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LIST OF SYMBOLS

a acceleration
A area of a liquid surface
b mole fraction of dissolved material
C a constant
d a digit or group of digits
dS area of an infinitesimal element of capillary surface
D density of a liquid or gas
D(tt} diffusivity as a function of concentration of ions

or molecules
e the exponential base, 2.71828 . . . 
/ a digit
F force or resultant force 
Fa force of adhesion 
Fc force of cohesion 
Fg force of gravity 
g acceleration of gravity 
G gravitational potential
Gm gravitational potential in ergs per grain of water 
G, gravitational potential in ergs per cubic centimeter

of water
h water-table elevation 
AA ^difference in water-table elevation 
i, j, k a system of unit direction vectors 
K coefficient of capillary conductivity 
I length of a capillary tube 
m mass
Al molecular weight 
o a digit 
p (a) pressure; (b) pressure on the concave side of a

curved liquid surface; (c) pressure of the vapor in a
capillary opening; (d) pressure of the vapor a distance
above a free flat water surface; or (e) vapor pressure
of a solution 

Po (a) pressure of the vapor immediately above a flat
water surface; (b) pressure on the convex side of a
curved liquid surface; or (c) vapor pressure of a free
pure solvent 

p' pressure of the liquid on the convex side of a
meniscus

pa pressure just over an element of capillary surface 
p'a pressure just under an element of capillary surface 
P hydrostatic pressure 
Q discharge or flow rate

r radius of a capillary tube
r0 critical distance of separation between the molecules

of a liquid
R radius of curvature of a hemispherical liquid surface 
RI and R2 principal radii of curvature of a liquid

surface
R the gas constant
dS area of a small element of capillary surface 
T absolute temperature 
t time
u a scalar point function such as potential 
v volume of a mass of water 
Vi specific volume of a liquid 
vv specific volume of a vapor 
V mass flow of moisture (a vector) 
Vx, Vv, Vz components of the mass flow of moisture in

the x, y, z directions 
Vv volume flow of moisture (a vector) 
W work or energy
x, y, z distances in a rectangular coordinate system 
2 distance above or below a datum 
a angle between a force and direction of movement 
)8 moisture content on a dry-weight basis

 ~ specific moisture capacity
O2j

7 density of a gas or vapor
A operator indicating change in value of a quantity
e osmotic-pressure potential
77 coefficient of viscosity
6 (1) angle of contact; or (2) angle between the incli­ 

	nation of the water table and the horizontal 
K diffusivity
X heat of vaporization at constant temperature
£ adsorption potential
TT 3.14159 . . .
p density of liquid water
pa bulk density of a soil
o- surface tension
I, capillary potential
0 total potential
^ hydrostatic-pressure potential
ft concentration of ions or molecules
V the vector operator del, or nabla



FLUID MOVEMENT IN EARTH MATERIALS

REVIEW OF SOME ELEMENTS OF SOIL-MOISTURE THEORY

By IRWIN REMSON and J. R. RANDOLPH

ABSTRACT

This review was assembled from the existing literature to make 
available a convenient introduction to this subject, which is of 
interest to workers in many diverse fields of hydrology.

Surface tension at the liquid-vapor interfaces largely controls 
the occurrence and movement of moisture in unsaturated soils. 
Surface tension is defined as the amount of work or energy re­ 
quired to produce a unit increase in the area of a liquid surface. 
The pressure on the concave side of a liquid-vapor surface in a 
round capillary tube exceeds the pressure on the convex side by 
an amount equal to twice the surface tension divided by the tube 
radius. The rise of liquid in a round capillary tube, if the angle 
of contact is assumed to be zero, is predicted by the capillary-

2<r 
rise equation pgz =  ; where p is the density of the liquid, g is

the acceleration of gravity, z is the height of capillary rise, a is 
surface tension, and r is the radius of the tube.

Important soil-moisture phenomena result from the transfer 
of water molecules across liquid-vapor surfaces and from the 
diffusion of water vapor within the system. Vapor pressure 
decreases with increasing height above a free water surface 
according to the barometric equation. The vapor pressure over 
a water meniscus is less than the vapor pressure over a flat 
water surface by an amount that increases with surface curvature 
according to the Kelvin equation. When the barometric and 
Kelvin equations are compared, the capillary-rise equation shown 
above is obtained. This equation holds at equilibrium through­ 
out the zone of aeration.

The total potential of soil water is the minimum energy per 
gram needed to transport a test body of water from a water-table 
datum to any point within the liquid phase of a soil-water 
system at equilibrium. It is the scalar sum of six main compo­ 
nent potentials: (a) gravitational potential, which increases 
with height above the water table; (b) hydrostatic-pressure 
potential, which is associated with surface tension at liquid- 
vapor interfaces; it becomes increasingly negative with increasing 
height above the water table at equilibrium, and the force 
associated with its negative gradient exerts a suction on any 
external body of water with which it is in contact; (c) osmotic- 
pressure potential, which is present in soil that shrinks upon 
drying; it is produced by osmotic pressures resulting from 
differences in ion concentrations at surfaces of soil particles 
having electric (Gouy) double layers; the force associated with 
its negative gradient also exerts a suction on externally applied 
bodies of water; (d) adsorption or adhesion forces, which strongly 
retain water near the surfaces of soil particles; adsorption 
potential is important only in soils that are drier than those 
normally encountered in nature; (e) gradients of thermal poten­

tial, which occur when temperature differences occur in the 
system; they are relatively unimportant in causing moisture 
movement except when the temperature gradients are large; 
(f) finally, chemical potential, which is due to the osmotic energy 
of free ions in the aqueous solution; it is usually unimportant in 
nonsaline soils because solutes generally move more readily than 
the water with respect to the soil.

In a hypothetical distribution of vertically swelling and 
pinching horizontally disconnected capillary tubes, there are 
positions of both minimum and maximum capillary rise. These 
are the most common positions of the top of the capillary fringe, 
which is generally at the maximum or minimum position accord­ 
ing to previous fluctuations of the water table, whether rising or 
falling. A hypothetical model of rhombohedrally packed 
spheres differs from the vertically pinching and swelling tubes 
mainly in that isolated wedges of water remain above the capil­ 
lary fringe as the water table falls. Water is either added to or 
taken away from the water wedges by vapor diffusion so that 
the capillary-rise equation is satisfied at equilibrium.

Water may move in the zone of aeration as a liquid, a vapor, 
or both a liquid and a vapor. Vapor transfer occurs where a 
vapor continuum fills the pores. Where only the pore necks are 
filled with water, movement occurs by vapor transfer in the 
pores and by liquid transfer in the necks. Where the pore necks 
and parts of the pores are filled with liquid water, movement 
may occur by discontinuous jumps of liquid water from neck to 
neck. Finally, where a moisture continuum fills the pores, 
water may move completely as a liquid.

The hydraulic conductivity of a wet soil decreases very rapidly 
as the moisture content decreases from its saturation value. 
Field-capacity and wetting-front phenomena are largely a 
result of this decrease of hydraulic conductivity with moisture 
content.

The differential equation for unsaturated flow is derived from 
the equation of continuity and Darcy's law.

INTRODUCTION

This report is not an exhaustive treatise on soil 
moisture. It is not meant to display a full understand­ 
ing of the physics of the basic phenomena. Indeed, 
the writers do not possess such a thorough knowledge 
of this adjacent but alien field. Rather, it is intended 
to provide for the hydrologist a concise and easily 
mastered picture of some of the important phenomena 
and practical manifestations of soil-moisture theory.

Dl
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The Seabrook investigation of the U.S. Geological 
Survey, of which this report is a product, was made 
under the supervision of Alien Sinnott, district geolo­ 
gist, U.S. Geological Survey, Trenton, N.J. The co­ 
operation of the Seabrook Farms Co. in all phases 
of the investigation is acknowledged with gratitude.

ZONE OF AERATION

The zone of aeration is between the water table and 
the land surface. It is "the zone in which the inter­ 
stices of the functional permeable rocks are not filled 
(except temporarily) with water. The water is under 
pressure less than atmospheric" (Am. Geol. Inst., 1957, 
p. 325; after Meinzer, 1923b, p. 31). Thus, three 
physical phases exist in an unsaturated soil in the zone 
of aeration: the solid soil matrix, the liquid water, and 
the soil air which includes the vapor of the liquid. 
Because of the presence of these phases and the inter­ 
faces between them, the occurrence and movement of 
water in the zone of aeration are more complex than 
in saturated flow.

The zone of aeration (vadose zone), according to 
Meinzer (1923a, p. 81; 1923b, p. 26), has three divi­ 
sions: the capillary fringe, the intermediate belt, and 
the belt of soil water. The lowermost or capillary 
fringe is "a zone, in which the pressure is less than 
atmospheric, overlying the zone of saturation and con­ 
taining capillary interstices some or all of which are 
filled with water that is continuous with the water in 
the zone of saturation but is held above that zone by 
capillarity acting against gravity" (Am. Geol. Inst., 
1957, p. 44; after Meinzer, 1923b, p. 26). The inter­ 
mediate belt is "that part of a zone of aeration that 
lies between the belt of soil water and the capillary 
fringe. It contains intermediate vadose water" (Am. 
Geol. Inst., 1957, p. 151; after Meinzer, 1923b, p. 26). 
The uppermost belt, or belt of soil water, is "that part 
of the lithosphere, immediately below the surface, from 
which water is discharged into the atmosphere in per­ 
ceptible quantities by the action of plants or by soil 
evaporation" (Am. Geol. Inst., 1957, p. 29; after 
Meinzer, 1923b, p. 23).

This report reviews some of the elements of soil- 
moisture theory, which deals largely with the unsatu­ 
rated occurrence and movement of water in the zone 
of aeration. It reviews also some of the background 
physics needed for an understanding of this theory.

BACKGROUND PHYSICS 

SURFACE TENSION

Surface-tension phenomena associated with the 
liquid-vapor interfaces within the soil matrix have 
important effects upon the occurrence and movement

of soil water. Part of the following description of 
these surface-tension phenomena is based upon Sears 
(1950, p. 319-330).

MOLECULAR CAUSES OF SURFACE TENSION

Whereas the average distance between the molecules 
of a gas at atmospheric pressure is about 10 times the 
size of each molecule, the molecules of a liquid are almost 
touching. The forces between the individual liquid 
molecules are largely electrical. As shown in figure 1,

FIGURE 1 Intermolecular force as a function of molecule separation. (After Sears, 
F. W., 1850, Mechanics, heat, and sound; 2d ed., Addison-Wesley Pub. Co., Inc., 
Reading, Mass., p. 321.)

an attractive force exists between two molecules that 
are separated by a distance greater than some value, 
r0. (See "List of symbols.") As the separation dis­ 
tance increases from r0, the attractive force first 
increases to a maximum and then gradually decreases.

When the separation between two molecules of a 
liquid is less than r0 , there is a large repulsive force. 
This repulsive force is responsible for the high pressures 
that are needed to compress a liquid. When the 
separation distance is r0, the repulsive and attractive 
forces equate to zero, and the molecules are in a state 
of equilibrium.

A molecule in the interior of a liquid is surrounded 
by similar molecules. The molecule has thermal energy 
that tends to make it move (to become displaced from 
the equilibrium separation, r0). However, when dis­ 
placed from r0, it is attracted by the adjacent mole­ 
cules on one side and repelled by the adjacent molecules 
on the other side in accordance with the relation shown 
on figure 1. The combination of attractive and repul­ 
sive forces tends to restore the molecule to the equi­ 
librium separation. As a consequence of the displacing 
effect, due to the thermal energy, and the restoring 
effect, due to the intermolecular forces, the molecules
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in the interior of a liquid tend to oscillate about their 
equilibrium separation, r0.

A molecule at the surface of a liquid generally has 
a component of vibration normal to that surface. When 
the molecule is moving outward from the surface, it 
is attracted back to the surface by the molecules below. 
However, there are no molecules above the liquid sur­ 
face to give the repulsive force shown in figure 1. 
Therefore, the molecule may move out a greater dis­ 
tance than molecules within the body of the liquid. 
If the surface molecule has sufficient thermal energy 
it may escape (evaporate) from the liquid. The mole­ 
cule performs a series of excursions out to a distance 
slightly greater than that of normal separation, and 
spends most of its time in a region where an inward 
force of attraction is exerted on it in accordance with 
the relation shown in figure 1. "The fact that the 
environment of those molecules in or very near the 
surface differs from that of the molecules in the inte­ 
rior gives rise to the surface effects we are now 
considering" (Sears, 1950, p. 3223.

DEFINITION OF SURFACK TKNSION

A definite amount of work per unit area is required 
to increase the area of a liquid surface. The work can 
be recovered when the area decreases, so that the sur­ 
face layer appears capable of storing potential energy. 
The enlarged liquid surface is not stretched like a bal­ 
loon. Instead, additional molecules move into the 
surface layer and the final molecular spacing is un­ 
changed. Unlike a balloon or rubber membrane, the 
work done, or energy of the surface, is directly propor­ 
tional to the increase in the surface area of the liquid. 
The proportionality constant, or the work per unit 
area, is known as the surface tension, a. It is expressed 
in units of energy per unit area such as ergs per square 
centimeter, which is equivalent to dyne-centimeters 
per square centimeter or dynes per centimeter. Ex­ 
pressed mathematically,

dW=adA (1)

where dW is the work, or energy, necessary to increase 
the area of the liquid surface by an amount dA.

The free energy of a liquid-vapor surface is a funda­ 
mental property of the surface (Adam, 1930, p. 4). 
"The free energy of a substance is a property that 
expresses the resultant of the energy (heat content) of 
the substance and its inherent probability (entropy)" 
(Pauling, 1958, p. 650). It exists because work must 
be done to extend the surface, as the extension is accom­ 
plished by bringing molecules from the interior to the 
surface of the liquid against the inward attractive 
forces. As a mathematical device, a hypothetical

tension parallel to the surface and equal to the free 
energy is sometimes substituted for the free energy. 
This is known also as the surface tension, but it is 
merely a convenient mathematical fiction that does 
not really exist. Surface tension is correctly defined 
as the proportionality constant in equation 1 (Sears, 
1950, p. 322). Actually, W in equation 1 should be 
the free energy for a rigorous definition of surface 
tension.

A system is in stable equilibrium when its potential 
energy is a minimum (Sears, 1950, p. 322). Liquid- 
vapor interfaces tend toward a condition of minimum 
potential energy and minimum free energy. Because 
the energy is proportional to the area, as shown in 
equation 1, the condition of minimum energy corre­ 
sponds to a surface of minimum area for a given volume. 
Thus, the inward attraction causes the number of 
molecules in the surface to dimmish to a minimum by 
contraction of the surface. "This tendency is shown 
in the spherical form of small drops of liquid, in the 
tension exerted by soap films as they tend to become 
less extended, and in many other properties of liquid 
surfaces" (Adam, 1930, p. 1).

In discussing the work of Plateau, Adam (1930, p. 1) 
points out that liquid surfaces always assume a curva­ 
ture such that

---=Constant (2)

when the disturbing effect of gravity is absent. RI and 
E2 are the principal radii of curvature at any point. 
It is a geometrical fact that surfaces for which this 
relation holds are surfaces of minimum area.

It is customary to show RI and R2 as positive when 
the liquid surface is convex to the vapor as for a water 
bubble in air. In this report it will be more convenient 
to take RI and R2 as positive when the liquid surface 
is concave to the vapor, as for a capillary meniscus for 
water.

PRESSURE DIFFERENTIAL, ACROSS A LIQUID-GAS 
INTERFACE

The pressures above and below a flat liquid-gas 
interface are equal at equilibrium. For convenience 
the discussion will be limited to the case where the 
liquid is water. In a vacuum the pressure of the water 
vapor above the interface equals the very small hydro­ 
static pressure immediately below the interface. Where 
the system is open to the atmosphere the pressure 
above the surface is the sum of the partial pressures 
of the water vapor and the atmospheric gases. The 
hydrostatic pressure immediately below the surface is 
the result of the combined weight of the overlying 
water vapor and atmosphere.
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"If a liquid surface be curved the pressure is greater 
on the concave side than on the convex, by an amount 
which depends on the surface tension and on the curva­ 
ture. This is because the displacement of a curved 
surface, parallel to itself, results in an increase in area 
as the surface moves toward the convex side, and work 
has to be done to increase the area. This work is sup­ 
plied by the pressure difference moving the surface" 
(Adam, 1930, p. 12). "The magnitude of this pressure 
differential across a curved surface can be derived at 
once from the fact that work must be done to create 
fresh surface" (Sears, 1950, p. 323).

