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PROBABILITY CONCEPTS IN GEOMORPHOLOGY

By A. E. SCHEIDEGGER and W. B. LANGBEIN

ABSTRACT

Rivers and landforms that are produced by the action of 
flowing water may be dominated by random processes. The 
complexity of the phenomena seems to be beyond complete 
resolution of the forces and resistances involved. An assumption 
of randomness appears to offer a direct approach to a study of 
landforms and of the hydraulic geometry of rivers.

INTRODUCTION

To understand the development of a landscape in 
terms of fundamental mechanical principles is a prob­ 
lem of extreme complexity. Landforms are numerous, 
and there are many aspects of otherwise similar land- 
forms. The processes that are operative represent 
the cumulative effect of many small-scale events which 
are impossible to follow in detail. This is a condition 
that is not unusual in geomorphology and other natural 
sciences; it is so common that methods of statistical 
mechanics have been developed to cope with it. Bak- 
hemeteff (1941, p. 99) argued for the use of statistical 
mechanics in hydraulics.

Throughout the development of geological science, 
many direct approaches at an explanation of landscape 
evolution have been tried. However, in view of the 
great complexity of the phenomena involved, these 
approaches may lead to as many explanations as there 
are cases, meaning that there is no general theory. 
A hypothesis based upon the concepts of statistical 
mechanics (that is, a probabilistic rather than a direct 
approach), therefore, may yield a satisfactory and 
practical theory.

One of the common assumptions that are introduced 
in statistical mechanics is the randomness of some of 
the processes. Under certain circumstances, this 
randomness can lead to logistic difficulties because in 
geomorphology nothing is really random; when it 
rains, the fall of each raindrop is governed by Newton's 
law of motion and by atmospheric friction. When 
the drop hits the ground and erodes some soil particles, 
again the appropriate laws of mechanics determine 
the initiation of events. The same is true for the 
formation and deepening of small gullies that form,

say, on a slope and ultimately cause its decay. Yet, 
it would be quite hopeless to try to account for these 
processes in detail. As stated by Melton (1958), 
"The variability in any natural environment is the prod­ 
uct of the happenings in many geologic periods * * *. 
To argue that this variability could ever be entirely 
explained is absurd."

Our knowledge of the individual events can never be 
complete enough to deduce therefrom, say, the recession 
of a slope, the juncture of channels, or the velocity of 
the flow that caused them. Nevertheless, certain 
average relationships can be deduced from our in­ 
complete knowledge of the individual processes, simply 
because the net effect of the many individual events is 
the same as if the individual events were to occur at 
random, although the events are, strictly speaking, 
entirely predetermined. This assumption of random- 
ness, for example, has been used in the theory of flow 
of fluids through porous media (Scheidegger, 1964a). 
The flow channels (pores) are entirely rigid and given 
in any flow process, but then* complexities are so great 
that the net effect of the superposition of individual 
flow effects is the same as if these flow effects were to 
occur at random. The random-walk generation of a 
drainage network (Leopold and Langbein, 1962), 
verified as realistic (Schenk, 1963), does not belie the 
fact that rivers join at specific places for specific 
reasons. But, the whole result is as if the process were 
random.

Each process is deterministic; however, the rates and 
periods differ, and the result may be indistinguishable 
from the random. Lotka (1925), for example, showed 
how a set of pendulums, each oscillating in a perfectly 
deterministic way, produced a net effect that is random 
in its characteristics. Lotka described a set of 26 
pendulums having periods of 0.5, 0.6 * * * 2.9, 3.0 
seconds; these were set in motion simultaneously and 
then allowed to oscillate undisturbed. As the pendu­ 
lums oscillated, the number that were on one side of 
the plumb position changed continuously about a mean 
value of 13. A count was made of the number of

Cl
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pendulums on one side of the central or plumb position 
at the end of each tenth of a second (this being the 
difference in the periods) over a 25-second period after 
the pendulums had been in motion for some time (250 
observations). The resulting histogram shown in 
figure 1 conforms to a binomial distribution with a 
mean of 13 and a 0.5 probability that each of the 26 
pendulums will be on one side of the plumb posi­ 
tion. The theoretical standard deviation equals 
V26X0.5X0.5=2.55, compared with 2.50 for the 
sample.

Among diverse landforms and among processes of 
land sculpture there are large numbers of examples that 
differ among themselves, not merely because of in- 
homogeneities of structure or of erosional resistance, 
but because readjustments to each action may not 
proceed at the same rates or time periods.

For an example of such readjustment consider the 
effect of a local depositional feature in a river channel. 
The chance emplacement of a bar, which slightly dams 
the stream, flattens the water-surface profile upstream 
from the obstruction and steepens the profile over the 
bar that is, the velocity will slacken above the barrier 
with the net result that deposition is encouraged and 
less material reaches the bar. Over the bar itself the 
steepened profile increases velocity and tends to erode 
the obstruction. This increased erosion in the over- 
steepened reach and deposition in the flat area will, 
over a period of time, tend to eliminate the original bar 
and thus restore the channel to its earlier condition 
(Leopold and Langbein, 1962).

The reaction to the initial perturbation takes time, 
and therefore restorative adjustment may not be com-

7 8 9 10 11 12 

NUMBER OF PENDULUMS ON

13 14 15 16 17 18 19 

ONE SIDE OF CENTRAL POSITION

FIGURE 1. Lotka's pendulums histogram showing the frequency distribution of 
the number of pendulums on one side of the central position.

plete before another chance event disrupts the adjust­ 
ment, establishing a new series of events that inherits 
the characteristics of the old. If such readjustments 
are taking place, sporadically in time, not only at this 
one bar but at many, a variety of conditions will exist 
along the channel.

Many of these ideas are expressed in Hack's (1960) 
theory of dynamic equilibrium or in the steady-state 
theory of Chorley (1962). According to Hack, land- 
forms can be explained on the basis of processes acting 
today through study of the relations between phe­ 
nomena as they are distributed in space. This concept 
is close to the ergodic principle of statistical mechanics  
the replacement of time averages by space averages. 
The theory is independent of time and is concerned 
only with the relations between rocks and processes as 
they exist in space.

