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SYMBOLS

Q total rate of flow 
u, v, w velocities in the x, y, and z

directions, respectively (the 
Darcy velocity divided by 
porosity) 

C Concentration in mass of solute
per unit volume of fluid 

C0 reference concentration 
C' ratio C/C0 
Di dispersion coefficient in the i=x,

y, z directions
F{ mass flux of dissolved compo­ 

nent per unit area in the ith 
direction 

x, y, z space dimensions of Cartesian
system 

t time
A cross-sectional area 
r radial space coordinate 

K hydraulic conductivity 
k intrinsic permeability 
p pressure 
g gravitational constant 
5 flux per unit area 
/ porosity 
d diameter of the particle making

up the solid matrix 
y0 thickness of the aquifer 
8 concentration per unit volume

of solid material
b, m constants related to linear 

_ adsorption rates 
n number of steps in a random

walk analysis 
exp exponential

Laplace transform L{f(t) } 

Inverse Laplace transform

T 
X

Per 
Pe,

1 fC
=db 

4mjc-
C+tco

erf (a;) error function defined by erf (z)

erfc(x) 

J,(x) 

Y,(x)

/»(*) 

K,(x)

J(x, y)

complimentary error function
defined by 1  erf(z) 

Bessel function of the first kind
of order , 

Bessel function of the second
kind of order   

modified Bessel function of the
first kind of order , 

modified Bessel function of the
second kind of order ,

1-e-v f%-«/o[2foO M ]ett, or 
Jo

1 -XH f " e-*-Vo[2 (tf) M]/i
[2(zt)"]dt

length of elementary canal 
density (also r/d) 
specific weight 
viscosity
kinematic viscosity 
stream function 
transformed coordinates as

specified 
ui\x 
D/ux
udlDr, radial Peclet number 
ua/Dr, axial Peclet number



FLUID MOVEMENT IN EARTH MATERIALS

THEORY OF DISPERSION IN GRANULAR MEDIUM

By AKIO OQATA

ABSTRACT

This report is a presentation of the theoretical aspects of the 
investigations and a few confirmatory laboratory studies of the 
dispersion process. The basic assumptions associated with the 
development of the dispersion equation, based on the applica­ 
bility of a heuristic expression similar to Pick's law, are described. 
In general, these assumptions limit its application to a homo­ 
geneous medium in which the dispersion process is anisotropic. 
The present level of knowledge is made apparent through the 
presentation of several solutions for the differential equation 
that approximates the dispersion process. Adsorption and its 
effect on the fate of a contaminant is given only limited discus­ 
sion because of the lack of formal studies, on a macroscopic 
scale, applicable to the hydrologic regimen. The equations 
approximating dispersion in a two-fluid system (salt-fresh 
water) are also presented.

INTRODUCTION

The rapidly growing need to dispose of radioactive 
waste products, and the increased rate of pollution of the 
ground-water resource by other chemical compounds, 
make it increasingly apparent that a much more de­ 
tailed description of flow in porous media must be 
sought. Because of the dangers inherent in the presence 
of contaminants in the water supply, their fate and 
mode of travel downstream from their sources must be 
predicted. The fate of a contaminant depends on both 
the macroscopic and microscopic behavior of the fluid 
under the existing flow conditions and the physico- 
chemical conditions within the environment of the 
granular material. The discussion to follow presents a 
simplified treatment of dispersion phenomenon, and a 
mathematical expression, in the form of a differential 
equation, is developed. As the medium becomes more 
complex, the flow description becomes indeterminate 
(Skibitzke and Robinson, 1963), since the description 
of the transport mechanism, owing to convection a.nd 
dispersion, requires first a correlation between proper­ 
ties of the porous medium and the flow conditions.

The present-day study of dispersion may be separated 
into three categories (C. V. Theis, written commun., 
Oct. 1967): 
1. The mathematical problem.

2. The laboratory problem for confirmation of (1) and 
its extension to include parameters that cannot 
be included in the mathematical model.

3. The field that is, the natural aquifer problem 
which introduces larger variations in parameters. 

Much progress has been made in segment (1) in recent 
years, and because of availability of electronic com­ 
puters, complex mathematical equations can now be 
readily analysed. The problem (segment 3) is not 
clearly understood because of large variations in the 
parameters controlling the mixing mechanisms. Seg­ 
ment (2), on the other hand, is effectively used as a 
method to confirm mathematical analysis, but as yet, 
is limited in its use as a physical model of the real 
system. Bachmat (1967) pointed out that both the 
geometric and time-scale ratio for the model and 
prototype must be 1:1.

This paper is limited to the theory of dispersion or 
category (1) as described above. Because existing 
literature on the subject is extensive, a thorough review 
is beyond the scope of this paper.

The mechanisms associated with the transport of a 
dissolved substance in porous media are listed below. 
Some of these mechanisms are of little significance in 
natural ground-water bodies, but they are important 
in exchange systems that are used in the chemical 
industry. The mechanisms are as follows:
1. Molecular diffusion the transport of mass in its 

ionic or molecular state due to differences in 
concentration of a given species in space. The 
gross transport obeys Fick's first and second laws 
of diffusion (Bird and others, 1960, p. 502).

2. Mechanical dispersion the mixing mechanism that 
is present because of the variations in the micro­ 
scopic velocity within each flow channel and from 
one channel to another. Microscopically, there is 
no mixing; however, if the average concentration 
of a given volume of fluid is considered, an ap­ 
parent dilution or spreading is present. The gross 
transport, as in eddy diffusion, is given by an 
expression similar to Fick's law.

li
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3. Eddy diffusion the mixing process that is due to 
the random fluctuation of fluid mass or the occur­ 
rence of eddies in the condition described as 
turbulent flow. In porous media these eddies exist 
only to a slight extent, if at all, because of the 
small size of the pores; but in media consisting of 
large grains, such as gravel, eddies may occur to 
some degree. In the more common types of media, 
however, the existence of low gradients tends to 
limit or preclude turbulence.

4. Mixing due to structural controls the apparent 
mixing mechanism due to large-scale structural 
variations in the granular material. These varia­ 
tions control the direction of movement of a given 
fluid particle; hence, if an average concentration 
is taken along a given plane parallel or transverse 
to the direction of flow, a large-scale mixing is 
observed. Whether this type of mixing can be 
treated in a manner analogous to that of mechan­ 
ical dispersion is questionable, and, in any event, 
such a treatment would likely require a complete 
description of changes in the properties of the 
porous medium. The analysis would probably 
require the use of the Lagrangian concept in 
which each fluid particle must be traced along its 
path of flow.

5. Adsorption a process which differs from the others 
in that the amount of mass transported depends 
on the physicochemical interaction of the trans­ 
ported substance and the solid of the medium. 
The existence of an unbalanced force field causes 
migration of a liquid-borne contaminant from the 
liquid to the solid surface. In some instances the 
contaminant is permanently fixed on the surface, 
whereas in others it moves continuously from 
liquid to solid, or vice versa. Hence, the measure­ 
ment of the liquid phase concentration shows a 
dimunition of the concentration. Also, the con­ 
taminant does not travel at the same rate as the 
fluid.

At present, there are basically two related methods of 
analysis that are useful in depicting dispersion. The 
first is a microscopic study of a fluid particle which 
employs the concepts of statistical analysis. The 
second is a microscopic analysis of dispersion or trans­ 
port of mass which is expressed in terms of a heuristic 
law analogous to Fick's first law of diffusion. The 
microscopic analysis, which predicts the position of the 
fluid particle at any given time, is completely dependent 
on the mathematical model chosen to represent the 
medium. The most satisfactory model to date is the 
representation based on the assumption of pore chan­ 
nels located with complete randomness and multiply 
connected at some end points. On the other hand, the

heuristic approach requires that a partial differential 
equation similar to all transport systems be solved.
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Historical Development

Perhaps the first to recognize the occurrence of dis­ 
persion phenomena was Slichter (1905) in his investiga­ 
tion of the use of salt as a tracer in ground-water flow. 
He noted that at a point away from the source the salt 
concentration increased gradually rather than abruptly, 
as would be predicted by Darcy's expression. That is, a 
gradation of salt concentration in the fluid occurred as 
the front moved past a given point of measurement. 
Slichter explained this by noting that in flow through 
capillary tubes the velocity of the fluid varies across 
the cross section of each tube and that, because the soil 
complex is composed of a great number of these tubes, 
the sum of the deviation in each tube is likely to cause 
the mixing that he observed. Following the same line 
of reasoning, lateral dispersion dispersion perpen­ 
dicular to the direction of the average flow was 
attributed to the repeated branching of the individual 
flow tubes within the solid matrix. This explanation is 
most commonly used today to describe the mechanical 
component of the dispersion phenomenon.

Earlier papers dealing with two-fluid systems have 
been concerned with the economical^ important 
problem of salt-water invasion in coastal aquifers. 
The first analytical descriptions and investigations 
were based on the supposition that the fluids could be 
treated as though they were immiscible. However, 
in the middle and later 1930's, a zone of diffusion 
which could not be explained by immiscible-fluid 
theory, was noted. This diffusion zone prompted 
recognition of the dispersion process as a possible cause 
for its occurrence. This phenomenon was treated 
theoretically by Kitagawa in 1934 when he made 
theoretical and experimental studies of dispersion in a 
porous system. The physical model he chose was that 
of dispersion of a salt tracer emitted from a line source 
within a horizontal flow field. The experimental model, 
like most laboratory models, was composed of sand. 
The theoretical analysis was based on the assumption 
that, at some distance from the source, the concentra­ 
tion distribution would conform with the normal 
probability curve.
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Before Kitagawa's treatment became widely ac­ 
cepted, refinements of the displacement theory for a 
coastal aquifer came about largely through the efforts 
of Wentworth (1948). He postulated a "rinsing theory" 
based on the hypothesis that the pores of the medium 
act as mixing cells and that the ocean tides cause the 
alternate filling of the pore by salt and fresh water, 
thereby creating a partial mixing of the fresh and salt 
water. Wentworth derived an approximate expression 
for numerical computation.

Accelerated field investigations in the latter part of 
the 1950's and in the early 1960's indicated that in­ 
stability of the salt water-fresh water front posed a 
threat to the water-supply systems in many coastal 
regions. The results of these studies were recorded in 
various publications; for example, Cooper (1959) and 
Kohout (1960, 1961) described the conditions in 
Florida with supplementary information on the Hawai­ 
ian Islands to provide evidence of a dispersion-induced 
circulation of sea water into the zone of diffusion and 
back to the sea.

The results of these investigations gave impetus to 
the development of analytical methods designed to 
predict the dispersive effects of ocean tides. Results of 
other analytical studies have been published by Car­ 
rier (1958), Jong (1959), Henry (1960), and Bear and 
Todd (1960). The limitations of these investigations 
lie in the incomplete knowledge of the flow system in 
heterogeneous coastal aquifers and in the necessary 
oversimplification of such a system. Hence, the theo­ 
retical results were correlated only with those from a 
laboratory model designed to conform with the mathe­ 
matical model.