In figure 2 the pressure, p, of the air plus its water

FIGURE 2. A bubble of air blown at the end of a capillary tube, po is the normal 
pressure of the air and its water vapor, and p is increased pressure in the tube of 
the air and its water vapor. (After Sears, F. W., 1950, Mechanics, heat and sound: 
2d ed., Addison-Wesley Pub. Co., Inc., Reading, Mass., p. 323.)

vapor in the capillary tube is increased over the nor­ 
mal pressure, p0, of the air and its water vapor. An 
air bubble is formed at the lower end of the tube. When 
the bubble becomes unstable and is about to break 
away, its shape is very nearly that of a hemisphere of 
radius R. If A is the surface area of the hemisphere,

(3)

If the radius is increased to R+dR, the surface is 
increased by

(4)

Substituting this into equation 1, the work done in 
creating this additional surface is

Let us now find the work done by the pressure differ­ 
ence, p p0 . The net force against a small element of 
the hemispherical surface of area dS is

(P Po)dS (6)

This assumes that the increase of hydrostatic pressure 
from the water surface to the bottom of the bubble is 
negligible. In increasing the size of the bubble, this 
element of surface moves out radially through a dis­ 
tance dR. The work on this small element of the 
surface is the product of force and distance, or

(P po)dSdR (7)

When this work is integrated over all the bubble- 
surface elements (see equation 3), the total work done 
by the pressure forces is

dW=(p-p0)2*R*dR (8)

Equations 5 and 8 may be equated and simplified. 
Furthermore R, the radius of the hemispherical bub­ 
ble, is very nearly the same as r, the radius of the 
tube. Therefore, the pressure difference between the 
concave and convex sides of the liquid interface is

2<r 2<r
(9)

As shown by Adam (1930, p. 14), for any curved 
surface (shaped like a blowout patch, for example) the 
pressure difference is

(10)

where RI and R2 are the principal radii of curvature. 
RI and R2 are here taken as positive for a meniscus 

whose interface is concave to the vapor. However in 
normal usage R is taken as positive when the interface 
is convex to the vapor, as for a water bubble in air or 
a mercury meniscus. If normal usage were followed, 
it would be necessary to have minus signs in equations 
9 and 10 to have the pressure over the meniscus come 
out greater than the pressure below the meniscus, 
using the negative value of radius. It is largely to
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avoid the use of these minus signs that R is taken as 
positive for the case of a meniscus concave to the vapor.

ANGLE OF CONTACT

The molecules in a liquid-vapor interface near a solid 
are affected by forces of cohesion (attractive forces of 
p. D2) exerted upon them by other molecules of the 
liquid and by forces of adhesion exerted upon them bv 
the molecules of the solid

The dot in figure 3 represents a molecule in the 
surface layer of a liquid, and the vectors Fa and Fe

FIGURE 3. Contact angle of a liquid-vapor surface near a solid. Fa is the adhesion 
force; Fe, the cohesion force, F, the resultant force, and 0, the angle of contact, 
(After Sears, F. W., 1950, Mechanics, heat, and sound: 2d ed., Addison-Wesley 
Pub. Co., Inc., Reading, Mass., p. 325.)

represent the adhesive and cohesive forces acting on 
that molecule.

If the magnitudes of Fa and Fc are as shown in figure 
3A, the resultant force is F. The liquid surface will 
curve upward near its contact with the solid because 
a liquid can be in equilibrium only when the force on 
its surface is perpendicular to the surface. The surface 
must be perpendicular to F and the angle of contact, 
0, is acute. If the forces of adhesion and cohesion have 
the relative magnitudes shown in figure 3JB, the liquid 
surface curves down near the solid contact, and 6 is 
obtuse.

643855 O 62   2

When the forces of adhesion and cohesion are such 
that the angle of contact is zero, the liquid tends to 
spread over a solid surface, or to "wet" the surface. 
When the forces are such that the angle is large, the 
liquid tends to bunch up in beads or droplets on the 
solid surface and is said to be nonwetting.

RISE OF WATER IN A CAPILLARY TUBE

Figure 4 shows a glass capillary inserted in water. If 
the radius of the tube and the forces of cohesion and

FIGURE 4. Rise of water in a capillary tube, po is the atmospheric pressure, p', 
the pressure under the meniscus, z, the height of capillary rise, R, the radius of 
curvature of the meniscus, r, the radius of the tube, and S, the angle of contact. 
(After Sears, F. W., 1950, Mechanics, heat and sound: 2d ed., Addison-Wesley 
Pub. Co., Inc., Reading, Mass., p. 326.)

adhesion are such as to give a meniscus that is curved 
concave upward, the water will rise in the tube. The 
following explanation of this capillary rise is adapted 
from Sears (1950, p. 327-328).

Let po be the total pressure of the atmosphere plus 
its water vapor above the flat surface outside the capil­ 
lary tube. Under the flat surface, the hydrostatic 
pressure also is p0 . Neglecting the small variation of 
water-vapor pressure and air pressure over the small 
height, the total pressure above the meniscus also is p0 . 
Finally, for hydrostatic equilibrium the pressure at the 
level Q in the capillary tube also must equal p0 .
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In figure 4, R is the radius of curvature of the curved 
surface, r is the radius of the capillary tube, and 6 is the 
angle of contact. Therefore (Adam, 1930, p. 15):

R=
cos 6 (ID

where the tube is so narrow that the meniscus may be 
taken as spherical. Equation 9 gives the pressure 
difference across a meniscus. In the narrow tube, p0, 
atmospheric pressure, is on the concave side of the 
meniscus. Thus it is the greater pressure. Let p' be 
the lesser pressure on the convex side just below the 
meniscus. Then using this terminology in equation 9,

Substituting the value of R from equation 11,

. 2o- cos e P=P°       

From hydrostatics, the pressure at Q is

(12)

(13)

(14)

where z is the height of capillary rise, p is the density 
of liquid water, and g is the acceleration of gravity. 
Substituting the value of p' from equation 13 into 
equation 14,

2o- cos 0 .P»=PO    -    \-pgz (15)

Rearranging, the final equation for the rise of water in 
the capillary tube is

2o- cos e
(16)z=-

pgr
The angle of contact between clean water and clean 

glass is nearly zero. Therefore, as a convenient 
approximation, equation 16 is often written as

or as
pgr

2(TP9Z= 

(17)

(18)

These equations state in effect that the liquid ' 'rises or 
falls in the tube, until the height of the meniscus is 
such that the weight of the column of liquid adjusts 
the pressure inside and outside the tube to equalitv" 
(Adam, 1930, p. 295).

For a noncircular capillary interstice, equation 10 
instead of equation 9 would be used in 12, and the final 
form would be

(19)

Therefore, other things being equal, the height of capil­ 
lary rise increases as the radius of the capillary tube 
decreases.

"Most organic liquids and water form zero angles 
with clean glass and silica; exceptions to this rule may 
occur if the glass has become dry and the liquid is 
advancing over the surface" (Adam, 1930, p. 180). 
The contact angle of water with a mineral surface 
varies with the state and cleanliness of the mineral 
surface.

"The angle assumed when a liquid advances to a 
position of rest over a dry solid surface is larger than 
the angle when the liquid recedes to a position of rest 
over a wetted surface, and this was called by Sulman 
(1919) the hysteresis of contact angle; he suggested that 
the advancing or retreating contact angles are unstable 
forms of a definite equilibrium contact angle (static 
angle)" (Partington, 1951, p. 166). Edser (1922, p. 
290), citing Sulman (1919), gives values for water from 
13° to 58° receding and from 62° to 95° advancing for 
different mineral surfaces.

Partington (1951, p. 167) credits Langmuir and Bartell 
and co-workers for stating that, with proper precau­ 
tions, equilibrium contact angles can be obtained and 
measured. Wark and Cox (1932), reviewing more recent 
work than that of Edser, say that really clean surfaces 
of most minerals have very small contact angles. 
Throughout this report, it will be assumed that the 
contact angles between water and the mineral grains 
of the soil are small, so that their cosines may be taken 
as unity and equations 18 and 19 are applicable.

WATER VAPOR IX UNSATUBATED SOILS

Important phenomena in unsaturated soils result 
from the transfer of water molecules across liquid- 
vapor surfaces and the diffusion of water vapor.

MOLECULAR CAUSES OF VAPOR PRESSURE

When a liquid evaporates, or vaporizes, molecules 
fly off against the forces of molecular attraction into 
the overlying vapor. If the vapor is confined over the 
liquid, some vapor molecules return to the surface and 
become liquid again (condense). Eventually, when the 
density of the vapor is such that the average number 
of molecules returning to the liquid per unit time is 
equal to the average number leaving per unit time, 
the vapor is in equilibrium with the liquid. A vapor 
in equilibrium with its liquid is said to be saturated, 
and the equilibrium pressure is called the vapor tension 
or vapor pressure.

VAPOR PRESSURE AND TEMPERATURE

The pressure of a vapor in equilibrium with its liquid 
depends largely upon the temperature, and this depend-
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ence is described by the Clausius-Clapeyron equation. 
As written by Fermi (1937, p. 66), the equation is

dp _ X
dT~T(Vv-Vl} (20)

where
dp= change in vapor pressure 
dT= change in absolute temperature 

X=heat of vaporization of the liquid at constant
temperature 

T= absolute temperature at which the change of
state occurs

V,= specific volume of the vapor 
F{=specific volume of the liquid

If it is assumed that V{ is negligible as compared 
with Vv, that the vapor satisfies the equation of state 
of an ideal gas, and that the heat of vaporization, X, 
is constant over a wide range of temperatures, a simple 
approximate formula shows the manner in which vapor 
pressure is related to temperature. As written by 
Fermi (1937, p. 67), it is

_XM
p=-Ce ~« T (2V 

where
C= a constant 
R = the gas constant 
M=the molecular weight of the vapor 

e=the exponential base, 2.71828 . . .

Thus, vapor pressure increases with temperature.

VAPOR PRESSURE AND AMOUNT OF DISSOLVED SOLUTE

Let p0 be the vapor pressure of a free pure solvent. 
Add an amount of dissolved material whose value is 
given by the mole fraction b. The vapor pressure of 
the solvent will be lowered to p according to the 
equation,

p=p(>e- t> (22)

as written by Edlefsen and Anderson (1943, p. 129).

VAPOR PRESSURE AND HYDROSTATIC PRESSURE IN THE

LIQUID

According to Edlefsen and Anderson (1943, p. 136), 
the relation

(23)

is true where dp is the change in vapor pressure caused 
by a change of hydrostatic pressure, dP. The sub­ 
script T denotes that these changes occur at constant 
temperature. v v and v t are the specific volumes of the 
vapor and liquid, respectively.

The fraction Vi/v, is in general very small. There­ 
fore, the effect of a change in the hydrostatic pressure

upon the pressure of the vapor in equilibrium with a 
liquid is small.

Edlefsen and Anderson (1943, p. 138) describe an 
equation that gives the increase in vapor pressure of 
water, Ap, in atmospheres, corresponding to the applica­ 
tion of a hydrostatic pressure of P atmospheres. It 
is assumed that the normal vapor pressure p0 , in 
atmospheres, of free water at the temperature T, is 
known. The equation is

1.002(P 2X105P2 ) 
= 4.548r

Po
(24)

According to Edlefsen and Anderson this formula 
shows that, if a hydrostatic pressure of 20 atmospheres 
is applied to water at 27°C, the vapor pressure of the 
water is increased from 0.035 to approximately 0.03551 
atmosphere. Thus, a relatively large change in hydro­ 
static pressure causes a relatively small change in vapor 
pressure. Similarly, if a tension of 20 atmospheres is 
placed on the water, the vapor pressure of the water 
will be decreased by 0.00051 atmosphere, and the 
humidity will be 98.5 percent of the humidity over a 
free water surface at the same temperature. A soil in 
this condition is close to the permanent wilting per­ 
centage, which is commonly taken at a suction of 15 
atmospheres. Thus, as a soil dries, the vapor pressure 
and the humidity relative to that over a free water sur­ 
face are decreased by only a small amount.

BAROMETRIC EQUATION

The barometric equation, or Laplace law of atmos­ 
pheric pressure, gives the variation of gas pressure with 
height in a uniform gravitational field. It is usually 
used to determine the variation of air pressure with 
height. According to Edlefsen and Anderson (1943, 
p. 129), "It applies equally well, however, to the varia­ 
tion of vapor pressure with height above a free liquid 
surface, as, for example, water, when the whole system 
has come to equilibrium at the same temperature, in 
a uniform gravitational field." Because of the im­ 
portance of the Laplace law in this development, the 
following derivation is included.

Consider a vertical column of gas of unit cross- 
sectional area (fig. 5).

According to the ideal-gas law,

pv=RT (25) 
where

p=the pressure, in dynes per square centimeter,
at a distance z above the reference point 

v= specific volume of the gas 
T= absolute temperature 
R=gas constant, in ergs per degree gram
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FIGURE 5. Column of vapor in a gravitational field, pit is the vapor pressure at the 
free water surface and p, vapor pressure at a height, z above the free water surface. 
(After Edlefsen and Anderson, 1943, p. 129.)

IR is equal to the universal gas constant, 83,140,000 
ergs per degree gram mole divided by the weight of a 
gram mole. The molecular weight, or the weight of a 
gram mole of water vapor, is 18.02 grams. For water 
vapor, IR would therefore be about 4,620,000 ergs per 
degree gram.

Rewriting equation 25, and remembering that spe­ 
cific volume is the inverse of density,

,  p (26)

where 7 is the density of the gas, in grams per cubic 
centimeter.

The vapor pressure of the gas in the column in figure 
5 changes by the amount   dp in going from A to B. 
This decrease in pressure is equal to the weight of the 
gas or vapor in the length of column represented by dz. 
The weight is ygdz. Thus,

-dp=ygdz (27) 

Eliminating 7 by means of equation 26 and rearranging,

(28)

Integrating from 2=0 at the free water surface where 
p=p0 , to z=z where p=p,

P __ 9L ~

and

(Edlefsen and Anderson, 1943, p. 130). 

Equation 30 can be put into the final form

(29)

(30)

__£2 
i /n_ ̂  R  * (31)

Thus, if p0 is the vapor pressure at the free water surface, 
where 2=0, equation 31 determines the pressure p 
at a height z. It is interesting that the rate of change 
of vapor pressure with height outside a capillary tube 
is much smaller as predicted by equation 31 than the 
rate of change of hydrostatic pressure with height 
within the tube, pgz. This is as predicted by equa­ 
tion 23.

KELVIN EQUATION

DERIVATION

The vapor pressure over a concave water meniscus 
is less than the vapor pressure over a free flat water 
surface. Thus, a vapor-pressure deficiency exists 
over a meniscus in a capillary tube when compared 
with the vapor pressure over a free flat water surface. 
The relation between the vapor pressure and the radius 
of curvature of the meniscus is described by the Kelvin 
equation (Thompson, 1871). Because of the impor­ 
tance of this equation, it is now derived for a capillary 
surface connected to a flat surface following the der­ 
ivation of W. O. Smith (1936, p. 228-230).

Let the system in figure 6 be isolated so that there 
is no air pressure. Then pQ is the water-vapor pressure 
over the flat surface. The hydrostatic pressure in 
the liquid just under the flat surface also is equal 
to po and is due to the weight of the overlying water 
vapor. Let pa be the water-vapor pressure just over 
an element, dS, of capillary surface, and let /> ' be the 
hydrostatic pressure just under the element, dS, of 
capillary surface. The hydrostatic pressure, pa , under 
the element of curved surface equals the vapor pressure, 
pa, minus the pressure difference across the curved 
surface due to surface tension.

If the system in figure 6 were open to the air, all 
the pressures would be increased by the atmospheric 
pressure. Furthermore, the change in atmospheric 
pressure with height would have to be considered, as 
well as the change in water-vapor pressure with height. 
Therefore when suitable adjustments are made the
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FIGURE 6. A curved liquid-vapor surface! n contact with a free flat liquid surface, 
po is the water-vapor pressure over the flat surface, pa , the water-vapor pressure 
just over and p£, the hydrostatic pressure just under an element, dS, of capillary 
surface at a height,   above the flat surface. (After Smith, W. O., 1936, p. 229).

following derivation is applicable regardless of the 
type of gas hi the system:

The pressure in the water in the capillary tube at 
the same level as the flat surface is

Po=Pa+pgz (32)

Similarly, the pressure in the vapor outside the capillary 
tube just over the flat surface is

po=pa + I vgdz
Jo

(33)

where y is the density of the vapor. Equating equa­ 
tions 32 and 33,

Pa+ I ygdz=pa + pgz (34)
Jo 

This can be rearranged to

Pa~Pa = pgz  ygdz (35) 
Jo

The value for the difference of pressure across the 
curved surface can now be substituted from equation 
10:

2 (36)

taking the radii of curvature as positive.
The two terms on the right side of equation 36 give 

the pressure differences between the flat and curved 
water surfaces in the water and vapor columns, re­ 
spectively. To make them more usable, everything 
will be put in terms of pressure. This can be done 
by starting with the simple relationship between 
pressure and height in the vapor, equation 27.

dp= ygdz

Integrating between 0, p0 and z, p,

fp PZ
dp=  ygd, 

J P O Jo

(p po) =  
Jo

and

(37)

(38)

(39)

Equation 39 may be substituted for the second term 
on the right side of equation 36, giving

(40)

To put the first term on the right side of equation 
40 into terms of pressure, equation 37 is rewritten as

79
(41)

Setting up the integral between 0, p0 and z, p,

pd, p* (42)
Jo Jp0 79 

Integrate the left side, and

' ^± (43)

We cannot integrate the right side of equation 43 
because y, the density of the vapor, varies with pres­ 
sure. To eliminate y from equation 43, consider Boyle's 
law:

(44)
To Po

or

Po
(45)

Putting this value of y into equation 43, it becomes

z=-£*- f'& (46) 
Wo J Pn P

Integrating,

po
(47)
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Substituting into equation 40, the Kelvin equation is

^> (48)

Equation 40 can be simplified if it is assumed that 
(p Po) is negligible and that Ri=R2 =r, as is approxi­ 
mately true for a capillary tube of circular cross sec­ 
tion. Then 48 becomes

Po r pp0

From the ideal gas law,

(49)

(50)

where v v0 is the specific volume of the vapor at p0 . 
Then,

R77
(51)

Substituting for p0 in equation 49 and remembering 
that p, the density of water, is the inverse of v t , the 
specific volume of water, we arrive at the following 
forms of the Kelvin equation:

__ 
r RT

and

P=p0e r

(52)

(53)

The minus is in equation 53 because the values of R1} 
R2 , and r were assumed as positive if the meniscus is 
concave to the vapor. If positive values of r are 
substituted into equation 53, the pressure over the 
meniscus comes out less than that over a flat surface. 
Using the form shown in 53, «the radius of curvature is 
negative when the meniscus is convex to the vapor, as 
in a raindrop. If a negative value of r is inserted in the 
equation, the vapor pressure over a raindrop comes out 
greater than that over a flat surface.

