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Analysis of Electromagnetic Wave Propagation in a Magnetized  
Re-Entry Plasma Sheath Via the Kinetic Equation 

 
Robert M. Manning 

National Aeronautics and Space Administration  
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically 

induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that 
is experienced during atmospheric reentry can be mitigated through the appropriate control of an external 
magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and 
involves an analytical solution for the electric and magnetic fields within the plasma allowing for a 
description of the attendant transmission, reflection and absorption coefficients. The ability to transmit 
through the magnetized plasma is due to the ‘magnetic windows’ that are created within the plasma via 
the well-known ‘whistler modes’ of propagation. The case of 2 GHz transmission through a re-entry 
plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density 
and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves 
through the re-entry phase.  

1.0 Introduction 
Electromagnetic wave (EM) propagation through a flowing plasma layer to maintain communications 

and navigation to hypersonic and space re-entry vehicles has been a problem for over 45 years. The 
classical radio frequency (RF) blackout results when the associated EM wave is reflected and absorbed by 
the free electrons that make-up the plasma sheath which envelops the re-entering vehicle. The plasma is 
the result of extreme heating of air by the strong shock wave that is created by the leading edges of the 
vehicle [Bletzinger, et al., 2005 and references therein]. Such a plasma has associated with it a 
characteristic frequency, the ‘plasma frequency’, below which RF transmission is reflected and absorbed; 
RF radiation above this frequency will easily pass through the plasma. Since this plasma frequency is 
proportional to the electron concentration within the plasma, this frequency will vary according to the 
altitude and shape of the vehicle, as well as the angle of attack. Thus, for a given communications 
scenario, a particular frequency is assigned; As the vehicle begins its re-entry into the earth’s atmosphere, 
shock waves are created and a plasma begins to be formed. At a particular electron concentration, the 
plasma frequency will exceed that of the communications link and transmission to and from the vehicle 
will cease. As the vehicle begins to decelerate, the electron density and thus the plasma frequency 
decrease and RF communication to and from the vehicle once again becomes possible. 

Several approaches have been advanced in order to mitigate RF blackout. The obvious ones are to use 
communications frequencies higher than that of the plasma frequency that will develop during re-entry. 
However, as mentioned above, a specific maximum plasma frequency is dependent upon several 
parameters and becomes very difficult to establish. A high power can be used to overcome the reflection 
and absorption of the plasma. This, however, severely complicates the design and operation of a 
communications system, especially the equipment on the re-entering vehicle. Another method is to inject 
electrophilic substances (quenchants) into the plasma flow field of the sheath so as to de-ionize the 
plasma (at least, severely reduce the electron concentration) and lower the plasma frequency below that of 
the communications link. An application of this method occurred during the re-entry of Gemini 3 in 1965 
[Schroeder and Russo, 1968] where it was demonstrated that plasma reflection and absorption can be 
significantly reduced to allow for re-entry communications. Another technique that can be employed is 
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that of establishing ‘magnetic windows’ within the plasma. Here, a static magnetic field is applied to the 
plasma to essentially establish ‘whistler modes’ of propagation [Usui, et al., 2000]. Early experiments 
using this concept were performed in 1964 [Russo and Hughes, 1964]. Here, a magnetic field of 750 
Gauss was used in a ground experiment employing a plasma from a solid rocket motor. It was shown that 
a signal improvement of about 20 dB can be realized. However, it was recently argued [Sharkey, 2003] 
that magnetic fields on the order if 104 Gauss are needed to penetrate a re-entry plasma.  

The ‘magnetic windows’ concept is very attractive in that, unlike the use of electrophilic substances 
where a supply of such material is required throughout the blackout period (which, for some planetary re-
entry scenarios, can have a duration of 10 to 20 minutes), the magnitude of the static magnetic field can 
be adjusted as conditions require to maintain a window in the otherwise RF opaque plasma. The 
electrophilic technique is an ‘active’ mitigation method whereas the magnetic windows technique is a 
‘passive’ method. If it can be demonstrated that magnetic fields of nominal strength can be used to elicit a 
magnetic window within a plasma with re-entry parameters, and, additionally, it can be shown how the 
magnitude of this magnetic field needs to be adjusted to maintain a window as the plasma properties 
evolve, then the use of an external magnetic field as a mitigation technique will be a viable one. 

This prescription can only be accomplished by realistically modeling the plasma propagation 
environment. It is the purpose of this report to analytically study such a situation. A mathematical model 
will is constructed, based on the Vlasov equations, i.e., the Maxwell equations supplemented with the 
kinetic (Boltzmann) equation describing the electron distribution, that will capture the propagation 
process through a flowing plasma immersed in an external magnetic field. The model will then be solved 
in the approximation of weak spatial dispersion; the case of strong spatial dispersion will be treated in a 
forthcoming report. It is shown that an applied magnetic field of nominal strength can alter the plasma 
and create “magnetic windows” through which electromagnetic radiation can propagate.  

2.0 The Initial Equations 
2.1 Incorporating the Maxwell Equations with Kinetic Theory—The Vlasov Equations 

The basic starting point for modeling electromagnetic wave propagation through a flowing 
hypersonic plasma are, of course, the Maxwell Equations 

 πρ=⋅∇ 4E
vv

 (2.1) 

 0=⋅∇ B
vv

 (2.2) 

 01
=

∂
∂

+×∇
t
B

c
E

v
vv

 (2.3) 

 1 4EB j
c t c
∂ π

∇× − =
∂

v
v v v

 (2.4) 

The expressions relating the charge density ρ  and current density j
v

 within the plasma are given in terms 
of the statistical distribution functions ( )trf s ,,υvv  governing the charge carriers of the species s  at 
position rv  and velocity υv  at time t  

 ( ) 3, ,s s s
s

e n f r t d
∞

−∞

ρ = υ υ∑ ∫
vv  (2.5) 
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 ( ) 3, ,s s s
s

j e n f r t d
∞

−∞

= υ υ υ∑ ∫
v v vv  (2.6) 

Here, s  denotes either electron or ion charge carriers where ions nn =  is the number of positively charged 
ions, eee ions +==  or es nn =  is the number of negatively charged electrons, eee es −== . The statistical 
distribution function for species s  ( )trfs ,,υvv  is given by the Boltzmann equation incorporating collisions 
via the Krook model [Tanenbaum, 1967; Bhatnagar, et al., 1954] for collisions, viz, 

 ( )0
s

r s s s s s
f f F f f f
t υ

∂
+ υ⋅∇ + ⋅∇ = −ν −

∂
vv

v v vv  (2.7) 

where sν  is the effective collision frequency and ( )υvv,0 rfs  is the initial equilibrium distribution of the s-
th species. The model for the effective collision frequency used here, along with the basis of the Krook 
model, is discussed in Appendix A. The force entering Equation (2.7) is given by the Lorentz force 
involving both the electric E

v
 and magnetic B

v
 fields of the wave as well as an externally applied 

magnetic field  
0B

v
, 

 ( )⎟
⎠
⎞

⎜
⎝
⎛ +×

υ
+= 0BB

c
E

m
eF

s

s
s

vvvvv
 (2.8) 

Collectively, the Maxwell equations, Equations (2.1) to (2.4), the Equations (2.5) and (2.6), and the 
Boltzmann equation, Equation (2.7) with Equation (2.8) are known as the Vlasov equations.  

These coupled integral and differential equations must now be applied to the situation of a 
hypersonically flowing plasma upon which is incident a plane electromagnetic wave. The situation is 
depicted in Figure 1. The tangential velocity TV

v
 is due to the plasma flowing along the hypersonic vehicle 

surface. The velocity LV
v

 is due to the motion of the hypersonic vehicle toward the observer. The plasma 
is taken to be of infinite extent along the x and y axes. An incident plane electromagnetic field impinges 
on the moving plasma layer from the transmitter fixed on the earth and travels along the z-axis in the –z 
direction. The constant homogeneous magnetic field emanates from an antenna on the surface of the 
vehicle along the z-axis in the +z direction. The surface in the x – y plane is taken to be along the solid 
surface of the vehicle and that at the front of the layer of thickness L is taken to be open to the 
atmosphere. The values of the E

v
 and B

v
 fields of the electromagnetic wave are reckoned with respect to 

the observer in the rest frame with respect to the moving plasma layer. Given these conditions, one can 
write for the functional dependence of the field and current density, 

 ( ) ( ) ( )ytzExtzEtzEE yx ˆ,ˆ,, +==
vv

 (2.9a) 

 ( ) ( ) ( ) zBytzBxtzBtzBB yx ˆˆ,ˆ,, 0++==
vv

 (2.9b) 

 ( ) ( ) ( )ytzjxtzjtzjj yx ˆ,ˆ,, +==
vv

 (2.9c) 

The problem is most easily dealt with by transforming the fields into the reference frame moving with the 
plasma. 



