
Richard C. Reinhart, Thomas J. Kacpura, and Louis M. Handler
Glenn Research Center, Cleveland, Ohio

C. Steve Hall
Analex Corporation, Cleveland, Ohio

Dale J. Mortensen
ASRC Aerospace Corporation, Cleveland, Ohio

Sandra K. Johnson, Janette C. Briones, Jennifer M. Nappier, and Joseph A. Downey
Glenn Research Center, Cleveland, Ohio

Space Telecommunications Radio System (STRS)
Architecture Standard
Release 1.02.1

NASA/TM—2010-216809

December 2010

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientifi c and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and

technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443–757–5803

• Telephone the NASA STI Help Desk at
 443–757–5802

• Write to:

 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320

Richard C. Reinhart, Thomas J. Kacpura, and Louis M. Handler
Glenn Research Center, Cleveland, Ohio

C. Steve Hall
Analex Corporation, Cleveland, Ohio

Dale J. Mortensen
ASRC Aerospace Corporation, Cleveland, Ohio

Sandra K. Johnson, Janette C. Briones, Jennifer M. Nappier, and Joseph A. Downey
Glenn Research Center, Cleveland, Ohio

Space Telecommunications Radio System (STRS)
Architecture Standard
Release 1.02.1

NASA/TM—2010-216809

December 2010

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://gltrs.grc.nasa.gov

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

NASA/TM—2010-216809 iii

Preface
This document describes an architecture standard for NASA space communication radio transceivers.

This architecture is a required but evolving standard for communication transceiver developments among
NASA space missions. Although the architecture was defined to support space-based platforms, the
architecture may also be applied to ground station radios.

The STRS Architecture strives to provide commonality among NASA radio developments to take full
advantage of emerging software defined radio technologies from mission to mission. This architecture
serves as an overall framework for the design, development, operation, and upgrade of these software
based radios.

This document is under the configuration management of the NASA Glenn Research Center (GRC) at
Lewis Field. Change requests and comments to this document shall be submitted to the contact below
along with supportive material justifying the proposed change.

Questions and proposed changes concerning this document shall be addressed to:

STRS Architecture Manager
Communications Division
Glenn Research Center
Mail Stop 54–8
Cleveland, Ohio 44135

or email contact to:

STRS@lists.nasa.gov

NASA/TM—2010-216809 v

Contents

Preface ... iii
Executive Summary ... ix
1.0 Introduction .. 1

1.1 Terminology .. 2
2.0 Scope .. 3
3.0 Documents .. 4

3.1 Applicable Documents .. 4
3.2 Reference Documents ... 4
3.3 Background Documents .. 4

4.0 Hardware Architecture ... 5
4.1 Generalized Hardware Architecture and Specification ... 5

4.1.1 Components .. 7
4.1.2 Functions ... 8
4.1.3 Interfaces ... 8

4.2 Module Type Specification ... 10
4.2.1 General-Purpose Processing Module (GPM) .. 10
4.2.2 Signal Processing Module (SPM) ... 12
4.2.3 Radio Frequency Module (RFM) .. 15
4.2.4 Security Module (SEC) ... 17
4.2.5 Networking Module .. 17
4.2.6 Optical Module (OM) ... 17

4.3 Hardware Interface Description .. 17
4.3.1 Control and Data Interface .. 18
4.3.2 DC Power Interface ... 19
4.3.3 Thermal and Mechanical Interface .. 19

5.0 Applications ... 20
5.1 Application Implementation ... 20
5.2 Application Selection .. 20
5.3 Navigation Services .. 21
5.4 Application Repository Submissions .. 21

6.0 Firmware Architecture ... 21
6.1 Specialized Hardware Interfaces ... 22
6.2 Proposed Firmware Architecture Extension ... 24

7.0 Software Architecture... 25
7.1 Software Layer Interfaces ... 25
7.2 Infrastructure ... 30
7.3 STRS APIs .. 31

7.3.1 STRS Application-provided Application Control API ... 31
7.3.2 STRS Infrastructure-Provided Application Control API .. 40
7.3.3 STRS Infrastructure Application Setup API ... 45
7.3.4 STRS Infrastructure Data Sink .. 48
7.3.5 STRS Infrastructure Data Source .. 48
7.3.6 STRS Infrastructure Device Control API.. 49
7.3.7 STRS Infrastructure File Control API ... 52
7.3.8 STRS Infrastructure Messaging API ... 55
7.3.9 STRS Infrastructure Time Control API .. 57
7.3.10 STRS Predefined Data .. 61

7.4 Portable Operating System Interface (POSIX) ... 62
7.4.1 STRS Application Environment Profile .. 63

NASA/TM—2010-216809 vi

7.5 Network Stack ... 65
7.6 Operating System .. 65
7.7 Hardware Abstraction Layer ... 66

8.0 External Command and Telemetry Interface ... 67
9.0 Configuration File(s) .. 70

9.1 General Configuration File Format Definition and Use ... 70
9.2 Platform Configuration Files .. 72
9.3 Application Configuration Files.. 73

Appendix A.—Example Configuration Files .. 75
A.1 STRS Platform Configuration File Hardware Example .. 75
A.2 STRS Platform Configuration File Software Example ... 76
A.3 STRS Application Configuration Files Example .. 80

Appendix B.—POSIX API Profile ... 83
Appendix C.—Document History Log ... 87

List of Tables

Table 4.1.—STRS Module Interface Characterization ... 18
Table 4.2.—Example—DC Power Interface (Platform Supplied) .. 19
Table 7.1.—STRS Architecture Subsystem Key .. 27
Table 7.2.—STRS Software Component Descriptions ... 29
Table 7.3.—APP_Configure() .. 35
Table 7.4.—APP_GroundTest() ... 36
Table 7.5.—APP_Initialize() .. 36
Table 7.6.—APP_Instance() ... 37
Table 7.7.—APP_Query() .. 37
Table 7.8.—APP_Read() .. 38
Table 7.9.—APP_ReleaseObject() ... 38
Table 7.10.—APP_RunTest() ... 39
Table 7.11.—APP_Start() ... 39
Table 7.12.—APP_Stop() ... 40
Table 7.13.—APP_Write() ... 40
Table 7.14.—STRS_Configure() .. 41
Table 7.15.—STRS_GroundTest() ... 42
Table 7.16.—STRS_Initialize() .. 42
Table 7.17.—STRS_Query() .. 43
Table 7.18.—STRS_ReleaseObject() ... 43
Table 7.19.—STRS_Runtest() .. 44
Table 7.20.—STRS_Start() ... 44
Table 7.21.—STRS_Stop() ... 44
Table 7.22.—STRS_AbortApp() .. 45
Table 7.23.—STRS_GetErrorQueue() .. 46
Table 7.24.—STRS_HandleRequest() .. 46
Table 7.25.—STRS_InstantiateApp() ... 47
Table 7.26.—STRS_IsOK() .. 47
Table 7.27.—STRS_Log() .. 47
Table 7.28.—STRS_Write() ... 48
Table 7.29.—STRS_Read() .. 48
Table 7.30.—STRS_DeviceClose() .. 49
Table 7.31.—STRS_DeviceFlush() .. 50

NASA/TM—2010-216809 vii

Table 7.32.—STRS_DeviceLoad() ... 50
Table 7.33.—STRS_DeviceOpen() .. 50
Table 7.34.—STRS_DeviceReset() .. 51
Table 7.35.—STRS_DeviceStart() ... 51
Table 7.36.—STRS_DeviceStop() .. 51
Table 7.37.—STRS_DeviceUnload() ... 52
Table 7.38.—STRS_SetISR() ... 52
Table 7.39.—STRS_FileClose() ... 53
Table 7.40.—STRS_FileGetFreeSpace() .. 53
Table 7.41.—STRS_FileGetSize() ... 53
Table 7.42.—STRS_FileGetStreamPointer() ... 54
Table 7.43.—STRS_FileOpen() ... 54
Table 7.44.—STRS_FileRemove() ... 55
Table 7.45.—STRS_FileRename() ... 55
Table 7.46.—STRS_QueueCreate() ... 56
Table 7.47.—STRS_QueueDelete() ... 56
Table 7.48.—STRS_Register() ... 57
Table 7.49.—STRS_Unregister() ... 57
Table 7.50.—STRS_GetNanoseconds() ... 58
Table 7.51.—STRS_GetSeconds() ... 58
Table 7.52.—STRS_GetTime() .. 59
Table 7.53.—STRS_GetTimeWarp() ... 59
Table 7.54.—STRS_SetTime() ... 60
Table 7.55.—STRS_Synch() .. 60
Table 7.56.—STRS Predefined Data .. 61
Table 7.57.—Replacements for Unsafe Functions ... 65
Table 7.58.—Sample HAL Documentation .. 67
Table 8.1.—Suggested services implemented by the STRS Command and Telemetry Interface 69

List of Figures

Figure 4.1.—Hardware Architecture Diagram Key. ... 6
Figure 4.2.—STRS Hardware Architecture Implementation .. 7
Figure 4.3.—GPM Architecture Details. .. 11
Figure 4.4.—SPM Architecture Details. ... 13
Figure 4.5.—RFM Architecture Details. .. 16
Figure 5.1.—Waveform Component Instantiation.. 20
Figure 6.1.—High-level Software and Firmware Waveform Applications Interfaces. 23
Figure 6.2.—Proposed Firmware Architecture Extension .. 24
Figure 7.1.—STRS Software Execution Model. ... 26
Figure 7.2.—STRS Layered Structure in UML. ... 26
Figure 7.3.—STRS Operating Environment. .. 28
Figure 7.4.—POSIX Compliant versus Conformant. ... 30
Figure 7.5.—STRS infrastructure. .. 30
Figure 7.6.—STRS Application/Device Structure. ... 32
Figure 7.7.—STRS Application State Diagram. ... 34
Figure 7.8.—Profile Building Blocks. .. 64
Figure 8.1.—Command and Telemetry Interfaces. ... 68
Figure 9.1.—XML Transformation and Validation. ... 71
Figure 9.2.—Configuration File Development Process. ... 72

NASA/TM—2010-216809 viii

Figure A.1.—Example of hardware portion of STRS Platform Configuration File. 75
Figure A.2.—Example of software portion of STRS Platform Configuration File. 77
Figure A.3.—Example of STRS WF Configuration File. ... 80

NASA/TM—2010-216809 ix

Executive Summary
This document describes the Space Telecommunications Radio System (STRS) Architecture Standard

for software defined radios (SDRs), which is an open architecture for NASA space and ground radios.
The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain
complex reconfigurable and reprogrammable radio systems. This architecture standard provides a detailed
description and set of requirements to implement the architecture. The standard focuses on the key
architecture components and subsystems by describing their functionality and interfaces for both the
hardware and the software including waveform applications. A corresponding STRS Architecture
Description document provides insight to the drivers and requirements that were considered to define the
architecture and additional information on the architecture elements.

The intended audience of the STRS Architecture Standard document is the software, firmware, and
hardware developers of both the software defined radio platform and the waveform applications, who
require the architecture specification details. By comparison, the STRS Architecture Description
document is written at a higher level for the systems engineer, to understand the requirements, concepts,
and approach to the STRS architecture. In the STRS Architecture Description document, three different
examples are presented based upon the different platform profiles (e.g., small, medium, and large). These
three possible realizations are not mandated, but serve to illustrate that the STRS Architecture Standard is
suitable to provide physically realizable radio implementations and is flexible enough to meet the range of
mission profiles.

The STRS hardware architecture is specified in a modular fashion at a functional level. The
description of the various modules includes the functions of each module and both the external and
internal interfaces. The generic hardware architecture identifies three main functional components or
modules of the STRS radio. The General-purpose Processing Module (GPM) consists of the general
purpose processor (GPP), appropriate memory both volatile and non-volatile, system bus, the Spacecraft
(or host) Tracking, Telemetry and Command (TT&C) interface, and the ground support telemetry and test
interface. The Signal Processing Module (SPM) contains the implementations of the signal processing
used to handle the transformation of received digitally-formatted signals into data packets and/or the
conversion of data packets into digitally-formatted signals to be transmitted and also includes the
spacecraft data interface. SPM components include application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), digital signal processors (DSPs), memory, and connection fabric/bus.
The Radio Frequency (RF) Module (RFM) handles the RF functionality to provide the SPM with the
filtered, amplified, and digitally-formatted signal. Its associated components include filters, RF switches,
diplexer, low noise amplifiers (LNAs), power amplifiers, and analog to digital (and vice-versa)
converters. The RF module handles the interfaces that control the final stage of transmission or first stage
of reception of the wireless signals, including antennas. These are the primary modules, and additional
modules (e.g., optical, networking, security) can be added for increased capability and will be included in
the specification as it matures.

The STRS platform provider is required to develop a Hardware Interface Description (HID), which
describes the functionality, interfaces and performance of each internal platform module and the entire
radio platform. The HID is required to be published and made available to NASA with the delivery of the
radio. Through this information, NASA has the knowledge to procure or produce new or additional
modules using the HID information. Using the information contained in the HID, future module
replacement or additions will be possible without designing a completely new platform and waveform
developers will know the features and limitations of the platform for their applications.

The HID specification includes requirements on the electrical interfaces, including the control and
data communications buses/links, RF connections and electrical power requirements. The internal and
external cable connections and pinouts are required to be defined. The thermal and mechanical interface
definitions will address both the platform and module perspectives. This includes all dimensions, mass,

NASA/TM—2010-216809 x

clearances, mounting method, and connector locations. The environmental ratings must be fully defined
for applicability to the space environment.

The STRS Architecture Standard includes a software architectural model that describes the
relationship between the software layers in an STRS compliant radio. The model illustrates the different
software elements used in the software execution and defines the Application Program Interface (API)
layers between an STRS application and the operating environment, and between the operating
environment and the hardware platform. The models are defined using Unified Modeling Language
(UML), which supports the description of the software systems using an object-oriented (OO) style. The
UML models are used to visualize and provide a formal description of the components and the interfaces
between them. The UML models are used to show the mandated elements of the STRS architecture as
well as additional optional functionality.

The STRS software layers are separated to enable developers to implement the software layers
differently according to their requirements while still complying with the STRS architecture. A key aspect
is the abstraction of the STRS application, which is either a waveform or service, from the underlying
operating environment software to promote portability of the STRS application. The STRS Software
Architecture uses three primary interfaces, 1) the STRS API, 2) the STRS Hardware Abstraction Layer
(HAL) specification, and 3) Portable Operating System Interface (POSIX) 1003.13 PSE51. The STRS
API provides the interfaces that allow applications to be instantiated and use platform services. These
APIs also enable communication between STRS applications and the STRS infrastructure. The HAL
specification describes the physical and logical interfaces between the operating environment and the
platform hardware for inter-module and intra-module integration.

The STRS Standard encourages the development of waveform firmware that is modular, portable,
reconfigurable, and reusable. The STRS waveform applications are to be submitted to the NASA STRS
waveform repository, to allow waveforms to be reused in the future. The STRS Standard specifies that
platform providers must provide a FPGA platform specific wrapper, which abstracts the platform from
the waveform application. Waveform applications developed on the SPM are to be controlled with
commands from the GPP through the platform specific wrapper. Optionally they also will have the ability
to receive software and firmware updates after deployment.

The radio must use a POSIX conformant Operating System (OS), or provide a POSIX abstraction
layer to provide the POSIX APIs missing from the OS. The STRS infrastructure is part of the OE and
provides the functionality for the interfaces defined by the STRS API specification. Once the STRS
application is deployed, the infrastructure supports the application operations through the STRS APIs and
its internal subsystems. The infrastructure is composed of multiple subsystems that interoperate to
provide the functionality to operate the radio. These services are provided by the platform infrastructure
and support applications as they execute within the radio platform. Additional functionality must be
implemented in the STRS infrastructure for radio robustness and mission dependent requirements. A
comparison table of the interfaces is provided describing the POSIX subset in profiles PSE51, PSE52, and
PSE53. The interfaces are categorized by functionality, and this appendix provides a breakdown of the
POSIX interfaces that are supported by each of the profiles.

The HAL is the library of functions that provides a software view of the specialized hardware by
abstracting the physical hardware interfaces. The HAL API must be published so that software and
firmware running on the platform’s specialized hardware may integrate with the STRS infrastructure
made by a different company. The HAL API documentation will include a description of each
method/function used, including its calling sequence, return values, an explanation of its functionality,
any preconditions before using the method/function, and the status after using the method/function. The
HAL API documentation will also contain information about the underlying hardware such as address and
data interfaces, interrupt input and output, power connections, plus other control and data lines necessary
to operate in the STRS platform environment.

STRS configuration files must contain platform and application specific information for the
installation and customization of applications. Platform configuration files provide the STRS
infrastructure with information on what hardware devices and modules are installed in the system and

NASA/TM—2010-216809 xi

what files, device, applications, and services are used by the STRS platform. An STRS application
configuration file contains specific information that 1) allows STRS to instantiate the application; 2)
provides default configuration values; and 3) provides connection references to ports and services needed
by the application. The format of the configuration files is defined in eXtensible Markup Language
(XML) using an XML Schema. The XML will be preprocessed to optimize space in the STRS platform
memory while keeping the equivalent content.

NASA/TM—2010-216809 1

Space Telecommunications Radio System (STRS)
Architecture Standard

Release 1.02.1

Richard C. Reinhart, Thomas J. Kacpura, and Louis M. Handler
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

C. Steve Hall

Analex Corporation
Cleveland, Ohio 44135

Dale J. Mortensen

ASRC Aerospace Corporation
Cleveland, Ohio 44135

Sandra K. Johnson, Janette C. Briones, Jennifer M. Nappier, and Joseph A. Downey

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

1.0 Introduction
Defining an open architecture specification for NASA space radios is part of the larger STRS

program currently underway to define NASA’s application of software defined, reconfigurable
technology to meet future space communications and navigation system needs. Software-based
reconfigurable transceivers (RTs) and SDRs enable advanced operations potentially reducing mission life
cycle costs for space platforms. The objective of the open architecture for NASA space SDRs is to
provide a consistent and extensible environment on which to construct and operate NASA waveforms for
space applications, targeting radio designers and developers. The open architecture provides a framework
for developing the radios and leveraging earlier efforts by reusing various components of the architecture
developed in other NASA programs.

SDR technology allows space-based radios to be reconfigured to potentially perform different
functions without the necessity of using multiple radios to accomplish each communication function
desired. This is inherently one of the biggest advantages of using SDR over conventional non-
reconfigurable radio. Reconfigurable, SDRs enable radio count reduction which reduces mass and power
resources, helping to offset any increase brought about by adhering to a common architecture.

The goal for the open architecture definition is to provide improvements in capability through this
common standard across NASA missions and services. An open architecture enables cost reduction in
system development and operations by promoting and enabling multiple vendor solutions and
interoperability between independent hardware and software technologies. The architecture supports
existing (e.g., legacy) communications needs and capabilities, while providing a path to more capable,
advanced waveform development and mission concepts. The architecture provides an effective approach
to design and utilize communications systems; the radios implemented are designed, managed and
operated through the adoption of common standards.

A key concept enabled by the architecture specification is reuse of previously developed hardware
and software components. The ability to reuse components is accomplished by defining the various
hardware and software interfaces, and providing additional layers to the architecture to abstract the
software from the platform hardware. By consistently specifying these interfaces and publishing them as

NASA/TM—2010-216809 2

part of the architecture specification, the various modules can be replaced and updated with a minimum
amount of changes, since the interface is specified and rules are provided for each component.

The STRS Architecture Standard document is only one of a set of documents needed by the platform
or application vendor for the development of an STRS-compliant radio and/or applications. Typical radio
acquisition specifications, which include size, weight, power, and radiation requirements, connector
details, performance and behavior requirements, documentation, and data right agreements must
accompany the STRS Architecture Standard in a radio procurement. The STRS Application Developer’s
Guide will provide guidance and suggests best practices for development of portable, reusable STRS
applications, and may be tailored to state the specific capabilities and performance of the procured
applications. Application code (subject to license agreements), documentation, and other artifacts must be
submitted to the STRS application repository for full or limited reuse on STRS-compliant platforms.
STRS platform documentation must also be submitted to the STRS artifact library to support extending
the platform capabilities, both with new hardware or software. The STRS artifact library submittal
documentation will specify the details and format for code and documentation submittal into the library.
This complete set of requirements must accompany the procurement of an STRS platform and
application.