Equation 53 applies where the capillary surface is in 
liquid continuity with the flat water surface. The 
equation may be derived, from thermodynamic con­ 
siderations (Edlefsen and Anderson, 1943, p. 142-146), 
for a curved liquid-vapor interface that is separated 
from the flat liquid surface.

For the discontinuous-liquid system, we again take 
the radius of curvature of the interface to be positive 
for a liquid surface concave to the vapor and negative 
for a surface convex to the vapor. From the equation, 
the smaller the radius of curvature of a capillary 
meniscus, or the greater the curvature of the meniscus,

the greater is the vapor-pressure deficiency above the 
meniscus.

SIGNIFICANCE

Equating the exponential terms in equation 53, the 
Kelvin equation, and equation 31, the barometric 
equation, rearranging terms, and substituting density 
for the inverse of the specific volume of the water, we 
arrive back at equation 18

pgz=-2er
(54)

Equation 54 does not contain any of the properties of 
the gas. Thus, the height of capillary rise of a given 
liquid in a tube or interstice of given radius is the same 
whether the surrounding atmosphere consists of water 
vapor alone or water vapor and air.

The Kelvin equation may be looked at in several 
ways. If suction is applied to a wet sand, the vapor 
pressure is decreased. Therefore, the radii of curvature 
of the equilibrium minisci are greatly reduced, and the 
menisci are drawn deeper into the narrowing necks of 
the soil pores. The hydrostatic pressure in the water 
on the convex sides of the menisci also is decreased 
because of the pressure differentials across such curved 
surfaces.

Adam (1941, p. 13-14) gives a physical explanation 
of these phenomena:
The vapor pressure over a convex surface is greater than that 
over a plane; and over a concave surface it is less. The difference 
depends on the fact that condensation of vapor on a small 
convex drop of a liquid increases its surface area, so that the 
surface tension tends to oppose the condensation and to increase 
the vapor pressure. On a plane surface condensation does not 
alter the surface area, and oh a concave surface the surface area 
is diminished by condensation of more vapor, so that the surface 
tension aids condensation in this case.

Adam (1930, p. 22) gives solutions of the Kelvin 
equation for the increase of vapor pressure, p/po, over a 
drop of water of radius r, at 20° C, with p0 equal to 
17.5 mm of mercury:

r (cm)
-10-*
-10-5

-10-7

P/Po

1.001
1.011
1.114
2.95

Thus, a small change in vapor pressure greatly changes 
the radius of the equilibrium meniscus.

To demonstrate the use of these equations, assume 
that a suction equivalent to 15 atmospheres is applied 
to a soil. This value of negative hydrostatic pressure 
is commonly taken for the permanent wilting 
percentage. Let us compute the radius of the circular 
pore in which the menisci will be lodged at equilibrium.
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For this case,

Vi l cm3 per gram 
v»= 57,800 cm3 per gram 

dP=l5 atmospheres =15,194,000 dynes per cm2

Therefore, the vapor-pressure deficiency can be com­ 
puted from equation 23. It is dp=263 dynes per cm2 . 
Thus, even at the permanent wilting percentage, the 
vapor-pressure deficiency in the soil is very small. 
(See also p. D7.)

To determine the equilibrium meniscus, or the pore 
that has a sufficiently small radius to support the equi­ 
librium meniscus, we refer to the Kelvin equation. For 
a temperature of 20°C, p0, the vapor pressure over a 
flat water surface, may be taken as 17.5 mm of 
mercury.

2>o=17.5 mm of mercury=23,300 dynes per cm2
<r=73.5 dynes per cm for water 

Vi = 1 cm3 per gram
T=293° Kelvin

______ergs= 83,100,000
degree gram-mole 

ergs
am

=4'620'000 degree gram f°r Wat"r VapOT 

p=po dp=23,100 dynes per cm2

Substituting into equation 52 or 53, the radius of the 
equilibrium meniscus is about 0.00001 cm, or 0.0001 
mm.

The same result can be found by substituting into 
equation 54 a value of z equivalent to 15,500 cm. 
This is the height of a hanging column of water that 
would give a tension of 15 atmospheres if the hanging 
column of water could support such tensions.

As will be discussed later, other forces are generally 
more important than surface tension in pores of this 
small size. Therefore, this computation is more of a 
demonstration than an accurate portrayal of the me­ 
niscus size in a soil at the permanent wilting percentage.

Because the Kelvin and barometric equations apply 
whether or not a liquid continuum exists, equation 54 
also applies to both cases. Whether or not a pore is 
in liquid continuity with the water table, the radius of 
curvature of the meniscus at equilibrium can be com­ 
puted from the pore height above the water table by 
equation 54.

It may seem surprising that equation 54 applies 
equally when there is a liquid continuum, as in the 
capillary fringe, and when there is not, as above the 
capillary fringe. However, as discussed later, both 
regions fall within the same gravitational field. If the 
value of g is assumed to be constant the gradient of

gravitational potential is constant throughout both 
regions.

Equation 54, in the case of a liquid continuum, may 
be looked upon as a statement of the equivalence of the 
pressures exerted by surface tension and by the weight 
of a hanging column of water in continuity with the 
water table. If a break occurred halfway up this col­ 
umn, equation 54 would apply to the lower half of the 
column and would predict the radius of curvature of 
the meniscus at the top of the half column. The value 
of z in equation 54 would be smaller for the meniscus 
at the top of the half column than for the meniscus at 
the top of the whole column. Therefore, the radius 
of curvature would be larger for the meniscus at the top 
of the half column. This radius of curvature would be 
greater than the radius of the tube and would develop 
on the cutoff lip at the top of the lower half-column 
tube. The meniscus at the bottom of the upper half 
column would be in vapor equilibrium with the meniscus 
at the top of the bottom half column and would have 
the same radius of curvature. Therefore, the forces 
at the midpoint of the column would be the same as if 
there were no break in the column, and equation 54 
would apply to the entire column. The same reasoning 
can be projected to cases where there are progressively 
increasing numbers of breaks in the column. Even­ 
tually, as the limit is approached, we arrive at the case 
of an isolated pore separated from the water table by 
vapor-filled pores.

Equations 31, 53, and 54 may be looked at in another 
way. Figure 7 shows a capillary tube immersed in 
water. The pressure of the water vapor relative to that 
at the water table decreases with height according to 
equation 31.

Because the capillary tube has a fixed radius, only 
one radius of curvature is possible for the meniscus. 
A given vapor-pressure deficiency is associated with that 
meniscus curvature according to equation 53. At 
equilibrium, the meniscus must be located so that the 
vapor-pressure deficiency above it is the same as the 
pressure deficiency in the adjacent exterior vapor as 
given by equation 31.

Assume that the radius of the tube is such that the 
vapor-pressure deficiency above the meniscus is 10 
dynes per cm2. Assume also that water is run into the 
tube until it is filled to level A. Then the vapor- 
pressure deficiency over the meniscus would be less 
than that in the adjacent exterior vapor, and a condi­ 
tion of unbalance would exist. Water would drain 
from the tube immediately, and the meniscus would 
fall until it stablized at position B. The vapor-pressure 
deficiency over the meniscus would then be the same 
as that in the adjacent exterior vapor, and the system 
would be in equilibrium.
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FIGURE 7. Position of the meniscus in a capillary tube and adjacent vapor pressure*.

An analogous situation exists in the wedge-shaped 
pore in figure 8. Because the wedge is fixed in space 
relative to the water table, the vapor-pressure de­ 
ficiency over it must be the same as that in the adjacent 
exterior vapor, 20 dynes per cm2 , at equilibrium. If 
the wedge is filled to the dashed line, where the meniscus 
curvature is smaller than that required for equilibrium, 
the vapor-pressure deficiency might be only 10 dynes 
per cm2 . Water would evaporate and diffuse away 
from the meniscus, which would be drawn into the 
narrower part of the wedge. At equilibrium, the cur­ 
vature would be increased so that the pressure deficiency 
over the meniscus would be 20 dynes per cm2 .

For a capillary tube immersed in mercury, the menis­ 
cus would be convex to the vapor. According to the 
Kelvin equation, the vapor pressure over the meniscus 
in the capillary tube would be greater than that over 
a flat surface. Therefore, the meniscus would have to 
be depressed below the flat surface to a level where 
the increase of hydrostatic pressure in the exterior 
liquid would equal the increase in pressure over the 
meniscus.

The foregoing development and equation 54 apply 
where surface-tension forces are dominant. In clay 
soils, in very small interstices, and very close to the 
particle surfaces, other forces become more important.

Then equation 54 no longer applies, as is discussed 
later.

As a result of analyses similar to the foregoing it is 
sometimes assumed that the water in an unsaturated 
soil is under considerable tension. Although under 
certain conditions water has considerable tensile 
strength, the tensile strength is very small when the 
water contains dissolved gases. It is small also if the 
absolute pressure approaches the vapor pressure of the 
water, and bubbles of water vapor form and disrupt 
the liquid phase. It is likely "that the fraction of 
water which is actually in tension is never large except 
perhaps at very high water contents and small tension. 
This conclusion was also reached by Edlefsen and 
Anderson. We regard apparently large values of 
soil-moisture tension or soil suction to be artifacts 
accounted for by the influence of the electrical double 
layer" (Bolt and Miller, 1958, p. 928). (See p. D20.)

DIFFUSION

Water vapor moves by diffusion. The distribution 
of solutes throughout a liquid also occurs by diffusion. 
Finally, osmotic effects are due to diffusion. There­ 
fore, the nature of the diffusion process will be 
considered in this report.
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FIGURE 8. Position of the meniscus in a wedge-shaped pore and adjacent vapor
pressures.
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Gas released in an evacuated vessel distributes itself 
uniformly throughout the vessel, as explained by Meyer 
and Anderson (1939, p. 83-92) in their elementary 
discussion of diffusion. The distribution is accom­ 
plished by the thermal activity of the gas molecules and 
is an example of diffusion.

If the gas is released in a vessel containing air, it 
takes longer for the gas to move to all parts of the 
vessel. The freedom of movement of the gas molecules 
is impeded by the air molecules, and the diffusion is 
retarded. If the pressure of air in the jar is increased 
by reducing its volume (which is equivalent to increas­ 
ing the concentration of air molecules), the rate of 
diffusion is still less.

Two gases in separate vessels mix by diffusion when 
the vessels are put in communication. Liquids also 
diffuse into each other, though more slowly than gases 
because of the closeness of the molecules. Solids also 
exhibit diffusion (Duff, 1937, p. 104).

If the temperature remains constant, the partial or 
diffusion pressure of a gas, solvent, or liquid is directly 
proportional to its own concentration, or the number of 
molecules per unit volume. Dalton's law of partial 
pressures states that the total pressure exerted by a 
mixture of real gases is the sum of the pressures that 
the gases would exert if each occupied the whole space 
alone. To visualize this, assume that the molecules of 
a gas are far apart. Molecules of other gases may be 
slipped in among them without perceptibly altering 
the frequency with which they collide with the vessel 
wall and without altering the pressure that the first 
gas exerts (Deming, 1944, p. 85). Hildebrand (1947, 
p. 50) explains this by pointing out that the molecules 
of one gas species would "maintain the same average 
kinetic energy at the same temperature regardless of 
the presence of any other species of molecules, and 
therefore the part of the pressure which is due to the 
impacts on the vessel walls of one species, called the 
partial pressure of that gas, would be the same no 
matter what other gases are present."

Diffusion occurs only when the concentration or 
partial pressure of the diffusing substance is not uni­ 
form throughout the system. It is different from mass 
movements such as wind, current, or convection. In 
mass movement the moving units are not single mole­ 
cules, but generally extensive assemblages of molecules.

Each substance in a system diffuses in a direction 
and at a rate that depends on its own gradient of 
diffusion pressure (partial pressure) or on the gradient 
of concentration. The diffusion-pressure gradient 
equals the difference in diffusion pressure between two 
regions, divided by the distance through which the 
diffusing molecules travel. According to the principle 
of independent diffusion, the direction in which any

643855 O 62   3

substance will diffuse is unaffected by the gradients or 
the directions or rates of diffusion of other substances 
in the system. In any system several substances may 
diffuse in different directions at the same time. In 
fact a substance can diffuse into a region of smaller 
partial pressure but greater total pressure, and the 
total pressure in the region will then be even greater 
than the total pressure in the area from which diffusion 
occurred.

The rate of diffusion of a gas varies directly with its 
diffusion gradient, directly with its temperature, in­ 
versely with the square root of its density, and inversely 
with the concentration of the medium through which 
it is diffusing. The diffusion of a solute through a 
solvent is much slower than the diffusion of gases 
because of the densely packed molecules of the liquid 
which impede the diffusion of the dissolved molecules 
or ions. The diffusion of solute particles is governed 
by principles very similar to those which control the 
diffusion of gases. Although the freedom of movement 
of liquid molecules is to some extent restrained by 
internal cohesive forces, the molecules also possess 
thermal energy. Like gases and solutes, liquids exhibit 
diffusion phenomena. If water is brought into contact 
with another liquid, such as ether, with which it is 
only slightly miscible, a slow diffusion of the molecules 
of the ether takes place into the water and of water 
into the ether, and the process continues until the two 
liquids are mutually saturated.

Diffusion is described by the well-known one- 
direction, nonlinear, concentration-dependent diffusiv­ 
ity equation (see, for example, Bruce and Klute, 1956, 
p. 458^59):

where

fi=the concentration of ions or molecules

x = distance

is the diffusivity which is a function of the 
concentration, fi. This equation states that the change

in concentration with time, ^rr> is a function of the 

rate of change with distance, ^r-» of the product of the

da
diffusivity, D(Q), and the concentration gradient,-^-

OSMOSIS

Suppose a vessel containing a sucrose solution is 
placed in contact with one containing plain water. 
There will be a diffusion-pressure gradient for sucrose
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from the solution toward the water and a diffusion- 
pressure gradient for water from the water toward the 
solution. According to the principle of independent 
diffusion, water molecules and sucrose molecules will 
diffuse in opposite directions until the solute concen­ 
tration and the diffusion pressure become uniform.

Suppose that the two vessels are connected through 
a differentially permeable or semipermeable membrane 
that is permeable to the solvent (water) but impermeable 
to the solute (sucrose). Water will diffuse into the 
sucrose solution but the sucrose will not be able to 
penetrate the membrane and diffuse into the pure water. 
This is called osmosis. As a result of the net movement 
of solvent into the solution, the total pressure in the 
sohition becomes greater than that in the pure solvent 
at equilibrium. We say net movement because solvent 
actually moves in both directions across the membrane. 
However, at equilibrium, the movements in both direc­ 
tions are equal. Thus, osmosis may be considered as 
the building up of a differential total pressure in one 
part of a system through the restricting of diffusion in 
one direction and the allowing of diffusion in the other 
direction by means of a differentially permeable mem­ 
brane.

"Osmotic pressure may be defined as the maximum 
pressure which can be developed in a solution when 
separated from pure water by a rigid membrane per­ 
meable only to water" (Meyer and Anderson, 1939, 
p. 94). The osmotic pressure of a solution can be 
determined by enclosing it in a vessel formed of a rigid 
membrane permeable only to water, immersing this 
vessel in pure water, and exerting just enough pressure 
on the solution to prevent any increase in its volume due 
to the entrance of water. The osmotic pressure of the 
solution is quantitatively equal to the imposed hydro­ 
static pressure (Meyer and Anderson, 1939, p. 94-95).

It is common practice to speak of solutions possessing 
osmotic pressures whether or not they are under such 
conditions that a hydrostatic pressure can develop with­ 
in them. In other words, the term "osmotic pressure" 
is commonly used to denote the potential maximum 
hydrostatic pressure which would develop in a solution 
were it placed under the necessary conditions. It will 
be used in this way in this report.