NASA/TM—2009-216096 4

2.2 Transformation of the Fields Into the Reference Frame Moving with the Plasma 

The transformation of the fields E
v

 and B
v

 in the reference frame of the observer (transmitter) to 
those E′

v
 and B′

v
 that are seen in the frame moving with the plasma layer is given by the well-known 

relations [Jackson, 1975] 

 ( ) ( )EBEE
vvvvvvv

⋅ββ
+γ
γ

−×β+γ=′
1

2
 (2.10) 

 ( ) ( )BEBB
vvvvvvv

⋅ββ
+γ
γ

−×β−′γ=′
1

2
 (2.11) 

where 

 ( )21,
ˆˆ

β−≡γ
+

≡β
c

zVxV LTv
 (2.12) 

and c  is the velocity of light. Also, for the current density 

 ( )ρβ−γ=′
vvv

jj  (2.13) 

The invariance of the Maxwell equations has that, in the frame moving with the plasma, 

 01
=

′∂
′∂

+′×∇′
t
B

c
E

v
vv

 (2.14) 

 j
ct

E
c

B ′π
=

′∂
′∂

−′×∇′
v

v
vv 41  (2.15) 

where ∇′
v

 and t′  are the appropriately transformed divergence and time. Consider now the extreme case 
in which a hypersonic velocity of Mach 35 is realized, i.e., 4102.1 ×≈= LT VV  m/s. This yields 

1100.4 5 <<×≈β − . In this case, the transformed equations Equations (2.13) and (2.14) essentially reduce 
to those in the rest frame, i.e., Equations (2.3) and (2.4). Similarly, for the homogeneous applied magnetic 
field, 0 0B B′ ≈

v v
. Hence, to within a first order approximation, Equations (2.1) to (2.4) can be employed in 

the reference frame moving with the plasma. One can now incorporate these relations in the evaluation of 
Equation (2.7).  

One should also address the Doppler shifts that will be incurred in the transformation to the reference 
frame moving with the plasma. This will not be addressed at this point as it is the goal of this work to 
establish the possibility of the magnetic windows concept. A more careful study with will appear in a 
forthcoming work will incorporate Doppler effects. 

The final goal in the analysis that follows is the evaluation of the reflection, transmission, and 
absorption coefficients of the plane wave interacting with the plasma layer; the ‘flow chart’ of this 
process is depicted in Figure 2. The scattering process, as well as its solution, goes as follows. The 
electric and magnetic fields of the plane electromagnetic wave induces a Lorentz force on the plasma 
electrons. The induced force, in turn, produces a variation in the electron distribution function governing 
the position and momentum of the electrons. This gives rise to an induced current within the plasma that 
produces an associated variation of the fields within the plasma which, once again, induces an additional 
Lorentz force. This non-linear process finally results in the establishment of field distributions at the 
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boundaries of the plasma that determines the corresponding reflection, transmission, and absorption 
coefficients of the incident field.  

3.0 Application of the Foregoing to the Boltzmann Equation 
3.1 Reduction of the Equation 

Since the current density is only a function of the longitudinal coordinate z , so too will be the 
distribution function of Equation (2.7) 

 ( ) ( )tzftrf ss ,,,, υ=υ
vvv  (3.1) 

The associated equilibrium distribution function is taken to be given by the Maxwell distribution 

 ( ) ( )
33 / 2 2

0 0 2
1 1 exps s

Ts Ts
f f

⎛ ⎞⎛ ⎞ υ⎛ ⎞υ = υ = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟π υ υ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v v  (3.2) 

where the thermal velocity of the s-th species is given by 

 
s

sB
Ts m

Tk2
≡υ  (3.3) 

Here, Bk  is Boltzmann’s constant, sT  is the absolute temperature of the s-th species of charges with mass 

sm . The distribution function ( )tzfs ,,υv  will be taken to be related to that of Equation (3.2) by a small 
perturbation ( )tzs ,,υφ

v , viz, 

 ( ) ( ) ( ) ( ) ( )υ<<υφυφ+υ=υ
vvvvv

00 ,,,,,,, sss ftztzftzf  (3.4) 

In order for ( )tzs ,,υφ
v  to be treated as a perturbation, the fields of the incident wave must also be treated 

as a first order perturbation; writing the temporal dependence of the fields of the incident electromagnetic 
wave as  

 ( ) ( ) ( ), exp , etc.x xE z t E z i t= − ω  

one has from Equations (2.9a) and (2.9b) 

 ( ) ( )( ) ( )ˆ expx yE E z x E z i t= + − ω
v

 (3.5) 

 ( ) ( )( ) ( ) ( )0ˆ ˆ expx yB B z x B z y i t B z= + − ω +
v

 (3.6) 

in which one must now require for a perturbation solution, 0,,, BBBEE yxyx << . Finally, since the time-
harmonic fields of Equations (3.5) and (3.6) are taken to be the source of perturbation of the distribution 
function given by Equation (3.4), one can further write 

 ( ) ( ) ( ), , , exps sz t z i tφ υ = φ υ − ω
v v  (3.7) 
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Substituting Equations (3.4) to (3.7) into Equation (2.7) and dropping quantities that are second order 
perturbations with respect to the fields and to ( )υφ

v,zs  yields 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0 0

,
, exp exp

exp

ˆ ˆ , exp 0

s
s s z

s
s s

s

s
s s

s

z
i i z i t i t

z
e E z f B z f i t
m c

e B z f B z z i t
m c c

υ υ

υ υ

∂φ υ
− ω+ ν φ υ − ω + υ − ω

∂
⎛ ⎞ υ⎡ ⎤+ ⋅∇ υ + × ⋅∇ υ − ω⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞ υ υ⎡ ⎤+ × ⋅∇ υ + × ⋅∇ φ υ − ω =⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

v v

v v

v
v

vv v v vv v

v vv vv v

 (3.8) 

However, remembering the identity ( ) 0=υ⋅×υ
vvv B , one has that  

 ( ) ( ) ( ) 0
0 0s

s
fB z f B z

c cυ
υ υ υ ∂
× ⋅∇ υ = × ⋅ =

υ ∂υ
v

v v wv v vv  (3.9) 

and similarly for the term ( ) ( )υ∇⋅×υ υ
vvv v 00 ˆ sfzBc . (The term ( ) ( )0 ˆ , 0sc B z zυυ × ⋅∇ φ υ ≠v

vv v  since ( )υφ
v,zs  

is not a function of the scalar υ .) Hence, Equation (3.8) reduces to  

 
( ) ( ) ( ) ( )

( ) ( ) ( )0

,
, exp

ˆ, , 0

s
s s z

s s
s s

s s

z
i i z i t

z
e eE z z B z z
m m cυ υ

∂φ υ
− ω+ ν φ υ + υ − ω

∂
⎛ ⎞ ⎛ ⎞ υ⎛ ⎞+ ⋅∇ φ υ + × ⋅∇ φ υ =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
v v

v
v

vr v vv v
 (3.10) 

Defining the cyclotron frequency 

 
cm

Be
s

s
cs

0≡ω  (3.11) 

and expanding ( ) syxxysz φ∂υ∂υ−∂υ∂υ=φ∇⋅×υ υ
v

vv ˆ  as well as =∇⋅ υ 0sfE v
vv ( ) 0syyxx fEE ∂υ∂+∂υ∂ , 

Equation (3.10) becomes 

 ( )s
z s s cs y x s

x y
i i

z
⎛ ⎞∂φ ∂ ∂

υ − ω+ ν φ + ω υ − υ φ +⎜ ⎟⎜ ⎟∂ ∂υ ∂υ⎝ ⎠
0 0s

x y s
s x y

e E E f
m

⎛ ⎞⎛ ⎞ ∂ ∂
+ =⎜ ⎟⎜ ⎟⎜ ⎟∂υ ∂υ⎝ ⎠⎝ ⎠

 (3.12) 

This differential equation is most easily dealt with in plane-polar coordinates ⊥υ  and θ  defined by 
θυ=υθυ=υ ⊥⊥ sin,cos yx . In this instance, one has 

 
∂θ
∂

υ
θ

+
∂υ
∂

θ=
∂υ
∂

∂θ
∂

υ
θ

−
∂υ
∂

θ=
∂υ
∂

⊥⊥⊥⊥

cossin,sincos
yx

 (3.13) 

allowing Equation (3.12) to be written as (noting that 0sf  is isotropic and independent of the polar angle 
θ ) 

