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	SYMBOLS

A cross-sectional area of flow
a a numerical coefficient
6 channel width

Cs a coefficient of wall friction
c a coefficient related to head loss
d diameter of pipe
e overall resistance coefficient
F force
F Froude number
g acceleration of gravity

H a drawdown in head in a pipe
j a numerical coefficient
k a numerical coefficient
n a numerical coefficient

rm mean radius of curvature of channel
R mean radius of curvature of pipe
s slope of water surface
u velocity
v tangential velocity
T distributed stress
p mass density of water
8 angle subtended by a curve, being the angle between radii at beginning and end of curve
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SOME ASPECTS OF THE SHAPE OF RIVER MEANDERS

By RALPH A. BAGNOLD

ABSTRACT

From consideration of the probable nature of flow resistance 
in curved channels, a simple dynamical model is proposed to 
relate resistance to a criterion of bend curvature applicable both 
to closed pipes and to open channels. The theory indicates that 
resistance should fall to a minimum when the radius of channel 
curvature bears a certain critical ratio to the channel width; and 
this critical ratio should have approximately the same value for 
both closed and open channels, irrespectively of scale or of 
boundary roughness.

Resistances of pipe bends are known to fall to a sharply defined 
minimum when the curvature ratio, mean radius to diameter, is 
between 2 and 3. Recently measured flow resistances of sinuous 
open channels disclose that the same minimum occurs at approxi­ 
mately the same curvature ratio.

The theory therefore appears to go some way in explaining 
the mechanism tending to restrict the bends of rivers of all sizes 
to a curvature ratio between 2 and 3.

ENERGY DISSIPATION IN A CURVED CHANNEL

When water flows through a curved circular pipe of 
diameter d and mean radius of curvature R a transverse 
flow is created (fig. 81). Such a transverse flow is 
inevitable so long as the pipe walls exert a frictional 
drag on the tangential flow, for the radial acceleration 
gives rise to a calculable excess of fluid pressure on the 
outside of the bend and a corresponding pressure deficit 
in the inside. Throughout the main body of the flow 
the radial pressure gradient is balanced by the gradient 
of the centrifugal pressure. But it must remain un­ 
balanced over the periphery, owing to the effect of 
boundary friction in reducing the flow velocity and 
therefore the peripheral pressure gradient in the radial 
direction. Hence water must flow radially inwards over 
the periphery, down the radial pressure gradient. And 
its place is taken by an outward flow across the center- 
line of the cross section.

The effect of the transverse flow is to reduce the 
internal shear due to the distortion of the flow round 
the bend. For if the transverse flow were prevented, 
say by the insertion of frictionless fins projecting in­

wards towards the central axis of the pipe, the mainte­ 
nance of unaccelerated flow would require a uniform 
shear between the outside water and the inside water

FIGUKE 81.—Idealized diagram of transverse flow in a pipe bend. R Is mean 
radius of pipe curvature, and d is diameter of pipe.

as in figure 82. The rate of shear would be
R+f

where v is the tangential velocity, R is the radius of 
curvature, and d is the pipe diameter.

The effect of the transverse flow may be compared to 
the effect of the lay in a rope which makes it flexible by 
greatly reducing the internal shear occasioned by 
bending it.

If the path of a peripheral water particle is regarded 
as a helix whose projected cross section is semicircular, 
the internal distortion over any given central angle

135
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FIGUEE 82.— Idealized diagram of shearing motion between water filaments in a 
pipe bend if transverse flow were prevented.

subtended by the arc of the channel bend may be 
measured as the difference in path length between that 
of the helix and that of its core arc. For any given 
ratio R/d this difference has a minimum value for a 
certain pitch of the helix. That is, a certain optimum 
ratio exists between the transverse and the tangential 
velocities.

Let it now be assumed, on the general principle of 
least effort, that the transverse flow ultimately attains 
this optimum velocity ratio. An angular acceleration 
is required to create the transverse flow, and this may 
be supposed to occur within some finite initial length 
of the channel arc. So, let it also be assumed that the 
arc of the curved channel exceeds this initial length, as 
defined by a certain minimum subtended angle 00 .

Then if we neglect, as a first approximation, any 
residual energy dissipation due to the small continuing 
internal distortion after the steady state has obtained, 
the resistance to flow through the whole channel arc 
is measurable by the sum of: (a) the rate of energy 
expenditure required to create the transverse flow 
(assumed dissipated beyond the end of the channel 
bend); and (b) the rate of energy dissipation by wall 
friction.