Osmotic pressure is used sometimes to designate also 
the actual hydrostatic pressures or turgor pressures 
developed as a result of osmosis. Actual hydrostatic 
(turgor) pressures developed during osmosis seldom 
equal the osmotic, or potential maximum, pressure. 
For example, assume that a solution having an osmotic, 
or potential maximum, pressure of 12 atmospheres is 
enclosed in a stoppered vessel formed of a membrane 
permeable only to water. Assume further that the 
vessel in turn is immersed in a solution having an

osmotic pressure of 8 atmospheres. Water will diffuse 
inward until, at equilibrium, the actual hydrostatic 
(turgor) pressure developed in the internal solution will 
be 4 atmospheres. Its osmotic, or potential maximum, 
pressure will still be nearly 12 atmospheres. Even if 
the external liquid is pure water, the actual hydrostatic 
(turgor) pressure developed in the internal solution will 
not be equal to its original osmotic pressure unless the 
membrane is completely inelastic (Meyer and Anderson, 
1939, p. 94-95).

Because osmotic pressures are defined in terms of 
final hydrostatic (turgor) pressures developed by 
osmosis, flow occurs in the direction of greater osmotic 
pressure. For example, flow occurs from pure water 
(lower osmotic pressure) into a solution (higher osmotic 
pressure). However, flow is always from the region 
of greater to the region of lesser partial pressure of the 
diffusing substance. This is because the region of 
greater osmotic pressure is the region of lesser partial 
pressure of the diffusing substance.

When a substance is dissolved in water, the diffusion 
pressure of the water in the resulting solution is de­ 
creased and its osmotic pressure increased as compared 
with that of pure water at the same temperature and 
pressure. The diminution of diffusion pressure is pro­ 
portional, within a wide range of solution concentra­ 
tions, to the number of solute particles in a given 
volume of the solvent.

The osmotic pressure of a solution is a measure of the 
diffusion-pressure deficit of the water in that solution. 
Suppose that solution A has an osmotic pressure of 20 
atmospheres and solution B an osmotic pressure of 12 
atmospheres. Then the diffusion-pressure deficit of A 
is 20 atmospheres, and that of B is 12 atmospheres. 
Water moves toward solution A where the diffusion- 
pressure deficit, or the osmotic pressure, is greater. 
After the water movement, solution A will exert an 
actual hydrostatic (turgor) pressure of 8 atmospheres 
at equilibrium, and the membrane will exert a wall 
pressure of 8 atmospheres to contain it. Because the 
actual pressure is greater in A at equilibrium, the 
diffusion pressure of water in A will increase, and the 
diffusion-pressure deficit of the water in A will no 
longer be 20 atmospheres, but will be 12 atmospheres. 
Thus at equilibrium the increase in actual hydrostatic, 
or turgor, pressure inside the solution raises the diffu­ 
sion pressure of the water in the solution to equal that 
in the outside water (Meyer and Anderson, 1939, p. 97).

FORCE, WORK, ENERGY, POTENTIAL, AND GRADIENT

The following sections of this report are devoted 
largely to discussions of potentials and forces in soil 
water. Therefore, it is advisable to discuss first the 
meaning of force, work, energy, potential, and gradient.
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Force is commonly defined as a push or pull (Sears, 
1950, p. 1). It may be thought of as the cause of 
acceleration or the cause of a change in the state of rest 
or state of uniform motion of a body. The relation 
between the force on a body and its mass and accelera­ 
tion is described by Newton's second law of motion 
(Sears, 1950, p. 78)

F=ma (56) 
where

m=mass, in grams
a= acceleration, in centimeters per second squared 
F= force, in gram centimeters per second squared 

= dynes

When a force acts on a body the product of the force 
and the distance the body moves in the direction of the 
force is the work performed by the force. Mathe­ 
matically,

W=Fx cos a (57) 
where

F= the force causing the motion, in dynes 
x=ihe distance that the body is moved by the

force, in centimeters 
a=the angle between the direction that the force

is acting and the direction that the body
is moving 

W=the work done, in dyne centimeters, or ergs

Energy is the capacity for doing work. A moving 
body possesses kinetic energy equal to the work it can 
do before it is brought to rest. By definition it is equal 
to the product of one-half the mass and the square of 
the velocity of the body.

Potential energy is the capacity that a body or 
system of bodies has for doing work by virtue of its 
position or configuration (Smith, A. W., 1948, p. 45). 
For example, a spring expanded beyond its unstretched 
length has potential energy because it can do work 
when it contracts. Similarly, a body at some elevation 
above a gravitational datum has potential energy with 
respect to that datum because it can do work as it/falls 
from the higher elevation to the datum. The amount 
of potential energy it has is proportional to the height 
above the datum. In other words, the higher it is, the 
more work it can do upon falling to the datum. Because 
energy is the capacity to do work, it has the same 
dimensional units as work, ergs.

A scalar "is any quantity which although having 
magnitude does not involve direction. For example, 
mass, density, temperature, energy, quantity of heat, 
electric charge, potential, ocean depths, rainfall, 
numerical statistics such as birth rates, mortality or

population, are all scalar quantities" (Coffin, 1911, p. 1). 
Any quantity which involves both magnitude and 
direction is a vector quantity. "Any vector quantity 
may be represented graphically by an arrow" (Coffin, 
1911, p. 1).

According to d'Abro (1951, p. 71), the name" field" 
is given to the continuous distribution of some "condi­ 
tion" prevailing throughout a continuum. When the 
condition is adequately described at each point of space 
by a scalar, it is known as a scalar field. Temperature 
is such a condition and the temperature distribution 
throughout a volume is a physical illustration of a 
scalar field. In many cases the condition at each point 
of space has a direction as well as a magnitude, and 
the field is a vector field. A field of force or the field 
defined by the instantaneous velocities of the different 
points of fluid in motion are illustrations of vector 
fields.

Consider a number of points in space. Suppose 
that with each of those points there is an associated 
value of potential. Potential is the work required to 
take a unit mass or volume from a datum to the point 
in question against the field forces. The potential 
might be due to gravitational, mechanical, or electrical 
causes. The potential at a point may be thought of as 
the potential energy of a unit body at the point. Be­ 
cause energy has no direction, the potential at the 
point is a scalar property or a scalar point function. 
Its value depends only upon the values of the co­ 
ordinates of the point. Suppose further that the scalar 
point functions together with their first space deriva­ 
tives are continuous and singly valued functions. 
Then the ensemble of points in the given region together 
with the corresponding values of the scalar point 
function "constitute what is called the Field of the 
Scalar Point Function" (Wills, 1931, p. 75). Examples 
of such fields are gravitational or electrical fields.

A level or equipotential surface of a scalar point 
function is a surface for all points of which the function 
has the same value (Wills, 1931, p. 76). For example, 
all points at the same elevation have the same gravi­ 
tational potential and can be connected by such an 
equipotential surface. For another example, the 
equipotential surfaces around an isolated electrostatic 
point charge would consist of concentric shells.

Consider next an ensemble of points each of which 
is associated with a vector function the value of which 
depends only upon the coordinates of the point. Ex­ 
amples would be the gravitational force field associated 
with a field of gravitational potential, the velocity of a 
moving fluid associated with a field of pressure potential, 
or an electric force field due to a distribution of electric 
charges. The ensemble of points in the given region, 
together with the corresponding values of the vector
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point function, constitute "the Field of the Vector 
Point Function in the region" (Wills, 1931, p. 75). 

The potential gradient at a point is the rate of change 
of potential with distance measured in the direction in 
which this variation is a maximum (Gray, 1958, p. 219). 
As shown in figure 9, the ground-water gradient would

U

FIGURE 9. Ground-water gradient= .

be -^ where As is the difference in elevation of the

water table at two wells a horizontal distance Aa: cos 0 
apart, where 0 is the angle between the inclination of 
the water table and the horizontal. 

"The symbol V, read 'del,' defined by writing:

T d , - d . 7 d^ ^~+J 5: \-k -^~ 
ox J by ds (58)

is an operator which, acting upon the scalar point 
function u, produces the gradient of this function" 
(Wills, 1931, p. 77). x, y, and z are the rectangular 
coordinates of the system in which u is defined. ~i, ], 
and k are three mutually perpendicular unit vectors, 
which are present in the operator because the gradient 
of the scalar function is a vector. A bar over a term 
indicates that the term is a vector quantity. Therefore, 
the gradient of u is

=-
Ox

. 7\-k 5 (59)

where u is a scalar point function such as potential. 
"Thus, the gradient of a scalar field is a vector field, 
the vector at any point having a magnitude equal to 
the most rapid rate of increase of * * * the scalar 
point-function * * * at the point and in the direction 
of this fastest rate of increase, i.e., perpendicular to the 
level surface at the point" (Hague, 1939, p. 35).

The total change of the value of u in a distance dr, is 
du. This is the scalar product of the gradient and the 
distance, or

du=d~r   Vu (60)

where the dot indicates the scalar product (Wills, 1931, 
p. 77).

The gradient of a scalar field is a vector field as 
shown by equations 58 and 59. Furthermore, because 
the direction of maximum change is perpendicular to 
the equipotential surfaces, the gradient of a scalar field 
denotes a vector field such that the vectors are normal 
to the equipotential surfaces. Such fields, where the 
equipotential surface and the vectors are perpendicular, 
are said to be orthogonal. In effect, for hydraulics this 
simply expresses the fact that water flowing down a hill 
follows the steepest grade. It is often valuable to map 
fields of associated scalar and vector point functions. 
An example is given in figure 10. In studies of gravi-

FIGURE 10. Approximate flow net in the vicinity of an irrigation pond. The dashed 
lines are equipotential lines, or lines of equal hydraulic head, in feet. The solid 
lines are flow lines which enclose areas of equal ground-water flow.

tation, the lines or surfaces of equal potential are lines 
or surfaces of equal gravitational potential. The 
orthogonal vectors are lines of equal gravitational force. 

In hydraulics, a map of scalar and vector point 
functions is called a flow net (fig. 10). The scalar field 
consists of distributions of values of pressure or head. 
Equipotential surfaces are surfaces of constant pressure 
or head. The lines orthogonal to the scalar field map 
the vector field and are streamlines which indicate 
directions of flow.
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In hydraulics, a velocity potential is often defined as 
a scalar function of space and time such that its space 
rate of change with respect to a given direction, or its 
gradient in that direction, is the fluid velocity in that 
direction. It is analogous to the force potential, whose 
gradient in a given direction is the force intensity in 
that direction. In such a flow net, as in figure 10, flow 
lines, or streamlines or flow tubes, include elements of 
equal flow. Therefore they are closer together in areas 
of greater velocity.

Rewriting equation 57, and changing the notation so 
that F stands for force, which is always a vector,

W=Fx cos a (61)

Because potential energy is the ability a body has to 
do work by virtue of its position or configuration, W 
is the potential energy of the body after it is moved a 
distance from a datum. The negative of the work done 
by a conservative field of force is the potential u, and 
according to Joos (1934, p. 81)

dW=Fdx=-du (62)

The minus sign is necessary because the potential de­ 
creases in the direction of the force or flow.

Suppose we want the force. It is simply obtained 
from

F= -Vu (63)

Thus, "every conservative force may be represented as 
the negative of the gradient of a scalar point function, 
the potential" (Joos, 1934, p. 81).

POTENTIALS IN SOIL WATER

In soil moisture, the
total potential is defined as the minimum energy per gram of 
water which must be expended in order to transport an in­ 
finitesimal test body of water from a specified reference state to 
any point within the liquid phase of a soil-water system which 
is in a state of rest. The reference state is commonly taken to 
be a pool of pure water at the same temperature with a flat 
surface exposed to atmospheric pressure at a known elevation. 
Under conditions in which the soil will spontaneously adsorb 
water from the reference state, the potential is a negative 
quantity. In any soil-water system in a state of rest, the total 
potential does not vary from point to point in the system (Bolt 
and Miller, 1958, p. 918).

The total potential depends upon the individual 
potential fields and upon individual force fields which 
affect the test body of water as the transfer is made. 
In unsaturated soils these potentials are presumed to be 
due to (a) gravitational attraction, (b) hydrostatic- 
pressure difference, or gradient of pressure potential, 
(c) osmotic-pressure differences due to differences of 
content both of soluble salts and of anions and cations

in Gouy double layers associated with the solid surfaces, 
(d) adhesion of water to the solid surfaces, (e) temper­ 
ature gradients, and (f) gradients of chemical potential 
due to changes in solute concentration. If the last 
two of these are considered to be negligible, the total 
potential at any point is the scalar sum of the potentials 
due to the first four effects (Childs and Collis-George, 
1948, p. 78). Thermodynamic considerations and the 
use of the free-energy concept are necessary to include 
the thermal and chemical potentials (Edlefsen and 
Anderson, 1943).

GRAVITATIONAL POTENTIAL

All terrestrial water lies within the earth's gravita­ 
tional field. Gravitational potential is the energy 
required to move an infinitesimal mass or volume of 
water from a datum where gravitational potential is 
arbitrarily taken as zero, to a given position in the field 
against the attraction of gravity. According to this 
definition of gravitational potential,

Q=F.z (64)

where

6?= the gravitational potential, or gravitational 
energy, at an elevation z above the datum, 
where the gravitational potential is arbi­ 
trarily taken as zero. It is the work done, 
in ergs, in moving an infinitesimal mass or 
volume of water from the datum to the 
height z, in centimeters.

Fg =the force of the gravitational field against 
which the water is moved, in dynes.

The relation between Q and z is positive because the 
gravitational potential increases as the given mass or 
volume of water is moved in the direction of increasing 
z, or vertically upward.

According to Newton's second law of motion,

(65)
where

w=the mass of water moved, in grams.
a=g the acceleration of gravity, in centimeters 

per second squared. The acceleration is 
assumed to be constant within the relatively 
small range of values of z normally en­ 
countered in soil-moisture work.

Combining equations 64 and 65, the energy, in ergs, 
to move any mass of water, m, from the datum to the 
height z centimeters is the scalar quantity

G=myz (66)
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To find the gravitational potential in ergs per gram of 
water, Gm, divide equation 66 by m. Then

G
(67)

To find Gv, the gravitational potential, in ergs per 
cubic centimeter of water, divide equation 66 by v, the 
volume of the test mass of water, and

__U_mgz_
'"""» v ' (68)

where p= density of the liquid water.
The gravitational potential, in ergs per gram of 

water, or in ergs per cubic centimeter of water, de­ 
pends only upon the height within the field above the 
datum. Furthermore, it increases at a uniform rate 
with increasing 2, assuming g to be constant. The 
gravitational potential is not affected by the contents 
of the field, whether liquid, vapor, or solid. It de­ 
pends only upon the energy required to move ver­ 
tically a unit test mass or volume from a datum to 
any position in the field.

To determine the gravitational force on a mass m of 
water at elevation z in the field one applies the operator 
V, equation 58, and differentiates the potential. For 
equation 66 operated upon by 58,

(69)

The x and y terms present in equation 58 do not exist 
because the gravitational force operates only in the 
vertical, or 2, direction. The minus sign shows that the 
force is directed downward while height, z, increases 
upward and the potential increases with z. In other 
words, the force is directed in a direction opposite to 
that of increasing potential.

Differentiating, the gravitational force on the mass 
of water, m, is

(70)

where Fg is in dynes. Changing the notation to repre­ 
sent the magnitudes of the quantities only, we arrive 
back at equation 65,

Fg =mg (71)

Similarly, if Fg is force per gram of water,

(72)

Thus, the gravitational force, in dynes per gram of 
water, is numerically equal to the acceleration of

gravity. Finally, if Fg is the gravitational force per 
unit volume of water,

F.= pg (73)

The force on a unit mass or volume at any point in the 
field is constant because of the assumption that g is 
constant. This independence of the gravitational 
potential of the contents of the field explains why 
equation 54 is equally applicable whether or not there 
is a liquid continuum. It explains why equation 54 
applies equally to the continuous liquid phase below 
the capillary fringe and to the discontinuous liquid 
phase above the capillary fringe.

The acceleration of gravity, g, may be taken as 980 
cm per sec2 . Therefore, according to equation 67, 
the change in gravitational potential per gram equals 
980 ergs per gram per centimeter of change in height. 
The density of water, p, is 1 gram per cm3 . Therefore, 
according to equation 68, the change in gravitational 
potential per cubic centimeter of water is 980 ergs per 
cm3 of water per centimeter of change in height.

The datum for gravitational potential is usually 
taken as the water table. At this point 2=0 and 
G=Q. Therefore z is the height above the water table 
and   z is the depth below the water table. Below the 
water table the gravitational potential is negative by 
an amount equal to 980 ergs per gram of water per 
centimeter depth below the water table, or 980 ergs per 
cm3 of water per centimeter depth below the water 
table, tunes the depth below the water table. Above 
the water table, it is equal to 980 ergs per gram of 
water per centimeter height above the water table, or 
980 ergs per cm3 of water per centimeter height above 
the water table, times the height above the water table, 
regardless of whether the liquid phase is continuous or 
discontinuous.

According to equations 72 and 73, the force on the 
water is equal to 980 dynes per gram of water, or 980 
dynes per cm3 of water throughout the field.