A homely example of Chorley;s (1962) illustrates in­ 
dependence of the steady state of history. A stream 
of water flows into a bucket that has a hole in the 
bottom. The discharge through the hole is propor­ 
tional to the depth of water. The level in the bucket 
reaches an equilibrium such that average inflow equals 
average outflow this is a state of dynamic equilibrium. 
And then Chorley asks, was the bucket full or empty at 
the beginning?

The theory of dynamic equilibrium or the steady- 
state theory interpreted broadly stands in contrast to 
the formal stage-by-stage evolution of the landscape 
postulated by the Davisian geographic cycle. The 
dynamic equilibrium theory lends itself to quantitative 
analysis. The probability concepts outlined in this 
paper are of this school of thought. Both are uni- 
formitarian in their approach.

The idea of using some type of statistical mechanics 
in geomorphology is, in principle, very old. When 
Davis (1924) spoke implicitly of the "average" geo- 
morphic cycle, there was an element of probability 
implied hi the use of the very word "average." When­ 
ever statistics are used, one ought to specify the "pop­ 
ulation" in which the " average" is taken. A consistent 
way of introducing statistical mechanics in geomor­ 
phology was suggested by Leopold and Langbein (1962). 
The method of these authors was later analyzed with 
regard to its stochastic basis by Scheidegger (1964b). 
Recently, Culling (1963) also introduced a statistical 
model which he based on the idea of a random-walk 
process.

In describing the steady state of rivers, a theorem of 
minimum variance adjustment among pertinent hy­ 
draulic factors is advanced. Its essence is that the 
increase in river discharge as it flows downstream is 
accommodated with minimum effect among the hy­ 
draulic factors, such as depth, width, and velocity.
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The principle appears in this light to be an extension 
of Le Chatelier's principle a change in one element of 
a system in equilibrium is met by a reaction that tends 
to minimize the effect of the change.

Statistical mechanics may be adapted to the solution 
of geomorphic problems at three levels of sophistication. 
First, one can introduce primitive stochastic models in 
which semiempirical conjectures are made regarding 
the "average" behavior of a geomorphic system; second, 
one can postulate specific models, such as random-walk 
processes, and third, one can try to apply methods of 
ensemble theory (as originally introduced by Gibbs into 
the statistical theory of gases) into geomorphology. 
These various possibilities will be discussed, one by one, 
below.

Since these theories are of a very general nature, and, 
in fact, represent more of a philosophy of treatment 
than a closed and final scheme, their potentialities will 
be illustrated by a few simple examples taken from 
earlier papers by us that are listed among the references.

PRIMITIVE STOCHASTIC MODELS
By A. E. SCHEIDEQGER

The simplest way in which statistical (or quasi- 
statistical) considerations can be introduced into geo­ 
morphology is by trying to set up a theory for the 
"average" pattern of evolution of a landscape. This 
theory is essentially the scheme which, albeit un­ 
consciously, has been traditionally applied to describe 
geomorphology when one was speaking of "standard" 
or "characteristic" cycles and slope evolution. This 
type of reasoning can also be put into mathematical 
terms by setting up a theoretical model for the "average" 
evolution of a geomorphic element, neglecting the de­ 
tailed "microscopic" phenomena.

Scheidegger (1961a), Bakker and Strahler (1956), and 
Souchez (1963) have tried setting up a theoretical 
model for evolution of slopes. Thus, Scheidegger 
(1961 a) reasoned that the denudation of a slope should 
proceed with a speed that is proportional to the declivity 
of this slope and that the denudation action would be 
normal to the slope. Denoting the height of a slope- 
point in a cross section above some base line by h, 
the horizontal coordinate by x, and time by t, the above 
assumptions lead to the differential equation

where a is some constant of proportionality.
This differential equation is nonlinear, and hence 

solutions must be obtained by numerical computation. 
The evolution of an originally straight slope bank is 
shown in figure 2. The denudation of slopes having

varying lithology can easily be calculated (Scheidegger, 
1964c).

Although the general picture of the evolution of an 
average slope profile obtained in the present theory is 
not unreasonable, it would be desirable to specify more 
accurately the statistical concepts that are involved 
than can be done by the simple models that have been 
given.

RANDOM-WALK MODELS
By A. E. SCHEIDEGGER

The evolution of a landscape is primarily accom­ 
plished by a transport process: what is transported is 
simply the material that makes up the landscape. 
This material is in a relation to the height above base 
level of the points under consideration. The transport 
depends on the height above base level and involves a. 
constant which depends on the density decrease that 
occurs where the ground is broken up.

Taking the grand view, it is obviously possible to 
regard the evolution of a landscape itself as a transport 
process: what is transported are the materials that 
constitute the heights above base level. The transport 
process has a stochastic element in it, that is, there is a 
random element determining which "particle" moves 
at what time so that the transport process can be 
regarded as the result of a "random walk" of the indi­ 
vidual "particles" making up the landscape. As noted 
earlier, the process is not truly random, since the 
small-scale effects involved are all mechanically com­ 
pletely determined. However, the mechanics of these 
small-scale effects is so complicated that the details 
concerning most individual particles will remain forever 
unknown. Because of this, the process of landscape 
evolution can be treated as if it were random. As 
previously explained by Scheidegger (1964a), the follow­ 
ing three types of specifications have to be made to

1.0

0.8

0.6

0.4

0.2

x = horizontal coordinate 
y= vertical coordinate 
t= Total time 

(arbitrary units)

0.2 0.4 0.6 0.8

FIGURE 2. Basic slope development.
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arrive at a valid transport model for such random-walk 
processes :

1. One must specify the ensemble. Such ensembles 
may consist of all systems that can be considered 
as identical to the sought-after relationships. 
To give some specific examples : it one considers 
a slope profile, then the ensemble includes all 
normal cross sections of a slope bank having 
certain properties, and the same would apply if 
one were to consider a mountain range; if one 
considers rivers having a given distribution of 
discharge, the ensemble includes all rivers hav­ 
ing that distribution of discharge. It is for 
averages over such statistical ensembles that 
relationships are sought.