It was argued that, because of the discrepancy be­ 
tween the medium of the mathematical model and the 
real medium, the mathematical model cannot be ex­ 
pected to depict what actually took place. Because of 
this several investigators have preferred a statistical 
model to develop expressions for the dispersion co­ 
efficient. Two statistical models were used: the com­ 
pletely disordered flow of Scheidegger (1954) and the 
randomly oriented flow channels of Jong (1958) and 
Saffman (1959, 1960). Experiments on laboratory 
models, however, indicated a variance in the completely 
disordered model which could not be reconciled with 
the laboratory data. An important limitation of 
Scheidegger's model was that it did not include a 
directionally variable coefficient of dispersion. The 
assumption of random fluid paths did, however, provide 
for the directionally variable coefficient, because of the 
lateral components of the flow velocity. The difficulties 
that precluded a model description of the aquifer were 
apparent, and a variety of postulates were introduced

to simplify the flow regime so that an analysis was 
possible. The assumption that the medium can be 
described limited the analysis to an isotropic medium.

Most of the articles published assumed that the 
field equation, similar to Fick's second law of diffusion 
in a moving medium, was a good first-order approxima­ 
tion. Although the assumption that the transport 
equation consists of two modes the Darcy component 
and the dispersion component avoided the require­ 
ment that the individual flow paths bo known, it re­ 
quired that the average direction and magnitude of the 
flow be defined and that the dispersion coefficient be 
determined experimentally. Because the flow through a 
columnar model is readily defined, this type of analysis 
is especially useful in predicting the behavior of reactor 
columns or ion-exchange columns employed in the 
chemical industry. Dankwerts (1953) gave a compre­ 
hensive discussion of the analysis of a columnar model 
and described the types of flow found in experiments 
on packed columns. In most industrial applications, the 
flow rate in the exchange process is much higher than 
that of ground water in nature; therefore, the analysis 
may not be useful in the field of hydrology. The differ­ 
ential equation which describes the field is valid, but 
the nature and magnitude of the dispersion coefficient 
are altered.

An analysis which employs a "perfect mixture 
model" described, for example, by Aris and Amundson 
(1957), may also be used for the higher fluid velocities. 
This mathematical model assumed that each pore cell 
within the porous medium constituted a mixing 
chamber, within which the two fluids were perfectly 
mixed. The analysis differed from that of the low-flow 
model in that the laboratory experimental data in­ 
dicate a concentration breakthrough curve which was 
more nearly approximated by the Poisson distribution.

In the middle and later 1950's there were many 
studies of dispersion in sand-filled columns, which were 
related to hydrology. Day (1956) investigated a salt­ 
water replacement system and based his analysis on 
the diffusion equation and Scheidegger's disordered 
model to explain data obtained in the laboratory. 
Rifai and others (1956) published what was perhaps 
one of the most comprehensive laboratory and theo­ 
retical studies to that time. The theoretical part of 
their study employed both the capillary-tube and the 
disordered-medium models. As was expected, the two 
models gave identical results because of the applica­ 
bility of the central limit theorem (Beran, 1957) in the 
disordered-medium model. In essence, the application 
of the central limit theorem indicated that the diffusion 
equation was valid. Both laboratory and theoretical 
results indicated that the dispersion coefficient in the
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direction of flow was nearly proportional to the first 
power of the average velocity, which confirmed 
Scheidegger's prediction.

The results of studies by Rifai and others have been 
largely confirmed by many investigators; however, 
there are some indications that the dispersion co­ 
efficient is proportional to a power of the velocity which 
is slightly greater than one. It will be shown in a subse­ 
quent section that, if the flow similitude is specified by 
the Reynolds number and the mass transport by the 
Schmidt number, this power is very near one. Studies 
of friction losses in consolidated media (Muskat, 1946), 
indicated that the Reynolds number, unless modified 
to some extent, did not adequately specify the simili­ 
tude conditions. Efforts to extend the Reynolds number 
concept to flow in other than isotropic unconsolidated 
material have not been successful.

Experimental evidence indicated that the magnitude 
of the dispersion coefficient was not equal in all direc­ 
tions. In fact, the very nature of the flow system makes 
it highly unlikely that the magnitudes would be the 
same. Hence, Jong (1958) and Saffman (1959, 1960) 
developed a model of random flow paths to compute 
the magnitude of the dispersion in directions both 
parallel and transverse to the flow. The mere existence 
of individual grains in porous material gave rise to 
microscopic velocity components transverse to the 
direction of the average flow, thereby creating the 
lateral movement of the contaminant and the velocity 
dependency of the dispersion coefficient.

This concept was extended by Bear (1961) in a paper 
on the tensor form of the dispersion coefficient. He 
verified the tensor characteristic of the coefficient 
experimentally by observing the dispersion of a tracer 
from a point source. Although there was little doubt 
that the coefficient was a tensor, Bear's experiment did 
not correct for the spread due to the volume of the 
tracer injected. On the basis of experience in other 
fields, such as heat flow and molecular diffusion, it can 
be assumed that the generalized transport coefficient 
may be characterized as a tensor.

The magnitude of the dispersion coefficient was 
dependent not only on the fluid velocity but also on the 
characteristics of the porous medium. Many experi­ 
ments reported in the literature show this to be true. 
Among these were experiments by Orlob and Radha- 
krishna (1958), who explored the effect of entrapped 
air in a granular material, and by Biggar and Nielsen 
(1960), who examined sands and other types of na­ 
turally occurring soils to determine the effect of in- 
homogeneity and variations of particle sizes. Also, 
Skibitzke and Robinson (1963) obtained qualitative 
laboratory results that demonstrated the importance of 
heterogeneity of the medium.

To date, both theoretical and experimental investiga­ 
tions have been confined primarily to unidirectional flow. 
Although the experimental data indicated that disper­ 
sion was directionally dependent, they were not suffi­ 
cient to enable a statement as to how the ratio of the 
magnitudes of the two components of the coefficient can 
be predicted in advance of an experiment. To depict 
transverse dispersion, Ogata (1961) developed a simpli­ 
fied mathematical model for steady flow, principally 
to analyze experimental results given in a later report 
(Ogata, 1964a; also Skibitzke, 1964). Harleman and 
Rumer (1962) used a similar mathematical model to 
correlate results of their experiments. Many results 
published in chemical journals will not be mentioned 
because they involved flow rates higher than those of 
interest here. Articles have appeared also in petroleum 
journals, but most of these articles are reviews of 
previous works generally with additional experimental 
data to supplement results of others so that empirical 
expressions can be developed.

DERIVATION OF THE BASIC FIELD EQUATIONS

The equation derived in this section is a statement of 
the law of conservation of mass. For simplicity, the 
development will be in terms of Cartesian (x, y, z) 
coordinates. The field equations can then be obtained 
readily in terms of other coordinate systems through 
known transformation.

The description of the mechanism of mass transport 
through a complex porous medium necessitates the 
adoption of a fictitious model such that average condi­ 
tions can be more easily expressed. The first general 
assumption is that Darcy's law applies. This is corollary 
to the assumption that a piston-type flow occurs. In 
other words, the model is such that all particles of 
water move at the same rate of speed through the 
porous medium. Because of this assumption, which 
neglects microscopic variations in fluid velocity, a 
refinement must be employed to approximate the real 
system. For the dispersion mechanism, this refinement 
involves a transport component that is analogous to 
Fick's first law. The justification for the use of this 
type of expression is given by Taylor (1953) in his 
study of laminar flow through pipes.

The dispersion coefficient that appears hi the disper­ 
sion component is assumed to be approximated by a 
constant, whereas it generally is to some extent de­ 
pendent on the concentration and the type of dis­ 
solved or suspended substance. The development of 
the differential equation, however, is based on the 
assumption that the concentration is sufficiently small 
that the dispersion coefficient is independent of con­ 
centration. No chemical reaction is assumed to occur 
between the solid and the liquid phases. This supposes
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that within the fluid system no loss or addition of 
matter can take place.

ISOTROPIC DISPERSION

To establish the mathematical statement of the 
conservation of mass, consider a cubic element hi the 
three-dimensional Cartesian space, as represented in 
figure 1. The two modes of transport of a fluid within

bx

FIGURE 1. Mass balance in a cubic element in space.

a porous medium have been described as (a) convection 
and (b) dispersion. In mathematical terms these modes 
for direction x (say) :are expressed:

Transport by convection='wC'eLl

dC Transport by dispersion=D,,. ̂ - dA>

where dA is an elemental cross-section area of the 
cubic element. Assuming that these two components 
may be superposed, the total amount of material 
transported parallel to any given direction is obtained 
by summing the convective and dispersive transports. 
Thus, if Fx represents the total amount of mass per 
unit cross-sectional area transported in the x direction 
per unit tune, then

where / is the porosity of the medium. The negative 
sign before the dispersive term indicates that the 
contaminant moves toward the zone of lower fluid 
concentration.

370-837 O  70    2

Similarly, expressions in the other two directions are
written

Fv=vC-JD dC

From figure 1, the total amount of solute entering a 
cubic element hi space is

F* dzdy+Fv dzdx+F, dxdy. 

The total amount leaving the cubic element is

dy\ dzdx

where the partial terms indicate the spatial change of 
the fluid mass hi the specified direction. Accordingly, 
the difference in the amount entering and leaving the 
cubic element is

Because there is no loss in the mass of the liquid, the 
difference between the amount entering and leaving 
must be equal to the amount of mass accumulated 
within the element. The rate of mass change is repre­ 
sented mathematically by the expression

The equating of the difference of outflow and inflow to 
the amount of dissolved substance accumulated within 
the cubic element leads to the relationship

dF, dF , .^ ~ (1)

Equation 1 is a mathematical statement of the law 
of conservation of mass under the conditions stipulated. 
Vectorially, the equation is written

V-F=JdC/dt.

Substituting the expressions for Fx, Fv, and Ft and 
assuming that Dx=Dv=De=D= constant and since 
V-q=0, equation 1 becomes

dt
(2)

j a a a a

where-37is the operator-rr-fw-5 \-v-~ 1-10-5  Equation 2 
dt r dt ox oy oz
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applies to both diffusion and heat transfer within a 
moving medium. Note that the terms u, v, and w as 
used in equation 2 now represent average velocities or 
the Darcy velocity divided by the porosity.

Because the characteristics of the dispersion coeffi­ 
cient other than its directional nature are not well 
understood, equation 2 was developed on the assump­ 
tion that D was a constant. If D is a function of con­ 
centration, that is, if D=/(<7), equation 2 is written

Equation 3 is nonlinear for D=/(<7) and can be solved 
only for simple expressions of j(O), generally by 
numerical methods. These types of problems are en­ 
countered in the analysis of soil moisture and in some 
other types of diffusive processes. Excellent discussions 
of the numerical methods applicable in obtaining solu­ 
tions for the one-dimensional equations are presented 
by Crank (1956) and also in many articles relating to 
soil-moisture movement.

ANISOTROPIC DISPERSION

All experiments conducted in two dimensions indicate 
that the magnitudes of the dispersion coefficient de­ 
pend on the reference direction, with the larger value 
oriented in the direction parallel to the flow. To include 
this directional dependency in the equations requires 
that the coefficient D be represented by a more general 
mathematical construct known as a tensor. The com­ 
plex properties of tensors are better described in texts 
on advanced mathematics and need not be included 
here.

In generalizing the dispersion coefficient into a tensor, 
Bear (1961) assumed an analogy with a tensor repre­ 
senting elastic deformation or tensor of the fourth 
rank. In three dimensions this tensor has 81 compo­ 
nents, but because of symmetry the tensor has 21 
nonzero components (Jeffreys, 1961, p. 78). Scheidegger 
(1961), in a verification of Bear's tensor, assumed dis­ 
persion to be analogous to turbulence rather than to 
elasticity. Because turbulence is not symmetrical to 
the same extent as elasticity, its tensor consists of 
36 rather than 21 nonzero components. For unidirec­ 
tional flow in an isotropic medium, however, the 
results of both Bear's and Scheidegger's analyses show 
that the dispersion coefficient is described completely 
by longitudinal and transverse components   in other 
words, by a tensor composed of only two components.