1.1 Terminology

Software defined radio is a relatively new technology area, and industry consensus on terminology is
not always consistent. Some of the confusion exists when the various organizations and standards bodies
define different radio terms associated with the actual amount of reconfigurability of the radio. Since the
radios require at least some dedicated hardware to compliment the software, the reality of today’s radios
is varying degrees of reconfigurability based upon the signal processing requirements and the choice of
hardware components. Definitions associated with software defined radios range from legacy transceivers
with software and firmware cast in digital hardware processing to the ideal software radio that digitizes
the RF signal at the antenna and has all processing done in software. For purposes of the STRS
architecture and architecture specification, the following key terms are repeated from the STRS
Definitions and Acronyms document for immediate reference.

Conventional or legacy radio is defined as a non-programmable radio designed for one fixed
configuration for producing a single waveform at a specified frequency. The radio may have limited
options for tuning, data rate, etc. or may even carry multiple types of data, but is incapable of adapting
new waveforms.

Reconfigurable transceiver is defined as a radio with limited processing and selectable remote
reconfiguration (e.g., filter parameters and modulations). A reconfigurable radio is a radio whose
hardware functionality can be changed under software control. Reconfiguration control of such radios
may involve any element of the radio communication network.

A software defined radio is a radio in which some or all of the physical layer functions are
implemented in software and/or firmware. An SDR performs significant amounts of signal processing in a
general purpose computer, or a reconfigurable digital electronic device. The design goal of
reconfigurability is to produce a radio that can receive and transmit a new form of radio signaling
protocol by running new software or firmware. A SDR may have its functionality defined in software, but
not be reconfigurable. Given the constraints of today's technology, there is still some RF hardware
involved for front end processing.1

A software radio is an extension of a SDR with more functionality implemented in software running
on a GPP as opposed to ASICs and FPGAs. A software radio implements communications functions
primarily through software in conjunction with minimal hardware. Software radios are the ideal SDR in
which digitization occurs at the antenna and the majority, if not all functions are performed in software.
The term architecture also has different terminology definitions.

1 Software Radio Architecture, object-Oriented Approaches to Wireless Systems Engineering, Joseph Mitola, 2000.

NASA/TM—2010-216809 3

System architecture is defined as an abstract description of the entities of a system, and the
relationship between the entities.

The definition of architecture is: …a comprehensive, consistent set of functions, components, and
design rules according to which radio communications systems may be organized, designed, constructed,
deployed, operated and evolved over time. A useful architecture partitions functions and components such
that a) functions are assigned to components clearly and b) physical interfaces among components
correspond to logical interfaces among functions. 1

An open architecture is one whose functions, interfaces, components, and/or design rules are defined
and published. An open system has characteristics that comply with specified, publicly maintained,
readily available standards. Open systems architecture is non-proprietary and a key attribute is the layered
hierarchical structure, configuration, or model. An open SDR architecture applied to radios provide
partitioned software modules controlled by managing software (compliant with the architecture rules set)
that meet defined published interfaces (e.g., API’s) to allow software portability and scalability across
hardware platforms.

This hierarchical structure characterizes a system in which components are contained by other
components and/or provide services to the next higher level components. Hierarchical structure is a key
attribute of an open architecture that enables system description, design, development, installation,
operation, upgrades, and maintenance to be performed at a given layer or layers. This type of structure
allows each layer to be modified without affecting the other layers. Each layer provides a set of accessible
functions that can be controlled and used by the functions in the layer above it, enabling each layer to be
implemented without affecting implementation of other layers. This allows alteration of system
performance by the modification of only one layer at a time without altering the existing equipment,
software, or protocols at the existing layers.

The architecture terms defined above are general, and there are more specific definitions for the
software defined radio case. Reconfigurability is the ability to modify functionality of a radio by changing
the operational parameters without requiring a software update. An application is an executable software
program that may contain one or more software modules. The executable software exhibits pre-
determined functionality. A primary example of an STRS application is the waveform application. An
STRS application must comply with the architecture. An STRS application is executable software and/or
firmware that is abstracted from the radio platform. The software and firmware modules and components
are re-useable and portable. A waveform comprises the end to end functionality from the data input to the
radiated signal and from the received signal to the data output. Services are software programs running on
the software radio that provide functionality available for use by other applications. Waveforms and
services are types of STRS applications. An API is a formalized set of software calls and routines that can
be referenced by the application program to access supporting system or network services.

2.0 Scope
The STRS Architecture Standard document is divided into several different sections, organized by

different aspects of reconfigurable transceiver and software defined radio architecture specification.
Sections 1.0 and 2.0 introduce the purpose of this report, the terminology used, and the scope of

materials contained within the architecture specification. Section 3.0 lists the applicable documents,
which is an important section, since a number of documents are assumed as background material. The
documents referenced in Section 3.0 include applicable Joint Tactical Radio System (JTRS) documents,
and internally generated documents that are required to design, develop, implement, and utilize an open
architecture.

The STRS architecture requirements are stated in the next four sections. The STRS hardware
architecture description and requirements are given in Section 4.0. The description and requirements
related to application development in either software or firmware are in Section 5.0, the firmware
architecture is stated in Section 6.0, followed by a description of the framework or infrastructure software
in Section 7.0. Section 7.3 describes the various types of software components with descriptions and

NASA/TM—2010-216809 4

definitions of the APIs. Section 8.0 contains the description and requirements related to the interfaces
external to an STRS platform. Section 9.0 provides the details related to the platform and application
configuration files. Requirements are stated within the subsection they apply. They are not stated in order
of importance.

Several appendices are provided. Appendix A introduces examples of platform and application
configuration files, necessary for application execution and platform initialization. Appendix A also
describes the Configuration File Formats. STRS configuration files contain platform and application
specific information for customization of installed applications. Finally Appendix B provides a list of the
POSIX profile recommended as part of the application abstraction.

3.0 Documents
3.1 Applicable Documents

1. Space Telecommunications Radio System (STRS) Architecture Goals/Objectives and Level 1
Requirements Document, June 2007, NASA/TM—2007-215042.

2. Space Telecommunications Radio System (STRS) Architecture Description, March 2007.
3. ISO/IEC 9945:2003 (IEEE Std 1003.1,2003 Edition) Portable Operating System Interface (POSIX)
4. IEEE Std 1003.13-2003 Standardized Application Environment Profile (AEP)—POSIX Realtime and

Embedded Application Support

3.2 Reference Documents

1. Space Telecommunications Radio System (STRS) Definitions and Acronyms, May 2008.
2. Software Communications Architecture Version 2.2. http://jtrs.spawar.navy.mil/sca/downloads.asp
3. JTRS Technical Laboratory (JTeL) reference documents and work products

https://jtel.spawar.navy.mil/products.asp
4. CCSDS 401-B. CCSDS, Recommendations for Space Data System Standards, Radio Frequency and

Modulation Systems Part I—Earth Stations and Spacecraft.
http://public.ccsds.org/publications/default.aspx

5. CCSDS 701.0-B-2. CCSDS Recommendation for Space Data Systems Standards, Advanced Orbiting
Systems, Network Data Links: Architectural Specification.
http://public.ccsds.org/publications/default.aspx

6. CCSDS 411.0-G-3. Consultative Committee for Space Data Systems, Radio Frequency and
Modulation Systems Part 1 Earth Stations. http://public.ccsds.org/publications/default.aspx

7. Rationale for International Standard—Programming Languages—C

3.3 Background Documents

1. Model Driven Architecture, MDA Drafting Group, Object Management Group (OMG) Architecture
Board ORMSC1, July 9, 2001

2. FIPS PUB 140-2 Security Requirements for Cryptographic Modules
3. http://csrc.nist.gov/cryptval/140-2.htm
4. JPL D-8671: Reliability Assurance Requirements
5. JPL D-560: JPL Standard for System Safety
6. JPL D-17868: Design, Verification/Validation and Operations Principles for Flight Systems

https://jtel.spawar.navy.mil/products.asp�
http://public.ccsds.org/publications/default.aspx�
http://public.ccsds.org/publications/default.aspx�
http://public.ccsds.org/publications/default.aspx�

NASA/TM—2010-216809 5

4.0 Hardware Architecture
While there are many benefits to having a standard software infrastructure defined for NASA’s

radios, the STRS architecture also defines standards for the hardware portion of the radio. Hardware
technologies usually change more rapidly than software, and each radio implementation generally has
very specific spacecraft dependencies and requirements. Therefore, the STRS hardware architecture is
specified at a functional level, rather than at the physical implementation level. Also, a functional level
architecture will remain applicable over a longer time frame. It should be noted that programs have the
latitude to standardize hardware requirements at the implementation level for multiple radio
procurements.

The STRS hardware architecture was developed considering several key constraints and conditions
for operating space SDRs. One major issue driving the hardware architecture formulation was the need
for flexibility, so that a single architecture is capable of addressing the range of different mission classes.
The mission classes have radio requirements that range from requiring small radios that are highly
optimized to meet severe size, weight and power constraints, to missions requiring complex radios with
multiple operating frequencies and higher data rates. This requires that the hardware architecture
accommodate a range of reconfigurable processing technologies including GPPs, DSP, FPGAs, and
ASICs with selectable parameters. Currently reconfigurable signal processing is primarily performed in
specialized signal processing hardware for the frequencies and data rates used in NASA space missions,
and this is expected to continue for some time. In addition to providing capability, specialized signal
processing is generally more power efficient than general purpose processing. Likewise, the use of
FPGA-based specialized signal processors are generally more power efficient than DSP based signal
processing. The needs for specialized processing are supplemented by the software infrastructure, which
is more suited for execution in a GPP. The architecture also enables technology infusion over time,
accommodating the rapidly evolving capabilities of processor speeds and signal processing. In addition
the conversion point, where the signal is digitized, is moving closer to the antenna. Considering these
points, the architecture provides a flexible framework, emphasizing common terminology for hardware
functions and interfaces, common documentation, and common formats and requirements for waveform
and service application developers to utilize a platform’s capabilities. The architecture does not prescribe
a specific hardware implementation approach.

An STRS platform must be delivered with a complete HID, which is described in Section 4.3. The
HID specifies the electrical interfaces, connector requirements, and physical requirements for the
delivered radio. Each module’s HID abstracts and defines the module functionality and performance.

4.1 Generalized Hardware Architecture and Specification

Figure 4.1 illustrates the symbols and terminology used within the hardware architecture diagrams.
The hardware diagram illustrates the radio functions, and interconnects for each module. The modules are
a logical and functional division of common radio functions that comprise an STRS platform. Modules
are not intended to represent physical entities of the platform. As developers choose how to distribute and
implement the radio functions among hardware elements, the specification provides the guidance on the
interfaces and abstractions that must be provided to comply with the architecture. The module and
function connections provided in the diagrams are data path, control, signal clock, and external interfaces.

Figure 4.2 shows the high-level STRS hardware architecture diagram. The diagram illustrates the
functional attributes and interfaces for each module. A module is a combination of logical and functional
representations of platform and applications implemented in a radio. The diagram divides the modules
into the functions typically associated with the module to provide a common description and terminology
reference. Each STRS platform developer has the flexibility to combine these modules and their
functionality as necessary during the radio design process to meet the specific mission requirements.
Additional modules can be added for increased capability.

NASA/TM—2010-216809 6

Figure 4.1.—Hardware Architecture Diagram Key.

The hardware architecture does not specify a physical implementation internally on each module, nor
does it mandate the standards or ratings of the hardware used to construct the radios. Thus the radio
supplier can encapsulate company proprietary circuit or software designs, provided the modules meet the
specific architecture rules and expose the interfaces defined for each module. There is flexibility to
physically combine these modules as necessary during the radio design process to meet the specific
mission requirements. For example, all RF and signal processing components or functions may be
integrated onto a single printed circuit board easing footprint, interface, and integration issues, or an
approach with multiple boards and enclosures could be used.

Each mission or class of missions may choose to standardize certain interfaces and physical
packaging. This approach provides NASA with the flexibility to adopt different implementation standards
for various mission classes. Thus, if a series of radios are required with common operating requirements,
physical construction details such as bus chassis or card slice can be part of the acquisition strategy, for
cost effective modularity at a lower level to match the life cycle of the hardware. Another example of the
flexibility is where a large mission class program may choose to standardize the details of the RF to signal
processing interface. This might be done to facilitate use of different RF modules, but the same signal
process module, for radios used for several similar missions.

Figure 4.2 depicts radio functions or elements expected for each module in a notional sense. It should
be noted that not all the elements shown in each module are necessarily required for implementation. This
architecture specifies functionality of each module, but does not necessarily specify how they are
implemented. Mission requirements will dictate the implementation approach to each module, and the
modules required in each radio.

Data

Clock

Control

Modules

General
Purpose

Processing
Module (GPM)

Specialized
Processing

Module (SPM)

Radio
Frequency

Module (RFM)

Ground Test

External Connections

Data

Control

Internal Connections

Clock

Radio
Function

System Bus

External Interface

NASA/TM—2010-216809 7

Figure 4.2.—STRS Hardware Architecture Implementation

4.1.1 Components
The approach taken in the STRS is to describe the radio hardware architecture in a modular fashion.

The generic hardware architecture diagram identifies three main functional components or modules of the
STRS radio. Although not shown in Figure 4.2, additional modules (e.g., optical, networking, security)
can be added for increased capability and will be included in the specification as it matures. The hardware
architecture currently consists of the following modules:

• General-purpose Processing Module (GPM).—Consists of the general purpose processor,
appropriate memory both volatile and non-volatile, system bus, the Spacecraft (or host) TT&C
interface, ground support telemetry and test interface, and the components to support the radio
configuration.

• Signal Processing Module (SPM).—This module contains the implementations of the signal
processing used to handle the transformation of received digitally formatted signals into data
packets and/or the conversion of data packets into digitally formatted signals to be transmitted.
Also included is the spacecraft data interface. Components include ASICs, FPGAs, DSPs,
memory, and connection fabric or bus.

• Radio Frequency (RF) Module (RFM).—This module handles the RF functionality to provide
the SPM with the filtered, amplified, and digitally-formatted signal. For transmission it formats,
filters, and amplifies the output signal. Its associated components include filters, RF switches,
diplexer, LNAs, power amplifiers, analog-to-digital converters, and digital-to-analog converters.
This module handles the interfaces that control the final stage of transmission or first stage of
reception of the wireless signals, including antennas.

text text

Data
Formatting

Spacecraft
Data

Interface

Clock
Distribution

Transmit RF Digital to
Analog

General-purpose Processing Module (GPM)

 General Purpose Processor

Host TT&C
Interface /

Ground Test
Interface

Low Speed
Signal

Processing

Persistent Memory

RF Module (RFM)

Radio
Configuration

& System
Control Work Area Memory

High Speed
Digital Signal
Processing

Signal Processing Module (SPM)

Antenna
Interface

Clock
Interface

Analog
to Digital Receive RF

Antenna
Control

Interface

Operating
Environment

Waveform
Application

HAL

System
Control

Variable
Gain /

Frequency
Test &
Status

Data
Buffer/

Storage
 Waveform

Test &
Status

NASA/TM—2010-216809 8

• Security Module (SEC).—Though not directly identified in the generic hardware diagram, a
security module is also being proposed to allow STRS radios to support future security
requirements. The details of this module will be defined in later revisions of the architecture.

• Network Module (NM).—The architecture supports Consultative Committee for Space Data
Systems (CCSDS) and Internet Protocols (IP) and networking functions. However, the Network
Module may be realized as a combination of both the GPM and SPM.

• Optical Module (OM).—This module supports the integration of optical equipment when used.
The detail of this module will be defined in later revisions of the architecture. (Many similarities
to RFM, but for optical carriers.)

4.1.2 Functions
Test and status, fault monitoring and recovery, and radio and TT&C data handling functions must be

implemented on all modules to some level. The details are mission specific and stated as part of the radio
acquisition. The related control and interface requirements for the shared module functions are stated in
the corresponding module section.

Test and Status: Each module (or combination of modules) should provide a means to query the
current health of the module and run diagnostics.

Fault monitoring and recovery: Each module (or combination of modules) should incorporate
detection of operational errors, upsets, and major component failures. These may be caused by the
radiation environment (e.g., single event upsets (SEUs)), temperature fluctuations, or power supply
anomalies. In addition to detection, mitigation and fail-safe techniques should be employed. Each module
should have a default power-up mode to provide the minimal functionality required by the mission. This
fail-safe mode should have minimal software/firmware dependency.

Radio Data Path: SDRs can be implemented with or without the GPM in the data-path. The STRS
architecture supports the separation of the RFM/SPM data path from the GPM. Giving the GPM access to
the data-path as an optional capability rather than a required capability allows for a more efficient
implementation for the medium and small mission classes and improves overall performance for near-
term implementations. Once space-qualified GPM components mature with the performance capabilities
required for signal processing, the GPM can exist within the data-path and take on more signal processing
functionality, increasing flexibility.

STRS Radio Startup Process: The start-up of the STRS infrastructure is expected to be initiated by
the STRS platform boot process so that it can receive and send external commands and instantiate
applications. In order to control an STRS platform at power-up and to recover from error conditions, an
STRS platform must have a known power-up condition that sets the state of all modules. To support
upgrades to the Operating Environment (OE), an STRS platform requires the ability to alter the state
(boot parameters) and/or select a boot image. The exact mechanisms and procedures used will be platform
and mission specific but need to be sufficient to support upgrades to OE components such as the OS,
board support package (BSP), and STRS infrastructure.

4.1.3 Interfaces

4.1.3.1 External Interfaces
There are several key external interfaces in this architecture:

 Host Tracking, Telemetry and Command (TT&C)
 Telemetry and Test (for ground use)
 Data
 Clock
 Antenna
 DC Power
 Thermal

NASA/TM—2010-216809 9

The host TT&C interface represents the typically low-latency, low-rate interface for the spacecraft (or
other host) to communicate with the radio. The host telemetry typically carries all information sourced by
(rather than “retrieved by”) the radio. This type of information traditionally is called the telemetry data
and includes health, status, and performance parameters of the radio as well as the link in use. In addition,
this telemetry often includes radiometric tracking and navigation data. The command portion of this
interface contains the information that has the radio itself as the destination of the information.
Configuration parameters, configuration data files, new software data files, and operational commands are
the typical types of information found on this interface.

The Ground Test Interface provides a “development-level” view of the radio and is exclusively used
for ground-based integration and testing functions. It typically provides low level access to internal
parameters not typically available to the Spacecraft TT&C Interface. It can also provide access when the
GPM is not functioning (i.e., during boot).

The Data Interface is the primary interface for data that is sourced from the other end of the link and
for data that is sunk to the other end of the link. This interface is separate from the TT&C interface
because it typically has a different set of transfer parameters (protocol, speeds, volumes, etc…) than the
TT&C information. A common interface point in the spacecraft for this type of interface is the spacecraft
solid-state recorder rather than the spacecraft command and data handling (C&DH) sub-system. This
interface is also characterized by medium to high latency and high data rates.

The Clock Interface is used for inputting to the radio the frequency reference sufficient for supporting
navigation and tracking. This type of input frequency reference is essential to the operation of the radio
and provides references to the SPM and RFM.

The Antenna Interface is used for connecting the electromagnetic signal (input or output) to the
radiating element or elements of the spacecraft. It also includes the necessary capability for switching
among the elements as required. Steering the elements, if a function of the overall telecommunications
system, is possible through this interface, but is not typically employed due to overall operational
constraints.

While not included on the diagram, but described as part of this specification at the highest levels, is
the Power Interface. The Power Interface defines the types and conditions of the input energy to power
the radio.

4.1.3.2 Networking
A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The networking

interface might only handle Spacecraft TT&C data. However, the network interface might also handle
both TT&C data and Radio Data. This architecture allows for those capabilities.

4.1.3.3 Internal Interfaces
To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM RFM

control, SPM to GPM test, frequency reference, and data path) must be well documented and available
without restriction.

The GPM System Bus (orange lines in Figure 4.2) provides the primary interconnect between
elements of the GPM. The GPM System Bus may provide interface between the microprocessor, the
memory elements and the external interfaces (TT&C and Test) of the GPM. The GPM System Bus is the
primary interface between the GPM and the SPM, as shown in the interconnection with the major SPM
processing elements. Finally, the GPM System Bus provides the interface by which the reprogrammable
and reconfigurable elements of the SDR are modified. It supports both the read and write access to the
SPM elements, as well as the reloading of configuration files to the FPGAs.

