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Calibration for Thrust and Airflow Measurements in the 
CE-22 Advanced Nozzle Test Facility 

 
Roger A. Werner and John D. Wolter 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Summary 

CE-22 facility procedures and measurements for thrust and airflow calibration obtained with 
choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total 
pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 in.2. Throat Reynolds 
number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 
to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total 
pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. 
ASME nozzle calibrations need to be done before and after research model testing to achieve 
these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and 
nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for 
throat areas between 20 and 30 in.2. Also presented are results for two of the ASME nozzles 
vectored at 10, a dead-weight check of the vertical (perpendicular to the jet axis) force 
measurement, a calibration of load cell forces for the effects of facility tank deflection with tank 
pressure, and the calibration of the metric-break labyrinth seal.  

Nomenclature 

CDN Nozzle Discharge Coefficient 
CFG Nozzle Gross Thrust Coefficient 
ERB Engine Research Building 
ESP Electronically Scanned Pressure 
NPR Nozzle Pressure Ratio 
WP Primary Weight Flow (lbm/sec) 

Introduction 

Procedures used to calibrate the CE-22 Advanced Nozzle Test Facility for nozzle model 
thrust and airflow are presented along with calibration measurements. Multiple calibration steps 
are performed, each building upon the previous. For the final calibration, choked-flow ASME 
nozzles are used. The calibration data will provide a data base to which future calibrations in the 
facility can be compared. The ASME nozzle data is processed with the calibration coefficients 
and compared to the ASME nozzle reference values for determination of the measurement 
uncertainty. Nozzle pressure ratio (NPR) limits of the facility were also determined. The 
information presented in this report will provide guidance to facility users in the selection of 
model sizing, instrumentation, and test conditions. 
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Figure 1.—CE-22 Advanced Nozzle Test Facility. 

Facility 

The CE-22 Advanced Nozzle Test Facility (Fig. 1) is one of the seven Flow Physics Labs in 
the Engine Research Building (ERB) at the NASA Glenn Research Center. The CE-22 facility 
provides economical testing of 1/4-scale models incorporating advanced nozzle concepts. 
Model throat Reynolds numbers can range between 1.8 and 7.9 million at inlet pressures of 20 
to 48 psia. The NPR range is from about 1.2 to 60. The facility can measure forces and 
moments in all three axes. The test chamber pressure can be controlled to simulate altitude 
conditions. The primary air can be heated to 370 F. Secondary air at 40, 125, or 450 psig is 
available and can be heated to 250 F. Unheated air temperature for primary and secondary 
flow is 65 to 85 F depending on ambient conditions. The facility also has an inlet vane device 
for primary air swirl and a color Schlieren system for quantitative nozzle exit airflow analysis. 
Detailed descriptions of the facility are given in References 1 to 3 and a description of the six-
component thrust stand and force interaction calibration is given in Reference 3. Appendix A 
lists all of the constants, averages, and calculations used for facility data reduction including the 
calibrations. 

A 49-in. long, 28-in. inside diameter cylindrical altitude exhaust collector is used for this 
calibration program. Inlet duct length from the thrust stand mount to the ASME nozzle inlet is 
24.75 in. The collector and inlet configurations remained the same throughout the program. 
Instrumentation in the primary flow stream as well as calculated variables based on this 
instrumentation are organized by station, illustrated in Figure 2, and named according to the 
convention shown in Figure 3. 
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Primary airflow is measured using total-to-static differential pressure transducers between 
stations 2 and 5 three transducer ranges are used in the facility—1, 2, and 5 psid. Four 
transducers at a time are installed for each range; but of these, one 1-psid, one 2-psid, and 
three 5-psid transducers were not included in the data reduction because of a large 
disagreement with each other and with separate measurement of static and total pressure by 
the electronically scanned pressure (ESP) system. A description of the ESP system is given in 
Reference 4. 
 

 
 
 
 
 

 
Figure 3.—Measurement variable naming convention. 
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Figure 2.—Station designations in primary air stream. 
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Maximum Nozzle Pressure Ratio 

The ASME flow calibrations were done in October and November of 2005. The NPR limits 
for each nozzle with inlet pressure are empirically determined and are shown on Figure 4 versus 
primary airflow. NPR as high as 60 is measured. The limits of the total-to-static differential 
pressure transducer ranges used at station 5 are also shown in Figure 4.  

Six-Component Thrust Stand 

Figure 5 depicts the thrust stand including force and moment sign convention. Reference 3 
gives a detailed description of the thrust stand and the in-stand calibration procedure. The thrust 
stand is a redundant system having a total of eight reaction load cells—two axial, two lateral, 
and four vertical. The redundancy is resolved by summing the two axial load cells together and 
combining the four vertical load cell together two different ways (front-back and right-left). The 
axial load cells can be summed because of an elastic hinge feature in the stand design. Two 
5x5 matrices are generated and are transformed into the interaction coefficients. The interaction 
coefficients and the reaction load cell measurement combinations are then used to calculate the 
test stand forces and moments. Load cell sizes are 4000 lbf for both axial cells, 2000 lbf for the 
forward lateral, 4000 lbf for the aft lateral, and 2000 lbf for the four vertical load cells. 

Reference 3 Errata 

Five typographic errors can be found on page 8 of Reference 3. In Table III, row two and 
column two, replace FZ with FX; and for paragraph four, lines five and six, replace (CX1 and 
CX2) and (CX3 and CX4) with (CZ1 and CZ2) and (CZ3 and CZ4). 

 
Figure 4.—NASA CE-22 facility nozzle pressure ratio NPR versus primary airflow. 
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Figure 5.—Six component thrust stand. 