2. One must specify a priori the statistics within the 
ensemble. This includes questions as to 
whether the events are independent or corre­ 
lated. The evolving patterns depend very 
much on the choice of statistics.

3. Finally, one must specify the microdynamic 
transport law.

Let us again illustrate the general theory of the 
evolution of a slope regarded as the result of a random- 
walk process.

Case a. Assume that the phenomena occurring in 
the individual time steps are completely independent of 
each other. Several subcases can be distinguished.

Case a i.   There are no microdynamic forces; that is, 
all changes are determined by stochastic processes. In 
a geomorphological context, this means that the 
"particles" on a slope are simply performing a random 
walk. Every "particle" on a slope has a certain chance 
to move forward; this chance is not dependent on con­ 
ditions along the slope. Because of the central-limit 
theorem of probability theory (see, for example, Mises, 
1931), the distribution function of the "particles" (and 
therewith of geomorphic height h) is subject to a dif­ 
fusivity equation

where t is time, and D is a diffusivity constant. The 
pattern of the decay of a slope profile corresponds to 
the solution of the diffusivity equation

where erf denotes the "error" function. This equation 
states that when the particles are subject to movement 
as described, they become distributed along the slope 
length, such that the height h, at any point x, takes the 
form of the "error" curve. The pattern is shown in 
figure 3.

-cO.5

-3 -2 -1

FIGURE 3. Error function, the slope profile resulting from a random walk.

Case a n. Assume now that there are microdynamic 
forces, that is, forces in addition to those causing the 
random motion of the "particles." As previously ex­ 
plained in regard to the hydrodynamics of porous media 
(Scheidegger, 1964a), this introduces a mass-transport 
term in the diffusivity equation so that it reads

where c is the average mass-transport velocity, that is, 
in a frame of reference moving with velocity c, one 
would again have the diffusivity equation. In fact, 
Culling (1963) has already investigated problems of 
this type where h, instead of denoting the height of a 
landscape, refers only to the thickness of an active layer 
(say, "soil") lying upon a slope; then any "accumula­ 
tion" will gradually move downslope and spread out.

A possible generalization of the diffusivity equation 
can be arrived at if D is no longer considered as a scalar, 
but as a tensor. Then, in customary tensor notation

where the summation convention is assumed to be ap­ 
plied (see, for example, Jeffreys, 1932). Culling (1963) 
calculated several cases corresponding to the preceding 
two equations, which refer, as noted above, to the creep 
of a soil layer of thickness h over a slope.

The present context concerns an interpretation of 
landscape height. Then, the mass- transport coefficient 
c, if not taken as zero as in case a i, will presumably de­ 
pend on the declivity of the slope. Since this coefficient 
describes the mean motion of "particles," one will pre­ 
sumably have to refer to the expression corresponding 
to that introduced earlier. There it was assumed that 
the vertical speed of lowering of a slope with declivity 

was given by

  >k 7 \ 9ohY-)
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where a is some proportionality constant, 
horizontal speed c will be

Hence, the

C='t

Thus, the differential equation (in one dimension) be­ 
comes _____ 

dA_ n d2h fdh\ I-i ./^V

which is nonlinear. It is, in fact, the same differential 
equation as in the section on primitive stochastic 
models, except that now a diffusivity term is added on 
its right-hand side.

Case b. Assume that there is autocorrelation be­ 
tween "particle motions" in succeeding time steps.

This case is again analogous to one occurring in the 
physics of flow through porous media (Scheidegger, 
1958), where it has been shown that one now arrives at 
a "telegraph" equation (so called because it describes 
the electric behavior of a long telegraphic cable) rather 
than at a diffusivity equation. In one dimension this 
telegraph equation is

~W~Ato?*Ato =()

where A and D are two constants. The chief differ­ 
ence is the occurrence of the second time derivative 
which gives the equation some of the character of a 
wave equation. The solution of an originally vertical 
slope bank (at t=0,.H=l for z>0, zero otherwise; 
with u.= (D/Ay/2 is (Goldstein, 1951)

h(x t}-- fi(x, t)-,

, 
In 2Au 

=0 (otherwise).

The situation is shown in figure 4.

1.0

0.5

FIGURE 4. Decay of slope bank if autocorrelation is present. 
223-837 O 66  2

MARKOV PROCESSES

By A. E. SCHEIDEQGER

The random-walk model without autocorrelation, 
discussed earlier, represents a special case of a rather 
general type of stochastic processes, namely, of Markov 
processes. Such processes are characterized by the prop­ 
erty that the probability distribution of whatever 
stochastic variable is under consideration is completely 
determined for all C>£o by the value of the variable at t0 .

Let us consider the "average" profile of a slope bank. 
Its state, at a particular tune t, is given by the prob­ 
ability distribution (not normalized) h(x, t) of a 
continuous stochastic variable. We identify this dis­ 
tribution with the "average" profile of our slope bank 
(h denoting the height above a certain base level). 
We then assume that the evolution of the slope bank 
during the time interval t, t-\-dt is determined solely 
by the state at time t. As noted, processes where 
this property obtains are called Markov processes.

One should again remark, of course, that there is 
nothing probabilistic about the actual development of 
the slope bank. The laws of mechanics determine 
what happens to each soil particle. However, we do 
not know the exact configuration of a particular slope 
profile; we know only its probable configuration within 
a probable ensemble of slope profiles. This probable 
configuration, in spite of the determinism of the laws 
of mechanics, changes with time, and hence transition 
probabilities from one state to the next can be set up.

