concludes that the set of SAMDAs evaluated in the EIS, together with those identified in response to NRC staff RAIs, addresses the major contributors to internal event CDF.

Although several Phase I SAMDAs were identified based on the generic and other plant SAMA reviews, the WBN2 SAMDA assessments did not include any WBN specific SAMDAs that addressed external events. As discussed above, the WBN Unit 1 IPEEE did not identify any vulnerability to external events (except one tornado missile issue which has been addressed). The WBN Unit 2 IPEEE also did not identify any vulnerabilities, although validation and finalization of this assessment will not be completed until plant construction is finished. The NRC staff concludes that the availability of information and status of construction for WBN2 is sufficient for the purposes of the SAMDA assessment to indicate that no vulnerabilities will be identified. If any vulnerabilities are identified, these will be addressed under the IPE/IPEEE program.

NRC requested that TVA consider potential SAMDAs for the dominant fire areas and scenarios as identified in the WBN2 IPEEE. In response to this RAI, TVA provided a listing of the 18 fire scenarios that contribute to more than 90 percent of the screening fire CDF in the dominant fire areas (see Table H-3 above). From the review of this list TVA identified 20 additional Phase I SAMDAs (TVA 2011a).

As indicated above the WBN2 IPEEE includes a seismic margins assessment performed in accordance with the requirements of Supplement 4 to GL 88-20 (NRC 2000). The lowest value of HCLPF (0.36g) is greater than the review level earthquake of 0.3 g. TVA defined a seismic vulnerability as any component on the Safe Shutdown Equipment List for which the HCLPF capacity is less than 0.3g. There is thus some margin to this definition of a vulnerability. The NRC staff's review of the Unit 2 IPEEE analysis concluded that TVA's definition of vulnerability and its conclusion that no severe accident vulnerabilities exist at WBN2 are reasonable (NRC 2011e).

Based on the licensee's IPEEE and the expected cost associated with further risk analysis and potential plant modifications, the NRC staff concludes that the opportunity for seismic and fire-related SAMDAs has been adequately explored and that it is unlikely that there are any additional cost-beneficial seismic or fire-related SAMDA candidates.

The NRC staff questioned TVA about other lower cost alternatives to some of the SAMDAs evaluated (NRC 2009), including:

- Purchasing or manufacturing a "gagging device" that could be used to close a stuckopen steam generator safety valve for a SGTR event prior to core damage.
- Utilizing the spare 5th diesel generator mentioned in the disposition of SAMDA 261 without going through the expense of complete refurbishing and licensing.
- Providing procedures and cabling to enable the use of the trailer-mounted 2 MW diesel generator provided in response to GSI-189 to be used to power selected equipment such as battery chargers and/or individual pumps.
- Purchasing and installing a permanent diesel-generator to supply power to the normal charging pump.

In response to the RAI, TVA addressed the suggested lower cost alternatives and determined that they are not feasible or had been implemented at WBN (TVA 2009b, TVA 2011a). This is discussed further in Section H.6.2.

In response to NRC staff RAIs concerning the screening of Phase I SAMDAs, TVA provided additional information on a number of SAMDAs to support the screening disposition. For those WBN2 specific SAMDAs identified through the original RRW review that were screened as "Already Implemented," TVA described the status of implementation at the plant and of incorporation into the WBN PRA used in the review. A group of SAMDAs were screened on the basis of design changes that were in progress or other actions to be taken in the future. TVA discussed each, providing information on the status and schedule for the change or action. For several SAMDAs screened out on the basis of "low benefit," TVA provided additional information supporting this conclusion.

SAMDA 29, which is to provide capability for alternate injection via diesel-driven fire pump, was identified from the list of generic SAMAs provided in NEI 05-01 rather than from WBN plant specific PRA results. In response to NRC staff RAIs, TVA provided a discussion of the sequences in which this SAMDA would potentially be a benefit, the existing procedures and guidelines that would address these conditions, and the feasibility of implementing this SAMDA (TVA 2011b). The sequences potentially benefitted by this SAMDA all involve failure of the RCP seal cooling with some involving loss of steam generator cooling. Existing procedures, some of which involve use of the diesel-driven fire pump to prevent seal failure or loss of steam

generator cooling address these sequences. Further, the conditions under which RCS depressurization to a pressure low enough to allow fire pump injection would be called for occur only after core damage has already occurred. TVA also points out that other SAMDAs address the sequences of concern here and TVA has committed to following the installation of a new seal design that addresses the RCP seal failure and, if favorable, to install these new seals. Based on this discussion, the NRC staff agrees that further pursuit of SAMDA 29 is not likely to result in a cost-beneficial SAMDA.

SAMDA 58, which is to install improved reactor coolant pump seals, was initially screened as not being applicable based on the cost for a new design by Westinghouse not being available and, hence, since this SAMDA is not under TVA control, the inability to perform a cost benefit analysis. Subsequently, TVA indicated that a cost estimate is available and that, while not cost beneficial in the baseline analysis, it would be cost beneficial if the benefit analysis used the 95th percentile CDF. While TVA states that this SAMDA would not be considered further for implementation, TVA does commit to following the initial experience with the new seal design and, if proven reliable during operation, it would be installed at the earliest refueling outage following startup during normal seal replacements (TVA 2011a).

SAMDA 80, which is to provide a redundant train or means of ventilation, was originally screened on the basis of having a very low benefit. In response to NRC staff RAI concerning the use of temporary fans and ducting to mitigate room cooling failures in the CCP area, the TD AFW pump room, and the EDG switchgear rooms, TVA indicated that, since such equipment was relatively inexpensive and easy to use, additional equipment will be made available and procedures will be written for the use of such equipment in these areas (TVA 2011b).

SAMDA 183, which is to implement internal flood prevention and mitigation enhancements, was screened as being of very low benefit. Subsequently, two flood related SAMDAs, SAMDAs 293 and 294, associated with raw cooling water failures were added based on the review of the RRW values for the October 2010 SAMDA PRA. These two SAMDAs were screened as having already been identified as implementation commitments to the NRC. In response to an NRC staff RAI, TVA indicated that they had committed to replacing the existing piping with stainless steel piping. While credit was taken for the lower pipe leak frequencies in the SAMDA PRA, floods from this piping in specific plant areas still contributed significantly to the CDF. Since rerouting the raw cooling water piping was considered impractical, TVA committed to installing flood detection instrumentation in these rooms (TVA2011a). This was supported by sensitivity studies cited in the IPE and described in TVA's response to an RAI (TVA 2011c). This was designated by TVA as SAMDA 340 (TVA 2011c).

SAMDA 242, which is to provide a permanent dedicated generator for the normal charging pump with local operation of the TD AFW pump after 125V battery depletion, was screened out as having excessive implementation cost. In an NRC staff RAI it was noted that this SAMDA was similar to SAMDA 255 (provide a permanent dedicated generator for the normal charging pump, one motor driven AFW pump, and a battery charger), except that SAMDA 242 had a smaller scope and therefore would be expected to have a smaller cost. TVA provided additional information on the cost a benefit for SAMDA 242 that supported the screening.

SAMDA 314, which is to enhance training for local control of AFW given station blackout, loss of control air, or fires affecting AFW level control valves (LCVs), identified from the review of the fire FIVE assessment, was screened out as already implemented; citing SAMDAs 285 and 299. The staff noted that while these SAMDAs cite enhancements to training in a general sense, neither appears to specifically address the training enhancement needed for SAMDA 314. In response to an NRC staff RAIto provide a specific citation which incorporates the requirements of SAMDA 314, TVA provided a discussion of the existing training and cited the procedures that deal with failures due to the fires in the key fire areas and specifically the local manual operation of the AFW LCVs. In addition, TVA, as part of its response to questions on the Appendix R analysis, has committed to provide a new capability to allow the operators, from the control room, to transfer from normal compressed air supply to the station nitrogen system for control of the LCVs. This would be expected to have a greater benefit for these fire scenarios then the enhanced training of SAMDA 314 (TVA 2011b). The NRC staff concludes that the existing training and the new commitment for use of the nitrogen supply adequately addresses the mitigation of fire scenarios originally addressed by SAMDA 314.

The NRC staff notes that one SAMDA (SAMDA 273, which is to provide a redundant path for emergency core cooling system (ECCS) suction from the refueling water storage tank (RWST) around check valve 62-504), originally identified and included as a Phase II SAMDA in the January 2009 submittal (TVA 2009) was subsequently screened in the updated submittal (TVA 2010a). Check valve 62-504 appeared in the original list of important components but did not have a RRW of 1.007 or greater in the revised analysis. Based on the NRC staff review, the NRC staff considers this screening to be appropriate.

The NRC staff notes that the set of SAMDAs submitted is not all inclusive, since additional, possibly even less expensive, design alternatives can always be postulated. However, the NRC staff concludes that the benefits of any additional modifications are unlikely to exceed the benefits of the modifications evaluated and that the alternative improvements would not likely cost less than the least expensive alternatives evaluated, when the subsidiary costs associated with maintenance, procedures, and training are considered.

The NRC staff concludes that TVA used a systematic and comprehensive process for identifying potential plant improvements for WBN, and that the set of potential plant improvements identified by TVA is reasonably comprehensive and therefore acceptable. This search included reviewing insights from the plant-specific risk studies, and reviewing plant improvements considered in previous SAMDA analyses. While explicit treatment of external events in the SAMDA identification process was limited, it is recognized that the absence of external event vulnerabilities reasonably justifies examining primarily the internal events risk results for this purpose.

H.4 Risk Reduction Potential of Plant Improvements

TVA evaluated the risk-reduction potential of the 38 remaining SAMDAs that were applicable to WBN. The majority of the SAMDA evaluations were performed in a bounding fashion in that the

SAMDA was assumed to completely eliminate the risk associated with the proposed enhancement. Such bounding calculations overestimate the benefit and are conservative.

TVA used model re-quantification to determine the potential benefits. The CDF and population dose reductions were estimated using the WBN2 PRA (version WBN_U1_U2_FLOOD_SAMA) model and the Level 3 consequence analysis. The changes made to the model to quantify the impact of SAMDAs are detailed in Section 8 of the updated SAMDA assessment (TVA 2010a). Table H-4 lists the assumptions considered to estimate the risk reduction for each of the evaluated SAMDAs, the estimated risk reduction in terms of percent reduction in CDF and population dose, and the estimated total benefit (present value) of the averted risk. The estimated benefits reported in Table H-4 reflect the combined benefit in both internal and external events, as well as a number of changes to the analysis methodology subsequent to the above referenced submission. The determination of the benefits for the various SAMDAs is further discussed in Section H.6.

The NRC staff questioned the assumptions used in evaluating the benefits or risk reduction estimates of certain SAMDAs provided in the SAMDA assessment (TVA 2011a).

For SAMDA 45, which is to enhance procedural guidance for the use of cross-tied component cooling or service water pumps, TVA clarified that the model requantification assumed that the cross-tie provided backup cooling not only to the charging pumps but to the component cooling system and all of its loads.

For SAMDA 70, which is to install accumulators for turbine-driven auxiliary feedwater pump flow control valves, the risk benefit is stated to be bounded by eliminating the cognitive portion of human error to restore AFW control following loss of instrument air. TVA supported the assumption on the basis that the feasible accumulator size would only provide enough air for a few cycles of the flow control valves, hence operator action would ultimately be required. The additional time for operator response provided by the accumulators is assumed to eliminate the cognitive portion of the human error but not the action portion. In response to an RAI TVA confirmed that the assessment eliminated the relevant cognitive portion of the human error in both the independent and dependent human error contributors. Subsequently, as discussed above, TVA has committed to provide a new capability to allow the operators from the control of the LCVs. This new capability, identified by TVA as SAMDA 339, will have a greater benefit than that associated with SAMDA 70 and thus supersedes it (TVA 2011b). The NRC staff agrees that this commitment adequately dispositions SAMDA 70.

For SAMDA 93, which is to install an unfiltered hardened containment vent to eliminate the containment overpressure failure, TVA provided additional information on the adjustments made to the LATE release category to evaluate the benefit of this SAMDA. The early portion of the category for the releases from the reactor coolant system remained unchanged, while the later portion for the releases for the core-concrete interaction phase were taken to be half of those from the SEQSOR methodology for late rupture. The NRC staff noted that TVA's assessment indicated there is no reduction in CDF for SAMDA 93. The usual purpose of containment venting is to prevent core damage for loss of containment heat removal sequences where the

functioning core injection systems would fail upon containment overpressure failure. In response to an RAI to discuss the reason why there is no CDF reduction for this SAMDA, TVA provided a discussion of core damage modeling in the Sequoyah NUREG-1150 analysis (NRC 1990c) and the specific sequences at WBN that might lead to a CDF reduction for containment venting (TVA 2011b). The WBN CAFTA model adopts a similar approach as that found in NUREG-1150 modeling of Sequoyah. This approach evaluates the frequency of core damage as independent of containment heat removal and thus venting (which is equivalent in impact to containment heat removal) would not affect the CDF. TVA provides a discussion and bounding analysis of the WBN sequences for which containment venting might reduce the CDF. The result indicates a maximum potential CDF reduction of approximately 6 x 10⁻⁹ per year, which is equivalent to an added cost benefit of \$1,400. This is very small contribution to the estimated benefit due to release category changes alone of \$1,100,000. While the above cost benefit values increase slightly (10 – 15 percent) as a result of the revised consequence analysis, the conclusion remains valid. The NRC staff agrees that TVA's updated assessment of the benefit of SAMDA 93 is acceptable for the SAMDA analysis.

