Algebraic and Graphic Methods for Evaluating Discordant Lead-Isotope Ages GEOLOGICAL SURVEY PROFESSIONAL PAPER 414-E Prepared on behalf of the U.S. Atomic Energy Commission ## Algebraic and Graphic Methods for Evaluating Discordant Lead-Isotope Ages By L. R. STIEFF, T. W. STERN, and R. N. EICHER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 414-E Algebraic and graphic procedures for the calculation of a concordant age from discordant Pb²⁰⁶/U²³⁸, Pb²⁰⁷/U²³⁵, and Pb²⁰⁷/Pb²⁰⁶ age data using one to three samples. Prepared on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1963 ## UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary **GEOLOGICAL SURVEY** Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office #### CONTENTS | | | Page | |--------------|--|------------------| | Abstract | | \mathbf{E}_{1} | | Introduction | nn | 1 | | | ork | 2 | | Graph | ic methods | 2 | | Algebr | aic methods | 4 | | | sed on expansion of e^x | 4 | | Calculation | of concordant ages | 6 | | One sa | umple | 6 | | \mathbf{R} | adiogenic Pb ²⁰⁷ /Pb ²⁰⁶ ratio given | 6 | | C | ommon $\mathrm{Pb^{207}/Pb^{206}}$ ratio given | 11 | | Two sa | amples | 14 | | A | mount of contaminating radiogenic lead and its Pb ²⁰⁷ /Pb ²⁰⁶ ratio unknown | 14 | | A | mount of contaminating common lead and its Pb ²⁰⁷ /Pb ²⁰⁶ ratio unknown | 16 | | A | mount of contaminating radiogenic and common lead and the Pb207/Pb206 ratio unknown | 19 | | | samples | 22 | | A | mount and Pb ²⁰⁷ /Pb ²⁰⁶ ratios of contaminating common and radiogenic lead unknown | 22 | | General equ | uations | 25 | | | cited | 27 | | | ILLUSTRATIONS | | | | ILLOSIITATIONS | | | Figure 1. | Ratios of the number of atoms of Pb ²⁰⁷ to Pb ²⁰⁴ , N_{207}/N_{204} , plotted against the ratios of the number of atoms of | Page | | | Pb 206 to Pb 204 , N_{206}/N_{204} | E3 | | 2. | Ratios of the number of atoms of radiogenic Pb ²⁰⁷ to U ²³⁵ , N_{207}/N_{235} , plotted against the ratios of the number of atoms of radiogenic Pb ²⁰⁶ to U ²³⁸ , N_{206}/N_{238} | 10 | | 3. | Ratios of the total number of atoms of Pb ²⁰⁷ to U ²³⁵ , ${}^{t}N_{207}/N_{235}$, plotted against the ratio of the total number of atoms of Pb ²⁰⁶ to U ²³⁸ , ${}^{t}N_{206}/N_{238}$. | 19 | | 4. | Normalized difference ratios for two uranium-bearing samples contaminated by the same common lead, and which were altered or contaminated by an older radiogenic lead | 22 | | | | | | | TABLES | | | | TABLES | | | | | _ | | m - | | Page | | TABLE 1. | Letter symbols used in evaluating discordant lead-isotope ages. | $\mathbf{E2}$ | | 2. | Factors for use with equations of the second degree | 5 | | 3–8. | Computed concordant ages obtained— | | | 3. | From equation 12 | 8 | | 4. | From equation 17 | 12 | | 5. | From equation 22 | 15 | | 6. | From equation 26 | 18 | | 7. | From equation 35 | 21 | | 8. | From equation 39 | 24 | #### SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY #### ALGEBRAIC AND GRAPHIC METHODS FOR EVALUATING DISCORDANT LEAD-ISOTOPE AGES By L. R. Stieff, T. W. Stern, and R. N. Eicher #### ABSTRACT The calculated lead-isotope ages of many uranium-bearing minerals yield the following discordant age sequence: Pb206/ U²³⁸ < Pb²⁰⁷/U²³⁵ < < Pb²⁰⁷/Pb²⁰⁶. In the literature these and the reverse discordant lead-isotope age sequences are usually attributed to loss or gain of lead or uranium or an intermediate uranium daughter product. An alternative interpretation, generally not stressed, is that this failure of the lead-uranium and lead-lead ages to agree may also be a consequence of the deposition of an older generation of radiogenic Pb207 and Pb206 at the time of formation of the uranium-bearing mineral. Also, the calculated lead-isotope ages of many uranium- and thoriumbearing minerals yield Pb208/Th232 ages which are less than the lead-uranium and lead-lead ages obtained on the same sample. The usefulness of the Pb208/Th232 age has been reduced because of the difficulties encountered in evaluating these age discrepancies. Graphic solutions for the discordant lead-uranium age problem that are available in the literature have been amplified and extended to cover corrections for common lead without using either Pb²⁰⁴ or Pb²⁰⁸ as the common-lead index. Where isotope studies have been made on two or three samples of the same age and from the same deposit or formation, a new graphical procedure using the index isotope is presented that will yield concordant ages corrected for both lead loss and original radiogenic lead. These concordant ages may be obtained without knowledge of either the amounts or the isotopic compositions of the contaminating common lead, the Pb²⁰⁷/Pb²⁰⁵ ratio of original radiogenic lead, or the extent of past or recent alteration if original radiogenic lead is not present. A new set of age equations has also been developed which permit algebraic solutions of the problems of original radiogenic lead and lead loss that are equivalent to the solutions obtained graphically. The derivation of these equations may also be considered as proof of the graphical constructions. A table of factors is provided in order that either exact lead-loss or original radiogenic lead solutions may be obtained from the age equations expanded only to the second degree. The general form of these new age equations is also given for programing on computing machines. The latter equations give both the concordant ages corrected for original radiogenic lead and for loss of lead. Both the graphic and algebraic solutions are applicable to the discordant thorium-uranium age problem. The algebraic and graphic treatments of discordant leadisotope ages define both the type and minimum number of samples necessary for adequate mathematical analysis of the problem. This mathematical treatment also makes it clear that discordant lead-isotope age data alone cannot provide the basis for the choice of an age corrected for loss of lead or old radiogenic lead. The most reasonable age can be selected only after careful consideration of independent geochronologic data as well as field, stratigraphic, and paleontologic evidence, and the petrographic and paragenetic relations. #### INTRODUCTION Uranium-bearing minerals that give lead-uranium and lead-lead ages that are essentially in agreement, that is, concordant, generally are considered to have had a relatively simple geologic history and to have been unaltered since their deposition. The concordant ages obtained on such materials are, therefore, assumed to approach closely the actual age of the minerals. Many uranium-bearing samples, particularly uranium ores, give the following discordant age sequences: $Pb^{206}/U^{238} < Pb^{207}/U^{235} < < Pb^{207}/Pb^{206}$ or, less frequently, $Pb^{207}/Pb^{206} < < Pb^{207}/U^{235} < Pb^{206}/U^{238}$. In an effort to evaluate a discordant age sequence, therefore, the data are adjusted in one of several ways, either numerically or graphically, until the lead-uranium and lead-lead ages are in agreement. This is done in the belief that one of the recalculated concordant ages will more nearly approach the true age of the mineral. Thus, the criterion of concordance underlies the mathematical analysis of the observed age discrepancy and requires assumptions concerning the different processes which could have produced the age discordancies. Unfortunately, the first discordant age sequence may be explained equally well by the continuous selective loss of one or more radioactive daughter products, by loss of radiogenic lead or additions of uranium at one time in the history of the minerals, or by initial contamination by relatively small amounts of an older generation of radiogenic lead. The reverse age sequence can be interpreted as evidence for loss of uranium, addition of lead, or initial contamination by relatively large amounts of an older radiogenic lead. Accidental concordance may occur either as a result of contamination by large amounts of an older generation of radiogenic lead, or as a result of processes of leaching and alteration in which compensating amounts of lead and uranium have been added or removed. The evaluation of discordant lead-isotope age data may be separated into two operations. The first operation, with which this report is concerned, is mechanical in nature and involves the calculation of the different possible concordant ages corresponding to the various processes assumed to have produced the discordant ages. Present methods for making concordant numerical solutions of discordant lead-isotope age data are both tedious and difficult. Existing graphic solutions also have their limitations. report includes a brief review of the literature on the graphical procedures used in the analysis of discordant age data and presents a new and more generalized graphical treatment of this problem. In addition, a new set of algebraic equations equivalent to these new graphic solutions is included. These equations permit relatively simple numerical calculation of the different and equally probable concordant ages. The letter symbols used throughout the report in presenting and analyzing the discordant age data are listed in table 1. Table 1.—Letter symbols used in evaluating discordant lead-isotope ages | Symbol | Explanation | |---------------------------|---| | $N_{206},\ N_{238}$ R^* | Number of atoms of Pb ²⁰⁶ , U ²³⁸ , and so on
Ratio of the number of atoms of radiogenic
Pb ²⁰⁷ to radiogenic Pb ²⁰⁶ | | R
^c | Ratio of the number of atoms of Pb ²⁰⁷ to Pb ²⁰⁶ in common lead | | $R_{}$ | Present-day ratio of the number of atoms of U ²³⁵ to U ²³⁸ , 0.007262 | | t_{m} | Corrected concordant age of mineral. See equation 3 | | λ | Decay constant | | t | Age | | N_{d} | Number of atoms of daughter products | | N_{p} | | | f_1 | Difference between two-term expansion of $e^{\lambda t_1}$ and the actual value of $e^{\lambda t_1}$ for a particular value of t_1 , used for the U ²³⁸ series | | f_2 | | | N ₆ | | | N_6* | | | n | | | $^{t}N_{6}$ | Number proportional to the total number of Pb ²⁰⁶ atoms present | | R_{5t} | | | R_{8t} | | | m.y | | | R_{5a} | | It is evident, however, that in the first operation no amount of mathematical manipulation of the discordant age data will, in itself, provide the basis for the choice of the most probable age. The choice of one of the equally possible recalculated concordant ages can be made only on the basis of additional evidence. second operation, therefore, consists of testing the validity of these recalculated concordant ages in terms of the geologic history of the area; the geologic age relation of the enclosing rock; the petrographic, paragenetic, and mineralogic data on the uranium-bearing minerals being studied; the probable sources of the uranium and contaminating lead; the isotopic composition of lead in the associated nonradioactive minerals; and other independent age measurements which are considered to be reliable. In the event that available geologic evidence is equivocal, either the alternative concordant age solutions should be presented as equally possible or, following a clear statement of the investigator's own prejudice, a preference stated for one of the concordant ages. General papers on the interpretation of discordant lead-isotope ages have been published by Kulp and others (1954), Ahrens (1955a, b), Wetherill (1956), Stieff and Stern (1956), Kulp and Eckelmann (1957), Aldrich and Wetherill (1958), and Stieff and Stern (1961). Explanations of discordant isotopic age data using the radon-loss hypothesis have been published by Wickman (1942), Robinson (1955), Louw and Strelow (1955), Giletti and Kulp (1955), and Greenhalgh and Jeffery (1959). Interpretations of discordant age sequences using the lead-loss hypothesis have been published by Collins and others (1954), Eckelmann and Kulp (1956), and Gerling (1958). Horne and Davidson (1955) have suggested a hypothesis based on multiple periods of uranium deposition to explain the age anomalies found for a single specimen of uraninite concentrate from the Witwatersrand. Tilton (1960) has proposed continuous diffusion of lead as an explanation for discordant lead-isotope ages. Attempts to interpret the discrepancies between the lead-uranium and lead-lead ages on the basis of contamination by an older generation of radiogenic lead have been made by Stieff and others (1953), Tugarinov (1954), and more recently by Horne (1957 a, b). This work was part of a program conducted by the U.S. Geological Survey on behalf of the Division of Research, U.S. Atomic Energy Commission. ## PREVIOUS WORK GRAPHIC METHODS Perhaps the simplest graphical treatment of the regularity in lead-isotope data was suggested by Houtermans (1946, 1947). In an analysis of the natural variation in isotopic composition of common lead he plotted the atom or mole ratios of Pb^{207}/Pb^{204} (N_{207}/N_{204}) against similar ratios of Pb^{206}/Pb^{204} (N_{206}/N_{204}). (See fig. 1A.) In graphs of this type or FIGURE 1.—Ratios of the number of atoms of Pb204, N_{204} , N_{204} , N_{204} , N_{204} , plotted against the ratios of the number of atoms of Pb205 to Pb204, N_{204} , N_{204} , N_{204} . A, Two and three component lead mixtures. B, Two component lead mixtures and their difference plots. in graphs of $\mathrm{Pb^{207}/Pb^{208}}$ versus $\mathrm{Pb^{206}/Pb^{208}}$ (where thorium has not contributed radiogenic $\mathrm{Pb^{208}}$), the mixture of a single common lead, A, having uniform N_{207}/N_{204} and N_{206}/N_{204} ratios, with varying amounts (points B, C, and D) of a single radiogenic lead of uniform $\mathrm{Pb^{207}/Pb^{206}}$ ratio, R^* , will lie on a straight line. These straight lines were called isochrones by Houtermans and the slope of the isochrones passing through these points is the $\mathrm{Pb^{207}/Pb^{206}}$ ratio of the added radiogenic lead. It is apparent from figure 1 that, if isotopic data are available for at least two radiogenically enriched samples, such as B and C, resulting from the mixture of only two components, R^c and R^* , the Pb^{207}/Pb^{206} ratio of the added radiogenic lead, R^* , may be obtained from the slope of the line passing through B and C. Knowledge of the isotopic composition of the contaminating common lead, A, is not necessary. If the two components consist of the radiogenic lead produced by uranium-bearing minerals and its contaminating common lead, it follows that the slope of the line passing through the plotted points of the two samples will give the Pb^{207}/Pb^{206} age of the samples. The quantitative amounts of lead and uranium do not appear in these graphs; therefore, this age is independent of either recent loss or gain of lead or uranium. It is assumed, however, that isotopic fractionation of Pb²⁰⁶ and Pb²⁰⁷ does not occur as a result of the chemical processes of alteration. Figure 1A shows that the addition of varying amounts of a third radiogenic component whose Pb^{207}/Pb^{206} ratio, R, will give points E, F, and G, for which no simple linear relation can be derived. The graphical presentation of the three component mixtures $(R^c, R^*, \text{ and } R)$ is typical of all discordant age sequences not produced by recent gain or loss of lead or uranium. The absence of any systematic relations between three or more samples, each of which contains a mixture of three different leads, suggests that additional data, perhaps the quantitative amounts of lead and uranium in the sample, may be required before a unique solution can be obtained. In figure 1B, the differences between the coordinates for samples (C minus B) and (D minus B) are plotted. These difference points for the two component mixtures, R^c and R^* , must also lie on a straight line passing through the origin. The slope of this line, R^* , is equal to the slope of the line passing through the original points B, C, and D. This analytical relation is mentioned here to simplify the presentation of some of the graphical procedures which follow. Ahrens (1955b) noted the linear relations that are obtained in plots of the ratios of radiogenic N_{207}/N_{235} against radiogenic N_{206}/N_{238} among related samples giving discordant age sequences. Wetherill (1956) developed Ahrens' suggestion into a rigorous graphical analysis of discordant lead-uranium ages resulting from multiple episodes of lead-uranium fractionation. The mathematical proofs of the properties of these ratio plots presented by Wetherill are not easy to follow, whereas the discussion of the concordia plots by Russell and Ahrens (1957) is quite brief. A relatively simple proof has been presented by Stieff and Stern (1961). Finally, to Ahrens' plot of the mole ratios of N_{207}/N_{235} versus N_{206}/N_{238} Wetherill added a curve which he called concordia. (See fig. 2A.) Within this graph the coordinates of all points may be given by a Pb²⁰⁷/ U235 and a Pb206/U238 age equivalent to the two ratios, N_{207}/N_{235} and N_{206}/N_{238} . The curve, concordia, is the locus of all points having equal Pb²⁰⁷/U²³⁵ and Pb²⁰⁶/U²³⁸ ages. Thus, a plot of the N_{207}/N_{235} and N_{206}/N_{238} ratios of any sample falling on this curve is, by definition, concordant, that is, the Pb²⁰⁶/U²³⁸ age=Pb²⁰⁷/U²³⁵ age= the Pb207/Pb206 age. Conversely, any point not lying on this curve must represent a discordant age sequence. It should be stressed that before it is possible to use a graph of this type, it is first necessary to make a correction for the contaminating common lead because the values N_{207} and N_{206} represent only the radiogenic remainders. In those age calculations in which the common lead corrections are significant but have been incorrectly made, a discordant age sequence will result that is indistinguishable from those produced by the other causes already mentioned. #### ALGEBRAIC METHODS To the author's knowledge, only one published algebraic solution has been proposed for the original-radiogenic-lead problem. The lead-uranium isotope age equations originally derived by Keevil (1939), $$t_{\text{(yrs)}} = 1.515 \times 10^{10} \log \left(\frac{1.15 \text{ Pb}^{206}}{\text{U}^{238}} + 1 \right)$$ (1) and $$t_{\text{(yrs)}} = 2.37 \times 10^9 \log \left(\frac{158 \text{ Pb}^{207}}{\text{U}^{238}} + 1 \right)$$ (2) were modified by Tugarinov (1954) to include corrections for original radiogenic lead. The suggested modifications took the form of the following system of equations: $$15.15 \times 10^{9} \log \left[\frac{1.158 \text{ (Pb}^{206} - x \text{ Pb}^{206*})}{\text{U}} + 1 \right]$$ $$= 2.37 \times 10^{9} \log \left[\frac{159.6 \text{ (Pb}^{207} - x \text{ Pb}^{207*})}{\text{U}} + 1 \right] = t_{m}$$ (3) where Pb^{206*} and Pb^{207*} are the percent abundances of the original radiogenic lead, x is the percentage of the occluded original radiogenic lead in the uranium-bearing material, and t_m is the corrected concordant age of the mineral. Tugarinov's age equations, because of their log form, cannot be solved for x, the amount of original radiogenic lead present. In addition, it is necessary to know independently the Pb²⁰⁷/Pb²⁰⁶ ratio of the original radiogenic lead. Given Pb^{206*} and Pb^{207*}, repeated substitutions of different values for x must be made until a value of x is found which will make the Pb²⁰⁶/U²³⁸ age equal to the Pb²⁰⁷/U²³⁵ age. The Pb²⁰⁷/Pb²⁰⁶ age