The interface between the GPM and the RFM is primarily a control/status interface. Various RFM
elements are controlled by the set of GPM RFM Control lines (blue lines in Figure 4.2). Coming from the
System Control block in the GPM, this control bus can be either fixed by the System Control function or
programmed by the GPM software and validated and routed by the System Control function. It is

NASA/TM—2010-216809 10

important to have a hardware-based confirmation and limit-check on the software controlling any RFM
elements. The System Control module of the GPM provides this functionality thus keeping the GPM
RFM Control bus within operational limits.

The Ground Test Interface (blue lines in Figure 4.2) provides specific control and status signals from
different modules or functions to the Ground Test Interface block. These interfaces are used during
development and testing to validate the operation of the various radio functions. This interface is also
very specific to the implementation and realization of the different modules and is generalized in the
Telemetry and Test Interface block as required.

The Frequency Reference Interface provides an important interface between the RFM and the SPM
functions. It ties the two modules together in a way that allows for the SDR to implement tracking and
navigation functions. The characteristics of this interface are defined by the various amounts of tracking
accuracy that are required for the SPM to accomplish. This interface can be as simple as a single,
common frequency reference that is conditioned from an outside source and distributed in the least
degrading fashion possible to the SPM.

Finally, the data paths are the various streams of bits, symbols, and RF waves connecting the major
blocks of the primary data-path. For any particular implementation, the data path or bitstreams are defined
by the particular application implemented in the functional blocks. The interface between the RFM and
SPM should be well-defined and have characteristics suitable for that level of conversion between the
analog and digital domains.

The hardware architecture can be further specified in a manner that is important for implementers to
consider and follow, if the implementation dictates the necessity of particular components. Details of the
GPM, SPM, and RFM are provided in subsequent sections.

4.2 Module Type Specification

4.2.1 General-Purpose Processing Module (GPM)
Figure 4.3 provides a close-up of the GPM detail. The GPM consists of one or more general purpose

or digital signal processing elements and support hardware components, embedded OS, software
applications and interfaces to support the configuration, control, and status of the radio. The number of
processing elements and the extent of support hardware will vary depending on the mission class
processing and data handling requirements from a single system on a chip implementation for smaller
mission classes to multiple logical replaceable units (LRUs) for the largest mission classes. Additionally,
the fault tolerance requirements can also increase the number of hardware processing elements, support
hardware components and interface points required to meet the range of mission classes. The majority of
processing functions of the GPM will be under software control and supported by an OS. These are cases,
depending on the data handling speeds that require the use specialized support hardware (FPGA or ASIC
chips) to alleviate the burden on the processing elements. Such specialized support hardware could
include encryption, packet routing, and network processing type functions.

4.2.1.1 GPM Components
The GPM contains, as necessary, a GPP and various memory elements as shown in Figure 4.3.

Depending on the particular mission class, not all memory elements are required. The GPP will typically
be implemented as a microprocessor, but could take many forms, depending on the mission class.
Because the GPM is the primary control component of the radio, it is a required module for an STRS
radio. A description of each element in Figure 4.3 is listed below.

The GPP functions include the Operating Environment, the HAL, and potentially application
functions. The Operating Environment contains the STRS infrastructure, which provides the functionality
for the interfaces defined by the STRS API specification. The OE also contains the Operating System and
the POSIX abstraction layer.

NASA/TM—2010-216809 11

Figure 4.3.—GPM Architecture Details.

The Persistent Memory Storage element holds both the permanent (e.g., programmable read-only

memory (PROM)) and re-programmable code for the GPP element. In today’s technology, this code is
implemented using a re-programmable technology such as electrically erasable programmable read-only
memory (EEPROM). It is also possible, but not typically qualifiable to implement this code storage in
FLASH memory.

The Persistent Memory also provides the re-programmable storage for the SPM FPGA elements (i.e.,
SPM firmware). The GPM is responsible for programming and scrubbing the SPM FPGAs and therefore
contains the appropriate “code” for the FPGAs. This memory block is typically implemented using a non-
volatile memory technology such as EEPROM but could, in particular implementations be implemented
with PROM technology.

The Work Area Memory element is provided as operational, scratch memory for the GPP element.
This memory element is implemented in concert with the GPP element and may contain both data and
code, as appropriate for the execution of the radio application running in the GPM.

Finally, the GPM contains a System Control element to control and moderate the GPM System Bus.
This element provides the necessary control for the System Bus including the various memory and SPM
elements interfaced by the System Bus. In addition, the System Control element provides a validated
interface to the RFM hardware via the GPM RFM Control Interface. As the software running on the
General Purpose Processing element commands the RFM elements into certain states, those commands
are interpreted by the System Control element and validated in a manner that will prevent damaging
configurations of the RFM, for example tying the transmit amplifier directly to the receive amplifier,
bypassing the diplexer element. This level of validation has to be present in the GPM to RFM Interfaces
to prevent the radio from being damaged by a software bug. The System Control element is typically
implemented by a non-re-programmable (in flight) FPGA allowing for flexibility between instantiations
of a particular implementation.

4.2.1.2 GPM Functions
The GPM will provide the overall configuration and control of the STRS architecture and may

include any or all of the following functions:

• Management and Control

NASA/TM—2010-216809 12

– Module discovery
– Configuration control
– Command, control and status
– Fault recovery
– Encryption

• STRS infrastructure, radio configuration and control
– Radio Control
– System Management
– Application Upload Management
– Device Control
– Message Center

• External Network Interface Processing
• Internal Data Routing
• Waveform Data Link Layer

– Medium Access Control (MAC) and Logical Link Control (LLC) layer
– Physical layer processing

• On board data switch

4.2.1.3 GPM Interfaces
• TT&C Interface
• Ground Test Interface
• Provides programmable general purpose input output (GPIO) to support

– Interrupt source/sink
– Application data transfer

• Provides control/configuration interfaces
– RFM, Antenna, Power Amplifier, and SPM

• System bus interface

4.2.1.4 GPM Requirements
• (STRS-1) An STRS platform shall have a known state after completion of the power-up process.
• (STRS-2) The STRS Operating Environment shall provide access to platform module’s

diagnostic information via the STRS APIs.
• (STRS-3) Self diagnostic and fault detection data of a module shall be accessible to the STRS

Operating Environment for collection.

4.2.2 Signal Processing Module (SPM)
A SPM is optional for an STRS platform. The SPM may implement the signal processing used to

transform received digital signals into data packets and/or the conversion of data packets into digital
signals to transmit. The complexity of this module is optional based on the applications and data rates
selected for a mission. The SPM modules contain components and capabilities to manipulate and manage
digital signals that require higher processing capabilities than that supplied by the GPM. The firmware
architecture describes a common interface for the application on the SPM, as described in Section 6.0.
Figure 4.4 illustrates the SPM module details.

NASA/TM—2010-216809 13

Figure 4.4.—SPM Architecture Details.

4.2.2.1 SPM Components
The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors,

ASICs, and other integrated circuits. However, technologies will change over time, so the specific
implementation is left to the platform developer.

It is also anticipated that STRS platforms may use dedicated SPM slices for specific applications and
technologies. For example, a dedicated GPS receiver slice can complement the existence of
reconfigurable SPM slices in the same radio. The dedicated slice offloads demands on the less specific
SPM. If an STRS platform contains an SPM slice, the slice should meet the module interface
specifications for control and configuration and have an interface with the GPM via the GPM System Bus
and the SPM to GPM Test interface. These two interfaces work in concert to provide a control and
reprogramming path to the SPM from the GPM and the application running on the GPM.

4.2.2.2 SPM Functions
The SPM performs the digital signal processing functions, which are used to convert symbols to bits

(and vice-versa). These functions are typically implemented on FPGAs, DSPs, or ASICs. It is
recommended that these devices be reconfigurable and reprogrammable because this allows for new
applications to be implemented on the SDR in the future without a hardware redesign. However, mission
specific requirements may dictate that the application be implemented on a non-reprogrammable
hardware device.

In addition to the digital signal processing functions, a data formatting function is required to convert
blocks of data stored in the data storage element into bitstreams appropriate for encoding into symbols
(and vice-versa). In many cases, it is possible to implement the data formatting function in the same
device as the digital signal processing function, but that is an implementation detail dependent on the
mission class.

NASA/TM—2010-216809 14

A data storage element is used to provide a queuing buffer between the data interface and the
bitstream coders/decoders. This data storage function can be implemented in either volatile or non-
volatile memory, depending on the requirements of the mission implementation.

A SPM may implement any or all of the following digital communication functions depending upon
the mission waveforms:

• Digital Up Conversion.—Interpolation, filtering, and “local oscillator” multiplication of baseband

samples to obtain an IF or RF output sample stream, appropriate for digital-to-analog conversion.
This is typically the last transmit function implemented in the SPM, and the output samples are
sent to the RFM.

• Digital Down Conversion.—Multiplication with “local oscillator”, downsampling, and filtering
IF or RF samples to obtain a baseband output sample stream. This is typically the first receive
function implemented in the SPM, with input samples coming from the analog-to-digital
conversion in the RFM.

• Digital Filtering.—Averaging, low-pass, high-pass, band-pass, polyphase, and other filters used
for pulse shaping, matched filter, etc. This may overlap with some of the functionality in the Up
and Down Conversion.

• Carrier Recovery and Tracking.—Retrieval of the waveform carrier within the receive sample
stream. Shifting recovered carrier frequency to accommodate local oscillator differences as well
as Doppler shifts in the link.

• Synchronization (data, symbol, etc.).—Alignment of received samples with symbol and data
boundaries. There may some integration with the Digital Down Conversion and Carrier Recovery
and Tracking functions.

• Forward Error Correction Coding.—Encoding transmit data so that receive data errors may be
corrected to some level, enhancing the waveform performance.

• Digital Automatic Gain Control.—Scaling of the receive samples to optimize downstream
operations.

• Symbol Mapping (modulation).—Translating transmit data bits to modulation symbol samples.
• Data Detection (demodulation).—Translating receive symbol samples to data bits.
• Spreading/Despreading.—A form of encoding data to obtain certain energy dispersion in the

frequency domain.
• Scrambling/Descrambling.—A form of encoding data to ensure a certain level of randomness in

the digital data stream, usually for synchronization of the receiver.
• Encryption/Decryption.—A form of encoding data for security purposes.
• Data Input/Output (I/O) (high-speed direct from/to source/sink).—Interface for transmit and/or

receive data to come in/out of the module. This may require buffering and some protocol
handling.

4.2.2.3 SPM Interfaces
The SPM’s external interfaces are shown in Figure 4.4. Interfaces shown include those common to all

module types as well as those specific for the SPM. These SPM specific interfaces may not all be required
for some missions. Note that the implementation of these interfaces may combine two or more on one
physical transport. For example, the Data Interface and Control & Configuration interfaces may both use
the same physical Serial RapidIO connection.

• Data I/O to/from RFM.—This is the digital sample stream going to the RFM’s digital to analog
converters (DACs) for transmission, and the digital samples from the RFM’s analog to digital
converters (ADCs). However, if the DACs and ADCs are preferred to be a part of the SPM, then
this interface is replaced with analog baseband or IF signals.

• Waveform Control and feedback to RFM.—This interface will be waveform dependent. It may be
used, for example, to send feedback to an AGC or control frequency hopping.

NASA/TM—2010-216809 15

• Data Interface external to the radio—High data rate waveforms may need a direct interface to the
SPM if the GPM is not designed to handle the data.

• System Bus: Data to/from GPM.—This interface exchanges the packetized data for transmission
and reception.

• Control and Configuration from GPM.—Waveform loads and reconfigurable parameters are
managed through this interface.

• Test and Status to GPM.—Tests are initiated through this interface by the GPM, and results are
returned. This is a more basic interface (electrically and protocol-wise) than the Control and
Configuration interface.

• Radiometric tracking

The HID must contain the characteristics of each reconfigurable device. Reconfigurable capacity is

usually measured by the number of FPGA gates, logic elements, or bytes. This information can be used
by future waveform developers to determine the waveforms that can be implemented on a given platform.

4.2.2.4 SPM Requirements
• (STRS-4) The STRS platform developer shall describe in the HID document, the behavior and

capability of each major functional device or resource available for use by waveforms, services,
or other applications (e.g., FPGA, GPP, DSP, memory), noting any operational limitations.

• (STRS-5) The STRS platform developer shall describe in the HID document, the
reconfigurability behavior and capability of each reconfigurable component.

The description of the behavior and capability of functional devices available to application

developers or reconfigurable components may include device type, processing capability, clock speeds,
memory size(s), types(s), and speed(s), noting any constraints.

4.2.3 Radio Frequency Module (RFM)
The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or the

GPM with digital baseband or IF signals, and the transmission and reception equipment with RF to
support the SPM and GPM functions. Its components typically include DACs, ADCs, RF switches, up-
/down-converters, diplexer, filters, LNAs, power amplifiers, etc. Current and near term RF technologies
cannot be expected to allow multi-band operation using a single channel RFM and thus multi-band radios
will require the use of multiple RFM slices. The RFM provides a band of frequency tunability on each
slice. This tunability can be software controlled through the provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of
reception of the wireless signals, including antennas, optical telescopes, steerable antennas, external
power amplifiers, diplexers, triplexers, RF switches, etc. These external radio equipment components
would otherwise be integrated with the RFM except for the physical size and location constraints for
transmission and reception. The interfaces are primarily the associated control interfaces for these
components. The RFM HID encompasses the control and interface mechanism to the external
components. The focus of the RF HID is to provide a standardized interface to the control of each of these
devices, to synchronize the operation of the radio with any of these devices.

The other primary capability of the RFM is the conditioning and distribution of the frequency
reference as defined by the Frequency Reference Interface. This provides a common reference for the
RFM and SPM modules to enable the tracking and navigation functionality required of SDRs.

NASA/TM—2010-216809 16

Figure 4.5.—RFM Architecture Details.

4.2.3.1 RFM Functions
The RFM transforms the antenna signal to/from a signal usable to the radio. The RFM functions are

likely to include:

• Frequency Conversion and Gain Control
• Analog Filtering
• Analog-to-Digital and Digital-to-Analog conversion
• Radiometric tracking

4.2.3.2 RFM Components
The RFM can be implemented with a variety of integrated circuits. The control of these circuits can

be implemented with a variety of different component technologies including ASICs, discrete electronics,
programmable logic devices including FPGAs and DSPs, or even microprocessors. The choice of
technologies is left up to the developer of the particular implementation. It is expected that the control of
the devices will become more sophisticated over time, and the level of control will increase, resulting in
more complex control circuitry and logic devices being used.

4.2.3.3 RFM Interface
• External RF interface(s) to the radio
• Provides read and write access to interface registers to monitor and perform control, status, and

failure and fault recovery functions (e.g., via RS-422 or Space Wire).
– Control (power level tunability, frequency tunability, antenna parameter tunability, etc.)

NASA/TM—2010-216809 17

– Status (maintain status of components and system operation)
– Failure and fault recovery functions (detect component or system failure and determine

appropriate action)
• Provides diagnostic test registers
• Provides I/O for exchanging digitized WF signal data

4.2.3.4 RFM Requirements
• (STRS-6) The STRS platform developer shall describe in the HID document, the behavior and

performance of the RF modular component(s).

The behavior and performance of the RF modular components should be sufficiently described such
that future waveform developments may take advantage of the RF capability and/or account for its
performance. Information in the HID may include such items as center frequency, IF and RF
frequency(s), bandwidth(s), IF and RF input/output level(s), dynamic range, sensitivity, overall noise
figure, AGC, frequency accuracy & stability, frequency tuning resolution.

4.2.4 Security Module (SEC)
The STRS architecture has been designed to address security concerns as part of the architecture.

While this section is currently not complete, the goal is to address the security services required from a
SDR. This approach supports the evolutionary nature of the STRS architecture. It is expected that this
section will be expanded as new technologies and operational modes are developed or extended.

The architecture will support selectable data protection services for those users needing them,
including both confidentiality and authentication. Missions may select security options provided by the
infrastructure or may develop their own.

The authentication of commands sent to SDRs is supported, including changing the configuration or
uploading new programs for either the infrastructure or new applications. The security section of the
architecture will include support for key management, encryption standards, and mitigating threats other
than the information and communication security threats currently identified.

4.2.5 Networking Module
The STRS architecture has been structured such that networks can be implemented in a SDR. This

architecture can accommodate network protocols as services that can be made available to applications
and devices. STRS supports the ability to upload new software and dynamic hardware images. Therefore,
advancements and replacement of existing protocols can be accomplished without affecting a spacecraft’s
mission resources.

4.2.6 Optical Module (OM)
The STRS architecture supports the use of optical communications in SDRs. The use of optical

communications techniques pose challenges in many areas but optical communications also has the
potential for great benefit. STRS interfacing to optical communication equipment follows the same
techniques shown in integration with High Data Rate hardware. The Optical Module would be controlled
through the STRS HAL interface that allows configuration and control of the digital components in the
module, which abstracts the optical functionality.

4.3 Hardware Interface Description

The STRS platform developer must provide a HID, which describes the physical interfaces,
functionality, and performance of the entire platform and each platform module. The HID will specify the
electrical interfaces, connector requirements, and all physical requirements for the delivered radio. Each
module’s HID will abstract and describe the module functionality and performance. In this manner,

NASA/TM—2010-216809 18

application developers will know the features and limitations of the platform for their applications. Once
the radio has been procured, NASA will have the knowledge to procure or produce new or additional
modules using HID information. Also, future module replacement or additions will be possible without
designing a new platform. For example, a Security Module may be added that wasn’t originally planned,
or a follow-on mission may use a different frequency band and only require an RFM change.

In addition to the GPM, SPM, and RFM HID descriptions and requirements stated within each
module section, the following interface descriptions and requirements are also specified for an STRS
platform.

• (STRS-7) The STRS platform provider shall describe in the HID document, the interfaces that are
provided to and from each modular component of the radio platform.

The specific modular components or hardware slices of an STRS radio will vary among different

implementations. The STRS Platform developer or integrator is expected to describe each modular
component and their respective physical and logical interfaces as described in this section. Table 4.1
provides typical interface characteristics that should be included when identifying external interfaces or
internal interfaces between modules for STRS.

TABLE 4.1.—STRS MODULE INTERFACE CHARACTERIZATION

Parameter Description/comments
Name Interface Name (data, control, DC power, RF, security, etc)
Interface type Point to point, point-multipoint, multipoint, serial, bus, other
Implementation level Component, module, board, chassis, remote node
Reference documents/standards Applicable documents for interface standards or description of custom interfaces
Note/constraints Variances from standards, physical and logical functional limitations
Transfer speed Clock speed, throughput speed
Signal definition Description of functionality and intended use

Physical implementation
Technology For example, GPP, DSP, FPGA, ASIC and description
Connectors Model number, pin out (incl. unused pins)
Data plane Width, speed, timing, data encoding, protocols
Control plane Control signals, control messages or commanding, interrupts, message protocol

Functional implementation

Models Data plane model, control plane model, test bench model
Power Voltages, currents, noise, conducted immunity, susceptibility
APIs Custom or standard, particular to OS environment
Software Device drivers, development environment & tool chain

Logical implementation

Addressing Method, schemes
Channels Open, close
Connection type Forward, terminate, test

4.3.1 Control and Data Interface
The control and data communications buses/links between modules within the radio will be described

by the STRS platform developer to the level of detail necessary to facilitate integration of another
vendor’s module. If modules communicate using Institute of Electrical and Electronic Engineers IEEE-
1394, for example, this will be specified in the HID with appropriate connector and pinout information.

NASA/TM—2010-216809 19

Any non-standard protocols used must also be specified which in some cases may be handled by the
software HAL. Module interfaces will be completely described, including any unused pins.

• (STRS-8) The STRS platform provider shall describe in the HID document, the control,

telemetry, and data mechanisms of each modular component (i.e., how to program or control each
modular component of the platform, and how to use or access each device or software
component, noting any proprietary aspects).

Besides the interface descriptions already provided for each modular component, developers should

provide specific information necessary to future application developers of how to interact with the
command and control aspects of the platform. The description of the control, telemetry and data
mechanism of each modular component shall facilitate porting of application software to the platform.

4.3.2 DC Power Interface
The DC power interface description for the radio has two parts; 1) the platform as a supplier to the

various modules, and 2) the power consumption of the different modules, if multiple modules are
provided. Table 4.2 shows an example listing of a platform DC power interface. There are four distinct
sets of power requirements for the platform shown. Modules delivered with the radio, as well as those
built by other vendors, must specify the needed voltages, currents, and connections. Voltages must be
specified with a max/min tolerance, and associated currents must be specified with nominal and
maximum values. Connectors for DC power must be specified, including pinouts. If power is routed
through a multi-purpose connector, such as a backplane connector, then the pins actually used must be
documented. Power is a limited commodity for most missions, and understanding the radio platform
power needs is critical.