 ( ) ( ) 0cos sin 0s s s s
z s s cs x y

s

e fi i E E
z m ⊥

⎛ ⎞∂φ ∂φ ∂
υ − ω+ ν φ −ω + θ + θ =⎜ ⎟∂ ∂θ ∂υ⎝ ⎠

 (3.14) 
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Finally, using the auxiliary fields [Gross, 1951; Bell and Buneman, 1964] defined by 

 yxRyxL iEEEiEEE +≡−≡ ,  (3.15) 

gives 

 ( ) ( )( )θ−+θ=θ+θ iEiEEE RLyx expexp
2
1sincos  (3.16) 

Substituting this into Equation (3.14) and rearranging terms yields 

( ) ( ) ( ) ( ), ,
,s s

cs z s s
z z

i i z
z

∂φ υ ∂φ υ
ω −υ + ω+ ν φ υ

∂θ ∂

v v
v ( ) ( )( ) 0exp exp 0

2
s s

L R
s

e fE i E i
m ⊥

⎛ ⎞ ∂
= θ + − θ =⎜ ⎟ ∂υ⎝ ⎠

 (3.17) 

This form of the differential equation can now be solved using the method of characteristics. Writing the 
equation as a relation along its characteristic curve, one has 

 s s s s s
cs z

d z
dt t z t z
φ ∂φ ∂θ ∂φ ∂ ∂φ ∂φ

= + = ω − υ
∂θ ∂ ∂ ∂ ∂θ ∂

 

Therefore, 

 tzt zcs υ−=θ′+ω=θ ,  (3.18) 

which combines to give ( ) θ′+υω−=θ zzcs . Changing back to the variables θ and z, ( )dzddtd zυ−=  
and Equation (3.17) becomes the first order differential equation 

( ) ( ) ( )

( )( ) ( )( )( ) 0

,
,

exp exp 0
2

s
z s s

s s
L cs z R cs z

s

d z
i i z

dz
e fE i z i E i z i
m ⊥

φ υ
−υ + ω+ ν φ υ

⎛ ⎞ ∂′ ′= − ω υ + θ + ω υ − θ =⎜ ⎟ ∂υ⎝ ⎠

v
v

 (3.19) 

This equation must now be solved across the plasma layer of thickness L , 0 ≤ z ≤ L.  

3.2 Solution of the Differential Equation Across the Plasma Layer 

Consider the Fourier series of the function ( )υφ
v,zs  over the interval Lz ≤≤0 ; 

 ( ) ( ) ( ), , exp ,s s l l l
l

lz i z
L

∞

=−∞

π
φ υ = φ κ υ κ κ ≡∑v v%  (3.20) 

 ( ) ( ) ( )
0

1, , exp
L

s l s lz i z dz
L

φ κ υ = φ υ − κ∫
v v%  (3.21) 

Thus, multiplying Equation (3.19) by exp −iκ l z( ) and integrating over z , using Equation (3.21) gives 
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( ) ( ) ( ) ( )( )

0

, 0, , 1

2

ls
s l l s s

z

s s cs cs
L l R l

z s z z

i i
i L L

L e f E E
m ⊥

⎡ ⎤ω+ ν
φ κ υ κ − = φ υ − φ υ − −⎢ ⎥υ⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ω ω′ ′− κ + + κ −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟υ ∂υ υ υ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

v v v%

% %

 (3.22) 

where ( ) ( ) ( )exp exp 1 l
li L l− κ = − π = −  and ( ) ( ) ( )exp ,L LE E i′ ≡% %κ κ θ  ( ) ( ) ( )expR RE E i′ ≡ −% %κ κ θ . At 

this point, contact must be made to the current density expression given by Equation (2.6); converting to 
plane polar coordinates, 

 ( ) ( ) ( )
2

0 0

ˆ ˆcos sin , , ,s s s z z
s

j z e n x y f z t d d d
∞ π ∞

⊥ ⊥ ⊥ ⊥
−∞

= υ θ + θ υ υ υ υ θ υ∑ ∫ ∫ ∫
v

 (3.23) 

As before, considering the identity 

 ( ) ( ) ( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆcos sin exp exp
2

x y x iy i x iy i⎡ ⎤θ + θ = − θ + + − θ⎣ ⎦  

and using it in Equation (3.23) and taking the scalar product with the particular vector ˆ x + iˆ y  yields, 

 ( ) ( ) ( ) ( ) ( )
2

2

0 0

, , , exp , , ,R x y s s s z z
s

j z t j z t ij z t e n i f z t d d d
∞ π ∞

⊥ ⊥⊥
−∞

≡ + = υ θ υ υ υ θ υ∑ ∫ ∫ ∫  (3.24) 

Thus, the current density has been converted to a complex scalar current density in the transverse plane. 
Substituting now Equations (3.4) and (3.7) into Equation (3.24), and using Equation (3.2), one as that the 

( )υv0sf  term vanishes upon performing the zυ  integration. Hence, what survives is the result 

 ( ) ( ) ( )
2

2

0 0

exp , ,R s s s z z
s

j z e n i z d d d
∞ π ∞

⊥ ⊥⊥
−∞

= υ θ φ υ υ υ θ υ∑ ∫ ∫ ∫  (3.25) 

where ( ) ( ) ( )tizjtzj RR ω−= exp, . Thus, the current density associated with the polarized wave fields ER 
and EL of Equation (3.15) are also polarized; however ER and EL remain uncoupled. Therefore, one can 
use either ER or EL separately in Equation (3.22). Selecting ER, i.e., the whistler mode yxR iEEE += , 

Equation (3.22) becomes, upon using the definition zcsll υω−κ≡κ′ , 

 ( ) ( ) ( ) ( )1 01, , ,
2

s s
s l z l s s z R l

z s

e fiL L E
m

−
⊥ ⊥

⊥

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞∂⎪ ⎪′ ′ ′⎡ ⎤ ′φ κ υ υ = κ −Ω Δ υ υ − κ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ υ ∂υ⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭
% %  (3.26) 

where 

 cs s
s

z

iω−ω + ν
Ω ≡

υ
 (3.27) 

and 
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 ( ) ( ) ( )( )lzszszs L 1,,,,0, −υυφ−υυφ≡υυΔ ⊥⊥⊥  (3.28) 

Now, rewriting Equation (3.25) by limiting the zυ  integration in velocity space to the interval 0 z≤ υ <∞  
gives 

 ( ) ( ) ( )
2

2

0 0 0

exp , ,R s s s z z
s

j z e n i z d d d
∞ π ∞

⊥ ⊥⊥= υ θ Φ υ υ υ θ υ∑ ∫ ∫ ∫  (3.29) 

where 

 ( ) ( ) ( ), , , , , ,s z s z s zz z z⊥ ⊥ ⊥Φ υ υ ≡ φ υ υ + φ υ −υ  (3.30) 

The Fourier transform of Equation (3.29) is, using the form of Equation (3.21), 

 ( ) ( ) ( )
2

2

0 0 0

exp , ,R l s s s l z z
s

j e n i d d d
∞ π ∞

⊥ ⊥⊥κ = υ θ Φ κ υ υ υ θ υ∑ ∫ ∫ ∫ %%  (3.31) 

where 

 ( ) ( ) ( ), , , , , ,s l z s l z s l z⊥ ⊥ ⊥Φ κ υ υ ≡ φ κ υ υ + φ κ υ −υ% %%  (3.32) 

Substituting Equation (3.26) into Equation (3.32) yields, after expanding terms and simplifying, 

 
( ) ( ) ( )( )

( ) ( ) ( )( )

22, , , ,

2 , ,

l
s l z s z s z

s l

s s
s R l s z s z

z

i
L

K E
L

⊥ ⊥ ⊥

⊥ ⊥

κ⎧Φ κ υ υ = Δ υ υ + Δ υ −υ⎨
Ω − κ ⎩

Ω Ω ⎫′− κ + Δ υ υ − Δ υ −υ ⎬υ ⎭

%

%

 (3.33) 

where 

 0
2

s s
s

s

e fK
m ⊥

⎛ ⎞∂
≡ ⎜ ⎟∂υ⎝ ⎠

 (3.34) 

Using Equation (3.33) in Equation (3.31) will give a relation for the current density. However, values for 
the parameters ( ),s z⊥Δ υ υ  must first be determined. By their definition of Equation (3.28), they are 
functions of the boundary values of the functions sφ .  