The difficulties inherent in the application of the 
tensor to evaluate mass transport arise from difficulties 
in measuring the various components. Thus, as hi heat 
flow or diffusion, it is generally necessary to -assume

that the dispersion coefficient is characterized by three 
independent components parallel to the chosen refer­ 
ence axes. Under this assumption the dispersion tensor 
is a second-rank tensor consisting of nine components. 
Jost (1960, p. 4), in discussing diffusion systems, 
argued that the existence of components other than 
those making up the main diagonal of the matrix is 
doubtful. However, this argument cannot readily be 
extended into the study of dispersion in granular 
media. Thus, for simplicity it is assumed that the 
dispersion coefficient is approximated by a tensor 
composed of, at most, nine components.

Using the standard notation for second-order tensors, 
the dispersion component of the transport equation 
can be expressed

 .Gi =DiJ  i j=12t B. (4)

In other words, the three components of mass transport 
are written

dC

and the dispersion tensor D tf can be represented by the 
matrix

The advantage of the tensor notation is that it 
provides a shorthand method of describing, in general, 
the physical phenomena. Equation 4 describes the 
most useful case of dispersion in a porous medium and 
indicates that the three components of mass transport 
are determined not only by the direction of the maxi­ 
mum concentration gradient but also by the gradients 
at right angles to this direction. In an anisotropic 
medium, because the dispersion constant is dependent 
on the fluid and medium properties, the elements 
forming the matrix can be both time and space de­ 
pendent. The dispersion tensor can be described by a 
single number, as in isotropic dispersion, or by a 
matrix which reflects the complexity of the porous 
medium itself. Only for isotropic media has the coeffi­ 
cient of dispersion been described successfully by 
experimental methods.

If the medium is isotropic and the Darcy velocity is 
constant, the transport equation in the x direction is 
Fx=uC Qx ; where Qx is the dispersion component.
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The substitution of the transport equation into the 
continuity equation results in the field equation

t d*C 
dxdy (5)

Equation 5 describes the field distribution for a system 
of anisotropic mass transport. If Dn =DM =Da& = con­ 
stant and Z^=0 for i^j, equation 5 is identical with 
equation 2. This results from the fact that equation 2 
was developed under the assumption that D was a 
tensor of zero rank.

Equation 5 is known as a quadric, and by use of 
standard transformations it can be reduced to the form 
of equation 3. This transformation involves rotating 
the coordinate axes so that the reference axes parallel 
the principal axes of dispersion. Recent experimental 
and analytical studies point to the important fact that 
hi isotropic and homogeneous media the principal axes 
of dispersion are oriented parallel and transverse to 
the mean direction of regional flow. This indicates that 
for such media the mass transport system can be 
defined by two characteristic dispersion components 
that are specified when the mean direction of regional 
flow is known.

Assuming that the principal axes can be defined, the 
dispersion tensor can be transformed so that only the 
elements of the major diagonal remain, all others being 
zero. The matrix representation of the tensor then 
becomes

'DX Q 0
0 Dy 0

0 0 D.

In unidirectional flow, symmetry about the mean flow 
line exists so that DV=DZ .

The possible representation of the dispersion coeffi­ 
cient in the manner depicted by the matrix is significant 
because of the internal complexity of the porous en­ 
vironment. Actually, the dispersion of a fluid flowing 
through a homogeneous porous medium is the result of 
the averaging process necessary to describe the flow 
of ground water. In essence, this signifies that provided 
all the possible microscopic changes in the magnitude 
and the direction of the pore channels can be expressed 
quantitatively, the components of the dispersion tensor 
can be computed by statistical means.

SOME USEFUL TRANSFORMATIONS

The diffusion, or heat-flow, equation where grad

g<7=0 has been studied extensively and published in 
detail by Carslaw and Jaeger (1959), Crank (1956), 
and Jost (1960). For various types of bourdary- 
valued problems it is expedient to transform the field 
equation so that the convective terms do not appear 
explicitly.

Two methods can be used to remove the explicit 
convective terms for problems in which the boundary 
conditions involve media of infinite extent. These 
transformations require the introduction of a new 
coordinate system or a change in the independent 
variables. First consider the transformation of a 
standard-rectilinear coordinate system into a new 
system called moving coordinates. The dispersion equa­ 
tion including the directional properties of coefficient 
D\a

dC . dC . dC. dC-£7-\-U 3    \-V 3    \-W -~-=
dt dx dy dz

 ^-dz2 5-0
oy (6)

A transformation similar to one commonly used in the 
study of wave equations is given by the expressions

£=x ut, r}=y vt, £=z wt, and r=t.

Using the chain rule of partial differentiation, the 
above expressions are substituted in equation 6. For 
example, the transformation of dC/dx is given by

dx dx

Two similar expressions for rj and £ coordinates can be 
obtained in the same manner. The tune differentiation 
follows the same rule and is given by

dC_dCd![ ,dCdr_dC_ dC 
dt~d^drdrdt dr U dl-'

A similar method is utilized to determine the second 
differentiation with respect to the x, y, and z coordi­ 
nates. Substitution in equation 6 reduces it to the form

dC 
6T Q 2 (7)

which is analogous to the heat conduction or diffusion 
equation. The transformation of coordinates did not 
involve rotation of the coordinate axes; hence, the 
dispersion coefficient D< is still oriented in the original 
x, y, and z or the new £, 77, and f directions.

Introduction of the above transformation in effect 
creates a system based on coordinates that move in
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space at a rate dependent on the magnitudes of the 
average fluid-flow velocities. Physically, this may be 
pictured as an observer moving along with a velocity ~g 
while watching the process of dispersion. The choice of 
this new coordinate system is possible because the 
transport due to convection is a conservative process; 
hence, stopping the fluid movement to simplify the 
analysis of the dispersion process is permissible. 
However, the transformation does pose difficulties as, 
for example, hi problems where certain conditions are 
specified at an initial point. In such problems the 
transformation tends to increase the difficulty of 
inserting the specified conditions in the solution of the 
differential equation. To illustrate, consider the problem 
where the concentration C is specified at the point 
x=y=z=Q; say, C(Q,Q,Q,f) = C0, where <70 is a constant. 
It is noted that when x, y, z=Q; £, TJ, f=   qt, where 
q=u, v, w, respectively. The problem now becomes one 
of describing the concentration for a system in which 
the concentration is specified at points hi space depend­ 
ing on the time. This tends to increase the complexity 
of the mathematical analysis, unless there is sym­ 
metrical distribution of concentration about the source 
of fluid at 3=0.

The second transformation method involves the 
substitution of a new dependent variable. In this 
instance, it is assumed that the solution of the problem 
can be expressed functionally by

u

_w_ "2A

where T(x, y, z, t) is an unspecified function. Assuming 
that, generally, the solution of the diffusion equation is 
of this nature, the next step is to determine the func­ 
tion T(x, y, z, t). The solution must satisfy equation 6; 
hence, substitution gives the expression

~*\7=:L'f
32r

(8)

which is the diffusion equation. The boundary condi­ 
tions, as given in the preceding paragraph, must be 
written as a time-dependent variable at a specified 
point in space. Because F0 (say) is specified at a given 
point in space, an analysis using equation 8 introduces 
no further difficulties.

In general, the transformations leading to equations 7 
and 8 work well for dispersion in media of infinite ex­ 
tent. In the event of a finite boundary the concentra­ 
tion is specified along x, y} z=L some other transfor­

mation of equation 6 must be utilized to circumvent 
the specification of concentration at infinity.

Usually, mathematical solutions are readily found 
for the dispersion equation describing isotropic condi­ 
tions; that is, for Dx=Dy=Dg=D. Thus, introducing 
the independent variable

*'=*A/ . 2/'=2/VrT> 2'=ZV7T

and substituting these independent variables in equa­ 
tion 6 gives

where

i, j, fc=unit vectors hi the x, y, and z directions. To 
reduce this relation to the form of equations 7 and 8, 
the transformations previously discussed can be used.

DISPERSION EQUATION IN CYLINDRICAL AND 
SPHERICAL COORDINATES

The field equation as previously written is in rectan­ 
gular or Cartesian coordinates. For some problems the 
cylindrical or the spherical coordinates may be more 
suitable for analysis. The fundamental equations 
governing the dispersion process are readily derived in 
much the same manner as before by stating the mass 
balance within a reference space as defined by the given 
coordinate system. Similarly, coordinate transforma­ 
tions are readily accomplished because the inter­ 
relationships between any given coordinate systems 
are known.

In cylindrical coordinates the isotropic dispersion 
equation is

dc BO ac do

And in spherical coordinates the equation is 

dC . dC. /l\atf, / 1 \dC
de

(10)
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FIELD EQUATION FOR TWO-FLUID SYSTEMS

In the development of the dispersion equation the 
density and viscosity of the contaminant fluid was 
assumed to be the same as the surrounding original or 
uncontaminated fluid. In cases where high concentra­ 
tions of a contaminant occur, as in an aquifer subject 
to salt-water encroachment in coastal regions, this 
assumption is no longer valid. In such an environment 
both the viscosity and the specific weight of the con­ 
taminated fluid change. Addition of the gravity force 
is now necessary for analyzing the concentration dis­ 
tribution along the interface between the contaminated 
and uncontaminated fluids. The gravity force exerts so 
large an influence on the flow field that the position of a 
particle of contaminated fluid at any given time is 
largely predetermined by this force. That is, the 
description of the velocity field is dependent on the 
dynamic equilibrium position of the interface between 
the two fluids. Thus, definition of the dispersion process 
in a two-fluid system requires complete knowledge 
of both the fluid properties and the flow field.

When no chemical reaction between the fluids and 
the solids take place, the dispersion equation is the 
same as previously described with the provision that 
velocity is space dependent. Hence, the field equation 
is written

dC (11)

Equation 11 indicates that the field equation is com­ 

pletely specified provided the flux g is determined. 
Although conditions depart somewhat from those 
studied by Darcy, it is assumed that the flow equation 
may be generalized such that

K f*, 2=- (V#- (12)

The schematic diagram of a two-fluid model under 
dynamic equilibrium conditions is shown in figure 2. 
The description of the transport of salt requires the 
complete solution of equation 11 subjected to equation 
12. Inasmuch as equation 11 is nonlinear it is virtually 
unsolvable without the use of numerical methods or 
various simplifications. For example, Jong (1959) 
defined the flow system in terms of curvilinear coordi­ 
nates oriented with respect to the assumed position of 
the interface, thereby enabling the use of a two- 
dimensional system. Paralleling the classical hydro­ 
dynamics, a stream function is introduced into the 
analysis. The pertinent components of the stream 
function are defined as

Land surface

Sea level

Fresh water

Zone of diffusion 

Interface

FIGURE 2.   Schematic diagram of coastal aquifer system.

where s and n denote the directions parallel and normal 
to the interface, respectively, as shown in figure 2. The 
components of flow in the specified reference frame 
(eq 12) are

_- 
ds y ds

(13)

where k= -  Accordingly, substituting the stream
pg 

function in equation 13, the continuity equation may
be written

The terms in the brackets are included to show the 
effect of viscosity M which is dependent on the salt 
concentration in the fluid. The right side of the equation 
describes the effects of changes in density and viscosity. 