Although the gravitational potential and force at any 
point in the gravitational field are independent of the 
material filling the field, this is not true for the pressure 
within the field. The variation of pressure with height 
is directly proportional to the density of the phase filling 
the field. In equation 73 the force on each cubic 
centimeter of water is constant. However, when the 
water is in a liquid state, there are more of these cubic 
centimeters of water per unit change in height than it 
the water were in a vapor state. Therefore, the forces 
add up more quickly in the liquid phase, and the changes 
in pressure are greater than hi the vapor phase. Looked 
at in another way, a column of liquid water weighs 
more than a column of water vapor, and the pressure
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is a function of the weight of the overlying column of 
water. According to elementary hydrostatics,

where
(74)

&p= change in pressure between two points a
vertical distance z apart 

D density of the liquid or vapor

The soil is saturated for some distance above the 
water table. For a somewhat greater distance above 
the water table, some interconnecting systems of pores 
are in liquid continuity with the water table. Because 
the density of water is 1 gram per cm3 , the pressure in 
the water above the water table changes at the rate of 
980 dynes per cm2 per centimeter of change in height, 
according to equation 74.

In the unsaturated soil outside the interconnecting 
systems of liquid-filled pores, the pores are partly filled 
with water vapor. Taking the density of saturated 
water vapor, at a temperature of 20 °C and at at­ 
mospheric pressure, as 0.000017 grams per cm3, equa­ 
tion 74 shows that the change in the pressure in a 
vapor-filled continuum is about 0.02 dyne per cm2 per 
centimeter of change in height. For greater accuracy, 
the compressibility of water vapor should be considered 
by using the barometric equation.

HYDROSTATIC-PRESSURE POTENTIAL

According to Childs (1957, p. 14), a suction must be 
applied in order to withdraw water from a soil or to 
prevent the soil from imbibing water. The greater the 
applied suction, the more water is withdrawn, and the 
lower will be the moisture content when the soil has 
reached equilibrium at the applied suction.

If water is withdrawn from a soil that does not 
shrink upon drying, air must enter the pore space and 
air-water interfaces must be present in the pore space. 
Such curved interfaces can be maintained only by 
capillary forces. Hence, surface tension acting in the 
interfaces provides a mechanism of soil-water retention 
against externally applied suctions (Childs, 1957, 
p. 14). This is one of several types of force that retain 
water against externally applied suctions. Further­ 
more, this is the mechanism whereby a negative hydro­ 
static pressure and pressure potential are developed 
within the soil.

As in the case of gravitational potential, hydrostatic- 
pressure potential may be taken as zero at the water 
table. Of course the absolute pressure at the water 
table is atmospheric pressure, equivalent (at sea level) 
to that of a column of mercury 76 cm high, or 1,013,000 
dynes per cm2 . Because this pressure is taken as zero,

all pressures are relative to atmospheric pressure or are 
gage pressures. Below the water table at equilibrium 
hydrostatic pressuress are positive because the hydro­ 
static-pressure potential increases with increasing depth. 
Above the water table at equilibrium the water is under 
a negative hydrostatic pressure, or tension, because the 
hydrostatic-pressure potential becomes increasingly 
negative with increasing height above the water table 
(Baver, 1948, p. 204).

At the water table, then, the gravitational potential 
and the hydrostatic-pressure potential are arbitrarily 
taken as zero. In the absence of other forces the total 
potential at the water table is therefore zero. Under 
equilibrium conditions the total potential must also be 
equal to zero at all points above and below the water 
table. Thus, at equilibrium and where other forces 
are not present, the gravitational potential and the 
hydrostatic-pressure potential must everywhere be 
numerically equal (Baver, 1948, p. 204; Childs and 
Collis-George, 1950b, p. 243).

According to equation 67, the gravitational potential 
per gram of water decreases at the rate gz with increas­ 
ing depth below the water table. Therefore at equi­ 
librium the hydrostatic-pressure potential per gram of 
water must increase at the same rate with increasing 
depth below the water table, or

t=-gz (75)

where ^=the hydrostatic-pressure potential. It is the 
energy, in ergs per gram of water, to move a gram of 
water from the water table to a depth  z below the 
water table against the hydrostatic-pressure forces. 
The minus sign is present because the pressure potential 
increases downward, whereas z is measured upward. 

In similar fashion from equation 68,

. fnc\\l/= pgz ( *>)

\f/ is now the hydrostatic-pressure potential, in ergs per 
cubic centimeter of water. It must be remembered 
that below the water table z is negative, and according 
to equations 75 and 76 the hydrostatic-pressure poten­ 
tial, ^, is therefore positive.

A liquid continuum extends to a height above the 
water table that is determined by the pore sizes and by 
equation 54, as will be discussed later. This is the 
same capillary rise that occurs when a capillary tube 
is immersed in water. This region, where some or all 
of the pores are filled with water that is continuous with 
water in the zone of saturation, is the capillary fringe. 
At equilibrium, and in the absence of other potentials, 
the hydrostatic-pressure potential equals the gravita­ 
tional potential in the capillary fringe, and its value is 
given by equations 75 and 76. In this case z is positive,
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and the hydrostatic-pressure potential is negative. 
This situation corresponds to the fact that in the zone 
of aeration the soil exhibits a negative pressure, or 
hydrostatic-pressure deficiency, or suction, or tension.

The liquid-water system is discontinuous above the 
capillary fringe. It consists of isolated capillary inter­ 
stices, or groups of such interstices, that are filled with 
water and separated from similarly filled interstices by 
others that are filled with soil air and water vapor. In 
this part of the zone of aeration, equations 75 and 76 
also hold at equilibrium and give negative values of 
hydrostatic-pressure potential for positive values of z. 
Curved liquid-vapor interfaces are present in many of 
the pores and equation 54 also applies. The actual 
pressures in the water vapor in this belt can be deter­ 
mined from the barometric equation 31. The pressures 
in the water on the convex sides of the menisci can be 
determined from equations 9 or 10.

Above the water table the hydrostatic pressure in 
the liquid is negative relative to atmospheric pressure. 
The greater the height above the water table, the greater 
will be the curvature of the equilibrium liquid-vapor 
interfaces. The interfaces are drawn deeper into the 
smaller interstices, and the larger interstices are 
emptied of water, giving larger hydrostatic-pressure 
deficiencies in the pore water. However at a sufficiently 
great height above the water table, or at sufficiently 
great values of externally applied suction, only very 
small pores remain full of water. Other forces then 
become more important than surface tension as dis­ 
cussed below. Thus extremely high negative hydro­ 
static pressures, or tensions, do not exist in the soil 
water. In fact, as shown by Edlefsen and Anderson 
(1943, p. 205), much of the water is actually under 
compression, even though it is in equilibrium with an 
extremely large applied suction.

OSMOTIC-PRESSURE POTENTIAL

A third type of potential found in soil water is 
osmotic-pressure potential. It is due to differences in 
content of both soluble salts and anions and cations in 
Gouy double layers associated with the solid surfaces 
of soil particles (Childs and Collis-George, 1948).

According to the concept of Gouy (Adam, 1941, p. 
342), cations, or positively charged particles, frequently 
become dissociated from soil particles of clay size 
(Childs, 1957, p. 7-8). The surface of the soil particle 
then has a negative charge. Such particles are called 
micelles. Particles having similar electrical charges 
repel each other and particles having opposite electrical 
charges attract each other. Therefore, in the vicinity of 
negatively charged soil-particle surfaces, there is an in­ 
creased concentration of cations (positively charged

ions) and a decreased concentration of anions (nega­ 
tively charged ions), whereas cation and anion concen­ 
trations are equal in parts of the solution that are more 
remote from the solid-liquid interface. The arrange­ 
ment of charges at the surface of the micelles is known 
as an electric, or Gouy, double layer. Because the total 
ion concentration increases as the solid-liquid interface 
is approached, the osmotic pressure also increases.

Because the negatively charged soil micelles attract 
cations from the soil solution, the net concentration of 
ions in the space between any two given micelles is 
greater than that in the solution remote from the mi­ 
celles. Because of this difference in concentration, an 
osmotic force tends to force water into the space be­ 
tween the micelles, thereby tending to force them apart. 
Thus the hydrostatic pressure between the micelles is 
in excess of the hydrostatic pressure in the remote solu­ 
tion. If suction is applied to a soil that exhibits this 
phenomenon, removal of water as a result of application 
of the external suction relieves the hydrostatic pressure 
on the space between the micelles. Therefore, the soil 
contracts upon drying (Childs, 1957, p. 23-28).

The ultimate ionic concentration at equilibrium in 
the neighborhood of a Gouy double layer at the surface 
of a clay-size particle represents a balance between the 
segregating forces and the diffusing forces. The segre­ 
gating, or ion-concentrating, forces are those due to the 
mutual electrical attraction between the micelle and 
oppositely charged ions and to adsorptive forces. The 
diffusing, or ion-diluting, forces include the normal 
ionic diffusion that would occur from a region of higher 
ion concentration to one of lower ion concentration and 
the diffusion of water in the direction of the higher con­ 
centration. Corresponding to this equilibrium, there is 
an osmotic-pressure gradient which is a function of dis­ 
tance from the solid surface. The osmotic pressure at 
any point corresponds to a negative hydraulic-pressure 
potential. It must be regarded as a hydrostatic-pres­ 
sure deficiency because it tries to force water in the 
direction of greater ion concentration that is, toward 
the particle and into the electric double layers. This 
contribution to total potential might be appreciable 
within as much as 50 A (A=1 Angstrom unit = 10~8cm) 
from the dissociating surface (Childs and Collis-George, 
1948, p. 79).

Osmotic-pressure potential due to differences in ion 
concentration is important in soils that shrink upon 
drying. Such soils contain clay minerals and humus. 
Childs (1957, p. 23) refers to water retention in such 
soils as the mechanism of "water retention by particle 
repulsion." It is the main source of the negative hydro­ 
static pressure that is exerted against an externally 
applied suction applied to a soil that shrinks upon dry­ 
ing. It could be of importance also in extremely dry
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sandy soil, where the remaining water is retained in very 
small wedges or close to the particle surfaces.

ADSORPTION POTENTIAL

"Attractive (adsorptive) forces between solids and 
water can be divided in two categories, short-range 
forces and long-range forces" (Bolt and Miller, 1958, 
p. 918). The short-range forces are effective in a range 
less than 100 A from a solid surface, whereas the long- 
range forces may extend beyond 100 A.

Of the two types of short-range forces, one consists of 
chemical forces, which are "caused by localized inter­ 
actions between the electron clouds of surface atoms 
and water molecules" (Bolt and Miller, 1958, p. 918- 
919). These forces are localized close to the surfaces of 
the particles and have little effect on adsorption.

The second type of short-range force consists of 
Van der Waals forces. They have their origin in the 
electrostatic attraction of the nucleus of one molecule 
for the electrons of another. Because of the geometry 
of the molecule this attraction is largely but not 
completely compensated for by the repulsion of elec­ 
trons by electrons and of nuclei by nuclei (Pauling, 
1958, p. 321). These short-range

forces, although not as localized as the chemical forces, are in 
the case of interaction between water and a solid surface still 
of short range as a result of the destructive interference with 
fields from other atoms as the distance between the atoms 
under consideration increases. Although such forces account 
for the cohesive strength of the water and the phenomenon of 
surface tension, it seems unlikely that the effective range with 
regard to the adsorption of water on solid surfaces extends 
beyond the first few molecular layers adjacent to the interface 
(Bolt and Miller, 1958, p. 919).

In general, the short-range forces may be neglected 
except at low water contents usually encountered 
only in the laboratory. It must be noted, however, 
that other workers ascribe the cohesive strength of 
water and the phenomenon of surface tension to the 
molecular hydrogen bonding, or dipole nature of the 
molecule (Hendricks, 1955, p. 11-12).

To understand the long-range forces, consider the 
nature of the water molecule. "* * * The water 
molecule may be supposed to have a localized distribu­ 
tion of electrical charge in its outer parts. The con­ 
centrations of charge are located at the apexes of 
a tetrahedron, two being positively charged with two 
negatively. The molecule is thus a dipole; i.e., it is, 
as a whole, electrically neutral but the 'center of 
gravity' of the negative charge is separated from that 
of the positive" (Childs, 1957, p. 9). The long-range 
adhesive forces are due to the attraction between the 
positive ends of the water dipoles and the electrostatic 
field emanating from the negatively charged soil 
particles. The relatively small separation between

the oppositely charged ends of the dipole becomes less 
important the farther away the dipole is from the soil 
particle. At some distance the dipole acts as a neutral 
particle because, for all practical purposes, the two 
opposite charges can be considered to coincide. There­ 
fore, even these "long-range" adhesive forces must be 
of rather short range even though they may attain 
large values near the soil particle. This attractive 
or negative force may extend to a maximum distance 
from the soil particle of more than 100 A (Bolt and 
Miller, 1958, p. 919).

The adsorptive forces strongly retain water near the 
solid surfaces, and large forces may be required to 
remove this water. However, these adsorptive forces 
become prominent only when soils are dried far beyond 
the state of dryness that is normally found in nature.

THERMAL POTENTIAL

According to Edlefsen and Anderson (1943), the 
free energy of soil moisture, or any other fluid, increases 
with the temperature. Furthermore, temperature and 
other thermodynamic variables of state help determine 
phase changes in the soil fluids. Therefore, thermal 
potential must be accounted for in determining the 
total potential of soil water. Unfortunately, "There 
can be little doubt that the most complex and least 
understood area in the field of soil-water relationships 
is that of the effect of temperature gradients applied 
to moist soils" (Winterkorn, 1958b, p. 113).

Moisture movement by vapor diffusion or by a 
combination of vapor diffusion and capillarity can 
be appreciable when thermal gradients are present 
(Smith, W. O., 1943; Gurr- and others, 1952; Taylor 
and Cavazza, 1954). However, thermal transfer of 
water occurs in great quantity only when relatively 
large thermal gradients are present in the soil water. 
Furthermore, evidence suggests that moisture flow 
in response to temperature gradients occurs mainly 
or completely in the vapor phase (Hutcheon, 1958, 
p. 114; Kuzmak and Sereda, 1958, p. 146). It is most 
important near the land surface where the largest 
thermal gradients are found. At depth, thermal 
gradients are generally small (Baver, 1948). The 
moisture transfer due to these small thermal gradients 
at depth may be quantitatively substantial over a 
period of time and for a given area. However, it is 
relatively small when compared with the moisture 
transfer due to the other gradients. As stated by 
Richards and Richards (1957, p. 53), "There is evidence 
that, except very near the soil surface and then mainly 
for longtime effects involving weeks or months, vapor 
transfer of water in soil in the root zone of growing 
crops is not very significant agriculturally." Therefore,
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it will be assumed that thermal gradients are negligible 
and that moisture movement occurs isothermally.

CHEMICAL POTENTIAL

By chemical potential is meant the potential due 
to the osmotic energy of ions free in the aqueous 
solution. This is distinct from the potential due to 
the osmotic energy of ions held in the electrical double 
layers on the solid particle surfaces (Winterkorn, 
1958a, p. 330).

If free salts are absent or are uniformly distributed, 
chemical potential may be ignored (Low, 1958, p. 56). 
In addition, it "is usually omitted in considering water 
movement because the solutes generally move more 
readily than the water with respect to the soil" 
(Gardner, 1958, p. 78).

TOTAL POTENTIAL AND ITS MEASUREMENT

The advantages of using potentials in the soil water 
rather than the forces on the soil water now become 
apparent. Assuming isothermal conditions and uni­ 
form solute concentration, the total force on the soil 
water would be the sum of the forces due to gravity, 
hydrostatic pressure, osmosis, and adsorption. Be­ 
cause forces are vectors and have direction, a vectorial 
addition would be required at every point. On the 
other hand, potential is a scalar property, and the 
total potential at any point in an unsaturated soil is 
the scalar sum of the four component potentials dis­ 
cussed above:

0=p02+(^-e-£) (77) 
where

0=total potential, in ergs per cubic centimeter 
pgz= gravitational potential, in ergs per cubic 

centimeter
$=hydrostatic-pressure potential, in ergs per 

cubic centimeter
c=osmotic-pressure potential, in ergs per cubic 

centimeter
|= adsorption potential, in ergs per cubic centi­ 

meter 
(Childs and Collis-George, 1948, p. 79.)

The total force can be determined from the gradient 
of the total potential.

The potential of soil water can be measured by 
bringing the soil water into equilibrium with a manom­ 
eter. Because all unsaturated soils have some con­ 
tinuous air-filled pore space, a manometer would read 
zero, or atmospheric pressure, in contact with an un­ 
saturated soil. Therefore, a porous membrane made of 
sintered glass spheres, unglazed ceramic, cellophane, 
porvic, or sausage casing is interposed between the

soil on one side and an external body of water which is 
in contact with the manometer. The membrane to be 
used should have pores sufficiently small to remain full 
of water at all values of negative pressure to be en­ 
countered in an experiment. Because these pores 
remain full of water, air cannot enter them and put 
the manometer out of operation. On the other hand, 
the water in the soil is continuous with the water in 
the membrane, with the body of water on the manometer 
side of the membrane, and with the manometer. 
Thus, pressures are transmitted from the soil water 
to the manometer.