The total resistance to flow, due to the channel bend, 
is thus the sum of two forces: (a) force Fa required to 
overcome the inertia-resistance to the creation of the 
transverse flow, and (b) a force F* required to overcome 
wall friction.

Fa should be proportional to AptfdfR where A is the 
cross-sectional area of the flow=7rd2/4. Fb is equal to 
TsirdR6=Cspv?4:AI&R6 where Cs =Tspv2 , the coefficient of 
wall friction.

The total resisting force F=Fa -\-Fb should therefore 
be

where a is some unknown constant.

The overall resistance coefficient e should therefore be 

e=od/R+4(7g0R/d (1)

Comparing channel bends which subtend any con­ 
stant central angle 0 exceeding 00 , equation (1) can be 
written in the general form

where n2 is a constant (assuming as an approximation 
that Cs is constant, depending only on the wall rough­ 
ness).

Equation (2) contains only two independent variables 
R/d arid n, and &' has a minimum value 2n at R/d = 1/71.

The family of curves obtained by giving n a range of 
arbitrary values is shown in figure 83. It should be 
noted that the geometry (fig. 84D) imposes an absolute 
cutoff at R/d=0.5, for the inner boundary then has 
a zero radius of curvature and becomes an abrupt angle. 
Hence the curves of figure 83 for R/d<C0.5 are 
imaginary only.

EFFECT OF BREAKAWAY AND EDDY FORMATION

Further, as R/d is reduced towards this limit the 
tacit assumption that the flow conforms to its solid

3 4 5 6 7 

CURVATURE CRITERION, R/d

FIGURE 83.—Theoretical relation between overall resistance coefficient «' and curva­ 
ture criterion, radius of curvature divided by pipe diameter, for different arbitrary 
wall resistances.
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R/d=3.0

R/d=2 R/d=0.5

FIGURE 84.—Diagrammatic relation between local radius of curvature of water filaments and radius of curvature of pipe bend. 
A. Curvature without appieciable asymmetry of the flow.
B. Flow asymmetry creates a relatively stagnant but still stable zone, and a decrease in the effective value of R/d. 
C. Breakaway occurs, at which the stagnant i,one becomes unstable and dissipates energy in eddying. 
D. When the bend ultimately forms a right angle, the unstable zone is large and very much pronounced.

boundary must cease to be true at some critical value 
of R/d considerably greater than 0.5. For a stage must 
be reached at which the flow along the inner boundary 
becomes unstable and breaks away from the boundary, 
leaving an intervening space occupied by a zone of 
unstable and confused fluid motion, figures 84(7 and D.

That such a stage must be reached is a matter of 
common experience. A real fluid will not flow smoothly 
round a sharp projecting curve. But it is not possible 
to predict quantitatively just what that stage will be 
in the case of a real frictional fluid. Nor is it possible 
to predict what effect the change in the flow condition 
will have on the overall resistance to flow.

The factors most likely to determine the breakaway 
stage are the ratio R/d, the degree of turbulence in the 
entry flow, and the velocity distribution over the entry 
cross section. Under comparable conditions as regards

the two last factors, the breakaway stage is likely to be 
determined only by the ratio R/d.

But there are no grounds for assuming that the criti­ 
cal value of R/d at which breakaway occurs will coin­ 
cide with the critical value at which the resistance 
becomes a minimum by the considerations leading to 
equation (2). So, it is to be expected that breakaway 
may occur at a larger or a smaller value of R/d.

The study of the effects of breakaway has been con­ 
fined largely to conditions of diverging flow. As the 
divergence is increased, the flow is found to become 
suddenly unstable in the neighborhood of the diverging 
boundaries, with a consequent sudden increase in the 
rate of energy dissipation.

But in the case of a bend in a channel of uniform 
width there is no initial divergence anywhere. As the 
radius of bend curvature is reduced, the velocity distri-
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bution becomes progressively more asymmetrical. 1 The 
flow tends to recede away from the inside region of 
greatest curvature and towards the outer boundary. 
Consequently, in the region near the inner boundary 
the shear rate is reduced, and with it both the shear 
stress in the fluid and the pressure gradient in the 
direction of flow.

A final abrupt change occurs when the pressure gra­ 
dient along the inner boundary is so far reduced as to 
allow a backward leakage to take place. Flow in 
the inside region now becomes unstable. Local eddy­ 
ing results, accompanied by increased energy dissipa­ 
tion and increased flow resistance associated with 
breakaway.