3.3 Incorporation of Boundary Conditions 

By the definition of the problem, the plasma at the surface 0z =  is against the solid body of the 
hypersonic vehicle. Thus, reflective boundary conditions prevail from which one can write 

 ( ) ( )0, , 0, ,s z s z⊥ ⊥φ υ υ = φ υ −υ  (3.35) 

However, at the boundary z L= , the plasma is open to the atmosphere so diffusive conditions prevail 
which give 
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 ( ), , 0s zL ⊥φ υ −υ =  (3.36) 

With these assignments, Equation (3.33) becomes 

( ) ( ) ( )( )( )
( ) ( )( )

22, , 2 0, , , , 1

2 , , 1

ll
s l z s z s z

s l

ls s
s R l s z

z

i L
L

K E L
L

⊥ ⊥ ⊥

⊥

κ⎧Φ κ υ υ = φ υ υ − φ υ υ −⎨
Ω − κ ⎩

Ω Ω ⎫′− κ − φ υ υ − ⎬
υ ⎭

%

%

 (3.37) 

At this point, the values of the distribution functions at the boundaries, ( )0, ,s z⊥φ υ υ  and ( ), ,s zL ⊥φ υ υ  
still remain unknown. In order to determine these values, a self-constancy condition can be applied. 
Hence, using Equations (3.35) and (3.36) with Equation (3.32) gives 

 ( ) ( )0, , 2 0, ,s z s z⊥ ⊥Φ υ υ = φ υ υ  (3.38) 

and 

 ( ) ( ), , , ,s z s zL L⊥ ⊥Φ υ υ = φ υ υ  (3.39) 

But by Equation (3.20), 

 ( ) ( )0, , , ,s z s l z
l

∞

⊥ ⊥
=−∞

Φ υ υ = Φ κ υ υ∑ %  (3.40) 

and 

 ( ) ( ) ( ), , , , 1 l
s z s l z

l
L

∞

⊥ ⊥
=−∞

Φ υ υ = Φ κ υ υ −∑ %  (3.41) 

Hence, form these relations, one has 

 ( ) ( ), , 2 0, ,s l z s z
l

∞

⊥ ⊥
=−∞

Φ κ υ υ = φ υ υ∑ %  (3.42) 

and 

 ( ) ( ) ( ), , 1 , ,l
s l z s z

l
L

∞

⊥ ⊥
=−∞

Φ κ υ υ − = φ υ υ∑ %  (3.43) 

Equation (3.37) can now be used on the left sides of Equations (3.42) and (3.43) to give two equations in 
the two unknowns ( )0, ,s z⊥φ υ υ  and ( ), ,s zL ⊥φ υ υ . To this end, substituting Equation (3.37) into 

Equation (3.42) and solving for ( )0, ,s z⊥φ υ υ , 

 ( ) ( ) ( )( )2 20, , , , 1
2

ls s
s z s R l s z

s zll

i K E L
L

∞

⊥ ⊥
=−∞

⎛ ⎞⎧ ⎫⎛ ⎞Ω Ω⎪ ⎪⎛ ⎞′φ υ υ = − κ + φ υ υ −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟Ω − κ υ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
∑ %  (3.44) 
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where the terms that contain the factors lκ  vanish, i.e., 

 ( )
2 2 2 2

1
0, 0

l
ll

s sl ll l

ii∞ ∞

=−∞ =−∞

κ −κ
= =

Ω − κ Ω − κ∑ ∑  (3.45) 

Similarly, using Equation (3.37) in Equation (3.43) and solving for ( ), ,s zL ⊥φ υ υ  yields 

 ( ) ( ) ( ) ( )2 2, , 2 1 , ,ls s
s z s R l s z

s zll

iL K E L
L

∞

⊥ ⊥
=−∞

⎛ ⎞⎧ ⎫⎛ ⎞Ω Ω⎪ ⎪⎛ ⎞′φ υ υ = − − κ + φ υ υ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟Ω − κ υ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
∑ %  (3.46) 

At this point, it will facilitate further evaluations to simplify Equations (3.44) and (3.46) by 
analytically performing summations over the parameters l where possible. Hence, using the summations 

 ( ) ( ) ( )2 2 2 2cot , 1 cscls s
s s

s sl ll l

i iiL L iL L
∞ ∞

=−∞ =−∞

⎛ ⎞ ⎛ ⎞Ω Ω
= Ω − = Ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Ω − κ Ω − κ⎝ ⎠ ⎝ ⎠

∑ ∑  (3.47) 

allow Equations (3.44) and (3.46) to be written,  

 ( ) ( ) ( ) ( )2 2
10, , , , csc

2
s

s z s R l s z s
s zll

i iK E L L
∞

⊥ ⊥
=−∞

⎛ ⎞⎛ ⎞Ω ′φ υ υ = − κ − φ υ υ Ω⎜ ⎟⎜ ⎟⎜ ⎟Ω − κ υ⎝ ⎠⎝ ⎠
∑ %  (3.48) 

and 

 ( ) ( ) ( ) ( ) ( )2 2
1, , 2 1 , , cotls

s z s R l s z s
s zll

iL K E i L L
∞

⊥ ⊥
=−∞

⎛ ⎞⎛ ⎞Ω ′φ υ υ = − − κ − φ υ υ Ω⎜ ⎟⎜ ⎟⎜ ⎟Ω − κ υ⎝ ⎠⎝ ⎠
∑ %  (3.49) 

Finally, the solution of these relations for ( )0, ,s z⊥φ υ υ  and ( ), ,s zL ⊥φ υ υ  is straightforward; after using 
some trigonometric identities, integral 

 ( ) ( )( ) ( ) ( ) ( ), , exp 2 1 1 l
s z s s R l

l
L i L C l E

∞

⊥
=−∞

′φ υ υ = Ω − − κ∑ %  (3.50) 

 ( ) ( ) ( ) ( ) ( )( )0, , 1 exp 2 1l
s z s R l s

l
C l E i L

∞

⊥
=−∞

′φ υ υ = κ − Ω −∑ %  (3.51) 

where 

 
Cs l( )≡ iΩs

Ωs
2 −κ l

2

⎛
⎝⎜

⎞
⎠⎟

1
υz

⎛

⎝⎜
⎞

⎠⎟
Ks

 (3.52) 

Equations (3.50) and (3.51) give the sought-after expressions for the boundary values of sφ  needed in the 
evaluation of Equation (3.37).  
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3.4 Calculation of the Current Density 

Using Equation (3.2) in Equation (3.34) and evaluating Equation (3.52), one has 

 ( ) ( )
2

02 2
1s s

s s
s Ts z s l

e iC l f
m

⊥ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞υ Ω
= − υ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟υ υ Ω − κ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

v  (3.53) 

One can now substitute Equations (3.50) and (3.51) into Equation (3.37) and this intermediate result into 
Equation (3.31), upon remembering the definition ( ) ( ) ( )expR l R lE E i′ κ ≡ κ − θ% % , to finally obtain the 
Fourier Transform of the current density within the plasma layer, viz, 

( ) ( ) ( )

( ) ( ) ( )

2 2
3

0 22
0 0 0

2 22 2

1 12

1 12 1 exp 1

1

s s
R l s s s R l

s Ts zs ls

ll s
R l s

zs sl ll

s l

ej e n f i E
m

ii E i L
L

i
L

∞ π ∞

⊥

∞
′

′
′′=−∞

⎧ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞Ω⎪κ = − υ υ − κ⎜ ⎟⎨⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟υ υΩ − κ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎪ ⎝ ⎠⎩
⎛ ⎞⎛ ⎞ ⎛ ⎞κ Ω⎛ ⎞ ⎡ ⎤+ κ − Ω −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦υΩ − κ Ω − κ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟Ω − κ ⎝ ⎠⎝ ⎠

∑ ∫ ∫ ∫

∑

v %%

%

( )( )( ) ( ) ( )22
1exp 2 1 1 1l ls

s R l z
zs ll

ii L E d d d
∞

′
′ ⊥

′′=−∞

⎫⎛ ⎞⎛ ⎞Ω ⎪Ω − − − κ υ θ υ⎜ ⎟ ⎬⎜ ⎟⎜ ⎟ υΩ − κ ⎝ ⎠ ⎪⎝ ⎠ ⎭
∑ %

  (3.54) 

Using Equation (3.2) once again and performing the ⊥υ  and θ  integrations gives 

( ) ( )

( ) ( ) ( )

1/ 2 2

2 22
0

2 22 2

1 1 1 1exp 2

1 12 1 exp 1

1

z s
R l s s R l

s Ts zsTs ls

ll s
R l s

zs sl ll

s l

j e n i E
m

E i L
L

∞

∞
′

′
′′=−∞

⎧ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞υ Ω⎪⎛ ⎞κ = − κ⎜ ⎟⎜ ⎟⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟π υ υυ Ω − κ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎪⎝ ⎠ ⎝ ⎠⎩
⎛ ⎞⎛ ⎞ ⎛ ⎞κ Ω⎛ ⎞ ⎡ ⎤+ κ − Ω −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦υΩ − κ Ω − κ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
−⎜ Ω − κ⎝ ⎠

∑ ∫

∑

%%

%

( )( )( ) ( ) ( )22
1 1exp 2 1 1 1l ls

s R l z
zs ll

ii L E d
L

∞
′

′
′′=−∞

⎫⎛ ⎞⎛ ⎞Ω ⎪⎛ ⎞ Ω − − − κ υ⎜ ⎟ ⎬⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ υΩ − κ⎝ ⎠ ⎝ ⎠ ⎪⎝ ⎠ ⎭
∑ %