We have introduced h(x] as a probability distribution 
which changes with tune. This distribution, resulting 
from a Markov process which is continuous in space 
and time, can be described by the corresponding 
Fokker-Planck (sometimes also called Forward-Kol- 
mogorov) equation, which has the form of a general 
diffusivity equation (see Bharucha-Reid, 1960)

x) , x}\ D[b'(t,x)-h(t,x)]

Here., a! and b' are "coefficients" equal to the time 
derivative of the variance and mean of the stochastic 
variable.

The mere assumption of the evolution of the state 
of a landscape corresponding to a Markov process, 
therefore, entails a description of this evolution by 
means of a diffusivity-type (Fokker-Planck) differential 
equation. The specification of the coefficients a and b 
allows one enough latitude to describe a variety of 
cases. A particular choice for a and b leads to the 
random-walk theory explained in the preceding paper; 
however, there is the prospect that full generality of 
the cases that can be adduced is not yet clear.
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RIVER GEOMETRY: MINIMUM VARIANCE 
ADJUSTMENT

By W. B. LANGBEIN

Consider a simple network, as shown in figure 5, 
of the channels in a homogeneous noncoherent alluvium. 
The problem concerns how the channels represented 
accommodate the given discharges. The increased 
discharge below the junction might be taken up in 
increased width, depth, or velocity, or any combina­ 
tion with corresponding variations in slope, shear, and 
friction. The problem is examined on an assumption 
that the increased discharge is accommodated with 
least variance in these several properties.

Use is made of the Leopold-Maddock (1953) model 
of the hydraulic geometry of rivers in which the depend­ 
ent variables among the several river properties vary 
in terms of discharge, Q, as the independent variable

velocity ~Qm, 

depth ~Q', 

width ~Q6 ,

since log v= constant -f-ra log Q, etc.;

J   Vlog Dialog Q> 

0   0" log lo/O'log Q-

Thus, the hydraulic exponents of the dependent 
variables equal the ratios of the standard deviation of 
the logarithms of a dependent variable to the standard 
deviation of the logarithms of the independent variables. 
The squares of these ratios are called variance.

The model in this treatment is linear with regard to 
the hydraulic exponents or the logarithmic standard 
deviations. Thus, those standard deviations are related 
to each other by simple linear equations. For example,

which, according to the Leopold-Maddock model 
becomes

or- <? '<?*<?
or

m-h/+6=l.

FIGURE 5. Stream junction.

This follows from the relationship involving the 
hydraulic indices which are exponents. However, 
the same results are obtained from the statistical 
statements.

Given

therefore

and

If, as in the model, the several coefficients of correla­ 
tion, r, are each equal to unity, then,

Q=vXDXw; 

log #=log w-flog D+log w

+ 0Io, «

Q  »~T 0'logZ)~r 0"lOg w)

°" log Q = °" log v ~r 0" log D ~T ff log w

1 og " I ff log D i °" log 'to 
"

°"log Q ff log Q

l=ra+jH-&, as before,

 >= <TlOg1>!<r\OgQ', /=0'lOg£/0'lOg QJ b =

and

or 

and

With actual data and a finite standard error, the 
coefficient of correlation can be as close to unity as 
desired by extending the range of the data.

A river is described by its several hydraulic prop­ 
erties, which are presumed to be distributed at random. 
Let each property be represented by a standardized 
variate (x'  x')/e, where x' is the logarithm of a given 
property (such as velocity, depth, and width); x r is the 
logarithmic mean of the property at N points of obser­ 
vation, each associated with a value of the independent 
variable; and e is the standard deviation of the loga­ 
rithms of the hydraulic properties. Similar standard­ 
ized variates exist for x", x'", etc. Moreover, the 
standardized variates of the several properties are 
initially assumed to have the same value of c and to
constitute a homogeneous population. If all properties 
are independent, then the most probable combination 
is that where

[(x"-x")/e]2+etc.=A minimum.

Letting
JV 

1

JV

E
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where N is equal to the number of points where obser­ 
vations are made of x', x", etc., and c is a factor common 
to all variables. The above statement is equivalent to 
the statement that

=a mnmum.

If the ff's are each divided by standard deviation of 
the sum (x'+x"-|-etc.) at the points of observation (all 
in logarithms), then the ratios correspond to the hy­ 
draulic exponents.

The independence among values of the hydraulic 
properties, referred to in the above equation, does not 
preclude constraints that specify relationships among 
the several factors. An illustration will show what is 
meant by constraints.

Assume that each river of a large ensemble of many 
identical rivers is characterized by several distinguish­ 
able factors, 'Fi, F2 , Fz, etc. These values have a 
mean and a standard deviation among the rivers which 
may be modeled by tossing a large number, N, of fair 
devices (such as coins, dice) each with F distinguishable 
faces. Each toss of the N devices represents a river. 
The relative frequency, k1} k2 , etc., among N devices 
represents the values of Fi, F2 for that toss or, as it 
were, for that "river." The question concerns their 
most probable values. It is asserted here without 
proof that the most probable frequencies occur when

4- (&2/A0 2, etc. = a minimum,

where k\, k2, etc., is the frequency of each distinguishable 
factor and where ki-{-k2 , etc. = TV. This statement, 
without constraint, is obviously satisfied when ki=k2 , 
etc.

To illustrate the effect of a constraint let us now 
consider only those tosses in which k2 =2ki. This 
means that even though all tosses and all devices 
remain independent of the others, only those tosses 
of the N devices in which k2 =2ki qualify. What are 
now the most probable values for k\, k2, kz, etc.? 
Introducing this constraint in the sum of squares

+ (k*INY+ ... a minimum.

The general case has not been worked out but con­ 
sider the case where there are three factors, FI, F2 , and 
F* Then

or
*+ (1 -3fc!/A0 2 =a minimum, 

Ar,A/V=0.215,

These values can be verified for large values of N by 
the ordinary statistics of combinations. The product 
p(k^'p(2k1)-p(N  3^) is a maximum when C^-C^ 
-CN- 3kl is a maximum. This product is a maximum 
whesn ki= 0.21 5N for 1 arge values oi N. '. ,

Although in the model the factors FI, F2 , etc., are 
drawn from a population having identical standard 
deviations, by stating a constraint kz =2ki, the stand­ 
ard deviations of the factors FI, F2 , etc., as well as their 
most probable values, become distinctive. Note, too, 
the sum of squares gives the most probable values 
without need to develop the separate frequency 
distributions.