Load Cell Installation Procedures 

Load cells are calibrated in a calibration laboratory. Before installation in the thrust stand, 
the load cells are laid inside the CE-22 test cell and wired to the signal conditioners using the 
normal connections. The excitation voltage is applied and the load cells are allowed to “cook” for 
about 48 hr. Venting of the reaction load cells is then verified by closing the tank, electronically 
zeroing and spanning the loadcells (using the knobless conversion command of the data 
acquisition system, hereafter referred to as a “knobless calibration” of the load cells), and 
evacuating the chamber to vacuum exhaust conditions; vented load cells should not have any 
zero shifts with altitude exhaust pressure variation. Any preservative gel inside the load cells 
must be removed to prevent clogging the vent holes. The load cells are now mounted in the 
thrust stand. 

Interaction Coefficients 

Before each set of force or moment calibration loadings, a knobless calibration is performed. 
Coefficients from laboratory calibration are used with the knobless measurements to determine 
load cell slopes for converting output electrical signals into lbf units. The in-stand calibration is 
performed as outlined in Reference 3. In-stand calibration results are shown on nine figures in 
Appendix B. These results are very good with all of the reactions being linear and having no 
slope changes through the zero load point. The slope values are used to determine the 
interaction matrix coefficients. 
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Dead Weight Check 

After the interaction matrix coefficients are set as constants in the data reduction program, 
the vertical downward (positive) force measurement is checked with dead weights. A fixture for 
hanging the weights is mounted on the airflow supply duct of the thrust stand. Weights are 
applied in steps of 50 lbm up to a total of 250 lb. The fixture has a slot allowing a 5-in forward-aft 
movement of the weight loading. Also, two duct pieces with a total length of 15 in. are installed 
between the stand and the fixture for additional axial locations for applying the weights loadings. 
The 9.625-in. distance to the centroid is obtained by putting weights directly on the aft portion of 
the thrust stand. Vertical force measurement results are shown in Figure 6. 

Vertical force measurements are within 1 lbf of the weights for lengths of 9.625, 35.125, and 
40.125 in. Measurement differences are greater than 1 lbf for weights of 100 lb and higher at 
50.125 and 55.125-in. lengths. The effect of this distance is illustrated by replotting the vertical 
force measurements against axial length (Fig. 7). Dial indicators were placed between the live 
and the ground frames of the thrust stand and no deflections were observed during loading of 
the weights. An inclinometer was also located on the calibration fixture, and the deflection angle 
measurements are given in Figure 8. Deflection angle increased with length and loading. A 
maximum of 0.065 for downward deflection of the fixture was measured. These two results 
indicate that the angular deflection with weight is caused by a deflection of the tank, which 
supports the entire thrust stand structure, rather than a deflection between the live and ground 
frames of the thrust stand. 

Correction for the dead weight check is not made in the data reduction program. For flow 
vectored at 10 at 40 in. from the thrust stand centroid, a correction of the force vector angle 
would be less than 0.1. The effects of the dead weight check on the other measured forces and 
moments are shown on five figures in Appendix C. 

 

 
Figure 6.—Vertical force FZ resulting from a dead weight check. Axial distance aft of the x-y centroid 

of the thrust stand is varied from 9.625 to 55.125 in. 
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Figure 7.—Vertical force FZ resulting from a dead weight check versus distance to the thrust stand centroid. 

 

 
Figure 8.—Angular deflection measurement of the dead weight check fixture with vertical load. 
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Test Chamber Pressure Effects 

Reaction load cell loadings as caused by evacuating the test chamber to vacuum pressure 
conditions are shown in Figure 9 and the effects of pressure on combinations of load cells are 
shown in Figure 10. These figures show typical responses of the vented load cells in the CE-22 
facility. The loadings are caused by test chamber deflections. The load cell reactions are most 
significant in the vertical (z) direction. Consequently, the corrections for these forces, developed 
in the next paragraphs, will be greatest in the z direction. The thrust bed is “exercised” and a 
knobless load cell calibration is applied before decreasing the test cell pressure, P0. 

 
Figure 9.—Reaction load cell response to altitude exhaust pressure. 

 
Figure 10.—Response of combinations of reaction load cells to altitude exhaust pressure. 

21 Oct, 2005

-40

-30

-20

-10

0

10

0 2 4 6 8 10 12 14 16

Alitude Exhaust Pressure, P0, psia

R
ea

ct
io

n
 L

o
ad

 C
el

ls
, l

b
f

RX1

RX2

RY1

RY2

RZ1

RZ2

RZ3

RZ4

21 Oct, 2005

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16

Alitude Exhaust Pressure, P0, psia

R
ea

c
ti

o
n

 L
o

a
d

 C
el

l C
o

m
b

in
at

io
n

s 
fo

r 
T

ra
n

sf
o

rm
at

io
n

, l
b

f

RX2-RX1

RY1

RY2

RZ3-RZ1

RZ2-RZ4

RZ2-RZ1

RZ3-RZ4



NASA/TM—2010-216771 9 

The forces and moments produced by P0 effects are given in Figures 11 and 12. The 
equations for the data reduction corrections of the exhaust pressure effects are shown in the 
figures. Slopes of the linear curve fits are used. P0KNOB is a recording of the P0 chamber 
pressure when a knobless calibration of the load cells is performed. These corrections (FXP0, 
FYP0, etc.) are subtractions in the calculations (Equations F051 to F054, Appendix A). There is 
no difference whether the calibration (and knobless) begins at sea level pressure and goes to 
altitude or starts at altitude exhaust pressure and goes to sea level.  

 
Figure 11.—Thrust stand force corrections for altitude exhaust effects. 