corrected for the same amounts of original radiogenic lead will then be in agreement with the two leaduranium ages. #### METHOD BASED ON EXPANSION OF e^x Although it is not difficult to obtain an approximately concordant age from discordant isotopic leaduranium data by the graphical methods discussed above, there are geologic problems for which the exact algebraic solutions may be preferred. Furthermore, as Aldrich and Wetherill (1958) have noted, "* * * the algebraic expressions involved are frequently so complex that it is difficult to visualize the physical processes [Wetherill (1956) and Wickman (1955)]." Finally, practical algebraic solutions provide an incentive to improve the measurement of the physical decay constants used in age calculations, the analytical techniques, and sampling methods in order that we may derive all of the useful geologic information that is available in a comprehensive lead-isotope age study. For these reasons, a set of algebraic expressions have been derived which are exact equivalents of the graphical procedures described by Stieff and Stern (1961). In these equations the role of the possible geologic processes can be visualized and it is possible to obtain as exact a concordant age solution as is required by the specific geologic problem. An alternative approach to Tugarinov's algebraic solution of the problem of original radiogenic lead may be developed by using a series expansion of the exponential term in the general age equation where: $$e^{\lambda t} = N_d/N_p + 1 \tag{4}$$ and where N_d and N_p represent the number of atoms of daughter product, D, and radioactive parent, P, respectively; λ represents the decay constant in reciprocal years times 10^{-10} , and t, the age, in 10^{10} years equivalent to the atom ratio N_d/N_p . The value $e^{\lambda t}$ may be approximated as closely as desired by the following series $$e^{\lambda t}=1+\lambda t+\frac{(\lambda t)^2}{2!}+\frac{(\lambda t)^3}{3!}\ldots+\frac{(\lambda t)^n}{n!}$$ Substituting this series for $e^{\lambda t}$, the age equation 4 may be written in the form $$\lambda t + \frac{(\lambda t)^2}{2!} + \frac{(\lambda t)^3}{3!} \dots + \frac{(\lambda t)^n}{n!} = N_d / N_p$$ (5) For values of t that are less than 250 million years, equation 5 may be carried only to the second term without introducing serious errors. As t increases, however, it is necessary either to include a larger number of terms in the expansion of $e^{\lambda t}$ and to work with equations of higher degree than two or to include an additional factor, f_1 or f_2 , which may be obtained from table 2. $$N_d/N_p = \frac{(\lambda t)^2}{2} + \lambda t + f_{(1,2)} \tag{6}$$ This factor $f_{(1,2)}$ represents, for a number of values of t_1 , the difference between the two-term expansion of $e^{\lambda t_1}$ for the U²⁸⁸ series, f_1 , and for the U²⁸⁵ series, f_2 , and the actual value of $e^{\lambda t_1}$ for the particular value of t_1 . The decision to use equation 5 or 6 will be determined by the requirements of the specific geologic age problem, and by the section of the geologic time scale involved in the age calculations. In the use of the second order equations, the selection of the initial age, t_1 , can be guided by the extent and type of discordant age sequences obtained in the trial age calculations. To calculate the age corrected for old radiogenic lead, the initial age t1 and the corresponding values of f_1 and f_2 from the table of factors are chosen so that t_1 is less than or equal to the trial Pb²⁰⁶/U²³⁸ age. A selection of t_1 equal to or greater than the Pb207/Pb206 trial age will yield calculated ages corrected for loss or gain of lead or uranium. Should the nature of the geologic problem require a further refinement in the first calculated age, a second choice of t_1 based on the first calculated age, t, can be made. With experience in the initial choice of t_i , it has been found that two age calculations will usually suffice for most geologic problems. Table 2.—Factors for use with equations of the second degree | t_i (millions of years) | U^{238} series f_1 | U ²³⁵ series
f ₂ | t _i (millions of years) | U^{238} series f_1 | U ²³⁵ series
f ₂ | |---------------------------------|---|--|--------------------------------------|--|--| | 0
20
40
60
80 | 0. 0000 ₀
. 0000 ₀
. 0000 ₀
. 0000 ₀ | 0. 0000 ₀
. 0000 ₀
. 0000 ₁
. 0000 ₃
. 0000 ₈ | 900
910
920
930
940 | 0. 0004 ₆
. 0004 ₇
. 0004 ₉
. 0005 ₀
. 0005 ₂ | 0. 1410 ₂ . 1461 ₉ . 1514 ₈ . 1569 ₁ . 1624 ₈ | | 100
120
140
160
180 | . 0000 ₀
. 0000 ₀
. 0000 ₀
. 0000 ₀ | . 0001 ₆
. 0002 ₇
. 0004 ₃
. 0006 ₅
. 0009 ₃ | 950
960
970
980
990 | . 00054
. 00056
. 00057
. 00059
. 00061 | . 16819
. 17404
. 18004
. 18619
. 19249 | | 200 | . 0000 ₀ | . 0012 ₈ | 1000 | . 0006 ₃ | $\begin{array}{c} \textbf{.} \ 1989_3 \\ \textbf{.} \ 2055_4 \\ \textbf{.} \ 2123_1 \\ \textbf{.} \ 2192_3 \\ \textbf{.} \ 2263_2 \end{array}$ | | 210 | . 0000 ₁ | . 0014 ₉ | 1010 | . 0006 ₅ | | | 220 | . 0000 ₁ | . 0017 ₂ | 1020 | . 0006 ₇ | | | 230 | . 0000 ₁ | . 0019 ₇ | 1030 | . 0006 ₉ | | | 240 | . 0000 ₁ | . 0022 ₄ | 1040 | . 0007 ₁ | | | 250 | . 0000 ₁ | . 0025 ₄ | 1050 | . 0007 ₃ | $egin{array}{c} \textbf{.} 2335_7 \\ \textbf{.} 2409_9 \\ \textbf{.} 2485_8 \\ \textbf{.} 2563_4 \\ \textbf{.} 2642_8 \\ \end{array}$ | | 260 | . 0000 ₁ | . 0028 ₇ | 1060 | . 0007 ₅ | | | 270 | . 0000 ₁ | . 0032 ₂ | 1070 | . 0007 ₇ | | | 280 | . 0000 ₁ | . 0036 ₀ | 1080 | . 0008 ₀ | | | 290 | . 0000 ₁ | . 0040 ₁ | 1090 | . 0008 ₂ | | | 300 | . 0000 ₂ | . 0044 ₅ | 1100 | . 0008 ₄ | . 27239 | | 310 | . 0000 ₂ | . 0049 ₂ | 1110 | . 0008 ₆ | . 28069 | | 320 | . 0000 ₂ | . 0054 ₃ | 1120 | . 0008 ₉ | . 28918 | | 330 | . 0000 ₂ | . 0059 ₇ | 1130 | . 0009 ₁ | . 29784 | | 340 | . 0000 ₂ | . 0065 ₄ | 1140 | . 0009 ₃ | . 30670 | | 350
360
370
380
390 | . 0000 ₃
. 0000 ₃
. 0000 ₃
. 0000 ₃
. 0000 ₄ | $\begin{array}{c} .\ 0071_6 \\ .\ 0078_1 \\ .\ 0085_0 \\ .\ 0092_4 \\ .\ 0100_1 \end{array}$ | 1150
1160
1170
1180
1190 | $\begin{array}{c} .0009_{6} \\ .0009_{9} \\ .0010_{2} \\ .0010_{4} \\ .0010_{7} \end{array}$ | .31574
.32499
.33443
.34407
.35392 | | 400
410
420
430
440 | . 0000 ₄
. 0000 ₅
. 0000 ₅
. 0000 ₅ | $\begin{array}{c} .\ 0108_3 \\ .\ 0116_9 \\ .\ 0126_0 \\ .\ 0135_6 \\ .\ 0145_6 \end{array}$ | 1200
1210
1220
1230
1240 | . 0011 ₀
. 0011 ₂
. 0011 ₅
. 0011 ₈
. 0012 ₁ | $\begin{array}{c} \textbf{.}\ 3639_6\\ \textbf{.}\ 3742_2\\ \textbf{.}\ 3846_9\\ \textbf{.}\ 3953_8\\ \textbf{.}\ 4062_8\\ \end{array}$ | | 450 | . 0000 ₀ | $\begin{array}{c} .\ 0156_2 \\ .\ 0167_3 \\ .\ 0178_9 \\ .\ 0191_1 \\ .\ 0203_8 \end{array}$ | 1250 | . 0012 ₄ | . 4174 ₀ | | 460 | . 0000 ₆ | | 1260 | . 0012 ₇ | . 4287 ₆ | | 470 | . 0000 ₀ | | 1270 | . 0013 ₀ | . 4403 ₃ | | 480 | . 0000 ₇ | | 1280 | . 0013 ₄ | . 4521 ₄ | | 490 | . 0000 ₇ | | 1290 | . 0013 ₇ | . 4641 ₈ | | 500 | . 0000 ₃ | $\begin{array}{c} .0217_1 \\ .0231_0 \\ .0245_5 \\ .0260_6 \\ .0276_4 \end{array}$ | 1300 | .0014 ₀ | . 4764 ₅ | | 510 | . 0000 ₈ | | 1320 | .0014 ₇ | . 5017 ₃ | | 520 | . 0000 ₉ | | 1340 | .0015 ₄ | . 5279 ₉ | | 530 | . 0000 ₉ | | 1360 | .0016 ₀ | . 5552 ₆ | | 540 | . 0001 ₀ | | 1380 | .0016 ₈ | . 5835 ₈ | | 550 | . 0001 ₀ | $\begin{array}{c} .\ 0292_8 \\ .\ 0309_9 \\ .\ 0327_6 \\ .\ 0346_1 \\ .\ 0365_3 \end{array}$ | 1400 | .0017 ₆ | . 61296 | | 560 | . 0001 ₁ | | 1420 | .0018 ₃ | . 64344 | | 570 | . 0001 ₁ | | 1440 | .0019 ₁ | . 67504 | | 580 | . 0001 ₂ | | 1460 | .0020 ₀ | . 70781 | | 590 | . 0001 ₃ | | 1480 | .0020 ₈ | . 74175 | | 600
610
620
630
640 | . 0001 ₃
. 0001 ₄
. 0001 ₅
. 0001 ₆ | $\begin{array}{c} .\ 0385_2 \\ .\ 0405_8 \\ .\ 0427_3 \\ .\ 0449_5 \\ .\ 0472_5 \end{array}$ | 1500
1520
1540
1560
1580 | .00217
.00226
.00235
.00244
.00254 | .7769 ₀ .8133 ₂ .8510 ₀ .8900 ₀ .9303 ₄ | | 650 | . 0001 ₇ | . 0496 ₃ | 1600 | .00264 | $\begin{array}{c} .9720_{6} \\ 1.015_{2} \\ 1.059_{8} \\ 1.105_{8} \\ 1.153_{4} \end{array}$ | | 660 | . 0001 ₈ | . 0521 ₀ | 1620 | .00274 | | | 670 | . 0001 ₉ | . 0546 ₄ | 1640 | .00285 | | | 680 | . 0002 ₀ | . 0572 ₈ | 1660 | .00298 | | | 690 | . 0002 ₀ | . 0600 ₁ | 1680 | .00307 | | | 700 | . 0002 ₁ | . 0628 ₂ | 1700 | .00318 | $egin{array}{l} 1.\ 202_6 \\ 1.\ 253_3 \\ 1.\ 305_7 \\ 1.\ 359_7 \\ 1.\ 415_5 \end{array}$ | | 710 | . 0002 ₂ | . 0657 ₃ | 1720 | .00330 | | | 720 | . 0002 ₃ | . 0687 ₄ | 1740 | .00341 | | | 730 | . 0002 ₄ | . 0718 ₃ | 1760 | .00354 | | | 740 | . 0002 ₅ | . 0750 ₃ | 1780 | .00366 | | | 750 | . 00026 | . 0783 ₂ | 1800 | .0037 ₉ | $\begin{array}{c} 1.473_0 \\ 1.532_3 \\ 1.593_5 \\ 1.656_5 \\ 1.721_5 \end{array}$ | | 760 | . 00027 | . 0817 ₂ | 1820 | .0039 ₂ | | | 770 | . 00028 | . 0852 ₂ | 1840 | .0040 ₅ | | | 780 | . 00030 | . 0888 ₃ | 1860 | .0041 ₉ | | | 790 | . 00031 | . 0925 ₄ | 1880 | .0043 ₃ | | | 800 | . 0003 ₂ | $\begin{array}{c} .\ 0963_{6} \\ .\ 1002_{9} \\ .\ 1043_{4} \\ .\ 1085_{0} \\ .\ 1127_{8} \end{array}$ | 1900 | .00447 | 1. 7884 | | 810 | . 0003 ₃ | | 1920 | .00462 | 1. 8574 | | 820 | . 0003 ₄ | | 1940 | .00477 | 1. 9284 | | 830 | . 0003 ₆ | | 1960 | .00492 | 2. 0015 | | 840 | . 0003 ₇ | | 1980 | .00508 | 2. 0768 | | 850 | . 0003 ₉ | .11717 | 2000 | . 00524 | 2. 1544 | | 860 | . 0004 ₀ | .12169 | 2020 | . 00540 | 2. 2341 | | 870 |
. 0004 ₁ | .12634 | 2040 | . 00557 | 2. 3162 | | 880 | . 0004 ₃ | .13111 | 2060 | . 00574 | 2. 4007 | | 890 | . 0004 ₄ | .13600 | 2080 | . 00591 | 2. 4876 | Table 2.—Factors for use with equations of the second degree—Con. | (millions of years) | U ²³⁸ series
f ₁ | U ²³⁵ series
f ₂ | (millions of years) | U ²³⁸ series
f ₁ | U ²³⁵ series
f ₂ | |--------------------------------------|---|---|--------------------------------------|--|---| | 2100
2120
2140
2160
2180 | 0.0060 ₉
.0062 ₇
.0064 ₈
.0066 ₄
.0068 ₂ | 2. 5769
2. 6688
2. 7633
2. 8605
2. 9603 | 2900
2920
2940
2960
2980 | 0. 0165 ₆
. 0169 ₂
. 0172 ₉
. 0176 ₆
. 0180 ₃ | 8. 971 ₁
9. 225 ₈
9. 486 ₆
9. 753 ₆
10. 02 ₇ | | 2200
2220
2240
2260
2280 | .0070 ₃
.0072 ₃
.0074 ₃
.0076 ₄
.0078 ₅ | 3. 062 ₉
3. 168 ₄
3. 276 ₇
3. 388 ₀
3. 502 ₄ | 3000
3020
3040
3060
3080 | .0184 ₁
.0188 ₆
.0191 ₉
.0195 ₉
.0199 ₉ | 10. 30 ₇
10. 59 ₃
10. 88 ₆
11. 18 ₆
11. 49 ₃ | | 2300
2320
2340
2360
2380 | .0080 ₆
.0082 ₈
.0085 ₁
.0087 ₃ | 3. 619 ₈
3. 740 ₃
3. 864 ₂
3. 991 ₂
4. 121 ₇ | 3100
3120
3140
3160
3180 | .0204 ₀
.0208 ₁
.0212 ₄
.0216 ₆
.0220 ₉ | 11.80s
12.12e
12.45s
12.79s
13.13e | | 2400
2420
2440
2460
2480 | .0092 ₀
.0094 ₄
.0096 ₈
.0099 ₃ | 4. 2556
4. 3931
4. 5341
4. 6788
4. 8273 | 3200
3220
3240
3260
3280 | . 02253
. 02298
. 02343
. 02388
. 02434 | 13. 49 ₂
13. 85 ₂
14. 22 ₁
14. 59 ₈
14. 98 ₄ | | 2500
2520
2540
2560
2580 | .01044
.0107 ₀
.01097
.01124 | 4. 9796
5. 1358
5. 2960
5. 4603
5. 6288 | 3300
3320
3340
3360
3380 | . 0248 ₁
. 0252 ₉
. 0257 ₇
. 0262 ₅ | 15. 378
15. 782
16. 195
16. 617
17. 048 | | 2600
2620
2640
2660
2680 | .0117 ₉
.0120 ₈
.0123 ₆
.0126 ₆ | 5. 8016
5. 9786
6. 1602
6. 3463
6. 5371 | 3400
3420
3440
3460
3480 | . 0272 ₅
. 0277 ₆
. 0282 ₇
. 0287 ₉
. 0293 ₁ | 17. 49 ₀
17. 94 ₁
18. 40 ₃
18. 87 ₄
19. 35 ₆ | | 2700
2720
2740
2760
2780 | . 0132 ₆
. 0135 ₇
. 0138 ₈
. 0142 ₆
. 0145 ₂ | 6. 732 ₅
6. 932 ₈
7. 138 ₁
7. 348 ₄
7. 563 ₉ | 3500
3520
3540
3560
3580 | . 0298 ₅
. 0303 ₉
. 0309 ₃
. 0314 ₉
. 0320 ₅ | 19. 849
20. 354
20. 869
21. 395
21. 934 | | 2800
2820
2840
2860
2880 | . 01485
. 01518
. 01552
. 01586
. 01621 | 7. 784s
8. 0107
8. 242s
8. 479s
8. 7224 | 3600
3620
3640
3660
3680 | . 0326 ₂
. 0331 ₉
. 0337 ₇
. 0343 ₆
. 0349 ₆ | 22. 484
23. 046
23. 621
24. 208
24. 809 | #### CALCULATION OF CONCORDANT AGES #### ONE SAMPLE #### RADIOGENIC Pb207/Pb206 RATIO GIVEN If the Pb²⁰⁷/Pb²⁰⁸ ratio, R*, of the radiogenic lead lost at a time, t, or the contaminating original radiogenic lead is assumed or is inferred from independent evidence, such as the isotopic study of the lead in associated nonradioactive sulfides, it is possible to obtain an algebraic concordant age solution for a single sample without knowledge of either the amount of contaminating radiogenic Pb²⁰⁶ and Pb²⁰⁷ present in the sample or the extent of a single past period of alteration. However, this concordant age will be valid only if the following conditions are met. - 1. The initial correction for common lead has been correctly made so that the remaining Pb²⁰⁸ and Pb²⁰⁷ represent only the total radiogenic lead in the sample. - 2. The sample has not selectively lost or gained radioactive daughter products since the time of mineral formation. - 3. The sample has not been altered recently. It is easiest to consider first the correction for original radiogenic lead. The solution for this problem will also yield the concordant alteration age. Writing equation 5 for the Pb²⁰⁶/U²³⁸ and Pb²⁰⁷/U²³⁵ ratios, respectively, one obtains the following: $$\frac{(\lambda_1 t)^n}{n!} \cdots + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t = \frac{N_6 - N_6^*}{N_8}$$ (7) and $$\frac{(\lambda_2 t)^n}{n!} \cdots + \frac{(\lambda_2 t)^2}{2!} + \lambda_2 t = \frac{N_7 - N_7^*}{N_5}$$ (8) where λ_1 =the decay constant for U²³⁸, $\times 10^{-10}y^{-1}$. λ_2 =the decay constant for U²³⁵, $\times 10^{-10}y^{-1}$. N_6 = a number proportional to the total number of radiogenic Pb²⁰⁶ atoms in sample A. N_6 *=a number proportional to the number of original radiogenic Pb²⁰⁶ atoms in sample A. N_7 =a number proportional to the total number of radiogenic Pb²⁰⁷ atoms in sample A. N_7^* =a number proportional to the number of original radiogenic Pb²⁰⁷ atoms in sample A. N_5 =a number proportional to the number of U^{235} atoms present now in sample A. N_8 =a number proportional to the number of U^{238} atoms present now in sample A. t=age in years $\times 10^{10}$ Equations 7 and 8 may be written in the form, $$N_6 - N_8 \left(\frac{(\lambda_1 t)^n}{n!} \cdots + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t \right) = N_6^*$$ (9) and $$N_7 - N_5 \left(\frac{(\lambda_2 t)^n}{n!} \cdots + \frac{(\lambda_2 t)^2}{2!} + \lambda_2 t \right) = N_7^*.$$ (10) Dividing equation 10 by equation 9 one gets: $$\frac{N_{5}}{N_{8}} \left[\frac{\frac{N_{7}}{N_{5}} - \left(\frac{(\lambda_{2}t)^{n}}{n!} \cdots + \frac{(\lambda_{2}t)^{2}}{2!} + \lambda_{2}t\right)}{\frac{N_{6}}{N_{8}} - \left(\frac{(\lambda_{1}t)^{n}}{n!} \cdots + \frac{(\lambda_{1}t)^{2}}{2!} + \lambda_{1}t\right)} \right] = \frac{N_{7}^{*}}{N_{6}^{*}}$$ and substituting the ratios one obtains: $$R \left[\frac{R_5 - \left(\frac{(\lambda_2 t)^n}{n!} \cdots + \frac{(\lambda_2 t)^2}{2!} + \lambda_2 t \right)}{R_8 - \left(\frac{(\lambda_1 t)^n}{n!} \cdots + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t \right)} \right] = R^*$$ (11) where $R^*=N_7^*/N_6^*$, the ratio of the original radiogenic lead, and where $R=N_5/N_8$ =the present ratio of U²³⁵ to U²³⁸, a constant, =1/137.7=0.007262₁; $R_8 = N_6/N_8$ and $R_5 = N_7/N_5$. Expanding equation (11) and collecting terms one obtains: $$\left(\frac{R^*\lambda_1^n}{n!