 (3.55) 

At this point, it facilitates further calculation to change variables using the prescription 

 z
s

Ts
w υ

≡
υ

 (3.56) 

which gives 

 ( ) cs s
s s s

s Ts

iw
w

ω−ω + ν
Ω =Ω =

υ
 (3.57) 

Incorporating Equations (3.56) and (3.57) into Equation (3.55) yields 

 ( ) ( ) ( ) ( ) ( ),R l l R l l l R l
l

j E E
∞

′ ′
′=−∞

κ = σ κ κ − σ κ κ κ∑% %%  (3.58) 

where 
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 ( ) ( )
( ) ( )

1/ 2
2 2

2 2
0

1 1 1 12 exps s
l s s s s

s Ts s s sls

w
ie n w dw

m w w

∞ Ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞σ κ ≡ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟π υ Ω − κ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∫  (3.59) 

is the single mode conductivity and  

 

( ) ( )
( )( ) ( )( )

( ) ( )( )( ) ( )( )( )

( )
( )( ) ( )( ) ( ) ( )

1/ 2
2

2 22 2
0

2
22

1 1 1 1, 2

1 1 1 exp 1 exp 2

1 1 exp

l s s
l l s s

s Ts s s s ss l l

l
s s s s

s

l ls s
s s

ss s s sl l

w
e n

m L w w

i w L i w L
w

w
w dw

ww w

∞

′
′

′

′+

′

⎧ κ Ω⎛ ⎞ ⎛ ⎞ ⎪⎛ ⎞ ⎛ ⎞σ κ κ ≡ ⎨⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟π υ Ω − κ Ω − κ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎪⎩
⎛ ⎞
⋅ − − Ω − − Ω⎜ ⎟
⎝ ⎠

⎫Ω ⎛ ⎞ ⎪⋅ − −⎬⎜ ⎟
Ω − κ Ω − κ ⎝ ⎠ ⎪⎭

∑ ∫

 (3.60) 

is the multi-mode conductivity. Thus, the current density anywhere within the magnetized plasma layer 
due to the incident electromagnetic wave is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )exp , expR l R l l l l R l l
l l l

j z E i z E i z
∞ ∞ ∞

′ ′
′=−∞ =−∞ =−∞

= σ κ κ κ − σ κ κ κ κ∑ ∑ ∑% %  (3.61) 

 At this point, contact must be made with the current density entering into Maxwell’s equations. 

3.5 Connecting the Current Density in the Plasma Layer with the Maxwell Equations  

One first needs to relate the auxiliary complex electric field ( ) ( ) ( )R x yE z E z iE z= +  of the incident 
wave to the governing Maxwell Equations. Returning to Equations (2.3) and (2.4) and employing 
Equations (3.5) and (3.6) gives in terms of the component fields 

 ( )ˆ ˆ ˆ ˆy x
x y

E Ex y ik B x B y
z z

∂ ∂
− + = +

∂ ∂
 (3.62) 

and 

 ( ) ( )4ˆ ˆ ˆ ˆ ˆ ˆy x
x y x y

B Bx y ik E x E y j x j y
z z c

∂ ∂ π
− + = − + + +

∂ ∂
 (3.63) 

Multiplying these relations by the auxiliary vector ˆ ˆx iy+ , as used earlier, gives, respectively,  

 0R
R

E kB
z

∂
− =

∂
 (3.64) 

and 

 4R
R R

B kE i j
z c

∂ π
+ = −

∂
 (3.65) 
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where ( ) ( ) ( )R x yB z B z iB z≡ +  and ( ) ( ) ( )R x yj z j z ij z≡ + . From these two relations, the corresponding 
wave equation for ER can be derived in the usual way,  

 
2

2
2

4R
R R

E k E ik j
z c

∂ π
+ = −

∂
 (3.66) 

As the equations remain amenable in the Fourier domain, the transform of Equation (3.66) is now needed 
to be used with Equation (3.58): thus, applying 

 ( ) ( ) ( )
0

1 exp
L

R l R lE E z i z dz
L

κ = − κ∫%  (3.67) 

by multiplying Equation (3.66) by ( )exp li z− κ , integrating by parts, and using Equation (3.64) yields 

( )( ) ( ) ( )( ) ( )1 0 1 0l l
R R R R

l
B L B E L E

k i
L L

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟+ κ
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) ( ) ( )2 2 4
R l R l R ll E k E ik j

c
π

−κ κ + κ = − κ% % %  (3.68) 

Finally, substituting Equation (3.58) into Equation (3.68) and rearranging terms gives 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

2 2 1 04

1 0 4 ,

l
R R

l R ll

l
R R

l l l R l
l

B L B
k ik E k

c L

E L E
i ik E

L c

∞

′ ′
′=−∞

⎛ ⎞− −π⎛ ⎞ ⎜ ⎟κ − − σ κ κ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞− − π⎜ ⎟+ κ − σ κ κ κ
⎜ ⎟
⎝ ⎠

∑

%

%

 (3.69) 

This equation connects the fields on the surface boundaries of the plasma layer to the Fourier transform of 
the fields within the plasma. This relation can be put into a more familiar form simply by dividing 
through by 2k  using Equation (3.57) and rearranging some factors to obtain 

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

2

2 ,

1 0 1 0

l
l R l l l R l

l
l l

R R R Rl

E S E
k

E L E B L B
i

k kL kL

∞

′ ′
′=−∞

⎛ ⎞κ
− ε κ κ + κ κ κ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− − − −κ ⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑% %%

 (3.70) 

with 

 ( )
( ) ( )
( )

22

2 2 2 2
0

exp21 cs s sps
l s

s cs s sTs l

i w
dw

i w

∞ ω−ω + ν −ω
ε κ ≡ −

ωπ ω−ω + ν − υ κ
∑ ∫%  (3.71) 

and 
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( )
( ) ( )

( )

( )

2 2 2

2 22 2 2 22 2
0

2,

1 1 exp

1
1 exp 2

ps l scs s Ts
l l

s cs s s cs s sTs Ts ll

l cs s

Ts s

l l
Ts s cs s

cs s Ts l s Ts s

wiS i
L i w i w

ii L
w

w ii L
i w w

∞

′

′

′

′+

⎧⎛ ⎞ω κ υω−ω + ν ⎪κ κ ≡ ⎜ ⎟ ⎨⎜ ⎟ωπ ω−ω + ν − υ κ ω−ω + ν − υ κ⎪⎝ ⎠ ⎩
⎡ ⎤⎛ ⎞ω−ω + ν
⋅ − −⎢ ⎥⎜ ⎟υ⎝ ⎠⎣ ⎦

⎫⎡ ⎤υ − ⎛ ⎞ω−ω + ν ⎪− − ⎬⎢ ⎥⎜ ⎟ω−ω + ν − υ κ υ⎝ ⎠⎣ ⎦

∑ ∫

( )2exp s sw dw−
⎪⎭

 (3.72) 

where the plasma frequency psω  of the s-th charge species is given by 

 
2

2 4 s s
ps

s

e n
m
π

ω ≡  (3.73) 

Equation (3.70) forms the set of equations for the transform of the electric field within the plasma layer 
that will be considered in what is to follow.  

Unfortunately, the evaluation of the integrals indicated in Equations (3.71) and (3.72) cannot be 
completed in its entirety. Although Equation (3.71) does indeed possess an analytical solution, its form 
makes impossible the analytical evaluation of the electric field from the transformed field ( )R lE κ%  in 
Equation (3.70). However, in the limits of weak spatial dispersion, the equations lend themselves to 
analytical evaluation. Of course, it must be established that the re-entry plasma can be treated as one 
possessing weak spatial dispersion. Again, it must be kept in mind that what is needed here are 
expressions for the reflection, transmission, and absorption coefficients at the 0z =  and z L=  boundaries 
of the plasma layer. Thus, the transformation of the fields ( )R lE κ%  on the left side of Equation (3.70) 
must be evaluated at these surfaces. This is the goal of the following development. 