 
Figure 12.—Thrust stand moment corrections for altitude exhaust effects. 
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Labyrinth Seal Force Calibration 

The labyrinth seal force calibration, which is also called the AP calibration or the blank-off 
plate calibration, results in the FTARE term in the axial force summation (calculation F052 in 
Appendix A). This calibration is achieved by blanking off the primary airflow duct and 
maintaining constant pressure in the duct while increasing the altitude exhaust pressure from 
the vacuum tare condition. This calibration is another area-delta-pressure term in the force 
equation and is used to balance out the pressure-area forces with the load cell forces at static 
conditions. The calibration calculation is given by Equations F069 and F070 in Appendix A. The 
same fixture used for the dead weight check is used to blank off the duct. 

A knobless load cell calibration is recorded at vacuum conditions and then the duct is 
pressurized to a desired level (PT5). Altitude exhaust pressure is then increased with duct 
pressure held constant, and data is recorded at various PS3/P0 ratios. PS3 is the pressure 
inside the seal cavity upstream of the labyrinth seal. Since a small amount of airflow goes 
through the seal, PS3 will read slightly lower than pressures inside the primary airflow duct. 
After completing a PS3/P0 sweep, the conditions are returned to vacuum; a knobless calibration 
is recorded; and the procedure is repeated for another PT5 pressure level. With the blank-off 
plate installed, a zero pressure differential across the plate at vacuum tare is very hard to 
achieve for a knobless calibration. Therefore an additional term, FXKNOB, is included in the 
calculations to cancel out the small axial force loading from the pressure differential during the 
knobless calibration. Calibration results for the seal are shown in Figure 13 in the form of 
measured effective labyrinth seal area (ALS3M) as a function of the pressure ratio PS3/P0.   

 
Figure 13.—Labyrinth seal calibration. 
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Figure 13 shows that the 30 and 40-psia PT5 data as well as a repeat 30-psia calibration all 
fall on the same curve. This curve is divided into three segments for the curve fits, and the 
resulting equations are shown on the figure. This same curve but with an intercept adjustments 
is used for the 20 and 14.5 psia data. A second curve fit is done for the intercepts (plot not 
included) and the resulting equation for duct pressures below 21 psia is also included in 
Figure 13.  

Choked-Flow ASME Nozzle Calibration 

The CE-22 facility airflow and inlet momentum are measured at station 5, and the respective 
calibration coefficients are determined using choked-flow ASME nozzles for the airflow and 
thrust calibration values. The ASME equations are based on Reference 5 and are given in 
Appendix A, calculations F071 to F077. The CV velocity coefficient calculation is modified to use 
an industry recommendation of 0.109 instead of 0.107 for a constant in the equation. 

ASME Nozzle Description 

The calibration nozzles are ASME long-radius flow nozzles as shown in Reference 6, 
page 217. The smallest of the nozzles (9.9986 in.2) is a low β nozzle having a throat-to-inlet 
diameter ratio of 0.408. The other five nozzles are high β nozzles with β ranging from 0.506 to 
0.815. A schematic of the 19.990-in.2 nozzle is given in Figure 14; this figure also shows a 
modification at the nozzle outlet. The nozzle exit contour goes radial outward and then forward 
(upstream) in 1/8-in. steps and then angles forward at 45. The modification is an industry 
recommendation that improves thrust calibration. 

 
Figure 14.—Cross section of 19.990-in.2 ASME nozzle. 
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ASME Nozzle Calibration Procedure 

On each day prior to a run, the thrust stand load cells are exercised in all three axes with 
force loadings from the in-stand calibration system. The test chamber is taken to minimum 
exhaust pressure for the vacuum tare; a knobless calibration is taken and a data point is 
recorded. The inlet pressure is set to a desired level after which the exhaust pressure is 
increased until the first NPR value is obtained. The first NPR will be the highest of an NPR 
sequence. NPR is reduced by increasing the exhaust pressure until the sequence is completed. 
Standard deviations of online averages of test conditions and force measurements are 
monitored until an acceptable low deviation is observed and then a data point is recorded. Upon 
completion of an NPR sequence, the facility is returned to the vacuum tare condition and a data 
point is recorded; the force and airflow values (load cells and transducers) are reviewed for zero 
shifts. This procedure, beginning with a knobless calibration at vacuum, is repeated for 
subsequent NPR sequences at other total pressure levels. This same procedure is used during 
research model testing. 

Hysteresis error is eliminated by always reducing NPR—if a point is missed the sequence is 
continued without reversing direction. The ASME force and airflow values will calibrate out the 
nonlinearity of the load cells and pressure transducers. If a load cell is replaced during a test 
program, then a complete calibration including the force interaction coefficients, lab seal, and 
ASME has to be redone. A pressure transducer replacement would only require a repeat of the 
ASME nozzle calibration or a reprocessing of the original data with a new DP25 average. 

ASME Calibration Results 

Figures 15 to 17 give the results of the momentum station CF5 calibrations for 1.0-, 2.0-, 
and 5.0-psid DP25 differential pressure transducers. Data taken at 3, 4.5, and 6 NPR is 
averaged together to reduce data scatter. These points for averaging are purely arbitrary and 
other averages better suited for the research tests could be used—perhaps 3 or more points at 
2.0 NPR, etc. The DP25 transducer data was reviewed during data processing for inconsistent 
trends, etc. For this report, one each of the 1.0- and 2.0-psid transducers were removed from 
the calculations and three of the four 5.0-psid transducers were not used. This is an important 
step to reduce CF5 fluctuations in the plots and improve the calibration. The CF5 data is plotted 
against the ideal Mach number at station 5, M5ID. M5ID is primarily a function of nozzle throat 
area. 