} - \frac{R\lambda_2^n}{n!}\right) t^n \dots + \left(\frac{R^*\lambda_1^3}{3!} - \frac{R\lambda_2^3}{3!}\right) t^3 + \left(\frac{R^*\lambda_1^2}{2!} - \frac{R\lambda_2^2}{2!}\right) t^2 + (R^*\lambda_1 - R\lambda_2) t + (RR_5 - R^*R_8) = 0.$$ (12) If computing facilities are available, equation 12 may be easily programed to solve directly for t. The degree of the equation used is determined in each case by the approximate age range of the sample being dated but generally will not exceed 10. For values of R^* , R_5 , and R_8 that are of geologic interest, equation 12 has two positive real roots. As the degree of this equation increases, the smaller positive root rapidly approaches the concordant age, t corrected for original radiogenic lead as shown in figure 2B. The larger positive root approaches more slowly the value t as shown in figure 2A and is the concordant age obtained by correcting for loss or gain of lead or uranium at some time, t_1 , in the past. In the latter case, R^* is the Pb²⁰⁷/Pb²⁰⁶ ratio of the radiogenic lead produced in the time interval t to t_1 and lost at the time, t_1 . If computing facilities are not available, equation 12 may be taken only to the second power of t. As in equation 6, when t is greater than 250 million years factors f_1 and f_2 should be added for the U²³⁸ and U²³⁵ series, respectively. These factors obtained from table 2 for different values of t_1 , compensate for the failure of this second degree equation to approximate closely enough the actual value of $e^{\lambda t}$ for a specific value of t. Equation 12 then takes the form $$\left(\frac{R^*\lambda_1^2}{2!} - \frac{R\lambda_2^2}{2!}\right) t^2 + (R^*\lambda_1 - R\lambda_2)t + (RR_5 - R^*R_8 + R^*f_1 - Rf_2) = 0.$$ (13) Solving for t, $$t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ where $$2a = (R^*\lambda_1^2 - R\lambda_2^2)$$ $b = (R^*\lambda_1 - R\lambda_2)$ $c = (RR_5 - R^*R_8 - Rf_2 + R^*f_1)$ and where f_1 =the factor for the U²³⁸ series depending on t_1 f_2 =the factor for the U²³⁵ series depending on t_1 . For values of R^* , R_5 , and R_8 that are of geologic interest, equation 13 also has two positive real roots. In using equation 13, the smaller root can be made to approach the concordant age corrected for original radiogenic lead by selecting values of f_1 and f_2 from table 2 for t_1 that are less than the trial Pb²⁰⁶/U²²⁸ age. With even approximately correct values for f_1 and f_2 , the smaller root will fall close to the actual age of the sample corrected for original radiogenic lead. The larger root, however, depending on the extent of the lead-uranium age discordancy, may depart substantially from the concordant "lead-loss age." If it desired to calculate exactly the alteration or "lead-loss age" using equation 13, values of f_1 and f_2 must be chosen from the table for t_1 equal to or greater than the Pb²⁰⁷/Pb²⁰⁶ age. Because the terms f_1 and f_2 become increasingly important as t increases, it may be desirable to make a rough graphical lead-loss solution to guide the initial choice of t_1 . The departure of the first calculated age, t, from the exact lead-loss solution may be tested by comparing the calculated value of R^* with the given value of R^* (using equation 11). The first calculated value of t from
equation 13 along with the appropriate values of f_1 and f_2 for this calculated value of t from table 2 may be substituted in equation 11. Wickman, 1939, Kulp and others (1954), Greenhalgh and Jeffery (1959), and Stieff and others (1959) have prepared tables for the calculation of lead isotope ages. If the tables by Stieff and others (1959), (hereinafter referred to as the age tables) are used, the terms $[f_1+(\lambda_1 t)^2/2+\lambda_1 t]$ and $[f_2+(\lambda_2t)^2/2+\lambda_2t]$ may be replaced by values for the N_{206}/N_{238} and N_{207}/N_{235} ratios for the appropriate value of t. If for the particular geologic problem the agreement between the calculated R^* and the given R^* is not satisfactory, a new t_1 is chosen and the lead-loss age is recalculated. This age calculation may be repeated until the desired degree of agreement between the calculated R^* and the given R^* is obtained. #### EXAMPLE OF CALCULATION An example of the use of equations 12 and 13 for the calculation of a concordant age corrected for original radiogenic lead is given below. The following isotopic data are available for a hypothetical unaltered sample of uraninite, the true age of which is 200 million years and which contains (chemical scale) 1.14₄ percent Pb and 27.92₃ percent U: | | Pb ²⁰⁴ | Pb^{205} | Pb ²⁰⁷ | Pb ²⁰⁸ | |---|-------------------|---------------------|--------------------|---------------------------| | Isotopic composition of lead from uraninite (in atom percent) | 0. 2125 | 83. 93 ₆ | 7. 64 ₆ | 8. 20 ₃ | | mon lead (in atom percent) | 1. 356 | 25. 044 | 21. 244 | 52. 35 ₂ | Ratio of original radiogenic lead present= $N_7*/N_6*=R*=0.0718_6$ as found in associated nonradioactive mineral. Using Pb²⁰⁴ as the "index" of the amount of common lead present and correcting for the proportionate amounts of nonradiogenic Pb²⁰⁶, Pb²⁰⁷, and Pb²⁰⁸, the remaining atom percent of radiogenic Pb²⁰⁶ and Pb²⁰⁷ may be obtained as follows: | Tankania and at an | Pb^{204} | Pb^{206} | Pb^{207} | Pb^{208} | |---|------------|---------------------|--------------------|------------| | Isotopic analysis of urani-
nite lead
Isotopic analysis of com- | 0. 2125 | 83. 93 ₆ | 7. 646 | 8. 203 | | mon lead | 0. 2125 | 3. 92 ₃ | 3. 328 | 8. 203 | | Radiogenic lead produced by uranium | 0. 000 | 80. 01 ₃ | 4. 31 ₈ | 0. 000 | In order to use equations 12 or 13, it is necessary to express the chemical lead and uranium data as quantities directly proportional to the number of atoms of the particular radioactive parent or radiogenic daughter isotope in the sample at the present time. For exact solutions, the quantitative lead analyses, usually reported in the chemical scale, must be corrected for the actual difference in the physical atomic weight of the radiogenic lead in the sample. In this example it is 206.27, compared to the assumed average physical atomic weight, 207.28, used in the chemical analysis. The correction factor for this particular case is 207.28/ 206.27. Failure to correct the quantitative chemicallead data for the actual atomic weight of the radiogenic lead in the sample will introduce additional errors of 0.2 to 0.5 percent in the final calculated lead-uranium ages. This corrected weight must now be multiplied by the atom-percent abundance of the radiogenic Pb²⁰⁶ or Pb²⁰⁷ in the sample after correction for common lead and divided by the atomic weight of the radiogenically enriched lead in the sample to get a quantity exactly proportional to the number of atoms present. Although it is necessary to include both Avogadro's number and the conversion factor from the chemical to the physical scales to obtain numbers of atoms, both of these terms cancel out in the ratio of the number of atoms of lead to uranium. $$N_6 = \frac{1.14 \times 207.28 \times 80.01_3}{206.27 \times 206.27} = 0.4459_4$$ $$N_7 = \frac{1.14_4 \times 207.28 \times 4.31_8}{206.27 \times 206.27} = 0.0240_6$$ N_7 may be more easily obtained by multiplying N_6 by the ratio of the radiogenic Pb²⁰⁷ to Pb²⁰⁶ remaining after correction for common lead, that is, $0.4459_4 \times \frac{4.31_8}{80.01_3} = 0.0240_6$. Similarly, N_5 and N_5 may be obtained by multiplying the percent uranium (chemical scale) by the atom-per- cent abundance of the U²³⁵ or U²³⁸, and dividing by the physical atomic weight of U, 238.103. $$N_8 = \frac{27.92_3 \times 99.27_9}{238.103} = 11.64_2$$ $$N_{5} = \frac{27.92_{3} \times 0.720_{9}}{238.103} = 0.08454_{6}$$ N_5 may also be obtained by dividing N_8 by 137.7, the atom ratio of U²³⁸ to U²³⁵; that is, 11.64₂÷137.7 =0.08454₆. Expressing these analytical data as ratios of the number of atoms of radiogenic lead and uranium and using the age tables, we obtain the following ratios and discordant trial ages: If, in the course of the evaluation of this discordant age sequence, it is now desired to test the assumption, among others, that an additional correction for original radiogenic lead should have been made; equation 12 can be used to obtain a single corrected concordant age, t. As has been mentioned, equation 12 has been programed for the Geological Survey's digital computer. The values for R_5 , R_8 , R^* and R given for this example, when substituted in equation 12, yield two positive real roots of t (in millions of years) as the degree of the equation increases from 2 to 10 (table 3). In this example, even the second degree equation yields a value for the smaller positive real root that closely approximates the hypothetical age of 200 million years. For such young ages, an equation of the third degree would give an age corrected for original radiogenic lead with less uncertainty than the uncertainty introduced by the experimental errors. The larger positive root converges more slowly on the "lead loss" age. An equation of the fifth degree, however, gives a geologically useful answer. Table 3.—Computed concordant ages obtained from equation 12 | | Age (millions of years) | | | | |--------------------|--|---|--|--| | Degree of equation | Corrected for original radiogenic lead | Corrected for loss or gain of lead or uranium | | | | 2 | 197,34
200,24
200,39
200,40
200,40
200,40
200,40
200,40 | 1344.5
908.8
860.7
853.0
852.8
852.8
852.8
852.8 | | | The decision to include the terms R^*f_1 and Rf_2 in equation 13 is determined both by the nature of the problem and by the approximate range in age of the sample being dated. An examination of table 2 for values of t_1 in the range of 250 million years suggests that both f_1 and f_2 can be initially neglected. This decision is further supported by the fact that for this hypothetical problem, a calculated age within five percent of the actual age, and an agreement between the Pb²⁰⁶/U²³⁸ and Pb²⁰⁷/U²³⁵ ages of within one percent would be more than adequate. The ratio of the original radiogenic lead, R^* , used in equation 13 may be assumed, or, as in this example, it may be obtained from the isotopic study of the lead extracted from associated nonradioactive minerals. Substituting in 13 the values $R=1/137.7=0.007262_1$, $R_5=0.2845_8$, $R_9=0.03830_7$, and $R^*=0.0718_5$, where $$\begin{array}{l} 2a = (R^*\lambda_1^2 - R\lambda_2^2) \times 10^{-20} \ y^{-1} \\ = (0.0718_5 \times 2.362_1 - 0.007262_1 \times 94.51_0) \times 10^{-20} y^{-1} \\ = -0.5166_2 \times 10^{-20} \ y^{-1} \\ b = (R^*\lambda_1 - R\lambda_2) \times 10^{-10} \ y^{-1} \\ = (0.0718_5 \times 1.536_9 - 0.007262_1 \times 9.721_6) \times 10^{-10} \ y^{-1} \\ = 0.03982_6 \times 10^{-10} \ y^{-1} \\ c = (RR_5 - R^*R_8) \\ = (0.007262_1 \times 0.2845_8 - 0.0718_5 \times 0.03830_7) \\ = -0.000685_7 \end{array}$$ t becomes $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$= \left[\frac{-0.03982_6 \pm \sqrt{.001586_1 - .0007084_9}}{-0.5166_2} \right] \times 10^{10} y$$ $$= \left[\frac{-0.03982_6 \pm \sqrt{.0008776_4}}{-0.5166_2} \right] \times 10^{10} y$$ $$= \left[\frac{-0.03982_6 \pm .02962_5}{-0.5166_2} \right] \times 10^{10} y$$ $t=0.0197_4\times10^{10}=197$ m.y. (age corrected for old radiogenic lead) \mathbf{or} $t=0.1344_3\times10^{10}=1344._3$ m.y. (age corrected for loss or gain of lead or uranium). These two concordant ages are in close agreement with the solutions for equation 12 expanded to the second degree (table 3). For most geologic problems falling in this age range, the value of t=197 m.y. would be acceptable; the age would be rounded to the nearest 5 million years, that is, 195 million years. If, however, a closer approxi- mation of the true age is required, a test of the convergence of the lead-uranium and lead-lead ages may be made by first calculating N_6^* using equation 7 and $t=0.0197\times 10^{10}$ y. If the age tables are used, the sum of the terms $\frac{(\lambda_1 t)^n}{n!} \cdot \cdot \cdot \cdot + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t$ can be replaced with the appropriate value of N_{206}/N_{208} for $t=0.0197\times 10^{10}$ years. If the age tables are not used, the term f_1 for the closest value of t_1 from table 2 must be added to the two-term expansion of $e^{\lambda_1 t}$, that is, $$\left[f_1+\frac{(\lambda_1t)^2}{2!}+\lambda_1t\right].$$ Given the ratio $N_7^*/N_6^*=R^*=.0718_5$, when $N_6^*=0.0880_0$, N_7^* is found to be 0.00632_3 . The Pb²⁰⁶/U²³⁸, Pb²⁰⁷/U²³⁵ and Pb²⁰⁷/Pb²⁰⁶ ages corrected for original radiogenic Pb²⁰⁶ and Pb²⁰⁷ can be obtained now by subtracting N_6^* and N_7^* from the total number of atoms of N_6 and N_7 , respectively. The recalculated ages are: $$\frac{\text{Pb}^{206}/\text{U}^{238}}{197 \text{ m y.}} \quad \frac{\text{Pb}^{207}/\text{U}^{235}}{196 \text{ m.y.}} \quad
\frac{\text{Pb}^{207}/\text{Pb}^{206}}{184 \text{ m.y.}}$$ As the Pb²⁰⁶/U²³⁸ and Pb²⁰⁷/U²³⁵ ages are nearly in agreement and because the Pb²⁰⁷/Pb²⁰⁶ age is less than the two lead-uranium ages, a slightly larger value is chosen for t_1 , that is, t_1 =198 m.y. In table 2, it is noted that for t_1 =198 m.y., f_1 is negligible and f_2 =0.00125. The value of the coefficient c in equation 13 now becomes—0.0006932, where Rf_2 =0.0000091, while the coefficients a and b in equation 13 remain unchanged. Using these coefficients in equation 13 the new age is found to be, t=200.0 m.y. For this value of t, it can be shown that the lead-uranium and lead-lead ages converge exactly: $$\frac{\text{Pb}^{206/\text{U}^{238}}}{200 \text{ m.y.}} \frac{\text{Pb}^{207/\text{U}^{236}}}{200 \text{ m.y.}} \frac{\text{Pb}^{207/\text{Pb}^{206}}}{200 \text{ m.y.}}$$ It is thus possible, as part of the evaluation of a discordant age sequence, to calculate the single concordant age that would result from an additional correction for original radiogenic lead of known ratio. It is not necessary that the amounts of original radiogenic Pb²⁰⁶ and Pb²⁰⁷ be known. In this case, however, it is necessary that the proper common-lead correction be made, and that the sample be unaltered. This corrected age may now be compared with similar calculations on other samples from the same area or deposit. Finally, the ages obtained assuming correction for original radiogenic lead as well as losses or gains of lead and uranium must be combined with both field and other laboratory data to establish the most consistent interpretation of all the evidence, isotopic as well as geologic. FIGURE 2.