One may also observe that the introduction of 
constraints increases the sum of squares. The fewer 
the constraints, that is, the more relaxed, the lower 
the sum of squares. For example, the sum of squares 
without constraint is 0.33; the introduction of the 
constraint &2 =2&i increases the sum of squares to 0.36. 
Effects of constraints and relaxations on hydraulic ex­ 
amples will also be shown.

The statement that the sum of squares of the vari­ 
ables is a minimum is very close to the principle of 
total least work in the relaxation adjustment of linear 
networks, such as structural frames. Southwell (1940, 
sec. 98) stated, "In a framework we have to determine 
that distribution of joint displacements which, subject 
to the overriding condition of continuity, entails a 
minimum value of the total energy this being (by 
Hooke's law) a quadratic function of the displace­ 
ments." In a network of pipes, least work occurs 
when the product discharge (Q) by head loss (H) is a 
minimum, that is, when

=& minimum.

In a linear network H=aQ, where a is a constant of 
proportionality of head loss to discharge; therefore,

and
s a mnmum

zH2/a is a minimum.

If the diversity among the several branches is not 
extreme, then with little loss of accuracy one may use 
average values; thus,

s a mnmum.

In a set of trial solutions for a given network, it will 
be found that one quantity increases as the other de­ 
creases. Thus, decreasing variability in one quantity 
is purchased at the expense of increasing variability of 
the other. The relaxed solution occurs when the sum 
of squares is least.
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Le Chatelier's principle as defined in the American 
Geological Institute Glossary (1957, p. 166) can lead 
directly and simply to a statement of minimum vari­ 
ance adjustment. For example, consider an increase 
in discharge in a flume in which flow had produced a 
stable regimen. Or, consider the addition of flow at a 
junction with a stream that has a stable regimen above 
the junction. The increase produces changes in veloc­ 
ity, depth, width, shear, and possibly other things. 
Since the regimen is stable, according to the Le Chatelier 
principle, each of these changes produces effects in the 
others that react against the change. The effect is the 
same as stating that each factor resists change, or in 
other words, the variance of each tends toward zero. 
Since all of them cannot be zero, it appears that the 
adjustment is such that the total variance is minimal.

The concept of the probability of a state of nature 
raises philosophical difficulties that are at present 
controversial. One difficulty is that the concept is 
not operational. It does not give rules for deciding 
which data are relevant and therefore to be included 
in the "state of nature."

Such knowledge must come from the mechanics of 
the processes. Hydraulic geometry is described by 
such properties as width, depth, hydraulic radius, ve­ 
locity, shearing force, friction factor, sediment trans­ 
port, intensity of power expenditure, and possibly 
others. There is therefore a complex mix of properties 
that might be involved in a minimum variance adjust­ 
ment. However, not all have equal weight. Their 
relative weights could be resolved by data. However, 
initial inquiry indicates that a large set of problems 
can be explained by giving the dominant factors; 
width, hydraulic radius, velocity, shear, and friction 
factors a weight of unity, and the others a weight of 
zero. The matter is simplified if the channels are 
sufficiently wide that mean depth equals the hydraulic 
radius.

Five cases are considered, as successive factors are 
relaxed or constrained, and these cases are compared 
with laboratory and field data.

Case 1. If width and slope are constrained, then 
all the increase in discharge below the junction must 
be accommodated in depth and velocity and accom­ 
panying changes in shear and friction

Since discharge is the independent variable, it may 
be assigned a variance of unity. Width and slope 
have zero variance. If the variance of depth is rep­ 
resented by f 2 , then those of all dependent variances are

velocity_______________ (1  f) 2

Dependent variable 
Velocity.. ________ _
Depth _ _________ _
Shear. _ _________ _
Friction. _________ _

Sum. ___________

exponent 
_-_--__.- 0.42
-_--_____ .58
-_--.____   .58
___.____. -.25

Square 
0. 17

O A

.34
(\C

. 94

(3f  2) 2 .

. The variance of velocity follows because velocity equals 
discharge divided by depth and width, and width is 
constant. Shear equals the product of unit weight of 
water, depth, and slope. Since unit weight and slope 
are constant, shear varies only with the mean depth. 
Friction (the Darcy-Weisbach friction factor) with 
slope constant is proportional to the mean depth 
divided by the square of the velocity. It is assumed 
that the mean depth equals the hydraulic radius.

If the change in discharge is accommodated equally 
as between changes in depth and velocity, then f=0.50. 
If, in addition, the variances in shear and friction are 
also minimized, then f=0.58. Actual data give re­ 
sults within this range. These results indicate that 
when width and slope are constant, then 50-58 percent 
of a change in discharge is accommodated by change 
in depth, and the remainder by change in velocity.

The sum of squares of the dependent variables is 0.94, 
computed as follows:

Hydraulic

A multiple regression of the 42 runs for which bed- 
forming processes were active in a set of constant-width 
flume experiments reported by Simons, Richardson, 
and Albertson (1961) indicated that depth varied as 
tbe 0.52 power of the discharge for constant slope. On 
the Rio Grande at Bernalillo, N. Mex., where the river­ 
bed is sand and width and slope are constant over a 
wide range of discharges, depth varies as the 0.55 power 
of the discharge. (See fig. 6.)

10
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DISCHARGE, IN CUBIC FEET PER SECOND

FIGURE 6. Variation of velocity and depth of Rio Qrande near Bernalillo, N. Mex., 
1948; width between 270 and 280 feet.
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Case 2. Width is relaxed and becomes a dependent 
variable; slope is still coastant. Again taking discharge 
as the independent variable, it may be assigned a 
variance of unity. If the variances of the dependent 
variables, velocity and depth, are represented by

velocity._______________________ m2
depth._________________________ /2,

then those of the remaining dependent variables are

width.._______________ (1-m-/) 2
bed shear______________ /2
friction______________ (/ 2m) 2.