In unsaturated soils a negative pressure or suction 
must be maintained on the manometer side of the 
porous membrane for equilibrium to be achieved with 
the soil water. One commonly speaks of measuring 
soil-water suction because one measures "the suction 
prevailing in an external body of water which is in 
equilibrium with the soil. In some cases, as in sand, 
we shall see that we may safely infer the internal soil 
water suction from such measurements, while in others, 
as in clays, we may not; but in the latter case the true 
internal suction is almost meaningless because [of its] 
varying from point to point within wide limits, while 
the equilibrium suction of an external water body is 
definable and significant" (Childs, 1957, p. 16). The 
"internal soil water suction" refers to the actual tension 
or hydrostatic-pressure deficiency in the water.

When a sand or other soil that does not shrink upon 
drying is brought into equilibrium with such a manom­ 
eter, the suction in the external water body comes to 
equilibrium with the resultant of the forces due to 
gravity and to hydrostatic-pressure deficiency from 
surface-tension effects. In these nonshrinking soils 
the osmotic effect is unimportant. The adsorptive 
effects are also unimportant at normal moisture con­ 
tents. In this case, the external suction is a measure of 
the hydrostatic-pressure deficiency resulting from the 
surface tension at the curved air-water interfaces.

When a clay or other soil that does shrink upon 
drying is brought into equilibrium with such a manom­ 
eter, the suction in the external water probably comes 
to equilibrium with the resultant of the forces due to 
gravity, to hydrostatic-pressure deficiency from surface- 
tension effects, and to osmotic pressure (or pressure 
involved in water retention by particle repulsion). 
Where the shrinkage effect is completely dominant, 
the necessary external suction required to bring about 
equilibrium is equal to the osmotic repulsive pressure 
(Childs, 1957, p. 27).

The relation between the external suction applied 
to a soil and the amount of water that the soil retains 
against that dewatering suction (the moisture content) 
is the moisture characteristic. A typical moisture
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FIGURE 11. Moisture characteristic of a fine sand. (Courtesy of N. A. Willits, 
assistant professor of soils, Rutgers University.)

characteristic is shown in figure 11. The moisture 
characteristic of a nonshrinking soil is related to the 
withdrawal of moisture from pores against the forces 
of surface tension. Therefore it is an indication of the 
pore-size distribution of the soil. For soils that do 
shrink upon drying, it is related to the osmotic pressure 
and to the separation of the clay micelles (which de­ 
pends upon the amount of water between the micelles). 
Thus, when shrinkage experiments show that water 
loss is not accompanied fully by the entry of air into 
the pore space, the soil suction may be interpreted 
either as repulsive pressure between the micelles due 
to osmosis or as hydrostatic-pressure deficiencies due 
to surface tension.

In nonshrinking soils the contribution of osmotic 
potential, e, and adsorption potential, £, to total 
potential, <£, can be ignored. The moisture character­ 
istic can be used as if it were a curve of moisture content, 
/3, versus negative hydrostatic-pressure potential due 
to surface tension, \f/. Thus it can be used to determine 
the pore-size distribution. Childs and Collis-George 
(1950a, p. 396) use this derived pore-size distribution 
to determine the hydraulic, or capillary, conductivity. 
For clays, where the suction removes water by drawing 
the grains closer together, by orientation of clay-mineral 
plates into lower potential energy positions or by the

interpenetration of double layers, the moisture char­ 
acteristic cannot be used to determine the pore-size 
distribution.

The term (^  e  £) in equation 77 is expressed as a 
pressure deficiency because it is determined from the 
suction in an external body of liquid at equilibrium. 
However, this does not mean that there are large 
hydrostatic-pressure deficiencies in the soil. As dis­ 
cussed above, it is doubtful that water can exist in a 
state of tension greater than 1 atmosphere under normal 
conditions. The true internal hydrostatic-pressure 
deficiency of the water, in a clay especially, varies 
greatly from point to point. In fact the water is 
probably under great compression in many parts of the 
system.

Consider equation 77 when moving from point to 
point in either a shrinking soil or close to the particles 
in a nonshrinking soil at a fixed elevation. At the 
fixed elevation pgz is constant. If the system is in 
equilibrium the total potential, <j>, must be zero, and 
the term in parentheses must everywhere be the 
negative equivalent of pgz. Near a solid surface or in 
a clay micelle   e and   £ may have extremely large 
negative values. To keep the term in parentheses 
constant and equal to pgz, ^ would have a very large 
positive value. Thus the water would be under 
considerable positive hydrostatic pressure that is, 
under compression near the solid surface.

Moisture-characteristic curves relating external suc­ 
tion and moisture content exhibit hysteresis. The 
hysteresis in nonshrinking soils can be explained by 
considering a small capillary interstice that is hydrau- 
lically connected to the rest of the system through a 
larger interstice. If a relatively large suction is applied 
during drying, both interstices will empty. During a 
subsequent wetting the overall suction might decrease 
to some intermediate value. Assume that the smaller 
interstice would normally fill with water at this inter­ 
mediate suction but the larger interstice would not. 
Because water cannot fill the larger interstice, it cannot 
reach and fill the smaller, and both interstices remain 
empty. Therefore the moisture content may be lower 
at a given suction during wetting than at the same 
suction during drying. In soils that shrink upon drying, 
the hysteresis might reflect the irreversible orientation 
of the clay plates during drying and wetting cycles, 
respectively (Childs, 1957, p. 28).

Several instruments measure potentials in soil 
water by bringing the soil water into equilibrium with 
a manometer as described above. The most important 
are the tensiometer, the asbestos tension table, the 
porous-plate pressure apparatus, and the pressure 
membrane apparatus (Baver, 1948, p. 211; Childs and 
Collis-George, 1950b, p. 239). Another method con-
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sists of measuring the pressure of vapor in equilibrium 
with the soil vapor when the soil vapor is at equilibrium 
with the soil liquid. A variation of this method consists 
of measuring the freezing-point depression, because the 
freezing point and vapor pressure are lowered with 
increasing hydrostatic-pressure deficiency or increasing 
osmotic-pressure deficiency (Edlefsen and Anderson, 
1943, p. 113).

Caution is necessary in using the vapor-pressure or 
the freezing-point-depression methods because they 
measure the total free energy of the soil water (Edlefsen 
and Anderson, 1943, p. 201). The total free energy 
is the potential shown by equation 77 plus energy 
components due to temperature and to the presence of 
free solutes. The energy potential due to the presence 
of free solutes is distinct from that due to the osmotic 
pressure attributable to the ions held in the Gouy 
double layer. However it is also commonly called an 
osmotic potential and is attributable to the energy 
changes stemming from the changes in solute concen­ 
tration (Schofield, 1948, p. 129). This free-solute 
component of the total free energy does not contribute 
to the pressure deficiency in the water and does not cause 
water movement. Therefore it must be subtracted 
from the total free energy as measured by the vapor- 
pressure or freezing-point methods, to get the actual 
pressure deficiency in the water due to the surface 
tension or osmotic forces discussed above.

By means discussed above, the total potential, 0, 
can be measured. The gravitational potential, pgz, 
also can be determined. Under equilibrium conditions 
the total potential at the water table and elsewhere 
in the system is zero, and the gravitational potential is 
everywhere equal to the sum of the terms in parentheses 
in equation 77. Even under nonequilibrium conditions, 
if the total potential and the gravitational potential 
are known, the term in parentheses can be evaluated. 
However it is usually not possible to resolve the term 
in parentheses into its component potentials. Therefore 
equation 77 is most commonly used in the form

(78)

(79)
where

and S is the capillary potential. Its interpretation for 
shrinking and for nonshrinking soils is outlined above. 
In most situations, as discussed above, it equals the 
suction potential. The gradient of the sum of the 
gravitational and capillary potentials gives the water- 
moving forces in unsaturated soils.

EQUILIBRIUM DISTRIBUTION OF POTENTIAL AND 
WATER IN SOIL

The distribution of component potentials within an 
unsaturated soil is discussed by Bolt and Miller (1958).

The distribution of water and potentials at equilibrium 
in a nonshrinking sand is discussed below.

In a nonshrinking sand the capillary potential, S, is 
equal to the hydrostatic-pressure potential, ^, because 
osmotic and adsorption potentials are negligible. 
At equilibrium the total potential, <£, is everywhere 
equal to zero because there are no gradients of total 
potential at equilibrium, and the total potential is 
equal to zero at the water table. Therefore, letting 
<£ equal zero in equations 77 and 78, the gravitational 
potential, pgz, is everywhere equal to the negative 
value of the capillary potential ( 2), or to the nega­ 
tive value of the hydrostatic-pressure potential ( \f/). 
Furthermore, equation 54 also applies; pgz in 54 may 
be interpreted as the gravitational potential, in ergs 
per cubic centimeter, and 2afr may be interpreted a? 
the negative of the hydrostatic-pressure potential, in 
ergs per cubic centimeter.

DISTRIBUTION IN THE ZONE OP SATURATION

The datum for gravitational potential and for 
capillary potential is usually taken as the water table. 
In the zone of saturation below (the zone filled with 
water under atmospheric or greater pressure), the 
gravitational potential decreases at the rate of 980 
ergs per cm3 of water per centimeter of increase in 
depth below the water table according to equation 
68. Therefore the capillary potential S, in this case 
equivalent to the hydrostatic-pressure potential ^, 
increases at the rate of 980 ergs' per cm3 of 
water per centimeter of increase in depth below the water 
table. This corresponds to the rate of increase of 
hydrostatic pressure with depth in a body of water, 
980 dynes per cm2 per centimeter of increase in depth.

DISTRIBUTION IN THE CAPILLARY FRINGE

The capillary fringe is an irregular belt of saturation 
extending above the water table. The water in this 
belt is at less than atmospheric pressure. Inter­ 
connected systems of saturated pores exist, making a 
continuum of saturated interstices extending to the 
water table. Here, as elsewhere in the system, the 
gravitational potential increases at the rate of 980 ergs 
per cm3 of water per centimeter of increase in height 
above the water table. Therefore the negative value 
of the hydrostatic-pressure potential, or the capillary 
potential, increases at the rate of 980 ergs per cm3 of 
water per centimeter of increase in height above the 
water table. The hydrostatic pressure in the liquid 
continuum decreases at the rate of 980 dynes per cm2 
per centimeter of increase in height above the water 
table.
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DISTRIBUTION IN PINCHING AND SWELLING TUBES 
WITHOUT HORIZONTAL CONNECTIONS

The following discussion describes the capillary rise 
of water in pinching and swelling tubes of circular 
cross section. It is greatly simplified and is designed 
only to illustrate the general type of occurrence of 
water in such a system. A more rigorous description 
of capillary rise in a somewhat more realistic soil 
model is presented by W. O. Smith and others (1931).

Equation 54 describes the capillary rise in a tube of 
uniform cross section, the angle of contact being as­ 
sumed equal to zero. It may be rewritten as

pgr (80)

The pinching and swelling tubes have cross sections 
that vary with height. However, assuming that the 
cross sections are circular, equation 80 must be satis­ 
fied at any possible meniscus position. For purposes 
of illustration, it is implied also that the contact angle is 
always zero regardless of the pore geometry.

Taking

(7=73.5 dynes per cm for water at 20°C 
p=l gram per cm3 for water 
#=980 cm per sec2

equation 80 becomes

r2=0.15 cm2 (81)

Figure 12 is a plot of equation 81 showing the possible 
meniscus positions, or possible heights of capillary 
rise, that correspond to different pore sizes under the 
simplifying assumption.

Before a meniscus can lodge in a pore of radius r at a 
height z above the water table, another condition be­ 
sides that indicated by equation 81 must be satisfied. 
A pore of the proper size must exist at the corresponding 
distance above the water table. To demonstrate this 
point, consider a hypothetical distribution of pores.

Assume for example that the pores are distributed in 
vertical sequences that are completely isolated from 
adjacent vertical sequences. Assume further that the 
radii of the pores vary in the vertical direction accord­ 
ing to a sine-curve distribution. Thus, we are replac­ 
ing the pores by vertical tubes that pinch and swell 
like a sine curve. Let

a=the minimum neck radius
6=the height from one neck to the next or from

one swell to the next 
c=the difference between the maximum and

minimum neck radii.

(See fig. 13.)

0.10 .20
r, IN CENTIMETERS

FIGURE 12. Plot of the capillary-rise equation for water, rz=0.1S cm*, z Is the 
height of capillary rise, in centimeters, for a pore of givej| circular radius (r) in 
centimeters.

The neck radius at any height, z, is

. . trZr a-\-c sm -?- 
o

(83)

where ir=3.14159 ....
The vertical lines around the trigonometric term indi­ 

cate that the absolute value of that term is to be used. 
Consider the hypothetical case where 

a=0.01 cm 
6=0.1 cm 
c=0.1 cm

Equation 82 becomes

r=0.01+0.1sin (83)

which is expanded in figure 13.
Equation 81 and figure 12 show the equilibrium 

hydraulic relationship between 2 and r. Equation 83 
and figure 13 show the actual geometrical relationship 
between 2 and r. When both are reproduced on the 
same scale and one is superimposed on the other, the 
points of intersection of the two curves satisfy both 
equations 81 and 83. They indicate the possible
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FIGURE 13.  Hypothetical variation of pore radius (r) with height above the water 
table, z, according to the relation r=0.01+0.1|sin 10irz|.

meniscus positidhs, or the possible heights of capillary 
rise. However, because the menisci can occupy only 
the lower halves of the pores, the intersections with 
the upper parts of the pores must be ignored. This 
principle can be expressed mathematically by saying 
that, in equation 83, z is a number of the form

z=djo

where d, /, and o are digits or groups of digits such that

d=0 to n 
/=0.0 to 0.9 
o=0.00 to 0.05

Figure 14 shows equation 81 plotted on the same 
scale as figure 13, between 2=2.00 and 2=2.25. When 
overlaid on figure 13, the three points of intersection 
are 2=2.022 and r=0.074, 2=2.121 and r=0.071, and 
2=2.220 and r=0.68. These are possible solutions of 
the two equations and show possible heights of equi­ 
librium menisci and the radii of the interstices required 
at those heights above the water table.

Substituting equation 80 into equation 82, the pos­ 
sible values of pore size that satisfy the two equations 
are expressed by

i  
r=a+csm

pgrb
,_ , .
(84)
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FIGURE 14. Plot of the capillary-rise equation, rz=0.1,5 cm^, on the same scale used 
in figure 13.

Or, substituting equation 81 into equation 82,

0.157Tr=a-\- csm
rb

(85)

Any possible pore radius in the given pore-size distri­ 
bution that can support a water column in equilibrium 
with gravity must satisfy this equation subject to the 
limitations of the simplifying assumptions.

Applying equation 85 to the hypothetical example,

r=0.01+0.1 sin (86)

Solving by trial and error, the largest radius that 
satisfies the relation is r=0.1042 cm. Substituting 
this value of r into equation 81, the minimum height of 
capillary rise is 1.44 cm.

The largest radius in the hypothetical distribution of 
pinching and swelling tubes is 0.11 cm. This would 
hold a meniscus at a height of 1.36 cm according to 
equation 81. According to equation 83 the pore extends 
from 1.30 to 1.40 cm. However, the part of the pore 
that has a radius of 0.11 cm (the widest part of the pore) 
is at a height of 1.35 cm above the water table and not 
at a height of 1.36 cm as required by equation 81. At 
both 1.35 cm and 1.36 cm above the water table the
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radii are smaller than those required for equilibrium. 
Because this situation pertains throughout this pore, 
the water would rise above the pore into the next pore. 
The equations indicate that it would rise to a height of 
1.44 cm into the next pore, which goes from 1.40 to 1.50 
cm, and reach stability where the radius is 0.1042 cm. 
This would be the height of "minimum capillary rise" 
as it is called by some investigators (Smith, W. O., and 
others, 1931, p. 18).

The maximum height of capillary rise is determined 
in similar fashion. The smallest pore radius is 0.01 cm, 
and this can hold a meniscus at a height of 15 cm above 
the water table according to equation 81. A neck of 
this radius is located at exactly 15 cm according to 
equation 83, and this is the maximum height of capillary 
rise. In this case, there can be no capillary rise above 
this height because there is no pore small enough to 
support an equilibrium meniscus above this height.

Other possible positions of capillary rise exist between 
the maximum and minimum heights. In fact there is 
a possible meniscus position in each of the intervening 
pores. Consider which of these possible positions the 
top of the capillary fringe will assume.

Assume that the top of the capillary fringe is at the 
height of minimum capillary rise, 1.44 cm above the 
water table. If the water table then slowly rises, the 
meniscus moves upward toward the center of the pore 
that extends from 1.40 to 1.50 cm above the water table. 
As discussed above, when the center of the pore is 1.36 
cm above the water table the meniscus is lodged in that 
pore center where the radius is 0.11 cm. If the water 
table continues to rise, the meniscus rapidly passes 
through the upper part of the pore and lodges at an 
equilibrium position in the next pore. Thus, for a 
rising water table, the top of the capillary fringe in this 
hypothetical distribution of pores remains a distance 
above the water table about equal to the minimum 
height of capillary rise.