TABLE 4.2.—EXAMPLE—DC POWER INTERFACE (PLATFORM SUPPLIED)

Parameter Values

Voltage available –15 V +2.5 V +5 V +15 V

Max. current/chassis (platform) 2 A 1.7 A 3 A 2 A
Max. current/slot (module) 1 A 1 A 1 A 1 A

Backplane supply pins 17, 19 59, 61 44, 46, 48 21, 23

Backplane return pins 18, 20 60, 62 43, 45, 47 22, 24

Connector type
Voltage ripple 100 mVpp 1 mVpp 5 mVpp 100 mVpp

Notes: Slot 1 & 2 only Slot 1 & 2 only

• (STRS-9) The STRS platform developer shall describe in the HID document, the behavior and
performance of any power supply or power converter modular component(s).

4.3.3 Thermal and Mechanical Interface
The power consumption and resulting heat generation of a reprogrammable FPGA will vary based on

the amount of logic used and the clock frequency(s). The power consumption may not be constant for
each possible waveform that can be loaded on the platform. The platform provider should document the
maximum allowable power available and thermal dissipation of the FPGA(s) based on the maximum
allowable thermal constraints of FPGA(s) of the platform. For human spaceflight environments, touch
temperature requirements may limit dissipation further; therefore, these reductions must be factored into
the given dissipation limits.

NASA/TM—2010-216809 20

5.0 Applications
5.1 Application Implementation

As shown in Figure 5.1, an example STRS platform consists of one or more GPMs with GPPs, and
optionally one or more Signal Processing Modules containing DSPs, FPGAs, and ASICs. Application
(waveform and service) components loaded and executed on these modules provide the signal processing
algorithms necessary to generate or receive RF signals. To aid portability, the applications must use the
appropriate infrastructure APIs to access platform services. Using “direct to hardware” access instead
would increase the effort to port the application to a platform with different hardware. The STRS
infrastructure provides the APIs and services necessary to load, verify, execute, change parameters,
terminate, or unload an application. The STRS infrastructure utilizes the hardware abstraction layer to
abstract communications with the specialized hardware, while the HID physically identifies how modules
are integrated on a platform.

• (STRS-10) An STRS application shall use the infrastructure STRS API and POSIX API for
access to platform resources.

• (STRS-11) The STRS infrastructure shall use the STRS Platform HAL APIs to communicate
with application components on the platform specialized hardware via the physical interface
defined by the platform developer.

5.2 Application Selection

Platform developers have the option of providing telemetry values to indicate what types of
applications are installed. The method for selecting the application will be a combination of the platform’s
capabilities as well as the specification defined by the STRS Command and Telemetry Interface in
Section 8.0.

STRS specifies two types of configuration files: a platform specific component, and an application
specific component. An application specific configuration file specifies information used to initialize an
STRS application. Section 9.0 contains further discussion of platform and application configuration files.

Figure 5.1.—Waveform Component Instantiation.

H
I
D

Operating Environment with
POSIX Compliant RTOS

General-purpose Processing Module

Signal
Data

Signal Processing Module

Signal

H I D

H I D

HAL
Board

Support
Package

STRS APIs
Waveform

Control and
Services

STRS
Infrastructure

STRS APIs
Waveform

Component
A

Signal Processing Module

Signal
Data Waveform

Component
C

Waveform
Component

D

Waveform
Component

B

NASA/TM—2010-216809 21

5.3 Navigation Services

The STRS architecture allows STRS radios to provide radiometric tracking and navigation services
that are integrated with communication services. Radiometric tracking is the process of measuring
characteristics of radio signals that have been transmitted (potentially over several legs) in order to extract
information relating to the signal’s change in frequency and/or time of transit. A radio has the
fundamental component needed for tracking—a radio signal. The SDR simplifies the navigation
architecture because it minimizes mass, power, volume requirements while maximizing flexibility. An
SDR provides the flexibility to respond to different mission phase requirements, and the flexibility to
respond to dynamic application requirements where signal structures may change. This is the fundamental
thesis for considering implementation of an SDR with tracking and navigation functionality.

5.4 Application Repository Submissions

The STRS architecture facilitates the use of reusable and highly reliable applications. Highly reliable
and reusable applications require good coding practices, good documentation, and thorough testing. The
documentation and application artifacts are to be submitted to the NASA STRS Repository. The goal of
the NASA STRS Repository is to reduce future application development time and porting time since
application developers will have access to validated code. The STRS Repository is an archive of the
developed firmware and software for the various applications. The repository allows application
developers access to existing STRS application artifacts that have been populated by NASA and STRS
application developers. The documentation of STRS application behavior should include the application
developer’s implementation of the STRS application-Provided application control API methods as
described in Section 7.3.1

• (STRS-12) Application development artifacts shall be submitted to the NASA STRS Repository.
The use will be subject to the appropriate license agreements. The application development
artifacts shall include, as a minimum, the following:
– High level system or component software model
– Documentation of application firmware external interfaces (e.g., signal names and

descriptions, signal polarity and format, timing constraints of signals)
– Documentation of STRS application behavior
– Application function sources (e.g., C, C++, header files, VHDL, Verilog)
– Application libraries, if applicable (e.g., EDIF, DLL)
– Documentation of application development environment and tool suite
– Test plan and results documentation
– Identification of Flight Software Development Standards used

6.0 Firmware Architecture
Firmware is embedded in a hardware device, such as an FPGA or a DSP. Firmware is distinguished

from software residing in a general purpose processor which is generally easier to change. The firmware
architecture will address the use of firmware from the design and development, through testing and
verification, and operations. It will address aspects of model based design techniques and design for space
environment applications.

Proper testing of firmware is critical in the development of reliable and reusable code. Development
tools that enable early development and testing should be used so that problems can be identified and
resolved early in the SDR life cycle. Many real-world signal degradations and SEUs can be simulated to
identify potential issues with the waveform and waveform functions early in development, even before
hardware is available. Application firmware should be implemented in a modular fashion with clear
interfaces to enable individual application component simulations and incremental testing.

NASA/TM—2010-216809 22

The firmware architecture supports the modeling of STRS firmware applications at the system,
subsystem, and function levels. Model-based design techniques aid in the development of modular
application functions. Application firmware development models done in a platform (or target)
independent manner aid in application reuse and portability. A platform independent model design can be
used to target different platforms. Platform independent model design flows might include high level
models combined with manual code writing or the use of platform independent models to auto generate
code. These design flows can be employed to significantly reduce the porting effort.

Application portability should be considered in all facets of the design process from concept to
implementation to testing. The coding technique of the application is also essential to reduce the
application porting effort. Having defined syntax standards for hardware descriptive languages (e.g.,
Verilog, VHDL) makes them appear to be easily portable across devices and software synthesizers, but
this is an incorrect assumption. There are many things that can make hardware descriptive languages hard
to port. For example, the use of device specific fixed hardware logic on the FPGA will decrease the
portability. The use of specialized hardware may be required to meet the timing constraints of the
application; however, the application developer should document any application function that uses the
specialized hardware so that the effort to port the application function(s) can be determined. Non-boolean
type logic such as clock generation can also reduce portability. One method to decrease the porting effort
would be to create a module that does the clock generation from which the rest of the application
functions receive the necessary clock(s).

Development of firmware for STRS radios should include provisions for mitigating space
environmental effects such as SEUs. Near term application of static random access memory (SRAM)-
based FPGAs may require triple mode redundancy (TMR), configuration memory scrubbing, and other
mitigation techniques depending on the intended mission environment and desired reliability.
Commercial design tools are becoming available to aid in this process and some newer FPGAs have
versions available with embedded TMR.

A key feature of SDRs is that they can be reconfigured after deployment. The capability to load new
applications and services will benefit missions in several ways, including using one SDR (instead of
several separate radios) to handle different applications for various phases of a mission, some planned and
some unplanned. An STRS platform should receive STRS application software and firmware updates
after deployment.

6.1 Specialized Hardware Interfaces

Standardizing the interface from the waveform applications on the GPP to the portion of the
waveform in the specialized processing hardware such as FPGAs or DSPs is intended to provide
commonality among different STRS platforms, and to aid portability of application functional
components implemented in firmware. Figure 6.1 depicts the high level interface relationship between a
GPM, SPM, and RFM modules in an STRS radio.

The firmware architecture provides commonality among different STRS platforms when executing
firmware applications. The common platform operations include the control and the instantiation of an
application. In addition, the architecture supports the reconfiguration of the application instantiated in
different hardware devices, depending on the platform capabilities. The reconfiguration should include
parameter changes of installed applications and uploading new applications after deployment.

The application accepts configuration and control commands from the GPM and uses STRS APIs that
interface to the device drivers associated with the SPM and RFM modules. The device drivers
communicate via the HAL on the GPM that abstracts the physical interface specification described in the
HID in transferring command and data information between the modules.

For FPGAs on the SPM, the interface to the application is through a platform specific wrapper. The
platform specific wrapper accepts command and data information from the GPM and provides them to the
application. The platform specific wrapper also abstracts details of the platform from the application
developer, such as pinout information. The platform specific wrapper should also provide clock

NASA/TM—2010-216809 23

generation, signal registering, and synchronization functions, and any other non-waveform specific
functions the platform requires. Documentation of the platform specific wrapper is necessary so that
application developers can interface applications to the platform.

• (STRS-13) If the STRS application has a component resident in an SPM (e.g., FGPA firmware),
then it shall accept configuration and control commands from the STRS Operating Environment.

• (STRS-14) The STRS SPM developer shall provide a platform specific wrapper for each user-
programmable FPGA on the SPM, which performs, as a minimum, the following functions:
– Provides an interface for command and data from the GPM to the waveform application
– Provides the platform specific pinout for the application developer. This may be a complete

abstraction of the actual FPGA pinouts with only waveform application signal names
provided.

• (STRS-15) The STRS SPM developer shall provide documentation on the firmware interfaces of
the platform specific wrapper for each user-programmable FPGA on the SPM, which describe, as
a minimum, the following:
– Signal names and descriptions
– Signal polarity and format
– Signal timing constraints of all signals
– Clock generation and synchronization methods
– Signal registering methods
– Identification of development tool set used

STRS Firmware

Interface Concepts—v1.02
FPGA-based generic WF

Figure 6.1.—High-level Software and Firmware Waveform Applications Interfaces.

NASA/TM—2010-216809 24

6.2 Proposed Firmware Architecture Extension

One goal of the STRS architecture is to promote application reuse among multiple software defined
radios. Many space domain applications are designed to run in the specialized signal processing hardware.
The STRS architecture is currently incomplete in defining a standard for designing applications in the
SPM hardware. Therefore, the STRS architecture will be extended in the future to encompass application
development in firmware. These extensions will include a firmware developer interface (FDI) that
abstracts the application running on a FPGA from devices external to a FPGA and a standard interface
between application functions running inside a FPGA. The extension of STRS to the firmware will
promote easier application reconfiguration and reuse.

STRS Firmware
Interface Concepts—draft
FPGA-based generic WF

Figure 6.2.—Proposed Firmware Architecture Extension

NASA/TM—2010-216809 25

7.0 Software Architecture
7.1 Software Layer Interfaces

The STRS architecture is predicated on the need to provide a consistent and extensible development
environment on which to construct NASA space applications. The breadth of this goal requires that the
specification be based on 1) core interfaces that allow flexibility in the development of application
software and 2) hardware interface descriptions that enable technology infusion.

The software architectural model shows the relationship between the software layers expected in an
STRS compliant radio. The model illustrates the different software elements used in the software
execution and defines the software interface layers between applications and the operating environment
and the interface between the operating environment and the hardware platform.

Figure 7.1 represents the software architecture execution model. The software model achieves the
following objectives:

1. Abstracts the application from the underlying operating environment software to promote
portability of the application.

2. Within the abstraction layer, minimizes custom routines by using commercial software standard
interfaces such as POSIX.

3. Depicts the STRS software components as layers to specify their relationship to each other and
their separation from each other which enables developers to implement the layers differently
according to their needs while still complying with the architecture.

4. Introduces a lower level abstraction layer between the operating environment and the platform
hardware.

Note: While software abstraction for general processors is typically accomplished with board
support packages and device drivers, abstraction of hardware languages or firmware is less
defined. The model represents the software and firmware abstraction in this layer.

5. Indicates the relationship between the operating environment software and the different hardware
processing elements (e.g., processor, specialized hardware).

The OE adheres to the interface descriptions provided in the STRS Software Execution Model. The
STRS Architecture provides two primary interface definitions, 1) the STRS API, and 2) the STRS HAL
specification, each with a control and data plane specification for interchanging configuration and run-
time data. The STRS API provides the interfaces that allow applications to be instantiated and use
platform services. These APIs also enable communication between application components. The HAL
specification describes the physical and logical interfaces for inter-module and intra-module integration.

The STRS software architecture presents a consistent set of APIs to allow waveform applications,
services, and communication equipment to interoperate in meeting an application specification. Figure 7.2
represents a view of the platform operating environment that depicts the boundaries between the STRS
infrastructure provided by the platform developer and the components that can be developed by third
party vendors (e.g., waveform applications and services).

A key enabler of application portability is the removal of application dependencies on the
infrastructure that take advantage of explicit knowledge of the infrastructure implementation. When
waveforms and services conform to the API specification, they are easier to port to other STRS platform
implementations.

Figure 7.2 extends the view of the software architecture from the diagram introduced in Figure 7.1 to
include additional detail of the infrastructure, POSIX conformant OS, and hardware platform. The STRS
Software Execution Model was transformed using the UML. UML supports the description of the
software systems using an object-oriented style. This approach clarifies the interfaces between
components, adding additional detail. Table 7.1 provides a key that describes the interaction between
elements of the architecture.

NASA/TM—2010-216809 26

Figure 7.1.—STRS Software Execution Model.

Figure 7.2.—STRS Layered Structure in UML.

Figure 7.2 extends the view of the software architecture from the diagram introduced in Figure 7.1 to
include additional detail of the infrastructure, POSIX conformant OS, and hardware platform. The STRS
Software Execution Model was transformed using the UML. UML supports the description of the
software systems using an object-oriented style. This approach clarifies the interfaces between
components, adding additional detail. Table 7.1 provides a key that describes the interaction between
elements of the architecture.

NASA/TM—2010-216809 27

Figure 7.3 describes the elements of the detailed operating environment depicted in Figure 7.1. In the
case that the OS does not support the POSIX subset, the missing functionality will be required to be
implemented in the STRS infrastructure. The diagram also illustrates the inclusion of a POSIX abstraction
layer in the infrastructure. As a note, this abstraction is not only for a non-POSIX OS, but the POSIX
abstraction layer would implement any POSIX functions required but not implemented by the OS.

In Figure 7.3 the arrows identify interface dependencies and isolations. The Waveform Applications
will not directly call the driver API but must use the provided STRS API, thus providing the “abstraction
layer” that helps isolate the application from the platform.

TABLE 7.1.—STRS ARCHITECTURE SUBSYSTEM KEY
Diagram Element Name Explanation

Composition A contains X items of type B. B is a part of the aggregate A. B does
not exist independently from A. X may be a number or a range from
m to n depicted by “m..n” where n may be an asterisk to indicate no
upper limit.

Generalization
or

Inheritance

B is derived from A. B is a kind of A. B inherits all the properties of
A. A is a more general case of B. Since B is more specialized, it
frequently contains additional attributes and/or functionality than A.

Interface C is an interface provided by B; that is, C contains the means to
invoke behavior that resides in B. A uses the interface C to access
B.

Association A is associated with B. The optional description “uses” indicates
that A is associated with B such that A “uses” B.

Association D acts upon A and A responds to D. Or possibly vice versa. D is
normally an actor outside the system.

NASA/TM—2010-216809 28

Waveform Application

Could call STRS OS Abstraction Layer
functions as well as POSIX Calls

Communicates with STRS API

STRS Infrastructure

STRS API

Logical HAL Driver Interface

Radio Services (Radio Control, RF)

OS

HW Drivers

BSP

Communication
Equipment

GPM Platform Hardware

Application Level

Kernel Level

Direct Driver Service Support

Driver APIRegistered OS ServicesPhysical HAL
(Access to Hardware)

HW IO Interface

Physical Level

POSIX

POSIX Abstraction
Layer

Figure 7.3.—STRS Operating Environment.

In Table 7.2, the different layers of the STRS software model are described.

NASA/TM—2010-216809 29

TABLE 7.2.—STRS SOFTWARE COMPONENT DESCRIPTIONS
Layer Description

Waveform
Application/Services

Waveform application/services provide the radio GPP functionality using the STRS infrastructure.

STRS infrastructure The STRS infrastructure implements the behavior and functionality identified by the STRS API as well
as other required radio functionality.

STRS API The STRS API provides consistent interfaces for the STRS infrastructure to control applications and
services, and for the applications and services to access STRS infrastructure services.

APP API The APP API is the interface implemented by waveforms and services whose functions are used by the
STRS infrastructure.

POSIX Abstraction
Layer

An optional interface (see Figure 7.4) that provides POSIX OS services to the waveform application and
services on platforms with an OS that does not provide POSIX interfaces.

Radio Control
Services

Responsible for the handling the radio commands and telemetry for STRS. Applications use STRS
interface to communicate telemetry and receive commands from flight computer.

Logical HAL
Interfaces (HAL API)

Provides the Device Control interfaces that are responsible for all access to the hardware devices in the
STRS radio. The Hardware Abstraction Layer API is the interface to the software drivers and BSP that
communicates with the hardware.

POSIX API The STRS defines a minimum POSIX Application Environment Profile (AEP) for the allowed OS
services. The POSIX AEP can be implemented by either a POSIX conformant OS, or by a POSIX
Abstraction Layer in conjunction with a non-conformant OS.

OS The operating system that supports the POSIX API and other OS services. The POSIX Abstraction
Layer will provide application with a consistent AEP interface that is mapped into the chosen OS
functions.

POSIX OS STRS POSIX AEP conformant operating system.
Direct Service
Support

This layer identifies the ability for the STRS infrastructure to have a direct interface to the hardware
drivers on the platform.

HW Drivers The hardware drivers provide the platform independence to the software and infrastructure by
abstracting the physical hardware interfaces into a consistent Device Control API.

Physical HAL This specification provides the physical medium as well as interconnections between modules in the
STRS Radio.

Registered OS
Services

Services that are integrated with the chosen OS to provide services such as MAC layer interface to
physical Ethernet hardware.

Driver API OS supplied APIs are abstracted from applications via the Device Control API.

BSP The BSP is the software that implements the device drivers and parts of the kernel for a specific piece of
hardware. It provides the hardware abstraction of the GPM module for the POSIX-compliant Operating
System. A BSP contains source files, binary files, or both. A BSP contains an OEM Adaptation Layer
(OAL), which includes a boot loader for initializing the hardware and loading the operating system
image. Essentially the OAL is all of the software that is hardware specific. The OAL is actually
compiled and linked into the embedded operating system.

HW IO Interfaces Device drivers have been created for these physical interfaces.

GPM General-purpose Processing Module on which the STRS infrastructure executes.

Specialized Hardware Physical layer of the hardware modules existing on the STRS Platform.

The difference between a POSIX conformant OS and a non-conformant OS is illustrated in
Figure 7.4. On the left side, the POSIX AEP is provided entirely by the OS. The POSIX APIs are
included in those for the OS. On the right side, the OS is not POSIX AEP conformant but is partially
compliant. The POSIX AEP is shown in two parts. One part shows the POSIX APIs that are included in
the OS. The other part shows the part of the POSIX AEP that is not provided by the OS but must be
provided as the POSIX Abstraction Layer. The STRS Operating Environment includes a POSIX PSE51
conformant OS or POSIX abstraction layer for missing APIs.

NASA/TM—2010-216809 30

Figure 7.4.—POSIX Compliant versus Conformant.

Figure 7.5.—STRS infrastructure.

7.2 Infrastructure

The STRS infrastructure is part of the OE and provides the functionality for the interfaces defined by
the STRS API specification. The infrastructure exposes a standard set of method names to the
applications to facilitate portability. Although the STRS infrastructure may use any combination of
POSIX, OS, BSP functions, or other infrastructure methods to implement a radio function, which may
vary on different platforms, the STRS API will be the same to allow portability. The STRS API is the
well-defined set of interfaces used by STRS applications to access specific radio functions or used by the
infrastructure to control the applications.