But if we confine attention to conditions that exist 
just prior to this breakdown of the inside flow into 
large eddies, we have: (a) A reduction in boundary 
resistance at the inner side. This is, however, probably 
compensated by a corresponding increase at the outer 
side where the velocity gradient is increased, (b) A 
restriction of the flow proper to the outer side of the 
channel because of inertia effects, while as yet the 
inside flow is still stable and no dissipatory eddying 
has set in.

As the critical value of the ratio R/d of channel 
boundary curvature is closely approached, and the 
asymmetry of the velocity distribution increases, the 
still stable and nondissipatory body of relatively un- 
sheared fluid on the inner side may be expected to 
increase in width, thereby narrowing the effective 
width of the flow proper from d to d', and increasing 2 
its effective radius from R to R', as sketched in figure 
845.

Consistent with this notion we have therefore imme­ 
diately prior to the breakdown of the inside flow a 
stage in which frictional dissipation has not appreciably 
increased, but in which the flow proper has an effective 
curvature ratio R'/d' increasingly larger than the 
channel value R/d.

As a result, we should expect the value of the first 
term of equation (2), which represents the inertia re-

> The experimental evidence is somewhat confused as regards the changes in the 
velocity distribution which takes place within a pipe bend. There is general agree­ 
ment that the distiibution within the bend is principally asymmetrical, the effec­ 
tive flow being confined to a proportion only of the channel cross section. But 
whether the zone of high velocity is found to hug the outer or the inner wall of the 
bend at any particular cross section of it appears to depend on a combination of 
factois, such as velocity distribution at entry, angular distance from entry, and the 
curvature ratio R/d.

The reasoning which follows is, however, very largely independent of whether the 
effective flow hugs the outer or the inner boundary, being based only on the generally 
accepted fact that the effective flow is constricted to occupy a less width than that of 
the channel. Hence the words "outer" and "inner" may be interchanged without 
affecting the general sense.

* Interchanging if necessary the words "inner" and "outer," the effective radius 
R'is decreased. But the change in radius is small compared to that in width. Hence 
the effect of a decrease in width, from either the inner or the outer boundary, from d 
to d' is always an increase in the effective curvature ratio from R/d to R'/d'. And 
the changes are approximately proportional, the error becoming mote appreciable as 
R/d approaches its limit at 0.5.

34567 
CURVATURE CRITERION, R/d

FIGURE 85.—Theoretical relation between total pipe resistance and curvature criteria 
(equations 2 and 3) modified on the assumption that the effective values d'/R' of 
the ratio d/R becomes reduced to half the channel value d/R just before the break­ 
away in stability occurs.

sistance, to decrease from d/R to d'/R', while the second 
term representing the boundary friction, to remain more 
or less unchanged at R/d. On this view the overall 
resistance represented by &' in equation (2) should begin 
to depart from the values indicated by figure 83 at 
some value of R/d not far exceeding the critical value 
at which the breakdown of the inner fluid zone occurs. 
And the overall resistance should reach a local minimum 
value at the point of breakdown, followed when the 
breakdown has actually occurred by a rapid and pro­ 
gressive rise due to the well-known throttling effect of 
an unstable flow zone.

In figure 85 the curves of equation (2) as shown in 
figure 83 have been modified on the assumption that as 
the abscissa value, channel ratio, R/d is reduced, (a) the 
inner zone becomes unstable and breaks down at R/d = 
2; (b) as the abscissa ratio is reduced towards 2 the 
effective flow ratio R'/d' in the first term of equation 
(2) increases to a maximum value of 4 attained at the 
point of breakdown, while R'/d' in the second term 
remains unchanged at R/d; (c) for still smaller abscissa 
ratios (actual channel dimensions) the overall resistance 
increases rapidly.
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All the curves show a minimum resistance at the 
assumed breakdown ratio R/d=2. But those for small 
values of n (smooth channels) also retain the original 
minimum at the larger value of R/d.

Now compare figure 85 with figure 86, which repro­ 
duces the summary diagram given by Hofmann (1929, p. 
45) of the experimental data on the resistance of 90° 
pipe bends of varying roughness.

The experimental curves appear inconsistent among 
themselves, presumably because of differences in the 
experimental conditions, most probably in the condi­ 
tions of entry flow.3

In spite of the apparent mutual inconsistencies 
disclosed in figure 86, the correspondence in general 
pattern between figure 86 and figure 85 is remarkable 
in view of the gross simplifying assumptions introduced 
into the reasoning on which figure 85 is based.