Figures 18 to 20 show NPR corrections that are applied to the CF5 averages. A limited 
amount of data was taken for NPR above 7.5; therefore, the repeat set of nozzle data taken with 
2.0-psid DP25 transducers was included to better define the 2.0-psid NPR corrections. ASME 
nozzle calibrations should duplicate all the NPR values of the research test plan to correctly 
calibrate the facility. These corrections will vary depending on what averages are used for the 
for the CF5 plots. If the research model has screens at the model inlet, then PT5/P0 should be 
used instead of NPR. 

Figures 21 to 23 present the CD5 airflow calibrations for the three transducer ranges. CD5 
does not vary with NPR and averages for CD5 and M5ID using all the choked-flow NPR data 
can be used. 
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Figure 15.—Station 5 force coefficient CF5 calibrations, 1-psid DP25 transducers. 

 
 
 

 
Figure 16.—Station 5 force coefficient CF5 calibrations, 2-psid DP25 transducers. 
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Figure 17.—Station 5 force coefficient CF5 calibrations, 5-psid DP25 transducers. 

 
 
 

 
Figure 18.—CF5 correction for NPR effects, 1-psid DP25 transducers. 
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Figure 19.—CF5 correction for NPR effects, 2-psid DP25 transducers. 

 
 
 

 
Figure 20.—CF5 correction for NPR effects, 5-psid DP25 transducers. 
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Figure 21.—Station 5 airflow coefficient CD5 calibrations, 1-psid DP25 transducers. 

 

 
Figure 22.—Station 5 airflow coefficient CD5 calibrations, 2-psid DP25 transducers. 
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Figure 23.—Station 5 airflow coefficient CD5 calibrations, 5-psid DP25 transducers. 

 
 

Thrust and Airflow Uncertainty 
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Figure 24.—ASME nozzle gross thrust coefficient CFG uncertainty of repeat data using pre-run CF5 calibrations. 

 
 

 
Figure 25.—ASME nozzle gross flow coefficient CDN uncertainty of repeat data using pre-run CD5 calibrations. 
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Figure 26.—Average of station 5 force coefficient CF5 pre and post calibrations, 2-psid DP25 transducers. 

 
 

 
Figure 27.—Average of station 5 flow coefficient CD5 pre and post calibrations, 2-psid DP25 transducers. 
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Figure 28.—ASME nozzle gross thrust coefficient CFG uncertainty of all data using average of pre 

and post CF5 calibrations, 2-psid DP25 transducers. 
 

 
Figure 29.—ASME nozzle flow coefficient CDN uncertainty of all data using average of pre and post 

CD5 calibrations, 2-psid DP25 transducers. 
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Figure 30.—ASME nozzle gross thrust CFG uncertainty using the average CF5 calibrations for each 

ASME nozzle area, 2-psid DP25 transducers. 
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Figure 31.—Comparison of forces at maximum NPR, 30 and 40 psia. 

 

 
Figure 32.—Axial thrust stand force (FX) increase with ideal area expansion 

ratio, percent of ASME axial load cell force, 30 and 40 psia. 
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Thrust and Airflow Measurements at 1.5 NPR 

Measurements were taken at 1.5 NPR with 20 psia for various ASME nozzles, and the 
results are presented in Table I using the CDN and CFG coefficients. Comparisons are shown 
with the choked-flow ASME predictions and with Fluidyne predictions from the aero propulsion 
industry. Measured CDN at 1.5 NPR is up to 0.5 percent less than the Fluidyne predictions for 
1-psid data with nozzle areas of 19.990 in.2 and larger and for all the data using larger 
transducers. Measured CFG at 1.5 NPR compares quite well with Fluidyne values having a 
0.25-percent agreement except for 1-psid data at 9.9986 in.2 and 2-psid data at 15.392 in.2 and 
19.990 in.2; the respective differences are 0.6, 0.8, and 0.3 percent. 

 
TABLE I.—CDN AND CFG AT 2.0 AND 1.5 NPR 

DP25 A8 PT NPR CDN CDN CDN CFG CFG CFG 

    Meas. ASME ASME Meas. ASME ASME 

     choked Fluidyne  choked Fluidyne 

     cal. pred.  cal. pred. 