The infrastructure is composed of multiple subsystems that interoperate to provide the functionality to
operate the radio. The components shown in Figure 7.5 represent the high level subsystems and services

NASA/TM—2010-216809 31

needed to control STRS applications within the radio platform. These services are provided by the
platform infrastructure and support applications as they execute within the radio platform. The
infrastructure functions will include fault management techniques, which are necessary to increase radio
robustness and support mission dependent requirements. In order to support one of the primary objectives
of STRS (upgradeability), an STRS radio should be capable of receiving updated versions of the OE to
support applications developed for newer versions of the STRS architecture standard after deployment.

7.3 STRS APIs

The STRS APIs provide an open software specification for the application engineer to develop STRS
applications. The goal is to have a standard API available to cover all application program requirements
so that the application programs can be reused on other hardware systems with minimal porting effort and
cost of the application software (and firmware), and increased reliability. Size, weight, and power
constraints may limit the functionality of the radio by imposing a trade-off among a) the size of the API
implementation, b) the size of other internal operations, and c) the size of the waveforms and services.
The size of the selected GPP must be sufficient to contain the operating system, STRS infrastructure, and
the appropriate portion of the waveforms and services to implement the required mission functionality,
along with sufficient margin to support software upgrades. The STRS APIs are defined to support internal
radio commands. The external interface commands, described in Section 8.0, often use the internal
commands defined by the STS APIs to accomplish normal radio operations.

The API layer specification decouples the intellectual property rights of platform, application, and
module developers. The API layer allows development and interoperability of different radio aspects
while protecting the investment of the developers. The definition of APIs is based on a set of sequence
diagrams derived from the use cases identified in the STRS Software Architecture Concepts and Analysis
document Appendix B.

A handle ID is an identifier used to control access to applications and resources such as other
applications, devices, files, or message queues. Special purpose handle ID for errors include:
STRS_ERROR_QUEUE, STRS_WARNING_QUEUE, and STRS_FATAL_QUEUE. A non-fatal error
is a correctable condition such that the application is usable when the error is corrected. A warning is an
indication of an impending error that is correctable if action is taken. A fatal error is a condition where the
application is subsequently not usable.

7.3.1 STRS Application-provided Application Control API
A key aspect of a software-architecture is the definition of the APIs that are used to facilitate software

configuration and control of the target platform. The philosophy on which the STRS architecture is based
avoids the conflict between open architecture and proprietary implementations by specifying a minimum
set of APIs that are used to execute waveform applications and deliver data and control messages to
installed hardware components.

The following APIs exhibit similar functionality to a resource interface in the OMG/SWRADIO or
Software Communications Architecture (SCA). The APIs could be implemented using the same Platform-
Independent Model (PIM) as the OMG/SWRADIO or SCA and a different Platform-Specific Model
(PSM) from the OMG/SWRADIO or SCA. The APIs are further grouped similar to the OMG/SWRADIO
as shown in Figure 7.6.

As shown in Figure 7.6, an STRS application implementation (e.g., waveform) is derived from the
STRS_ApplicationControl API, the STRS_Source API when implementing APP_Read, and the STRS_Sink
API when implementing APP_Write. The interfaces are implemented in groups so that
STRS_ApplicationControl is derived from the STRS_LifeCycle, STRS_PropertySet,
STRS_TestableObject, STRS_ControllableComponent, and STRS_ComponentIdentifier interfaces.

NASA/TM—2010-216809 32

Figure 7.6.—STRS Application/Device Structure.

• (STRS-16) The STRS Application-Provided Application Control API shall be implemented using
C or C++.

• (STRS-17) The STRS infrastructure shall use the STRS Application-Provided Application
Control API to control STRS applications.

• (STRS-18) The STRS Operating Environment shall support C or C++ language interfaces for the
STRS Application-Provided Application Control API at compile-time.

• (STRS-19) The STRS Operating Environment shall support C or C++ language interfaces for the
STRS Application-Provided Application Control API at run-time.

The same include files are used for either C or C++ to access the appropriate prototypes.

• (STRS-20) Each STRS application shall contain:

– #include “STRS_ApplicationControl.h”

NASA/TM—2010-216809 33

• (STRS-21) The STRS platform developer shall provide an “STRS_ApplicationControl.h” that
contains the method prototypes and, for C++, the class definition for the base class
STRS_ApplicationControl.

• (STRS-22) If the STRS Application-Provided Application Control API is implemented in C++,
the STRS application class shall be derived from the STRS_ApplicationControl base class.

For example, the MyWaveform.h file should contain a class definition of the form:

 class MyWaveform : public STRS_ApplicationControl {…};

A sink is used for a push model of passing data: to write data to the waveform, device, file, or queue.

• (STRS-23) If the STRS application provides the APP_Write method, the STRS application shall
contain:
– #include “STRS_Sink.h”

• (STRS-24) The STRS platform developer shall provide an “STRS_Sink.h” that contains the
method prototypes and, for C++, the class definition for the base class STRS_Sink.

• (STRS-25) If the STRS Application-Provided Application Control API is implemented in C++
AND the STRS application provides the APP_Write method, the STRS application class shall be
derived from the STRS_Sink base class.

For example, the MyWaveform.h file should contain a class definition of the form:

 class MyWaveform : public STRS_ApplicationControl,
 public STRS_Sink
 {…};

A source is used for a pull model of passing data: to read data from the waveform, device, file, or
queue.

• (STRS-26) If the STRS application provides the APP_Read method, the STRS application shall
contain:
– #include “STRS_Source.h”

• (STRS-27) The STRS platform developer shall provide an “STRS_Source.h” that contains the
method prototypes and, for C++, the class definition for the base class STRS_Source.

• (STRS-28) If the STRS Application-Provided Application Control API is implemented in C++
AND the STRS application provides the APP_Read method, the STRS application class shall be
derived from the STRS_Source base class.

For example, the MyWaveform.h file should contain a class definition of the form:

 class MyWaveform : public STRS_ApplicationControl,
 public STRS_Source
 {…};

If both APP_Read and APP_Write are provided in the same waveform, the C++ class will be derived
from all three base classes named in requirements (STRS-22, STRS-25, and STRS-28). For example, the
MyWaveform.h file should contain a class definition of the form:
 class MyWaveform : public STRS_ApplicationControl,
 public STRS_Sink,
 public STRS_Source
 {…};

NASA/TM—2010-216809 34

The following state diagram, Figure 7.7, shows that an STRS application can have various states
during execution. The files for the STRS application must be accessible before execution can begin.

• STRS_InstantiateApp causes the configuration file to be parsed and APP_Instance or the

constructor to be called thereby beginning execution and placing the STRS application in the
STRS_APP_INSTANTIATED state.

• STRS_Initialize calls APP_Initialize on the appropriate STRS application.
• APP_Initialize transitions the STRS application to the STRS_APP_STOPPED state upon

successful completion.
• STRS_Start calls APP_Start on the appropriate STRS application.
• APP_Start transitions the STRS application from the STRS_APP_STOPPED state to the

STRS_APP_RUNNING state upon successful completion.
• STRS_Stop calls APP_Stop on the appropriate STRS application.
• APP_Stop transitions the STRS application from the STRS_APP_RUNNING state to the

STRS_APP_STOPPED state upon successful completion.

The FAULT state is set by the STRS application, but any recovery is managed by the STRS

infrastructure, or by an external system.

Figure 7.7.—STRS Application State Diagram.

NASA/TM—2010-216809 35

The following are the STRS Application-Provided Application Control APIs:

• (STRS-29) Each STRS application shall contain a callable APP_Configure method as described
in Table 7.3.

• (STRS-30) Each STRS application shall contain a callable APP_GroundTest method as described
in Table 7.4.

• (STRS-31) Each STRS application shall contain a callable APP_Initialize method as described in
Table 7.5.

• (STRS-32) Each STRS application shall contain a callable APP_Instance method as described in
Table 7.6.

• (STRS-33) Each STRS application shall contain a callable APP_Query method as described in
Table 7.7.

• (STRS-34) If the STRS application provides data to the infrastructure, then the STRS application
shall contain a callable APP_Read method as described in Table 7.8.

• (STRS-35) Each STRS application shall contain a callable APP_ReleaseObject method as
described in Table 7.9.

• (STRS-36) Each STRS application shall contain a callable APP_RunTest method as described in
Table 7.10.

• (STRS-37) Each STRS application shall contain a callable APP_Start method as described in
Table 7.11.

• (STRS-38) Each STRS application shall contain a callable APP_Stop method as described in
Table 7.12.

• (STRS-39) If the STRS application receives data from the infrastructure, then the STRS
application shall contain a callable APP_Write method as described in Table 7.13.

TABLE 7.3.—APP_Configure()
Description Set values for one or more properties in the application. It is the responsibility of the application (or device)

to determine which properties can be changed in which states. The API is defined in STRS_PropertySet.
The method is similar to configure() in Property Set interface in SCA or OMG/SWRADIO.

Parameters • propList—(in STRS_Properties *) list of name and value pairs
Return status (STRS_Result)
Precondition
Postcondition
See Also STRS_Configure
Example STRS_Result APP_Configure(STRS_Properties * propList) {

STRS_Result rtn = STRS_OK;
int ip;
for (ip=0; ip<propList->nProps, ip++) {

if (strcmp("A", propList->vProps[ip].name)==0){
a = propList->vProps[ip].value;

} else
if (strcmp("B", propList->vProps[ip].name)==0){

if (myState == STRS_APP_RUNNING) {
rtn = STRS_WARNING;

} else {
b = propList->vProps[ip].value;

}
}

}
return rtn;

}

NASA/TM—2010-216809 36

TABLE 7.4.—APP_GroundTest()

Description Perform unit and system testing usually done on ground before deployment. The testing may include
calibration. The API is defined in STRS_TestableObject. The method is similar to APP_RunTest except
that it contains more extensive testing that will be eliminated for actual flight. This method is invalid upon
deployment. The tests provide aid in isolating faults within the application. Because of the greater reliance
on radios in space, more exhaustive testing is required before entrusting life and property to a software
defined radio.

Parameters • testID—(in STRS_TestID) number of the test to be performed
• propList—(inout STRS_Properties*) list of name value pairs used to configure the test, and/or return

results.
Return status or state (STRS_Result)
Precondition Application is in STRS_APP_STOPPED or STRS_APP_RUNNING state. Only certain tests may be

allowed when application is in STRS_APP_RUNNING state.
Postcondition No change to state unless specifically required by mission.
See Also STRS_GroundTest
Example STRS_Result APP_GroundTest(STRS_TestID testID, STRS_Properties

*propList) {
 if (testID == 0) {
 …
 return STRS_OK;
 } else {
 STRS_Buffer_Size nb = strlen(
 "Invalid APP_GroundTest argument.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "Invalid APP_GroundTest argument.", nb);
 return STRS_ERROR;
 }
}

TABLE 7.5.—APP_Initialize()
Description Initialize the application. The API is defined in STRS_LifeCycle. The method is similar to initialize() in

LifeCycle interface in SCA or OMG/SWRADIO. The purpose is to set/reset the application to a known
initial state.

Parameters None
Return status (STRS_Result)
Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED state.
Postcondition Application is in STRS_APP_STOPPED state.
See Also STRS_Initialize
Example STRS_Result APP_Initialize() {

if (myState == STRS_APP_RUNNING) {
 STRS_Buffer_Size nb = strlen(
 "Can't Init when STRS_APP_RUNNING.");
 STRS_Log(fromWF,STRS_WARNING_QUEUE,

 "Can't Init when STRS_APP_RUNNING.", nb);
return STRS_WARNING;

} else {
…
myState = STRS_APP_STOPPED;

}
return STRS_OK;

}

NASA/TM—2010-216809 37

TABLE 7.6.—APP_Instance()

Description Set the handle name and identifier (ID). In C++, it is a static method used to call the class constructor for
C++.

Parameters • id—(in STRS_HandleID) handle ID of this STRS application.
• name—(in char*) handle name of this STRS application.

Return Pointer to instance of class, in C++. Non-null, in C.
Precondition
Postcondition The application is in STRS_APP_INSTANTIATED state.
See Also
Example for
C++

ThisSTRSApplication *ThisSTRSApplication::APP_Instance(
 STRS_HandleID handleID, char *name) {
 return new ThisSTRSApplication(handleID,name);
}

Example for C char savedName[nn];
ThisSTRSApplication *APP_Instance(
 STRS_HandleID handleID, char *name) {
 myQ = handleID;
 handleName = savedName;
 strncpy(handleName, name, nn);
 return name;
}

TABLE 7.7.—APP_Query()

Description Obtain values for one or more properties in the application. The API is defined in STRS_PropertySet. The
method is similar to query() in PropertySet interface in SCA or OMG/SWRADIO. The propList must not be
NULL. If a list of names is specified in propList (nProps > 0), only those values will be returned whose
names are specified in the propList. If no names are specified in propList (nProps = 0), both names and
values are filled in up to the maximum number (mProps) allotted.

Parameters • propList—(inout STRS_Properties *)—list of name and value pairs
Return status (STRS_Result)
Precondition The propList must have space allotted for the maximum number of properties whose values are to be

returned.
Postcondition propList is populated with values if names are already in the list (if nProps > 0), or else populated with all

available names and values up to the maximum (mProps).
See Also STRS_Query
Example STRS_Result APP_Query(Properties *propList) {

 int ip;
 if (propList == NULL) {
 STRS_Buffer_Size nb = strlen(
 "Can’t return attributes.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can't return attributes.", nb);
 return STRS_ERROR;
 }
 for (ip=0; ip<propList->nProps, ip++) {
 if (strcmp("A",propList->vProps[ip].name)==0)
 {
 /* Variable “a” is declared as a character
 * string, and typically contains a value
 * set by APP_Configure. */
 if (a == NULL || strlen(a) == 0) {
 propList->vProps[ip].value = NULL;
 } else {
 strcpy(propList->vProps[ip].value, a);
 }
 }
 }
 return STRS_OK;
}

NASA/TM—2010-216809 38

TABLE 7.8.—APP_Read()
Description Method used to obtain data from the application. This is optional. The API is defined in STRS_Source.
Parameters • buffer—(in STRS_Message) a pointer to an area in which the application stores the requested data

• nb—(in STRS_Buffer_Size) number of bytes requested
Return Error status (negative) or actual number of bytes (non-negative) obtained (STRS_Result)
Precondition Application is in STRS_APP_RUNNING state. Storage for the buffer with space for nb bytes is allocated

before calling APP_Read. If used for a character array, the size should include space for a final '\0'.
Postcondition
See Also STRS_Read
Example STRS_Result APP_Read(STRS_Message buffer,

 STRS_Buffer_Size nb) {
 if (nb <= 4) return STRS_ERROR;
 strcpy (buffer,"ABCD");
 return strlen(buffer);
}

TABLE 7.9.—APP_ReleaseObject()
Description Free any resources the application has acquired. An example would be to close any open files or devices.

Nothing is done if the application state is STRS_APP_RUNNING. The API is defined in STRS_LifeCycle.
The method is similar to releaseObject() in LifeCycle interface in SCA or OMG/SWRADIO. The purpose
of APP_ReleaseObject is to prepare the application for removal.

Parameters None
Return status (STRS_Result)
Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED state.
Postcondition
See Also STRS_ReleaseObject
Example STRS_Result APP_ReleaseObject() {

 if (myState == STRS_APP_RUNNING) {
 STRS_Buffer_Size nb = strlen("Can't free
 resources when STRS_APP_RUNNING.");
 STRS_Log(fromWF,STRS_WARNING_QUEUE,
 "Can't free resources when
 STRS_APP_RUNNING.", nb);
 return STRS_WARNING;
 } else {
 …
 }
 return STRS_OK;
}

NASA/TM—2010-216809 39

TABLE 7.10.—APP_RunTest()
Description Test the application. The API is defined in STRS_TestableObject. The method is similar to runTest() in

TestableObject interface in SCA and OMG/SWRADIO. The tests provide aid in isolating faults within the
application.

Parameters • testID—(in STRS_TestID) number of the test to be performed. STRS_TEST_STATUS must always be
implemented to return status or state. Other values are mission dependant.

• propList—(inout STRS_Properties*) list of name value pairs used to configure the test, and/or return
results.

Return Status or state (STRS_Result)
Precondition Application is in STRS_APP_STOPPED or STRS_APP_RUNNING state. Only certain tests may be

allowed when application is in STRS_APP_RUNNING state.
Postcondition No change to state unless specifically required by mission.
See Also STRS_RunTest
Example STRS_Result APP_RunTest(STRS testID, STRS_Properties *propList) {

 if (testID == STRS_TEST_STATUS)
return myState;

 if (testID == STRS_TEST_USER_BASE) {
 …
 } else {
 STRS_Buffer_Size nb = strlen("Invalid
 APP_RunTest argument test ID.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "Invalid APP_RunTest argument test
 ID.", nb);
 }
 return STRS_ERROR;
}

TABLE 7.11.—APP_Start()
Description Begin normal application processing. Nothing is done if the application is not in STRS_APP_STOPPED

state. The API is defined in STRS_ControllableComponent. The method is similar to start() in Resource
interface in SCA or ControllableComponent interface in OMG/SWRADIO.

Parameters None
Return status (STRS_Result)
Precondition Application is in STRS_APP_STOPPED state.
Postcondition Application is in STRS_APP_RUNNING state
See Also STRS_Start
Example STRS_Result APP_Start() {

if (myState == STRS_APP_STOPPED) {
…
myState = STRS_APP_RUNNING;
…

} else {
Return STRS_ERROR;

}
return STRS_OK;

}

NASA/TM—2010-216809 40

TABLE 7.12.—APP_Stop()
Description End normal application processing. Nothing is done unless the application is in STRS_APP_RUNNING

state. The API is defined in STRS_ControllableComponent. The method is similar to stop() in Resource
interface in SCA or ControllableComponent interface in OMG/SWRADIO.

Parameters None
Return status (STRS_Result)
Precondition Application is in STRS_APP_RUNNING state
Postcondition Application is in STRS_APP_STOPPED state
See Also STRS_Stop
Example STRS_Result APP_Stop() {

if (myState == STRS_APP_RUNNING) {
…
myState = STRS_APP_STOPPED;

}
return STRS_OK;

}

TABLE 7.13.—APP_Write()
Description Method used to send data to the application. This is optional. The API is defined in STRS_Sink.
Parameters • buffer—(in STRS_Message) pointer to the data for the application to process

• nb—(in STRS_Buffer_Size) number of bytes in buffer
Return Error status (negative) or number of bytes (non-negative) written (STRS_Result)
Precondition Application is in STRS_APP_RUNNING state
Postcondition
See Also STRS_Write
Example STRS_Result APP_Write(STRS_Message buffer,

 STRS_Buffer_Size nb) {
 /* Data in buffer is character data. */
 if (strlen(buffer) != nb -1)
 return STRS_ERROR;
 int nco = fprintf(stdout,”%s\n”,buffer);
 return (STRS_Result) nco;
}

7.3.2 STRS Infrastructure-Provided Application Control API
The STRS infrastructure will provide the STRS Infrastructure-Provided Application Control API to

support application operation using the STRS Application-Provided Application Control API in Section
7.3.1. These STRS Infrastructure-Provided Application Control API methods (7.3.2) beginning with
“STRS_” correspond to the STRS Application-Provided Application Control API (7.3.1) beginning with
“APP_”, and will be used to access those methods. The STRS infrastructure will implement these
methods for use by any STRS Application, or any part of the infrastructure that is desired to be
implemented in a portable way.

A property structure contains a list of name and value pairs used to set or get execution parameters.

• (STRS-40) The STRS infrastructure shall contain a callable STRS_Configure method as described

in Table 7.14.
• (STRS-41) The STRS infrastructure shall contain a callable STRS_GroundTest method as

described in Table 7.15.
• (STRS-42) The STRS infrastructure shall contain a callable STRS_Initialize method as described

in Table 7.16.

NASA/TM—2010-216809 41

• (STRS-43) The STRS infrastructure shall contain a callable STRS_Query method as described in
Table 7.17.

• (STRS-44) The STRS infrastructure shall contain a callable STRS_ReleaseObject method as
described in Table 7.18.

• (STRS-45) The STRS infrastructure shall contain a callable STRS_RunTest method as described
in Table 7.19.