—Ratios of the number of atoms of radiogenic Pb²⁰⁷ to U²³³, N₂₀₇/N₂₅₅, plotted against the ratios of the number of atoms of radiogenic Pb²⁰⁶ to U²³⁸, N₂₀₇/N₂₃₅. Left, Uranium-bearing samples which lost or gained lead or uranium at a time, t₁, in the past. Right, Uranium-bearing samples contaminated with an original radiogenic lead having a Pb²⁰⁷/Pb²⁰⁸ ratio, R*. #### GRAPHIC SOLUTION Figure 2A is the graphic equivalent of the algebraic concordant age solution assuming a single period of past loss or gain of lead or uranium. The graphic equivalent of the correction for original radiogenic lead is shown in figure 2B. A detailed discussion of the concordant graphical solutions for this case as well as for the other cases in this paper have been presented by Stieff and Stern (1961). Samples A, B, and C (fig. 2A) are assumed to have been formed at the same time, t. Sample A has not been altered during its history, while B lost lead or gained uranium, and C lost uranium or gained lead at a time, t_1 , in the past. The Pb^{207}/Pb^{206} ratio of the radiogenic lead present in A, B, and C at the time, t_1 , is given by the slope of the line, R^* , passing through the points t and t_1 on the concordant age curve, times 1/137.7, the ratio of the present day relative abundance of U^{235}/U^{238} . Thus, given R^* and the discordant age data for one sample, B, it is possible to find the concordant unaltered age, t, and the time of alteration, t_1 , by passing a line through the point B whose slope is $R^* \times 137.7$, and noting the two intersections with the concordant age curve. Samples A, B, C and D (fig. 2B) are also assumed to have been formed at the same time, t. At the time of their formation, however, B, C, and D were contaminated with different amounts of an older radiogenic lead having a Pb²⁰⁷/Pb²⁰⁶ ratio, R*. These samples would therefore, at the time of their formation, have the N_{207}/N_{235} and N_{206}/N_{238} ratios shown by the points b, c, and d lying on the line of slope $R^* \times 137.7$, passing through the origin. If the samples have been unaltered since their formation, the N_{207}/N_{235} and N_{206}/N_{238} ratios will move from b, c, and d to B, C, and D. Given, for example, R^* and the discordant N_{207}/N_{235} and N_{206}/N_{200} N_{238} age ratios for B, the concordant age, t, corrected for original radiogenic lead can be obtained by passing a line with a slope $R^* \times 137.7$ through the point B. In this instance, t_1 would represent the maximum age of the uraniferous source material which provides the older, contaminating radiogenic lead. #### COMMON Pb207/Pb206 RATIO GIVEN The correction of lead-isotope-age data for contaminating common lead is an important problem closely related to the problem of correcting for original radiogenic lead. In some age calculations, the corrections for common lead are so large that it is necessary to know exactly the isotopic composition of the contaminating common lead. If the exact common-lead correction is not made, it is difficult to determine whether the lead-uranium and lead-lead discrepancies are a consequence of the assumed isotopic composition of the contaminating lead, experimental errors in the determination of the index isotope Pb²⁰⁴ or Pb²⁰⁸, or other factors. One method of correcting for common lead, as indicated on page E8 is the use of the Pb²⁰⁴ abundance (and in certain special instances, the Pb²⁰⁸ abundance) as an "index" of the amount of common lead present. The isotopic composition of the contaminating common lead in the radioactive mineral may be assumed to be identical with the analyzed isotopic composition of the lead in associated nonradioactive minerals, such as galena. Alternately, if such data are not available, an isotopic composition may be chosen that is presumably representative of the lead available at the time of mineral formation. In either case, it is necessary to have very precise isotopic data on the abundance of the "index" isotope (Pb204 or Pb208) used in the correction calculations. The role of Pb²⁰⁴ as the "index" is further complicated by the fact that Pb²⁰⁴ is the least abundant of the four isotopes and is consequently the most difficult to measure precisely in highly radiogenic samples. It would be desirable, therefore, if the common lead correction could be made without reference to either Pb²⁰⁴ or Pb²⁰⁸. For a calculation of this type to be valid, it is necessary that: (a) the sample be unaltered in any way since its formation, and (b) the sample be uncontaminated by original radiogenic lead. An examination of equation 12 suggests an alternative solution. For ages in excess of current estimates of the age of the earth (4.5 billion years), R^* , the ratio of the radiogenic Pb²⁰⁷ to Pb²⁰⁶, rapidly approaches the value of the Pb²⁰⁷/Pb²⁰⁶ ratio found in common leads. If the notation used in equation 13 is now modified so that ' N_6 and ' N_7 are proportional to the total number of atoms of Pb²⁰⁶ and Pb²⁰⁷ in a sample, then the number of atoms of common Pb²⁰⁶ and Pb²⁰⁷, N_6^c and N_7^c will be given by the following equations: $${}^{t}N_{6}-N_{8}\left(\frac{(\lambda_{1}t)^{n}}{n!}\cdots+\frac{(\lambda_{1}t)^{2}}{2!}+\lambda_{1}t\right)=N_{6}^{c}$$ (14) and $${}^{t}N_{7}-N_{5}\left(\frac{(\lambda_{2}t)^{n}}{n!}\cdots+\frac{(\lambda_{2}t)^{2}}{2!}+\lambda_{2}t\right)=N_{7}^{c}$$ (15) Dividing equation 15 by equation 14 one gets, $$R\left[\frac{R_{5t}-\left(\frac{(\lambda_2 t)^n}{n!}\cdots+\frac{(\lambda_2 t)^2}{2!}+\lambda_2 t\right)}{R_{5t}-\left(\frac{(\lambda_1 t)^n}{n!}\cdots+\frac{(\lambda_1 t)^2}{2!}+\lambda_1 t\right)}\right]=\frac{N_7^c}{N_6^c}=R^c \quad (16)$$ where R, a constant, $=N_5/N_8=0.00726_2$ $R^c = N_7^c/N_6^c$, the ratio of the number of atoms of Pb²⁰⁷ to Pb²⁰⁶ in the common lead. $R_{5t}={}^{t}N_{7}/N_{5}$, the ratio of the total number of atoms of Pb²⁰⁷ to the number of atoms of U²³⁵. $R_{8t} = {}^{t}N_{6}/N_{8}$, the ratio of the total number of atoms of $\mathrm{Pb^{206}}$ to the number of atoms of $\mathrm{U^{238}}$. Expanding and collecting terms, equation 16 takes the form $$\left(\frac{R^{c}\lambda_{1}^{n}}{n!} - \frac{R\lambda_{2}^{n}}{n!}\right) t^{n} \dots + \left(\frac{R^{c}\lambda_{1}^{2}}{2!} - \frac{R\lambda_{2}^{2}}{2!}\right) t^{2} + (R^{c}\lambda_{1} - R\lambda_{2})t + RR_{5t} - R^{c}R_{5t} = 0.$$ (17) For geologically possible values of R^c , R_{5i} , and R_{8i} , equation 17 expanded to the third degree or higher has two positive real roots. The equations of odd degree also have one negative real root. The smaller positive root is the concordant age corrected for a common lead having a Pb²⁰⁷/Pb²⁰⁶ ratio, R^c . The larger positive root generally has values in excess of current estimates of the age of the earth; these values are geologically impossible and consequently can be neglected. The negative real root does not have any geologic significance. If computing facilities are not available, equation 17 can be taken to the second power of t and the terms f_1 and f_2 added. One then obtains $$R\left[\frac{R_{5t} - (f_2 + \frac{(\lambda_2 t)^2}{2!} + \lambda_2 t)}{R_{8t} - (f_1 + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t)}\right] = R^c.$$ (18) Expanding equation 18 and solving for t, $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{19}$$ where $$\begin{array}{l} 2a = (R^{c}\lambda_{1}^{2} - R\lambda_{2}^{2}) \\ b = (R^{c}\lambda_{1} - R\lambda_{2}) \\ c = (RR_{5t} - R^{c}R_{8t} + R^{c}f_{1} - Rf_{2}). \end{array}$$ Equation 19 has one positive and one negative root for geologically possible values of R^c , R_{5t} , and R_{8t} . With approximately correct values for f_1 and f_2 from table 2, the calculated age, t, from equation 19 will closely approach the exact concordant age, t, for the specific value of R^c , which is the Pb²⁰⁷/Pb²⁰⁶ ratio of the common lead contaminant. #### EXAMPLE OF CALCULATION In the frequent cases where chemical and isotopic data are available for only one uranium-bearing mineral from a given area, and where the Pb²⁰⁷/Pb²⁰⁶ ratio of the contaminating common lead has been accurately determined, equations 17 and 19 can be used to calculate a concordant age that is corrected for common lead without using either Pb²⁰⁴ or Pb²⁰⁸ as the
common-lead "index." In addition, the isotopic composition of the common lead required to give a concordant age may be calculated. This calculated isotopic composition may then be compared with the measured isotopic composition of lead extracted from associated nonradioactive minerals. The ages obtained by the use of equations 17 and 19 and the conventional "index" method may also be compared. This comparison requires that the quantitative data on the lead and uranium have small limits of error, the uranium-bearing mineral be fresh and unaltered, and that the Pb²⁰⁷/Pb²⁰⁶ ratio of the contaminating lead be known within relatively narrow limits. Failure of the two methods to agree probably indicates small errors in the isotopic analysis of the less abundant "index" isotope from either the lead extracted from the uranium-bearing material, the associated nonradioactive mineral, or both. The following isotopic data are given for a hypothetical unaltered sample of uraninite, the true age of which is 950 million years, and which contains (chemical scale) 6.12₃₇ percent Pb and 17.5₄₄ percent U. | | Pb^{204} | Pb ²⁰⁶ | Pb ²⁰⁷ | Pb ²⁰⁸ | |---|------------|---------------------|-------------------|---------------------| | Isotopic composition of lead from uraninite (in atom percent) | 0. 8664 | 52. 54 ₂ | 15. 983 | 30. 608 | | associated common lead
(in atom percent) | 1. 509 | 23. 56_8 | 22. 655 | 52. 26 ₉ | | The Pb ²⁰⁷ /Pb ²⁰⁶ ratio of the | common | lead is 0.9 | 9612_{6} . | | Using Pb²⁰⁴ as the "index" of the amount of common lead present, the isotopic composition of the associated nonradiogenic lead, and correcting for the proportionate amounts of nonradiogenic Pb²⁰⁶, Pb²⁰⁷ and Pb²⁰⁸, the remaining atom percent of radiogenic Pb²⁰⁶ and Pb²⁰⁷ may be obtained as follows: | | Pb ²⁰⁴ | Pb ²⁰⁶ | Pb^{207} | Pb^{208} | |---|-------------------|---------------------|------------|------------| | Isotopic analysis of urani-
nite lead
Isotopic analysis of com- | 0. 8664 | 52. 54 ₂ | 15. 983 | 30. 608 | | mon lead | 0. 8664 | 13. 531 | 13. 001 | 30. 010 | | Radiogenic lead produced
by uranium and thorium | 0. 000 | 39. 011 | 2. 976 | 0. 598 | The ratios and the discordant trial ages obtained from the age tables after correction for common lead are as follows: | | Ratio | Trial age (Millions of years) | |-------------------------|--------------|---| | $N_6/N_8 = R_8 = \dots$ | 0.1583_{1} | $956 \text{ (Pb}^{206}/\text{U}^{238} \text{ age)}$ | | $N_7/N_5 = R_5 = \dots$ | 1.662_{9} | 1008 (Pb ²⁰⁷ /U ²³⁵ age) | | $N_7/N_6 = \dots$ | 0.0762_8 | 1122 (Pb ²⁰⁷ /Pb ²⁰⁶ age) | In this example, R^c , the Pb²⁰⁷/Pb²⁰⁶ ratio of the contaminating common lead, was chosen to equal the Pb²⁰⁷/Pb²⁰⁶ ratio of the common lead used in the trial age calculation. Substituting also the ratios R_{5i} , R_{8i} , and R in equation 17 and solving the equations of the second to the tenth degree, we obtain the computed concordant ages given in table 4. Table 4.—Computed concordant ages obtained from equation 17 | Degree of equation | Age corrected for common lead (millions of years) | Second real root
(millions of years) | |--------------------------------------|---|--| | 2
3
4
5
6
7
8
9 | 945,58 948,49 949,70 950,06 950,10 950,10 950,10 950,10 | $\begin{array}{l} -187_{05}. \\ +250_{86}. \\ 851_{7.7} \\ 634_{6.4} \\ 562_{1.3} \\ 531_{6.2} \\ 517_{7.6} \\ 511_{4.1} \\ 508_{5.7} \end{array}$ | The smaller, positive real root of equation 17 rapidly converges on the hypothetical age, 950 m.y., corrected for common lead. In the calculation of the trial ages, an initial error of 2 percent was deliberately introduced into the Pb²⁰⁴ abundance of the hypothetical common lead used in the correction. This small error in the Pb²⁰⁴ abundance produced in turn errors of approximately 0.6, 6.0 and 18 percent in the trial Pb²⁰⁶/U²³⁸, Pb²⁰⁷/U²³⁵ and Pb²⁰⁷/Pb²⁰⁶ ages, respectively. The age calculated using equation 17 did not include the index isotope and was not affected. For equations of the third degree or higher, the larger real root is positive and converges more slowly on an age that is greater than the current estimates of the age of the earth. It should be noted that even for ages as much as 5,000 million years, equations of the tenth degree converge rapidly on the exact concordant age. This older age has no geological significance other than that a radiogenic lead with a Pb²⁰⁷/Pb²⁰⁶ ratio equal to 0.9612 would have been produced in the time interval between 950 and 5,110 million years ago. In order to use equation 19 it is necessary to express the analytical data as quantities proportional to the number of atoms present. Following the procedures given on page E8, the analytical data take the form $N_5 = 0.05311_8$ $$N_8 = 7.314_3$$ ${}^{t}N_6 = 1.559_6$ ${}^{t}N_7 = 0.4744_1$ $R_{5t} = {}^{t}N_7/N_5 = 8.931_3$ $R_{8t} = {}^{t}N_6/N_8 = 0.2132_2$ $R = 0.007262$ and the Pb²⁰⁷/Pb²⁰⁶ ratio of the contaminating common lead, R^c, is given as 0.9612₆. For this approximate age range, it is also necessary to include the terms f_1 and f_2 . The choice of an age t_1 from table 2 may be guided by the following generalizations on discordant ages related to uncertainties introduced by common lead corrections: - 1. The Pb²⁰⁶/U²³⁸ age will be affected least by a poor choice of the isotopic composition for the commonlead correction. - 2. The Pb²⁰⁷/U²³⁵ and Pb²⁰⁷/Pb²⁰⁶ ages may lie above or below the Pb²⁰⁶/U²³⁸ age, depending on the isotopic composition of the common lead used in the correction. - 3. The Pb²⁰⁷/Pb²⁰⁶ age will give the least satisfactory value for the actual age of the sample if the major source of error is confined to the common lead corrections. On the basis of the trial age calculations, and using the generalizations mentioned above, values of f_1 and f_2 are chosen from table 2 for t_1 =950 m.y. Substituting the values for R_{5t} , R_{8t} , R^c and R in equation 19 one obtains: $$2a = (R^{c}\lambda_{1}^{2} - R\lambda_{2}^{2})$$ $$= 1.584_{3} \times 10^{-20}y^{-2}$$ $$b = (R^{c}\lambda_{1} - R\lambda_{2})$$ $$= 1.406_{8} \times 10^{-10}y^{-1}$$ $$c = (RR_{5t} - R^{c}R_{8t} + R^{c}f_{1} - Rf_{2})$$ $$= -0.1407_{9}$$ $$t = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$ $$t = \frac{(-1.406_{8} \pm \sqrt{1.9790_{9} + 0.4461_{1}})}{1.584_{3}} \times 10^{10}y$$ $$t = 950 \text{ m.y.}$$ The agreement between the age, t_1 , taken from table 2, and the calculated age, t_1 , obtained from equation 19, indicates that an additional age calculation with a new value for t_1 is not necessary. For certain geologic problems it may be useful to compare the calculated isotopic composition of the contaminating common lead yielding a concordant age with the measured composition of the common lead used in the trial age calculation. Quantities proportional to the number of atoms of common Pb²⁰⁶ and Pb²⁰⁷, N_6^c and N_7^c , can be obtained from equation 14 and 15, respectively. If the age tables are used, and t=950 m.y., N_6^c is found to be 0.4096₂ and N_7^c is found to be 0.3937₅. From the Pb²⁰⁸/Pb²⁰⁶ and Pb²⁰⁴/Pb²⁰⁸ ratios of the radiogenic lead, the quantities proportional to the number of atoms of Pb²⁰⁸ and Pb²⁰⁴ are found to be 0.9084₈ and 0.02571₆. The calculated and the measured isotopic compositions (in atom percent) used in the trial age calculation are as follows: #### Isotopic composition | | Calculated | Measured | |--|---|---| | Pb ²⁰⁴
Pb ²⁰⁶
Pb ²⁰⁷
Pb ²⁰⁸ | 1. 480
23. 57 ₄
22. 66 ₁
52. 28 ₅ | $\begin{array}{c} 1.\ 50_{79} \\ 23.\ 56_8 \\ 22.\ 65_5 \\ 52.\ 26_9 \end{array}$ | It does not follow from the differences in the Pb²⁰⁴ abundances given above that all the error must necessarily be restricted to the common lead. For the purpose of this example, the Pb²⁰⁴/Pb²⁰⁸ ratio of the radiogenic lead was assumed to be correct. In actual practice, however, this measurement might be more suspect than the Pb²⁰⁴/Pb²⁰⁸ ratio of the common-lead analysis. Under these conditions, differences in the calculated and "measured" index isotope may be used as evidence that the discordant age sequence reflects small errors in the determination of the index isotope in either the radiogenic lead, the common lead, or both. #### GRAPHIC SOLUTION The graphic equivalent of the algebraic solution of this case is shown in figure 3, where total ${}^{t}N_{207}/N_{235}$ versus total ${}^{t}N_{206}/N_{238}$ is plotted instead of radiogenic N_{207}/N_{235} versus radiogenic N_{206}/N_{238} , as was done by Ahrens (1955a, b) and Wetherill (1956). Both the concordant and the discordant ages of a sample corrected for different amounts of a common lead with a specific Pb²⁰⁷/Pb²⁰⁶ ratio can now be determined from this new graph. The concordant age curve still represents the locus of those points whose N_{207}/N_{235} and N_{206}/N_{238} ratios give the same age, t. In this graph, the concordant age of an unaltered sample, A, corrected for a common lead with a specific Pb207/Pb206 ratio, Ro, is obtained by passing a line whose slope is equal to $R^c \times 137.7$ through the point A, and noting the intersection of this line with the concordant age curve at the point t. It is obvious that the age, t, is obtained without use of either Pb^{204} or Pb^{208} as the index of the common lead present. This