psid in2 psia        

1 9.9986 20.07 2.07 0.991 0.990 0.992 0.990 0.994 0.996 

1 9.9986 20.06 1.58 0.991 --- 0.992 0.989 --- 0.995 

1 15.392 20.09 2.05 0.990 0.990 0.992 0.994 0.994 0.996 

1 15.392 20.05 1.51 0.990 --- 0.992 0.993 --- 0.995 

1 19.990 20.07 2.06 0.991 0.990 0.992 0.995 0.994 0.996 

1 19.990 20.03 1.58 0.988 --- 0.992 0.994 --- 0.995 

1 23.758 19.94 2.08 0.991 0.991 0.992 0.996 0.994 0.996 

1 23.758 20.08 1.56 0.988 --- 0.992 0.996 --- 0.995 

2 15.392 20.02 2.08 0.989 0.990 0.992 0.995 0.994 0.996 

2 15.392 20.02 1.48 0.988 --- 0.992 0.986 --- 0.994 

2 19.990 19.98 2.06 0.989 0.990 0.992 0.994 0.994 0.996 

2 19.990 20.01 1.60 0.987 --- 0.992 0.998 --- 0.995 

2 23.758 20.09 2.09 0.989 0.991 0.992 0.995 0.994 0.996 

2 23.758 20.06 1.56 0.986 --- 0.992 0.993 --- 0.995 

5 23.758 20.09 2.07 0.992 0.991 0.992 0.994 0.994 0.996 

5 23.758 20.00 1.58 0.989 --- 0.992 0.993 --- 0.995 

ASME Nozzle Vectoring 

The 15.392-in.2 and the 19.990-in.2 throat area ASME nozzles were mounted to the facility 
supply duct with choke plates at the nozzle inlet and wedges for 10 of turning. These were 
used to check the vectoring measurement system in four directions (left and right yaw, up and 
down pitch). Pressures of 40, 30, and 20 psia were set in the nozzle; this required station 6 
pressures to be approximately 12 percent higher for the 15.392-in.2 nozzle and 20 percent 
higher for the 19.990-in.2 to obtain the same nozzle pressure ratio. Nozzle total pressure was 
determined from the throat static-pressure taps. The 15.392-in.2 nozzle used the 1.0-psid DP25 
transducers and calibration coefficients while the 19.990-in.2 nozzle used the 2.0-psid 
transducers and calibration coefficient averages. Measured axial force included linear 
interpolations of M5ID and PT5 (instead of PT) for CF5; NPR corrections for CF5 were 
approximated using PT5/P0 instead of NPR. 
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Vectoring results are shown in Figures 33 and 34. The negative angles (yaw right and pitch 
up) are plotted as positive angles for better comparisons. The data comparisons are slightly 
larger for the smaller nozzle; there is a 0.4-degree spread between the two sets of pitch-up 
runs. Both figures show non-symmetry for vectoring and a facility bias might be present. The 
data should be corrected for a zero-angle offset to have symmetry for positive and negative 
vector angles. 

 
Figure 33.—10 vectoring with the 15.392-in.2 throat ASME nozzle, 1-psid DP25 transducers. 

 

 
Figure 34.—10 vectoring with the 19.990-in.2 throat ASME nozzle, 2-psid DP25 transducers. 
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Nozzle Inlet Total-Pressure Profiles 

Total pressure profiles are included to show the quality of the nozzle inlet conditions. 
Figure 35 shows the variation of the station 6 pressure profiles for all the ASME nozzles. As flow 
at station 6 increases with the increase of throat area, the pressure profile exhibits more 
distortion. The low pressure at the center is caused by the wake of an upstream temperature 
measurement rake. The temperature rake crosses the pressure rake at 90 and is also 
upstream of the flow straightening screen; the total-pressure rake is downstream of the screens. 

Figure 36 gives inlet pressure profiles when the temperature measurement rake is out. The 
pressure is higher in the center when compared to the profile of the previous figure. The three 
pressure levels have identical profiles. 
 
 
 

 
Figure 35.—Inlet total-pressure profiles for all the ASME nozzle throat areas, 30 psia, inlet 

temperature rake installed. 
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Figure 36.—Inlet total-pressure profiles for three inlet pressures at an ASME nozzle throat area of 

30.009-in.2, no inlet temperature rake. 
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Appendix A.—Abridged and Revised Facility Calculations 
 

Constants: 
 
CONF  = input   Configuration number 
NOZZ  = input   Nozzle designation   (in CONF) 
A8  = input   Throat area of ASME nozzle, in2 (in CONF) 
A9_A8  = input   Nozzle area expansion ratio  (in CONF) 
A5  = 56.745  Station 5 flow area, in2 
ALS1  = 14.137  Labyrinth seal face area, in2  
ANGE  = input   Nozzle mounting angle (vector calibration), deg 
FXKNOB = input   ADP cal FX Offset (=FXKNOBM at vac tare), lbf 
P0KNOB = input   Value of P0 at time of the most recent KNOB, psia 
SFXP0  = input   Slope for P0 effect on FX, in2 
SFYP0  = input   Slope for P0 effect on FY, in2 
SFZP0  = input   Slope for P0 effect on FZ, in2 
SMXP0 = input   Slope for P0 effect on MX, in3 
SMYP0 = input   Slope for P0 effect on MY, in3 
SMZP0 = input   Slope for P0 effect on MZ, in3 
BETAZ  = input   Yaw angle zero correction from vectored ASME, deg 
ALPHAZ  = input   Pitch angle zero correction from vectored ASME, deg 
 
Sij = 25 inputs, (i=1-5, j=1-5) load cell interaction coefficients from in-stand   
     calibration, set equal to SDUM (i, j) in calculations 
 
Uij = 25 inputs, (i=1-5, j=1-5) load cell interaction coefficients from in-stand   
     calibration, set equal to UDUM (i, j) in calculations 
 
PI = 3.141592654 
RG = 53.352    ft-lbf / lbm-R 
GAM = 1.4     specific heat ratio 
GC = 32.174   lbm-ft / sec2-lbf 
PSTS = 14.696 / sqrt (518.67) lbf/in2 / sqrt R 
 
Averages: 
 