Equation 14 is analogous in form to a vorticity equa­ 
tion that frequently appears in the potential theory in 
hydrodynamics. This vorticity equation has been 
studied in classical hydrodynamics, and methods of 
solution for various boundary conditions are described 
in a number of texts; for example, Milne-Thomson 
(1961, p. 564). Equation 14 is also substantially the 
same equation derived by Henry (1960) in evaluating 
the two-fluid system. Henry used the same basic flow 
equation, expressed the specific weight 7 in terms of the 
salt concentration (7, and assumed that the viscosity
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change due to that concentration is small. Hence, the 
equation he derived is in the form

(15)Q dz'

where ki=k (   ), y0 is the aquifer thickness, Q is the 
\ Po /

aquifer discharge, C' is the ratio between the concen­ 
tration of salts in the aquifer water and the sea water 
C/CB, and xf is the dimensionless length x/y0 . Equations 
14 and 15 differ only in that the first specifies possible 
effects of the viscosity changes.

To simplify the analysis, Jong (1959) dealt with the 
vorticity equation (eq 14), excluding the terms in 
brackets since the change in viscosity is small. He 
showed that the analysis can be carried out by replacing 
real fluids with fictitious fluids and by introducing 
singularities parallel to the interface of the system. 
The characteristics of the singularities are determined 
by the actual observed velocity distribution; in other 
words, the singularities are chosen so that the original 
velocity distribution in the two fluids is reproduced. The 
method, thus, makes possible computation of the posi­ 
tion of the interface between two fluids of different 
densities. Because the equations are derived for steady- 
state conditions, the final position of the interface can 
be computed for any given flow conditions.

Equation 15 describes the flow conditions, in terms 
of a stream function, for the change in specific weight 
of the fluid with the change in salt content. However, 
the transport of the salt is also dependent on mechanical 
dispersion; thus, equation 15 specifies only a part of 
the problem. In other words, equation 1.5 describes the 
flow field within the transition zone containing fluids of 
different densities, and the transport of mass within 
this zone needs to be described by the dispersion 
equation. The solution of the vorticity equation given 
by Jong makes it possible to compute the location of 
the interface for any specified time, from which the 
stream function can be determined for the whole flow 
field. When unsteady conditions prevail, these solutions 
may still be used as long as the changes in the flow 
field are small. The transport system, however, must 
be described subsequent to description of flow in order 
to determine the dispersion effects on the frontal zone.

vSince by definition q*=6V/dy and qv=   6V/dx, sub­ 
stitution into the two-dimensional steady-state trans­ 
port or dispersion equation leads to

Q dy' 6V (16)

Equation 16 is thus an approximation of the steady- 
state mass transport process which can be completely

specified, provided * is specified by equation 15. Henry 
(1960) has developed solutions for two special instances 
of the transport equation and has evaluated them 
numerically.

ADSORPTION

In the discussion and development of dispersion 
equations to this point, no means of mass transport has 
been considered other than mechanical dispersion and 
convective transport. In the isotropic systems usually 
studied in the laboratory, the spread of tracers in the 
fluid is generally observed to be small, which indicates 
that the magnitude of the dispersive term is small. All 
soil complexes display an additional component of mass 
transfer generally termed "adsorption." Adsorption is 
a chemical reaction in which mass transfer occurs by 
actual removal of the dissolved substance from the 
liquid phase owing to mutual attraction between the 
substance and the solid phase of the porous medium. 
Generally speaking, in natural flow systems this process 
is of major magnitude with the fate of any contaminant 
introduced into the soil or the ground-water system 
dependent to a large extent on the capacity of the solid 
matrix material to adsorb the dissolved component. 
This is recognized by most workers in the field of radio- 
isotope disposal; however, the major research is con­ 
fined to surface chemistry which takes into account the 
microscopic aspects of the adsorption process.

Vermeulen and Hiester (1952), in a macroscopic in­ 
vestigation of ion-exchange columns, specified that the 
ratio of the tracer velocity to the main body of fluid 
velocity under equilibrium conditions may be expressed
by

UT 1   iLf Sp.
U

where
S= trace component adsorbed per gram of solid

matrix,
p=bulk density of solid matrix, and 

UT= velocity of tracer.
This expression was established empirically and has 
been used to some extent to determine rate of move­ 
ment of radioactive isotopes.

To develop the transport equation which includes 
adsorption, it is assumed that the rate of adsorption 
is the third component in the dispersion equation. This 
assumption simply implies that the chemical reaction 
or the rate of adsorption can be superimposed on the 
dispersion and convection system previously described 
by equation 3. The adsorption component in the physi­ 
cal model can be pictured as a mathematical sink or 
source with its strength dependent on the difference of 
concentration of the liquid phase and the solid phase. 
A simplified model is illustrated in figure 3. Here, it is
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Total inflow

Solid 
phase

Liquid 
phase

dx

Convection and 
dispersion components

(From Bird and others, 1960)

FIGURE 3. Schematic diagram of transport In porous medium.

assumed that the adsorption component is in one direc­ 
tion only.

Superposition of the three components adsorption, 
dispersion, and convection allows the writing of the 
continuity or mass-balance equation as follows:

(17)

where S is defined simply as the concentration of the 
solid phase. The function 8 has the same dimension 
as C.

The analysis of dispersion in adsorbing media that 
is, the use of equation 17 depends on the representa­ 
tion of S in terms of C, where it is assumed that the 
relationship £)$/()<=/(<?) holds. To describe this phe­ 
nomenon completely requires a macroscopic study of 
the energy state at any equilibrium condition as pre­ 
scribed by thermodynamic principles. Because of the 
complexity of the subject, especially when the kinetics 
of transfer rates is included, no detailed discussion is 
presented. Excellent discussions are included in Glass- 
tone (1961) and Adamson (1960). This discussion is 
limited to the use of simplified expressions that have 
been applied in studies of reaction columns.

One of the expressions most frequently used in the 
analysis of ion exchange is

(18)

where b and ra are constants. As indicated by Crank 
(1956), this equation describes a first-order reversible 
reaction and is applicable to some ion-exchange proc­

esses in fluids flowing in porous substances. Note that, 
when the term mS is much smaller than C, the expres­ 
sion reduces to a form similar to Langmuir's equilibrium 
isotherm for low concentrations or

(19)

Equation 19 is applicable to a first-order irreversible 
reaction wherein the soil particle may be thought to 
act as a mathematical sink.

Extending the expression given as equation 18 a 
little further, it may be written

where n< 1. Note that for the special case of n= 1, this 
is equation 18. The need to determine three unknown 
parameters makes the above equation difficult to 
evaluate even under the rather idealized conditions 
encountered in a laboratory. Again assuming that 
mS^C, the equation may be written in the simpler 
form

%j-=bCn > (20) 
d\

which is virtually the expression for Freundlich's 
equilibrium isotherm.

The three types of reaction rates represented by 
equations 19-21 are discussed by Crank (1956, p. 121) 
in reference to a diffusion system involving various 
boundary conditions. The solution of the simultaneous 
equations represented by equations 3 (for a constant 
D), 18, and 19 can be determined by operational 
methods. A numerical method, however, must be 
used to solve equation 20. When equation 19 is used 
to represent the reaction rate, direct use can be made of 
solutions for various boundary conditions in heat flow 
reported extensively by, for example, Carslaw and 
Jaeger (1959). The reversible reaction system, equation 
20 for diffusion in a plane sheet, has been analytically 
determined by Crank (1956, p. 132) for the boundary 
conditions

£=(7=0, -a<x<a,t=Q

x, x=±a,

The solution, however, is too complex to be reproduced. 
Ogata (1964b) obtained a solution for a semi-infinite 
medium, which will be presented as one of the mathe­ 
matical examples.

Despite the fact that the adsorption process is 
generally ill-defined, it is an important factor in the 
control of mass transport within a porous medium. In
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most cases the fate of the contaminant in a ground- 
water reservoir is largely dependent on the amount 
transferred between the liquid and solid phases. 
Perhaps the most realistic macroscopic appraisal 
available is in the results of reaction-tower experiments. 
The analytical difficulties that appear whenever the 
adsorption isotherm is nonlinear are formidable, 
however, not insurmountable.

MATHEMATICAL TREATMENT OF THE 
DISPERSION EQUATION

The analytical treatment of dispersion phenomena 
within a porous matrix, based on the preceding theoreti­ 
cal development, presupposes that the dispersion 
coefficient is a known parameter. Thus, the full defini­ 
tion of the physical system depends on accumulation 
of data concerning this specific parameter. It will 
become apparent in the following discussion that only 
the simpler dispersion systems are treated primarily 
because of the need for laboratory confirmation. The 
discussion is, therefore, not intended to be a complete 
presentation of all known solutions of the differential 
equation. Also, this section presents methodology 
considered useful in the analysis of the dispersion 
equation.

The analytical methods, namely, Laplace transforms, 
the product solution, and the point source solution are 
the principal tools used in the study of the differential 
equation. These techniques are discussed to some 
extent in the work of Carslaw and Jaeger (1959) and in 
many texts in advanced calculus.

All the examples to follow are limited to flow in a 
semi-infinite medium. The use of more complex bound­ 
aries adds little to the study of the fundamental 
characteristics of the mass transport system because 
of the complexity of the final expression. The principal 
objective is to investigate initially the nature of dis­ 
persion. Hence, the convective term div ~^C will 
be assumed to be given by u dC/dx-, in other words, 
the flow field is assumed constant and unidirectional. 
Space dependency of the dispersion coefficient is not 
considered; variation is limited to directional depend­ 
ency only. In systems involving an adsorptive solid 
medium, the problem becomes highly complex and 
thus no analysis has yet been attempted for anything 
more complex than one-dimensional mass transport.

The examples given are intended only as samples of 
solutions available and may not be physically realistic. 
This is especially true in examples 3 and 4 where a 
system involving a disk source was chosen to depict a 
two-dimensional case. Example 3 actually may not 
be physically realistic; however, it may possibly occur 
when the velocity u is small. That is, example 3 implies 
that a concentration gradient occurs at z=0.

Numerous solutions available in the published lit­ 
erature are presented in the following pages. Whenever 
possible, a reference is given so that the complete 
development can be consulted by those who are 
interested. In addition a limited number of functions, 
which the author arranged to have computed, are 
presented in graphical form as appropriate.

The first two examples considered are for dispersion 
within.a semi-infinite medium in a unidirectional flow 
field. It is postulated that the concentration is specified 
at z=0 and at the initial time f=0. The system is 
defined schematically in figure 4. For the specified field 
conditions, the field equation (eq 6), omitting the 
subscript x, becomes simply

n 620 dC.dCD  5-5-='^ 5  T-5T'
dx2 dx ot (21)

The subscript x has been dropped in equation 21, since 
dispersion occurs only in the x direction.

Example 1.   The plane a*=0 is maintained at a con­ 
centration C= CQ .

The boundary conditions are given by

0z0=0, x>Q

0(00,0=0,

The method best suited is the Laplace transfonna-

t

u   average areal flow

C specified at x = 0

FIGURE 4. Definition sketch of one-dimensional system.
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tion; substitution of the transform leads to the 
subsidiary system given by the equation

dC. -

The solution of this subsidiary equation subjected 
to the restraints due to the boundary condition is

ux

The inverse transform as given by Erdelyi and others 
(1954,p.246) is readily determined as

/ot N(21a)

Example 2.  The region z<0, initially at concentration

The boundary conditions of interest are specified
by

C(x, 0) = C0, z<0, 
C(x, 0)=0,x

Again, various analytical methods are available; 
the simplest and most straightforward method 
involves the use of a plane-source solution as the 
fundamental solution. The concentration at any 
point in space (see, for example, Eifai and others, 
1956, p. 54) is given by the expression

Summing over all possible values of £, gives

= erfc

where £=x  ut.