For SAMDA 110, which is to erect a barrier that would provide enhanced protection of the containment walls (shell) from ejected core debris following a core melt scenario at high pressure, the NRC staff questioned the basis for the benefit which was originally estimated by removing the rocket mode and ex-vessel steam explosion failure modes from the containment event tree. TVA revised the assessment to only eliminate the rocket mode from the model since core debris would only be expected to reach the containment wall for high pressure reactor pressure vessel failures such as those that lead to the rocket mode but not ex-vessel steam explosions. The rocket mode was utilized since the Level 2 risk model did not explicitly include the debris impingement failure mode due to the assumption that the seal table would prevent this impingement. In addition, debris impingement would only be possible for station blackout sequences since, with AC power available, containment spray injection would be expected to flood the reactor cavity. The probability of rocket mode failure of 0.05 was set to zero for a number of containment event tree split fractions. Estimation of the risk reduction using this value is considered adequate by TVA to represent the debris impingement mode based on information from NUREG-1150 (NRC 1990a). TVA reported the results of two sensitivity studies making different assumptions concerning the Level 2 model. Both resulted in smaller risk benefits than elimination of the rocket mode of failure (TVA 2011a, TVA 2011b). Based on these results and the fact that this SAMDA potentially reduces the risk of only a small portion of the core damage frequency, the staff concludes that SAMDA 110 would not be cost beneficial.

For SAMDA 215, which is to provide a means to ensure reactor coolant pump (RCP) seal cooling so that RCP seal LOCAs are precluded for SBO events, the benefit was assessed by modifying RCP seal LOCA probabilities. The NRC staff questioned limiting the benefit to only SBO scenarios. TVA confirmed that the modified seal LOCA probabilities were made for all sequences including SBO, loss of ERCW, or loss of component cooling system.

For SAMDA 299, which is to initiate frequent awareness training for plant operators/maintenance/testing staff on key human actions for plant risk, the NRC staff questioned the calculated reduction in CDF compared to the similar but apparently more limited

SAMDA 300. TVA indicated that the title of SAMDA 299 is slightly misleading in that the training for operators had already been implemented and this SAMDA should have been described as additional training for maintenance and testing staff as appropriate to address key actions they perform.

For SAMDA 300, which is to revise procedure FR-H.1 to eliminate and/or simplify complex decision logic for establishing feed and bleed cooling and to improve operator recovery from initial mistakes both of which involve reducing human errors associated with CDF and release categories, TVA revised the benefit analysis to be based on eliminating only the action portion of the human error.

For SAMDAs 303 and 305, both of which involve actions to reduce operator error to initiate hydrogen igniters, the risk benefit for both was stated to be determined by setting the human action to place igniters in service as success. The NRC staff questioned the assessment since the net benefit of the two SAMDAs is significantly different. TVA corrected the assessment of SAMDA 303 by indicating that the SAMDA would only reduce the cognitive portion of the human error and thus the benefit was based on eliminating this portion of the human action. For SAMDA 305, TVA indicated that the procedure change would have a greater impact on the human error than SAMDA 303 and the benefit would be bounded by the elimination of all human error to initiate the igniters.

The NRC staff has reviewed TVA's bases for calculating the risk reduction for the various plant improvements as described in the SAMDA assessments and in response to NRC staff RAIs and concludes that the rationale and assumptions for estimating risk reduction are reasonable and generally conservative (i.e., the estimated risk reduction is higher than what would actually be realized). Accordingly, the NRC staff based its estimates of averted risk for the various SAMDAs on TVA's risk reduction estimates.

Table H-4. SAMDA Cost/Benefit Screening Analysis for WBN^(a)

		% Risk Reduction		Total Benefit (\$)		
SAMDA	Assumptions	CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
4 – Improve DC bus load shedding	AC power always recovered prior to battery failure.	1.1	1.2	40K	11 <u>0</u> K	32K
8 – Increase training on response to loss of two 120V AC buses which causes inadvertent actuation signal	Eliminate the contributions of the loss of 120V bus initiators	0.8	~0	12K	350K	27K
26 – Provide an additional high pressure injection pump with independent diesel	Added a new basic event in parallel with existing HPI pump without any power dependency	1.4	1.4	65K	180K	3.6M
32 – Add the ability to automatically align emergency core cooling system to recirculation mode upon refueling water storage tank depletion	Swapover to high pressure recirculation is always successful	7.4	12	400K	1.1M	2.1M
45 – Enhance procedural guidance for use of cross-tied component cooling or service water pumps	Cross-tying ERCW headers is always successful.	0.3	~0	5K	14K	32К
46 – Add service water pump	ERCW pump 1A-A is always successful	7.0	3.7	150K	410K	1.0M
56 – Install an independent reactor coolant pump seal injection system, without dedicated diesel	RCP seal injection is always successful when AC power available	24	29	1.1M	3.2M	8.2M

÷

	Assumptions	% Risk Reduction		Total Benefit (\$)		
SAMDA		CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
70 – Install accumulators for turbine- driven auxiliary feedwater pump flow control valves [Superseded by SAMDA 339] ^(e)	Operator cognitive error to manually operate the valves to control level set to zero	2.5	2.2	100K	280K ^(e)	260K
71 – Install a new condensate storage tank (auxiliary feedwater storage tank)	New tank would require same operator actions as current design	~0 ^(f)	~0 ^(f)	~0	~0	1.7M
87 – Replace service and instrument air compressors with more reliable compressors which have self -contained air cooling by shaft driven fans	Normal plant air system is always successful.	0.2	~0	2.2K	6.0K	890K
93 – Install an unfiltered hardened containment vent to eliminate the containment overpressure failure	LATE release category revised to be half the release for a late containment rupture from the SEQSOR release methodology.	0	38	1.2M	3.5M	3.1M
101 – Provide a reactor exterior cooling system to cool a molten core before vessel failure	Removed the rocket mode and ex- vessel steam explosion failure modes from the containment failure probability	oʻ	8.5	210K	580K	2.5M
103 – Institute simulator training for severe accident scenarios	Eliminated human action failure to arrest the severe accidents	33	32	1.4M	3.9M	8.0M
109 – Install a passive hydrogen control system	Assumed hydrogen igniters always successful	0	12	300K	840K	3.7M

.

	Assumptions	% Risk Reduction		Total Benefit (\$)		
SAMDA		CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
110 – Erect a barrier that would provide enhanced protection of the containment walls (shell) from ejected core debris following a core melt scenario at high pressure.	Set rocket mode early containment failure probability (0.05) to zero for high pressure vessel breach sequences	0	4.0	100K	290K	1.2M
112 – Add redundant and diverse limit switches to each containment isolation valve	Completely eliminate all ISLOCA events.	<0.1	~0	3.2K	8.9	690K
136 – Install motor generator set trip breakers in the control room	Operator action to trip reactor is always successful	0.9	~0	13K	37K	240K
156 – Eliminate RCP thermal barrier dependence on CCW, such that loss of CCW does not result directly in core damage (Enhance procedural guidance for use of ERCW for RCP thermal barrier cooling) ^(g)	RCP seal injection is always successful when AC power is available.	13	20	780K ^(h)	2.2M ^(h)	32K
176 – Provide a connection to alternate offsite power source	Remove grid related failures from frequency of loss of offsite power	19	17	780K	2.2M	9.1M
191 – Provide self-cooled ECCS seals	Eliminate seal cooling failures	~0 ⁽¹⁾	~0	~0	~0 .	1.0M
215 – Provide a means to ensure RCP seal cooling so that RCP seals LOCAs are precluded for SBO events	Assume for SBO that 21 GPM seal event always occurs and other seal LOCAs never occur	26	31	1.3M	3.7M	1.5M

.

SAMDA	Assumptions	% Risk Reduction		Total Benefit (\$)		
		CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
226 – Provide permanent self- powered pump to back up normal charging pump	Assume guaranteed success of seal injection system	26	31	1.3M	3.7M	2.7M
255 – Install a permanent, dedicated generator for the normal charging pump, one Motor Driven AFW Pump and a Battery Charger	Added an additional diesel generator to the power inputs of one charging pump, one AFW pump and one battery charger	18	20	840K	2.3M	3.2M
256 – Install fire barriers around cables or reroute the cables away from fire sources <i>(Enhance</i> procedure for controlling temporary alterations to reduce fire risk from temporary cables) ^(g)	Reduce CDF and consequences of all release categories except SGTR by 25%	25	25	1.1M	3.1M	20K
276 – Provide an auto start signal for the AFW on loss of standby feedwater pump	Beneficial only for startup accidents which are assumed to have approximately same risk as at-power accidents. Reduce risk for all initiators except SGTR by 1/365 assuming that standby feedwater pump in use for a total time of one day per year	0.7	0.6	25K	70K	620K
279 – Provide a permanent tie-in to the construction air compressor	Assume air compressor D is always successful given success of power supply and no flood events.	1.8	1.6	72K	200K	910K

.

SAMDA	Assumptions	% Risk Reduction		Total Benefit		
		CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
280 – Add new Unit 2 air compressor similar to the Unit 1 D compressor	Assume air compressor D is always successful given success of power supply and no flood events.	1.8	1.6	72K	200K	810K
282 – Provide cross-tie to Unit 1 RWST	Assume operator actions involving makeup to RWST set to success and cognitive error to sump swapover eliminated	1.3	~0	21K	58K	10M
285 – Improve training to establish feed and bleed cooling given no CCPs are running or a vital instrument board fails	Set human action to initiate bleed and feed cooling and associated dependent events to guaranteed success	6.4	0.3	140K	144K	27K
292 – Improve training to reduce failure probability to terminate inadvertent safety injection prior to water challenge to PORVs	Set human action to terminate safety injection to prevent PORV water challenge to guaranteed success	4.2	13	400K	1.1M	27K
295 – Increase frequency of containment leak rate testing	Set containment small and preexisting leak frequency to zero	0	6.1	144K	400K	2.5M

c

•

•

2

.

	Assumptions	% Risk Reduction		Total Benefit (\$)		
SAMDA		CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
299 – Initiate frequent awareness training for plant operators/maintenance/testing staff on key human actions for plant risk(Initiate frequent awareness training for maintenance and testing staff as on key human actions for plant risk) ^(g)	Reduced key human actions for CDF and release category	4.6	6.6	290K	793K	27К
300 – Revise procedure FR-H.1 to eliminate and/or simplify complex decision logic for establishing feed and bleed cooling and to improve operator recovery from initial mistakes	Reduce human error rate of operator action to initiate bleed and feed cooling to just the cognitive part	3.4	0.2	57K	160K	100K
303 – Move indicator/operator interface for starting igniters to front MCR panel	Set the cognitive portion of human action to place igniters in service as success	0	~0	1.7K	4.8K	50K
304 – Add annunciator or alarm signaling parameters to initiate hydrogen igniters to front panel on MCR	Set the cognitive portion of human action to place igniters in service as success	0	~0	1.7K	4.8K	50K
305 – Revise procedure E-1 to include recovery steps for failure to initiate hydrogen igniters	Set human action to place igniters in service as success	0	6.2	150K	420K	100K

.

.

SAMDA	Assumptions	% Risk Reduction		Total Benefit (\$)		
		CDF ^(b)	Population Dose ^(b)	Baseline (Internal + External ^(c))	Baseline with Uncertainty ^(d)	Cost (\$)
306 – Improve operator performance by enhancing likelihood of recovery from execution errors	Reduce joint probability of dependent action involved in important recovery action	2.4	5.3	170K	470K	100K
307 – Make provisions for connecting ERCW to CCP 2B-B	Added potential for using ERCW for CCP 2B-B similar to that for CCP 2A-A	0.1	0.0	0.6K	1.7K	99K
339 - Provide a capability to allow the operators from the control room to transfer from normal compressed air supply to the station nitrogen system for control of the AFW LCVs.	Not explicitly evaluated. ^(e)	NA ^(e)	NA ^(e)	NA ^(e)	NA ^(e)	NA ^(e)
340 – Install flood detection in areas 772.0-A8 and 772.0-A9	Not explicitly evaluated. ⁽ⁱ⁾	NA ⁽ⁱ⁾	NA ⁽ⁱ⁾	NA ⁽ⁱ⁾	NA ⁽ⁱ⁾	NA ⁽ⁱ⁾

NA – Not available

(a) SAMDAs in bold are potentially cost-beneficial, and have either been committed to be further considered for implementation by TVA and/or have already been implemented. See the discussion in Section H.6.2

(b) Determined by NRC staff from values given by TVA (TVA 2010a, TVA 2011a, TVA 2011f, TVA 2011g)

(c) Using an external events multiplier of 2.28

(d) Determined from baseline benefit times a 95th percentile to point estimate ratio of 2.78. Note that this is different from the 2.70 value used by TVA. See the discussion in Section H.6.2 below.

(e) While SAMDA 70 is slightly cost beneficial at the 95th percentile CDF uncertainty, it has been superseded by SAMDA 339 to which TVA has committed and should have a greater benefit. See the discussion below.

(f) TVA states that the risk benefit of the SAMDA is zero. While the NRC staff believes the risk benefit may not be zero it does conclude that it is negligible compared to the estimated cost.

(g) SAMDA title given in parentheses is considered a more accurate description of the actual SAMDA.

(h) Due to time constraints, procedure change envisioned for SAMDA 156 is now considered not to be effective; hence benefit would be essentially negligible. Hardware change considered in SAMDA 215.

(i) This SAMDA captures the previous commitment by TVA to install this flood detection equipment (TVA 2011c).

H.5 Cost Impacts of Candidate Plant Improvements

The costs of implementing the 38 candidate SAMDAs was estimated by TVA and focused on labor (craft, engineering, etc.) and component cost related to installing the proposed physical change. Costs do not include lifetime operation, testing or maintenance costs or contingency for unforeseen obstacles or inflation(TVA 2010c). Procedure development and training associated with the physical changes were also not included, except for those SAMDAs which were solely procedural and/or training activities (TVA 2011a).