DP25  (PS2-PS5) delta-pressure transducers, psid 
P0  Altitude-exhaust pressures, psia 
PS1  Inlet duct static pressures, psia 
PS2  Inlet duct static pressures, psia 
PS3  Labyrinth seal inlet static pressures, psia 
PS5  Airflow station static pressures, psia 
PT5  Airflow station total pressure (average PS1, PS2), psia 
PS6  Model inlet static pressures, psia 
PT6  Model inlet area weighted total pressure (includes PS6), psia 
PS8  Model throat static pressures, psia 
PASME ASME nozzle throat static pressures (PS8), psia 
TT6  Model inlet total temperatures, R 
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Equations: 
C 
C   A.  FACILITY CALCULATIONS 
C 
C F006 NPR 
C 
    PT = PT6 
C IF ASME CHOKED-FLOW PLATE USED (VECTORED NOZZLES): 
       IF (ANGE.GT.0.) THEN 
          PT = 1.8929 * PASME 
       ENDIF 
    NPR = PT/P0 
C 
C F016  Gamma constants (sta. 5) 
C 
    GP1 = GAM + 1 
    GM1 = GAM - 1 
    G1 = GM1 / GAM 
    G2 = 2 / GP1 
    G3 = 2 / GM1 
    G4 = GP1 / (2 * GM1) 
    G5 = SQRT (GC * GAM / RG) 
    G6 = SQRT (2 * RG * GC / G1) 
    G7 = 2 / (RG * GC * G1) 
    G8 = - 2 / GAM 
C 
C F017 Ideal Mach number at sta. 5 
C 
    PR5F= (PT5 / (PT5 - DP25))**G1 
    M5ID = SQRT (G3 * (PR5F - 1)) 
C 
C F019  Sta. 5 flow coefficient (ASME nozzle choked-flow calibration) 
C 
    CD5 = curve fits from ASME calibration, fcn (M5ID) 
C 
C F020 Mass flow at sta. 5 (primary), lbm/sec 
C 
    W5ID = G5 * A5 * PT5 * M5ID / (SQRT (TT6) * PR5F**G4) 
    WP  = CD5 * W5ID 
C 
C F021 Ideal momentum at sta. 5 (metric break), lbf 
C  
    MOM5ID = GAM * (PT5 - DP25) * A5 * M5ID**2 
C 
C F022 Mach number at sta. 5 
C 
    M5  = CD5 * M5ID 
C 
C F023 Corrected mass flow, lbm/sec 
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C 
    WPCOR = PSTS * WP * SQRT (TT6) / PT 
C 
C F027 Differential pressures at lab seal and sta.5, psid 
C 
    DP30 = PS3 - P0 
    DP50 = (PT5 - DP25) - P0 
C 
C F028 Force on lab seal, lbf 
C 
    FLS = ALS1 * DP30 
C 
C F029 Ideal inlet force at sta. 5, lbf 
C 
    F5ID = MOM5ID + A5 * DP50 
C 
C F030 Sta. 5 force coefficient (ASME nozzle choked-flow calibration) 
C 
    CF5 = curve fits from ASME calibration, fcn (M5ID, PT, NPR, etc.) 
C 
C F031 Inlet force at sta. 5, lbf 
C 
    F5 = CF5 * F5ID 
C 
C F032 Effective lab seal area from blank-off plate calibration, in2 
C 
    PS3QP0 = PS3 / P0 
    ALS3 = curve fits from AΔP calibration, fcn (PS3QP0, PT5) 
C 
C F033 Pressure tare force, lbf 
C 
    FTARE = ALS3 * DP30 
C 
C F034 NPR for 1D choked flow 
C 
    NPRC = (1 / G2)**(1/G1) 
C 
C F035 Unchoked sta. 8 ideal flow (throat), lbm/sec 
C 
    D8C = SQRT (4 * A8 / PI)  !! can use hydraulic mean diameter 
C      !! (D8C = 4 * A8 / wetted perimeter) 
    IF ((PT/PS8) .LE. NPRC) THEN 
       M8  = SQRT (G3 * ((PT/PS8)**G1 - 1)) 
       TS8  = TT6 / (PT/PS8)**G1 
       MU8 = 7.3025E-7 * TS8**1.5 / (TS8 + 198.72) 
       RN8 = 48 * WP / (PI * D8C * MU8) 
       W8ID = G5 * PS8 * A8 / SQRT (TS8) * M8 
    ENDIF 
C 
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C F036 Choked sta. 8 ideal flow (throat), lbm/sec 
C 
    IF (NPR .GT. NPRC) THEN 
       M8 = 1 
       TS8 = TT6 * G2 
       MU8 = 7.3025E-7 * TS8**1.5 / (TS8 + 198.72) 
       RN8 = 48 * WP / (PI * D8C * MU8) 
       W8ID = G5 * PT * G2**(1/G1) * A8 / SQRT (TS8) 
    ENDIF 
C     
C F037 Ideal velocity at sta. 9 (perfect expansion), ft/sec 
C 
    VEL9  = G6 * SQRT (TT6 * 1 -  (1/NPR)**G1)) 
C 
C  F038 Nozzle discharge coefficient 
C 
    CDN =  WP / W8ID 
C 
C F039 Ideal thrust at sta. 9, lbf 
C 
    F9ID = WP * VEL9 / GC 
C 
C   Force balance, lbf: 
C     X-positive forward & Y-positive right (looking upstream), Z-positive down 
C     C-calibration forces, positive with X, Y, and Z 
C     R-reaction forces, negative with X, Y, and Z (R positive when C negative) 
C     tension load cells-positive, compression load cells-negative 
C 
C F040 Calibration load cell forces 
C 
    FCY2  =  CY2 
    FCY1  =  CY1 
    FCZ1  =  CZ1 
    FCZ2  =  CZ2 
    FCZ3  =  CZ3 
    FCZ4  =  CZ4 
    FCX1  =  - CX1 
    FCX2  =  CX2 
C 
C F041 Reaction load cell forces 
C  (Un-vented load cells need to be corrected for P0 zero shift here) 
C 
    FRY2  =  RY2 
    FRY1  =  RY1 
    FRZ1  =  - RZ1 
    FRZ2  =  RZ2 
    FRZ3  =  RZ3 
    FRZ4  =  - RZ4 
    FRX1  =  - RX1 
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    FRX2  =  RX2 
C 
C F042 Reaction matrices 
C 
    R(1)  =  FRX1 
    R(2)  =  FRX2 
    R(3)  =  FRY1 
    R(4)  =  FRY2 
    R(5)  =  FRZ1 + FRZ3 
    R(6)  =  FRZ2 + FRZ4 
C 
    Q(1)  =  R(1) 
    Q(2)  =  R(2) 
    Q(3)  =  R(3) 
    Q(4)  =  R(4) 
    Q(5)  =  FRZ1 + FRZ2 
    Q(6)  =  FRZ3 + FRZ4 
C 
C F044 Calibration forces for in-stand static calibration 
C 
    F(1)  =  FCX1 + FCX2 
    F(2)  =  FCY1 + FCY2 
    F(3)  =  FCZ1 + FCZ2 + FCZ3 + FCZ4 
C 
C F045 Reaction-Calibration force differentials for in-stand static calibration 
C 
    R1F12 = R (1) - F (1) / 2 
    R2F12 = R (2) - F (1) / 2 
    R3F22 = R (3) - F (2) / 2 
    R4F22 = R (4) - F (2) / 2 
    R5F32 = R (5) - F (3) / 2 
    R6F32 = R (6) - F (3) / 2 
    Q5F32 = Q (5) - F (3) / 2 
    Q6F32 = Q (5) - F (3) / 2 
    R5F3   = R (5) - F (3) 
    R6F3   = R (6) - F (3) 
    Q5F3   = Q (5) - F (3) 
    Q6F3   = Q (6) - F (3) 
    R3F2   = R (3) - F (2) 
    R4F2   = R (4) - F (2) 
C 