concordant age solution now may be compared graphically with the ages obtained by the more conventional "index" methods of correcting for contaminating common lead, which use either Pb204 or Pb208 as the index isotope (fig. 3). First, the age is obtained from the ratio of the radiogenic Pb207/Pb206 using the appropriate index isotope, Pb204 or Pb208, and a common lead having the same Pb207/Pb206 ratio, Rc. Then, with the aid of either the nomographs or the age tables that are available, a point, c, is obtained on the concordant age curve whose N_{206}/N_{238} or N_{207}/N_{235} ratio is equivalent in age to the radiogenic Pb²⁰⁷/Pb²⁰⁶ ratio age just calculated. A line is now drawn from the origin to this equivalent point, c, on the concordant age curve. The coordinate of the intersection, a, of the chord, Oc, and the line passing through A with the slope $R^{o} \times 137.7$, will give the corresponding N_{207}/N_{235} and N_{206}/N_{238} ratios that would be obtained by using the conventional index isotope method of common-lead correction. A comparison of the age equivalents of the coordinates of the intersections a and t may also help in a partial evaluation of the experimental errors encountered in the isotopic analysis of the generally far less abundant index isotopes. #### TWO SAMPLES ### AMOUNT OF CONTAMINATING RADIOGENIC LEAD AND ITS Pb^{207}/Pb^{206} RATIO UNKNOWN From the preceding algebraic equations and from the graphic treatment (fig. 2B) it can be seen that given analytical data for two different samples, an expression for t could be obtained without a knowledge of either the time and amount of alteration or amount of original radiogenic Pb²⁰⁶ and Pb²⁰⁷ present. This calculation can be made provided the two samples give different discordant ages and meet the following conditions: - 1. The samples were deposited at the same time. - 2. The samples were contaminated by an original radiogenic lead having the same Pb²⁰⁷/Pb²⁰⁶ ratio, or - 3. The samples were altered at one time in the past. - 4. The initial corrections for common lead have been correctly made, so that the remaining Pb²⁰⁶ and Pb²⁰⁷ represent only the total radiogenic lead in the samples. - 5. The samples have not selectively lost or gained radioactive daughter products since the time of mineral formation. - 6. The samples have not been recently altered. These assumptions require, as a general rule, that if the discordant trial Pb^{206}/U^{238} age of sample A is greater than the discordant trial Pb206/U238 age of sample B, then the trial Pb^{207}/Pb^{206} age of sample A must be equal to or greater than the trial Pb^{207}/Pb^{206} age of sample B. If this condition is not met, that is, the trial Pb^{207}/Pb^{206} age of A is less than B while the trial Pb^{206}/U^{238} age of A is greater than B, then the equations presented in this and in the following cases will probably yield one negative value of t. Such a pair of discordant ages may be interpreted as a failure of the two samples to fulfill one or more of the assumptions listed above. Following the notation used in developing equation 11, expressions may be written for samples A and B: For sample A, $$R \left[\frac{R_{5a} - \left(\frac{(\lambda_{2}t)^{n}}{n!} \dots + \frac{(\lambda_{2}t)^{2}}{2!} + \lambda_{2}t\right)}{R_{8a} - \left(\frac{(\lambda_{1}t)^{n}}{n!} \dots + \frac{(\lambda_{1}t)^{2}}{2!} + \lambda_{1}t\right)} \right] = R_{a}^{*}$$ (20) and for sample B $$R\left[\frac{R_{5b}-\left(\frac{(\lambda_2 t)^n}{n!}\dots+\frac{(\lambda_2 t)^2}{2!}+\lambda_2 t\right)}{R_{8b}-\left(\frac{(\lambda_1 t)^n}{n!}\dots+\frac{(\lambda_1 t)^2}{2!}+\lambda_1 t\right)}\right]=R_b^* \qquad (21)$$ where R_{5a} =the ratio of the number of radiogenic Pb²⁰⁷ atoms, N_{7a} , to the number of U²³⁵ atoms, N_{5b} , now present in sample A. R_{8a} =the ratio of the number of radiogenic Pb^{206} atoms, N_{6a} , to the number of U^{238} atoms, N_{8a} , now present in sample A. R_{5b} =the ratio of the number of radiogenic Pb²⁰⁷ atoms, N_{7b} , to the number of U²³⁵ atoms, N_{5b} , now present in sample B. R_{8b} =the ratio of the number of radiogenic Pb²⁰⁶ atoms, N_{6b} , to the number of U²³⁸ atoms, N_{8b} , now present in sample B. λ_1 =the decay constant for U²³⁸. λ_2 =the decay constant for U^{235} . R_a^* , R_b^* =the unknown ratio of the number of atoms of original radiogenic Pb²⁰⁷ to Pb²⁰⁶, that is, $N_{7a}^*/N_{6a}^* = N_{7b}^*/N_{6b}^*$. $R = N_{5a}/N_{8a} = N_{5b}/N_{8b} = 0.007262$ Accepting assumptions (1) to (6) above, equation 20 is equated to equation 21. Expanding and collecting terms, the equation takes the form $$\left[\frac{\lambda_{n}^{n}}{n!}(R_{8a}-R_{8b})+\frac{\lambda_{1}^{n}}{n!}(R_{5b}-R_{5a})\right]t^{n}... +\left[\frac{\lambda_{2}^{2}}{2!}(R_{8a}-R_{8b})+\frac{\lambda_{1}^{2}}{2!}(R_{5b}-R_{5a})\right]t^{2} +\left[\lambda_{2}(R_{8a}-R_{8b})+\lambda_{1}(R_{5b}-R_{5a})\right]t +R_{5a}R_{8b}-R_{5b}R_{8a}=0.$$ (22) If computing facilities are not available, equation 22 may be taken to the second degree and the terms f_1 and f_2 added. $$\begin{split} & \left[\frac{\lambda_{2}^{2}}{2!} (R_{8a} - R_{8b}) + \frac{\lambda_{1}^{2}}{2!} (R_{5b} - R_{5a}) \right] t^{2} \\ & + \left[\lambda_{2} (R_{8a} - R_{8b}) + \lambda_{1} (R_{5b} - R_{5a}) \right] t \\ & + R_{5a} R_{8b} - R_{5b} R_{8a} + f_{2} (R_{8a} - R_{8b}) + f_{1} (R_{5b} - R_{5a}) = 0 \end{split}$$ Solving for t, $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{23}$$ where $$2a = [\lambda_1^2(R_{5b} - R_{5a}) + \lambda_2^2(R_{8a} - R_{8b})]$$ $b = [\lambda_1(R_{5b} - R_{5a}) + \lambda_2(R_{8a} - R_{8b})]$ $c = [R_{5a}R_{8b} - R_{5b}R_{8a} + f_2(R_{8a} - R_{8b}) + f_1(R_{5b} - R_{5a})].$ For geologically possible values of R_{5a} , R_{8a} , R_{5b} , and R_{8b} ; and with assumptions "1" through "4", given above, fulfilled; equations 22 and 23 have two positive real roots. Analogous to equations 12 and 13, the two positive roots of these equations approach the concordant ages corrected for original radiogenic lead, loss of lead, or gain of uranium. #### EXAMPLE OF CALCULATION Equations 22 and 23 may be applied to two hypothetical, unaltered 500-million-year-old uraninite samples from the same deposit. Following the procedure used on page E8, the chemical and isotopic data for these two samples, A and B, are expressed after correction for common lead as follows: The lead-uranium and lead-lead ratios and trial leaduranium and lead-lead ages of samples A and B using the age tables corrected only for original common lead are: Substituting the values for R_{5a} , R_{8a} , R_{5b} and R_{8b} in equation 22 and solving the equations of the second to the tenth degree, the ages given in table 5 are obtained. It can be seen that in the age range of 500 million years, ages corrected for original radiogenic lead will fall within 0.1 percent of the exact concordant age when an equation of the fourth degree is used. The "lead-loss" age for the fourth-degree equation will, in contrast, be within 3.7 percent of the exact concordant "lead-loss" age. An equation of the sixth degree would be required to reduce the difference between the computed and exact "lead-loss" age to less than 0.1 percent. For most geologic problems falling within this age range, the two concordant ages obtained from a fifth- or sixth-degree equation would be more than adequate. Table 5.—Computed concordant ages obtained from equation 22 | Degree of equation 2 3 4 5 6 7 8 | Age (millions of years) | | | | |-----------------------------------|--|--|--|--| | | Corrected for original radiogenic lead | Corrected for loss or gain of lead or uranium | | | | | 477.09
496.72
499.61
499.93
499.95
499.96 | $egin{array}{c} 345_{0.2} \ 164_{5.8} \ 144_{1.2} \ 140_{0.9} \ 139_{2.7} \ 139_{1.1} \ 139_{0.9} \ 139_{0.8} \ \end{array}$ | | | | 10 | 499.96 | 1390.8 | | | In order to use equation 23, it is first necessary to examine the values of f_1 and f_2 in table 2 for a time, t_1 , of around 600 million years. This examination suggests that the terms including both f_1 and f_2 should be used in the calculation. As an age including an additional correction for original radiogenic lead must necessarily be less than the lowest Pb²⁰⁶/U²³⁸ age in the group of samples corrected only for common lead, initial values for f_1 and f_2 equivalent to an age of t_1 =550 m.y. are chosen for the calculation. Substituting the following in equation 23, $$R_{5a} = 0.8792_5$$ $R_{5b} = 1.116_8$ $f_1 = 0.0001_0$ $R_{8a} = 0.09779_4$ $R_{8b} = 0.1146_0$ $f_2 = 0.0292_8$ where $$\begin{aligned} 2a &= \lambda_1^2 (R_{5a} - R_{5a}) + \lambda_2^2 (R_{8a} - R_{8b}) \\ &= [2.36_{21} (0.2375_5) + 94.51_0 (-0.0168_1)] \times 10^{-20} y^{-1} \\ &= -1.027_{58} \times 10^{-20} y^{-2} \\ b &= \lambda_1 (R_{5b} - R_{5a}) + \lambda_2 (R_{8a} - R_{8b}) \\ &= [1.53_{69} (0.2375_5 + 9.72_{16} (0.0168_1)] \times 10^{-10} y^{-1} \\ &= 0.2016_7 \times 10^{-10} y^{-1} \\ c &= [R_{5a} R_{8b} - R_{5b} R_{8a} + f_1 (R_{5b} - R_{5a}) + f_2 (R_{8a} - R_{8b})] \\ &= [0.1007_{62} + -0.1092_{16} + 0.0000_{24} - 0.0004_{92}] \\ &= -0.0089_{22} \end{aligned}$$ t becomes, $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$= \left[\frac{-0.2016_7 \pm \sqrt{(.2016_7)^2 - 2 \times -1.027_{58} \times -0.0089_{22}}}{-1.027_{58}} \right] 10^{10} y$$ $$= \left[\frac{-0.2016_7 \pm \sqrt{0.0223_{35}}}{-1.0275_8} \right] \times 10^{10} y$$ $$= \frac{-0.2016 + 0.1494_5}{-1.027_{58}} = 0.0508_2 \times 10^{10} y$$ $$= 508 \text{ m.y.}$$ From the fact that the calculated age, t=508 m.y., included values from table 2 of f_1 and f_2 for $t_1 = 550$ m.y., it is obvious that a recalculation of t using values of f_1 and f_2 for t slightly less than 508 m.y.
would be better. There is, however, an exceedingly sensitive test of the departure of the age, t=508 m.y., from the exact solution of equation 23. This test consists of comparing the calculated ratios of the original radiogenic leads in samples A and B $(R_a^*$ and R_b^*) using equations 20 and 21 and $t=0.0508\times10^{10}y$. As a first approximation, the values of f_1 and f_2 in equations 20 and 21 may be chosen from table 2 for $t_1=510$ m.y. A simpler procedure is to substitute the ratios N_6/N_8 and N_7/N_5 obtained from the age table for t=508 m.y. for the $\operatorname{terms}\left[f_1 + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t\right] \operatorname{and}\left[f_2 + \frac{(\lambda_2 t)^2}{2} + \lambda_2 t\right] \operatorname{in equation}$ 20 and 21. Using the age tables, R_a^* and R_b^* are, If the geologic requirements of the age problem are not stringent, and the disagreement between R_a^* and R_b^* is acceptable, the calculated age may be rounded down to the nearest five million years and reported as t=505 m.y. If, however, further refinements are required by the nature of the geologic problem, t may be recalculated using equation 23. The values of f_1 and f_2 , 0.0000_{79} and 0.0224_{05} , for $t_1=505$ m.y., are obtained from table 2 by linear extrapolation. The recalculated age of samples A and B using equation 23 then becomes, $t=500_{-06}$ m.y. respectively, 0.1051, and 0.1040. A test of this calculated age at t=501 m.y., using equations 20 and 21 gives for R_a^* and R_b^* respectively, 0.1029_7 and 0.1028_1 . The condition $R_a^*=R_b^*=0.1026_6$ occurs at t=500 m.y. For almost any conceivable problem, this very close agreement between R_a^* and R_b^* would be more than adequate. As the second recalculated age is still less than the age t_1 used in choosing t_1 and t_2 , the final age for samples t_1 and t_2 would now be rounded down to the nearest 5 m.y. and reported as, t=500 m.y. In areas where detailed age studies are being made on a suite of uranium ores, isotopic data may also have been obtained for the lead in the associated nonradioactive minerals. If the lead in these associated minerals is abnormally enriched in Pb206 and Pb207 relative to Pb²⁰⁴, the Pb²⁰⁷/Pb²⁰⁶ ratio of this radiogenically enriched lead may now be compared with the calculated ratio of the original radiogenic lead, R^* , required to produce concordant lead-uranium and lead-lead ages in any particular pair of ore samples. Agreement between the calculated ratio of the required original radiogenic lead and the measured Pb²⁰⁷/Pb²⁰⁶ ratio of the radiogenic lead in the associated nonradioactive minerals, could be used as convincing evidence in the evaluation of a discordant age pattern in terms of the presence of original radiogenic lead. Evidence of alteration, conversely, could be used to support a "lead-loss" type of evaluation. The complexity of most geologic age problems as well as an awareness of the experimental uncertainties usually suggest the desirability of studying, where possible, more than two samples from the same area. Similarities in the calculated concordant ages and the R^* obtained from two or more pairs would not only support the interpretation of the discordant age data in terms of a specific process, but also further limit alternative interpretations. #### GRAPHIC SOLUTION The graphic equivalent of the algebraic concordant age solution for two samples is shown in figure 2B. The concordant age corrected for the presence of an older generation of radiogenic lead can be obtained by passing a line through the two points, B and C, and noting the intersection, t, with the concordant age curve having the smallest N_{206}/N_{238} and N_{207}/N_{235} ratios. The slope of this straight line divided by 137.7 will equal R*, the Pb207/Pb206 ratio of the older radiogenic lead. The intersection giving the higher age value, t₁, corresponds to the age obtained after correcting for the gain or losses of lead or uranium as previously described. This graph makes it clear, as do the equations, that the two concordant age solutions t and t₁ are mathematically equally acceptable. The choice of either t or t_1 as the most probable concordant age for both B and C must be based on other evidence. ### AMOUNT OF CONTAMINATING COMMON LEAD AND ITS Pb²⁰⁷/Pb²⁰⁰ RATIO UNKNOWN Following the arguments used in the previous example and the notation used in the correction for common lead, a concordant age, based on the following assumptions, can be found for a pair of samples giving different discordant trial ages. 1. The samples were deposited at the same time. - 2. The samples were contaminated only by a common lead having the same Pb²⁰⁷/Pb²⁰⁶ ratio. - 3. The samples have not been altered since deposition. Sample A, equation 16, takes the form, $$R\left[\frac{R_{5ta} - \left(\frac{(\lambda_{2}t)^{n}}{n!} \dots + \frac{(\lambda_{2}t)^{2}}{2!} + \lambda_{2}t\right)}{R_{8ta} - \left(\frac{(\lambda_{1}t)^{n}}{n!} \dots + \frac{(\lambda_{1}t)^{2}}{2!} + \lambda_{1}t\right)}\right] = N_{7a}^{c}/N_{6a}^{c} = R_{a}^{c},$$ (24) and sample B. $$R\left[\frac{R_{5tb}-\left(\frac{(\lambda_{2}t)^{n}}{n!}\dots+\frac{(\lambda_{2}t)^{2}}{2!}+\lambda_{2}t\right)}{R_{8tb}-\left(\frac{(\lambda_{1}t)^{n}}{n!}\dots+\frac{(\lambda_{1}t)^{2}}{2!}+\lambda_{1}t\right)}\right]=N_{7b}^{c}/N_{6b}^{c}=R_{b}^{c}.$$ (25) where $N_{7a}^c/N_{6a}^c = R_a^c$, the ratio of the number of atoms of Pb^{207} to Pb^{208} in the contaminating common lead (sample A). $N_{7b}^c/N_{6b}^c = R_b^c$, the ratio of the number of atoms of ${ m Pb}^{207}$ to ${ m Pb}^{206}$ in the contaminating common lead (sample B). R_{5ta} =the ratio of the total number of atoms of Pb²⁰⁷, ${}^tN_{7a}$, to the number of U²³⁵ atoms, N_{5a} , now present in sample A. $R_{8\,ta}$ = the ratio of the total number of atoms of Pb²⁰⁶, ${}^tN_{6a}$, to the number of U²³⁸ atoms, N_{8a} , now present in sample A. atoms, N_{8a} , now present in sample A. R_{5ib} = the ratio of the total number of atoms of Pb^{207} , ${}^{i}N_{7b}$, to the number of U^{235} atoms, N_{5b} , now present in sample B. R_{8ib} = the ratio of the total number of atoms of Pb^{206} , ${}^{i}N_{6b}$, to the number of U^{238} atoms, N_{8b} , now present in sample B. Equating equations 24 and 25, (assumption 2) clearing and collecting terms, $$\begin{bmatrix} \frac{\lambda_{1}^{n}}{n!}(R_{5tb}-R_{5ta}) + \frac{\lambda_{2}^{n}}{n!}(R_{8ta}-R_{8tb}) \end{bmatrix} t^{n} \dots + \begin{bmatrix} \lambda_{1}^{2}}{2!}(R_{5tb}-R_{5ta}) + \frac{\lambda_{2}^{2}}{2!}(R_{8ta}-R_{8tb}) \end{bmatrix} t^{2} + [\lambda_{1}(R_{5tb}-R_{5ta}) + \lambda_{2}(R_{8ta}-R_{8tb})] t + R_{5ta}R_{8tb}-R_{5tb}R_{8ta} = 0.$$ (26) If computing facilities are not available, equation 26 may be expanded to the second degree and the terms f_1 and f_2 added. Solving this equation for t one obtains: $$t = \frac{-b \pm \sqrt{\overline{b^2 - 4ac}}}{2a} \tag{27}$$ where $$\begin{aligned} 2a &= \lambda_1^2 (R_{5tb} - R_{5ta}) + \lambda_2^2 (R_{8ta} - R_{8tb}) \\ b &= \lambda_1 (R_{5tb} - R_{5ta}) + \lambda_2 (R_{8ta} - R_{8tb}) \\ c &= R_{5ta} R_{8tb} - R_{5tb} R_{8ta} + f_1 (R_{5tb} - R_{5ta}) + f_2 (R_{8ta} - R_{8tb}). \end{aligned}$$ For geologically possible values of R_{5ta} , R_{8ta} , R_{5tb} , and R_{8tb} fulfilling assumption 1, 2, and 3 equations of degree 3 or greater, equation 26 has two positive, real roots. The smaller root, as was the case for equation 17, approaches the concordant age corrected for a common lead whose Pb^{207}/Pb^{206} ratio, R^c , is given by equation 24 or 25. Equation 27 has one positive and one negative root. The positive root for approximately correct values of f_1 and f_2 approaches the smaller root of equation 26. #### EXAMPLE OF CALCULATION An example of the use of equation 26 in the correction for common lead is given below. The following isotopic and chemical data are given for two hypothetical, unaltered 950-million-year-old uraninite samples, A and B from a single deposit. | Sample | Isotopic | compositio | n (in atom | percent) | Uranium
content (| | |--------|--|---|--|--|--|--| | | Pb ²⁰⁴ | Pb ²⁰⁶ | Pb207 | Pb ^{20*} | Percent
U | Percent
Pb | | A
B | 0. 866 ₄
0. 652 ₃ | 52. 54 ₂ 62. 64 ₇ | 15. 98 ₃
13. 65 ₄ | 30. 60 ₈
23. 04 ₇ | 17. 5 ₄₄
30. 7 ₅₃ | 6. 12 ₃₇
7. 94 ₄₇ | Assuming an isotopic composition for the common lead contamination in samples A and B to be in atom percent, the following discordant trial age sequences are obtained using the age tables and Pb²⁰¹ as the index isotope: These discordant trial ages may be compared with the concordant ages obtained from equation 26 given in table 6. The smaller root of equation 26 converges on the concordant age corrected for common lead even though the isotopic composition of the contaminating common lead does not appear in the calculation. The similarity of the trial Pb²⁰⁶/U²³⁸ age to the concordant age corrected for common lead might be used as one argument that the discordant trial age sequence was the result of an incorrect assumption as to the isotopic composition of the contaminating common lead. Table 6.—Computed concordant ages obtained from equation 26 | Degree of equation | Concordant age cor-
rected for common lead
(millions of years) | Second real root
(millions of years) | | |--------------------|--|---|--| | 2 | 945. 42
948.