Summing these five terms, one finds that a minimum 
is reached when ?M=5/23 and /= 7/23. These results 
signify that 22 percent of a change in discharge would 
be accommodated by a change in velocity, 30 percent 
by a change in depth, and consequently, the remaining 
48 percent by a change in width. The sum of squares 
is now reduced to 0.478.

Figure 7 shows the way in which the Rio Galisteo at 
Domingo, N. Mex., accommodates changes in discharge. 
The river at this gaging station is at virtually constant 
slope, and the bed and banks are of medium sand. 
The slopes of the graphs shown correspond to values 
of m=0.24 and/=0.27. Results obtained for stream 
channels in noncoherent materials that are reformed 
with each change in discharge as, for example, the 
continuously reforming channels below Emmons Gla­ 
cier, vividly described by Fahnestock (1963) gave values 
of m=0.27 and/=0.33. However, these results apply 
to different channels having different slopes. Graphical 
analysis of a set of flume experiments with channels 
developed in noncohesive 0.67 millimeter sand by Wol-

200

I III III
1 2 5 10 20 50 100 200 500 1000 2000 5000 

DISCHARGE, IN CUBIC FEET PER SECOND

FIGURE 7. Relations of width, velocity, and depth to discharge,. Rio Qalisteo at 
Domingo, N. Mex., 1957-58.

man and Brush (1961) gave values of m=0.22 and 
/=0.29, at constant slope.

Four "at-a-station" cases (slope constant) are con­ 
sidered. The sum of squares is shown by the family 
of curves on figure 8. In case 1 width, as noted, is 
fixed. This solution lies along the line 6=0. In case 2 
width, as noted, is free to adjust to each flow, and there 
is no constraint. The solution occupies the "eye" of 
the family of curves. In case 3, which has not yet 
been discussed, there is the constraint that depth varies 
as the square of the velocity. The solution lies at a 
point of tangency to the line/= 2m.

Case 2A. This case is shown in figure 8 and describes 
the usual "at-a-station" case on a river in a humid 
region. The channel is developed at a bankfull or 
channel-forming discharge, and the banks are suffi­ 
ciently cohesive that the channel is not reformed at 
lower flows. This relation of channel to discharge is 
described by the constraint 6=0.55/, where the value 
of 0.55 is the slope of the graph between mean depth 
and width on logarithmic chart as given by the sine 
cross section cited by Nizery and Braudeau (1955).

Case 2B. It is of interest to relax m2+/2 +62 
+ (/+ 2) 2 +(/+2 2m) 2 , these terms again representing 
velocity, depth, width, shear, and the friction factor, 
without constraint, giving m=l/7; /=3/7; and 2  
 2/7, where z is the hydraulic exponent for slope. 
The sum of squares is 0.428, lowest for cases 1-3. 
This case and the figures obtained correspond with the 
flume experiments reported by Ackers (1964), who 
obtained the hydraulic gradients: m=0.15; /=0.42;

0.7 r

^ ^ Constant 
concentration 

(Case 3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIGURE 8. Sum of squares of hydraulic exponents for velocity, depth, width, shear, 
and friction factor for constant slope.
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6= 0.43 ; and z uncertain. Because in these experiments 
there is no continuity of sediment, this case is not to 
be confused with a canal network, case 4, that will be 
discussed.

Case 3. It is specified that sediment transport varies 
in proportion to the rate of discharge and that slope is 
constant. Load per unit width is proportional to mean 
velocity cubed for mixtures of sediment of different 
sizes (Thomas Maddock, Jr., written commun., 1965). 
Then, because load per unit volume is constant, depth 
must vary as the square of the velocity. In this case, 
the respective variances are

width_____________.___ (1-1.5/) 2
shear_____ ______ _______ (/) 2
friction. _______________ 0.

Summing these terms, one finds that a minimum is 
reached when /= 1/3 and therefore m=l/6 and 6=1/2. 
Because of the addition of a constraint, the sum of 
squares is increased to 0.50. There are no flume ex­ 
periments that apply to this case.

Case 4 (straight canals). If slope is relaxed, or in 
other terms, slope also is a dependent variable, and 
there is continuity of sediment as well as of water, then 
a longitudinal profile is developed and a system of 
canals is approximated. In this case, the profile can 
develop so that the variation in shear and friction is 
equally divided, for the above sum of squares is a 
minimum only when this is true. The variance of 
shear is (J-\-z) 2 and that of friction (j-\-z  2m) 2 =z2. 
Since uniform charge requires that m=0.5/, these two 
variances are equal when z= m. However, the profile 
developed also is free to adjust so that the several 
aspects of stream power are as equably accommodated 
as is possible. Various aspects of stream power and 
their variances are

Power per unit 

Length per unit discharge.

Volume. _________________

Variance
QAH 
QAL

QAH

Bed area 

Length. -

QAH
wAL

~vDs

Time of stream travel(Rubey, 1938).

AL
~Qs 2) 2

(1 + m+z)2 .

The total variability is therefore the sum of the 
squares

Since m=0.5/ and z=m, this sum of squares is a

minimum when z=   K, and ra=%, /=0.33, and 
6=0.50. These values correspond with those that have 
long ago been derived empirically (Lacey, 1930) for 
"regime" canals in homogeneous noncoherent materials. 
This analysis contains as implicit or explicit conditions, 
steady discharges in each reach, uniform sediment 
concentration along the channel, and active sediment 
movement in the range satisfied by Maddock's state­ 
ment of transport.

The theoretical basis of regime equations for stable 
channels rests, it is suggested, not so much on consider­ 
ations of dynamics as on statistical mechanics.