C F046 Research model forces and moments from inverse matrix, lbf and in-lbf 
C 
    DO I = 1, 5 
       FS(I) = SDUM(I,1) * R(1) + SDUM(I,1) * R(2) + SDUM(I,2) * R(3) +  
 &       SDUM(I,3) * R(4) + SDUM(I,4) * R(5) + SDUM(I,5) * R(6) 
    ENDO 
    DO I = 1,5 
       FU(I) = UDUM(I,1) * R(1) +  UDUM(I,1) * R(2) + UDUM(I,2) * R(3) +  
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 &        UDUM(I,3) * R(4) + UDUM(I,4) * R(5) + UDUM(I,5) * R(6) 
    ENDO 
C 
C F047 Force and moment corrections for P0 and secondary flow, 
C  P0 corrections result from tank deflection effects on force balance 
C  fcn (P0-P0KNOB), only slopes from calibration are used, linear fit, 
C  Pressurized secondary line effects on force balance are calibrated with 
C  the model installed and capped lines over a range of secondary  
C  pressures, fcn (psec-P0), psec = PS302C, PS303C, PS123C, PS124C 
C  and other line pressures 
C 
    FXP0 = SFXP0 * (P0 - P0KNOB) 
    FYP0 = SFYP0 * (P0 - P0KNOB) 
    FZP0 = SFZP0 * (P0 - P0KNOB) 
    MXP0 = SMXP0 * (P0 - P0KNOB) 
    MYP0 = SMYP0 * (P0 - P0KNOB) 
    MZP0 = SMZP0 * (P0 - P0KNOB) 
C 
C  Add secondary-flow pressurized-line curve fits from calibration 
C 
    FX302 = 0. 
    FX303 = 0. 
    FY302 = 0. 
    FY303 = 0. 
    FZ302 = 0. 
    FZ303 = 0. 
    MX302 = 0. 
    MX303 = 0. 
    MY302 = 0. 
    MY303 = 0. 
    MZ302 = 0. 
    MZ303 = 0. 
C 
C F048 Axial force in x-axis, lbf 
C 
    FX = - FU (1) 
C 
C F049 Side force in y-axis, lbf 
C 
    FY = FU (2) 
C 
C F050 Vertical force in z-axis, lbf 
C 
    FZ = FU (3) 
C 
C F051 Moments, in-lbf 
C 
    MX = FS (4) - MXP0 - MX302 - MX303 
    MY = FU (4) - MYP0 - MY302 - MY303 
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    MZ = FU (5) - MZP0 - MZ302 - MZ303  
C 
C F052 Axial net force, lbf 
C 
    FGX = F5 + FLS + FTARE - FX + FXP0 + FX302 + FX303 
C 
C F053 Side net force, lbf 
C 
    FGY = FY - FYP0 - FY302 - FY303 
C 
C F054 Vertical net force, lbf 
C     
    FGZ = FZ - FZP0 - FZ302 - FZ303 
C 
C F055 Length for center of vectored force LX to stand x-y centroid, inches 
C  Negative aft of centroid, FGX force required to be on x-axis (LYFGX 
C  and LZFGX = 0) 
C 
    LXFZ = - MY / FZ 
    LXFY = MZ / FY 
C 
C F056 Resultant net force, lbf 
C 
    FG = SQRT (FGX**2 + FGY**2 + FGZ**2) 
C 
C F057.1     Resultant force coefficient 
C 
    CFG = FG / F9ID 
C 
C F057.2     Axial force coefficient 
C 
    CFGX = FGX / F9ID 
C 
C F058 Side force coefficient 
C 
    CFGY = FGY / F9ID 
C 
C F059 Vertical force coefficient 
C 
    CFGZ = FGZ / F9ID 
C 
C F060 Yaw angle, degrees 
C 
    FGYX = FGY / FGX 
    IF (ABS (FGX) .LE. 0.00001)   FGYX = 0.0 
    BETA = 57.2958 * ATAN (FGYX) 
    BETAC = BETA + BETAZ 
    BETAABS = ABS (BETA) 
    BETACABS = ABS (BETAC) 
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C 
C F061 Pitch angle, degrees 
C 
    FGZX = FGZ / FGX 
    IF (ABS (FGX) .LE. 0.00001)   FGZX = 0.0 
    ALPHA = 57.2958 * ATAN (FGZX) 
    ALPHAC = ALPHA + ALPHAZ 
    ALPHAABS = ABS (ALPHA) 
    ALPHCABS = ABS (ALPHAC) 
C 
C F062 Roll angle, degrees 
C 
    FGYZ = FGY / FGZ 
    IF (ABS (FGZ) .LE. 0.00001)   FGYZ = 0.0 
    PSI = 57.2958 * ATAN (FGYZ) 
    PSIABS = ABS (PSI) 
C 
C F063 Secondary flow W307 (nozzle) calculation - equations not shown, lbm/sec  
C F064 Secondary flow W302 (venturi) calculation - equations not shown, lbm/sec 
C F065 Secondary flow W303 (venturi) calculation - equations not shown, lbm/sec 
C 
C F067 Stream thrust parameter 
C 
    FSTR = (FG + P0 * A8 * A9_A8) / (PT * A8) 
C 
C F068 Stream thrust coefficient 
C 
    CALL MACHFAR (GAM,-A9_A8, M9ID) 
    PRID = (1 + 0.5 * (GM1) * M9ID**2)**(GAM / GM1) 
        FSAR = PRID * A9_A8 / CDN * (1 + GAM * M9ID**2) 
        FSID = FSAR * PT * A8 * CDN 
        CS = (FG + P0 * A8 * A9_A8) / FSID 
C 
C F069 Measured tare force, lbf 
C 
    FXKNOBM = (PT - P0) * (ALSI + A5) !! FXKNOB param, vac, ADP cal 
    FTAREM = FX - FLS - A5 * DP50 + FXKNOB 
C 
C F070 Calculated lab-seal area, in2 
C 
    ALS3M = FTARE / DP30 
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C 
C B.  ASME NOZZLE PERFORMANCE FOR CHOKED FLOW CALIBRATION 
C       (DO ONLY IF NOZZ = “ASME”) 
C 
 IF (NOZZ .EQ. ‘ASME’) THEN 
C 
C F071 ASME throat Reynolds number and predicted flow coefficient 
C 
    RNINIT   = 12 * G2 ** (1/G1) * PT *D8 * G5 / MU8 * TS8 ** 0.5) 
    CDPINIT = 1 - 0.184 * RN1 ** (-0.2) 
    RNASME = CDPINIT * RNINIT 
    CDP = 1 - 0.184 * RNASME ** (-0.2) 
C 
C F072 Predicted ASME velocity coefficient (0.109 now recommended, was 0.107)  
C 
    CVP = 1 - 0.109 * RNASME ** (-0.2)  
C 
C F073 Predicted stream thrust parameter 
C 
    IF (NPR .GE. NPRC) THEN 
       FSP = G2 ** (1/G1) * (1 + GAM * CDP * CVP) 
    ELSE 
       FSP = 1 / NPR * (1 + GAM * CDP * CVP * M8 ** 2) 
    ENDIF 
C 
C F074 Predicted ASME nozzle force, lbf 
C 
    FASME = PT * A8 * (FSP - 1/NPR)  
C 
C F075 Calculated flow coefficient at station 5 
C 
    CD5C = CDP * W8ID / W5ID 
C 
C F076 Calculated momentum coefficient at station 5 
C 
    CF5C = (FX + FASME - FLS - FTARE) / F5ID 
C 
C F077 Predicted thrust coefficient 
C 
    CFGP = FASME / (CDP * W8ID * VEL9 / GC) 
    CFGXP = CFGP * COS (ANGE * 0.017453293) 
    CFGZP = CFGP * SIN (ANGE * 0.017453293) 
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Appendix B.—Data Plots for Thrust Stand Interaction Calibration 
 