33
949. 63
949. 90
949. 94
949. 94
949. 94
949. 94 | 250 ₆₆ .
851 _{5.4}
634 _{5.1}
562 _{0.4}
531 _{5.4}
517 _{6.9}
511 _{8.4}
508 _{5.1} | | Using the generalizations given on page E8 as a guide in the evaluation of the discordant trial ages of samples A and B, an initial choice of t_1 =950 m.y., corresponding to the Pb²⁰⁶/U²⁰⁸ age, is made in selecting the constants f_1 and f_2 from table 2. Following the procedure given on page E8, the chemical and isotopic data for samples A and B are expressed below as quantities proportional to the total number of atoms of lead and uranium in the sample at the time of analysis, and as ratios of the total number of atoms of Pb²⁰⁶ and Pb²⁰⁷ to U²³⁸ and U²³⁵. Substituting the values given above in equation 27: $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ where $$2a = \lambda_1^2 (R_{5tb} - R_{5ta}) + \lambda_2^2 (R_{8ta} - R_{8tb})$$ $$= -5.396_7 \times 10^{-20} y^{-1}$$ $$b = \lambda_1 (R_{5tb} - R_{5ta}) + \lambda_2 (R_{8ta} - R_{8tb})$$ $$= -4.792_2 \times 10^{-10} y^{-1}$$ $$c = R_{5ta}R_{8tb} - R_{5tb}R_{8ta} + f_1(R_{5tb} - R_{5ta}) + f_2(R_{8ta} - R_{8tb})$$ $$= 0.4796_0$$ $$t = \left(\frac{4.792_2 \pm \sqrt{(4.792_2)^2 - 2 \times -5.396_7 \times 0.4796_0}}{-5.396_7}\right) \times 10^{10}y$$ $$= \left(\frac{4.792_2 \pm \sqrt{28.14_{17}}}{-5.396_7}\right) \times 10^{10}y$$ $$= \left(\frac{4.792_2 - 5.304_9}{-5.396_7}\right) \times 10^{10}y$$ $$= 0.0950_0 \times 10^{10} \text{ years} = 950 \text{ m.y.}$$ The agreement between the calculated value of t, 950 m.y., (table 6) and the value of t_1 used in the choice of f_1 and f_2 from table 2 indicate that a recalculation of t using slightly different values of f_1 and f_2 is unnecessary. The calculated values of the Pb²⁰⁷/Pb²⁰⁶ ratios for the common lead (R_a^c and R_b^c in samples A and B) using t=950 m.y., the age tables, and equations 24 and 25, are respectively, 0.9613₂ and 0.9611₆; the average calculated value is 0.9612₅. The Pb²⁰⁷/Pb²⁰⁶ ratio used in setting up this hypothetical example was 0.9612₇. The quantity proportional to the number of atoms of common Pb^{206} , in sample A is equal to 0.4096_4 and can be derived from equation 14 by substituting for t, $0.950 \times 10^{10} \ y$. The proportional number of atoms of common Pb^{207} is obtained using the ratio $N_{6a}^e/N_{7a}^e = 0.9612_5$, and is equal to 0.3937_7 . Using the Pb^{206}/Pb^{204} and the Pb^{206}/Pb^{208} ratios obtained from the isotopic analysis of sample A, quantities proportional to the total number of atoms of Pb^{204} and Pb^{208} are calculated to be 0.0257_2 and 0.9085_3 . The actual isotopic composition used in setting up this example, the atom-percent abundances of the original common lead calculated from the number of atoms of Pb^{204} , Pb^{206} , Pb^{207} and Pb^{208} , and the isotopic composition assumed to be present in the trial age calculations are given below: Isotopic composition in atom percent | Isotope | Actual | Calculated | Assumed | |-------------------|---|--|--| | Pb ²⁰⁴ | 1. 48 ₀
23. 57 ₄
22. 66 ₁
52. 28 ₄ | $\begin{array}{c} 1.\ 48_0 \\ 23.\ 57_5 \\ 22.\ 66_1 \\ 52.\ 28_4 \end{array}$ | 1. 48_5 23. 76_4 22. 27_8 52. 47_3 | Thus, the ages obtained from equations 26 or 27 permit the calculation of a concordant age, t, without the use of either Pb²⁰⁴ or Pb²⁰⁸ as the index isotope, and without a knowledge of the isotopic composition of the contaminating common lead. Alternatively, a compar- ison of the ages obtained from these equations with the age obtained by using the conventional methods of common lead correction and age calculation permits an evaluation of the errors that may be introduced in the correction for common lead. If the calculated isotopic composition of the common lead necessary to bring the lead-uranium ages of samples A and B into agreement seems unreasonable, additional field and laboratory evidence may then be sought to determine if the disdiscordant trial age calculations were produced by experimental errors, processes of alteration, or by the presence of original radiogenic lead. #### GRAPHIC SOLUTION The graphic equivalent of the algebraic solution for the above example is shown in figure 3, a plot of the FIGURE 3.—Ratios of the total number of atoms of Pb³⁰⁷ to U²⁰⁵, ${}^{i}N_{307}/N_{305}$, plotted against the ratio of the total number of atoms of Pb²⁰⁰ to U²⁰⁸, ${}^{i}N_{300}/N_{325}$. Unaltered uranium-bearing samples contaminated with a common lead having a Pb²⁰⁷/Pb²⁰⁰ ratio, R^{o} . ratio of the total number of atoms of Pb²⁰⁷ to U²³⁵, ${}^{t}N_{207}/N_{235}$ versus the total number of atoms of Pb²⁰⁶ to U²³⁸, ${}^{t}N_{206}/U_{238}$. The concordant age is obtained by passing a line through the coordinates of the points A and B (fig. 3) and observing the intersection of this line with the concordant age curve. The slope of this line divided by 137.7 will be the Pb²⁰⁷/Pb²⁰⁶ ratio, R^{e} , of the contaminating common lead which will give the same concordant age for both samples, A and B. This ratio may now be directly compared with the experimentally determined Pb^{207}/Pb^{206} ratio in related nonradioactive minerals, such as galena, pyrite, or feldspar. Failure of the experimentally and graphically determined Pb^{207}/Pb^{206} ratios to agree, or an abnormal graphic value for R^c , will indicate a more complex geologic history than was initially assumed. As has been mentioned, the same age can be obtained graphically from plots of N_{207}/N_{204} versus N_{206}/N_{204} (fig. 1A) even though the samples have been recently altered. #### AMOUNT OF CONTAMINATING RADIOGENIC AND COMMON LEAD AND THE Pb201/Pb206 RATIO UNKNOWN In the discussion of figure 1A it was noted that in plots of the Pb207/Pb204 versus Pb206/Pb204 ratios (and in the case where thorium is absent, Pb²⁰⁷/Pb²⁰⁸ versus Pb²⁰⁶/Pb²⁰⁸), two or more different mixtures of a single common lead and a single radiogenic lead would lie on the same straight line. The slope, R^* , of this line is the Pb²⁰⁷/Pb²⁰⁶ ratio of the radiogenic lead, and on this line will lie the Pb²⁰⁶/Pb²⁰⁴ and Pb²⁰⁷/Pb²⁰⁴ (or the Pb²⁰⁶/Pb²⁰⁸ and Pb²⁰⁷/Pb²⁰⁸) ratios of the contaminating common lead. This graphical treatment and the difference plots in figure 1B suggest that a useful modification may be obtained if the chemical and isotopic data for two or more samples were expressed as ratios of the total numbers of atoms of Pb206, Pb207, U²³⁵, and U²³⁸ to the total number of Pb²⁰⁴ (or Pb²⁰⁸) atoms. Using this change in the notation of equations 11, 12, and 17, it is possible to calculate a concordant geologic age from the discordant age data without knowledge of the amount or Pb207/Pb206 ratio of the contaminating common lead. In this case, however, the ratio of the contaminating radiogenic lead must be known. For the above calculation to be valid, it would be necessary (as in the previous cases), for the two or more samples in question to yield different discordant ages and to meet conditions (1) through (4), and either (5) or (6) given below. - (1) The samples were formed at essentially the same time. - (2) The samples have not been recently altered. - (3) The samples at the time of their formation contained a common lead with the same Pb²⁰⁷/Pb²⁰⁶ ratio. - (4) The samples could not contain thorium if Pb²⁰⁸ is used as the index isotope. - (5) The samples at the time of their formation contained an original radiogenic lead with the same Pb²⁰⁷/Pb²⁰⁶ ratio, or (6) The samples were altered only once and at the same time in the history of the material. This calculation does involve the precise determination of the abundance of the index isotope, Pb²⁰⁴ (or Pb²⁰⁸). The relative simplicity of this modification, however, and the many instances where it can be used to advantage compensate, in part, for this obvious shortcoming. Following the notation used in equations 9 and 10, one can write for sample A $$\left[{}^{\iota}N_{6a} - N_{8a} \left(\frac{(\lambda_{1}t)^{n}}{n!} \dots + \frac{(\lambda_{1}t)^{2}}{2!} + \lambda_{1}t \right) \right] = N_{6a}^{c*}$$ (28) and $$[{}^{\iota}N_{7a} - N_{5a} \left(\frac{(\lambda_2 t)^n}{n!} \dots + \frac{(\lambda_2 t)^2}{2!} + \lambda_2 t\right)] = N_{7a}^{c*}$$ (29) where N_{6a}^{e*} = a quantity proportional to the sum of the number of atoms of common and original radiogenic Pb²⁰⁶ in sample A. N_{7a}^{c*} = a quantity proportional to the sum of the number of atoms of common and original radiogenic Pb²⁰⁷ in sample A. If both sides of equations 28 and 29 are now divided by the index isotope, ${}^{t}N_{1a}$, a quantity proportional to the total number of either Pb²⁰⁴or Pb²⁰⁸ atoms in sample A, depending on the choice of the index isotope, one obtains the following: $$'^{t}N_{6a}-'N_{6a}\left(\frac{(\lambda_{1}t)^{n}}{n!}\dots+\frac{(\lambda_{1}t)^{2}}{2!}+\lambda_{1}t\right)='N_{6a}^{c*}$$ (30) and $$'^{i}N_{7a} - 'N_{5a} \left(\frac{(\lambda_{2}t)^{n}}{n!} \cdot \cdot \cdot + \frac{(\lambda_{2}t)^{2}}{2!} + \lambda_{2}t\right) = 'N_{7a}^{c*}$$ (31) where $$\begin{array}{lll} {}'^tN_{6a} = {}^tN_{5a}/{}^tN_{1a} & {}'^tN_{7a} = {}^tN_{7a}/{}^tN_{1a} \\ {}'N_{6a}^* = N_{6a}^{c*}/{}^tN_{1a} & {}'N_{5a} = N_{5a}/{}^tN_{1a} \\ {}'N_{7a}^{c*} = N_{7a}^{c*}/{}^tN_{1a} & {}'N_{8a} = N_{8a}/{}^tN_{1a} \end{array}$$ Similarly, equations for sample B, expressed as ratios of the index isotope, N_{1b}^{t} , are: $$'^{\iota}N_{6b} - 'N_{8b}\left(\frac{(\lambda_1 t)^n}{n!} \dots + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t\right) = 'N_{6b}^{c*}$$ (32) and $$'^{i}N_{7b} - 'N_{5b} \left(\frac{(\lambda_{2}t)^{n}}{n!} \dots + \frac{(\lambda_{2}t)^{2}}{2!} + \lambda_{2}t \right) = 'N_{7b}^{c*}$$ (33) where In the graphic
treatment of the isotopic data for a mixture of a common and a radiogenic lead expressed as ratios of Pb²⁰⁴ or Pb²⁰⁸ (fig. 1B), it has been mentioned that the slope of the line passing through the origin and the points C-B is equal to the ratio of the added radiogenic lead, R^* . The point C-B in figure 1B is equivalent to a point having the coordinates (' $N_{7a}^{e*}-'N_{7b}^{e*}$) and (' $N_{6a}^{e*}-'N_{6b}^{e*}$). Therefore, subtracting equation 33 from equation 31 and dividing by equation 32 subtracted from equation 30 one obtains: $$\begin{bmatrix} ('^{\iota}N_{7a}-'^{\iota}N_{7b})-('N_{5a}-'N_{5b})\left(\frac{(\lambda_{2}t)^{n}}{n!}\dots+\frac{(\lambda_{2}t)^{2}}{2!}+\lambda_{2}t\right)\\ ('^{\iota}N_{6a}-'^{\iota}N_{6b})-('N_{8a}-'N_{8b})\left(\frac{(\lambda_{1}t)^{n}}{n!}\dots+\frac{(\lambda_{1}t)^{2}}{2!}+\lambda_{1}t\right) \end{bmatrix} \\ = \frac{'N_{7a}^{c*}-'N_{7b}^{c*}}{'N_{6a}^{c*}-'N_{6b}^{c*}}$$ \mathbf{or} $$R \left[\frac{R_{5(a-b)} - \left(\frac{(\lambda_2 t)^n}{n!} \dots + \frac{(\lambda_2 t)^2}{2!} + \lambda_2 t \right)}{R_{8(a-b)} - \left(\frac{(\lambda_1 t)^n}{n!} \dots + \frac{(\lambda_1 t)^2}{2!} + \lambda_1 t \right)} \right] = R^*$$ (34) where the normalized difference ratios are $${}^{\prime}R_{5(a-b)} = \frac{{}^{\prime i}N_{7a} - {}^{\prime i}N_{7b}}{{}^{\prime}N_{5a} - {}^{\prime}N_{5b}}$$ $${}^{\prime}R_{8(a-b)} = \frac{{}^{\prime i}N_{6a} - {}^{\prime i}N_{6b}}{{}^{\prime}N_{8a} - {}^{\prime}N_{8b}}$$ and $$R = \frac{'N_{5a} - 'N_{5b}}{'N_{8a} - 'N_{8b}} = 0.007262$$ $$R^* = \frac{'N_{7a}^{c*} - 'N_{7b}^{c*}}{'N_{6a}^{c*} - 'N_{6b}^{c*}} = \frac{N_{7a}^*}{N_{6b}^*} = \frac{N_{7b}^*}{N_{6b}^*}$$ and where the same index isotope (Pb²⁰⁴ or Pb²⁰⁸) is used in both samples A and B. Clearing and collecting terms $$\left(\frac{R^*\lambda_1^n}{n!} - \frac{R\lambda_2^n}{n!}\right)^{t^n} \cdot \cdot \cdot + \left(\frac{R^*\lambda_1^2}{2!} - \frac{R\lambda_2^2}{2!}\right)^{t^2} + (R^*\lambda_1 - R\lambda_2)t + R'R_{5(a-b)} - R^{*'}R_{8(a-b)} = 0. \quad (35)$$ If computing facilities are not available, equation 35 may be carried only to the second power of t and the terms f_1 and f_2 added. Solving this equation for t one obtains, $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{36}$$ where $$\begin{aligned} 2a &= (R^*\lambda_1^2 - R\lambda_2^2) \\ b &= (R^*\lambda_1 - R\lambda_2) \\ c &= (R'R_{5(a-b)} - R^{*'}R_{8(a-b)} + R^*f_1 - Rf_2). \end{aligned}$$ For geologically possible values of R^* , $R_{5(a-b)}$, and $R_{8(a-b)}$, and fulfilling the assumptions (1) through (6), equations 35 and 36 have two positive roots. If original radiogenic lead is assumed to be responsible for the discordant trial ages obtained on sample A and B, the smaller root will approach, as the degree of the equation increases, a concordant age corrected both for the presence of an original radiogenic lead having a Pb^{207}/Pb^{206} ratio, R^* , and a single common lead. The isotopic composition of the common lead need not be known. If past alteration is assumed to be responsible for the discordant trial ages, the larger root will approach the concordant "lead-loss" age as the degree of the equation increases. For the latter assumption, the smaller root will approach the time in the past when the alteration took place, and R^* will become the Pb²⁰⁷/ Pb²⁰⁶ ratio of the radiogenic lead produced by the uranium in the time interval, $(t-t_1)$, given by the two roots. #### EXAMPLE OF CALCULATION An example of the use of both equations 35 and 36 in the calculation of a concordant age, t, corrected for unknown amounts and ratios of both a common and an original radiogenic lead are given below. In this example, the absence of Th^{232} in the chemical analyses suggests the use of the much more abundant isotope, Pb^{208} , rather than Pb^{204} as the index of the common lead present. The isotopic and chemical data for two hypothetical unaltered 1,400-million-year-old uraninites, A and B, from the same deposit are: | Sample | Isotopic | compositio | n (in atom p | ercent) | Uranium
content (| chemical | |--------|---|--|--|--|--|--| | Ju-Fit | Pb204 | Pb ²⁰⁶ | Pb ²⁰⁷ | Pb ²⁰⁸ | Percent
U | Percent
Pb | | A
B | 0. 210 ₇
0. 0764 ₆ | 80. 69 ₇
87. 68 ₄ | 11. 80 ₁
9. 59 ₄₅ | 7. 28 ₈₉
2. 64 ₄₈ | 31. 55 ₀
53. 17 ₁ | 9. 743 ₄
13. 41 ₂ | Assuming a common lead whose isotopic composition is Pb²⁰⁴=1.52₅, Pb²⁰⁶=22.86₇, Pb²⁰⁷=22.86₉, and Pb²⁰⁸=52.75₃, trial age calculations yield the following discordant results: Using the data given above for samples A and B in equation 35, the concordant ages were obtained for equations of the second to the tenth degree (table 7). The smaller positive roots yield concordant ages corrected for original radiogenic lead given a Pb²⁰⁷/Pb²⁰⁶ ratio, R*, of 0.2500_4 . The larger root of the tenth- degree equation is very close to the concordant age of samples A and B corrected for loss or gain of lead or uranium during a single period of alteration 1,400 million years ago. Table 7.—Computed concordant ages obtained from equation 35 | Degree of equation | Age (millions of years) | | | | |--------------------|---|---|--|--| | | Corrected for original radiogenic lead | Corrected for loss or gain of lead or uranium | | | | 2 | $126_{6.7} \\ 134_{4.2} \\ 138_{3.5} \\ 139_{6.3} \\ 139_{9.4}$ | $\begin{array}{c} 642_{66} \\ 464_{8,i} \\ 312_{0,1} \\ 276_{1,0} \\ 265_{2,2} \end{array}$ | | | | 7