The NRC staff reviewed the bases for the applicant's cost estimates as described above. In response to an NRC staff RAI concerning per unit cost savings associated with implementing the changes to both WBN units, TVA stated that the cost of procedural or training module development is only marginally increased to apply to a second unit and that for physical unit design changes the costs are for the affected unit only (TVA 2011a). While TVA states that dividing the cost of procedure and training SAMDAs by a factor of two would not be appropriate. the NRC staff concludes that the per unit cost of physical changes (for the scope of the cost estimate as described above) would be less then that given by TVA. The scope of TVAs cost estimate, however, does not include lifetime costs associated with the procedure and training and hence is conservative. This is borne out by comparison with similar costs given in license renewal SAMA submittals. With regard to physical changes, the NRC staff concludes that while there may be some savings with respect to sharing engineering costs between units to the extent that these cost are included in the cost estimate, other factors such as lifetime costsand procedure and training associated with the change that are not included in TVA's estimate result in a conservative estimate for use in the SAMDA assessments. Further, in response to a specific RAI concerning SAMDA 70, TVA stated that engineering and design cost were not considered (TVA 2011b). This is the only SAMDA where such cost savings would impact the cost-benefit conclusions.

For a number of the Phase II SAMDAs evaluated by TVA, the information provided did not sufficiently describe the associated modifications and what is included in the cost estimate. In response to an NRC staff RAI, TVA provided a more detailed description of both the modification and the cost estimate for these SAMDAs (TVA 2010c). This information resolved the NRC staff concerns. In addition, conflicting information was provided for the costs associated with several SAMDAs. In response to an NRC staff RAI, TVA discussed the reasons for these differences and indicated the correct value to be used in the cost benefit analysis (TVA 2010c).

The NRC staff concludes that the cost estimates provided by TVA are sufficient and appropriate for use in the SAMDA evaluation.

H.6 Cost-Benefit Comparison

TVA's cost-benefit analysis and the NRC staff's review are described in the following sections.

H.6.1 TVA's Evaluation

The methodology used by TVA was based on NEI 05-01, *Severe Accident Mitigation Alternatives (SAMA) Analysis Guidance Document* (NEI 2005), which in turn is based on NRC's guidance for performing cost-benefit analysis, i.e., NUREG/BR-0184, *Regulatory Analysis Technical Evaluation Handbook* (NRC 1997b). NEI 05-01 was endorsed for use in license renewal application by the NRC (NRC 2007). The guidance involves determining the net value for each SAMA (or SAMDA) according to the following formula:

Net Value = (APE + AOC + AOE + AOSC) - COE where,
APE = present value of averted public exposure (\$)
AOC = present value of averted offsite property damage costs (\$)
AOE = present value of averted occupational exposure costs (\$)
AOSC = present value of averted onsite costs (\$)
COE = cost of enhancement (\$).

If the net value of a SAMDA is negative, the cost of implementing the SAMDA is larger than the benefit associated with the SAMDA and it is not considered cost-beneficial. TVA's derivation of each of the associated costs is summarized below.

NUREG/BR-0058 has recently been revised to reflect the agency's policy on discount rates. Revision 4 of NUREG/BR-0058 states that two sets of estimates should be developed—one at 3 percent and one at 7 percent (NRC 2004b). TVA performed the SAMDA analysis using 7 percent and provided a sensitivity analysis using the 3 percent discount rate in order to capture SAMDAs that may be cost-effective using the lower discount rate, as well as the higher, baseline rate (TVA 2011a). This analysis is sufficient to satisfy NRC policy in Revision 4 of NUREG/BR-0058.

Averted Public Exposure (APE) Costs

The APE costs were calculated using the following formula:

- APE = Annual reduction in public exposure (Δ person-rem per year)
 - x monetary equivalent of unit dose (\$2000 per person-rem)
 - x present value conversion factor (13.42 based on a 40-year period with a 7-percent discount rate).

As stated in NUREG/BR-0184 (NRC 1997a), it is important to note that the monetary value of the public health risk after discounting does not represent the expected reduction in public health risk due to a single accident. Rather, it is the present value of a stream of potential

losses extending over the remaining lifetime (in this case, the operating license period) of the facility. Thus, it reflects the expected annual loss due to a single accident, the possibility that such an accident could occur at any time over the time period, and the effect of discounting these potential future losses to present value. For the purposes of initial screening, which assumes elimination of all severe accidents due to internal events, TVA calculated an APE of approximately \$536,000 for the 40-year license period (TVA 2011f).

Averted Offsite Property Damage Costs (AOC)

The AOCs were calculated using the following formula:

AOC = Annual CDF reduction

x offsite economic costs associated with a severe accident (on a per-event basis) x present value conversion factor.

For the purposes of initial screening, which assumes all severe accidents due to internal events are eliminated, TVA calculated an annual offsite economic risk of about \$53,700 based on the Level 3 risk analysis. This results in a discounted value of approximately \$720,000 for the 40-year license period (TVA 2011f).

Averted Occupational Exposure (AOE) Costs

The AOE costs were calculated using the following formula:

AOE = Annual CDF reduction

- x occupational exposure per core damage event
- x monetary equivalent of unit dose
- x present value conversion factor.

TVA derived the values for averted occupational exposure from information provided in Section 5.7.3 of the regulatory analysis handbook (NRC 1997a). Best estimate values provided for immediate occupational dose (3300 person-rem) and long-term occupational dose (20,000 person-rem over a 10-year cleanup period) were used. The present value of these doses was calculated using the equations provided in the handbook in conjunction with a monetary equivalent of unit dose of \$2000 per person-rem, a real discount rate of 7 percent, and a time period of 40 years to represent the license period. For the purposes of initial screening, which assumes all severe accidents due to internal events are eliminated, TVA calculated an AOE of approximately \$8,150 for the 40-year license period.

Averted Onsite Costs

Averted onsite costs (AOSC) include averted cleanup and decontamination costs and averted power replacement costs. Repair and refurbishment costs are considered for recoverable accidents only and not for severe accidents. TVA derived the values for AOSC based on

H-40

information provided in Section 5.7.6 of NUREG/BR-0184, the regulatory analysis handbook (NRC 1997a).

- AOSC = [(present value of cleanup costs per core damage event x present value conversion factor)
 - + (present value of replacement power for a single event x factor to account for remaining service years for which replacement power is required x reactor power scaling factor)] x annual CDF reduction

The total cost of cleanup and decontamination subsequent to a severe accident is estimated in the regulatory analysis handbook to be 1.5×10^9 (undiscounted). This value was converted to present costs over a 10-year cleanup period and integrated over the 40 year license period to give 1.45×10^{10} \$-years.

TVA based its calculations on the value of 1160 megawatt electric (MWe). Therefore, TVA applied a power scaling factor of 1160/910 to determine the replacement power costs. Using the methodology of NUREG/BR-0184 for a 7 percent discount rate the resulting net present value of replacement power integrated over the 40 year license period is 2.43 x 10¹⁰ \$-years.

For the purposes of initial screening, which assumes all severe accidents due to internal events are eliminated, TVA calculated an AOSC of approximately \$666,000 for the 40-year license period.

Using the above equations, TVA estimated the total present dollar value equivalent associated with completely eliminating severe accidents from internal events at WBN to be about \$1,930,000. Use of a multiplier of 2.28 to account for external events increases the value to \$4,401,000 and represents the dollar value associated with completely eliminating all internal and external event severe accident risk at WBN Unit 2, also referred to as the Modified Maximum Averted Cost Risk (MMACR) (TVA 2011f).

TVA's Results

If the implementation costs for a candidate SAMDA exceeded the calculated benefit, the SAMDA was considered not to be cost-beneficial. In TVA's SAMDA submittal, this is expressed, not as a negative net value (SAMDA benefit less than cost), but as a benefit to cost ratio for the SAMDA that is less than 1.0. The benefit, cost, and benefit to cost ratio for the Phase II SAMDAs are given in the revised Table 2.a.iv-8 of TVA's September 16, 2011 submittal (TVA 2011f). This table incorporates revised analysis taking into account the responses to NRC staff RAIs on the prior results as well as the results of the corrected consequence analysis.

In the baseline analysis contained in the January 31, 2011, submittal (using a 7 percent discount rate and an external events multiplier of 2.28), TVA identified eight potentially costbeneficial SAMDAs. The potentially cost-beneficial SAMDAs are:

Appendix H

- SAMDA 4 Improve DC bus Load shedding
- SAMDA 156 Eliminate RCP thermal barrier dependence on CCW, such that loss of CCW does not result directly in core damage (Enhance procedural guidance for use of ERCW for RCP thermal barrier cooling)*
- SAMDA 256– Install fire barriers around cables or reroute the cables away from fire sources (Enhance procedure for controlling temporary alterations to reduce fire risk from temporary cables)*
- SAMDA 285 Improve training to establish feed and bleed cooling given no CCPs are running or a vital instrument board fails
- SAMDA 292 Improve training to reduce failure probability to terminate inadvertent safety injection prior to water challenge to PORVs
- SAMDA 299 Initiate frequent awareness training for plant operators/maintenance/testing staff on key human actions for plant risk (Initiate frequent awareness training for maintenance and testing staff as on key human actions for plant risk)*
- SAMDA 305 Revise procedure E-1 to include recovery steps for failure to initiate hydrogen igniters
- SAMDA 306 Improve operator performance by enhancing likelihood of recovery from execution errors

* SAMDA title given in parentheses is as given in Section 10, Conclusions, of the submittals and is a more accurate description of the actual SAMDA.

It was subsequently determined that, due to time constraints, the procedural enhancements of SAMDA 156 would not be effective and hence this SAMDA would not have the benefit originally estimated. Also, it was determined that, relative to SAMDAs 305 and 306, the human reliability analysis in the PRA had not credited recovery steps in an existing procedure (SAG-6 "Containment Control Conditions") and hence these SAMDAs have already been implemented.

TVA performed additional analyses to evaluate the impact of discount rate, CDF uncertainties and parameter choices on the results of the SAMDA assessment (TVA 2011f). If the benefits are calculated for a 3 percent discount rate or increased by a factor of 2.7 to account for uncertainties, six additional SAMDA candidates were determined to be potentially costbeneficial:

• SAMDA 8 – Increase training on response to loss of two 120V AC buses which causes inadvertent actuation signal

- SAMDA 70 Install accumulators for turbine-driven auxiliary feedwater pump flow control valves
- SAMDA 93 Install an unfiltered hardened containment vent to eliminate the containment overpressure failure
- SAMDA 215 Provide a means to ensure RCP seal cooling so that RCP seals LOCAs are precluded for SBO events
- SAMDA 226 Provide permanent self-powered pump to back up normal charging pump
- SAMDA 300 Revise procedure FR-H.1 to eliminate of simplify complex (and/or) decision logic for establishing feed and bleed cooling and to improve operator recovery from initial mistakes

SAMDA 215, which is to provide a means to ensure RCP seal cooling so that RCP seals LOCAs are precluded for SBO events, is considered by TVA to be essentially the replacement of the RCP seals with a new design which eliminates the high leakage seal failure mode. This is the same as SAMDA 58 and is discussed further in Sections H.6.2 and H.7 below.

H.6.2 Review of TVA's Cost-Benefit Evaluation

The cost-benefit analysis performed by TVA was based primarily on NUREG/BR-0184 (NRC 1997a) and was executed consistent with this guidance.

To account for external events, TVA initially multiplied the internal event benefits by a factor of 2 for each SAMDA. As discussed above in Section H.2.2, in response to an NRC staff RAI, TVA increased this to 2.28, and this value was used for the results discussed above and included in the results in Table H-4. As a result of TVA's baseline analysis, eight SAMDAs (SAMDAs 4, 156, 256, 285, 292, 299, 305 and 306, as described above) were identified as potentially costbeneficial.

As indicated above, TVA considered the impact of discount rate, CDF uncertainties and parameter choices on the results of the SAMDA assessment (TVA 2011f). The results of the discount rate assessment are provided in the updated Table 2.a.iv-9 of the September, 16, 2011 submittal (TVA 2011f). The change in discount rate from 7 percent used in the baseline case to 3 percent used in the sensitivity analysis increases the assessed benefit of all SAMDAs but only changed the conclusion concerning the cost-benefit of SAMDAs 215 and 300. The disposition of these SAMDAs is discussed below in Section H.7. Moreover, these results indicated that the impact of the 3 percent discount rate was less than that of the CDF uncertainty. Hence, the SAMDAs that are cost-beneficial based on the CDF uncertainty incorporate those that are cost beneficial considering the 3 percent discount rate.

Appendix H

TVA provided the results of an additional sensitivity analysis of evacuation speed, a WinMACCS input parameter. This analysis did not identify any additional potentially cost-beneficial SAMDAs. This is as expected since evacuation speed has only a small impact on offsite exposure and no impact on offsite economic consequence and offsite exposure makes up only a small portion of the total maximum benefit.

TVA considered the impact that possible increases in benefits from analysis uncertainties would have on the results of the SAMDA assessment. Since no uncertainty distributions on CDF were available for the CAFTA based SAMDA model, TVA used the results of the uncertainty analysis of the RISKMAN WBN4SAMDA PRA model (TVA 2009a) to establish the uncertainty multiplier to be used. From this information TVA chose the ratio of the 95th percentile CDF to the mean CDF or 2.70. The results of the analysis uncertainty assessment are provided in the updated Table 2.a.iv-10 of the September, 16, 2011 submittal (TVA 2011f). Based on this uncertainty consideration, TVA determined that six additional SAMDAs (SAMDAs 8, 70, 93, 215, 226 and 300, as described above) were potentially cost-beneficial.

The NRC staff notes that the CAFTA results are point estimates, not mean values, and hence the ratio of the 95th percentile CDF to the point estimate CDF of 2.78 should be used in the CDF uncertainty analysis instead of 2.7. This difference is small and in the revised analysis of September 16, 2011 (TVA2011f) did not impact the cost-benefit analysis of any SAMDAs.

SAMDA 70, which is to install accumulators for turbine-driven auxiliary feedwater pump flow control valves, was originally assessed by TVA to have a benefit to cost ratio of 0.99 (TVA 2010a), but was determined to have a ratio just slightly above 1.0 using 2.78 in the corrected consequence analysis. In response to an NRC staff RAI and as discussed above, TVA, as part of its response to questions on the Appendix R analysis, has committed to provide a new capability to allow the operators from the control room to transfer from normal compressed air supply to the station nitrogen system for control of the LCVs. This new capability, identified as SAMDA 339, will have a greater benefit then that associated with SAMDA 70 and thus supersedes it (TVA 2011b).