Case 5 (rivers, downstream). Rivers have addi­ 
tional liberties and are even further relaxed than canals. 
Rivers, for example, have no lateral constraint and are 
free to meander. For the river case there are no 
constraints save the condition regarding sediment con­ 
centration or charge. In rivers, as is well known, 
sediment concentration decreases downstreamward 
because of flatter land gradients. Although this reduc­ 
tion in sediment concentration has been in the past 
associated with discharge (Brune, 1948), slope seems a 
better parameter because it is more directly related to 
the factor directly responsible. An analysis of existing 
data shows that concentration varies about as the 0.25 
power of the slope. Since, as before, load per unit 
width varies as the velocity cubed, the condition that 
would apply to rivers is m=K/-j-0.122.

The total sum of squares is then a minimum when 
w=0.12-|- and z=  0.55. Using these figures, it 
follows from ra=0.5/4-0.122 and m+/+6 = 1.0 that 
y=0.38  and 6=0.50, results that have close resem­ 
blance to nature (Leopold and Maddock, 1953).

If concentration remains constant (that is, ra=K/), 
then the sum of squares, without other constraint, is a 
minimum when 2= 0.56, m=%, /=K, and 6=0.50. 
The ra, /, and 6 values are the same as the canal case, 
whereas the hydraulic exponent for slope is the same as 
the river case. Evidently the slight downstream de­ 
crease in concentration does not affect either the profile 
or width. The decrease in concentration is accommo­ 
dated entirely by changes in velocity and depth.

These relationships are clearer on figure 9, which 
shows a family of curves defining the sum of squares 
22 +(m+z) 2 +(m+/+2) 2 -f-(l + 2) 2 +(l+m+2) 2 in terms 
of m and z. The diagram shows the curves for the 
condition that ra=}_/ (constant concentration) and 
that m=K/+0.122 (downstream decrease in concentra­ 
tion). The two sets of curves differ only for large 
values of 2. This diagram may help to show how the 
"profile" cases are related to each other:

1. The canal case is subject to the constraint as 
derived above for case 4 that variance in 
shear and friction are equally divided, and so
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FIGURE 9. Total of zi+(m+z)i+(m+f+z)*+(l+z)*+(l+m+z)i.

z= m. A line corresponding to this condition 
is shown on figure 9. This line is tangent to 
one of the family of curves at a point defined 
by m    z=% and therefore /=0.33, and 
6=0.50, as before.

2. There are two minimum sum of squares, without
constraint. That minimum defined by the
curves for which m ^j and which occurs at
2= 0.56 and m=0.167 corresponds to the
relaxed canal case just dscribed above. The
minimum sum of squares defined by the curves
for which ra=K/-|-0.12s and which occurs at
z=  0.55 and ra=0.12 described the river case.

The agreement between computed and observed
hydraulic exponents appears to suggest that the
mutual adjustment among them is indeed toward
minimum sum of their squares.

One notes that the mutual adjustment among the 
dependent or adjustable parameters need not be 
unique but may consist of a set of values distributed 
about some modal value which can be ascertained 
from a number of examples as a statistical mode or 
mean. Average values exist; averages for flume 
experiments are replicable. Any one example displays 
equilibrium even when it varies to some degree from 
this mode or most probable case. The total variance 
as indicated by the sum of squares of the several 
examples will be relatively conservative. Wide de­ 
partures that would contribute greatly to the sum 
of squares rarely occur, and if they do, they represent 
temporary conditions in progress toward a more stable 
form, as indicated by a lower sum of squares of the 
pertinent hydraulic exponents.

GENERAL STATISTICAL METHODS
By A. E. SCHEIDEGGER

Recently, Leopold and Langbein (1962) postulated 
empirically an analogy between the statistical evolution 
of g;eomorphic features and thermodynamics. 
Scheidegger (1964b) then investigated the underlying 
physical conditions for the validity of this analogy and 
showed that, indeed, a reasonable microdynamic model 
could be set up which justified the Leopold-Langbein 
hypothesis.

A general statistical model of landscape evolution 
can lead in a broad context to theories of the non- 
equilibrium and nonstationary state. The basis of 
this development lies in the idea of considering a 
particular landscape as a sample of a Gibbsian en­ 
semble. Only statistically valid statements can be 
deduced for any particular landscape rather than 
unique solutions. The fact that there is a conservation 
law of the mass contained in a landscape permits one 
to introduce a Hamiltonian function and canonical 
equations, terms that are defined in any textbook on 
analytical mechanics. The further development of the 
theory is then automatically the same as in statistical 
thermodynamics (for this theory see Sommerfeld, 1964).

The general statistical theory in geomorphology of 
concern here is based upon the concept of conservation 
of mass. In a one-dimensional section of a landscape 
(this may be an averaged, representative section) the 
distribution of heights h can be treated as a statistical 
function. If we assume that mass transport can occur 
only within this longitudinal section, then the sum 
total (that is, the integral) of all the heights taken over 
the section must be a constant of the motion. In 
order to have a system with a finite number of degrees 
of freedom, one may split the length L of the section 
under consideration into N equal segments. For the 
iih segment, the (mean) height is ht . Thus,

i=N

must be a constant of the motion and can be treated 
as Hamiltonian. It has been shown (Scheidegger, 
1964b) that canonical variables can be introduced by 
setting

so that

The function U is the interaction function between the 
various positions indicated by the index i along the 
section.
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One can immediately define a partition function at 
point" i by

= f+m f+

J   CO J   00

If the interaction function U is small, this yields

Vis
with

(7s

Thus, the average height comes out as

Using the usual thermodynamic functions, we see that 
the canonical temperature is

I 2h -

if we set k=2. There is, therefore, a complete analogy 
between temperature and average height.

An equilibrium theory sketched above, which is 
discussed in detail by Scheidegger (1964a), justifies 
certain analogies that already have been made in 
geomorphology. However, of greatest interest are its 
extension to nonequilibrium processes.