Suppose that the water table after rising reaches 
equilibrium where the top of the capillary meniscus is 
1.36 cm above the water table and the pore radius is 
0.11 cm. If the water table then falls, the meniscus is 
gradually drawn downward into the lower half of the 
pore in order to develop a greater curvature. When the 
water table is 15 cm below the top of the capillary fringe 
the meniscus is in the narrowest part of the pore, the 
neck, where the radius is 0.01 cm. If the water table 
continues to fall, the meniscus is pulled rapidly through 
the neck into the pore below, where it lodges close to 
the neck of the lower pore. Thus, for a falling water 
table, the top of the capillary fringe in this hypothetical 
distribution of pores remains a distance above the water 
table about equal to the maximum height of capillary 
rise.

The most common positions of the capillary fringe 
are at the maximum and minimum positions of capillary 
rise. However, other positions are possible. Examples 
were given above where intermediate positions were 
assumed as the water table changed from a rising to a 
falling or from a falling to a rising condition.

As the water table falls in this hypothetical simplified 
model, the meniscus is pulled through successive pores, 
and the pores left above the meniscus are empty. 
Thus, the moisture content changes abruptly from 
saturation to near dryness, at the top of the capillary 
fringe.

The illustration above is a simple example of soil- 
moisture hysteresis. The moisture content of the 
region between the positions of maximum and minimum 
capillary rise depends upon the previous history of 
water-table fluctuation. In this extreme case of pinch­ 
ing and swelling tubes a region may be saturated when 
the water table falls, and it may be dry when the water 
table rises. Similarly, actual soils exhibit hysteresis 
and are wetter on dewatering than on rewetting, even 
though the suctions applied are the same.

DISTRIBUTION IN TIOHTLY PACKED SPHERES

Consider perfect spheres in the most compact, or 
rhombohedral, packing as shown in figures 15 and 16 
(Slichter, 1899, p. 309-310). The arrangement of 
the pores differs in several ways from that of the 
nonuniform vertical tubes postulated previously.
1. The interstices no longer have smooth walls. They 

are complicated wedge-shaped openings having 
wedge-shaped reentrants.

2. The interstices are no longer isolated horizontally 
but are connected in a continuous system. It 
is as if lateral capillary tubes connect the vertical 
capillary tubes.

3. Although the individual pores are all similar, a 
horizontal plane through the system intersects 
different pore widths and shapes if the unit 
rhombohedron is tilted.

These differences from the previous model have only 
minor effects on the height and shape of the capillary 
fringe. Instead of being at a uniform elevation, the 
top of the capillary fringe rises and falls as it goes 
from pore sections of smaller radius to those of larger 
radius. However, because all the pores are similar, 
the undulations of the top of the capillary fringe are 
minor and do not exceed one sphere diameter in height. 
Another difference between the two models is that the 
interstices can no longer be assumed to be circular, and 
equation 87 would have to be used instead of equation 
80 for a more rigorous solution. It is

(87)
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FIGURE IS. Unit rhombohedron formed by passing surfaces through the centers 
of eight contiguous spheres in the most compact packing of a mass of spheres. 
(After Slichter, 1899, p. 309.)

where RI and R2 are the principal radii of curvature 
of the meniscus.

The main differences between the two models are 
shown by the dewatering process. When the water 
table falls in rhomobohedrally packed spheres or in 
an actual soil, the interstices are not completely de- 
watered. As the meniscus is pulled down through 
the main part of a given pore, little wedges of water 
remain in the reentrants of the pore.

Figure 17 shows a pore having horizontally inclined 
reentrant wedges of gradually decreasing cross section 
leading to adjacent pores. Assume that the capillary 
fringe is in the position of maximum capillary rise 
with the meniscus in the neck at the top of the large 
pore, thereby satisfying equation 80 or 87. The 
reentrant wedges will be completely full of water, as 
shown in figure 17A

As the water table falls, the meniscus is drawn 
through the main pore into the neck below. The 
continuous water film is separated, and there are sep­ 
arate menisci in the pore and in the reentrant wedges,

FIGURE 16. Unit element of the pore space in a mass of spheres packed in the most 
compact manner possible, a plaster cast of the interior of the rhombohedron in 
figure 15. The spheres are not quite in contact; their surfaces are separated about 
0.5 cm. Ufter Slichter, 1899, p. 310.)

as shown in figure 175. The curvature of the menisci 
in the pore and in the wedges is governed by equations 
80 and 87. As the water table continues to fall, the 
meniscus at the top of the capillary fringe is pulled 
into the underlying pore. However, little isolated 
wedges of water remain in the reentrants.

DISTRIBUTION ABOVE THE CAPILLARY FRINGE

DISTRIBUTION IN TIGHTLY PACKED SPHERES

Consider the little isolated wedges of water in the 
pore reentrants that are now above the liquid con­ 
tinuum. The water wedges must come to equilibrium 
with the vapor that fills the pores at the same height 
above the water table. Transfer of water into and 
out of the reentrant w.edges occurs by vapor movement 
until equation 87 is satisfied.

Suppose that the water table stabilizes at a depth 
of 100 cm below the reentrant pore. If circular cross 
sections are assumed for illustrative purposes, ac­ 
cording to equations 80 or 81 the equilibrium pore 
size would be 0.0015 cm. Water would evaporate and

FIGURE 17. Dewatering of a main pore and of the reentrants.



REVIEW OF SOME ELEMENTS OF SOIL-MOISTURE THEORY D29

diffuse away from the liquid surfaces in the wedge- 
shaped reentrants until the menisci were drawn into 
the wedges to a point where their radii were 0.0015 cm. 
If the smallest parts of the reentrants had radii greater 
than 0.0015 cm, water would evaporate and diffuse 
away from the menisci until the reentrants were com­ 
pletely dewatered. Only those reentrants having 
radii of 0.0015 cm or smaller would retain any water 
that is in equilibrium with the gravitational potential 
at that level. Of course this assumes that water is 
retained in the pores only by the surface-tension forces 
and that adsorptive and other forces are negligible.

Equation 78 provides another way of looking at 
this problem. At equilibrium, <f> is zero and S must 
equal the gravitational potential. The required value 
of negative capillary potential, or hydrostatic-pressure 
potential, can develop only in a pore 0.0015 cm in 
radius. If there is no pore that small, sufficient re­ 
taining capillary or hydrostatic-pressure force cannot be 
developed to balance the dewatering gravitational force. 
Equilibrium is not possible, and the interstice is de- 
watered by gravity flow.

At 100 cm above a rising water table, water vapor 
would diffuse to any meniscus in a pore less than 
0.0015 cm in radius. The vapor would condense on 
the meniscus, reducing its curvature and energy of 
water retention until the equilibrium meniscus size 
of 0.0015 cm was reached.

DISTRIBUTION IN RANDOMLY DISTRIBUTED PORES

Consider next the hypothetical extreme case where 
there is a random distribution of pore sizes. Further­ 
more, assume that the soil is of infinite horizontal 
extent. As a final simplification, assume circular pores 
so that equation 81 may be used.

Somewhere in the system, a pore having a radius 
greater than that required by equation 81 will be 
located close above the water table. At that point, 
there will be no capillary fringe and no capillary rise. 
Elsewhere, it will be possible to find a continuum of 
small pores extending to a great height above the 
water table. Furthermore, each pore radius will be 
equal to or smaller than the radius required by equation 
81 at that height above the water table. There will 
be a saturated continuum filling these pores and thus 
a very large height of capillary rise. Finally, all 
heights of capillary rise between these two extremes 
will occur, and the top of the capillary fringe will be a 
very uneven surface. Of course the exact height and 
shape of the capillary fringe will depend upon whether 
the soil is in a dewatering or rewatering phase. Above 
a falling water table, for example, very large pores can 
remain full of water provided that the required meniscus

is maintained in an overlying pore of sufficiently small 
radius.

In this random distribution of pore sizes, occasional 
isolated water-filled pores will be surrounded by vapor- 
filled pores. Similarly, occasional isolated vapor-filled 
pores will be surrounded by water-filled pores. In 
general, however, at a given level there will be different 
combinations or groups of water-filled pores whose 
menisci are sufficiently small to satisfy equation 81. 
Here again hysteresis is important. For example, 
consider a region containing a group of relatively 
large pores completely surrounded by pores small 
enough to retain water at a particular elevation and 
to satisfy equation 81. At a given stage in a rewatering 
phase, water might diffuse toward and condense in 
the smaller pores until they were filled with water. 
However the larger internal pores might not be filled 
at that stage of the rewatering phase, and menisci 
might face inward toward the larger pores. In de- 
watering from a state of saturation, on the other hand, 
the situation would be similar to that at the top of the 
capillary fringe for a falling water table. The sur­ 
rounding smaller pores might reach equilibrium accord­ 
ing to equation 81 and retain the water in their own 
pores and in the larger interior pores as well. There­ 
fore the entire region might remain saturated even 
though the larger internal pores would normally be 
dewatered at that elevation. An analogous hysteresis 
effect would prevail in a region consisting of small pores 
surrounded by larger pores.

Two extremes have been presented. One consists 
of uniform interstices having a capillary fringe of 
virtually uniform height and individual reentrant 
wedges retaining water above the capillary fringe. 
The other consists of a random distribution of pores 
having a capillary fringe the top of which is extremely 
uneven. Water would be retained erratically above 
the capillary fringe in all combinations from single 
filled pores to very large webs of water filling great 
numbers of pores. The actual situation at equilibrium 
in the field lies between these extremes. Most soils 
have some sorting and horizontal stratification. There­ 
fore, in most cases, the water distribution at equilibrium 
should be closer to the first case than to the second. 
In extremely variable material the actual water distri­ 
bution at equilibrium might approximate more ^losely 
the random situation.

MOVEMENT OF SOIL MOISTURE 

PHYSICAL PICTURE

Soil moisture can exist and move in three ways as 
liquid water, as water vapor, and as adsorbed water. 
"It seems probable that, in soils, moisture transfer in
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the adsorbed phase can be significant only under rather 
special conditions, such as where the soil is very dry 
and possesses a large specific surface" (Philip, 1958, 
p. 157). Thus in the following discussion it is assumed 
that movement of adsorbed water is negligible and that 
the water moves chiefly in the liquid and vapor phases. 

Soil moisture moves in response to gravitational, 
hydrostatic-pressure, adsorption, osmotic, temperature, 
and chemical potential gradients. As discussed pre­ 
viously, temperature and solute concentration are taken 
as constant throughout the system. In addition, the 
discussion is restricted to a sand, where the osmotic and 
adsorption potentials are negligible. Moisture move­ 
ment is then governed by the gradient of the total 
potential, which according to equation 78 is

(88)

Here, S is the capillary potential of a nonshrinking soil. 
It is virtually equivalent to ^.

PORE UNDERLAIN BY A CAVITY

Assume that a given pore has the general shape 
shown in figure 18 and is underlain by a cavity. Figure 
ISA shows the pore neck partly filled with water and at

FIOUEE 18. Pore underlain by a cavity.

equilibrium. Therefore the upward and downward 
forces on the water are equal.

The downward forces are the pull of the lower 
meniscus and the weight of the water in the pore, 
pgz, where z is now the height of the water in the neck. 
If the pore is circular, this pull is denoted by equation 
9, which is

(p-Po)=~ (89)

The upward force is the pull of the upper meniscus, 
also denoted by equation 9. The upward pull by the 
upper meniscus must exceed the downward pull by the

lower meniscus by an amount equal to pgz. Conse­ 
quently the radius of the upper meniscus must be 
smaller according to equation 9, and it will be lodged in 
a smaller part of the neck than will the lower meniscus.

Suppose water is added to the system until the soil 
overlying the cavity becomes saturated. Eventually 
the upward meniscus will not be able to develop a small 
enough radius to support the growing weight of water 
in the pores in addition to the pull of the lower meniscus. 
Therefore the lower meniscus will move to the bottom 
of the pore and become convex toward the cavity, as 
shown in figure 18B.

The pressure in the cavity is atmospheric pressure. 
At equilibrium, the pressure on the upper side of the 
lower meniscus (concave to the liquid) is greater than 
atmospheric pressure according to equation 9. Thus 
the upper and lower menisci act in the same direction  
to support the weight of water in the pore.

Positive hydrostatic pressure due to the weight of the 
overlying liquid is required to overcome the pressure 
differentials across the menisci before water can flow 
into the cavity. Thus the soil above a cavity must be 
saturated and under sufficient head to overcome the 
pressure differences across the interfaces before water 
can move into the cavity. If the pore radius is large, 
it will take very little positive pressure to overcome the 
pressure difference, according to equation 89. If the 
pore is small, it might take considerable hydrostatic 
pressure a considerable zone of saturation over the 
cavity to overcome the larger interfacial pressure 
differences associated with pores of smaller radius.

Assume that the pore is in the moisture condition 
shown in either A or B of figure 18 and that the cavity 
is underlain by pores having a lower moisture content. 
No liquid movement can occur across the cavity as 
discussed above. However, equilibrium does not exist 
because the pores are drier below the cavity than above 
it. The water menisci below the cavity are drawn 
farther into the pore necks and their radii of curvature 
are smaller than above the cavity. According to the 
Kelvin equation, vapor pressures are therefore smaller 
below the cavity than above it. A vapor-pressure 
gradient would be established across the cavity, and 
water would evaporate from the upper menisci, diffuse 
across the cavity, and condense on the lower menisci. 
Movement would cease at equilibrium when all the 
moisture contents and menisci are such that equation 80 
is satisfied everywhere in the system (assuming the 
validity of the simplifying assumptions).

Once the upper pore has sufficient positive hydro­ 
static head for liquid flow to occur, it occurs very 
quickly. On the other hand, the diffusion of water 
vapor is very slow. Thus water moves at greatly 
different rates under these different conditions.
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FIGURE 19. Epre underlain by a pore of similar size.

PORE UNDERLAIN BY PORES OF SIMILAR SIZE

Figure 19 shows two similar necks separated by a 
pore. There is less water in the lower neck than in the 
upper. The balance of forces in each neck is similar to 
that described for the case of the cavity. Tn each neck 
the capillary pull of the lower meniscus plus the weight 
of the water in the neck equals the capillary pull of the 
upper meniscus; the upper meniscus exerts a greater 
pull than does the lower meniscus and must be lodged 
in a narrower part of the neck. As in the case of the 
cavity, water cannot flow as a liquid across the pore, 
and moisture equilibration occurs by slow evaporation 
at the upper neck, diffusion to the lower neck, and 
condensation at the lower neck.

Assume that entrapped air can be bled from the pores 
by lateral connections. As water is added to the upper 
neck in figure 19-4, meniscus b moves into the upper 
pore and meniscus a moves into the lower pore. Menis­ 
cus b is always lodged in a narrower neck section than 
meniscus a, however, because it must balance the weight 
of the water in the neck as well as the pull of meniscus a.

If insufficient water is added to move meniscus a to 
the midpoint of the lower pore, liquid flow does not 
occur. Instead, relatively slow downward movement 
of water occurs across the pore by evaporation, diffu­ 
sion, and condensation. Because the radius of curvature 
of meniscus a in figure 19 B is larger than in figure 19 
A, vapor pressure at this meniscus is greater and a 
diffusion occurs more rapidly than in figure 19 A.

If sufficient water is added to move meniscus a 
past the midpoint of the pore, water will flow rapidly

FIGURE 20. Pore underlain by a smaller pore.

to the lower part of the pore. At equilibrium the 
amount of water in the lower neck will be slightly 
greater than in the upper neck in order to satisfy 
equation 80.

If sufficient water is added to fill all the pores and 
entrapped air is removed, surface tension ceases to be 
a factor. Water movement through the pores then 
follows the rules of saturated flow.

PORE UNDERLAIN BY PORES OF DISSIMILAR SIZE

The upper pore in figure 20 is underlain by a smaller 
one. Meniscus a will reach the midppint of the lower 
pore while meniscus b is still in the neck of the larger 
pore. After meniscus a reaches the midpoint of the 
smaller pore, water will flow rapidly to the lower part 
of the small pore. Thus liquid flow will occur at a 
moisture content which is lower than that required for 
liquid flow where the upper pore is underlain by a 
pore of equal or larger size. In fact, if the lower pore 
is sufficiently smaller than the upper, it can fill with 
water while the upper pore remains almost empty.

If the lower pore is larger than the upper, the re­ 
verse situation is present. In figure 21, for example, 
it would be necessary for the upper pore to be full
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FIGURE 21. Pore underlain by a larger pore.

and to have sufficient hydrostatic head before the 
water could move as a liquid into the larger pore 
below. Vapor diffusion would occur across the under­ 
lying large pore as long as there was any difference 
in the vapor pressures above and below. This is 
similar to the case of the pore underlain by a cavity.

RANDOMLY DISTRIBUTED PORES

Several conclusions are possible from the considera­ 
tions discussed above. For a given pore size and dis­ 
tribution, there is a moisture content below which 
liquid movement through the pores does not occur. 
Movement occurs exclusively by vapor transfer or 
else by vapor transfer from neck to neck and by liquid 
transfer through the necks. At higher moisture 
contents, the liquid movement occurs as a series of 
discontinuous jumps from neck to neck as discussed 
above. At sufficiently high moisture contents, a 
series of pores might be filled so that the flow through 
them follows the laws of saturated flow. For some 
types of soil geometry there might be a continuous 
vapor bypassing liquid-filled wedges. Similarly there 
might be liquid-filled passages bypassing vapor-filled 
pore centers.