(21b)

The graphical representation of the solutions given 
for examples 1 and 2 appears in figures 5 and 6. Note 
that because a constant concentration is maintained at 
x==0, example 1 exhibits an asymmetrical concentra­ 
tion distribution about x ut. However, it has been 
shown that the conditions of flow through porous 
media are such that the second term in equation 21 a is 
negligible (Ogata and Banks, 1961). Hence, the two 
systems exhibit no difference at some distance from the 
source.

370-837 O .70  3

Consider now, the system that is described within a 
two-dimensional frame of reference because of sym­ 
metry about a given axis. The definition plane is given 
in figure 4. Because of the mathematical complexities, 
this system is illustrated using circular surface sources 
maintained at constant strength and constant concen­ 
tration. The results are sufficiently complex that in a 
discussion on evaluation of the dispersion coefficient 
(p. 130-132) an approximation is used to simplify the 
computations.

Assuming again a unidirectional ground-water flow 
field with parameters Dx and u oriented in the x direc­ 
tion and DT in the r direction normal to x, the field 
equation for the radially symmetrical system becomes

Equation 22 is equation 9 when symmetry exist about 
the axis x; hi other words, the variation in concentra­ 
tion with respect to the angle 6 is zero.

Example 3.   A disk source, 0<r<a located at x=Q 
emitting at constant rate F=FQ , 

The boundary conditions are

 Fo at x=Q, Q<r<a, t> 

=Q at z=0,

Initially, the fluid in the porous medium is at zero
concentration.

The solution of this system is readily determined 
by use of the point source. Using the method de­ 
scribed by Carslaw and Jaeger (1959, p. 266), the 
expression applicable for an instantaneous disk 
source is

-^) f" e- 
*Uxt/ Jo

where £=x ut. For the special case DT =DZ =D and 
u=0, the expression is the same as equation 9, page 
260, in Carslaw and Jaeger (1959).

To obtain an expression for the continuous disk 
source, the above equation is integrated between the 
limits 0 to some time t. After some algebraic manipu­ 
lation the integral equation is written

C^ f
 f o Un Jo

where
u ux 4DXDT
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0.001

FIGURE 5. Concentration distribution; plane source at i=0 maintained at constant concentration.
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-2.0

(x-ut) 

FIQUEE 6. Concentration distribution; region x<0 initially at constant concentration.

The above expression may be written in two 
alternative ways, or

C

where

and

_ 1 f el=*1/2Jo -\dr

erfc|j--)9Vl+72X2l

-exp

For the steady-state condition, that is, letting 
t  >°° in the above expression, the equation obtained 
is

The steady-state solution, although simpler, cannot 
be integrated and must be evaluated numerically. 
Along the axis r=0, the integral equation can be 
expressed in terms of an elementary function or,

uC ,

Example 4-   A disk surface source 0<r<a located 
at z=0 and maintained at a constant concentration 
C0.

This example considers the steady state only since 
the solution is not available for the transient system. 
The boundary conditions for this specific problem 
are

C(Q, r)=0, r>a 
C(a>,r)=0, r>0. 
C(x, co)=0, z>0.

To analyze this problem, it is assumed that the 
solution is represented by the product of two func­ 
tions of single variables, that is,

C=R(r)X(x),
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where R(r) is a function of r only, and X(x) is a 
function of x only. Substitution for C in equation 22, 
noting that for steady state dC/dt=Q, the partial 
differential equation is reduced to the subsidiary 
equations

where f2 is an unspecified constant.
The solutions of the subsidiary equation are readily 

obtained. The solutions are

)=_42 exp [2a

Because of the condition specifying C be zero as 
x  »oo, the positive sign before the radical in the 
second equation is discarded. The solution is thus

=r exp

The method of determining ^l(f) is described fully 
by Sneddon (1951, p. 59), the result is

-£=a f°
ko Jo

exp [2a (l-

A similar solution for DT =DX D and u=0 is
given by Carslaw and Jaeger (1959, p. 214).
The steady-state solutions to examples 3 and 4 are 

almost identical, except for the factor l/yT+VX2- The 
two solutions, presented as examples 3 and 4, are repre­ 
sented .graphically in figures 7 and 8. The numerical 
computations for the integrals in examples 3 and 4 were 
accomplished by integrating under a curve with a polar 
planimeter. In both examples the function could not be 
integrated into a readily calculable form. However, the 
integrals can be evaluated by numerical methods for 
various values of rj=r/a, which may be used in evalu­ 
ating experimental data.

The previous examples considered dispersion in flow 
systems described by a single-space variable and by 
two-space variables. Examples 3 and 4 considered a 
radially symmetrical system with flow occurring along 
the cylindrical axis. Consider now, a line sink or a line 
source at r=0 in a cylindrical reference frame. This is 
generally termed "a radial flow system." The definition 
of the geometrical configuration is presented in figure 9, 
and the applicable differential equation follows.

Writing the expression for the conservation of mass, 
with reference to the definition sketch (fig. 9), the 
differential equation is

d /n ac\.z>ao do dc- D --    -    --=-'d /n
a- ( D
dr\

5-
or/ or or dt

,OQ ,
(23)

i   . i     i     i     i     i     i i ___ i ___ i ___ i ___ i _____ i ___ i
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FIQUBE 7. Steady-state concentration distribution; circular surface source of constant strength.
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FIGURE 8. Steady-state concentration distribution; circular surface source maintained at constant concentration.

Here, the concentration and the dispersion coefficient 
do not vary with the angle 8 nor with the distance z 
which is normal to r. Equation 23 is written to allow for 
a possible space dependency of the dispersion coefficient 
D in the direction r. The basis of this space dependency 
comes from experimental and statistical findings that 
D is directly proportional to the velocity of the fluid 
stream. Since it is readily seen that the velocity is

FIGURE 9. Definition sketch of radial flow.

inversely proportional to the distance from the source 
at f=0, this same relationship is assumed to hold for 
the dispersion coefficient.

The expression for fluid velocity may be formulated 
provided the quantity of flow or flux is specified at some 
value of r=r0) generally near the source. Since flow is 
assumed steady, continuity requires that the velocity 
at any point is given by the expression u u<,rQfr, where 
u0 is the average velocity at r r0 . Substituting the 
variable velocity into equation 23 leads to the expression

dr
_ 

dr~ dt
(24)

Experimental evidence indicates that the dispersion 
coefficient D in a homogeneous medium varies very 
nearly with the first power of velocity; thus, D can be 
written

where Dm is a constant related to the solid and liquid 
properties. Substituting the preceding expression into 
equation 24 gives

6V V
D/dC
r2 dr

l_dC} 
DQ dt'
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where a=u0r0 . Accordingly, collecting the terms leads 
to the equation

(25)_a_ dC=j^ dC 
6V2 D0 6V DQ dt'

Example 5.   Dispersion in a fluid flowing radially from 
a line source at r=0.

The boundary conditions to be satisfied are

tf(r,0)=0, r>rQ 
#(00, 0=0, t>0.

The method of analysis because of convenience and 
simplicity in determining the coefficient of the solu­ 
tion is the Laplace transform. Equation 25 trans­ 
forms to

_ == 
dr2 D0 dr D0 '

The solution of the transformed problem is

where z=r a/4D0p, z0 =r0 a/4D0p and K^(x) is 
the modified Bessel function of the second kind of 
order %.

The inversion of the Laplace transformed system 
has been obtained by the use of the hi version theorem 
(Ogata, 1958, p. 88). The final expression is given by

where

and JK(X), YX(X) are Bessel functions of the first and
second kind of order %, respectively.
The solution hi its present form has not been evalu­ 

ated; however, a finite difference scheme has been ap­ 
plied to the differential equation. The integral in its 
present form is cumbersome to evaluate because of the 
appearance of the Bessel function in both numerator

and denominator. Shamir and Harleman (1967) have 
obtained an approximate solution of equation 25, 
numerically. Experimental analysis of this problem 
has been done by Lau, Kaufman, and Todd (1959); 
however, certain fundamental simplifications were re­ 
quired for the comparison of experimental with theo­ 
retical results. A result of the finite difference computa­ 
tion for the value D0/u0r0 =l'XlQ~2 is presented in 
figure 10.

The solutions for dispersion hi one-dimensional, 
two-dimensional, and the special case of radial-flow 
systems have been presented. Continuation of this 
analytical trend would suggest that dispersion in a 
three-dimensional system should be considered next. 
However, the relative difficulties in coping with a 
three-dimensional ground-water system renders the 
attempt hardly worthwhile. Thus, it seems more useful 
in the final two examples of dispersion without chemical 
reaction to consider approximate solutions for two- 
directional dispersion. In the two-dimensional field 
equations (eq 22) it is assumed that, if the term 
Dxd?C/dx2 is small compared to the other terms, the sys­ 
tem can be described as consisting of flow and dispersion 
that are orthogonal to each other. This is signified in 
the definition sketch presented as figure 11.

For dispersion process from a disk source, the field 
equation is

£  (26)

For the plane source hi which y>0 initially at a con­ 
stant concentration, the appropriate field equation
is

dC dC dx' (27)

Equation 27 is identical with the diffusion through a wall, 
and equation 26 is identical with diffusion from a 
cylinder moving hi the direction x at the rate u.

Example 6. Approximate radially symmetrical model 
of lateral dispersion.

The approximation of lateral dispersion, equation 
27, in which the justification of its use is given, was 
treated by Ogata (1961). In previous discussion on 
transformation of the coordinates, it was pointed 
out that the coordinate transformation £=x utm&y 
be used to eliminate the convective term. Equation 
26 may thus be written

^VoWrdr/ dt

Although C depends on x, this need not be specified 
in the boundary conditions since x does not appear
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FIGURE 10. Concentration distribution for radial-flow system.

explicitly in the differential equation. Hence, the 
boundary conditions are stated

C(r,0)=0,r>a, 

(d<7/dr) r=0=0, t>o.

The solution of the above differential equation for 
the specified boundary condition is obtained by 
Laplace transformation. The subsidiary equations 
for r>a and r<a are

cPX , 1 d\ ,-

f r>adr* r dr * ' ' '

-   C where \=C-\   - and g*=p/D. The two regions are

described by identical equations when X is used.

Particular solutions valid for the region of interest 
with the specified constraints are

-Q fl 
PL

^(qa^gr) "1

/i(go)g0(gr)c=^ 
p

The inverse of the above expression is given by 
Carslaw and Jaeger (1959, p. 346). The solution for 
all values of r is given by

c r°
7^=a 
ko Jo

exp ( 

From equation 27, it is immediately apparent that 
for steady-state conditions the solution can be obtained

T»

by replacing t with -. The steady-state conditions are 

thus computed from the same expression.

Example 7.   Approximate steady-state model of lateral 
dispersion in a unidirectional flow field.
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r or y

Fr = Dr b C/6r

FIGURE 11. Definition sketch of system depicting no dispersion in X direction.