4.0 Evaluation in the Limit of Weak Spatial Dispersion 
4.1 The Limit of Weak Spatial Dispersion 

Equation (3.71) can be rewritten as 

 ( ) ( ) ( )
( )

22

22 2 2
0

exp21
1

s cs sps
l s

s s cs sTs l

w i
dw

w i

∞ − ω−ω + νω
ε κ = −

ωπ − υ κ ω−ω + ν
∑ ∫%  (4.1) 

Letting ( ) ( )2 2~cs s cs siω−ω + ν ω−ω + ν , consider the terms within the denominator of Equation (4.1) in 
the case where 

 
( )( )1/ 22 2

1sTs l

cs s

wυ κ
<<

ω−ω + ν
 

which can be re-expressed as 
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( )( )1/ 22 2

1Ts

s
cs s

lwL

υ
<

ω−ω + ν
 (4.2) 

Now, the integral over the variable sw  is rapidly attenuated due to the presence of the exponential 
function. Hence, only small values of this variable need be considered. Take the value of this parameter to 
be on the order of unity. There then remains the range of values of the mode number l. In order to 
incorporate the long range effects within the plasma (for spatial dispersion effects), small values of this 
parameter need be used; thus, take 1l = . Hence, the condition of Equation (4.2) can finally be written as 

 
( )( )1/ 22 2

1Ts

cs sL

υ
<

ω−ω + ν
 (4.3) 

At resonance where ~ csω ω , this condition becomes 

 Ts sLυ < ν  (4.4) 

which defines the region of weak spatial dispersion for this problem. The range over which this inequality 
holds must now be examined.  

4.2 Weak Dispersion and a Re-entry Plasma 

Since both the thermal velocity and collision frequency are functions of plasma temperature, it will be 
instructive to determine over what temperature ranges Equation (4.4) holds for nominal thicknesses and 
electron number densities. Figures 3 and 4 show the region of applicability of the constraint of Equation 
(4.4) for a one-component electron plasma of thickness 30cmL = . As seen from these plots, the 
applicability region becomes smaller over a range of temperatures as the electron concentration decreases. 
Thus, for 10 310 / cmen > , the approximation of weak spatial dispersion can be expected to hold for 
nominal re-entry temperatures that are typically 3000KeT > . The case in which 10 310 / cmen ≤  requires 
one to consider the case of strong spatial dispersion. 

In the case of weak spatial dispersion for this one-component plasma ( s e≡ ), Equation (4.1) reduces 
to  

 ( ) ( )
( ) ( )

22 2

0

exp2 11 1epe pe
l e

ce e ce e

w
dw

i i

∞ −ω ω
ε κ ≈ − = −

ω ω−ω + ν ω ω−ω + νπ ∫%  (4.5) 

The analysis of Equation (3.72) proceeds along the same lines where, it must be added, that the 
exponential factors oscillate away to zero. Also, with Equation (4.4) prevailing, the terms in Equation 
(3.72) can be neglected in this approximation. In this event, Equation (3.70) can be written, using 
Equation (4.5), 

 ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 1 0 1 0l ll
R l R R R Rl

kk k A E i E L E B L B
L L
κ

κ − + ω κ = − − + − −%  (4.6) 

where 
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 ( ) ( )
21 pe

ce e
A

i
ω

ω ≡
ω ω−ω + ν

 (4.7) 

From Equation (4.6), expressions for the boundary values ( )0RE  and ( )RE L  can be obtained from 
which incident, reflected, and transmitted fields can be related finally giving rise to the associated 
coefficients. Thus, defining 

 ( ) ( )2 2 2
l lD k k Aω ≡ κ − + ω  (4.8) 

one has 

 ( ) ( ) ( ) ( ) ( ) ( )( )10 1 0l
R R l R R

ll l

kE E B L B
D L

∞ ∞

=−∞ =−∞

⎛ ⎞= κ = − −⎜ ⎟ω ⎝ ⎠
∑ ∑%  (4.9) 

and 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )11 0 1l l
R R l R R

ll l

kE L E B L B
D L

∞ ∞

=−∞ =−∞

⎛ ⎞= κ − = − −⎜ ⎟ω ⎝ ⎠
∑ ∑%  (4.10) 

where, as noted earlier, the term with the coefficient lκ  sums to zero.  
At this point, one needs to relate the magnetic fields ( )0LB  and ( )RB L  to the prevailing electric 

fields on the boundaries so as to obtain from Equations (4.9) and (4.10) two equations in the two 
unknowns ( )0RE  and ( )RE L . From these, the reflection and transmission coefficients will be obtained. 
To this end, from Equation (3.64), 

 ( ) ( )1 R
R

E z
B z

k z
∂

=
∂

 (4.11) 

As for the fields above the plasma layer at z L= , one can write 

 ( ) ( )( ) ( )( )0 Reflexp expRE z E ik L z E ik L z= − + − −  (4.12) 

where 0E  is the incident electric field of the wave upon the plasma layer and ReflE  is the field reflected 
from the layer. Using Equation (4.12) in Equation (4.11) gives 

 ( ) ( )( ) ( )( )0 Reflexp expRB z i E ik L z E ik L z⎡ ⎤= − − − − −⎣ ⎦  (4.13) 

Hence, on the boundary z L= , 

 ( ) ( ) ( )0 Refl 0 Refl,R RE L E E B L i E E= + = − −  (4.14) 

Similarly, for the transmitted field into the region 0z < , 

 ( ) ( )( )Trans expRE z E ik L z= −  (4.15) 

giving at the boundary 0z =  
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 ( ) ( ) ( ) ( )Trans Trans0 exp , 0 expR RE E ikL B iE ikL= = −  (4.16) 

Substituting Equations (4.14) and (4.16) into Equations (4.9) and (4.10), defining  

 Refl Trans

0 0
,E Er t

E E
≡ ≡  (4.17) 

as well as  

 ( ) ( )
( )

( )( )
( )1

csc 11

1

l

ll

kL AkS
L D A

∞

=−∞

− ω−⎛ ⎞ω ≡ = −⎜ ⎟ ω⎝ ⎠ − ω
∑  (4.18) 

 ( ) ( )
( )( )

( )2
cot 11

1ll

kL AkS
L D A

∞

=−∞

− ω⎛ ⎞ω ≡ = −⎜ ⎟ ω⎝ ⎠ − ω
∑  (4.19) 

yields 

 ( ) ( )( ) ( ) ( )1 2exp 1 expt ikL iS r iS t ikL= − ω − + ω  (4.20) 

 ( )( ) ( ) ( )2 11 1 expr iS r iS t ikL+ = − ω − + ω  (4.21) 

The solutions of these simultaneous equations for r and t will then yield the related coefficients of 
reflection 2R r≡  and 2T t≡  as well as the related coefficient of absorption 2 21A r t≡ − − . Equations 
(4.20) and (4.21) give, in this case of weak spatial dispersion, 

 ( ) ( )
( )( ) ( )

2 2
1 2

2 22 1

1 S S
r

i S S

− ω + ω
=

+ ω − ω
 (4.22) 

and 

 ( ) ( )
( )( ) ( )

1
2 22 1

2 expiS ikL
t

i S S

ω −
=

+ ω − ω
 (4.23) 

Figures 5 to 7 display the results of the calculation of these relations for three electron concentrations 
for a plasma of thickness 30cmL =  and 3000KeT =  [Sharkey, 2004] upon which an electromagnetic 
wave of frequency 2.0GHzf =  is incident. As Figs. 5 and 6 show, the reflection coefficient (R) remains 
at 1.0 and the transmission coefficient (T) remains at 0.0 until the magnitude of the applied magnetic field 
goes above 500 Gauss. The absorption coefficient (A) also begins to rise (clearly shown in Fig. 6). After 
this point, the coefficients rapidly oscillate and tend to their limits 0.0R → , 1.0T → , and 0.0A→ . For 

11 31.0 10 / cmen = × , these limits are quickly approached. At 12 31.0 10 / cmen = × , oscillations of the 
values of R and T remain beyond the magnitude of 10,000 Gauss although the values are clearly 
separated. However, Fig. 7 for the case of 13 31.0 10 / cmen = ×  shows that the oscillations remain mixed 
together where the values of these coefficients exchange local maxima and minima.  
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5.0 Conclusion 
It is thus demonstrated that a magnetic field of nominal magnitude applied to the plasma makes the 

plasma transparent to frequencies smaller than the plasma frequency thus substantiating the magnetic 
windows concept. Magnetic fields on the order of 4 kGauss will render a plasma transparent at 2 GHz 
with an electron concentration of 1012 electrons/cm3. As the plasma density evolves throughout re-entry, 
the reflection, transmission, and absorption coefficients can oscillate over large ranges for a fixed applied 
magnetic field. Hence, a variable magnetic field controlled, e.g, by the value of received power, must be 
considered. Also, the case of strong spatial dispersion as well as the situation intermediate to weak and 
strong spatial dispersion must yet be considered. 