The following description pertains to a soil containing 
a random distribution of pores. Some passageways are 
filled only with water vapor, and water moves through 
them slowly only as a vapor. Some passageways 
contain vapor-filled pores and liquid-filled necks. The 
movement through these channels occurs by vapor

transfer through the pores and liquid transfer through 
the necks. Some passageways are in a similar condition 
except that there is enough water for the menisci to 
jump across the pores. Water movement then occurs 
relatively rapidly by the mechanism of liquid jumps. 
Finally, some passageways are completely full of water 
and movement occurs rapidly by saturated flow.

A given arrangement of pores at a given moisture 
content transmits water at a given velocity under a 
given head difference. The ability to transmit water 
under a unit head difference is known as the capillary 
conductivity, or unsaturated conductivity, of the soil 
at the given moisture content. Capillary conductivity 
describes the sum of the movement by the different 
mechanisms described above. It includes movement 
by vapor flow, by vapor flow in the pores and liquid 
flow in the necks, by liquid jumps, and by liquid flow. 
As moisture content increases, more systems of pores 
contain more water. Therefore more systems of pores 
transmit water by the liquid-flow mechanisms, and 
capillary conductivity increases. Abundant experi­ 
mental data show that capillary conductivity increases 
with increasing moisture content and with decreasing 
suction.

Poiseuille's law

(90)

gives the discharge rate through a capillary tube under 
conditions of viscous flow, where

Q=the discharge rate
r=the radius of the tube
77=the absolute or dynamic coefficient of viscosity
Z=the length of the tube 

PI and P2 =the pressures at the ends of the tube

The largest pores empty first as soil moisture de­ 
creases. Because of the fourth-power relationship 
between Q and r in equation 90, saturated flow through 
a soil decreases very rapidly as the radii of the saturated 
pores diminish in size. In addition, as moisture con­ 
tent decreases " * * * the chance of water occurring 
in pores or wedges isolated from the general three- 
dimensional network of water films and channels 
increases. Once continuity fails, there can be no 
flow in the liquid phase, apart from flow through 
liquid 'islands' in series-parallel with the vapor sys­ 
tem * * *" (Philip, 1958, p. 153).

Most of the conductivity of a wet soil stems from 
pores in material of silt size and larger. When a soil 
is dry the only pores that are filled and capable of 
liquid flow are the smaller pores. Liquid movement
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through these pores is very small. The larger pores, 
substantially dewatered, transmit water only by the 
slow mechanisms of (1) vapor transfer, and (2) vapor 
transfer through the pores and liquid flow through 
the necks. At such low moisture contents the con­ 
ductivity is very small.

In field soils, drainage and water transmission occur 
rapidly at high moisture contents. At a critical range 
of moisture contents, where pores of silt size and larger 
are being virtually dewatered, the rate of drainage 
becomes very small. For some soils this critical mois­ 
ture content corresponds to field capacity. Field 
capacity, or field moisture capacity, is the " amount 
of water remaining in a well-drained soil when the 
velocity of downward flow into unsaturated soil has 
become small" (Soil Sci. Soc. America, 1956, p. 433).

Applied water distributes itself uniformly through­ 
out a soil only if it is sufficient in quantity to bring 
the entire soil to a certain critical moisture content 
or range of moisture contents. These critical moisture 
contents correspond to those at which values of capil­ 
lary conductivity become small during drainage. The 
applied water percolates downward as a belt, whose 
moisture content is between the critical one and satura­ 
tion. It leaves the overlying soil near the critical 
moisture content. After the applied water moistens 
a certain depth to this moisture content, movement 
practically ceases. More water must be applied to 
obtain further rapid penetration as a liquid (Veihmeyer, 
1939, p. 544).

According to Bodman and Colman (1944, p. 117), 
downward moving water advances behind a "wetting- 
front," or sharp differential in moisture content 
(Remson and others, 1960, p. 153). If only enough 
water is applied to wet a certain depth of soil to the 
critical moisture content, movement of the wetting 
front practically ceases. Further moisture movement 
occurs only by vapor transfer and other slow processes 
discussed above. More water must be applied to 
obtain further penetration as a liquid. Of course, all 
movement finally stops at static equilibrium, when 
only enough moisture has been left behind so that the 
capillary forces equal the gravitational forces.

This behavior results because a certain degree of 
saturation is necessary before any given distribution 
of pore sizes can begin to transmit water rapidly as a 
liquid. At lower moisture contents, water movement 
through the larger of these pores depends upon slow 
vapor diffusion. Water movement through the smaller 
of these pores is negligible even when the pores are 
filled. Therefore rapid water transmission can occur 
only at moisture contents where series of larger pores 
are sufficiently wet for water to move through them 
as a liquid. Below these moisture contents, water

movement as a vapor through the larger pores and as 
a liquid through the smaller pores is very slow, and 
the wetting front remains practically stable.

DIFFERENTIAL EQUATION FOB UNSATUBATED FLOW

HISTORICAL BACKGROUND

In order to understand the derivation and meaning 
of the unsaturated-flow equation, it is helpful to con­ 
sider first the derivation and meaning of the similar 
equation for saturated flow. This is because "the 
simplest type of porous flow problem deals with 
'saturated' media in which all of the pores are com­ 
pletely filled with one homogeneous liquid" (Miller 
and Miller, 1956, p. 324). Historically, the equation 
was first derived for the saturated case and later 
adapted to the unsaturated case.

Henry Darcy discovered in 1856 an empirical pro­ 
portionality between macroscopic flow rate and driving 
force (Darcy, 1856). By adding a conservation-of-mat- 
ter condition for steady flow to Darcy's law written in 
differential form, Slichter in 1899 obtained an equation 
identical in form with the Laplace equation (Slichter, 
1899, p. 330). Finally, by adding a conservation-of- 
matter condition for unsteady flow to Darcy's law writ­ 
ten in differential form, Theis obtained an equation 
identical in form with the heat-flow equation (Theis, 
1935). "This has since formed the basis for the suc­ 
cessful development of saturated flow technology" 
(Miller and Miller, 1956, p. 324). This type of equation 
is known as the equation of heat conduction in studies 
of heat conduction, as the diffusion equation in studies 
of chemical diffusion, and as the nonequilibrium equa­ 
tion in studies of ground water.

Several difficulties delayed the development of the 
analogous equation for unsaturated flow. The first dif­ 
ficulty stems from the nature of the potentials and the 
driving forces in unsaturated systems. In saturated 
systems the potentials are relatively simple, involving 
only position and pressure, and are easily measured by 
means of water wells and piezometers. The potentials 
in unsaturated flow systems are much more complicated 
and involve components of gravitational, hydrostatic- 
pressure, osmotic-pressure, adsorption, temperature, 
and chemical potentials. Unsaturated-flow potentials 
also vary in a complicated way with moisture content, 
and hysteresis enters into the relationship between 
them. Furthermore, measurements of potential and 
moisture content in soils are difficult and tedious to 
make. An additional difficulty not encountered in satu­ 
rated flow is due to the fact that the transmission con­ 
stant, or capillary conductivity, is dependent upon the 
moisture content and thus is variable.
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Buckingham (1907) recognized the analogy between 
potentials in unsaturated-flow systems and in other 
flow systems and introduced the concept of capillary 
potential. Richards (1931, p. 323-324) was able to 
adapt the heat-flow or diffusion type of equation to 
unsaturated flow by writing the moisture content and 
capillary conductivity as unspecified independent func­ 
tions of the capillary potential or the suction. In this 
way, he arrived at the type of equation that forms the 
basis for unsaturated-flow studies. Richards assumed 
that Darcy's law holds for unsaturated systems and 
subsequent work has shown the validity of this assump­ 
tion (Philip, 1958, p. 153).

As has been discussed, unsaturated flow involves 
several different mechanisms. The particular mecha­ 
nism that dominates varies with the moisture content. 
It may seem surprising that a single equation can de­ 
scribe flow under these different conditions, but it can 
be done because of the fortunate circumstance that the 
equation for saturated flow is of the same form as the 
equation governing the diffusion of water vapor. Thus 
by proper specification of the transmission coefficient as 
a variable to cover the sum of the different mechanisms 
operating at different moisture contents a single equa­ 
tion can be used (Philip, 1958, p. 158).

It is recognized by some investigators (Edlefsen and 
Anderson, 1943) that the thermodynamic specification 
of the liquid and vapor phases is incomplete in current 
use of the equation. However, no solution to this 
difficulty is currently available.

The best answer available for the hysteresis problem 
has been to confine the solution of the equation to 
periods of either soil drying or soil wetting so that mois­ 
ture content and capillary conductivity can be treated 
as single-valued functions of the capillary potential.

Because of the importance of the unsaturated-flow 
equation, its derivation is presented. It is derived from 
the equation of continuity and the Darcy equation, 
which are discussed first.

EQUATION OF CONTINUITY

The equation of continuity is chiefly a statement of 
the law of conservation of matter. It "states that 
the fluid mass in any closed system can be neither 
created nor destroyed" (Muskat, 1937, p. 121). It 
can be derived from the fact that the change of mass in 
a small unit rectangular parallelepiped equals the dif­ 
ference between the mass entering and the mass leaving.

Figure 22 shows a unit rectangular parallelepiped 
with center at x, y, z. The mass flow of moisture 
through the parallelepiped is to be computed first. 
This is the net flow of moisture out of the volume ele­ 
ment per unit time, in grams of water per square 
centimeter per second.

FIGURE 22.  Unit rectangular parallelepiped.

Let Vx equal the mass flow of moisture per unit time 
in the x direction, through a unit cross-sectional area 
at a distance x from the yz plane. Vx is measured in 
grams per square centimeter per second.

Then, the expression

da;

equals the change in the mass flow of moisture per unit 
time per unit cross-sectional area in the x direction, 
with distance from the yz plane.

The mass flow through an elemental plane of the 
parallelepiped parallel to the yz plane and cutting the 
point x, y, z is Vxdydz, in grams per second. The mass

dx 
flow into the side dydz at a distance x   from the yz

plane is

^ -jdydz

or

(91)

(92)

Similarly, tfye flow out of the side dydz at a distance 
x-\-dx from the yz plane is 

2

dx (93)

The net mass flow in the x direction out of the unit 
rectangular parallelepiped per unit time is the flow out,
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equation 93, minus the flow in, equation 92. Making 
the subtraction, it is

, , , 
dxdydz (94)

Similarly, let

Fj,=the mass flow of moisture per unit time in the 
y direction, through a unit cross-sectional 
area at a distance y from the xz plane.

Fz =the mass flow of moisture per unit time in the 
z direction, through a unit cross-sectional 
area at a distance z from the xy plane.

Then the net mass flow in the y direction out of the unit 
parallelepiped per unit time is

dxdydz (95)

The net mass flow in the z direction out of the unit 
parallelepiped per unit time is

dxdydz (96)

The total mass flow out of the unit parallelepiped per 
unit time, in grams per second, is the sum of equations 
94, 95, and 96. Adding and simplifying, it is

dy dxdydz (97)

The loss of mass of water in the unit parallelepiped 
per unit time is to be computed next. Let

per = the bulk density of the medium or soil, in grams
per cubic centimeter. 

/3=the moisture content on a dry- weight basis.
This is a decimal fraction obtained by
dividing the mass of water in grams by the
mass of dried soil in grams.

The mass of water per volume of soil, in grams per 
cubic centimeter, is

P*P (98)

The mass of water in the unit parallelepiped of volume 
dxdydz is

(99)

The loss of mass of water in the unit parallelepiped per 
unit time, in grams per second, is

(100)^ dxdydz 

where £=time, in seconds.

According to the law of conservation of matter, the 
mass loss of water in the parallelepiped equation 100 
must equal the flow out of the parallelepiped equation 
97, or

dt
dxdydz- ^1 dxdydz (101) 

oz j

Dividing by dxdydz,

dt
(102)

which is the equation of continuity.
Let V be a vector giving the mass flow of moisture, 

in grams per second per square centimeter, in the 
direction of the line of flow. Then,

V=iVx+]Vy +kV, (103)

Using the vector operator defined in equation 58 on 
equation 103,

But, 

Therefore,

Comparing equations 102 and 106

_d(p^) v

(105)

(106)

(107)

V is the vector operator known as del or nabla. It 
will be recalled also that the product of this operator and 
a scalar such as potential is a vector known as the 
gradient. The scalar product of this operator and a 
vector, such as velocity above, is known as the diver­ 
gence (Brand, 1947, p. 183).

The divergence operator applied to a vector function 
gives at each point the rate per unit volume at which 
the physical entity is issuing from that point. If the 
divergence is positive, as in equation 107, there must 
be a source of water located at the point, or else water 
must be leaving the point. If water is leaving the 
point the storage of water at that point must be de­ 
creasing as shown by the negative time derivative on 
the left side of equation 107. If the divergence is zero 
and there are no sources or sinks, equation 107 shows 
that the rate of change of storage also is zero and that 
steady-state conditions pertain.
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DARCY'S LAW

As stated by Richards (1931, p. 323), "Darcy, 
working with mediums under saturated conditions, 
found that the flow of water through a column of 
soil is directly porportional to the pressure difference 
and inversely proportional to the length of the column. 
For low pressure gradients it has been found by 
numerous investigators (Stearns, 1927; King, 1899) 
that this law is in exact agreement with experiment 
and it is entirely analogous to the well-known law 
of Poiseuille for the flow of liquids through capillary 
tubes. However, both of these laws fail to hold 
for high pressure gradients. The limits within which 
they are true and the modifications which a second 
approximation requires can be determined only by 
exhaustive experiments on a wide range of materials. 
In view of the experimental data now available it is 
assumed that Darcy's law holds for the low velocities 
and pressure gradients dealt with in this paper."

Darcy's law may be written as

where
(108)

VV =SL vector giving the volume flow of moisture, 
in cubic centimeters per square centime­ 
ter per second

-fiT=the coefficient of capillary conductivity 
 V0=the negative gradient of the total potential

If 0 is in ergs per gram, K is in seconds.

FLOW EQUATION

The mass flux is the product of the fluid density 
and the volume flux, or

V= P V. (109)

where p=the density of the water, in grams per cubic 
centimeter.

Therefore, equation 107 can be changed to

(HO)

where Vv is the vector giving the volume flow of 
moisture.

The value of VV) the volume flow, can be replaced 
by means of Darcy's law, equation 108. Then the 
equation of continuity, equation 110, becomes

(HI)

This is the general equation for unsaturated flow.
For a system in which flow is occurring in the vertical 

direction only, and for which pa is constant, equation 
111 becomes

d|8 d f
>rr~>r ot oz |_ >roz

Equation 78 may be rewritten as

0:

where

(112)

(113)

0=the total potential, in ergs per gram 
2=the vertical height above the datum 

#2=the gravitational potential, in ergs per gram 
S=the capillary potential, in ergs per gram

Substituting this into equation 112,

(114)

Assuming g and p to be constant and dividing by pa , 
we have

If |3 and S may be considered to be related by a single- 
valued function, equation 115 can be rewritten as

if

the equation for vertical flow is

(117)

(118)

Similarly, for unidirectional horizontal flow, the flow 
equation is

K is known as the diffusivity. The reciprocal of the 

term ^ is analogous to specific heat in the theory of

heat flow, and Klute (1952a, p. 106) proposes the name 
specific moisture capacity for it.

Under conditions of steady-state flow the mass loss 
of water, or the change in moisture content with time,

>TT> is zero. Therefore, the left sides of equations

102, 107, 111, 118, and 119 are equal to zero. This 
was discussed previously in regard to equation 107, the 
continuity equation. It was pointed out that if the
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divergence is zero and there are no sources or sinks, 
the rate of change of storage of water also is zero and 
steady-state conditions pertain.

Under steady-state conditions the general equation 
for unsaturated flow, equation 111, becomes

0=v(p-KW>) (120)

When the density of water, p, and the coefficient of 
capillary conductivity, K, are constant, equation 120 
can be rewritten as

VV=0 (121) 
or

^+^+^4=0 (122)

This is the well-known Laplace equation. Similarly, 
for steady-state conditions, the equation for vertical 
flow of soil moisture, equation 118, becomes

(123)V

Finally, for steady-state conditions the equation for 
unidirectional horizontal flow, equation 119, becomes

(124)dx\ da

These equations are difficult to use because the 
capillary conductivity, K, the specific moisture capacity,

^> the total potential, <j>, the diffusivity, K, and the

capillary potential all depend on the moisture content. 
To solve the equations, the functional dependence of 
capillary conductivity, specific moisture capacity, 
potential, and diffusivity on moisture content must be 
determined by empirical or other means. Exact 
solutions of equation 123 under given boundary con­ 
ditions are available from Richards (1931, p. 329), 
Remson and Fox (1955, p. 308), Wind (1955), and 
Gardner (1958a).

In the past few years, numerical, or iterative, methods 
have been devised for the solution of the flow equation 
for the nonequilibrium or transient case under given 
boundary conditions (Klute, 1952a, Klute, 1952b; 
Luthin and Day, 1955; Day and Luthin, 1956, p. 445; 
Philip, 1957; Youngs, 1957). It is hoped that a large 
number of solutions applicable to soil-moisture flow 
under different conditions will be available within a 
few years.
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