• (STRS-46) The STRS infrastructure shall contain a callable STRS_Start method as described in
Table 7.20.

• (STRS-47) The STRS infrastructure shall contain a callable STRS_Stop method as described in
Table 7.21.

TABLE 7.14.—STRS_Configure()
Description Set values for one or more properties in the application (or device). It is the responsibility of the application

(or device) to determine which properties can be changed in which states.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.
• propList—(in STRS_Properties *) list of name and value pairs.

Return status (STRS_Result)
Precondition
Postcondition
See Also APP_Configure
Example /* Set A=5, B=27. */

struct {
 STRS_NumberOfProperties nProps;
 STRS_NumberOfProperties mProps;
 STRS_Property vProps[MAX_PROPS];
} propList;
propList.nProps = 2;
propList.mProps = MAX_PROPS;
propList.vProps[0].name = "A";
propList.vProps[0].value = "5";
propList.vProps[1].name = "B";
propList.vProps[1].value = "27";
STRS_Result rtn =
 STRS_Configure(fromWF,toWF,
 (STRS_Properties *) &propList);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Configure fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Configure fails.", nb);
}

NASA/TM—2010-216809 42

TABLE 7.15.—STRS_GroundTest()
Description Perform unit and system testing usually done on ground before deployment. The testing may include

calibration. This method is invalid upon deployment. The tests provide aid in isolating faults within the
target component. Because of the greater reliance on radios in space, more exhaustive testing is required
before entrusting life and property to a software defined radio.

Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.
• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.
• testID—(in STRS_TestID) number of the test to be performed. Values are mission dependant.
• propList—(inout STRS_Properties *) list of name value pairs used to configure the test, and/or return

results.
Return status or state (STRS_Result)
Precondition If the responding entity is an application, it must be in the STRS_APP_STOPPED or

STRS_APP_RUNNING state. Only certain tests may be allowed when application is in
STRS_APP_RUNNING state.

Postcondition no change to state unless specifically required by mission
See Also APP_GroundTest.
Example STRS_Result rtn =

 STRS_GroundTest(fromWF,toWF,testID,NULL);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "GroundTest fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "GroundTest fails.", nb);
}

TABLE 7.16.—STRS_Initialize()
Description Initialize the target component. The purpose is to set/reset the component to a known initial state.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.
Return status (STRS_Result)
Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED state
Postcondition Application is in STRS_APP_STOPPED state
See Also APP_Initialize.
Example STRS_Result rtn = STRS_Initialize(fromWF,toWF);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Initialize fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Initialize fails.", nb);
}

NASA/TM—2010-216809 43

TABLE 7.17.—STRS_Query()

Description Obtain values for one or more properties in the target component. The propList must not be NULL. If a list
of names is specified in propList (nProps > 0), only those values will be returned whose names are specified
in the propList. If no names are specified in propList (nProps = 0), both names and values are filled in up to
the maximum number (mProps) allotted.

Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.
• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.
• propList—(inout STRS_Properties *)—list of name and value pairs

Return status (STRS_Result)
Precondition The propList must have space allotted for the maximum number of properties encountered.
Postcondition propList is populated with values if names are already in the list, or else populated with all available names

and values.
See Also APP_Query
Example struct {

 STRS_NumberOfProperties nProps;
 STRS_NumberOfProperties mProps;
 STRS_Property vProps[MAX_PROPS];
} propList;
propList.nProps = 2;
propList.mProps = MAX_PROPS;
propList.vProps[0].name = "A";
propList.vProps[0].value = NULL;
propList.vProps[1].name = "B";
propList.vProps[1].value = NULL;
STRS_Result rtn =
 STRS_Query(fromWF,toWF,
 (STRS_Properties *) &propList);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Query fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Query fails.", nb);
}
for (ip=0; ip<propList.nProps; ip++) {
 cout << propList.vprops[ip].name << "="
 << propList.vProps[ip].value
 << std::endl;
}

TABLE 7.18.—STRS_ReleaseObject()
Description Free any resources the application has acquired. An example would be to close any open files or devices.

Nothing is done if the application is started. The purpose of STRS_ReleaseObject is to prepare the target
component for removal.

Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.
• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.

Return status (STRS_Result)
Precondition Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED state
Postcondition
See Also APP_ReleaseObject
Example STRS_Result rtn =

 STRS_ReleaseObject(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb =
 strlen("STRS_ReleaseObject fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_ReleaseObject fails.", nb);
}

NASA/TM—2010-216809 44

TABLE 7.19.—STRS_Runtest()
Description Test the target component. The tests provide aid in isolating faults within the target component.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.
• testID—(in STRS_TestID)number of the test to be performed. STRS_TEST_STATUS must always be

implemented to return status or state. Other values are mission dependant.
• propList—(inout STRS_Properties*) list of name value pairs used to configure the test, and/or return

results.
Return status or state (STRS_Result)
Precondition If the responding entity is an application, it must be in the STRS_APP_STOPPED or

STRS_APP_RUNNING state. Only certain tests may be allowed when application is in
STRS_APP_RUNNING state.

Postcondition no change to state unless specifically required by mission
See Also APP_RunTest
Example STRS_Result state =

 STRS_RunTest(fromWF,toWF,
 STRS_TEST_STATUS,NULL);
if (! STRS_IsOK(state)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_RunTest fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_RunTest fails.”, nb);
}

TABLE 7.20.—STRS_Start()
Description Begin normal application processing. Nothing is done if the application is already started.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request.
Return status (STRS_Result)
Precondition Application is in STRS_APP_STOPPED state.
Postcondition Application is in STRS_APP_RUNNING state
See Also APP_Start
Example STRS_Result rtn = STRS_Start(fromWF,toWF);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Start fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Start fails.", nb);
}

TABLE 7.21.—STRS_Stop()
Description End normal application processing. Nothing is done unless the application is started.
Parameters • fromWF—in STRS_HandleID) handle ID of current component making the request.

• toWF—in STRS_HandleID) handle ID of target component that should respond to the request.
Return status (STRS_Result)
Precondition Application is in STRS_APP_RUNNING state.
Postcondition Application is in STRS_APP_STOPPED state
See Also APP_Stop
Example STRS_Result rtn = STRS_Stop(fromWF,toWF);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "STRS_Stop fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "STRS_Stop fails.", nb);
}

NASA/TM—2010-216809 45

7.3.3 STRS Infrastructure Application Setup API
The STRS Infrastructure Application Setup methods are general methods or are used to control one

application from another.

• (STRS-48) The STRS infrastructure shall contain a callable STRS_AbortApp method as described

in Table 7.22.
• (STRS-49) The STRS infrastructure shall contain a callable STRS_GetErrorQueue method as

described in Table 7.23.
• (STRS-50) The STRS infrastructure shall contain a callable STRS_HandleRequest method as

described in Table 7.24.
• (STRS-51) The STRS infrastructure shall contain a callable STRS_InstantiateApp method as

described in Table 7.25.
• (STRS-52) The STRS infrastructure shall contain a callable STRS_IsOK method as described in

Table 7.26.
• (STRS-53) The STRS infrastructure shall contain a callable STRS_Log method as described in

Table 7.27.
• (STRS-54) When an STRS application has a non-fatal error, the STRS application shall use the

STRS_Log method (Table 7.27) with a target handle ID of constant STRS_ERROR_QUEUE.
• (STRS-55) When an STRS application has a fatal error, the STRS application shall use the

STRS_Log method (Table 7.27) with a target handle ID of constant STRS_FATAL_QUEUE.
• (STRS-56) When an STRS application has a warning condition, the STRS application shall use

the STRS_Log method (Table 7.27) with a target handle ID of constant
STRS_WARNING_QUEUE.

• (STRS-57) When an STRS application needs to send telemetry, the STRS application shall use
the STRS_Log method (Table 7.27) with a target handle ID of constant
STRS_TELEMETRY_QUEUE.

TABLE 7.22.—STRS_AbortApp()
Description Abort an application or service
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toWF—(in STRS_HandleID) handle ID of target component that should respond to the request
Return Status (STRS_Result)
Precondition Application is in STRS_APP_INSTANTIATED, STRS_APP_STOPPED, or STRS_APP_RUNNING state.
Postcondition
See Also
Example STRS_Result rtn = STRS_AbortApp(fromWF,toWF);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "AbortApp fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "AbortApp fails.", nb);
}

NASA/TM—2010-216809 46

TABLE 7.23.—STRS_GetErrorQueue()
Description Transform an error status into an error queue.
Parameters • result—(in STRS_Result) return value of previous call.
Return Handle ID (STRS_HandleID) corresponding to invalid STRS_Result; i.e., return STRS_ERROR_QUEUE

for STRS_ERROR, STRS_WARNING_QUEUE for STRS_WARNING, and STRS_FATAL_QUEUE for
STRS_FATAL.

Precondition
Postcondition
See Also STRS_IsOK
Example char toWF[MAX_PATH_LENGTH];

strcpy(toWF,"/path/STRS_WFxxx.cfg");
STRS_HandleID wfID =
 STRS_InstantiateApp(fromWF,toWF);
if (! STRS_IsOK(wfID)) {
 STRS_Buffer_Size nb = strlen(
 "InstantiateApp fails.");
 STRS_Log(fromWF, STRS_GetErrorQueue(wfID),
 "InstantiateApp fails.", nb);
}

TABLE 7.24.—STRS_HandleRequest()
Description The table of object names is searched for the given name and the index is returned as the handle ID. A

handle ID is an identifier that is used to control access to applications and resources such as other
applications, devices, files, or message queues. The handle ID of the current component (fromWF) is used
for any error message unless the handle ID of the current component is what is being determined.

Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request unless it is a
request for the handle ID of the current component.

• toWF—(in char *) name of desired resource (application, device, file, queue).
Return handle ID of the entity or error status.(STRS_HandleID)
Precondition
Postcondition
See Also
Example STRS_HandleID toWF = STRS_HandleRequest(fromWF,

 otherWF);
if (STRS_IsOK(toWF)) {
 cout << "Found handle for " << otherWF << ": "
 << toWF << std::endl;
} else {
 STRS_Buffer_Size nb = strlen(
 "Did not find handle.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Did not find handle.", nb);
}

NASA/TM—2010-216809 47

TABLE 7.25.—STRS_InstantiateApp()

Description Instantiate an application, service or device and performs any operations requested by the configuration file.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toWF—(in char *) fully qualified file name of the configuration file of the application (or device) that
should be instantiated. The handleName corresponding to the application, service or device specified in
the configuration file must be unique. The convention is to prefix the application name with a unique
source and add a number at the end if required to make the handleName unique.

Return Handle ID (STRS_HandleID) of application instantiated or error status
Precondition The files for the STRS Application must be accessible.
Postcondition Application, service, or device is in the state specified by the configuration file.
See Also
Example char toWF[MAX_PATH_LENGTH];

strcpy(toWF,"/path/STRS_WFxxx.cfg");
STRS_HandleID wfID =
 STRS_InstantiateApp(fromWF,toWF);
if (! STRS_IsOK(wfID)) {
 STRS_Buffer_Size nb = strlen(
 "InstantiateApp fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "InstantiateApp fails.", nb);
}

TABLE 7.26.—STRS_IsOK()
Description Return true, if return value of previous call is not an error status.
Parameters • result—(in STRS_Result) return value of previous call.
Return true, if STRS_Result is not STRS_WARNING, STRS_ERROR, or STRS_FATAL; i.e., non-negative.

(bool)
Precondition Previous call returns a status result.
Postcondition
See Also STRS_GetErrorQueue
Example char toWF[MAX_PATH_LENGTH];

strcpy(toWF,"/path/STRS_WFxxx.cfg");
STRS_HandleID wfID =
 STRS_InstantiateApp(fromWF,toWF);
if (! STRS_IsOK(wfID)) {
 STRS_Buffer_Size nb = strlen(
 "InstantiateApp fails.");
 STRS_Log(fromWF, STRS_GetErrorQueue(wfID),
 "InstantiateApp fails.", nb);
}

TABLE 7.27.—STRS_Log()
Description Send log message for distribution as appropriate. Time stamp is added automatically.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• logTarget—(in STRS_HandleID) handle ID of target (e.g., STRS_TELEMETRY_QUEUE,
STRS_ERROR_QUEUE, STRS_WARNING_QUEUE, STRS_FATAL_QUEUE).

• msg—(in STRS_Message) a pointer to the data to process
• nb—(in STRS_Buffer_Size) number of bytes in buffer

Return status (STRS_Result)
Precondition The target component is in STRS_APP_RUNNING state.
Postcondition
See Also See STRS_RunTest or APP_RunTest for further examples.
Example STRS_Buffer_Size nb = strlen("file does not exist.");

STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "file does not exist.", nb);
could produce a line something like:
19700101000000;WF1,ERROR,file does not exist.

NASA/TM—2010-216809 48

7.3.4 STRS Infrastructure Data Sink
The STRS Infrastructure Data Sink method, STRS_Write, is used to push data to any implemented

data sink.

• (STRS-58) The STRS infrastructure shall contain a callable STRS_Write method as described in
Table 7.28.

TABLE 7.28.—STRS_Write()
Description Method used to send data to a sink
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toID—(in STRS_HandleID) handle ID of target component that should respond to the request and that
implemented STRS_Sink.

• buffer—(in STRS_Message) a pointer to the data to process
• nb—(in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (non-negative) written (STRS_Result)
Precondition The target component is in STRS_APP_RUNNING state.
Postcondition
See Also APP_Write
Example char buffer(32);

strcpy(buffer,"ABCDE");
STRS_Buffer_Size nb = strlen(buffer);
STRS_Result rtn =
 STRS_Write(fromWF,toID,buffer,nb);

7.3.5 STRS Infrastructure Data Source
The STRS Infrastructure Data Source method, STRS_Read, is used to pull data from any

implemented data source or supplier.

• (STRS-59) The STRS infrastructure shall contain a callable STRS_Read method as described in
Table 7.29.

TABLE 7.29.—STRS_Read()
Description Method used to obtain data from a source or supplier.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• pullID—(in STRS_HandleID) handle ID of target component that should respond to the request and that
implemented STRS_Source.

• buffer—(in STRS_Message) a pointer to an area in which to store the data requested
• nb—(in STRS_Buffer_Size) number of bytes requested

Return Error status (negative) or actual number of bytes (non-negative) obtained (STRS_Result)
Precondition Storage for the buffer is allocated before calling STRS_Read having space for at least nb bytes. If used for a

character array, the size should include space for a final '\0'. The target component is in
STRS_APP_RUNNING state.

Postcondition
See Also APP_Read
Example char buffer(32);

STRS_Buffer_Size nb = 32;
STRS_Result rtn =
 STRS_Read(fromWF,pullID,buffer,nb);

NASA/TM—2010-216809 49

7.3.6 STRS Infrastructure Device Control API
An STRS Device is a proxy for the data and/or control path to the actual hardware. An STRS Device

may use any available platform-specific HAL to communicate with and control the specialized hardware.
An STRS Device may also be used to hide the details of networking from the application. The purpose of
abstracting the hardware interfaces in a standard manner is to make the applications more portable. An
STRS Device is an STRS Application that responds to the STRS Infrastructure-Provided Application
Control API (7.3.2) calls as well as the following additional calls. The STRS Device implementation is
suggested in Figure 7.6.

• (STRS-60) The STRS applications shall use the STRS infrastructure Device Control methods to

control the STRS Devices.
• (STRS-61) The STRS infrastructure shall contain a callable STRS_DeviceClose method as

described in Table 7.30.
• (STRS-62) The STRS infrastructure shall contain a callable STRS_DeviceFlush method as

described in Table 7.31.
• (STRS-63) The STRS infrastructure shall contain a callable STRS_DeviceLoad method as

described in Table 7.32.
• (STRS-64) The STRS infrastructure shall contain a callable STRS_DeviceOpen method as

described in Table 7.33.
• (STRS-65) The STRS infrastructure shall contain a callable STRS_DeviceReset method as

described in Table 7.34.
• (STRS-66) The STRS infrastructure shall contain a callable STRS_DeviceStart method as

described in Table 7.35.
• (STRS-67) The STRS infrastructure shall contain a callable STRS_DeviceStop method as

described in Table 7.36.
• (STRS-68) The STRS infrastructure shall contain a callable STRS_DeviceUnload method as

described in Table 7.37.
• (STRS-69) The STRS infrastructure shall contain a callable STRS_SetISR method as described in

Table 7.38.

TABLE 7.30.—STRS_DeviceClose()

Description Close the device.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Precondition The device must have been open.
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceClose(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceClose fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceClose fails.", nb);
}

NASA/TM—2010-216809 50

TABLE 7.31.—STRS_DeviceFlush()

Description Send any buffered data immediately to the underlying hardware and clear the buffers.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Preconditio
n

The device must have been open.

Postconditi
on

See Also
Example STRS_Result rtn =

 STRS_DeviceFlush(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceFlush fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceFlush fails.", nb);
}

TABLE 7.32.—STRS_DeviceLoad()
Description Load a binary image to the device.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
• fileName—(in char *) fully qualified file name of the binary image to load onto the hardware device.

Return status (STRS_Result)
Precondition
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceLoad(fromWF,toDev,
 "/path/WF1.FPGA.bit");
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceLoad fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceLoad fails.", nb);
}

TABLE 7.33.—STRS_DeviceOpen()
Description Open the device.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Precondition The device must not already be open.
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceOpen(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceOpen fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceOpen fails.", nb);
}

NASA/TM—2010-216809 51

TABLE 7.34.—STRS_DeviceReset()
Description Reinitialize the device. Reset is normally used after the corresponding device has been started and stopped,

before starting the device again.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Precondition The device must have been open.
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceReset(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceReset fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceReset fails.", nb);
}

TABLE 7.35.—STRS_DeviceStart()
Description Start the device. This is normally not used since most devices start when they are loaded.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Precondition
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceStart(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceStart fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceStart fails.", nb);
}

TABLE 7.36.—STRS_DeviceStop()
Description Stop the device. This is normally not used since most devices stop when they are unloaded or there is no

data to process.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Precondition
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceStop(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceStop fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceStop fails.", nb);
}

NASA/TM—2010-216809 52

TABLE 7.37.—STRS_DeviceUnload()

Description Unload the device.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
Return status (STRS_Result)
Precondition
Postcondition
See Also
Example STRS_Result rtn =

 STRS_DeviceUnload(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "DeviceUnload fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "DeviceUnload fails.", nb);
}

TABLE 7.38.—STRS_SetISR()
Description Set the Interrupt Service Routine for the device.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
• pfun—(in STRS_ISR_Function) function pointer to a static function with no arguments to be called to

service the interrupt
Return status (STRS_Result)
Precondition
Postcondition
See Also
Example

7.3.7 STRS Infrastructure File Control API
The STRS Infrastructure File Control methods, along with STRS_Read and/or STRS_Write, provide a

portable means for the applications to use storage, the duration of which is mission dependent. The file
control methods in POSIX PSE51 are not sufficient for the needs of STRS, as an application strictly
conforming to PSE51 can use the open(), fopen(), or freopen() functions only to open existing files, not
create new files. In addition, the PSE51 profile lacks functions to remove files or provide information
regarding available storage. For more information about POSIX, see Section 7.4. The STRS Infrastructure
File Control methods use a handle ID to access storage.

• (STRS-70) The STRS infrastructure shall contain a callable STRS_FileClose method as described

in Table 7.39.
• (STRS-71) The STRS infrastructure shall contain a callable STRS_FileGetFreeSpace method as

described in Table 7.40.
• (STRS-72) The STRS infrastructure shall contain a callable STRS_FileGetSize method as

described in Table 7.41.
• (STRS-73) The STRS infrastructure shall contain a callable STRS_FileGetStreamPointer method

as described in Table 7.42.
• (STRS-74) The STRS infrastructure shall contain a callable STRS_FileOpen method as described

in Table 7.43.
• (STRS-75) The STRS infrastructure shall contain a callable STRS_FileRemove method as

described in Table 7.44.

NASA/TM—2010-216809 53

• (STRS-76) The STRS infrastructure shall contain a callable STRS_FileRename method as
described in Table 7.45.