As discussed above, the methodology TVA used to determine the benefit of each SAMDA could lead to an underestimate of the benefit. In response to an NRC staff RAI, TVA performed a sensitivity study reevaluating the benefit of each Phase II SAMDA basing the consequences for each release category on the maximum consequence for the scenarios that make up each release category rather than the average consequence. TVA indicated that, for the uncorrected consequence analysis (TVA 2011c), with one exception, the sensitivity study indicated that no additional SAMDAs would be cost beneficial using the 95 percentile uncertainty factor of 2.78. The one exception is SAMDA 93, which is to install an unfiltered hardened containment vent to eliminate the containment overpressure failure. While use of the maximum consequences increases the benefit to cost ratio from slightly less than 1.0 to slightly more than 1.0, TVA argues that use of the average LATE release category (release category III) is appropriate for this SAMDA. In addition, TVA points out that 40 percent of the LATE release category is due to RCP seal LOCAs while 10 percent is due to scenarios involving the loss of control air and operators failing to control AFW manually. Both of these situations are addressed by other

SAMDAs, SAMDA 58 for RCP seal failure and SAMDA 339 (replacing SAMDA 70) for loss of control air. TVA further commits to reevaluating SAMDA 93 if the new RCP seal package proves to not be reliable (TVA 2011c).

The revised cost benefit analysis resulting from the correction to the consequence analysis (TVA 2011f) indicates that SAMDA 93 is cost beneficial without considering the conservative source terms, and in the submittal, again cites the commitment to reevaluate SAMDA 93 if the new RCP seal package proves to not be reliable.

The September 16, 2011 submittal does not specifically state that the use of the conservative source terms with the revised consequence analysis will not result in any additional cost beneficial SAMDAs. TVA does point out that the next largest benefit-cost ratio is 0.70 for SAMADA 255, using the 2.70 uncertainty multiplier, and that this would not be cost beneficial even if the 2.78 multiplier is used. The staff considers that this SAMDA (and all others which have lower benefit-cost ratios) is sufficiently removed from being cost beneficial that utilization of the updated conservative source terms and consequence analysis would not result in it being cost beneficial.

In response to an NRC staff RAI, TVA reexamined the initial set of SAMDAs to determine if any additional Phase I SAMDAs would be retained for further analysis if the benefits (and Modified Maximum Averted Cost-Risk) were based on using the 95th percentile CDF. This reexamination utilized a number of SAMDA maximum benefit cases that represented the possible change in the maximum averted cost-risk for a range of assumptions concerning the nature of the impact of the SAMDA on the risk; for example, entire risk changed linearly with the change in CDF, the CDF remained fixed and only individual release categories changed, or combinations of both situations. Using these maximum benefit cases and estimates of the maximum potential reduction in CDF or risk, TVA provided the results of rescreening of all the Phase I SAMDAs originally screened out on the basis of excessive implementation cost or very low benefit. All Phase I SAMDAs screened out remained screened out based on a 95th percentile uncertainty factor of 2.7 (TVA 2011c, TVA 2011f). It is noted, however, while SAMDAs 50, 55 and 242, all impacting RCP seal failure sequences, are screened, TVA has committed to further consider these SAMDAs if the new RCP seal package proves not to be reliable (TVA 2011c, TVA 2011d). The NRC staff has reviewed the information provided and agrees with the conclusion that the Phase I SAMDAs originally screened will remain screened considering the CDF uncertainty. While, as indicated above, the more correct uncertainty factor is believed to be 2.78, the staff concludes use of this higher factor will not change the conclusions.

The NRC staff questioned TVA about other lower cost alternatives to some of the SAMDAs evaluated, as summarized below:

• Purchasing or manufacturing a "gagging device" that could be used to close a stuckopen steam generator safety valve for a SGTR event prior to core damage. In response to the RAI, TVA indicated that utilizing such a device would require access to the stuck open safety valve. Since the WBN steam generator safety valves do not have tailpipes,

Appendix H

the discharge is at the throat of the valve making such access infeasible due to local hazards (TVA 2011a).

- Utilizing the spare 5th diesel generator mentioned in the disposition of SAMDA 261 without going through the expense of complete refurbishing and licensing. In response to the RAI, TVA indicated that the diesel generator has been cannibalized to the point where essentially an entire new unit would be required. In addition, adding to the cost would be the requirement for class IE interfaces to the shutdown boards (TVA 2010c).
- Providing procedures and cabling to enable the use of the trailer-mounted 2 MW diesel generator provided in response to GSI-189 to be used to power selected equipment such as battery chargers, and/or individual pumps. In response to this RAI TVA indicated that this has been implemented at WBN (TVA 2010c).
- Purchasing and installing a permanent diesel generator to supply power to the normal charging pump. In response to this RAI, TVA indicated that such a SAMDA would need to consider power supply arrangements and interfaces with existing power supplies as well as the physical location of the diesel generator. There would be significant cable routing required as well as the procedures and training involved (TVA 2010c).

The NRC staff concludes that, with the exception of the potentially cost-beneficial SAMDAs discussed above, the costs of the other SAMDAs evaluated would be higher than the associated benefits.

H.7 Conclusions

TVA compiled a list of SAMDAs based on a review of: the most significant basic events from the plant-specific PRA, insights from the plant-specific IPE and IPEEE, Phase I SAMAs from license renewal applications for other plants, and NEI's list of generic SAMAs. An initial screening removed SAMDA candidates that (1) were not applicable to WBN, (2) were already implemented at WBN, (3) were similar to and could be combined with other SAMDAs, (4) had estimated costs that would exceed the dollar value associated with completely eliminating all severe accident risk at WBN, or (5) determined to have negligible impact on risk. Based on this screening, a number of these SAMDAs were eliminated leaving the remaining candidate SAMDAs for Phase II evaluation.

For the remaining SAMDA candidates, more detailed design and cost estimates were developed as shown in Table H-4. The cost-benefit analyses showed that eight of the SAMDA candidates were potentially cost-beneficial in the baseline analysis (SAMDAs 4, 156, 256, 285, 292, 299, 305 and 306). TVA performed additional analyses to evaluate the impact of parameter choices and uncertainties on the results of the SAMDA assessment. As a result, six additional SAMDAs (SAMDAs 8, 70, 93, 215, 226 and 300) were identified as potentially cost-beneficial.

Of these potentially cost-beneficial SAMDAs, SAMDA 156 was found by TVA to not be effective due to time constraints on the operators to perform the action. SAMDAs 305 and 306 are considered by TVA to have been previously implemented in an existing procedure that was not credited in the PRA's human reliability analysis.

SAMDAs 93, 215, and 226 both relate to preventing RCP seal failures as does SAMDA 58. SAMDA 58 was originally screened due to the unavailability of an approved seal design and associated cost. Subsequently, it was learned that such a seal had been installed at the Farley Nuclear Power Plant. TVA has committed to follow the progress and experience with this seal package design and, if proven reliable during operation, to install it at the earliest refueling outage following startup during normal seal package replacements (TVA 2011a). TVA further committed that if the seal package is not proven reliable, TVA will use the latest PRA model at the time to re-evaluate SAMDAs 93, 215, and 226 as well as 10 CFR 50.55 and 10 CFR 59.56 to determine if an alternate SAMDA is cost beneficial for implementation and implement the SAMDA accordingly (TVA 2011b). TVA has further committed to similarly re-evaluate other SAMDAs that may be cost beneficial and/or related to or impacting RCP seal failure sequences including SAMDAs 50, 55, 56 and 242 (TVA2011c).

SAMDAs 293 and 294, both related to flooding due to raw cooling water pipe failures, were both screened as already having been implemented. TVA has committed to the installation of flood detection instrumentation in the affected areas, 772.0-A8 and 772.0-A9. As discussed above, the originally installed carbon steel piping had been replaced with stainless steel piping. When the lower leak frequency for this piping did not lower the risk from these floods sufficiently, flood detection was committed to so that operators could take steps to isolate the affected piping. This has been designated by TVA to be SAMDA 340 (TVA 2011c).

SAMDA 70, which was found to be cost beneficial considering uncertainty in CDF, was superseded by SAMDA 339, a new SAMDA to provide in the control room the capability to connect to the station nitrogen system (TVA 2011b).

SAMDA 80 was originally screened on the basis of having a very low benefit. In response to an NRC staff RAI, TVA indicated that this SAMDA will be implemented in the CCP area, the TD AFW pump room, and the EDG switchgear rooms (TVA 2011b).

As stated in the November 1, 2010 submittal, TVA has indicated that the following potentially cost-beneficial SAMDAs will be implemented: SAMDAs 4, 8, 256, 285, 292, 299 and 300.⁵ For reasons beyond a cost-beneficial analysis, TVA will be implementing SAMDAs 339 and 340 as committed by letters dated May 13 and 25, 2011.

⁵ Since the Third Circuit's opinion in *Limerick Ecology Action, Inc., v. NRC*, 869 F.2d 719, 723 (3d Cir. 1989) is not limited by the scope of license renewal, their relationship of these SAMDAs to aging does not affect the decision to implement.

Appendix H

In its September 16, 2011 submittal (TVA 2011f) TVA reaffirms the commitments made in prior SAMDA submittals (TVA 2011a through TVA 2011e).

The NRC staff reviewed the TVA analysis and concludes that the methods used and the implementation of those methods were sound. The treatment of SAMDA benefits and costs support the general conclusion that the SAMDA evaluations performed by TVA are reasonable and sufficient for the license submittal. Although the treatment of SAMDAs for external events was somewhat limited, the likelihood of there being cost-beneficial enhancements in this area was minimized by improvements that have been realized as a result of the IPEEE process, and inclusion of a multiplier to account for external events.

The NRC staff concurs with TVA's identification of areas in which risk can be reduced in a costbeneficial manner through the implementation of the identified, potentially cost-beneficial SAMDAs. Given the potential for cost-beneficial risk reduction, the NRC staff agrees, subject to the above described dispositions, that implementation of these SAMDAs as committed to by TVA is warranted. Therefore, the NRC staff finds that TVA's analysis meets the requirements of NEPA.

H.8 References

Electric Power Research Institute (EPRI). 1991. "A Methodology for Assessment of Nuclear Power Plant Seismic Margin," EPRI NP-6041-SL, Revision 1. Palo Alto, CA. August 1991.

Electric Power Research Institute (EPRI). 1992. "Fire-Induced Vulnerability Evaluation (FIVE)," EPRI TR-100370. Palo Alto, CA. April 1992.

Nuclear Energy Institute (NEI). 2005. "Severe Accident Mitigation Alternatives (SAMA) Analysis Guidance document." NEI 05-01, Revision A. November 2005.

Southern Nuclear Operating Company (SNC). 2007. Applicant's Environmental Report-Operating License Renewal Stage for Vogtle Electric Generating Plant Units 1 and 2, Appendix E - Environmental Report, Southern Nuclear Operating Company, Birmingham, Alabama. June 2007.

Tennessee Valley Authority (TVA). 1992. Letter from Mark O. Medford, TVA, to U.S. Nuclear Regulatory Commission. Subject: "Watts Bar Nuclear Plant (WBN) Units 1 and 2 – Generic Letter (GL) 88-20 - Individual Plant Examination (IPE) for Severe Accident Vulnerabilities – Response (TAC M74488)." September 1, 1992. Accessible at ML080070015, ML080070016, ML080070017, ML080070018, ML080070019.

Tennessee Valley Authority (TVA). 1994a. Letter from William J. Museler, TVA, to U.S. Nuclear Regulatory Commission. Subject: "Watts Bar Nuclear Plant (WBN) Units 1 and Common – Generic Letter 88-20 - Individual Plant Examination (IPE) – Update of Level 1 and 2 Analysis." May 2, 1994. Accessible at ML080070020, ML080070025, ML080070026.

Tennessee Valley Authority (TVA). 1994b. Letter from Dwight E. Nunn, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Units 1 and 2 – Severe Accident Mitigation Design Alternatives (SAMDAs) Evaluation from Updated Individual Plant Examination (IPE) (TAC Nos. M77222 and M77223)." June 30, 1994. Accessible at ML073230670.

Tennessee Valley Authority (TVA). 1998. Letter from P. L. Pace, TVA, to U.S. Nuclear Regulatory Commission document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 1 – Generic Letter (GL) 88-20, Supplements 4 and 5 - Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities (TAC M83693)." February 17, 1998. Accessible at ML073240218.

Tennessee Valley Authority (TVA). 2006. "Tennessee Multi-Jurisdictional Radiological Emergency Response Plan for the Watts Bar Nuclear Plant," Annex H.

Tennessee Valley Authority (TVA). 2009. Letter from Masoud Bajestani, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Final Supplemental Environmental Impact Statement - Severe Accident Management Alternatives (TAC MD8203)." January 27, 2009. Accessible at ML090360588 and ML090360589.

Tennessee Valley Authority (TVA). 2010a. Letter from Masoud Bajestani, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 –Severe Accident Management Alternatives Using Latest Computer Aided Fault tree Analysis Model – Additional Information (TAC MD8203)." November 1, 2010. Accessible at ML103080030.

Tennessee Valley Authority (TVA). 2010b. Letter from Masoud Bajestani, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Probabilistic Risk Assessment Individual Plant Examination." February 9, 2010. Accessible at ML100491535.

Tennessee Valley Authority (TVA). 2010c. Letter from Masoud Bajestani, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Request for Additional Information Regarding Severe Accident Management Alternatives (TAC No. MD8203)." July 23, 2010. Accessible at ML102100588.

Tennessee Valley Authority (TVA). 2010d. Letter from Masoud Bajestani, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Response to Request for Additional Information Regarding Severe Accident Management Alternatives SECPOP2000 Errors (TAC MD8203)." September 17, 2010. Accessible atML102600582.