A general way by which the theory can be extended 
to nonequilibrium processes has been indicated by the 
present author (Scheidegger, 1961b) in a different 
context. For all practical purposes, this can be 
accomplished by using Onsager's relations (DeGroot, 
1951) and making the assumption that the fluctuations 
from equilibrium regress linearly. The generalization 
has been carried out, for example, by DeGroot (1951, 
p. 41 ff.) for the conduction of heat in solids; the theory 
for the time dependence of the temperature distribu­ 
tion in solids using the canonicity of the variables 
introduced earlier can be taken over as valid in general 
for any constant of the motion of a large system that is 
made up of positive definite contributions from com­ 
ponent systems. One thus has, quite generally, as 
shown earlier (Scheidegger, 196 Ib), the following 
theorem: Whenever a system is a linear combination 
of a large number of fluctuating component systems, 
and in the "large" systems a certain quantity is a 
constant of the motion to which the component systems 
contribute positive definite amounts, then, under 
equilibrium conditions, that quantity is canonically 
distributed in the component systems, and under

nonequilibrium conditions, assuming linear regression 
of the fluctuations and microscopic reversibility, the 
quantity in question is subject to a diffusivity equation 
with a symmetric diffusivity tensor.

The application of this theorem to the heights in a 
landscape immediately yields

dx

with i=l, 2 (referring for example to xt = "north" 
coordinate and £2 = "east" coordinate, respectively), 
A=the (statistical) height, £=time, and Di} = diffu­ 
sivity tensor; furthermore, the summation conven­ 
tion has been used.

Two exemplary applications of the above diffusivity 
equation will be investigated. A very well known 
solution of the diffusivity equation in two dimensions 
(h, x) is given by a Gaussian curve

h=

This can, for example, be regarded as the time depend­ 
ence of the decay of an (average) profile of a mountain 
range. As time proceeds, the mountain range gradually 
flattens out. The phenomenon is shown in figure 10.

Another well-known solution of the diffusivity equa­ 
tion in two dimensions (h, x) is

where erf is again the error function.
This solution can be regarded as representing the 

decay of the (average) profile of a slope bank. It is the

FIGURE 10. Linear decay of a mountain range.
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same as that obtained in the random-walk theory 
without autocorrelation (fig. 3).

The theory given above is completely analogous to 
the theory of transport processes with mass conserva­ 
tion. The latter encompass such processes as sediment 
transport hi rivers, the spread of a contaminant in a 
porous medium, and the turbulent mixing of poisonous 
gases (see Scheidegger and Chaudhari, 1964). In trans­ 
port processes with mass conservation, the Hamiltonian 
refers to a quantity that is conserved in the "large" 
system.

All the above cases, in turn, are analogous to con­ 
ditions where the Hamiltonian refers to the energy, 
that is, to what is commonly called thermodynamics. 
The discussion of the last paper referred to (Scheidegger 
and Chaudhari, 1964) is directly applicable to the 
geomorphic problem. Thus, the interaction between 
the points of a landscape can be taken into account by 
defining a suitable interaction function in the Hamil­ 
tonian. In the Liouville representation of statistical 
mechanics (see Prigogine, 1962), the equation describing 
the evolution of the probability distribution function 
for the geomorphic heights becomes then very similar 
to a quantum-dynamic Schrodinger equation. (See, 
for example, Sommerfeld, 1964.) Similar approxima­ 
tion procedures, as are well known in quantum theory, 
can therefore be applied.

The proper choice of the interaction function between 
the various points on a map is not yet clear. If the 
analogy between landscape evolution and temperature 
conduction is exploited, various types of diffusivity 
equations are arrived at for the geomorphic problem. 
These equations can describe the statistical evolution of 
a landscape.

SUMMARY

By W. B. LANGBEIN

There is today a considerable growth in geomorphol- 
ogy toward a common set of ideas implicit in Chorley's 
"General Systems" theory, Hack's "Dynamic Equilib­ 
rium," or in the statistical concepts described in this 
paper. In each theory the landscape is viewed in terms 
less rigid than in the Davisian geographic cycle, with 
its considerable emphasis upon stage or history.

Dominant, perhaps, is the idea of the landscape as an 
open system maintained by a continuous (though not 
constant) supply and removal of material. The steady 
state exists when there is an average equality between 
supply and removal. This equation of material is ac­ 
complished by means through adjustment of the geom­ 
etry of the system itself (Chorley, 1962, p. 3). The 
steady state is believed to correspond with Hack's dy­ 
namic equilibrium. It is, however, tune independent;

that is, different initial conditions may yield similar 
results (Chorley, p. 8).

Because the steady state is rarely characterized by 
exact equilibrium, the landscape itself manifests a tend­ 
ency toward a mean condition of forms, recognizable 
statistically, about which variations may occur 
(Chorley, 1962, p. 7).

These views that the open-system steady state of the 
landscape can be described statistically have led us to 
an attempt to introduce consistent methods of giving 
these concepts quantitative expression. The theories 
of diffusion processes, random walks, and Markov proc­ 
esses provide some of the techniques. Minimum var­ 
iance theory offers a method for estimating the varia­ 
tion in the geometry of rivers and possibly of other 
features of the terrain.

The present analysis, instead of one specific land­ 
scape or river, treats of a whole ensemble of land­ 
scapes or rivers which are "macroscopically identical" 
in the face of one's ignorance about their details. Be­ 
cause of one's ignorance, only averages can be derived.

It is further assumed that each particle (= a small 
volume of solid or a volume of fluid small enough not to 
be separated in its journeys) will, under steady-state 
conditions, in time meet all the conditions that are pres­ 
ent in the many landscapes or rivers composing the 
ensemble. In other words, tune averages and ensemble 
averages can be exchanged. This is called the ergo die 
hypothesis.

If, for example, the ensemble consists of rivers having 
a prescribed rate of change of discharges, then only 
average rates of changes of the associated river prop­ 
erties can be dervied, although inferences may also be 
derived about the variance among the individuals com­ 
posing the ensemble. It is assumed that the ensemble 
of all rivers having the given rate of change of discharge 
at any time contains samples of the changes that will 
occur in any given river over time.
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