The model considered is dispersion in a fluid moving 
in the direction x with the plane ?/=0 initially at a 
constant concentration C0 . This special case was 
treated by Harleman and Rumer (1962, p. 24). 
Equation 27 is the appropriate differential equation 
and the boundary conditions are

,y)=0,   <=°<2/<0 

=0, x>Q-

The application of Laplace transform- in equation 
27 leads to the subsidiary equation

where C'=C/C0 .
The solution of this subsidiary equation is readily 

determined as

Hence, ushig the complex inversion theorem, the 
solution obtained is,

The expression for example 6 has been computed

numerically for various values of
a'u 

4DTx
The expression

for example 7, on the other hand, is a standard tabu­ 
lated function; hence, numerical values are available. 
These two expressions are presented graphically as 
figures 12 and 13. Because of the simpler nature of 
these expressions, as compared with those obtained in 
examples 3 and 4, their use, whenever applicable, is 
favored for computing-numerical values of the disper­ 
sion coefficient for any given experiment. Figure 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1-1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

FIGURE 12. Approximate concentration profile due to lateral dispersion; radially symmetrical model.



THEORY OF DISPERSION IN A GRANULAR MEDIUM 121

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1,5 1.6 1.7

FIGURE 13. Approximate concentration profile due to lateral dispersion; two-dimensional model.

shows the curves for examples 3, 4, and 6 for two 
values of 4Drx/ua?. As expected for higher values of 
iDrX/ua2 , the difference between the three functions 
become appreciable. For a first approximation, how­ 
ever, the use of the solution obtained in examples 6 
or 7 would be simpler and of sufficient accuracy.

The following examples of mathematical analysis of 
dispersion consider an adsorbing medium. The system 
will be limited to a semi-infinite medium. The adsorp­ 
tion rate is assumed to be linear or more specifically 
of the form dS/dt=b(C mS). For flow in a medium 
with finite boundaries, the reader is referred to several 
examples given by Crank (1956) as the complete solu­ 
tions are too complex to be reproduced here.

When mass transfer due to adsorption is superimposed 
on the convective and dispersive transport, the con­ 
tinuity consideration in a one-dimensional flow system 
leads to the differential equation

(28)

The tune rate of change in the solid-phase concentration 
was previously indicated to be approximated by the 
linear equation

~=b(C-mS). (29)

In the examples to follow, equations 28 and 29, with 
suitable modifications, are used to describe the concen­ 
tration distribution within an adsorbing medium. The 
flow occurs in a semi-infinite medium; hence, for all 
following examples the boundary conditions are

C(Q,t) =<?<>, *>0, 

<7(z,0) =0, x>0,

0(00, £)=0, t>Q,

S(z,0) =0, z>0.

Example 8.   Dispersion in an adsorbing medium; 
adsorption rate given by dS/dt=bC, (m=O).

The solution of simultaneous equations 28 and 29 
(with m=0) for the prescribed conditions can be 
determined by assuming that it may be written in the 
form

C(x,t)=T(x,t) exp -

Substituting the above expression into equation 33 
leads to an equation with T as the dependent variable, 
or
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exp(Dr x\2/ua2 ) F(\)d\

4Dr x/ua =2.0
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FIGURE 14. Comparison of examples 3, 4, and 6.

For the function T, the condition at z=0 is given by

The general solution of the equation above is given 
by Carslaw and Jaeger (1959, p. 63). For this specific 
case the solution is

=o exp

The integral above is a well-tabulated function called 
the error function, or

-= exp [(l-M)ux/2D] erfc l-

where

Example 9. Dispersion in an adsorbing medium; 
adsorption rate given by dS/dt=k(C mS) with 

^0 and dC/dt«dS/dt.

exp [(l+M)ux/2D] erfc

The differential equation for the specified condition 
is reduced to  udC/dx dS/dt. Using the Laplace 
transform, the subsidiary equations obtained are

u <fc_= _ ^
dx * 

pS=bC-bmS.

The solution satisfying these simultaneous equations 
is

C 1 TT=- exp
Co p

r~ bxL 
\p+km/_\

The inverse of the above expression is available in 
tables of the inverse transform. The solution ob­ 
tained by Hougen and Marshall (1947) is

Q7~-=l  exp (
fb

 bmt) I 
Jo

exp

Example 10.   Dispersion in an adsorbing medium; 
adsorption rate given by dS/dt=b(C mS), with 
dS/dt»dC/dt.

The postulated conditions reflect primarily the 
mathematical viewpoint of looking toward a simpli­ 
fied equation. Again, the use of the Laplace integral
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transform reduces the partial differential equations 
to the subsidiary expressions

dC  

p'S=b(C-mN}.

The solution of these simultaneous equations, 
obtained by classical methods, is

6XP

The inverse is obtained by standard means and is 
described by Ogata (1964b). The expression obtained
is

O 2i& I

Co -y/TT JO 

 \TftJ 0

exp (£2-<

exp -£-

where a=ux/2~D, p=Dba2/u2 , and 3(x,y) is the 
Goldstein J function which has been defined in 
example 3.

Example 11.   Dispersion in an adsorbing medium; 
adsorption rate given by dS/dt=b(C mS), with

The equation considered is again a vjariation of 
the complete field equations 28 and 29 with the 
condition that dispersion in the direction of flow is 
small. The method of analysis again involves appli­ 
cation of the Laplace integral transform. The 
subsidiary equations for this case are

u

pS=b(C-mS).

The solution of these simultaneous equations 
can be determined by elementary means, and the 
resulting expression is

JLl
Co p

f f» 

L (p+bm) 

The solution as given by Ogata (1964b) is

a r / r\~\ rte/w r / 7 r\ I
£=l-exp -bmtt--) e-*I0 \ Jbm(t--)\ \d\ 
Co *L \ u/JJo UL\ \ uj J

Note that the preceding solution is the same as that 
for example 9 when (t x/u) is replaced by t.

Example 12.   Dispersion in an adsorbing medium; 
adsorption rate given by dS/dt=b(C-mS).

This final example employs equations 29 and 30. 
The subsidiary equations, obtained by use of the 
Laplace transform, are

pS=b(C-mN).

The particular solution of the transformed equations 
for the specified boundary conditions is given by the 

  the expression,

The process of inversion is described by Ogata 
(19646), and the final expression is written

Jl
-=  |_,_ exp (-r-

2V/W

where c=6 72/£2, T=bm(t-y2/?), a=ux/2D, y2=x2/4D
and J(c, T) is the Goldstein J function as defined
previously.
Note that this solution is identical with the solution 

in example 10 when the term (t y2/^2) is replaced by t.
Because the development of the solutions for exam­ 

ples 10-12 is relatively recent, their numerical evalua­ 
tion has not been completed. The solution for example
8 can be readily computed, whereas the solution for
9 has been used in analyzing reactor columns. Figures 
15 and 16 are graphical representations of the ex­ 
pressions for these two examples.

The number of conditions, other than the one- 
dimensional system, that have been investigated are 
relatively few. Because of the similarity between equa­ 
tions describing dispersion in ground water and those 
describing diffusion and heat-conduction systems, 
numerous analytical solutions are available. And with 
the increased use of digital computers, a variety of more 
complex mathematical problems can now be solved 
numerically.

NATURE OF THE DISPERSION COEFFICIENT
In the analytical development of the macroscopic 

theory of dispersion it is assumed that the characteristics 
of the dispersion coefficient are known, and that it is 
virtually a constant. In reality, the nature of this 
coefficient is unknown and is the subject of considerable
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FIOUBE 15. Concentration profile of dispersion in an adsorbing medium with dS/dt=bC.

investigation. Extension of the theory describing dis­ 
persion in a porous medium, or the ability to use 
dispersion equations for systems other than isotropy, is 
entirely dependent on the evaluation of this coefficient 
by either analytical or laboratory means. Further, this 
critical evaluation depends entirely on the ability to 
describe analytically the physical properties of the 
porous medium. This stage of investigation has not been 
reached as yet; thus, the discussion to follow is limited 
to evaluation of the dispersion process in isotropic 
material.

Many experimental and analytical papers published 
in journals show the dependency of the magnitude of 
the dispersion coefficient on the flow rate and the effec­ 
tive gram size diameter of the porous medium. This 
dependency comes about because, provided the sand is 
uniform, the geometric characteristics are described by 
a single parameter the sand-grain diameter. But, 
whenever the materials that make up the matrix depart 
from isotropic conditions, the representation of the 
medium by a so-called characteristic length becomes a 
difficult task, as experienced in attempts to generalize 
the concept of a friction factor in fluid flow through 
porous media (Carman, 1956). Generalization of the 
results of laboratory and analytical studies cannot be

realized unless a porous matrix can be described in its 
generality, including parameters such as the grain 
distribution and degree of cementation. This need is 
reflected in all problems involving the granular medium 
and in some quarters gave rise to such correction terms 
as "tortuosity." However, the only route opened at 
present is to assume that the Reynolds number estab­ 
lishes flow similitude and the Schmidt number estab­ 
lishes similitude in the diffusion. Then, the correlation 
of these two similarity criteria makes it possible to write 
an analytical expression for the functional relationship 
between the flow and diffusion processes.

Characteristics of the dispersion coefficient for con­ 
ditions encountered in the laboratory are generally 
studied through statistical evaluation, or by correlation 
of the experimental data with results of a mathematical 
model. The statistical model is important in that to a 
limited extent it does point out the parameters that 
control the magnitude of the coefficient. Its weakness 
lies in the need to reduce the porous matrix to an ex­ 
tremely simplified structure in order to render the 
problem mathematically tractable. The use of the 
macroscopic model is, however, a little more difficult 
since the nature of the coefficient is only specified as a 
constant. Thus, any correlation of these coefficients with
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FIQTIBK 16.- Concentration profile of dispersion in an adsorbing medium with dS/df ̂ (C-mS), and  T^'r  

various parameters must be accomplished by methods 
of regression, unless similarity can be established be­ 
tween the various flow conditions in the laboratory and 
the field.

Numerous experiments indicate that the use of the 
Reynolds number and Schmidt number are useful in 
establishing results comparable to those obtained by 
statistical analysis, provided the porous matrix is iso- 
tropic. However, in natural soils, or when air entrap­ 
ment occurs in flows, the dispersion coefficient cannot 
be readily correlated to an effective diameter or a 
characteristic length. Thus, the expression for the D is 
written Dt=iDmu, where Dm is an experimental constant 
that depends on characteristics of the porous medium.

The statistical development of the dispersion theory 
is of interest because it reveals the dependence of the 
magnitude of the dispersion coefficient on the charac­ 
teristics of the flow and the porous medium. Stringent 
conditions, however, must be postulated to simplify the 
model so that the mathematical concept can be utilized. 
As is generally true in most mathematical development, 
the mathematical model adopted has little resemblance

to the actual porous matrix. The basic theory of the 
statistical analysis is described in four papers published 
in separate scientific journals. These papers were written 
by Scheidegger (1954), Jong (1958), and Saffman (1959, 
1960). Saffman's and Jong's models are similar in 
nature; however, Scheidegger, who introduced the con­ 
cept of statistical hydrodynamics, chose a mathe­ 
matical model that assumed random motion of the fluid 
particles.

The results of both Jong and Saffman are reproduced. 
The porous medium model of Jong is reproduced as 
figure 17. The pore channels are assumed to be capillary 
tubes multiply connected at some end points and uni­ 
formly distributed in all directions in space. The medium 
is assumed to be made up of spherical particles that 
form polyhedral cavities connected by triangular capil­ 
lary tubes. The velocity within a tube varies according 
to the position of the fluid particle within the canal; 
however, for simplicity it is postulated that the mean 
velocity is represented by the rate at which the fluid 
particle containing, say, a contaminant or tracer, passes 
from point to point. The multiple connections at the 
tube-end points represent a limited choice of direction 
confronting an arriving particle of fluid containing the 
contaminant or tracer. This postulate, to some degree,
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(From Jong, 1958)

FIGURE 17. Random path chosen by a fluid particle moving 
through the canal system.

indicates randomness of the particle path, and together 
with the fact that the pressure gradient is proportional 
to cos 6 (fig. 17), makes it possible to trace or determine 
the probable location of the fluid particle at any given 
time.