8
9
10 | $140_{0.0}\ 140_{0.1}\ 140_{0.2}\ 140_{0.2}$ | 261 _{9.1}
260 _{9.1}
260 _{6.2}
260 _{5.6} | | | Following the procedure and notation used on page E8, the chemical and isotopic data for samples A and B are expressed in terms proportional to the total number of atoms present. In the above tabulation, ${}^{\iota}N_{03a}$ and ${}^{\iota}N_{08b}$ are proportional to the total number of Pb²⁰⁸ index atoms in samples A and B at the present time. Expressing these data as multiples of the index isotope, Pb²⁰⁸, that is, $'N_{5a}=\frac{N_{5a}}{^iN_{08a}}$, and so on, one obtains: and for $t_1 = 1.350$ m.v. $$f_1 = 0.0015_7$$ $f_2 = 0.5415_0$ where $$'R_{5(a-b)} = \frac{''N_{7a} - ''N_{7b}}{'N_{5a} - 'N_{5b}} = 3.068_3, (R^* = 0.2500_4, given)$$ $$'R_{8(a-b)} = \frac{'^{\iota}N_{6a} - '^{\iota}N_{6b}}{'N_{8a} - 'N_{8b}} = 0.2449_{6}, (R = 0.007262)$$ Substituting in equation 36 $$2a = (R*\lambda_1^2 - R\lambda_2^2) = -0.0957_1 \times 10^{-20} \ y^{-1}$$ $$b = (R*\lambda_1 - R\lambda_2) = 0.3136_9 \times 10^{-10} \ y^{-1}$$ $$c = (R'R_{5(a-b)} - R*'R_{8(a-b)} + R*f_1 - Rf_2) = -0.04250_4$$ and solving for t , $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$t = \left(\frac{-0.3136_9 \pm \sqrt{0.09840_1 - 2 \times -0.0957_1 \times -0.04250_4}}{-0.0957_1}\right) \times 10^{10}y$$ $$t = \left(\frac{-0.3136_9 + 0.3004_4}{-0.0957_1}\right) 10^{10}y = 0.1384_4 \times 10^{10}y$$ $$= 1,384 \text{ m.y.}$$ The calculated value for t, 1,384, lies above the initial choice of t_1 , 1,350, used to obtain f_1 and f_2 from table 2. This fact indicates that in using table 2, a choice for t greater than 1,384 and less than 1,480 should be made for the second age calculation if, for geologic reasons, the first age calculated is not acceptable. A very sensitive test of the departure of the value t=1,384 m.y. from the concordant age for samples A and B may be made by comparing the calculated value of $R^*_{(a-b)}$ using equation 34 and $t=0.1384\times10^{10}y$ with the observed or assumed value for R^* used in equation 36. The value of R^* calculated in this way and the given R^* are, respectively, 0.2083 and 0.2500₄. For the value t=1,400 m.y., the calculated and given values of R^* are, respectively, 0.2498₅ and 2,500₄. As can be seen, relatively small changes in t will result in substantial changes in the calculated R^* . #### GRAPHIC SOLUTION The graphic equivalent of the algebraic solution for the above example is shown in figure 4. If two unaltered samples, A and B, containing different amounts of lead and uranium were formed at the same time and were contaminated only with a common lead of uniform $\mathrm{Pb^{207}/Pb^{206}}$ ratio, R^c , the point (A-B) whose coordinates are given by the normalized difference ratios $$\frac{(N_{207}/N_{204})A - (N_{207}/N_{204})B}{(N_{235}/N_{204})A - (N_{235}/N_{204})B} \text{ and }$$ $$\frac{(N_{206}/N_{204})A - (N_{206}/N_{204})B}{(N_{238}/N_{204})A - (N_{238}/N_{204})B}$$ would lie on the concordant age curve. The problem of the three component lead mixtures, R^c , R^* , and R can now be considered (fig. 4). Assume that in addition to a common lead having the same Pb^{207}/Pb^{206} ratio R^c , samples A and B have received different amounts of an older generation of radiogenic lead with a Pb^{207}/Pb^{206} ratio, R^* . Then the normalized difference ratios of these two component mixtures, R^c and R^* (see figure 1B) would lie on a line passing through the origin whose slope is equal to $R^* \times 137.7$; for example, the point (c-d). The amounts of radiogenic Pb^{206} and Pb^{207} produced in the time interval 0-t may FIGURE 4.—Normalized difference ratios of $\frac{(N_{207}/N_{204})x-(N_{207}/N_{204})y}{(N_{235}/N_{204})x-(N_{235}/N_{204})y} \text{ plotted against a property of the t$ $\frac{(N_{200}/N_{204})x-(N_{205}/N_{204})y}{(N_{238}/N_{204})x-(N_{238}/N_{204})y}$ for three pairs of uranium-bearing samples which were contaminated by the same common lead and which, in addition, were altered at a time, t, in the past or contaminated by an older radiogenic lead, R^* . now be added
graphically to the point (c-d) by passing a line through the point (c-d) with the slope, R, and of a length equal to that of the line segment from the origin to the point (A-B). The coordinates of the point (C-D) thus represent the discordant ages that are obtained when the normalized difference ratios are plotted for a pair of samples each containing three component lead mixtures. #### THREE SAMPLES ## AMOUNT AND Pb³⁰/Pb²⁰⁶ RATIOS OF CONTAMINATING COMMON AND RADIOGENIC LEAD UNKNOWN From the argument presented above it is clear that if isotopic and chemical data are available for three samples fulfilling the conditions set forth, for the two sample cases it would be possible to calculate a concordant age without knowledge of either the amounts or isotopic ratios of the contaminating common and original radiogenic lead. Using equation 34, the following equations can be written for the two pairs of samples (A and B, and A and C) where the isotopic and quantitative lead and uranium data are expressed as normalized difference ratios of the number of atoms of lead and uranium to the number of atoms of the index isotope, Pb²⁰⁴ or Pb²⁰⁸: Sample pair A-B, $$R\left[\frac{R_{5(a-b)}-\left(\frac{(\lambda_2 t)^n}{n!}\cdots+\frac{(\lambda_2 t)^2}{2!}+\lambda_2 t\right)}{R_{8(a-b)}-\left(\frac{(\lambda_1 t)^n}{n!}\cdots+\frac{(\lambda_1 t)^2}{2!}+\lambda_1 t\right)}\right]=R^* \quad (37)$$ where the normalized difference ratios $$'R_{5(a-b)} = \frac{'^{t}N_{7a} - '^{t}N_{7b}}{'N_{5a} - 'N_{5b}}$$ $$'R_{8(a-b)} = \frac{'^{t}N_{6a} - '^{t}N_{6b}}{'N_{8a} - 'N_{8b}}$$ and sample pair A-C, $$R\left[\frac{R_{5(a-c)}-\left(\frac{(\lambda_2 t)^n}{n!}\cdots+\frac{(\lambda_2 t)^2}{2!}+\lambda_2 t\right)}{R_{8(a-c)}-\left(\frac{(\lambda_1 t)^n}{n!}\cdots+\frac{(\lambda_1 t)^2}{2!}+\lambda_1 t\right)}\right]=R^* \quad (38)$$ where $$'R_{5(a-c)} = \frac{'^{\iota}N_{7a} - '^{\iota}N_{7c}}{'N_{5a} - 'N_{5c}}$$ $$'R_{8(a-c)} = \frac{'^{i}N_{6a} - '^{i}N_{6c}}{'N_{8a} - 'N_{8c}}$$ Placing equation 37 equal to equation 38 and collecting terms, one obtains: $$\left[\frac{\lambda_{1}^{n}}{n!}('R_{5(a-c)}-'R_{5(a-b)})+\frac{\lambda_{2}^{n}}{n!}('R_{8(a-b)}-'R_{8(a-c)})\right]t_{n}\dots \\ \left[\frac{\lambda_{1}^{2}}{2!}('R_{5(a-c)}-'R_{5(a-b)})+\frac{\lambda_{2}^{2}}{2!}('R_{8(a-b)}-'R_{8(a-c)})\right]t^{2} \\ +\left[\lambda_{1}('R_{5(a-c)}-'R_{5(a-b)}+\lambda_{2}('R_{8(a-b)}-'R_{8(a-c)})\right]t \\ +'R_{5(a-b)}'R_{8(a-c)}-'R_{5(a-c)}'R_{8(a-b)}=0. \tag{39}$$ If computing facilities are not available, equation 39 may be taken only to the second degree and the terms f_1 and f_2 added. Solving for t, one obtains: $$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{40}$$ where $$\begin{aligned} 2a &= [\lambda_1^2('R_{5(a-c)} - 'R_{5(a-b)}) + \lambda_2^2('R_{8(a-b)} - 'R_{8(a-c)})] \\ b &= [\lambda_1('R_{5(a-c)} - 'R_{5(a-b)}) + \lambda_2('R_{8(a-b)} - 'R_{8(a-c)})] \\ c &= ['R_{5(a-b)}'R_{8(a-c)} - 'R_{5(a-c)}'R_{8(a-b)} + f_1('R_{5(a-c)} - 'R_{5(a-b)}) + f_2('R_{8(a-b)} - 'R_{8(a-c)})]. \end{aligned}$$ Equation 39 taken to the third degree or higher has two positive roots for values of the ratios, $R_{5(a-b)}$, $'R_{8(a-b)}$, $'R_{5(a-c)}$, and $'R_{8(a-c)}$, that are geologically significant. As in the previous case, with an increase in the degree of the equations, these roots approach the exact concordant age corrected for original radiogenic lead or loss of lead. For most geologically significant values for the ratios, equation 40 will also have two positive roots. For values of t_1 less than the lowest trial lead-uranium age, the smaller root will approach rapidly the exact concordant age corrected for original radiogenic lead. With the same value for t_1 , the larger root has no geologic meaning. To obtain the "lead-loss" age, different values of t_1 equal to or greater than the largest trial lead-lead age must be substituted. The initial choice of t_1 may be guided by a rough graphical solution of $$\frac{(N_{207}/N_{204})x - (N_{207}/N_{204})y}{(N_{235}/N_{204})x - (N_{235}/N_{204})y}$$ versus $$\frac{(N_{206}/N_{204})x - (N_{206}/N_{204})y}{(N_{238}/N_{204})x - (N_{238}/N_{204})y}$$ #### EXAMPLE OF CALCULATION If the data for the third sample, C, are added to the age data given on page E21, it is possible to use equations 39 and 40 to calculate a concordant age, t, without having any knowledge of the amounts or ratios of the contaminating original radiogenic and common lead. | Sample | Isotopic | compositio | n (in atom | percent) | Uranium ar
tent (chen | | |--------|-------------------|-------------------|-------------------|-------------------|--------------------------|---------------| | | Pb ²⁰⁴ | Pb ²⁰⁶ | Pb ²⁰⁷ | Pb ²⁰⁸ | Percent U | Percent
Pb | | C | 0. 2263 | 80. 657 | 11. 289 | 7. 827 | 46. 847 | 13. 612 | Assuming a common lead whose isotopic composition is $Pb^{204}=1.52_5$, $Pb^{206}=22.86_7$, $Pb^{207}=22.86_9$, and $Pb^{208}=52.75_3$, trial age calculations yield the following discordant results: $${}^{ ext{Pb}^{205}/ ext{U238}}_{ ext{Sample }C_------} = {}^{ ext{Pb}^{207}/ ext{U238}}_{ ext{1,515 m.y.}} = {}^{ ext{Pb}^{207}/ ext{U238}}_{ ext{1,690 m.y.}} = {}^{ ext{Pb}^{207}/ ext{Pb}^{208}}_{ ext{0.500 m.y.}}$$ If the data for samples A and B given in the preceding example (p. E21) are combined with the data for sample C, equation 39 can now be used for concordant age calculations provided that the assumptions given on page E20 can be fulfilled. Table 8 shows the results of these calculations for equations of the second to the tenth degree. These calculated ages are in close agreement with the ages given for samples A and B in table 7. Table 8.—Computed concordant ages obtained from equation 39 | Degree of equation | Age (millions of years) | | | | |---|--|--|--|--| | | Corrected for original radiogenic lead | Corrected for loss or
gain of lead or
uranium | | | | 2
3
4
4
5
6
6
7
7
8
8 | 126 _{7.0}
133 _{4.4}
138 _{3.5}
139 _{6.4}
139 _{9.5}
140 _{0.1}
140 _{0.2}
140 _{0.2} | $\begin{array}{c} 647_{05},\\ 465_{3.5}\\ 312_{2.7}\\ 276_{3.0}\\ 265_{4.6}\\ 262_{0.9}\\ 261_{0.8}\\ 260_{8.1}\\ 260_{7.4} \end{array}$ | | | If the analytical data for the three samples are expressed as multiples of the number of Pb²⁰⁸ atoms in samples A, B, and C, respectively, one obtains, Solving equation 40 for t, $$t = \frac{-b \pm \sqrt{\overline{b^2 - 4ac}}}{2a}$$ where =1,385 m.y. where $$\begin{aligned} 2a &= [\lambda_1^2('R_{5(a-c)} - 'R_{5(a-b)}) + \lambda_2^2('R_{8(a-b)} - 'R_{8(a-c)})] \\ &= -22.62_3 \times 10^{-20} y^{-1} \\ b &= [\lambda_1('R_{5(a-c)} - 'R_{5(a-b)}) + \lambda_2('R_{8(a-b)} - 'R_{8(a-c)})] \\ &= 75.06_8 \times 10^{-10} y^{-1} \\ c &= ['R_{5(a-b)}'R_{8(a-c)} - 'R_{5(a-c)}'R_{8(a-b)} + \\ & f_1('R_{5(a-c)} - 'R_{5(a-b)}) + f_2('R_{8(a-b)} - 'R_{8(a-c)})] \\ &= -10.18_0 \\ t &= \begin{bmatrix} -75.06_8 \pm \sqrt{(75.06_8)^2 - 2 \times -22.62_3 \times -10.18_0} \\ -22.62_3 \end{bmatrix} \times 10^{10} y \\ &= \begin{bmatrix} -75.06_8 \pm \sqrt{5174.6} \\ -22.62_3 \end{bmatrix} \times 10^{10} y \\ &= \frac{-75.06_8 + 71.93_4}{-22.62_3} \times 10^{10} y = 0.1385 \times 10^{10} y \end{aligned}$$ The small discrepancy in the calculated age obtained from equations 36 and 40 is due to the fact that samples A and C are quite similar in isotopic composition. a result, the difference between $N_{5a}-N_{5c}$ is very small, -0.0027_8 . This small number appears as the denominator of the term $R_{5(a-c)}$ and consequently affects the final age calculation. The extent of the departure of equation 40 from the concordant age resulting from the use of values f_1 and f_2 for $t_1=1,350$ m.y. (from table 2) can be determined by comparing $R^*_{(a-b)}$ and $R^*_{(b-c)}$. Using equations 37 and 38 and $t=.1385\times 10^{10} y$, $R^*_{(a-b)}$ and $R^*_{(a-c)}$ are respectively 0.2159_3 and 0.2333. At t=1,400 m.y., $R^*_{(a-b)}$ and $R^*_{(a-c)}$ are 0.24985 and 0.25004 as compared with the value $R^*=0.2500_4$ given on page E21. For many geological problems the age, t=1.385 m.y., would be acceptable. This age could then be reported for the assumption that the trial age discordancies were a result of an incorrect common lead correction and a failure to include a correction for original radiogenic lead. If, however, an additional refinement in the age is required, new values must be chosen for f_1 and f_2 from table 2 where t_1 now lies between the age limits, 1,385 $\leq t_1 \leq 1,480$. Selecting from table 2 values of f_1 and f_2 for $t_1=1,410$, the recalculated age using equation 40 is t=1,408 m.y. As this recalculated age now lies close to but below $t_1 = 1,410$, the concordant age must fall between 1,408 and 1,385 m.y. The relatively close agreement between the recalculated t and the second choice for t, would suggest that for most geological problems an additional age calculation would be unnecessary. The final age would be rounded down from 1,408 m.y. to the nearest 5 m.y. and reported as t=1,405 m.y. As has been mentioned, the lead-uranium ratios used in the example on page E21 were chosen for t=1,400 m.y. For certain geologic problems however, it may be desirable or necessary to evaluate further the assumption that the discordant trial ages are a consequence of errors in the correction made for the lead originally present in a group of related-age samples. If sufficient isotopic data are available from the area, it may be possible to compare the measured Pb207/Pb206 ratio of the lead extracted from associated radiogenically enriched nonradioactive minerals with the calculated R^*