In particular, all the experimental curves show either 
a sharp minimum or else an abrupt upturn in the value 
of the resistance coefficient to occur within the same 
narrow range from 2 to 3 in the ratio R/d, irrespective 
of large variations in the boundary roughness and ir­ 
respective of the variations in other experimental 
conditions which are evident from the disparity in the 
shapes of the different curves.

It would seem difficult to account for this nearly 
constant critical value of R/d and for the pronounced 
changes in the resistance value associated with it by 
any other explanation than that of the phenomenon of 
breakaway.

Whatever the explanation offered, the experimental 
evidence on the resistance of closed 90° pipe bends 
indicates that with the possible exception of very 
smooth bends, the resistance undergoes a decrease to a 
pronounced minimum value when R/d is between 2 
and 3.

If the foregoing explanation is correct, this marked 
decrease in resistance should occur within the same 
range of R/d whatever the subtended angle, provided 
it exceeds some minimum angle, and whatever the 
boundary roughness, provided the roughness of the 
channel upstream of the bend is of the same order.

CONDITIONS IN A CURVED OPEN CHANNEL

The conditions of flow round a bend in an open 
channel can, as a first approximation, be regarded as 
those of the flow in the lower half of a closed pipe 
bend. The single transverse flow can be regarded as 
that of one only of the two equal and opposite circula­ 
tions in the case of a closed pipe.

3 For the results of subsequent work, none of which discloses any radical disagree­ 
ment with figure 86, see Yarnell and Woodward, 1936; Robertson, 1944; Mockmore, 
1944.

Differences exist, however, which may or may not 
have an influence on the occurrence and effects of 
breakaway. The pattern of the internal turbulence 
cannot be the same because the free surface of the open 
channel flow prevents any internal fluid motion taking 
place through it in the vertical direction. Again, in 
any natural open channel the cross section is far from 
semicircular, being greatly flattened. And, whereas, 
experiment shows that the transverse peripheral flow 
extends over the whole of each semiperiphery from the 
outside to the inside of a circular pipe, in the same 
type of experiment on flow in a shallow open channel 
(Leopold and others, 1960) the transverse peripheral 
flow inwards did not extend much beyond the center- 
line. Towards the inner bank the transverse motion 
appears to become confused by merging in a random 
way with the main flow. This suggests that the 
degree of turbulence increases towards the inner bank 
in a way it does not do towards the inner wall of a 
circular pipe bend.

Now experiments on the conditions under which the 
flow breaks away from the boundary, in the case of 
rectilinear diverging flow, show that the occurrence of 
breakaway can be appreciably delayed by increasing 
the degree of turbulence near the boundary. This has 
the effect, by increasing the shear stress in the fluid 
in the downstream direction, of tearing away any 
incipient eddy as it begins to form. This follows 
from the fact that the greater the downstream shear, 
the greater the stability of the flow against the effects 
of a local upstream pressure gradient, or a local reversed 
gravity slope in the open channel case. That is, in 
terms of the inverse ration b/rm used in a previous 
paper (Leopold and others, 1960) on the results of 
relevant open channel experiments, the critical value 
of b/rm might be nearer 0.5 than 0.33, where b is the 
channel width and rm the mean radius of the channel 
centerline.

On this view it would not be unexpected that the 
breakaway stage should occur in a shallow open 
channel at a rather smaller value of R/d than in a 
circular pipe. The critical value might well be nearer 
2 than 3.

Apart from this possible change, no clear reason is 
apparent for any radical difference in the shape of the 
curves of resistance coefficient against R/d when the 
closed pipe bends are exchanged for open channel 
bends which subtend the same central angle. But the 
experimental curves are likely to have a like diversity 
among themselves, as is apparent in Hermann's curves 
for the closed bends, on account of differences in 
experimental entry conditions. In particular, some 
special peculiarities are to be expected in the case of 
a succession of alternately reversed bends, because the
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0 8 10 12 14 16 18 20

CURVATURE CRITERION, R/d 

FIGURE 86.—Experimental relation of resistance as a function of curvature criterion for 90° bends in pipes (after Hofmann, 1929).
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entry flow into each bend will be asymmetrical about 
the centerline of the channel.

APPLICATION TO SUCCESSIVE BENDS IN CONSTANT 
CHANNEL LENGTH

It must be remembered that the existence of the 
resistance minimum shown in figure 83 arises solely 
on account of the definition of the bend as subtending 
a constant central angle. The increase of resistance 
with increasing R/d towards the right of the figure is 
due to the increase in frictional resistance as the wall 
area increases with R.