Appendix H

Tennessee Valley Authority (TVA). 2010e. Letter from Masoud Bajestani, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Individual Plant Examination for External Events Design Report." April 30, 2010. Accessible at ML101240992.

Tennessee Valley Authority (TVA). 2011a. Letter from Marie Gillman, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Response to Request for Additional Information Regarding Severe Accident Management Alternative Review (TAC MD8203)." January 31, 2011. Accessible at ML110340040.

Tennessee Valley Authority (TVA). 2011b. Letter from David Stinson, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Response to Request for Additional Information Regarding Severe Accident Management Alternative Review (TAC MD8203)." May 13, 2011. Accessible at ML11145A088.

Tennessee Valley Authority (TVA). 2011c. Letter from David Stinson, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) -Unit 2 – Response to Request for Additional Information Item Numbers 2, 3, 5 and 15 Regarding Severe Accident Management Alternative Review (TAC MD8203)." May 25, 2011.Accessible at ML11147A099.

Tennessee Valley Authority (TVA). 2011d. Letter from David Stinson, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) - Unit 2 – Response to Request for Additional Information Regarding Severe Accident Management Alternative Review (SAMDA) (TAC MD8203)." June 17, 2011. Accessible at ML11171A510.

Tennessee Valley Authority (TVA). 2011e. Letter from David Stinson, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) -Unit 2 – Response to Request for Additional Information Regarding Severe Accident Management Alternative Review (SAMDA) (TAC MD8203)." June 27, 2011. Accessible at ML11180A008.

Tennessee Valley Authority (TVA). 2011f. Letter from David Stinson, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) -Unit 2 – Revised Severe Accident Management Design Alternative Review (SAMDA) Response (TAC MD8203)." September 16, 2011. Accessible at ML11264A052

Tennessee Valley Authority (TVA). 2011g. Letter from David Stinson, TVA, to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: "Watts Bar Nuclear Plant (WBN) Unit 2 – Chapter 15.5 Fuel Handling Accident (FHA) Dose Analysis." October 17, 2011. Accessible at ML11294A461

U.S. Department of Labor Statistics (BLS). 2010. "Bureau of Labor Statistics (BLS) 2010, Inflation Calculator." Available online at <u>www.bls.gov</u>.

U. S. Geologic Survey (USGS). 2008. "2008 NSHM Gridded Data, Peak Ground Acceleration." Available online at: <u>http://earthquake.usgs.gov/hazards/products/conterminous/2008/data/</u>.

U.S. Nuclear Regulatory Commission (NRC). 1975. *Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants*. NUREG-0800, Revision 0. Washington, D.C. November 1975.

U.S. Nuclear Regulatory Commission (NRC). 1988. "Individual Plant Examination for Severe Accident Vulnerabilities – 10CFR 50.54(f)." Generic Letter 88-20. Washington, D.C. November 23, 1988.

U.S. Nuclear Regulatory Commission (NRC). 1990a. Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants. NUREG-1150. Washington, D.C.

U.S. Nuclear Regulatory Commission (NRC). 1990b. *Evaluation of Severe Accident Risks: Sequoyah Unit 1*. NUREG/CR-4551, SAND86-1390, Vol. 5, Rev. 1, Part 2. Washington, D.C. December 1990.

U.S. Nuclear Regulatory Commission (NRC). 1990c. *Analysis of Core Damage Frequency: Sequoyah Unit 1*. NUREG/CR-4550, SAND86-2084, Vol. 5, Rev. 1. Washington, D.C. April 1990.

U.S. Nuclear Regulatory Commission (NRC). 1991. "Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities – 10CFR 50.54(f)." Generic Letter No. 88-20, Supplement 4. Washington, D.C. June 28, 1991.

U.S. Nuclear Regulatory Commission (NRC). 1994. Letter from Peter S. Tam, U.S.NRC, to Oliver D. Kingsley, TVA. Subject: "Watts Bar Nuclear Plant – Completion of Individual Plant Examination Review (TAC No. M74488)." Washington, D.C. October 5, 1994. Accessible at ML073230696, ML082320705, ML082320706, ML082320707.

U.S. Nuclear Regulatory Commission (NRC). 1995. *Final Environmental Statement related to the Operation of Watts Bar Nuclear Plant, Units 1 and 2*. NUREG-0498, Supplement No. 1. Washington, D.C. April 1995.

U.S. Nuclear Regulatory Commission (NRC). 1997a. *Regulatory Analysis Technical Evaluation Handbook*. NUREG/BR-0184. Washington, D.C.

U.S. Nuclear Regulatory Commission (NRC). 1997b. *Individual Plant Examination Program: Perspectives on Reactor Safety and Plant Performance*. NUREG-1560. Washington, D.C.

Appendix H

U.S. Nuclear Regulatory Commission (NRC). 2000. Letter from Robert T. Martin, U.S. NRC, to J. A. Scalice, TVA. Subject: "Watts Bar Nuclear Plant, Unit 1 – Review of Individual Plant Examination of External Events (IPEEE) Submittal (TAC Nos. M83693)." Washington, D.C. May 19, 2000.

U.S. Nuclear Regulatory Commission (NRC). 2003a. Memorandum from Nilesh C. Chokshi, U.S. NRC, to Ashok C. Thadani, U.S. NRC. Subject: "Results of Initial Screening of Generic Issue 194, 'Implications of Updated Probabilistic Seismic Hazard Estimates.'" September 12, 2003.

U.S. Nuclear Regulatory Commission (NRC). 2003b. SECPOP 2000: Sector Population, Land Fraction, and Economic Estimation Program. NUREG/CR-6525, Revision 1. Washington, D.C., August 2003.

U.S. Nuclear Regulatory Commission (NRC). 2004a. *An Approach for Estimating the Frequencies of Various Containment Failure Modes and Bypass Events*. NUREG/CR-6595 Revision 1. Washington, D.C. October 2004.

U.S. Nuclear Regulatory Commission (NRC). 2004b.*Regulatory Analysis Guidelines of the U.S. Nuclear Regulatory Commission*. NUREG/BR-0058, Rev. 4.Washington, D.C.

U.S. Nuclear Regulatory Commission (NRC). 2009. Letter from Joel S. Wiebe, U.S. NRC, to Ashok S. Bhatnagar, Tennessee Valley Authority. Subject: "Watts Bar Nuclear Plant, Unit 2 - Request for Additional Information Regarding Severe Accident Management Alternatives (TAC No. MD8203)." Washington, D.C. November 30, 2009. Accessible at ML092230024.

U.S. Nuclear Regulatory Commission (NRC). 2010. NRC Information Notice 2010-18: Generic Issue 199 (GI-199), "Implications of Updated Probabilistic Seismic Hazard Estimates in Central and Eastern United States on Existing Plants." Washington, D.C. September 2, 2010. Accessible at ML101970221.

U.S. Nuclear Regulatory Commission (NRC). 2011a. Letter from Justin C. Poole, U.S. NRC, to Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 -Request for Additional Information Regarding Severe Accident Management Alternative Review (TAC No. MD8203)." January 11, 2011. Accessible at ML103470681.

U.S. Nuclear Regulatory Commission (NRC). 2011b. Letter from Patrick D. Milano, U.S. NRC, to Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 – Supplemental Request for Additional Information Regarding Severe Accident Management Design Alternatives Review (TAC No. MD8203)." March 30, 2011. Accessible at ML110820858.

U.S. Nuclear Regulatory Commission (NRC). 2011c. Letter from Justin C. Poole, U.S. NRC, to Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 – Request for Additional Information Regarding Severe Accident Management Design Alternatives Review – June 2011 (TAC No. MD8203)." June 13, 2011. Accessible at ML111530523.

U.S. Nuclear Regulatory Commission (NRC). 2011d. Letter from Stephen J. Campbell, U.S. NRC, to Ashok S. Bhatnagar, TVA. Subject. "Watts Bar Nuclear Plant, Unit 2 – Review of Individual Plant Examination Submittal – Internal Events and Internal Flood (TAC NO. ME3334)." August 12, 2011. Accessible at ML111960228.

U.S. Nuclear Regulatory Commission (NRC). 2011e. Letter from Stephen J. Campbell, U.S. NRC, to Ashok S. Bhatnagar, TVA. Subject: "Watts Bar Nuclear Plant, Unit 2 – Review of Individual Plant Examination of External Events Design Report (TAC NO. ME4482)." September 20, 2011. Accessible at ML111960300.

Wolf Creek Nuclear Operating Corporation (WCNOC). 2006. Letter from Terry J. Garrett, WCNOC to U.S. Nuclear Regulatory Commission Document Control Desk. Subject: Docket No. 50-482: Application for Renewed Operating License, September 27, 2006.

. .

.

.

Appendix I

Supporting Documentation for Radiological Dose Assessment

This appendix contains supporting documentation for the U.S. Nuclear Regulatory Commission (NRC) staff's determinations described in this supplemental final environmental statement (SFES) for the radiological dose assessment.

The staff reviewed and performed an independent dose assessment of the radiological impacts from normal operations of the new nuclear Unit 2 at the Watts Bar Nuclear (WBN) plant in Rhea County, Tennessee. This appendix contains four sections: (1) dose estimates to the public from liquid effluents; (2) dose estimates to the public from gaseous effluents; (3) cumulative dose estimates, and (4) dose estimates to biota from gaseous and liquid effluents.

I.1 Dose Estimate from Liquid Effluents

The NRC staff used the dose assessment approach specified in Regulatory Guide 1.109 (NRC 1977) and the NRC developed LADTAP II computer code (Strenge et al. 1986) to estimate doses to the maximally exposed individual (MEI) and the population from the liquid effluent pathway of WBN Unit 2. As described in Regulatory Guide 1.109 (NRC 1977), the MEI is characterized as an individual with the "maximum" food consumption, occupancy, and other usages in the vicinity of the plant site and is therefore representative of a member of the public that would receive the maximum dose from all radiological pathways from the site. The NRC staff used the projected radioactive effluents release values from Tennessee Valley Authority's (TVA's) final supplemental environmental impact statement (submitted to NRC as the TVA Environmental Report for an Operating License) (TVA 2008a) and responses to Requests for Additional Information (RAIs) submitted by TVA (TVA 2011a, b).

I.1.1 Scope

Doses from proposed WBN Unit 2 to the MEI were calculated and compared to the regulatory criteria for the following:

 Total Body – Dose was the total for the ingestion of aquatic organisms as food and cow meat and external exposure to contaminated sediments deposited along the shoreline (shoreline exposure). Water downstream from the WBN site is not used for irrigation. Refer to Figure 4-2 in Section 4.6.1 for visual representation of the exposure pathway to humans.

Appendix I

• Organ – Dose was the total for each organ for ingestion of aquatic food and cow meat and shoreline exposure with the highest value for adult, teen, child, or infant.

The NRC staff performed calculations for exposure pathways using input parameters and values found in TVA documentation. When site- or design-specific input parameters were not available, staff used default values from Regulatory Guide 1.109 (NRC 1997).

I.1.2 Resources Used

To calculate doses to the public from liquid effluents the NRC staff used a personal computer version of the LADTAP II code titled NRCDOSE, version 2.3.12 (Chesapeake Nuclear Services, Inc. 2006) obtained through the Oak Ridge Radiation Safety Information Computational Center. LADTAP II calculates the radiation exposure to man from potable water, aquatic foods, shoreline deposits, swimming, boating, and irrigated foods, and also the dose to biota. Doses are calculated for both the maximum individual and for the population and are summarized for each pathway by age group and organ. LADTAP II implements the radiological exposure models described in NRC Regulatory Guide 1.109, Rev. 1 (Appendix A) for radioactivity releases in liquid effluent. The usage factors contained in Regulatory Guide 1.109 have been included as standard assumptions but may easily be replaced with site-specific data.

I.1.3 Input Parameters

The population distribution assumed for all NRC staff calculations was obtained from the TVA RAI response letter dated May 26, 2011 and is shown in Table I-1 (TVA 2011b). Table I-2 lists the major parameters used in calculating dose to the public from liquid effluent releases during normal operation. It should be noted that the 80-km (50-mi) population was assumed to be for the year 2040. Section 5.4.1 of the Environmental Standard Review Plan (ESRP) guidance suggests that populations be projected only 5 years out from the date of the licensing action under consideration (NRC 2000). The staff considers that using the population for the year 2040, rather than the recommended 5 years from licensing, is acceptable because it assesses the population dose for a time period that approximates the operating life of WBN Unit 2.

I.1.4 Results of Calculations

Table I-3 shows the results of the calculations of dose to the public from liquid effluent releases. The data in this table indicate fairly good agreement between NRC staff calculations and TVA calculations (TVA 2008b) and therefore the staff can use the TVA calculations for conclusions in Section 4.6 of this SFES-OL.

Table I-5 lists the NRC staff's calculated doses to the population in various locations away from the plan from drinking water and shoreline recreational use such as boating and swimming.

Table I-6 compares the doses to the MEI from liquid effluents as calculated by NRC staff to the same doses calculated by the applicant (TVA 2008b). This table indicates fairly good agreement between the two sets of calculations, despite the fact that the applicant used a site-specific model, approved by NRC, which used some parameter values that were different from the mixture of site-specific and default parameter values used by the NRC staff.

Table I-4 lists the NRC staff's calculated doses to the MEI from liquid effluent releases from WBN Unit 2, which would include such things as eating the fish, drinking the water, and swimming and other recreational uses of the water.