. In addition, the measured Pb²⁰⁶/Pb²⁰⁴ and Pb²⁰⁷/Pb²⁰⁴ (or Pb²⁰⁶/Pb²⁰⁸ and Pb²⁰⁷/Pb²⁰⁸) ratios of the lead extracted from the associated nonradioactive minerals and the calculated N_{6a}^{c*} , N_{7a}^{c*} ratios (eq. 30, 31) can be plotted on the same graph. If the calculated R^* and measured Pb207/Pb206 ratios are in reasonable agreement, and if the calculated N_6^{c*} and N_7^{c*} lie on the same line as the measured Pb206/Pb204 and Pb207/ Pb²⁰⁶ ratios, these facts may be used as additional evidence for the evaluation of the discordant trial ages in terms of original radiogenic lead. To calculate N_6^{ex} and N_7^{ex} it is first necessary to find the value of t such that t approximates very closely t_1 , or $R_{(a-b)}^*=R_{(a-c)}^*$. If computing facilities are not available, additional recalculations using equation 40 must be made. Accepting the exact solution of equation 39 or 40 as t=1,400 m.y., equation 37 may be used to obtain R^* and equation 30 to calculate N_6^{c*} . For sample N_6^{c*} , the value of N_{6a}^{c*} is 1.9418. Equation 31 is used to calculate N_{7a}^{c*} , and the value obtained is 0.81804. Similarly, for samples N_6^{c*} and N_{7b}^{c*} , N_{6c}^{c*} , and N_{7c}^{c*} are respectively, 2.3816, 0.92807, 1.2685, and 0.64957. These values may be used to calculate the isotopic composition of the lead originally present in the samples and may now be plotted on the same graph with the measured N_6^{c*} and ratios of the lead extracted from the associated nonradioactive minerals. If the Pb²⁰⁷/Pb²⁰⁶ ratio, R^c , of the common lead is known from independent sources or is assumed, the amounts of common lead in the radioactive sample can be calculated from the relation, $$'N^{c}_{6a} = rac{'N^{c*}_{7a} - R*~'N^{c*}_{6a}}{R^{c} - R*}$$ Knowing $'N_{6a}^c$ and R^c , it is now possible to obtain $'N_{7a}^c$, as well as $'N_{6a}^*$ and $'N_{7a}^*$. Finally, using $\mathrm{Pb^{208}}{=}1.0000$ and the $\mathrm{Pb^{204}/Pb^{208}}$ ratio from the original isotopic analyses, the isotopic composition of the common lead may be calculated. Thus, from the chemical and isotopic data on three closely related but unaltered radioactive samples that yield discordant trial ages, it is possible to calculate a single concordant age, t, without knowledge of either the amounts or the ratio of the common and original radiogenic lead assumed to be present in the sample. In addition, the ratio of the original radiogenic lead required to produce such a concordant age may be calculated as well as the isotopic composition of the lead originally present in the samples. These results combined with calculated ages obtained using other assumptions, additional isotopic data, and the field mineralogic relations, can then be used in the final evaluation of the age data. #### GRAPHIC SOLUTION The graphical concordant ages obtained by using normalized difference plots for not less than three samples, C, D, and E, formed at the same time, are shown in figure 4. Assuming, in addition, that the samples contain different amounts of lead and uranium and were contaminated by a common lead having a uniform Pb²⁰⁷/Pb²⁰⁶ ratio, a line passing through the coordinates of the points (C-D) and (C-E) cuts the concordant age curve at t and t_1 . The slope of the line passing through (C-D) and (C-E), divided by 137.7, is equal to R*, the Pb²⁰⁷/Pb²⁰⁶ ratio of the radiogenic lead lost or added at the time, t. The concordant age, t. is the age that would be obtained after correcting for the addition of an older generation of radiogenic lead formed, perhaps, in the time interval $t-t_1$. The concordant age, t_1 , would correspond to the correction of samples C, D, and E for loss or gain of lead or uranium at one time in the past, t. Thus it is possible to obtain graphically concordant ages for a suite of at least three cogenetic uranium-bearing minerals without knowledge of either the amount or isotopic composition of the contaminating common lead, and either the effects of a single period of alteration or the presence of a yet older generation of radiogenic lead. #### GENERAL EQUATIONS The preceding discussion has been specifically directed at the problem of evaluating discordant leaduranium ages. Several of the equations that have been developed can be generalized, however, to aid in the evaluation of other types of discordant age pairs such as $Pb^{206}/U^{238}-Pb^{208}/Th^{232}$ and $Pb^{207}/U^{235}-Pb^{208}/Th^{232}$ Th²³². Under certain limited conditions there is the possibility that the general form of the equations can be applied to such discordant age pairs as Pb206/U238-Sr⁸⁷/Rb⁸⁷, Pb²⁰⁸/Th²³²-Sr⁸⁷/Rb⁸⁷, and perhaps others. It is not necessary for these pairs of radioactive parents and their stable daughter products to have been derived from the same radioactive mineral, although it is necessary for the minerals and their geochronologic elements to meet the general conditions enumerated for the lead-uranium systems considered above. An examination of the equations derived for the lead-uranium system suggests that the most useful general equations are those concerned with the correction for contamination by a common stable isotope which is indistinguishable from the stable daughter product produced by radioactive decay deposited at the time of mineral formation. The assumption for either the Pb-U²³⁵, Th²³² or Pb-U²³⁸, Th²³² systems that the same ratio of common daughters, $R_a^c = R_b^c$ is present originally in two or more cogenetic mineral samples is geologically acceptable. The assumption, however, for other discordant age pairs that two or more cogenetic minerals would necessarily be originally contaminated by two radiogenically enriched components whose ratios were the same, that is, $R_a^* = R_b^*$, does not appear to be geologically justified. In the Pb-U system the ratio of the parents of Pb206 and Pb²⁰⁷, U²³⁸ and U²³⁵, are known to be essentially constant. The obvious possibility of local variations in the ratios of the concentrations of other radioactive parents such as U and Th, or even U and Rb could easily result in small local variations in the ratios of the radiogenic daughter products available to the solutions from which the new minerals were formed. Equations 11, 12, 16, and 17 can be easily converted to the general form by making, where appropriate, the following changes in notation: $R_5=R_1$, $R_8=R_2$, $R_{5t}=R_{1t}$, and $R_{8t}=R_{2t}$ where $R_1 = Nd_1/Np_1$, the ratio of the total number of atoms of stable radiogenic daughter product D_1 after correction (if necessary) for contamination of common D_1^c originally present to the total number of atoms of radioactive parent, P_1 , now present in the mineral sample, A_1 ; $R_2=Nd_2/Np_2$, the ratio of the total number of atoms of a different stable radiogenic daughter product, D_2 , after correction (if necessary) for contamination of common D_2^c originally present to the total number of atoms of radioactive parent, P_2 , now present in the same mineral sample A_1 or in a cogenetic mineral sample A_2 ; $R_{1i}={}^{t}Nd_{1}/Np_{1}$, the ratio of the total number of atoms of stable daughter product, D_{1} , to the total number of atoms of radioactive parent, P_{1} , now present in the mineral sample A_{1} ; $R_{2t}={}^{t}Nd_{2}/Np_{2}$, the ratio of the total number of atoms of stable daughter product, D_{2} , to the total number of atoms of radioactive parent, P_{2} , now present in the same mineral sample A_{1} or in a cogenetic mineral sample; and where R, R^* , R^c , λ_1 , λ_2 , and t are defined as $R=Np_1/Np_2$, the ratio of the total number of atoms of the chemically different radioactive parents, P_1 and P_2 , now present in the same mineral, A_1 , or in a cogenetic pair of minerals, A_1 and A_2 ; $R^*=N^*d_1/N^*d_2$, the ratio of the number of atoms of original radiogenic daughter product, D_1^* , present at the time of mineral formation in mineral A_1 to the number of atoms of original radiogenic daughter product, D_2^* , present at the time of mineral formation in the same mineral A_1 or a cogenetic mineral, A_2 ; $R^c = N^c d_1/N^c d_2$, the ratio of the number of atoms of contaminating common daughter product, D_1^c , present at the time of its formation in mineral A_1 to the number of atoms of contaminating daughter product, D_2^c , present at the time of mineral formation in mineral A_1 or a cogenetic mineral A_2 ; λ_1 =the decay constant of $P_1 \times 10^{-10} y^{-1}$; λ_2 =the decay constant of $P_2 \times 10^{-10} y^{-1}$; $\lambda_1 \neq \lambda_2$; t=the age of mineral A and (or) cogenetic mineral $A_1 \times 10^{10}$ years ($tA = tA_1$). The general form of equation 26 cannot be as easily derived because, as has been mentioned, the term R is no longer the same constant for two or more samples, although it is known for each sample. Equation 26 takes the form $$\begin{split} &(R_A - R_B) \bigg[\frac{(\lambda_1 \lambda_2)^n}{n!n!} \ t^{2n} + (\lambda_1 \lambda_2)^{(n-1)} \bigg(\frac{\lambda_2}{(n-1)!n!} \\ &+ \frac{\lambda_1}{n!(n-1)!} \bigg) t^{(2n-1)} + (\lambda_1 \lambda_2)^{(n-2)} \bigg(\frac{\lambda_2^2}{(n-2)!n!} \\ &+ \frac{\lambda_1 \lambda_2}{(n-1)!(n-1)!} + \frac{\lambda_1^2}{n!(n-2)!} \bigg) t^{(2n-2)} + \dots \\ &+ (\lambda_1 \lambda_2) \bigg(\frac{\lambda_2^{(n-1)}}{1!n!} + \frac{\lambda_1 \lambda_2^{(n-2)}}{2!(n-1)!} + \dots + \frac{\lambda_1^{(n-2)} \lambda_2}{(n-1)!2!} \\ &+ \frac{\lambda_1^{(n-1)}}{n!1!} \bigg) t^{(n+1)} \bigg] + \bigg[(R_B R_{2b} - R_A R_{2a}) \lambda_1^n / n! \\ &+ (R_B R_{1a} - R_A R_{1b}) \lambda_2^n / n! + (R_A - R_B) (\lambda_1 \lambda_2) \bigg\{ \frac{\lambda_2^{(n-2)}}{1!(n-1)!} \\ &+ \frac{\lambda_1 \lambda_2^{(n-3)}}{2!(n-2)!} + \dots + \frac{\lambda_1^{\left(\frac{n}{2} - 3\right)} \lambda_2^{\frac{n}{2}}}{(n/2-1)!(n/2+1)!} \\ &+
\frac{\lambda_1^{\left(\frac{n}{2} - 1\right)} \lambda_2^{\left(\frac{n}{2} - 1\right)}}{(n/2)!(n/2)!} + \frac{\lambda_1^{\frac{n}{2}} \lambda_2^{\left(\frac{n}{2} - 3\right)}}{(n/2+1)!(n/2-1)!} + \dots \\ &+ \frac{\lambda_1^{(n-3)} \lambda_2}{(n-2)!2!} + \frac{\lambda_1^{(n-2)}}{(n-1)!1!} \bigg\} \bigg] t^n + \dots \\ &+ \bigg[(R_B R_{2b} - R_A R_{2a}) \lambda_1^n / 3! + (R_B R_{1a} - R_A R_{1b}) \lambda_2^n / 3! \\ &+ (\lambda_1 / 2! + \lambda_2 / 2!) (R_A - R_B) (\lambda_1 \lambda_2) \bigg] t^3 \\ &+ \bigg[(R_B R_{2b} - R_A R_{2a}) \lambda_1^n / 2! + (R_B R_{1a} - R_A R_{1b}) \lambda_2^n / 2! \\ &+ (R_A - R_B) \lambda_1 \lambda_2 \bigg] t^2 + \bigg[(R_B R_{2b} - R_A R_{2a}) \lambda_1 \\ &+ (R_B R_{1a} - R_A R_{1b}) \lambda_2 \bigg] t^2 + R_A R_{1b} R_{2a} - R_B R_{1a} R_{2b} = 0. \end{split}$$ where $R_A = Np_{1a}/Np_{2a}$, the ratio of the total number of the chemically different radioactive parents, P_{1a} and P_{2a} , now present in the same mineral A or in a cogenetic pair of minerals A_1 and A_2 ; - $R_B = Np_{1b}/Np_{2b}$, the ratio of the total number of atoms of the chemically different radioactive parents, P_{1b} and P_{2b} now present in the same mineral B or in a cogenetic pair of minerals B_1 and B_2 ; - $R_{1a}=Nd_{1a}/Np_{1a}$, the ratio of the total number of atoms of stable daughter product, D_{1a} , to the total number of atoms of radioactive parent, P_{1a} , now present in mineral sample A_1 ; - $R_{2a}=Nd_{2a}/Np_{2a}$, the ratio of the total number of atoms of stable daughter product, D_{2a} , to the total number of atoms of radioactive parent, P_{2a} , now present in mineral sample A_1 or in a cogenetic mineral sample A_2 ; - R_{1b} = Nd_{1b}/Np_{1b} , the ratio of the total number of atoms of stable daughter product, D_{1b} , to the total number of atoms of radioactive parent, P_{1b} , now present in mineral sample B_1 ; - $R_{2b}=Nd_{2b}/Np_{2b}$, the ratio of the total number of atoms of stable daughter product, D_{2b} , to the total number of atoms of radioactive parent, P_{2b} , now present in mineral sample B_1 or in a cogenetic mineral sample B_2 ; - λ_1 =decay constant of P_{1a} and $P_{1b}\times 10^{-10}$ y^{-1} ; λ_2 =decay constant of P_{2a} and $P_{2b}\times 10^{-10}$ y^{-1} ; - t=the age of the mineral pair A_1 and B_1 or the pairs of cogenetic minerals A_1 , A_2 , and B_1 , B_2 $(tA_1=tB_1)$. #### REFERENCES CITED - Ahrens, L. H., 1955a, The convergent lead ages of the oldest monazites and uraninites (Rhodesia, Manitoba, Madagascar, and Transvaal): Geochim. et Cosmochim. Acta, v. 7, p. 294-300. - Aldrich, L. T., and Wetherill, G. W., 1958, Geochronology by radioactive decay: Ann. Rev. Nuclear Sci., v. 8, p. 257-298. - Collins, C. B., Farquhar, R. M., and Russell, R. D., 1954, Isotopic constitution of radiogenic leads and the measurement of geologic time: Geol. Soc. America Bull., v. 65, p. 1-21. - Eckelmann, W. R., and Kulp, J. L., 1956, Uranium-lead method of age determination, Part 1: Lake Athabasca problem: Geol. Soc. America Bull., v. 67, p. 35-54. - Gerling, E. K., 1958, Effect of metamorphism on geologic age as determined by the lead method: Geokhimya (Translation) No. 4, p. 363-373. - Giletti, B. J., and Kulp, J. L., 1955, Radon leakage from radioactive minerals: Am. Mineralogist, v. 40, p. 481-496. - Greenhalgh, D., and Jeffery, P. M., 1959, A contribution to the pre-Cambrian chronology of Australia: Geochim. et Cosmochim. Acta, v. 16, p. 39-57. - Horne, J. E. T., 1957a, Age of a later uraninite from the Witwatersrand: Great Britain Geol. Survey Age Determination Rept. 2, p. 1-4. - Horne, J. E. T. 1957b, Ages of uraninites from Nkana, Northern Rhodesia and from Shinkolobwe, Belgian Congo: Great Britain Geol. Survey Age Determination Rept. 3, p. 1-3. - Horne, J. E. T., and Davidson, C. F., 1955, The age of the mineralization of the Witwatersrand: Great Britain Geol. Survey Bull. 10, p. 58-73. - Houtermans, F. G., 1946, Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans: Naturwissenschaften, v. 33, p. 185-186. - ——1947, Das Alter des Urans: Zeitschr. Naturforschung, v. 2a, p. 322-328. - Keevil, N. B., 1939, The calculation of geological age: Am. Jour. Sci., v. 237, p. 195-214. - Kulp, J. L., Bate, G. L., and Broecker, W. S., 1954, Present status of the lead method of age determination: Am. Jour. Sci., v. 252, p. 345-365. - Kulp, J. L., and Eckelmann, R. W., 1957, Discordant U-Pb ages and mineral type: Am. Mineralogist, v. 42, p. 154-164. - Louw, J. D., and Strelow, F. W. E., 1955, Geological age determinations on Witwatersrand uraninites using the lead-isotope method: South Africa Geol. Soc. Trans., v. 57, p. 209-230. - Robinson, S. C., 1955, Mineralogy of uranium deposits, Goldfields, Saskatchewan: Canada Geol. Survéy Bull. 31, p. 1-128. - Russell, R. D., and Ahrens, L. H., 1957, Additional regularities among discordant lead-uranium ages: Geochim. et Cosmochim. Acta, v. 11, p. 213-218. - Stieff, L. R., and Stern, T. W., 1956, Interpretation of the discordant age sequence of uranium ores, in Page, L. R., and others, compilers, Contributions to the geology of uranium and thorium by the U.S. Geological Survey and Atomic Energy Commission for the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1955: U.S. Geol. Survey Prof. Paper 300, p. 549-555. - Stieff, L. R., Stern, T. W., and Milkey, R. G., 1953, A preliminary determination of the age of some uranium ores of the Colorado Plateau by the lead-uranium method: U.S. Geol. Survey Circ. 271, p. 1-19. - Stieff, L. R., Stern, T. W., Oshiro, Seiki, and Senftle, F. E., 1959, Tables for the calculation of lead isotope ages: U.S. Geol. Survey Prof. Paper 334-A, p. 1-40. - Tilton, G. R., 1960, Volume diffusion as a mechanism for discordant lead ages: Jour. Geophys. Research, v. 65, p. 2933-2945. - Tugarinov, A. I., 1954, Reliability of the absolute age of uranium minerals from the ratio of lead isotopes: Akad. Nauk SSSR Doklady, v. 99, p. 1061-1063. - Wetherill, G. W., 1956, Discordant uranium-lead ages, I: Am. Geophys. Union Trans., v. 37, p. 320-326. - Wickman, F. E., 1939, Some graphs on the calculation of geological age: Sveriges Geol. Undersökning Årsbok, v. 33, no. 7, p. 1-8.