This example of a homogeneous plasma in a homogeneous magnetic field is certainly an idealization 
of what would exist in reality. However, these results provide impetus for further work with more realistic 
situations. Although Halbach magnets can be used to generate the applied magnetic field, some spatial 
variation of the field should be introduced. The variations inherent in the plasma thickness, temperature, 
and density must be addressed in the specification and design of a closed loop control system to adjust the 
external magnetic field to maintain transparency. Finally, account of the other components of the plasma 
must be made. In fact, with the surface ablation that occurs during re-entry, one should consider a dusty 
plasma, the kinetics of which can be vastly different from the simple one-component electron plasma 
considered here.  
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Appendix A.—A Model of the Effective Collision Frequency  
For purposes of the discussion given here, consider a two component plasma made up of electrons 

and ions in an electric field E
v

. The Boltzmann equation including the associated collision integral for an 
electron in a two-component plasma is given by 

 coll 0r
f ef E f S
t m υ

∂
+ υ⋅∇ + ⋅∇ + =

∂
vv

v v vv  (A1.1) 

where the complete collision integral is  

 ( ) ( ) ( ) ( ) ( ) 3coll 1 1,S q u u f F f F d d′ ′⎡ ⎤≡ θ υ υ − υ υ υ Ω⎣ ⎦∫ ∫
v v v v  (A1.2) 

In the case where the collision is limited to the scattering of an electron from an ion, ( ),q u θ  is the 

differential cross-section of electron scattering where θ  is the scattering angle, 1u ≡ υ− υv v  is the relative 
velocity of the electron with respect to the ion, i.e., υv  and 1υ

v  are the velocities, respectively, of the 
electron and ion after collision whereas ′υ

v  and 1′υ
v  are those before the collision. Additionally, ( )1F υ

v  is 
the velocity distribution of the ions which is usually taken to be given by the Maxwell distribution of the 
form of Equation (3.2), and sind d dΩ = θ θ φ  is the differential scattering angle.  

Simplifications will now be introduced using what is known about the electrons in the plasma. First, it 
is assumed that the thermal velocity of the electrons and ions are much greater than the associated 
directed velocities in the electric field. In this isotropic plasma case (i.e., where the magnetic field 0B =

v
), 

the spatial gradient of the distribution f is directed along the z axis, parallel to E
v

. Hence, one can treat the 
“directional” part of f as a perturbation in velocity space. The distribution can thus be expanded into zero-
order spherical polynomials, i.e., Legendre polynomials ( )coslP ϑ  where ϑ  is the angle between E

v
 and 

υ
r , viz., 

 ( ) ( ) ( )
0

, , cos , ,l l
l

f f r t P f r t
∞

=

= υ = ϑ υ∑v vv v  (A1.3) 

Writing 

 
( )

2sincos
cos

f E fE f Eυ
∂ ϑ ∂

⋅∇ = ϑ +
∂υ υ ∂ ϑ

v
v v

 (A1.4) 

and using Equations (A1.3) and (A1.4) in Equation (A1.1) give the following system of equations for fl  

 

( )

( )

( )

0 1 2 1 02

1 0 2 0 3 2 13

2 1 3 41 3 24

0
3 3

2 2 0
5 5

2 7 2 1 3 0
3 3 3 7

f f eE f S
t t m

f f f eE f f S
t z z m

f f f eE f f S
t z z m

∂ υ ∂ ∂
+ + υ + =

∂ ∂ ∂υυ
∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ υ + + + υ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂υ ∂υυ⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ υ + + υ + υ + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂υ υ ∂υυ⎝ ⎠ ⎝ ⎠⎝ ⎠
M

 (A1.5) 
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where 

( )

( ) ( ) ( ) ( )

( ) ( )( )

3 1
0 0

3

2 1 cos
4

2 1 , cos cos cos
4

, cos

l l

l l l l l
l l

l l l

lS P Sd

l q u uP f P F F f P d d d

q u u Ff F f P d d

∞ ∞

′ ′ ′ ′
′ ′= =

+
≡ ϑ Θ

π
⎡ ⎤+ ′ ′ ′ ′′= θ ϑ ϑ − ϑ υ Ω Θ⎢ ⎥

π ⎢ ⎥⎣ ⎦

′ ′= θ − θ υ Ω

∫

∑ ∑∫∫ ∫

∫ ∫

 (A1.6) 

In arriving at the result of Equation (A1.6), the integration over sind d dΘ = ϑ ϑ ϕ  made use of the fact 
that  

 cos cos cos sin sin cos′′ ′ ′ϑ = θ ϑ + θ ϑ ϕ  

and the addition theorem for Legendre polynomials was employed.  
The chain of equations of Equation (A1.5) can be terminated at the second one if the perturbation 

component 2f  can be neglected compared to the fundamental component 0f , i.e., 

 ( )0 3 23
1f f∂ ∂

>> υ
∂υ υ ∂υ

 (A1.7) 

Before Equation (A1.7) can be established, one now needs to consider the expressions for the scattering 
perturbations 0S , 1S , and 2S . To this end, considerations will only be made of elastic collisions; in this 
case, Equation (A1.6) gives for 1S  

 ( ) ( ) ( ) ( ) ( ) ( )( ) 31 1 1 1 1 1 1, cosS q u u f F P f F d d′ ′= θ υ υ − θ υ υ υ Ω∫ ∫
v v v v  (A1.8) 

Assuming that the energy of the electron changes only slightly after collision with the ion, one has that 
′υ ≈ υv v  and 1 1′υ ≈ υ

v v  where 1υ >> υv v . In this instance, Equation (A1.8) yields 

 ( ) ( ) ( ) ( ) 3
1 1 1 1, 1 cosS f q u F d d= υ θ υ υ − θ υ Ω∫ ∫

v v ( ) ( )1 1f= ν υ υ  (A1.9) 

where the velocity dependent collision frequency is defined by 

 ( ) ( )( ) ( ) 3
1 ion ion 1 1, 1 cos ,u N q d N F dν = υ υ θ − θ Ω ≡ υ υ∫ ∫  (A1.10) 

Equation (A1.9) begins to form the basis of the Krook model introduced in Equation (2.7) where a 
velocity independent collision frequency sv  was used. It is the central purpose of this Appendix to obtain 
an expression of this velocity independent collision frequency from collision theory. Before this can be 
accomplished, however, it remains to establish the prevailing conditions that allow the termination of the 
system of equations of Equation (A1.5).  

One can similarly show that  
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

3
2 2 1 2 2 1 1

32 1 1

2 2

, cos

3cos 2 1, 1
4

S q u u f F P f F d d

f q u F d d

v f

′ ′= θ υ υ − θ υ υ υ Ω

θ+⎛ ⎞= υ θ υ υ − υ Ω⎜ ⎟
⎝ ⎠

= υ υ

∫ ∫

∫ ∫

v v v v

v v  (A1.11) 

where 

 ( ) ( ) ( ) 32 ion ion 1 1
3cos 2 1, 1 ,

4
u N q d N F dθ+⎛ ⎞ν = υ υ θ − Ω ≡ υ υ⎜ ⎟

⎝ ⎠∫ ∫  (A1.12) 

Thus, the quantities ( )1v υ  and ( )2v υ  are of the same order of magnitude and, for purposes of the 

discussion to follow, ( ) ( ) ( )1 2v v vυ ≡ υ ≈ υ . Finally, an expression for 0S  needs to be secured. The 
calculation is trivial upon using Equation (A1.6) and noting the fact that energy exchange during 
collisions does not occur with the approximations used above; hence, to first order, 0 0S = . Finally, 
specializing to the special case of spatial homogeneity, 0z∂ ∂ =  in Equations (A1.5). Given the 
developments above, these relations reduce to  

 ( )0 2 12 0
3

f eE f
t m

∂ ∂
+ υ =

∂ υ ∂υ
 (A1.13) 

 ( )1 0
1 0f eE f v f

t m
∂ ∂

+ + υ =
∂ ∂υ

 (A1.14) 

 ( ) ( )2 41 3 24
2 1 3 0
3 7

f eE f f v f
t m

⎛ ⎞∂ ∂ ∂⎛ ⎞+ υ + υ + υ =⎜ ⎟⎜ ⎟∂ ∂υ υ υ ∂υ⎝ ⎠⎝ ⎠
 (A1.15) 

Consider now the steady state situation where ( )1 2, ~ expf f i t− ω  and hence 1 1~f t i f∂ ∂ − ω  and 

2 2~f t i f∂ ∂ − ω . Using these in Equations (A1.14) and (A1.15), dropping the second term within the 
parentheses of Equation (A1.15) and solving for 2f  gives 

 ( )
2 2 0

2 2 2 2
1~ e E ff

m v
∂ ∂⎛ ⎞υ ⎜ ⎟∂υ υ ∂υω + ⎝ ⎠  (A1.16) 

Hence, the condition of Equation (A1.7) becomes 

 ( )
2 2 02

0 22 2 2
1e E ff

m v
∂ ∂⎛ ⎞ ⎛ ⎞>> υ⎜ ⎟ ⎜ ⎟υ ∂υ ∂υω + ⎝ ⎠ ⎝ ⎠  (A1.17) 

If Equation (A1.17) holds, the original system of equations of Equation (A1.5) reduce to two: 