The complete analysis presented by Jong (1958) is not 
repeated here inasmuch as it is basically a justification 
for the use of a given probability function. Of immediate 
interest, however, is the end result which follows and 
indicates the functional dependency of the dispersion 
coefficient on the flow field and the pore characteristics. 
The use of average velocity to characterize the flow 
makes it possible to characterize the pore system by a 
length parameter defined here as the elementary

length I. The final results of Jong's analysis are the 
statements that the dispersion coefficients are related 
to the flow and media parameters according to the 
expressions

DT =Bu Z/16 
Dx =u I -ln 7)/6. (30)

In equation 30, the symbols are defined as follows:

u= average velocity,
/=length of elementary canal,

A =f unction of Z0 where Z0 is the distance 
along the z direction at which the maxi­ 
mum number of particles are located at 
time T0 , 

In 7=Eulers constant = 0.577.

The elementary length of the porous medium, and 
the residence time of the tagged fluid therein, constitute 
the variables of the statistical analysis. Although the 
elementary length may be used to describe the medium, 
the magnitudes of the dispersion coefficient cannot be 
computed directly unless there is a relating measurable 
parameter associated with the characteristic length. 
Jong reports that for his experimental model, in which 
the medium was composed of glass beads, the calculated 
value of I was one-third of the mean grain diameter. 
For conditions other than isotropy, it is expected that 
the value of I will depend on the grain-size distribution 
and the mode of packing.

Staffman (1959), in his first paper on the theory of 
dispersion, used a statistical model identical with that 
of Jong's. The basis of his analysis is the visualization 
of the fluid path as a random walk process where the 
length, the direction, and the duration of each step 
are random variables. The expressions for radial and 
axial dispersion derived from this mathematical model 
are

(31)

where

or

The symbols in equation 31 and the related expressions 
are defined as follows:
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£=time, 
<o=estimate of time for appreciable diffusion to

take place along the pore, 
u= average velocity in the x direction,
Z=pore length, and 
n=number of steps in the random walk analysis.

Equations 30 and 31 indicate a slightly different result 
for Dx , but the radial diffusion coefficients DT derived 
by these two methods are identical

Saffman (1960), in a later paper, investigated dis­ 
persion phenomena by using a Lagrangian correlation 
function in an attempt to compute values of dispersion 
coefficients for a more generalized condition in terms 
of the dimensionless number u l/D, where D is the 
molecular diffusivity. The results of the analysis are 
much more complex, and the expressions are not 
reproduced here. Saffman states that comparisons of 
these results with experimental analysis show a large 
discrepancy, probably attributable to nonuniform 
packing of the granular material within the experi­ 
mental column and possible channeling along the 
boundary between container and porous material. Or 
this discrepancy may be the consequence of oversim­ 
plifying the existing mathematical model in order to 
render the analysis tractable. The conclusion that can 
be drawn is that too much weight is being placed on 
the single parameter I the elementary canal length. 
Differing somewhat from Jong, Saffman calculated the 
value of the coefficient on the assumption that the 
magnitude of I equals the mean diameter of the sand 
grains.

In an attempt to reconcile some of the discrepancies 
noted, especially transverse to the flow direction, 
Saffman (1960) pointed out that in a strictly two- 
dimensional system, as depicted by the mathematical 
model, two of the basic assumptions may not represent 
good approximations. Physically, because of the pre­ 
vailing steady-state laminar flow, there can be no 
intertwining of the streamlines except in a three- 
dimensional flow system. Hence, the variation of the 
width of the stream tubes is on the order of the diameter 
of the sand grain or less. Thus, the assumptions of 
statistical independence of each streamline, and the 
uncorrelated nature of the mean displacement trans­ 
verse to the flow, cannot be strictly valid. Using 
statistical models these investigations find that at 
some time after the introduction of the contaminant, 
or at some distance from the contaminating source, 
dispersion is described by equation 6. This conclusion 
based on the assumption that the central limit theorem 
is applicable was first stated by Beran (1957).

It is apparent that the choice of the mathematical 
model in the statistical analysis is limited entirely by

the mathematical difficulties, and thus cannot in any 
way represent a true porous medium. The departure 
from the physical features of the actual granular mate­ 
rial may be the primary reason for the poor correlation 
between calculated and observed values. These diffi­ 
culties are inherent because of limited knowledge in 
the statistics of sedimentation and other geologic 
processes. This differs to a large degree from other 
transport systems in which the kinetic theory of gases 
or the statistical mechanics is applicable. In systems 
where these theories are applicable, meaningful statis­ 
tical averages can be derived from the mathematical 
model, making possible the computation of the rela­ 
tionship between the coefficient and the various param­ 
eters. Certain limitations are imposed by the chosen 
mathematical model, but they are not so severe as in 
the analysis of flow through a porous matrix.

The generalization of the expressions for the disper­ 
sion coefficient cannot be readily achieved at present. 
However, the statistical studies may be used as a 
guide in an attempt to formulate empirical expressions. 
Articles such as that of Perkins and Johnston (1963) 
give a number of empirical expressions that have been 
used to describe systems of specific interest.

EVALUATION OF DISPERSION COEFFICIENT BY 
EXPERIMENTAL METHODS

Analysis in the preceding section indicates that the 
magnitude of the coefficient is dependent on the 
velocity of fluid flow and the elementary canal length 
used to describe the porous material. The validity of the 
dispersion equation is also established, although no 
proof was given. The magnitude of the dispersion co­ 
efficient is obtained by correlation of the solution of 
equation 6 with experimental data. This section dis­ 
cusses the use of the dispersion equation as the tool in 
the experimental determination of the magnitude of the 
dispersion coefficient. The difference between the two 
methods is that the statistical method requires exper- 
mental determination of the medium characteristic, 
whereas the macroscopic method requires evaluation of 
the coefficient itself.

Many solutions have been presented in a previous 
section to indicate the nature and extent of theoretical 
investigations of transport phenomena. These solutions 
were obtained for boundary conditions which involved 
semi-infinite porous media, readily amenable to repre­ 
sentation by laboratory test models. The verification of 
theoretical results has generally been confined to the 
analysis of one-dimensional models that are easier to 
build and test. These models are most appropriate for 
experimentally establishing the magnitude of the longi­ 
tudinal dispersion coefficient. Accordingly, the quanti-
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fication of the coefficient is based on the conditions 
specified by

Urn G(x,t)=Q,t>0. 
X  »oo

The first statement indicates that over a defined plane, 
say z=0, the concentration is to be maintained at a 
known and feasible value. The second condition is 
merely a statement of the concentration of the fluid 
which initially fills the porous matrix. This condition 
can be established to be either zero or any known value <70 . 

For the conditions depicted, the solution of the differ­ 
ential equation is as given in example 1. Most studies 
indicate that the second term in that equation is gener­ 
ally small, so that the solution presented as example 2 
gives a good approximation (Ogata and Banks, 1961). 
Thus, for purpose of correlation, the expression to be 
used (see eq. 26b) is

_ .eft 2 erfc

where T=ut/x and X=Dfux.

The laboratory model constructed to conform with 
the specified boundary conditions consists of a tubular 
column filled with unconsolidated sand. Except for 
the contact at the wall of the tube, where some flow 
channeling may occur, the model satisfies the condi­ 
tions specified for a semi-infinite porous medium. 
The tracer chosen depends on the nature of the in­ 
vestigation. Common salt has proven the easiest to 
measure and is used whenever density is not a critical 
factor. Because of its electrolytic characteristic, in-place 
measurement of the salt concentration can be obtained 
by means of an electric probe. At points where large 
enough samples of fluid may be taken, however, chem­ 
ical methods represent an economical and rapid means 
of determining the concentration at any specified tune. 
In either event the requirement is that measurements 
be taken at some distance from the tracer source, at a 
location and in a manner which does not disturb the 
flow. A typical setup for a columnar model is presented 
in fibure 18.

Since the solution is available, the magnitude of D 
can be rapidly computed. The simplest means of calcu­ 
lating this result is to establish the value of the ratio 
X=8/<t>, where 0=(l-T)/2 JXT and 6=(l-T)/2 

. For any value of C/C0, <t> can be determined from

the tables of the error function. By definition, 
8=i/X<l>; thus, since T=ut/x and T is known for any

L-B-
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2 Solute mixing and constant 

head tank 
3 Tap water constant head tank 
4 Overflow tanks 
5 Petcocks 
6 Sand column 
7 Downstream overflow 
8 Overflow control valve 
9 Sampler tubes

7 

-^    -Perforated steel plate

9 r^
-                  O-~ Vnlves

FIGURE 18. Typical setup for column experiment.



THEORY OF DISPERSION IN A GRANULAR MEDIUM 129

given series of tests, the values of 6 and <f> are available. 
The values of these two parameters are plotted on 
rectangular coordinates that associate 0 and <t> with a 
given value of C/C0 . The resulting plot can be analyzed 
by a straight-line correlation that relates the <£ and 6 
values. The slope of the straight line is readily deter­ 
mined and by noting that the average slope is 

I)QI^=JX = -\I   , the value of D can be computed. 
V ux

This method affords a simple means for computing 
the value of the dispersion coefficient directly from 
any given series of tests.

The results obtained from any such analysis, however, 
yield simply a number applicable to a particular series 
of tests. A generalized expression for the results of all 
such tests cannot be realized unless relating parameters 
that hold for all conditions are identified. One method 
for obtaining these parameters is by rewriting equation 
6 in dimensionless form. For this purpose let,

x=x/d, r=ut/d, and C'=C/C0

where d is defined simply as a characteristic length. 
Substituting the dimensionless variables in equation 
22 results in the expression

dC'D ^
ud 3x2 dr

Accordingly for the postulated conditions, the general­ 
ization of the test results depend on the single parameter 
D/ud. The rewriting of the field equation in its dimen­ 
sionless form permits identification of a parameter 
which, in effect, is the similarity criterion for the 
process described by the equation.

The resulting parameter, however, is not a familiar 
one in fluid mechanics literature. To resolve this, con­ 
sider the flow mechanism in a porous matrix. Dimen­ 
sional analysis like that described by Muskat (1946, p. 
56) indicates that the flow is characterized by a param­ 
eter known as a Reynolds number, which appears fre­ 
quently in the hydraulics. Since flow in a porous 
medium is virtually flow in capillary tubes, it is not 
surprising that the Reynolds number describes the 
similarity conditions. Assuming the medium is de­ 
scribed by a characteristic length d, the Reynolds num­ 
ber may be written, ud/p, where d for a homogeneous 
medium is either the pore channel diameter or the grain 
diameter and v is the kinematic viscosity of the fluid. 
Accordingly, the parameter Djud may be rewritten as

 /Re. The parameter D/v is the familiar dimensionless

group appearing in the study of isothermal diffusion 
and is called the Schmidt number (Bird, and others,

1960, p. 512). The coefficient of the differential equation 
in terms of these two dimensionless groups may be 
written

D/ud= l/(Sc) (Re) = 1/Pe,

where Sc is the Schmidt number; Re, the Reynolds 
number; and Pe, the Peclet number. Thus, based on the 
various assumptions made in the development of the 
differential equation, the dispersion process in a porous 
medium is characterized by the Schmidt number and 
the Reynolds number.