					Radii/Distances (mi)								
Sectors	Year	0-1	1-2	2-3	3-4	4-5	5-10	0-10	10-20	20-30	30-40	40-50	0-50
North	2040	0	18	0	0	135	2,465	2,619	1,885	2,778	4,798	6,172	18,222
North-Northeast	2040	0	0	18	411	185	1,536	2,150	11,762	18,766	14,502	2,547	49,727
Northeast	2040	0	0	18	308	287	827	1,441	3,783	16,734	29,838	78,334	130,130
East-Northeast	2040	0	0	18	308	287	497	1,110	3,553	29,539	63,798	253,831	351,832
East	2040	0	8	431	308	616	552	1,915	11,352	18,647	30,063	44,013	105,990
East-Southeast	2040	0	0	0	27	41	68	135	6,230	20,120	5,068	3,280	34,833
Southeast	2040	8	0	0	29	39	135	203	19,852	15,185	3,950	7,822	44,012
South-Southeast	2040	21	0	0	246	413	103	783	8,951	12,907	2,918	48,593	74,151
South	2040	16	0	0	0	1,983	3,824	5,823	4,586	42,883	56,430	17,985	127,707
South-Southwest	2040	0	0	21	0	0	546	567	5,725	42,517	46,281	106,392	201,482
Southwest	2040	0	0	0	0	0	1,051	1,051	12,978	14,499	62,307	111,795	202,630
West-Southwest	2040	0	6	36	59	126	711	938	12,791	2,837	2,840	3,372	22,778
West	2040	0	14	22	101	90	710	937	3,406	5,555	2,944	5,474	18,316
West-Northwest	2040	· 0	0	22	126	79	490	717	2,091	4,372	5,654	20,511	33,345
Northwest	2040	0	108	332	376	526	2,655	3,998	2,889	18,634	10,462	15,956	51,940
North-Northwest	2040	0	0	0	173	123	3,116	3,413	1,536	33,843	11,609	5,890	56,290
Total		45	155	919	2,471	4,930	19,287	27,799	113,368	299,818	353,432	728,968	1,523,385

 Table I-1.
 Projected Population by Sector and Radial Distance Around the WBN Site for the Year 2040.

.

Parameter	Sta	aff Value	Comments
New unit liquid effluent source term	Br-84	6.88 × 10 ⁻⁴	Table 3-16, p. 80 of the TVA ER
(Ci/yr) ^{(a)(b)}	I-131	1.16	(TVA 2008a, 2011b Enclosure 1;p.E1-23
· · ·	1-132	1.21×10^{-1}	X
	1-133	9.10 × 10 ⁻¹	
	I-134	3.28 × 10 ⁻²	
	I-135	4.70 × 10 ⁻¹	
	Rb-88	7.68 × 10 ⁻³	
	Cs-134	1.98 × 10 ⁻¹	
	Cs-136	1.98×10^{-2}	
	Cs-137	2.61×10^{-1}	
	Na-24	1.86×10^{-2}	
	Cr-51	9.98 × 10 ⁻²	
	Mn-54	5.59×10^{-2}	
	Fe-55	8.09×10^{-3}	
	Fe-59	1.15×10^{-2}	
	Co-58	1.66×10^{-1}	
	Co-60	3.16×10^{-2}	
	Zn-65	3.82 × 10 ⁻⁴	
	Sr-89	4.52×10^{-3}	
	Sr-90	4.10×10^{-4}	
	Sr-91	2.47×10^{-3}	
	Y-91m	1.68 × 10 ⁻⁴	
	Y-91	3.90 × 10 ⁻⁴	
	Y-93	1.27×10^{-3}	
	Zr-95	1.34×10^{-2}	
	Nb-95	1.11×10^{-2}	
	Mo-99	1.04×10^{-1}	
	Tc-99M	3.35×10^{-3}	
	Ru-103	5.88×10^{-3}	
	Ru-106	7.63×10^{-2}	
	Te-129M	1.41×10^{-4}	
	Te-129	7.30×10^{-4}	
	Te-129	7.30 × 10 8.05 × 10 ⁻⁴	
	Te-131M	2.03×10^{-4}	
	Te-132	3.05×10^{-2}	
	Ba-140	3.58×10^{-1}	
	La-140	5.14×10^{-1}	
		3.41×10^{-4}	
	Ce-141	3.41×10^{-3}	
	Ce-143	1.53 × 10 ⁻³	
	Ce-144	1.33×10^{-1}	
	Np-239	1.37×10^{-3}	
	H-3	1.25 × 10 ³	

Table I-2.Parameters Used in Calculating Dose to the Public from Liquid Effluent Releases
(WBN Unit 2 only)

Parameter	Staff Value	Comments
Freshwater site	Selected	Discharge is to the freshwater Tennessee River
Discharge flow rate (ft ³ /s)	44.56	Site-specific value. Cooling tower blowdown rate used for dilution from Figure 3-7 of TVA ER (TVA 2008a).
Source-term multiplier	1	For one unit.
Reconcentration model	No impoundment	Site-specific value.
Effluent discharge rate from impoundment system to receiving water body (ft ³ /s)	44.56	Matches discharge flow rate for "no impoundment" model (Strenge et al. 1986
impoundment total volume (ft ³)	0	Set to zero for "no impoundment" model (Strenge et al. 1986).
Shore-width factor	0.2	Suggested value for river shoreline (NRC 1977; Strenge et al. 1986)
Dilution factors for aquatic food and boating, shoreline and swimming, and drinking water	78	Site-specific value. The quotient of the minimum Tennessee River flow rate to allow release of liquid effluent divided by the cooling tower blowdown used for dilution prior to release into the river.
Transit time (hr)	0	Site-specific value from RAI TVA letter dated May 26, 2011, p. E1-12 (TVA 2011)
Consumption and usage factors for adults, teens, children, and infants	Shoreline usage (hr/yr) 500 (adult) 500 (teen) 500 (child) 500 (infant) Water usage (L/yr) 730 730 (adult) 510 (teen) 510 (child) 330 (infant) Fish consumption (kg/yr) 21 21 (adult) 16 (teen) 6.9 (child) 0 (infant)	Shoreline Usage: Site-specific value from Offsite Dose Calculation Manual (ODCM; TVA 2008b) Water Usage: LADTAP II code default values (NRC 1977; Strenge et al. 1986). Note: for fish consumption, NRC staff used default values rather than site value because site values were for average consumption and these values are for calculating the dose to the MEI.
Total 50-mi population	1,523,385	Site-specific value from RAI TVA letter dated May 26, 2011, p. E1-11. The population was estimated for the year 204 (TVA 2011b).
50-mi drinking water population	317,370	Site-specific value from April 9, 2010 RAI response (TVA 2010). Note: the population datum provided for this RAI wa 1,066,580. In the May 26, 2011 letter, TV updated the population by 500,000 but did not update the 50-mi drinking water population (TVA 2011b).

Table I-2. (contd)

.

- --- -----

Appendix I

Parameter	Staff Value	Comments
Total 50-mi sport fishing (kg/yr)	65,987	Site-specific value from WBN FSAR (TVA 2009) and Table 3-15, p. 79, of the TVA ER (TVA 2008a). Note: the population datum provided for this RAI was 1,066,580. In the May 26, 2011 letter, TVA updated the population by 500,000 but TVA did not update the 50-mi sport fishing population (TVA 2011b).
Total 50-mi shoreline usage (person-hr/yr)	4.56 × 10 ⁷	Site-specific value from Table 3-15 of the TVA ER (TVA 2009) and ODCM Eq. 6-18, p. E1-144 (5 hours per visit) (TVA 2008b). Note: the population datum provided for this RAI was 1,066,580. In the May 26, 2011 letter, TVA updated the population by 500,000 but TVA did not update the 50-mi shoreline usage population (TVA 2011b).
Total 50-mi swimming usage (person-hr/yr)	4.56 × 10 ⁷	NRC staff assumes that swimming could equal shoreline use. Site-specific value from Table 3-15 of the TVA ER (TVA 2009) and ODCM Eq. 6-18, p. E1-144 (5 hours per visit) (TVA 2008b). Note: the population datum provided for this RAI was 1,066,580. In the May 26, 2011 letter, TVA updated the population by 500,000 but TVA did not update the 50-mi swimming usage population (TVA 2011b).
Total 50-mi boating usage (person-hr/yr)	4.56 × 10 ⁷	NRC staff assumes that boating could equal shoreline use. Note: the population datum provided for this RAI was 1,066,580. In the May 26, 2011 letter, TVA updated the population by 500,000 but TVA did not update the 50-mi boating usage population (TVA 2011b).
Fraction of crops irrigated	0	Site-specific value from ODCM, p. 71 (TVA 2008b).
Fraction of population using contaminated water for drinking and food production	0	Site-specific value from ODCM, p. 71 (TVA 2008b).
Fraction of agricultural products within 50-mi radius	0	Site-specific value from ODCM, p. 71 (TVA 2008b).
Irrigation rate for food products (L/m ² /mo)	0	Site-specific value from ODCM, p. 71 (TVA 2008b).
Fraction of contaminated water not used for feed or drinking water	0	Site-specific value from ODCM, p. 71 (TVA 2008b).
Total production of vegetables within 50-mi radius (kg/yr)	8.07 × 10 ⁸	Site-specific value from WBN FSAR p. 11.3-9 (vegetable production in each sector annulus = vegetable consumption in that sector annulus) (TVA 2009).

Table 1-2. (contd)

September 2011

.

Draft NUREG-0498, Supplement 2

Parameter	Staff Value	Comments
Production rate for irrigated vegetables (kg/yr)	0	Site-specific value from ODCM, p. 71 (TVA 2008b).
Total production of leafy vegetables within 50-mi radius (kg/yr)	1.37 × 10 ⁸	Site-specific value from WBN FSAR p. 11.3-9 (leafy vegetable production in each sector annulus = leafy vegetable consumption in that sector annulus) (TVA 2009).
Production rate for irrigated leafy vegetables (kg/yr)	0	Site-specific value from ODCM p. 71 (TVA 2008b).
Total production of milk within 50-mi radius (L/yr)	4.99 × 10 ⁸	Site-specific value from WBN FSAR p. 11.3-9 (milk production in each sector annulus = milk consumption in that sector annulus) (TVA 2009).
Production rate for irrigated milk (L/yr)	0	Site-specific value from ODCM p. 71 (TVA 2008b).
Total production of meat within 50-mi radius (kg/yr)	1.37 × 10 ⁸	Site-specific value from WBN FSAR p. 11.3-9 (meat production in each sector annulus = meat consumption in that sector annulus) (TVA 2009).
Production rate for irrigated meat (kg/yr)	0	Site-specific value from ODCM p. 71 (TVA 2008b).
 (a) To convert Ci/yr to Bq/yr, multip (b) 10 CFR 50; Appendix I. Radion 		ory Guide 1.109 are considered (NRC 1977):

Table I-2. (contd)

Table I-3. Comparison of Doses to the Public from Liquid Effluent Releases for WBN Unit 2

Type of Dose	TVA ER (2009b) ^(a)	Staff Calculation		
Total body (mrem/yr)	0.72 (adult)	0.64 (adult)		
Organ dose (mrem/yr)	0.13 (adult GI tract)	0.14 (adult GI tract)		
Thyroid (mrem/yr)	0.92 (child)	1.91 (infant)		
Population dose from liquid pathway (person-rem/yr)	1.6	6.6		
(a) TVA 2008a(b) 100 × (Staff value – TVA value)	/(Staff value)			

Table I-5 lists the NRC staff's calculated doses to the population in various locations away from the plan from drinking water and shoreline recreational use such as boating and swimming.

Table I-6 compares the doses to the MEI from liquid effluents as calculated by NRC staff to the same doses calculated by the applicant (TVA 2008b). This table indicates fairly good agreement between the two sets of calculations, despite the fact that the applicant used a site-specific model, approved by NRC, which used some parameter values that were different from the mixture of site-specific and default parameter values used by the NRC staff.

Pathway	Age Group	Total Body (mrem/yr)	Maximum Organ (mrem/yr) ^(ā)	Thyroid (mrem/yr)
Fish and Other Organisms	Adult	5.82 × 10 ⁻¹	7.89 × 10 ⁻¹ (liver)	2.00 × 10 ⁻¹
	Teen	3.31 × 10 ⁻¹	8.11 × 10 ⁻¹ (liver)	1.88 × 10⁻¹
	Child	1.29 × 10 ⁻¹	7.08 × 10 ⁻¹ (liver)	1.95 × 10 ⁻¹
	Infant	0	0	0
Drinking Water	Adult	2.90 × 10 ⁻²	4.17 × 10 ⁻² (GI-LLI)	5.81 × 10 ⁻¹
	Teen	1.89 × 10 ⁻²	3.00 × 10 ⁻² (liver)	4.98 × 10 ⁻¹
	Child	3.14 × 10 ⁻²	5.43 × 10 ⁻² (liver)	1.21
	Infant	2.96 × 10 ⁻²	6.23 × 10 ⁻² (liver)	1.89
Direct Radiation (Shoreline)	Adult	2.41 × 10 ⁻²	2.82 × 10 ⁻²	2.41 × 10 ⁻²
	Teen	2.41 × 10 ⁻²	2.82 × 10 ⁻²	2.41 × 10 ⁻²
	Child	2.41 × 10 ⁻²	2.82×10^{-2}	2.41 × 10 ⁻²
	Infant	2.41 × 10 ⁻²	2.82 × 10 ⁻²	2.41 × 10 ⁻²

Table I-4.Staff Calculation of Annual Doses to the Maximally Exposed Individual for Liquid
Effluent Releases from Unit 2

September 2011

.

		Dose to Population (person-rem/yr)								
	Whole Body	Skin	Bone	Liver	Thyroid	Kidney	Lung	GI-LL		
				Drinkin	g Water					
Dayton, TN	0.268	(a)	0.146	0.346	4.980	0.254	0.192	0.325		
Soddy-Daisy/Falling Water Utility District	0.158	(a)	0.083	0.203	2.230	0.147	0.115	0.176		
East Side Utility, TN	0.681	(a)	0.348	0.875	7.490	0.624	0.497	0.735		
Chattanooga, TN	3.240	(a)	1.630	4.150	31.400	2.950	2.370	3.460		
				Shorel	ine Use					
Chickamauga Reservoir (from WBN ^(b) to 100 percent mixing point)	0.029	0.034	(c)	(c)	0.029	(c)	(c)	(C)		
Chickamauga Reservoir (from 100 percent mixing point to SQN)	0.313	0.366	(C)	(c)	0.313	(C)	(C)	(C)		
Chickamauga Reservoir (from SQN ^(d) to Chickamauga Dam)	1.790	2.090	(C)	(C)	1.790	(c) ·	(C)	(C)		
Nickajack Reservoir (from Chickamauga Dam to WBN 50-mi radius)	0.069	0.080	(C)	(c)	0.069	(c)	(c)	(C)		

Staff Calculation of Population Doses Due to Liquid Effluent Releases from WBN Unit 2 Table I-5.