The conditions become very different in the case of a 
succession of bends contained within a constant length 
of channel. The second term in equation (1) then be­ 
comes constant; and the equation takes the simple 
form

(3)

where es is constant and is measurable by the resist­ 
ance of a straight channel of identical cross section 
and roughness. The curve of e against R/d is now 
that of a rectangular hyperbola.4 And if the theory 
is sound, an experimental plot of e against R/d should 
conform to this curve for all values of R/d except 
in the immediate neighborhood of the critical value 
at which breakaway occurs.

But by inference from the results of the pipe ex­ 
periments, we should expect an abrupt departure 
from this curve in the order of R/d ==2 to 3, in the form 
of a marked fall in resistance that is due to conditions 
immediately preceding the occurrence of breakaway.

COMPARISON WITH EXPERIMENT IN OPEN CHANNELS

In the results of laboratory experiments on flow 
resistances in open sinuous channels (Leopold and 
others, 1960) the flow resistances derived from measure­ 
ments made during three of the many runs appeared 
anomalous. The data respecting two of these three 
were omitted from the analyses in that paper on 
grounds of relatively inadequate coverage by individual 
measurements. The data were, however, published 
in the appendix of that paper (p. 134), and those data 
are included in figure 87 of the present paper. All 
three results previously thought to be anomalous 
now appear in the light of the present discussion to be 
wholly consistent.

* Eobertson (1944) having plotted In his figure 18 the measured resistance coef­ 
ficients of bends in both pipes and rectangular open channels against R/d, suggested 
this hyperbolic relationship on empirical grounds. Unfortunately his experimental 
range of R/d was confined to small values. So the anomalous kink disclosed by the 
present figure 87 was not apparent.

Figure 87 shows all the resistance valueso btained 
(appendix Leopold and others, 1960) without omission, 
plotted 5 against the channel curvature ratio 
r»/6(=R/d).

The three previously anomalous resistance values are 
those lying together at a value of rm/b in the order of 1.75. 
By inference from the pipe bend results, the low resist­ 
ances here indicate the special conditions obtaining 
when breakaway is closely approached. The circles in 
figure 87 represent the results of runs at full depth, and 
the crosses, the results at reduced depth. The broken 
curve is that of the hyperbola

e=0.0624d/R + 0.0026 (4)

the numerical parameters having been chosen to give 
the best fit.

The only discrepancy from the theory is that in order 
to make the hyperbola given by equation (3) fit the 
plotted experimental curve, the asymptote es must be 
given the value 0.0026, whereas the values of es as 
measured for the straight channel were 0.0165 for full 
flow depth and 0.0160 for reduced flow depth. These 
measured values are in fact very close to those obtained 
in the experimental curved channel of least curvature 
(rm/b 4.55 and 5.25), the channel curvature being then 
still very appreciable.

It appears, on the face of it, that channels of less 
curvature (rm/&>5) offer no greater resistance to flow 
than a straight channel. This is just possible on the 
assumption that no transverse flow is set up, the internal 
shear involved in simple tangential flow being permitted 
without any increase of resistance by some change 
towards organization in the otherwise random internal 
turbulent motion.6

It is of interest that in figure 87 the plotted points 
marked by a cross (reduced depth) give by themselves

8 In this plot the ordinate is the overall square-law coefficient 

T —^ (which is equal to s/F2 because in the experiment the

hydraulic mean depth was kept constant) given by the constant 
slope of the lower portion of each of the graphs, figures 70 and 
71, of the above-mentioned paper. For comparison of the 
numerical values of the ordinates of the present figures 86 and 87, 
it should be noted that the functional definitions differ by a

factor of 2. The coefficient e of figure 87 can be written —=j=-=j-»

h being the hydraulic mean depth, whereas the coefficient c
AH 

of Hofmann's pipe bend diagram, figure 86, is defined as c= 2 . •

«The above discrepancy appears consistent with the notion that the resistance of 
a straight channel may, for some purposes, be usefully regarded as comprised of two 
separate elements: a skin element proper due to energy dissipation arising directly 
from and proceeding very close to the boundary and an indirect body element pro­ 
ceeding internally throughout the general body of the flow. On this view the hyper­ 
bola of equation (4) shown by the broken curve of figure 87 would be expected to be 
asymptotic not to the whole straight channel resistance but to the lesser skin resist­ 
ance whose contribution to e is only 0.0026.
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a curve which is systematically displaced downwards 
from the curve given by the full depth plot marked by 
circles. And the ratio of the reduction in e is 1 to 1.03 
approximately between rm/b 3 to 5. The corresponding 
ratio of the two straight-channel values of eg was almost 
identical with this, being 1 to 1.04.