These plots show loadcell reactions to forces applied using the in-stand calibration system. 
There are two sets of loadcells installed on the stand, reaction loadcells and calibration 
loadcells. There are two axial reaction loadcells (FRX1, FRX2), two lateral reaction loadcells 
(FRY1, FRY2), and four vertical reaction loadcells (FRZ1 through FRZ4). Calibration loadcells 
follow the same naming convention. Overall calibration forces (e.g., FCX) are formed by 
combining calibration loadcell forces in that particular direction. See Appendix A for equations. 

 

 
Figure B1.—Reaction load cell calibration with an applied axial force. 
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Figure B2.—Reaction load cell calibration with an applied lateral force. 

 
Figure B3.—Reaction load cell calibration with an applied vertical force. 
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Figure B4.—Reaction load cell calibration with an applied roll moment (left side). 

 
Figure B5.—Reaction load cell calibration with an applied roll moment (right side). 
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Figure B6.—Reaction load cell calibration with an applied pitch moment (front). 

 
Figure B7.—Reaction load cell calibration with an applied pitch moment (aft). 
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Figure B8.—Reaction load cell calibration with an applied yaw moment (front). 

 
Figure B9.—Reaction load cell calibration with an applied yaw moment (aft). 
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Appendix C.—Force Interactions for Dead Weight Check 

 
Figure C1.—Axial force FX for dead weight check. 

 
Figure C2.—Lateral force FY for dead weight check. 
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Figure C3.—Roll moment MX for dead weight check. 

 

 
Figure C4.—Pitch moment MY for dead weight check. 
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Figure C5.—Yaw moment MZ for dead weight check. 
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Appendix D.—Nozzle Gross Thrust and Flow Coefficients 
Using Pre-Calibrations 

 
Figure D1.—ASME nozzle gross thrust coefficient CFG from pre-run CF5 calibrations, 1-psid 

DP25 transducers. 

 
Figure D2.—ASME nozzle gross thrust coefficient CFG from pre-run CF5 calibrations, 2-psid 

DP25 transducers. 
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Figure D3.—ASME nozzle gross thrust coefficient CFG from pre-run CF5 calibrations, 5-psid 

DP25 transducers. 

 

 
Figure D4.—ASME nozzle flow coefficient CDN from pre-run CD5 calibrations, 1-psid DP25 transducers. 
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Figure D5.—ASME nozzle flow coefficient CDN from pre-run CD5 calibrations, 2-psid DP25 transducers. 

 

 
Figure D6.—ASME nozzle flow coefficient CDN uncertainty from pre-run CD5 calibrations, 5-psid 

DP25 transducers. 
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