(d) SQN = Sequoyah Nuclear

≻
σ
σ
Ð
Q
ž.

	Dose	to the Maxi	mally Expo	sed Individ	ual (MEI) fro	om Liquid E	ffluents (m	rem/yr)	Populatio	on (2040
•	Ad	lult	Те	en	Cł	ild	Inf	ant	Person	-rem/yr
•	TVA	NRC	TVA	NRC	TVA	NRC	TVA	NRC	TVA	NRC
Skin	0.031	0.028	0.031	0.028	0.031	0.028	0.031	0.028	0.315	2.57
Bone	0.56	0.487	0.6	0.511	0.76	0.647	0.036	0.061	1.761	2.22
Liver	0.96	0.847	1	0.862	0.88	0.786	0.036	0.087	2.13	5.60
Thyroid	0.88	0.832	0.8	0.735	0.92	1.460	0.264	1.910	15.336	48.31
Kidney	0.352	0.316	0.356	0.315	0.312	0.292	0.034	0.064	1.392	3.99
Lung	0.136	0.130	0.152	0.141	0.128	0.132	0.032	0.051	1.037	3.19
GI-LLI	0.132	0.144	0.104	0.111	0.06	0.086	0.033	0.059	1.420	4.71
Total Body	0.72	0.635	0.44	0.374	0.188	0.185	0.032	0.055	1.619	6.57

Appendix I

I.2 Dose Estimates to the Public from Gaseous Effluents

The NRC staff used the dose assessment approach specified in Regulatory Guide 1.109 (NRC 1977) and the GASPAR II computer code (Strenge et al. 1987) to estimate doses to the MEI and to the public within 80 km (50 mi) of the WBN Unit 2 site from the gaseous effluent pathway for the proposed units. GASPAR II calculates radiation exposure to humans from routine air releases from nuclear reactor effluents.

I.2.1 Scope

The NRC staff calculated the MEI dose at 3.8 km (2.38 mi) northeast of WBN Unit 2. Pathways included were plume, ground, inhalation, and ingestion of locally produced milk, meat, and vegetables. Refer to Figures 4-2 in Section 4.6.1 for visual representation of the exposure pathway to humans.

The site parameters listed in Table I-7 were the basis for the doses calculated by the NRC staff.

Joint frequency distribution data of wind speed and wind direction by atmospheric stability class for the WBN site provided in the Offsite Dose Calculation Manual (ODCM) (TVA 2010V|p. 137|) were used as input to the XOQDOQ code (Sagendorf et al. 1982) to calculate the average χ/Q and D/Q values for routine releases. A summary of XOQDOQ provided by Sagendorf (2010) states, "XOQDOQ was designed for meteorological evaluation of continuous and anticipated intermittent releases from commercial nuclear power reactors. It calculates annual relative effluent concentrations and average relative deposition values at locations specified by the user and at various standard radial distances and segments for downwind sectors. It also calculates these values at the specified locations for anticipated intermittent (e.g., containment or purge) releases, which occur during routine operation. The program computes an effective plume height that accounts for physical release height, aerodynamic downwash, plume rise, and terrain features. The user may optionally select additional plume dispersion due to building wakes, plume depletion via dry deposition, and plume radioactive decay, or specify adjustments to represent non-straight line trajectories (recirculation or stagnation)."

The NRC staff performed a comparative review of χ/Q and D/Q values calculated by TVA against the values calculated by the NRC staff. The χ/Q and D/Q values calculated by the NRC staff, using joint frequency data from the applicant's ODCM based on meteorological data from January 2004 through December 2006, are slightly lower (e.g., provides more atmospheric dispersion) than χ/Q and D/Q values calculated by TVA (TVA 2011b), using joint frequency tables based on meteorological data from January 1986 through December 2005. However, the differences in χ/Q and D/Q values are not significant. Furthermore, because the NRC χ/Q and D/Q values are lower than the TVA values, the NRC staff's projected dose to members of the public from the of operation of WBN Unit 2 are slightly lower than the doses calculated by TVA. The differences do not affect the NRC staff's conclusions regarding the radiological evaluation for the operation of WBN Unit 2 contained in Chapter 4 of this draft SFES.

Draft NUREG-0498, Supplement 2

Population doses were calculated for all types of releases (i.e., noble gases, particulates, iodines H-3 and C-14) using the GASPAR II code for the following: plume immersion, direct radiation from radionuclides deposited on the ground, inhalation, ingestion of vegetables, milk, and meat.

I.2.2 Resources Used

To calculate doses to the public from gaseous effluents, the NRC staff used a personal computer version of the XOQDOQ and GASPAR II computer codes entitled NRCDOSE version 2.3.12 (Chesapeake Nuclear Services, Inc. 2006) obtained through the Oak Ridge Radiation Safety Information Computational Center.

Parameter		ff Value	Comments		
Single new unit gaseous effluent	H-3	1.39 x 10 ⁻²	TVA ER (TVA 2008a) Table 3-20 p. 87;		
source term (Ci/yr)	Br-84	5.07 × 10 ⁻²	TVA letter dated May 20, 2011; Enclosure 2,		
	I-131	1.53 × 10 ⁻¹	Attachment 4; Proposed Markups for FSEIS,		
	1-132	6.73 × 10 ⁻¹	Chapter 3, p. 87 (TVA 2011a).		
	I-133	4.57 × 10 ⁻¹			
	I-134	1.07			
	I-135	8.42 × 10 ⁻¹			
	Cr-51	5.92 × 10 ⁻⁴			
	Mn-54	4.31 × 10 ⁻⁴			
	Co-57	8.20 × 10 ⁻⁶			
	Co-58	2.32 × 10 ⁻²			
	Co-60	8.74 × 10 ⁻³			
	Fe-59	7.70 × 10 ⁻⁵			
	Sr-89	2.98 × 10 ⁻³			
	Sr-90	1.14 × 10 ⁻³			
	Zr-95	1.00 × 10 ⁻³			
	Nb-95	2.45 × 10 ⁻³			
	Ru-103	7.70 × 10 ⁻⁵			
	Ru-106	7.50 × 10 ⁻⁵			
	Sb-125	6.09 × 10 ⁻⁵			
	Cs-134	2.27 × 10 ⁻³			
	Cs-136	8.01 × 10 ⁻⁵			
	Cs-137	3.48 × 10 ⁻³			
	Ba-140	4.00 × 10 ⁻⁴			
	Ce-141	3.95 × 10 ⁻⁵			
	C-14	7.30			
	Kr-85m	9.48			
	Kr-85	6.78×10^2			
	Kr-87	5.81			
	Kr-88	1.32			
	Xe-131m	1.09×10^{3}			
	Xe-133m	4.31×10^{1}			
	Xe-133	2.90×10^{3}			
	Xe-135m	4.68			
	Xe-135	8.88×10^{3}			
	Xe-137	1.23			
	Xe-138	4.34			
	Ar-41	3.40×10^{1}			

 Table I-7.
 Parameters Used in Calculating Dose to Public from Gaseous Effluent Releases

Staff Value	Comments
Updated population data was provided by TVA in letter dated May 26, 2011 p. E1-11(TVA 2011b)	Population distribution used by the staff was for year 2040.
Site-specific data	Site-specific data for Jan 04 through Dec. 06 (hourly data obtained from file wb0408)
Site-specific data	Site-specific data for Jan 04 through Dec. 06 (hourly data obtained from file wb0408)
Calculated using XOQDOQ	Site-specific data for Jan 04 through Dec. 06
Calculated using XOQDOQ	Site-specific data for Jan 04 through Dec. 06
8.07 × 10 ⁸ kg/yr	Site-specific value from WBN FSAR, p. 11.3-9 (TVA 2009) (leafy vegetable production in each sector annulus equals leafy vegetable consumption in that sector annulus).
1.37 × 10 ⁶ kg/yr	Site-specific value from WBN FSAR, p. 11.3-9 (TVA 2009) (meat production in each sector annulus equals the consumption in that sector annulus).
4.99 × 10 ⁸ L/yr	Site-specific value from WBN FSAR, p. 11.3-9 (TVA 2009) (milk production in each sector annulus equals milk consumption in that sector annulus).
Table 3-19 of the ER (TVA 2008a)	
Milk (L/yr) 310 (adult) 400 (teen) 330 (child) 330 (infant) Meat (kg/yr) 110 (adult) 65 (teen) 41 (child) 0 (infant) Leafy Vegetable (kg/yr) 64 64 (adult) 42 (teen) 26 (child) 0 (infant) Vegetable (kg/yr) 520 520 (adult) 630 (teen) 520 (adult)	Default value of GASPAR II code (Strenge et al. 1987).
	Updated population data was provided by TVA in letter dated May 26, 2011 p. E1-11(TVA 2011b) Site-specific data Calculated using XOQDOQ Calculated using XOQDOQ 8.07 × 10 ⁸ kg/yr 1.37 × 10 ⁶ kg/yr 1.37 × 10 ⁶ kg/yr 4.99 × 10 ⁸ L/yr Table 3-19 of the ER (TVA 2008a) Milk (L/yr) 310 (adult) 400 (teen) 330 (child) 330 (infant) Meat (kg/yr) 110 (adult) 65 (teen) 41 (child) 0 (infant) Leafy Vegetable (kg/yr) 64 (adult) 42 (teen) 26 (child) 0 (infant) Vegetable (kg/yr) 520 (adult)

Table I-7. (contd)

Parameter	Staff Value	Comments
Fraction of leafy vegetables grown	1	Site-specific value from WBN FSAR, p. 11.3-9 (TVA 2009) (leafy vegetable production in each sector annulus equals leafy vegetable consumption in that sector annulus).
Fraction of year that milk cows are on pasture	0.65	TVA RAI response letter dated May 20, 2011, p. E1-1 (TVA 2011a).
Fraction of MEI vegetable intake from own garden	1	Site-specific value from WBN FSAR, p. 11.3-9 (TVA 2009) (vegetable production in each sector annulus equals vegetable consumption in that sector annulus).
Fraction of year beef cattle are on pasture	1	Default value of GASPAR II code (Strenge et al. 1987).
Fraction of year beef cattle intake is from pasture while on pasture	1	Default value of GASPAR II code (Strenge et al. 1987).

Table I-7. (contd)

I.2.3 Input Parameters

Table I-7 lists the major parameters used by NRC staff to calculate the doses to the public from gaseous effluents during normal operation. It should be noted that the 80 km (50-mi) population was assumed to be for the year 2040. Section 5.4.1 of the ESRP guidance suggests that populations be projected only 5 years out from the date of the licensing action under consideration (NRC 2000). The staff considers that using the population for the year 2040, rather than the recommended 5 years from licensing is acceptable because it assesses the population dose for a time period that approximates the operating life of WBN Unit 2.

I.2.4 Results

Table I-8 lists the doses to the public at the exclusion area boundary from gaseous effluent releases from WBN Unit 2. Table I-9 lists the doses to the MEI, a child, 3.8 km (2.38 mi) northeast of Unit 2.

Table 1-8. Comparison of Doses to the Public from Noble Gas Releases from WBN Unit 2

Type of Dose ^(a)	WBN Calculations (TVA ER 2008) ^(b)	Staff Calculation
Gamma air dose at exclusion area boundary ^(c) – noble gases only (mrad/yr)	0.801	0.829
Beta air dose at exclusion area boundary ^(c) – noble gases only (mrad/yr)	2.71	2.53
Total body dose at exclusion area boundary ^(c) – noble gases only (mrem/yr)	0.571	0.499
Skin dose at exclusion area boundary ^(c) – noble gases only (mrem/yr)	1.54	1.78

(a) To convert from mrad/yr or mrem/yr to mGy/yr or mSv/yr divide by 100
(b) Taken from Table 3-21 of the TVA ER; data is for MEI or maximum residence (TVA 2011a)

(c) At the exclusion area boundary, 1.3 km (0.8 mi) east

Table I-9.	Staff Calculation for Annual Doses to the Maximally Exposed Individual from
	Gaseous Effluent Releases from WBN Unit 2 ^(a)

Pathway (Location)	Age Group	Total Body (mrem/yr)	Max. Organ (mrem/yr)	Skin Dose (mrem/yr)	Thyroid Dose (mrem/yr)
Plume (0.85 mi SE)	All	0.269	0.282 (lung)	0.958	0.388
Ground (0.85 mi SE)	All	0.079	0.079	0.093	0.079
Inhalation	Adult	0.025	0.031 (kidney)	(a)	0.720
(0.85 mi SE)	Teen	0.026	0.033 (kidney)	(a)	0.91
	Child	0.034	0.044 (kidney)	(a)	1.61
	Infant	0.014	0.018 (kidney)	(a)	0.983
Vegetable	Adult	0.159	0.783 (bone)	(a)	0.969
(2.08 mi NE)	Teen	0.257	1.3 (bone)	(a)	1.4
	Child	0.601	3.12 (bone)	(a)	2.83
	Infant	(b)	(ຫ)	(a)	(b)
Cow Milk	Adult	0.033	0.138 (bone)	(a)	0.751
(1.42 mi SSW)	Teen	0.056	0.25 (bone)	(a)	1.2
	Child	0.128	0.616 (bone)	(a)	2.39
	Infant	0.26	1.19 (bone)	(a)	5.77
Meat	Adult	0.026	0.120 (bone)	(a)	0.081
(1.42 mi SSW)	Teen	0.021	0.101 (bone)	(a)	0.061
· · ·	Child	0.039	0.189 (bone)	(a)	0.1
	Infant	(b)	(b)	(a)	(b)

(a) Skin dose is not applicable for these exposure pathways
(b) Infant dose is not applicable for this pathway
To convert person-rem to person Sv, divide by 100

To convert miles (mi) to kilometers (km), multiply by 1.6

I.3 Cumulative Dose Estimates

Based on parameters shown for the liquid pathway and the gaseous pathway, Table I-2 and Table I-7, respectively, NRC staff calculated doses from the WBN Unit 2 using LADTAP II and GASPAR II to the MEI and the population within 80 km (50 mi) of the WBN Unit 2 site. It should be noted that the 80-km (50-mi) population was assumed to be for the year 2040. Section 5.4.1 of the ESRP guidance suggests that populations be projected only 5 years out from the date of the licensing action under consideration (NRC 2000). The staff considers that using the population for the year 2040, rather than the recommended 5 years from licensing is acceptable because it assesses the population dose for a time period that approximates the operating life of WBN Unit 2.