 ( )0 2 12 0
3

f eE f
t m

∂ ∂
+ υ =

∂ υ ∂υ
 (A1.18) 
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 ( )1 0
1 0f eE f v f

t m
∂ ∂

+ + υ =
∂ ∂υ

 (A1.19) 

Finally, if the electric field is weak enough where the second term of Equation (A1.18) can be taken as a 
first order perturbation, the symmetric portion of the distribution f retains its Maxwellian nature and the 
solution to the problem reduces to (remembering Equation (A1.3)) 

 ( )
0 1

1 0
1

cos

0
e

f f f
f eE f v f
t m

= + θ
∂ ∂

+ + υ =
∂ ∂υ

 (A1.20) 

In what is to follow, it is found advantageous to give the perturbation f1 a vector character by writing 
Equation (A1.20) as 

 1
0

ff f ⋅ υ
= +

υ

v v
 (A1.21) 

 ( )1 0
1 0

e

f eE f v f
t m

∂ ∂
+ + υ =

∂ ∂υ

v v
v

 (A1.22) 

where 1f
v

 is given the direction of E
v

.  
The total current induced in the plasma by the free electrons is given by 

 ( ) 3
ej en f d= ∫

v v vυ υ υ  (A1.23) 

Using Equation (A1.21) and converting the υ -integration into one in spherical coordinates gives, noting 
the isotropy of 0f , 

 
2

3
1

0 0

2 sinej en f d d
∞ π

= π υ θ θ υ∫ ∫
vv

 (A1.24) 

Now, from Equation (A1.22), one has in the steady state 

 
( )

0

1
e

eE f
mf

v i

∂
∂υ= −

υ − ω

v

v
 (A1.25) 

Using Equation (3.2) in this result and substituting into Equation (A1.24) yields 

 
( ) ( )

( )
( )
( )

4 2 4 22

2 2 2 2
0 0

exp exp8
3

e

e

v x x x x xe n Ej dx i dx
v x v xm

∞ ∞⎛ ⎞− −
⎜ ⎟= +
⎜ ⎟+ +⎝ ⎠
∫ ∫

v
v

ω
ω ωπ

 (A1.26) 

where 2e B ex m k T≡ υ . In the event that the collision frequency is independent of the velocity, i.e., 

( ) const.v x v= = , the integrals in Equation (A1.26) can be performed and give the result 
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2

2 2 2 2
1e

e

e n E vj i
m v v

⎛ ⎞= + ω⎜ ⎟ω + ω +⎝ ⎠

v
v

 (A1.27) 

This result is identical to the one that is obtained by using elementary considerations. That is, using the 
concept of an effective collision frequency effv , one simply uses Newton’s Law of motion for an electron 
in an electric field and writes 

 effe e
dm eE m v
dt
υ
= − υ

v v v  (A1.28) 

Here, the effective collision frequency enters as a friction term. Again, considering the steady state and 
solving for the velocity, one gets for the associated current 

 
2

eff
2 2 2 2

eff eff

1e
e

e

e n E vj en i
m v v

⎛ ⎞
= υ = + ω⎜ ⎟⎜ ⎟ω + ω +⎝ ⎠

v
v v  (A1.29) 

In order to reconcile these two approaches, one considers the limiting case where ( )2 2 2
eff ,v v xω >> . 

Taking Equations (A1.26) and (A1.29) in this limit, equating the two results and solving for effv  gives in 
terms of the velocity dependent collision frequency 

 ( ) ( )4 2
eff

0

8 exp
3

v v x x x dx
∞

= −
π ∫  (A1.30) 

It is now necessary to find an expression for ( )v x  defined by Equation (A1.10), given the scattering 
situation assumed here. That is, elastic scattering of a fast moving electron from an essentially stationary 
heavy ion. In this Coulomb scattering case, one must use the Rutherford scattering formula for the cross-
section required in Equation (A1.10), viz.,  

 ( ) ( )
22

2 4

1,
2 sin 2e

eq
m

⎛ ⎞
υ θ = ⎜ ⎟ θυ⎝ ⎠

 (A1.31) 

Substituting this expression into Equation (A1.10) and performing the azimuthal integration, 

 
( ) ( )min

22
ion 2 4

4
min2

ion 2 3

1 cos2 sin
2 sin 2

2 ln 1 cot
2

e

e

ev n d
m

en
m

∞

θ

⎛ ⎞ − θ
υ = π υ θ θ⎜ ⎟ θυ⎝ ⎠

⎛ ⎞ ⎛ ⎞θ⎛ ⎞= π +⎜ ⎟ ⎜ ⎟⎜ ⎟υ ⎝ ⎠⎝ ⎠⎝ ⎠

∫
 (A1.32) 

where minθ  is the minimum scattering angle which is related to the maximum value of the impact 
parameter maxb , 

 ( ) 2
min

2 max
tan 2 e

e
m b

θ =
υ

 (A1.33) 
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Here, the impact parameter is determined by the fact that in a plasma where the interaction between the 
ions and electrons is through a Coulomb field only, distances on the order of the Debye radius Dr  cannot 
be exceeded since this is the maximum distance at which substantial interaction occurs between the 
electron and ion; at distances greater than this, the field of the ion decreases exponentially. Hence, one 
can write 

 
( )

1/ 2 1/ 22 ion
max 2 2

ion ion ion4 8
e B eB

D
B B e

k T T k Tb r
e n k T k T e n

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟π + π⎝ ⎠⎝ ⎠

 (A1.34) 

where the last result issues from the assumption that ion eT T≈ . For a typical re-entry plasma, 
4~ 10 cmDr − . Given the relative values of the parameters involved, one can write from Equation (A1.33), 

 
2 2

1
min 2 2

22 tan
e D e D

e e
m r m r

− ⎛ ⎞
θ = ≈⎜ ⎟υ υ⎝ ⎠

 (A1.35) 

Substituting this result into Equation (A1.32) and series expanding the 2cot  function finally gives 

 ( )
2 2 44

ion 2 3 42 ln 1 eD

e

r mev n
m e

⎛ ⎞⎛ ⎞ υ
υ = π +⎜ ⎟⎜ ⎟υ⎝ ⎠ ⎝ ⎠

 (A1.36) 

Finally, applying the substitution 2 B e ex k T mυ =  in Equation (A1.36) and using this result in Equation 
(A1.30) yields 

 

( ) ( ) ( )
3/ 24

2 4 2
eff ion 2

0
3/ 24

ion
2

8 2 ln 1 exp
23

8 2 1 1 1 1 1sin 2si cos ci
2 23

e

e B e

e

e B e

e mv n x A x x dx
m k T

n e m
m k T A A A A

∞⎛ ⎞⎛ ⎞
= π + −⎜ ⎟⎜ ⎟π ⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞π ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= π − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

∫
 (A1.37) 

where 22 B e DA k T r e≡  and ( )ci L  and ( )si L  are the cosine and sine integrals, respectively. For a 

typical re-entry plasma, 2~ 10 1A >> . Thus, expanding the functions within the brackets of Equation 
(A1.37) in an ascending series, the sine terms are negligible and one is left with 

( ) ( )cos 1 ci 1 lnA A A≈ − + γ  where γ  is Euler’s constant, 0.577γ ≈ . Hence, Equation (A1.37) reduces to  

 
3/ 24ion

eff 2 2
8 2 1.12ln

23
e B e D

e B e

n e m k T rv
m k T e

⎛ ⎞⎛ ⎞π ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟π ⎝ ⎠⎝ ⎠⎝ ⎠
 (A1.38) 

This is the expression for the effective collision frequency used in this work. To make contact with the 
notation used in the text, one has effsv v=  where s ≡ e . It must be remembered that this formulation 
only accounts for elastic collisions between electrons and heavy ions. Of course, other scattering 
processes can occur such as elastic and inelastic collisions with molecules, collisions with dust grains in 
which charge transfer can also be attendant with impact, etc.  
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Figure 1.—The flowing plasma and its various fields and velocities. 
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Figure 2.—Electromagnetic and kinetic equations for a plasma in an external 
magnetic field and an incident electromagnetic wave. 
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Figure 3.—Region of applicability for weak spatial dispersion approximation for ne=1010 electrons/cm3and L=30 cm. 

 
 
 

 
Figure 4.—Region of applicability for weak spatial dispersion approximation for ne=1011 electrons/cm3 and L=30 cm. 
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Figure 5.—Reflection, transmission, and absorption coefficients versus applied magnetic field strength for 

ne=1011 electrons/cm3. 
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Figure 6.—Reflection, transmission, and absorption coefficients versus applied magnetic field strength for 

ne=1012 electrons/cm3. 
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Figure 7.—Reflection, Transmission, and Absorption Coefficients Versus Applied Magnetic Field Strength for ne=1013 

electrons/cm3. 
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