For purpose of generalization, the magnitudes of the 
dispersion coefficient resulting from computation of 
experimental observations are correlated by plotting 
the Schmidt number against the Reynolds number. 
An illustration of this correlation method is given as 
figure 19. The plot is on a log-log scale and produces a 
straight line having a slope of nearly unity over the 
range of Reynolds numbers less than one.

Another common practice in evaluating an exchange 
system is to correlate the Peclet number, udjD, with 
the Reynolds number. It can be seen that because 
Pe=(Sc)(Re), if similarity in the dispersion phase is 
represented by the Schmidt number, the correlation 
wDl result in a horizontal line. An illustration of a plot 
of the Peclet number and Reynolds number is given in 
figure 20.

These are the two methods of correlation most 
commonly used hi analyzing mass transport in a homo­ 
geneous granular porous medium. A majority of inves­ 
tigations indicate that a plot of a Reynolds number 
versus a Schmidt number (fig. 19) results in a straight 
line of unit slope, thus, indicating a direct relationship 
of the dispersion coefficient to the velocity and the 
characteristic length the average grain diameter or

Daud.

The works of Jong and Saffman, however, point out 
that the proportionality constant includes the residence 
time of the fluid; hence, the coefficient is generally 
written D=Dmu, where Dm is an unspecified constant. 
Scheidegger (1960, p. 259) further indicated that the 
relationship should be written D=Dmun, where the 
value n is either 1 or 2, depending on the velocity dis^ 
tribution taken to represent flow in the pore channel. 
In more recent analysis, HarJeman and Rumer (1962) 
obtained values of Dm= 0.027 and n=l.W for glass 
beads of 0.39 mm average grain diameter, and Z)m=0.09 
and n=1.18 for glass beads of 0.965 rnm average grain 
diameter. Because the available data are limited, it is 
difficult to confirm or refute the validity of this type of 
expression. The limited data, coupled with ease of 
computation, popularize the use of n=l in analyzing 
dispersion in a homogeneous medium.
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FIGURE 19. Plot of the Schmidt number versus the Reynolds number.

In the section headed "Field equation for anisotropic 
dispersion," the directional properties of the dispersion 
coefficient were discussed. Laboratory observations and 
analytical studies, like those of Bear (1961), indicate 
that the magnitude of the coefficient is different in at 
least two directions, parallel to and transverse to the 
direction of flow.

The few available laboratory data for transverse 
diffusion are generalized by a plot of the Peclet number 
versus the Reynolds number. A general review of the 
published data relating to oil production is presented 
by Perkins and Johnston (1963). However, the specific 
area of interest, as displayed by the analytical and 
experimental data, is that related to flow conditions for 
which the Reynolds number >1. In a ground-water 
regime, this represents a range of flow that is not nor­ 
mally observed.

For the lower range of the Reynolds number, repre­ 
sentative of ground-water flow conditions, the analysis 
uses the two-dimensional dispersion equation with the 
constant dispersion coefficient developed previously. 
The most practical flow system for studying dispersion, 
because of ready representation in the laboratory, is

the axially symmetrical system described by the 
equation

1 dC\ .   d2C dC dC

Again, DT and Dx represent the radial and longitudinal 
dispersion coefficients, respectively, and the fluid flow 
is in the direction parallel to the x axis.

To determine the grouping of the parameters involved 
in the process of mass transport, the above equation is 
rewritten in dimensionless variables. To accomplish this, 
put x=xd, r=pd, and t r d/u where d is a representa­ 
tive or characteristic length describing the porous 
medium. Substitution of these dimensionless variables 
leads to the expression

_ _ 
Pe dp2 P dp dx2 ~

dC' 
dx

dCf 
dr

where PeT =ud/DT is the radial Peclet number and 
¥ex =ud/Dx is the axial Peclet number.

The Schmidt number, for directions r and x, and the 
Reynolds number characterize the dispersion and con­ 
vection, respectively, for a radially symmetrical system.
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FIGURE 20. Plot of the Pedet number versus the Reynolds number.

Published articles, for example, Kramers and Alberda 
(1953), indicate that the longitudinal and radial Peclet 
numbers are constant. Therefore, both radial and 
longitudinal dispersion coefficients may be expressed 
explicitly by the relationship D=Dmu, where Dm is a 
constant for any given granular material.

Because of difficulties in building a two-dimensional 
physical model, the radial dispersion is investigated by 
considering a system where the longitudinal dispersion 
is small. One approximate analysis for steady-state 
condition is described by Ogata (1961) and may be 
used to calculate the magnitude of the radial dispersion 
coefficient from any suite of experimental data. This 
approximate equation is given in example 6. The com­ 
plete solution, however, as previously stated, is too 
complex for rapid computation of the dispersion 
coefficient; hence, the expression

C_
CQ

i=1~exp
applicable for r=0 may be used.

Evaluation of the experiment conducted in Phoenix 
by the Geological Survey (Skibitzke and others,

1961) was based on the preceding expression. Because 
of some variation in the experimental data, only the 
average value of I>r=lX10~5 cm2/sec was determined 
to be significant. The velocity of the fluid in the experi­ 
mental model was approximately 4X10"4 cm/sec, and 
the computed value of D compares well with results 
obtained by others and summarized by Perkins and 
Johnston (1963). It is also interesting to note that this 
value of the dispersion coefficient is near that of 
molecular diffusion of salt in water.

A second model of interest is the one used by Harle- 
man and Rumer (1962). A two-dimensional dispersion 
model was analyzed both theoretically and experi­ 
mentally. The mathematics of the mass transport 
system is described in example 7 where the solution was 
presented as

T^ofl+erf

Computed values of the dispersion coefficient, 
based on the observed and the approximate mathe­ 
matical models, show a range of Dv from 9X10~5 to 
6.5X10"4 cm2/sec for values of the fluid velocity rang-
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ing from 0.012 to 0.28 cm/sec. By correlation of the 
dispersion coefficient with the Reynolds number, the 
proposed expression for the dispersion coefficient 
transverse to the direction of flow was

Using this expression with the results of the Phoenix 
experiment, a value of 0.96 X10~5 cm2/sec was obtained 
for Dv, which shows good agreement.

SUMMARY

The theory of dispersion of miscible fluids has been 
developed extensively for fluid flow within a homoge­ 
neous porous medium. In the development, a fluid 
containing a given dissolved substance is described 
as moving according to Darcy's law, provided density 
differences between that fluid and the natural host 
fluid are negligible. However, the transportation of 
the dissolved substance has both a convection com­ 
ponent, as described by Darcy, and a dispersion com­ 
ponent. In all investigations the dispersion component 
is considered to be primarily an effect of the microscopic 
velocity variation within the pore channel and, hence,

is simply a perturbation from the described, average 
flow. There are other mechanisms involved hi the trans­ 
port of the dissolved component, but their magnitude 
is small for normal ground-water flows, excepting 
adsorption. This mechanism of dispersion is treated to 
be analogous to eddy diffusion; thus, an expression 
similar to Fickian law of diffusion is used in the 
mathematical model to describe the dispersion 
component.

Evaluation of dispersion theory, based on the stipu­ 
lated assumptions, entails laboratory investigations 
that are necessarily simple. Laboratory analysis of a 
linear flow system can be readily carried out and is 
especially useful in evaluating the one-dimensional prog­ 
ress of a slug of tracer. Such laboratory investigation 
is described in the section on determination of the 
dispersion coefficient. The results comparing theoreti­ 
cal and actual concentration distributions in the frontal 
zone of a linear flow system are typified in figure 21. 
For such a flow system there is ample evidence of this 
nature which indicates that the theory of dispersion 
hi a homogenous medium is a good first approximation.

On the basis of findings from experimental evaluation 
of the theory of dispersion, the application of the

Experimental - glass beads

-1.5 -2.0 

(From Ogata, 1958)

FIGURE 21. Example of comparison between theoretical and experimental results. From Ogata, 1958.
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theory is progressing to more complex flow systems. 
A good example is the derivation of an analytical ex­ 
pression representing the mixing of two miscible fluids 
of different densities. This effort is directed particularly 
toward analyzing the conditions encountered in coastal 
aquifers where observations reveal the development of 
a diffused zone between the fresh- and salt-water zones. 
The theoretical treatment is basically that of a one- 
dimensional dispersion system in which the coordinates 
are oriented with the position of the interface between 
the two fluids.

The field applicability of the analysis for a unidirec­ 
tional transport system is limited. For problems in­ 
volving any injection of contaminant, the dispersion 
phenomena take place in at least two-dimensional 
space. Accordingly, a description of the transport com­ 
ponent perpendicular to the direction of flow is impera­ 
tive. The approach to this description is to assume that 
the generalization can be accomplished by assigning to 
the dispersion coefficient the properties of a tensor. 
Justification of this method is based on experimental 
evidence which indicates that the magniture of the 
dispersion coefficient for a homogeneous medium is 
different in the directions transverse and parallel to 
the line of flow. Because the generalization depends on 
the ability to identify separately all given causes of 
spreading of the contaminant, such as the effect of 
the injection source, the tensor components are not yet 
quantified.

Additional mechanisms, such as mass transfer from 
the liquid to the solid phase due to adsorption, are of 
fundamental importance whenever it is required that 
the fate of a given substance in a ground-water body 
be determined. The adsorption process may be de­ 
scribed by the historical evaluation of the mechanism 
involved, and its effect on the transport of the given 
substance through the field of flow. In many instances 
of transport through a porous medium, the large solid 
surface area available makes the adsorption phenom­ 
enon the most important feature. Description of this 
phenomenon involves a chemical process; hence, the 
thermodynamics of the mass transfer must be deter­ 
mined for detailed analysis. At present, for lack of 
better data, approximation of the adsorption rate is 
used in the mathematical analysis. There is, as yet, no 
experimental evidence to indicate the validity of these 
expressions used in the mathematical model.

In all attempts to describe the flow conditions in a 
porous matrix, it has been found that the generalization 
of the expression for flow is formidable piimarily 
because of the inability to represent statistically the 
physical properties of the given medium in relation to 
the fluid flow (Skibitzke and others, 1961). Thus, the 
limitations placed on the analytical theories of dis­

persion are apparent. The generalized description of the 
transport of mass within any heterogeneous porous 
medium is unattainable by any presently known 
methods. However, the probelms encountered in a 
real situation do not require complete and rigorous 
formulation; usually, an engineering estimate of the 
maximum possible effect under the observed conditions 
is acceptable.

The investigations of mass-transport phenomena have 
proceeded along both analytical and experimental lines. 
The experimental methods have been used to verify the 
analytical expressions obtained by solving the differ­ 
ential equation of mass transport. Qualitative data 
defining the phenomenological process have also been 
obtained in the laboratory to demonstrate the nature 
of the flow. The analytical developments have proceeded 
along established lines to obtain expressions for pre­ 
dicting the possible concentration of a given dissolved 
substance under various specified conditions. As with 
all analyses, their applicability is limited by the ability 
to describe the parameters that control the behavior 
mechanisms; hence, only the most simple linear flow 
systems are described.

Within a limited range, the theories of dispersion 
have been verified by the results of experimental 
analysis. However, these expressions are only useful 
whenever ground-water investigations can be brought 
into the laboratory; for example, when the use of tracers 
is needed in establishing certain details of the fluid flow. 
Extension of such investigations into more complex 
porous media depends on successfully directing the 
research in dispersion theory so that the requisite 
studies of the controlling parameters are possible.
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