As stated in Section 4.6, there are no regulatory requirements for population doses, but the comparison to population dose and dose from natural background demonstrates that the annual estimated population doses from WBN Unit 2 are not significant when compared to the population dose from natural background (0.236 person-Sv/yr [23.6 person-rem/yr] and 4,738 person-Sv/yr [473,800 person-rem/yr], respectively) Table I-10 lists the staff's calculation of cumulative dose rates to the population for the year 2040 from WBN Unit 2.

Table I-11 compares the NRC staff's results for cumulative dose estimates to the MEI with Title 40 of the Federal Code of Regulations (CFR) Part 190 criteria. All dose estimates are within the 40 CFR Part 190 criteria.

Pathway	Gaseous Effluent	Liquid Effluent	Total	
Noble Gases	1.06	-	1.06	
lodines and particulates	0.30	5.55	4.15	
Tritium and C-14	4.73	2.89	7.62	
Total	6.09	8.44	14.5	

Table I-10. Population Total Body Doses (person-rem) for the Year 2040

Appendix I

	Total Body	GI-LLI	Bone	Liver	Kidney	Thyroid	Lung	Skin
				Gaseou	s Effluent	_		
Adult	0.59	0.6	1.4	0.6	0.59	2.87	0.61	1.05
Teen	0.71	0.71	2.01	0.72	0.72	3.92	0.73	1.05
Child	1.15	1.14	4.29	1.18	1.17	7.28	1.17	1.05
Infant	0.62	0.61	1.55	0.66	0.64	7.1	0.64	1.05
				Liquid	Effluent			
Adult	0.63	0.13	0.49	0.85	0.31	0.69	0.13	0.03
Teen	0.37	0.10	0.51	0.86	0.31	0.60	0.14	0.03
Child	0.18	0.08	0.64	0.78	0.29	1.16	0.13	0.03
Infant	0.05	0.06	0.06	0.08	0.06	1.49	0.05	0.03
			Total	(may not su	m due to rou	nding)		•
Adult	1.23	0.73	1.88	1.44	0.91	3.55	0.74	1.08
Teen	1.208	0.81	2.52	1.59	1.03	4.52	0.87	1.08
Child	1.33	1.22	4.94	1.97	1.46	8.44	1.3	1.08
Infant	0.67	0.67	1.6	0.75	0.7	8.59	0.69	1.08
				10 CFR Part	190(a) Criteri	a		
	25	25	25	25	25	75	25	25

Table I-11. Comparison of Maximally Exposed Individual Annual Dose Estimates with 40 CFR Part 190(a) Criteria (Staff Calculations)

I.4 Biota Doses

To calculate doses to the biota from liquid effluents, the NRC staff used personal computer versions of the NRC-developed LADTAP II and GASPAR II that are integrated into NRCDOSE Version 2.3.12 (Chesapeake Nuclear Services, Inc. 2006). NRC staff obtained NRCDOSE through the Oak Ridge Radiation Safety Information Computational Center.

The LADTAP II input parameters are specified in Section I.2.2, above, to include the source term, the discharge flow rate to the receiving freshwater system, the shore-width factor, and fractions of radionuclides in the liquid effluent reaching offsite bodies of water. The transit time from the effluent release location to the exposure location was zero hours.

NRC staff assessed dose to terrestrial biota from the gaseous effluent pathway using GASPAR II by assuming doses for raccoons and ducks were equivalent to adult human doses for inhalation, vegetation ingestion, plume and twice the ground pathways at a location 1.09 km (0.68 mi) east. The doubling of doses from ground deposition reflects the closer proximity of these organisms to the ground. Muskrats and herons do not consume terrestrial vegetation, so that pathway was not included for those organisms.

As stated in Section 4.6, the NRC does not have a regulatory framework for the protection of biota from radioactive discharges from nuclear power reactors. The focus of NRC regulatory framework is for the protection of human beings (NRC 2009). The ICRP (ICRP 1977, 1991, 2007) states that if humans are adequately protected, other living things are also likely to be sufficiently protected. Table I-12 lists the results of the NRC staff's biota dose calculations. The results are within the International Atomic Energy Agency/National Council on Radiation Protection and Measurements guidelines for protection of biota (IAEA 1992; NCRP 1991)

Biota	Liquid Releases	Gaseous Releases	Total
Fish	4.3	-	4.30
Invertebrate	11.4	-	11.4
Algae	19.2	-	19.2
Muskrat	10.8	0.81	11.61
Raccoon	4.83	1.57	6.4
Heron	55.5	0.81	56.31
Duck	10.3	1.57	11.87
To convert perso	n-rem to person Sv, divid	e by 100	·····

Table I-12. Doses to Biota (mrem/yr) Due to Liquid and Gaseous Releases from WBN Unit 2

I.5 References

10 CFR Part 50. Code of Federal Regulations, Title 10, *Energy*, Part 50, "Domestic Licensing of Production and Utilization Facilities."

40 CFR 190. Code of Federal Regulations. Title 40, *Protection of Environment*, Part 190, "Environmental Radiation Protection Standards for Nuclear Power Operations."

Chesapeake Nuclear Services, Inc. 2006. *NRCDOSE for Windows*. Radiation Safety Information Computational Center, Oak Ridge, Tennessee.

International Atomic Energy Agency (IAEA). 1992. *Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards*. Technical Report Series No. 332, Vienna, Austria.

International Commission on Radiological Protection (ICRP). 2007. *The 2007 Recommendations of the International Commission on Radiological Protection*. ICRP Publication No. 103. Annals of the ICRP 37(2-4). Accession No. ML080790301National Council on Radiation Protection and Measurements (NCRP). 1991. *Effects of Ionizing Radiation on Aquatic Organisms*. NCRP Report No. 109, Bethesda, Maryland.

Sagendorf, J.F., J.T. Goll, and W.F. Sandusky. 1982. XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations. NUREG/CR-2919, Pacific Northwest National Laboratory, Richland, Washington.

Appendix I

5.85

Sagendorf, J.F., J.T. Goll, W.F. Sandusky, and L.R. Eyberger. 2010. XOQDOQ -Meteorological Evaluation of Atmospheric Nuclear Power Plant Effluents. Version 2.0. Accessed at http://www.oecd-nea.org/tools/abstract/detail/nesc0964.

Strenge, D.L., R.A. Peloquin, and G. Whelan. 1986. LADTAP II – Technical Reference and User Guide. NUREG/CR-4013, Pacific Northwest Laboratory, Richland, Washington.

Strenge, D.L., T.J. Bander, and J.K. Soldat. 1987. *GASPAR II – Technical Reference and User Guide*. NUREG/CR-4653, Pacific Northwest Laboratory, Richland, Washington.

Tennessee Valley Authority (TVA). 2008a. *Final Supplemental Environmental Impact Statement; Completion and Operation of Watts Bar Nuclear Plant Unit 2, Rhea County, Tennessee.* Submitted to NRC as the TVA Environmental Report for an Operating License, Knoxville, Tennessee.

Tennessee Valley Authority (TVA). 2008b. "Offsite Dose Calculation Manual." Attachment 3 in *Watts Bar Nuclear Plant Effluent and Waste Disposal Annual Report*. Knoxville, Tennessee.

Tennessee Valley Authority (TVA). 2009. Watts Bar Nuclear Plant (WBN) – Unit 2 – Final Safety Analysis Report (FSAR), Amendment 94. Spring City, Tennessee.

Tennessee Valley Authority (TVA). 2010. Letter from Masoud Bajestani (TVA, Watts Bar Unit 2 Vice President) to U.S. Nuclear Regulatory Commission dated April 9, 2010, in response to NRC letter dated December 3, 2009 and TVA letters dated February 15, 2008, July 2, 2008, January 27, 2009, December 23, 2009, and February 25, 2010, "Watts Bar Nuclear Plant (WBN) Unit 2 – Response to U.S. Nuclear Regulatory Commission (NRC) Request for Additional Information Regarding Environmental Review; Enclosure 1 (TAC No. MD8203)." Accession No. ML101130393.

Tennessee Valley Authority (TVA). 2011a. Letter from Dave Stinson (TVA, Watts Bar Unit 2 Vice President) to U.S. Nuclear Regulatory Commission dated May 20, 2011, in response to NRC letter dated April 13, 2011, TVA letters dated February 15, 2008, December 17, 2010, February 25, 2011, and an e-mail from Justin C. Poole to William D. Crouch dated March 4, 2011, "Watts Bar Nuclear Plant (WBN) Unit 2 – Response to Final Safety Analysis Report (FSAR), Chapter 11 and Final Supplemental Environmental Impact Statement (FEIS) Request for Additional Information." Accession No. ML11146A044.

Tennessee Valley Authority (TVA). 2011b. Letter from Dave Stinson (TVA, Watts Bar Unit 2 Vice President) to U.S. Nuclear Regulatory Commission dated May 26, 2011, in response to an e-mail from Justin C. Poole to William D. Crouch dated March 4, 2011 and TVA letter dated May 20, 2011, "Watts Bar Nuclear Plant (WBN) Unit 2 – Response to Request for Additional Information from Public Meeting on May 11, 2011." Accession No. ML11152A160.

U.S. Nuclear Regulatory Commission (NRC). 1977. Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I. Regulatory Guide 1.109, Washington, D.C. Accession No. ML003740384.

U.S. Nuclear Regulatory Commission (NRC). 2000. Environmental Standard Review Plan — Standard Review Plans for Environmental Reviews for Nuclear Power Plants. NUREG-1555, Vol. 1, Washington, D.C. Includes 2007 updates.

U.S Nuclear Regulatory Commission (NRC). 2009. Memorandum To: R.W. Borchardt From: Annette L.Vietti-Cook. Subject: "Staff Requirements – SECY-08-0197 – Options to Revise Radiation Protection Regulations and Guidance with Respect to the 2007 Recommendations of the International Commission on Radiological Protection. Accession No. ML090920103.

•

·

·

·

.

(See instructions on the reverse) SL 2. TITLE AND SUBTITLE 3. DAT Draft Final Environmental Statement, MONTH Supplement 2 Octobe Related to the Operation of Octobe	·-··-					
(See instructions on the reverse) SL 2. TITLE AND SUBTITLE 3. DAT Draft Final Environmental Statement, MONTH Supplement 2 Octobe Related to the Operation of Octobe	upplement					
Draft Final Environmental Statement, Supplement 2 Related to the Operation of Octobe	·-··-					
Supplement 2 Related to the Operation of October	H	PUBLISHED				
Related to the Operation of Octobe		YEAR				
	er	2011				
5. AUTHOR(S) 6. TYPE OF F	REPORT					
J. Poole, et al.	Technical					
7. PERIOD COVERED (Inclusive I						
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailin provide name and mailing address.)	ng address; if c	contractor,				
U.S. Nuclear Regulatory Commission						
Office of Nuclear Reactor Regulation						
Division of Operating Reactor Licensing						
Washington, DC 20555-001 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuc						
9. SPONSORING ORGANIZATION - NAME AND ADDRESS (if NRC, type Same as above"; if contractor, provide NRC Division, Omice of Region, U.S. Nut and mailing address.)	iciear Regulato	bry Commission,				
Same as above						
10. SUPPLEMENTARY NOTES Docket No. 50-391						
11. ABSTRACT (200 words or less)						
The U.S. Nuclear Regulatory Commission (NRC) prepared this draft supplemental final environmental state operating license in response to its review of the Tennessee Valley Authority's (TVA's) application for a faci submitted on March 4, 2009. The proposed action requested is for the NRC to is sue an operating license for light-water nuclear reactor at the Watts Bar Nuclear (WBN) Plant in Rhea County, TN.	ility opera	ting license				
The NRC's regulations in Title 10 of the Code of Federal Regulations (10 CFR) 5 1.92, "Supplement to the F Impact Statement," require the NRC staff to prepare a supplement to the final e nvironmental statement if th changes in the proposed action relevant to environmental concerns or if there a re significant new circumsta relevant to environmental concerns and bearing on the proposed action or its im pacts. The same regulatio prepare a supplement when, in its opinion, preparation of a supplement will fur ther the interests of the Natio Policy Act of 1969.	nere are si ances or il on permits	ubstantial nformation the staff to				
The staff evaluated a full scope of environmental topics, including land and wa ter use, air quality and meter and aquatic ecology, radiological and nonradiological impacts on humans and the environment, historic and socioeconomics, and environmental justice. The staff's evaluations are based on (1) the application submi- including the environmental report and previous environmental impact statements and historical documents with other Federal, State, Tribal, and local agencies, (3) the staff's independ ent review, and (4) the staff's comments related to the environmental review received during the public scoping process.	d cultural itted by T\ s, (2) cons	resources, /A, sultation				
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13.		Y STATEMENT				
Draft Final Environmental Statement						
	his Page)	LASSIFICATION				
· · ·		assified				
	This Report) uncl	assified				
15.	NUMBER C	-				
16.	. PRICE					

•

.