It is also of interest to note that the magnitude of the 
reduction in the resistance coefficient e at R/d=1.75 in 
figure 87 is consistent with the view that this reduction 
is due to the increase in the effective curvature ratio 
R'/d' in equation (3), for the magnitude of the reduction 
found experimentally appears to be predictable from a 
reasonable assumption regarding the relative constric­ 
tion of the effective flow width.

Let us assume that the stagnant but still stable and 
nondissipatory zone occupies approximately the same 
proportion jd of the whole channel width d as when at 
a slightly increased curvature it breaks down into an 
easily observable dissipatory eddy zone. The effective 
flow width d' is then d (1—j). And the effective flow 
radius R' is R(l+$.?d/R). Where

5.'
d/:

and

R_R
d~d . 1-j

__l + jjd/R

The first (inertia resistance) term in equations (1) 
and (3) will be reduced by a factor 1/k. From observa­ 
tions made during the sinuous channel experiments, the 
effective flow width was reduced by about 0.35d; that is 
j=0.35. Then, if breakaway occurs at R/d=1.75, the 
factor 1/A:=0.59. And the fall in resistance from what 
it could have been if the breakaway phenomenon had 
been absent will be 0.41 od/R. Taking a as 0.0624 
from equation (4), and d/R=0.57, the fall in the value 
of the resistance coefficient e should be 0.015 approxi­ 
mately.

The experimental fall in e, along the ordinate R/d= 
1.75, from the hyperbola curve to the lowest plotted 
points is 0.016 approximately, which is in astonishingly 
good agreement.

It should also be noted that the relative amount of 
the fall in resistance, which takes place just before the 
final rise in the pipe results, figure 86, is of just the same 
order as that in the open channel results, figure 87, 
taking the different critical values of R/d into consider­ 
ation in the above calculation.

A pronounced fall in the resistance to flow, confined 
within the same narrow range of boundary curvature, 
is thus found to occur in the same degree in both closed- 
pipe bends and open-channel bends. Hence, evidently 
it cannot be associated with the instability of the free

surface of an open channel as defined by the Froude 
number criterion. There can be little doubt that this 
fall in resistance must be associated directly with the 
breaking away of the flow from a boundary of the bend. 
If so, since breakaway always occurs at some stage as 
the channel curvature is increased, whatever the shape 
of the channel cross section and whatever the degree of 
turbulence, the fall in resistance appears to be a very 
general property of the flow of real fluids, a property in 
which neither Froude number nor Reynolds number is 
essentially involved.

The precise channel curvature, as defined by the 
ratio R/d or b/rm , at which the resistance minimum 
occurs is likely, however, to be influenced by the flow 
conditions immediately upstream of the channel curva­ 
ture. But provided these conditions are similar, for 
example, if in comparable cases the channel consists of 
a succession of alternately reversed bends as in a mean­ 
dering river, the critical value of b/rm is likely to remain 
of the same order.

Thus the critical value found in the small-scale 
sinuous open channel experiments seern likely to be of 
the same order as that to be found for the largest 
meandering river flowing at a low Froude number and 
for a small stream flowing at a very high Froude 
number in a meandering melt channel cut in the steep 
ice surface of a glacier.

RELATION TO RIVER MEANDERS

Leopold and Wolman (1960) have compiled consider­ 
able evidence that when other conditions—as yet 
unknown—cause a stream of any size which flows in a 
deformable channel to develop a meander pattern, the 
ratio rm/b of the meander bends does in fact tend to a 
constant common value between 2 and 3. One might 
be tempted to conclude that a satisfactory explanation 
has now been found.

But such a conclusion would gloss over several im­ 
portant steps in the reasoning. Strong evidence has 
been found that the resistance to flow in a channel of 
uniform cross section falls to a sharply defined mini­ 
mum within the narrow range of the curvature ratio 
rm/b between 2 and 3 approximately. But we have yet 
to show that the same minimum of resistance does in 
fact occur in a natural meandering channel whose 
cross section is not uniform.

If the same resistance minimum is found to occur in 
a natural channel, we have still to explain why the 
configuration of the natural channel should tend towards 
that giving minimum resistance. The reason is far 
from being self-evident.

Any explanation which may be put forward must 
remain speculative until the nature of the general 
dynamic mechanism is understood whereby flow in a
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deformable channel tends to mould its channel to 
a certain preferred configuration.
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