TABLE 7.39.—STRS_FileClose()
Description Close the file. STRS_FileClose is used to close a file that has been opened by STRS_FileOpen.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toFile—(in STRS_HandleID) handle ID of file to be closed.
Return status (STRS_Result)
Precondition The file is open.
Postcondition The file is closed and the handle ID is released.
See Also STRS_FileOpen
Example STRS_Result rtn = STRS_FileClose(fromWF,toFile);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileClose fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileClose fails.", nb);
}

TABLE 7.40.—STRS_FileGetFreeSpace()
Description Get total size of free space available for file storage.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• fileSystem—(in char *) used when more than one file system exists.
Return Total size in bytes (STRS_File_Size)
Precondition
Postcondition
See Also
Example STRS_File_Size size =

 STRS_FileGetFreeSpace(fromWF,NULL);
if (! STRS_IsOK(size)) {
 STRS_Buffer_Size nb = strlen(
 "FileGetFreeSpace fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileGetFreeSpace fails.", nb);
}

TABLE 7.41.—STRS_FileGetSize()
Description Get the size of the specified file.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• fileName—(in char *) fully qualified file name of the file for which the size is obtained.
Return File size in bytes (STRS_File_Size)
Precondition
Postcondition
See Also
Example STRS_File_Size size =

 STRS_FileGetSize(fromWF,"/path/WF1.FPGA.bit");
if (! STRS_IsOK(size)) {
 STRS_Buffer_Size nb = strlen(
 "FileGetSize fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileGetSize fails.", nb);
}

NASA/TM—2010-216809 54

TABLE 7.42.—STRS_FileGetStreamPointer()
Description Get the file stream pointer for the file associated with the STRS handle ID. This is normally not used

because either the common functions are built in to STRS or the entire file manipulation is local to one
application or device. This method may be required for certain file operations not built in to STRS and
distributed over more than one application or device or the STRS infrastructure. For example, the file
stream pointer may be required when multiple applications write to the same file using a queue or need
features not found in STRS_Write. Having a file system is optional; if no file system is present, NULL will
be returned. A NULL will also be returned if another error condition is detected.

Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.
• toFile—(in STRS_HandleID) file handle ID.

Return File stream pointer (FILE *) or NULL for error condition.
Precondition File is open.
Postcondition
See Also STRS_FileOpen
Example FILE *fsp =

 STRS_FileGetStreamPointer(fromWF,toFile);
if (fsp == NULL) {
 STRS_Buffer_Size nb =
 strlen("FileGetStreamPointer fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileGetStreamPointer fails.", nb);
} else {
 rewind(fsp);
}

TABLE 7.43.—STRS_FileOpen()
Description Open the file. This method is used to obtain an STRS handle ID when the file manipulation is either

built in to STRS or distributed over more than one application or device or the STRS infrastructure
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• filename—(in char *) file name of the file to be opened.
• file access—(in STRS_Access) indicator whether file is to be opened for reading, writing, both, or

appending.
• file type—(in STRS_Type) indicator whether file is text or binary.

Return a handle ID used to read or write data from or to the file (STRS_HandleID)
Precondition The file is not open.
Postcondition The file is open unless an error occurs.
See Also
Example STRS_Result rtn =

 STRS_FileOpen(fromWF,filename,
 STRS_ACCESS_READ,
 STRS_TYPE_TEXT);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileOpen fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileOpen fails.", nb);
}

NASA/TM—2010-216809 55

TABLE 7.44.—STRS_FileRemove()
Description Remove the file.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• oldName—(in char *) name of file to be removed.
Return status (STRS_Result)
Precondition The existing file is not open.
Postcondition The file is no longer available and the space where it was stored becomes available.
See Also
Example STRS_Result rtn =

 STRS_FileRemove(fromWF,oldName);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileRemove fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileRemove fails.", nb);
}

TABLE 7.45.—STRS_FileRename()
Description Rename the file.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• oldName—(in char *) current name of file.
• newName—(in char *) new name of file after rename.

Return status (STRS_Result)
Precondition The existing file is not open. The new file should not exist.
Postcondition The contents of the old file are now associated with the new file name.
See Also
Example STRS_Result rtn =

 STRS_FileRename(fromWF,oldName,newName);
if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "FileRename fails.");
 STRS_Log(fromWF, STRS_ERROR_QUEUE,
 "FileRename fails.", nb);
}

7.3.8 STRS Infrastructure Messaging API
The STRS applications use the STRS Infrastructure Messaging methods to send messages between

applications and/or the infrastructure with a single target handle ID. The ability for applications to
communicate with other STRS applications is crucial for the operation of radio services, as well as
separating the receive and transmit functionality between two applications. There are two models for
passing messages: STRS_QUEUE_SIMPLE and STRS_QUEUE_PUBSUB. In a
STRS_QUEUE_SIMPLE queue, messages are written to a queue by one application and read from the
queue by another application. In a STRS_QUEUE_PUBSUB queue, messages written to the queue by
one application are subsequently written to all subscribers of that queue. Therefore, the
STRS_QUEUE_PUBSUB messaging API should be implemented using a form of the Observer or
Publish-Subscribe design pattern. The final destination of a message is not necessarily known to the
producer of the message.

• (STRS-77) The STRS applications shall use the STRS Infrastructure Messaging methods to send

messages between applications and/or the infrastructure with a single target handle ID.
• (STRS-78) The STRS infrastructure shall contain a callable STRS_QueueCreate method as

described in Table 7.46.

NASA/TM—2010-216809 56

• (STRS-79) The STRS infrastructure shall contain a callable STRS_QueueDelete method as
described in Table 7.47.

• (STRS-80) The STRS infrastructure shall contain a callable STRS_Register method as described
in Table 7.48.

• (STRS-81) The STRS infrastructure shall contain a callable STRS_Unregister method as
described in Table 7.49.

TABLE 7.46.—STRS_QueueCreate()
Description Create a queue (FIFO). The use of the queue priority parameter is implementation dependent.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• queueName—(in char *) unique name of the queue
• queueType—(in STRS_Queue_Type) type of queue created: STRS_QUEUE_SIMPLE or

STRS_QUEUE_PUBSUB.
• queuePriority—(in STRS_Priority) priority of queue: STRS_PRIORITY_LOW,

STRS_PRIORITY_MEDIUM, or STRS_PRIORITY_HIGH.
Return handle ID of queue or error status (STRS_HandleID)
Precondition
Postcondition
See Also
Example STRS_HandleID qX = STRS_QueueCreate(myQ, "QX",

 STRS_QUEUE_SIMPLE, STRS_PRIORITY_MEDIUM);
if (! STRS_IsOK(qX)) {
 STRS_Buffer_Size nb = strlen(
 "Can’t create queue.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can't create queue", nb).
 return STRS_ERROR;
}

TABLE 7.47.—STRS_QueueDelete()
Description Delete a queue. Any association between a publisher and subscriber that references the queue to be deleted

is removed.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toQueue—(inout STRS_HandleID) handle ID of queue to delete; either publisher or subscriber
Return status (STRS_Result)
Precondition
Postcondition
See Also
Example STRS_Result rtn = STRS_QueueDelete(myQ,qX);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't delete queue.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t delete queue", nb);
}

NASA/TM—2010-216809 57

TABLE 7.48.—STRS_Register()
Description Register an association between a publisher and subscriber. Disallow adding an association such that the

subscriber has another association back to the publisher because this would cause an infinite loop.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• useQID—(in STRS_HandleID) handle ID of queue of type STRS_QUEUE_PUBSUB that will be used
in sink; the publisher.

• actQID—(in STRS_HandleID) handle ID of queue, file, device, or target component that should respond
to the request; the subscriber.

Return status (STRS_Result)
Precondition The publisher queue of type STRS_QUEUE_PUBSUB exists.
Postcondition
See Also
Example STRS_Result rtn = STRS_Register(myQ,qX,qFC);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't register subscriber.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t register subscriber", nb);
}

TABLE 7.49.—STRS_Unregister()
Description Remove an association between a publisher and subscriber.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• useQID—(in STRS_HandleID) handle ID of queue of type STRS_QUEUE_PUBSUB that was used in
sink; the publisher.

• actQID—(in STRS_HandleID) handle ID of queue, file, device, or target component that should
respond to the request; usually the subscriber.

Return status (STRS_Result)
Precondition The publisher queue of type STRS_QUEUE_PUBSUB exists.
Postcondition
See Also
Example STRS_Result rtn = STRS_Unregister(myQ,qX,qFC);

if (! STRS_IsOK(rtn)) {
 STRS_Buffer_Size nb = strlen(
 "Can't unregister subscriber.");
 STRS_Log(fromWF,STRS_ERROR_QUEUE,
 "Can’t unregister subscriber.", nb);
}

7.3.9 STRS Infrastructure Time Control API
The STRS Infrastructure Time Control methods are used to access the hardware and software timers.

If timers require synchronization with external clocks, a dedicated service should handle the
communication required between the STRS radio and the external clock source, adjusting the time for
distance and velocity relative to the speed of light, before using these methods to adjust a corresponding
internal timer. These methods also include conversion of time between seconds and nanoseconds, taken
individually, and some implementation-specific object containing both. Although nanoseconds are the
units obtained by STRS_GetNanoseconds, that does not imply that the resolution is nanoseconds, nor that
the underlying STRS_TimeWarp object contains its data in nanoseconds. For example, the underlying
STRS_TimeWarp object could count ticks from some epoch and then STRS_GetSeconds and
STRS_GetNanoseconds compute the seconds and nanoseconds from the same or a different epoch. These
timers are expected to be used for relatively low accuracy timing such as time stamps, timed events, and
time constraints.

• (STRS-82) Any portion of the STRS Applications on the GPP needing time control shall use the
STRS Infrastructure Time Control methods to access the hardware and software timers.

NASA/TM—2010-216809 58

• (STRS-83) The STRS infrastructure shall contain a callable STRS_GetNanoseconds method as
described in Table 7.50.

• (STRS-84) The STRS infrastructure shall contain a callable STRS_GetSeconds method as
described in Table 7.51.

• (STRS-85) The STRS infrastructure shall contain a callable STRS_GetTime method as described
in Table 7.52.

• (STRS-86) The STRS infrastructure shall contain a callable STRS_GetTimewarp method as
described in Table 7.53.

• (STRS-87) The STRS infrastructure shall contain a callable STRS_SetTime method as described
in Table 7.54.

• (STRS-88) The STRS infrastructure shall contain a callable STRS_Synch method as described in
Table 7.55.

TABLE 7.50.—STRS_GetNanoseconds()
Description Get the number of nanoseconds from the STRS_TimeWarp object.
Parameters • twObj—(in STRS_TimeWarp) the STRS_TimeWarp object from which the nanoseconds portion of

the time increment is extracted.
Return Integer number of nanoseconds in the STRS_TimeWarp object representing a time interval.

(STRS_int32)
Precondition
Postcondition
See Also STRS_SetTimeWarp, STRS_GetSeconds
Example STRS_TimeWarp base, timx;

STRS_int32 nsec;
STRS_Result rtn;
STRS_Clock_Kind kx = 1;
rtn =
 STRS_GetTime(fromWF,toDev,*base,kx,*timx);
nsec = STRS_GetNanoseconds(base);

TABLE 7.51.—STRS_GetSeconds()
Description Get the number of seconds from the STRS_TimeWarp object.
Parameters • twObj—(in STRS_TimeWarp) the STRS_TimeWarp object from which the nanoseconds portion of

the time increment is extracted.
Return integer number of seconds in the STRS_TimeWarp object representing a time interval. (STRS_int32)
Precondition
Postcondition
See Also STRS_SetTimeWarp, STRS_GetNanoseconds
Example STRS_TimeWarp base,timx;

STRS_int32 isec;
STRS_Result rtn;
STRS_Clock_Kind kx = 1;
rtn = STRS_GetTime(fromWF,toDev,*base,kx,*timx);
isec = STRS_GetSeconds(base);

NASA/TM—2010-216809 59

TABLE 7.52.—STRS_GetTime()

Description Get the current base time and the corresponding time of a specified type. The base clock/timer is a
hardware timer. Because of the relative motion of radios in space, relativistic effects may cause a time
interval in one clock/timer to be different from an equivalent time interval in a different clock/timer for
a different frame of reference. The interval between two non-base times of different kinds only makes
sense if they are in the same frame of reference. To compute the interval between two non-base times in
the same frame of reference, the function is called twice and the interval is modified by the difference
between the two base times. An example of the difference between two non-base times when all three
are in the same frame of reference is shown in the example below.

Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.
• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
• baseTime—(inout STRS_TimeWarp) current time of the base timer.
• kind—(in STRS_Clock_Kind) type of clock/timer.
• kindTime—(inout STRS_TimeWarp) current time of the specified timer.

Return status (STRS_Result)
Precondition
Postcondition
See Also STRS_SetTime
Example STRS_TimeWarp b1,b2,t1,t2,diff;

STRS_int32 isec,nsec;
STRS_Result rtn;
STRS_Clock_Kind k1 = 1;
STRS_Clock_Kind k2 = 2;
rtn = STRS_GetTime(fromWF,toDev,*b1,k1,*t1);
rtn = STRS_GetTime(fromWF,toDev,*b2,k2,*t2);
/* The time difference between timer k1 and
 * timer k2 is computed by obtaining the two
 * times, t1 and t2, and adjusting for the
 * time difference between the two base times,
 * b2 and b1:
 */
isec = STRS_GetSeconds(t2) -
 (STRS_GetSeconds(t1) +
 (STRS_GetSeconds(b2) -
 STRS_GetSeconds(b1)));
nsec = STRS_GetNanoseconds(t2) -
 (STRS_GetNanoseconds(t1) +
 (STRS_GetNanoseconds(b2) -
 STRS_GetNanoseconds(b1)));
diff = STRS_GetTimeWarp(isec,nsec);

TABLE 7.53.—STRS_GetTimeWarp()
Description Get the STRS_TimeWarp object containing the number of seconds and nanoseconds in the time

interval.
Parameters • isec—(in STRS_int32) number of seconds in the time interval

• nsec—(in STRS_int32) number of nanoseconds in the fractional portion of the time interval
Return STRS_TimeWarp object representing the time interval.
Precondition
Postcondition
See Also STRS_GetNanoseconds, STRS_GetSeconds, STRS_SetTime
Example STRS_TimeWarp delta;

STRS_int32 isec = 1; /* Leap second. */
STRS_int32 nsec = 0;
delta = STRS_GetTimeWarp(isec,nsec);

NASA/TM—2010-216809 60

TABLE 7.54.—STRS_SetTime()
Description Set the current time in the specified clock/timer by adjusting the time offset.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
• kind—(in STRS_Clock_Kind) type of clock/timer.
• delta—(in STRS_TimeWarp) increment to add to specified clock/timer.

Return status (STRS_Result)
Precondition
Postcondition
See Also STRS_GetTime
Example STRS_TimeWarp delta;

STRS_int32 isec = 1; /* Leap second */
STRS_int32 nsec = 0;
STRS_Result rtn;
STRS_Clock_Kind k1 = 1;
delta = STRS_GetTimeWarp(isec,nsec);
rtn = STRS_SetTime(fromWF,toDev,k1,delta);

TABLE 7.55.—STRS_Synch()
Description Synchronize clocks. The action depends on whether the clocks to be synchronized are internal or

external.
Parameters • fromWF—(in STRS_HandleID) handle ID of current component making the request.

• toDev—(in STRS_HandleID) handle ID of device that should respond to the request.
• ref—(in STRS_Clock_Kind) reference clock/timer.
• target—(in STRS_Clock_Kind) clock/timer to synchronize with reference clock/timer.

Return status (STRS_Result)
Precondition
Postcondition
See Also
Example

NASA/TM—2010-216809 61

7.3.10 STRS Predefined Data
For portability, standard names are defined for various constants and data types, but the

implementation of these definitions is mission dependent. The common symbols and data types defined to
support the STRS infrastructure APIs are shown in Table 7.56.

• (STRS-89) The STRS platform developer shall provide an STRS.h file containing the STRS
predefined data shown in Table 7.56.

TABLE 7.56.—STRS PREDEFINED DATA
Typedefs STRS_Access—a type of number used to indicate how reading and/or writing of a file or queue is done. See

also constants STRS_ACCESS_APPEND, STRS_ACCESS_BOTH, STRS_ACCESS_READ, and
STRS_ACCESS_WRITE.

STRS_Buffer_Size—a type of number used to represent a buffer size in bytes. It must have enough bits to
contain the maximum number of bytes to reserve or to transfer with a read or write.

STRS_Clock_Kind—a type of number used to represent a kind of clock or timer. It must have enough bits to
contain the maximum number of kinds of clocks and timers.

STRS_File_Size—a type of number used to represent a size in bytes. It must have enough bits to contain the
number of bytes in GPP storage.

STRS_HandleID—a type of number used to represent an STRS application, device, file, or queue. A negative
value returned indicates an error.

STRS_int8—an 8-bit signed integer
STRS_int16—a 16-bit signed integer
STRS_int32—a 32-bit signed integer
STRS_int64—a 64-bit signed integer
STRS_ISR_Function—used to define static C-style function pointers passed to the setISR() method. The

function must be defined with no arguments.
STRS_Message—a char array pointer used for messages.
STRS_NumberOfProperties—a type of number used to represent the number of properties in a Properties

structure.
STRS_Queue_Type—a type of number used to represent the queue type. See also constants

STRS_QUEUE_SIMPLE and STRS_QUEUE_PUBSUB.
STRS_Priority—a type of number used to represent the priority of a queue. See also constants

STRS_PRIORITY_HIGH, STRS_PRIORITY_MEDIUM, STRS_PRIORITY_LOW.
STRS_Properities—shorthand for “struct Properties”
STRS_Property—shorthand for “struct Property”
STRS_Result—a type of number used to represent a return value, where negative indicates an error.
STRS_TestID—a type of number used to represent the built-in test or ground test to be performed by

APP_RunTest or APP_GroundTest, respectively. See also STRS_TEST_STATUS and
STRS_TEST_USER_BASE.

STRS_TimeWarp—a representation of a time delay. It must be able to hold the number of seconds and
nanoseconds in the time delay so that the corresponding macros can extract them. The time delay is meant to
be used for recurrent processes such as in health management. The implementation is mission/platform
specific and is most likely a struct. The maximum number of seconds in a time delay cannot be greater than
231 seconds (68 years). See also STRS_GetSeconds(), STRS_GetNanoseconds(), and
STRS_GetTimeWarp().

STRS_Type—a type of number used to indicate whether a file is text or binary. See also constants
STRS_TYPE_BINARY and STRS_TYPE_TEXT.

STRS_uint8—an 8-bit unsigned integer
STRS_uint16—a 16-bit unsigned integer
STRS_uint32—a 32-bit unsigned integer
STRS_uint64—a 64-bit unsigned integer

NASA/TM—2010-216809 62

TABLE 7.56.—STRS PREDEFINED DATA
Constants STRS_ACCESS_APPEND—writing is allowed such that previous data written is preserved and new data is

written following any previous data.
STRS_ACCESS_BOTH—both reading and writing are allowed.
STRS_ACCESS_READ—reading is allowed.
STRS_ACCESS_WRITE—writing is allowed.
STRS_OK—the STRS_Result is valid. See also STRS_IsOK().
STRS_ERROR—the STRS_Result is invalid. This indicates an error such that the application or other

component is still usable. Indicated by a negative value. See also STRS_IsOK() and
STRS_GetErrorQueue().

STRS_ERROR_QUEUE—the STRS_HandleID indicates that the log queue is for error messages. See also
STRS_GetErrorQueue().

STRS_FATAL—the STRS_Result is invalid. This indicates a serious error such that the application or other
component is not usable. Indicated by a negative value. See also STRS_IsOK() and STRS_GetErrorQueue().

STRS_FATAL_QUEUE—the STRS_HandleID indicates that the log queue is for fatal messages. The fatal
queue is used for messages that the FaultManager must deal with immediately. The messages are sent to the
Flight Computer for further handling. See also STRS_GetErrorQueue().

STRS_PRIORITY_HIGH—a number representing a high priority queue.
STRS_PRIORITY_MEDIUM—a number representing a medium priority queue.
STRS_PRIORITY_LOW—a number representing a low priority queue.
STRS_QUEUE_PUBSUB—a number representing a Publish/Subscribe queue type.
STRS_QUEUE_SIMPLE—a number representing a simple queue type.
STRS_TELEMETRY_QUEUE—the STRS_HandleID indicates that the log queue is for telemetry data.
STRS_TEST_STATUS—The numerical value of type STRS_TestID used as the argument to APP_RunTest so

that APP_RunTest returns the state of the STRS application.
STRS_TEST_USER_BASE—The numerical value of type STRS_TestID for the lowest numbered user-defined

test. Any STRS_TestID values lower than STRS_USER_BASE are reserved arguments to APP_RunTest.
STRS_TYPE_BINARY—the value indicating that a file is a binary file.
STRS_TYPE_TEXT—the value indicating that a file is a text file.
STRS_WARNING—the STRS_Result is invalid. This indicates an error such that there may be little or no

effect on the operation of the application or other component. Indicated by a negative value. See also
STRS_IsOK() and STRS_GetErrorQueue().

STRS_WARNING_QUEUE—the STRS_HandleID indicates that the log queue is for warning messages. See
also STRS_GetErrorQueue().

STRS_APP_FATAL—waveform, service, or device state indicating that a nonrecoverable error has occurred.
See also STRS_GetErrorQueue().

STRS_APP_ERROR—waveform, service, or device state indicating that a recoverable error has occurred. See
also STRS_GetErrorQueue().

STRS_APP_INSTANTIATED—waveform, service, or device state indicating that the object is instantiated and
ready to accept messages.

STRS_APP_RUNNING—waveform, service, or device state indicating that STRS_Start() has been called.
STRS_APP_STOPPED—waveform, service, or device state indicating that STRS_Initialize() or STRS_Stop()

has been called.
Structs Property—a struct with two character pointer variables: name and value. Using a structure allows treating a

name and value pair as a single item.
Properties—a struct with two variables (nProps and mProps) of type STRS_NumberOfProperties, and an array

of Property structures (vProps). The variable nProps contains the number of items in the vProps array. The
variable mProps contains the maximum number of items in the vProps array. Using an array of structures
allows treating each name and value pair as a single item in the vProps array.

7.4 Portable Operating System Interface (POSIX)

POSIX is an acronym for Portable Operating System Interface and refers to a family of IEEE
standards 1003.n which describe the fundamental services and functions necessary to provide a UNIX-
like kernel interface to applications. POSIX itself is not an operating system but is instead the guaranteed
programming interfaces available to the application programmer.

POSIX specifies a set of operating system interfaces and services. POSIX is not specifically bound to
a specific operating system, and has in fact been implemented on top of operating systems such as DEC
VMS and Windows NT. However, the creation of POSIX is closely coupled to the UNIX operating
system and its evolution. The goal was to create a standard set of interfaces that all of the UNIX flavors

NASA/TM—2010-216809 63

would support in order to facilitate software portability. Even though POSIX technically refers to the
family of specifications, it is more commonly used to refer specifically to IEEE 1003.1, which is the core
POSIX specification.

Characteristics of POSIX include:

• Application-Oriented
• Interface, Not Implementation
• Source, Not Object, Portability
• The C Language—system interfaces written in terms of International Standards organization

(ISO) C standard
• No Superuser, No System Administration
• Minimal Interface, Minimally Defined—core facilities of this standard have been kept as minimal

as possible.
• Broadly Implementable
• Minimal Changes to Historical Implementations
• Minimal Changes to Existing Application Code

The original POSIX specification was based on a general purpose computing platform, but a series of

amendments addressed the unique requirements of real-time computing. These amendments were:

• IEEE Std 1003.1b-1993 Realtime Extension
• IEEE Std 1003.1c-1995 Threads
• IEEE Std 1003.1d-1999 Additional Realtime Extensions
• IEEE Std 1003.1j-2000 Advanced Realtime Extensions
• IEEE Std 1003.1q-2000 Tracing

These amendments were rolled into the base specification in version IEEE 1003.1-1996.

IEEE 1003.13 provides a standards-based option for an STRS AEP.

7.4.1 STRS Application Environment Profile
POSIX was the chosen as part of the STRS Architecture Standard because it defines an open standard

operating system interface and environment to support application portability. However, due to the
limited resources on a space-based platform, it was not practical to support the entire IEEE 1003.1
specification.

The POSIX 1003.1 standard provides a means to implement a subset of the interfaces by using
“Subprofiling Option Groups”. These option groups specify “Units of Functionality” that can be removed
from the base POSIX specification.

IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded
applications. These profiles were:

• PSE51—Minimal Realtime Systems Profile 51
• PSE52—Realtime Controller System Profile 52
• PSE53—Dedicated Realtime System Profile 53
• PSE54—Multi-Purpose Realtime System Profile 54

The profiles are each upwardly compatible and consist of the basic building blocks shown in

Figure 7.8.2

2IEEE Std 1003.13–2003

NASA/TM—2010-216809 64

Figure 7.8.—Profile Building Blocks.

Each of these profiles has increasing capabilities, which increases requirements on resources. Profiles

51 and 52 run on a single processor with no Memory Management Unit (MMU), and thus imply a single
process containing one or more threads. Profile 52 adds a file system interface and asynchronous I/O.
Profile 53 adds support for multiple processes, thus requiring an MMU. The last and largest profile 54
adds support for interactive users, and is almost a full blown POSIX 1003.1 environment. The higher
numbered profiles are supersets of the lower numbered profiles such that PSE52 includes all the features
of a PSE51. Upward portability between profiles is supported by requiring certain APIs, such as memory
locking for profiles PSE51 and PSE52. Even though there is no MMU on the PSE51 and PSE52 profiles,
code written as if there is an MMU present will be portable among all four profiles by requiring the API
hook code to be added to the POSIX Abstraction Layer.

Currently the STRS Architecture will support platforms based on profiles PSE51 through PSE54,
although PSE54 will only be used for development platforms and ground stations. Allowing multiple
profiles allows the architecture to scale with mission class. Applications developed for a specific profile
are compatible with higher profiles, i.e., a profile 52 application could be ported to profile PSE53 and
PSE54 platform, but not vice versa. This upward scalability anticipates that smaller platforms will desire
smaller profiles and will not have the resources to run larger applications which comply with the larger
profiles. Appendix B provides a table comparing the POSIX profile functionality for Subset PSE51
through PSE53.

• (STRS-90) The STRS Operating Environment shall provide the interfaces described in POSIX
IEEE Standard 1003.13-2003 profile PSE51.

For constrained resource platforms, with limited software evolutionary capability, where the

waveform signal processing is implemented in specialized hardware, the supplier may request a waiver to
only implement a subset of POSIX PSE51 as required by the portion of the waveforms residing on the
GPP. The applications created for this platform must be upward compatible to a larger platform
containing POSIX PSE51. The POSIX API is grouped into units of functionality. If none of the

PSE51

PSE52

PSE53

PSE54

NASA/TM—2010-216809 65

applications for a constrained resource platform use any of the interfaces in a unit of functionality, then
the supplier may request a waiver to eliminate that entire unit of functionality.

Regardless of the POSIX profile implemented, applications must not use any restricted functions or
their equivalent such as abort(), atexit(), exit(), calloc(), free(), malloc(), or realloc(). For portability of
application code to multi-threaded radio platforms, STRS Applications must use thread-safe versions of
the POSIX methods listed in Table 7.57.

• (STRS-91) STRS Applications shall use POSIX methods except for the unsafe functions listed in
Table 7.57.

TABLE 7.57.—REPLACEMENTS FOR

UNSAFE FUNCTIONS
Unsafe Function

Do Not Use!
Reentrant Counterpart

OK to Use
abort STRS_AbortApp

asctime asctime_r
atexit -----------------
calloc -----------------

ctermid ctermid_r
ctime ctime_r
exit STRS_AbortApp
free -----------------

getlogin getlogin_r
gmtime gmtime_r

localtime localtime_r
malloc -----------------
rand rand_r

readdir readdir_r
realloc -----------------
strtok strtok_r

tmpnam tmpnam_r

7.5 Network Stack

A Network Stack is the part of the operating system used for networking, usually Transmission
control Protocol/Internet Protocol (TCP/IP). Communications over a network use a layered network
model. TCP/IP is the protocol that is used to transport information over the internet and the TCP/IP
network model consists of five layers: the Application layer, the Transport layer, the Network layer, the
Data Link layer, and the Physical Network.

7.6 Operating System

The OS is an integral part of the OE for the STRS software architecture. Modern communication
systems perform simultaneous application processing in dedicated hardware at very fast speeds to which
users have become accustomed. Any change in this environment must equal or exceed previous
performance for it to be considered for usage. As such, the proposal to perform application processing via
software modules executing on a GPP requires careful consideration of both the necessary operating
system characteristics and the application processing requirements. In a simplistic sense, a computer
operating system manages the usage and sharing of resources between competing users (i.e., tasks) to
perform work. In this case, each task is performing a specific instance of application processing. When
the operating system decides to stop one task’s execution and start another task executing, the current
context of the machine (register values, instruction pointers, etc) must be saved and then switched to
accommodate the requirements of the new task. On a desktop computer system, context switching
between competing tasks is performed on an ad-hoc basis with no guarantee of task execution. For most
missions this is unacceptable as context switching between execution threads and deterministic thread

NASA/TM—2010-216809 66

execution are the driving characteristics for an operating system. To support these requirements most
radio platforms will use a Real Time Operating System (RTOS) instead of a general purpose OS. An
RTOS provides the capabilities of fast, low overhead for context switching, and a deterministic
scheduling mechanism so that processing constraints can be achieved when required.

Fundamental to STRS application development is the existence of an OS kernel that can be
configured and scaled down to fit into the executable image of the STRS system. A modern RTOS is
primarily designed for either performance (monolithic kernel) or extensibility (microkernel). Monolithic
kernels have tightly integrated services, less run-time overhead, but are not easily extensible.
Microkernels have somewhat high run-time overheads, but are highly extensible. Most modern RTOSs
are microkernels, and although modern microkernels have more overhead than monolithic kernels, they
have less overhead than traditional microkernels. Modern RTOS' run-time overhead is decreased by
reducing the unnecessary context switch. Important timings such as context switch time, interrupt latency,
and semaphore get/release latency must be kept to a minimum.

7.7 Hardware Abstraction Layer

The HAL is the library of software functions in the STRS OE that provides a platform vendor specific
view of the specialized hardware by abstracting the underlying physical hardware interfaces. The HAL
allows integration of the specialized hardware with the GPM so that the STRS OE can access functions
implemented on the specialized hardware of the STRS platform.

Two examples of specialized hardware currently in use on SDRs are FPGAs and DSPs. Examples of
functionality that a HAL might need to support include boot code for initializing the hardware and
loading the operating system image, context switch code, configuration and access to hardware resources.
The HAL is commonly referred to by platform vendors as drivers or BSPs. Most companies already
provide such libraries to allow use of specialized hardware. This layer enables the STRS infrastructure to
have a direct interface to the hardware drivers on the platform.

There are two requirements concerning the HAL in the STRS architecture: 1) A HAL software API,
which defines the physical and logical interfaces for inter-module and intra-module integration, must be
provided with the STRS OE. The HAL is required for communicating data and control information
between the GPP and the specialized hardware. The HAL API is not currently defined in this STRS
Architecture Standard, but left for the platform provider to specify; 2) Documentation is required as part
of the delivery of HAL with the STRS OE. All HAL documentation must include a description of each
method, its calling sequence, the return values, an explanation of the functionality, preconditions for using
the method, postconditions after using the method, and examples where helpful. Note that the delivery of
the HAL source code is not required.

The electrical interfaces, connector requirements, and physical requirements are specified by the
platform provider in the HID. Information on a module’s use of data in the HID will be made available to
application developers; either directly from the manufacturer (for specific types of components), or from
the platform provider (for memory maps based on electrical connections). The infrastructure or HAL may
use this information to appropriately initialize hardware drivers such that control and data messages are
delivered to the module.

Even though there is not a requirement for the STRS OE to be portable, the HAL is expected to foster
portability and reusability of the STRS infrastructure and specialized hardware in different combinations
from that originally designed. It can reduce the design efforts otherwise necessary to adapt the software to
a new hardware platform. The goal with the HAL is to make it easier to change or add new hardware and
minimize the impact to the software. It does this by localizing the differences in software so that most of
the STRS OE code does not need to be changed to run on a new platform or a platform with a new
module.

An example of the HAL API, for the function OPEN, is shown in Table 7.58:

NASA/TM—2010-216809 67

TABLE 7.58.—SAMPLE HAL DOCUMENTATION
HAL API RESULT OPEN(HANDLE* resourceHandle, RESOURCE_NAME resourceName)

Description Open a resource by name. If no errors are encountered, use the resourceHandle to access the
resource.

Parameters • resourceHandle—[out] A pointer to place the opened handle into.
• resourceName—[in] The name of the resource to open.

Return A 32-bit signed integer used to determine whether an error has occurred. Use TEST_ERROR to
obtain a printable message.
• Zero—No errors or warnings.
• Positive—Warning.
• Negative—Error.

Precondition Resource must be closed before executing this command.
Postcondition Resource will be open and ready for further access if no error was encountered.
See Also READ, WRITE, CLOSE, TEST_ERROR
Example #include <HALResources.h>

 …
RESULT result;
HANDLE resourceHandle;
RESOURCE_NAME resourceName = “FPGA”;
result = OPEN(&resourceHandle, resourceName)
if (result < 0) {
 cout << “Error: “ << TEST_ERROR(result) << endl;
} else if (result > 0) {
 cout << “Warning: “ << TEST_ERROR(result) << endl;
}

• (STRS-92) The STRS platform developer shall provide the STRS platform HAL documentation.

The HAL documentation shall include, but not be limited to, the following:
– For each method/function, its calling sequence, return values, an explanation of its

functionality, any preconditions for using the method/function, and the postconditions after
using the method/function.

– Information required to address the underlying hardware, including interrupt input and
output, memory mapping, and other configuration data necessary to operate in the STRS
platform environment.

• (STRS-93) The STRS infrastructure shall use the HAL APIs to communicate with the specialized
hardware via the physical interface defined by the platform provider.

8.0 External Command and Telemetry Interface
An STRS radio cannot perform the necessary application and platform functions without an external

system providing commands, accepting responses, and monitoring the radio’s health and status. The
STRS radio must implement an external interface to receive and act on the commands from the external
system, translate the commands into the format expected by the application and provide the information
for monitoring the health and status of the radio. If the STRS radio has the capability for new or modified
operating environment or application software or firmware, the external command and telemetry interface
should be capable of accepting and storing new files. The interface in the STRS radio and in the external
system, which must provide the control, via a command sequence, to the STRS radio and receive
responses from an STRS radio, is referred to as the STRS Command and Telemetry interface. The
external STRS Command and Telemetry functionality typically resides on the spacecraft’s flight
computer, but it also may reside on a ground station or another spacecraft.

This shared capability implies that there must be capability in the STRS radio to perform the interface
functions. Within the STRS radio, if data is stored on the radio that must be transferred to an external
system, the capability must exist to send data using a mission-specific protocol to the receiver (flight
computer, ground station, or other spacecraft) and capability in the receiver to process that data orwrite

NASA/TM—2010-216809 68

Figure 8.1.—Command and Telemetry Interfaces.

that data to a file or download service or to a storage area that is accessible from both. The reverse
capability for STRS radio control is also necessary: There must be a capability in the external system to
send commands using a mission-specific protocol and capability in the STRS radio to validate, decipher
and process those commands. For example, data coming over the Flight Computer Interface is interpreted
by the Command Manager Figure 7.5 and processed by the STRS infrastructure.

Within the STRS radio, Command Interface components and Telemetry Interface components are
necessary to provide the interface between the STRS Operating Environment and the STRS Command
and Telemetry functionality on the external system. The Command and Telemetry Interface components
may include a standard type of mechanical, electrical, and functional spacecraft bus interface, such as
MIL-STD-1553; command and telemetry interpretation; and translation of the command set to the STRS
standard necessary for application control. The protocol, command set, and telemetry set for the STRS
Command and Telemetry interface are NOT part of the STRS standard but can be unique to each mission.
A number of interface and behavior requirements are part of the standard to support the mission specific
protocols.

The requirements related to the external command and telemetry interface are as follows:

• (STRS-94) An STRS platform shall accept, validate, and respond to external commands.
• (STRS-95) An STRS platform shall execute external application control commands using the

standardized STRS APIs.

If an STRS application needs to interface with an external system request or provide telemetry, the
following requirements apply:

• (STRS-96) The STRS infrastructure shall use the STRS_Query method to service external system
requests for information from an STRS application.

• (STRS-97) An STRS application shall use the STRS_Log and STRS_Write methods to send STRS
telemetry set information to the external system.

The STRS telemetry set will be mission-specific, but will likely contain some or all of the following

parameters:

• Power Values
– Voltage, Current, and Power Readings

• Environment Values
– Temperature
– Pressure

• Power On Reset (POR) Test Result Status

NASA/TM—2010-216809 69

– Random Access Memory (RAM) Test
– Read-only Memory (ROM) Test
– File Management Test
– PROM Software revision
– Maximum Memory Configuration
– Individual Module Self Test Status (GO/NO GO)

• Module Configuration
– Module Type
– Module Location
– Hardware Revision

• Application specific parameters
 Language Support (C and/or C++)
• STRS Architecture Standard version
• STRS OE release version
• Available memory and free space for data and files

A suggested set of services that may be implemented by the STRS Command and Interface on the

external system (flight computer, ground station, or other spacecraft) is shown in Table 8.1. These
services are NOT required for the STRS Architecture standard at this time, but are likely needed for
commanding and controlling a software defined radio and expected to be part of the external system set of
required functions.

TABLE 8.1.—SUGGESTED SERVICES IMPLEMENTED BY THE STRS COMMAND AND TELEMETRY INTERFACE

Function Description
Application Control

Application
Selection

This command requests that the STRS radio instantiate the application and facilitate the installation of
devices and resources requested by the application. This service should not impact existing applications.
The command arguments will include the application ASCII name of a configuration file that identifies all
other files and initial parameters specified for an application.

Application
Configuration

This command requests a customization of the application by specifying parameters the application will
use.

Application Query This command requests the current parameters and operational values of the application.
Application Start This command requests that an initialized application begin processing application data. If the application

has not been selected or completed initialization, the command will be rejected.
Application Stop This command requests that a running application halt processing of application data. The application

resources are not deallocated.
Application
Unload

This command requests that the STRS infrastructure unload the identified application and release all
resources associated with the application.

File Control Interface
Upload File
Request

This request will initiate an upload of a file to the STRS radio and place it in a specified location. If the
command gets an error, the reason will be made available.

Delete File
Request

A request for deletion of a specified file from an STRS platform.

Download File
Request

This request is complementary to the Upload File Request. This command will initiate a download of a
specified file from the STRS platform.

Radio Control Interface
Built-in-test This request will perform a commanded built-in-test used to monitor the health of the radio and diagnose

any problems.
Telemetry Control Interface

Telemetry Control Several different telemetry structure definitions may exist for different classes of STRS Radios. Many
systems will employ a polling technique where the data is provided only upon request. Other systems may
desire a grouping of telemetry that can be identified to be sent at some periodic rate.

NASA/TM—2010-216809 70

9.0 Configuration File(s)
Configuration files are used by the STRS infrastructure to specify attributes of files, devices, queues,

waveforms, and services contained on an STRS radio. Two types of configuration files may be necessary:
platform configuration and application configuration files. Platform configuration files provide the STRS
infrastructure with information on the devices and modules currently installed in the system. Application
configuration files contain application-specific information for configuration and customization of
installed applications, as well as information for the STRS infrastructure to use to instantiate applications
on the radio GPP. Application configuration files provide application developers with flexibility in
choosing parameters and values deemed pertinent to the implementation unrestricted by the platform
developers.

9.1 General Configuration File Format Definition and Use

The use of XML (Extensible Markup Language) to define the STRS platform and application
configuration data allows STRS platform developers and application developers to take advantage of the
features of XML: i.e., to have the ability to identify configuration information in a standard (see
http://www.w3.org/XML/), human-legible, precise, flexible, and adaptable method. XML is a markup
language that is used to hold data and meta-data and is currently being used throughout the JTRS-SCA
development environment process. The XML formatted version of the STRS platform and application
configuration files is not intended to be sent directly to the radio, due to the extra overhead required to
transmit and processes the XML formatted data. Instead, it is anticipated that the XML configuration file
will be pre-parsed, and additional error checking on the file will be performed prior to transmission. This
process will reformat the configuration file into an appropriately optimized configuration file, which will
subsequently be loaded into the radio. Requirements and discussion related to the configuration files refer
to both the pre-deployed (i.e., non-optimized XML file) configuration files and deployed (i.e., optimized)
configuration files. The platform and application developers have the option of using the pre-deployed
files as the deployed configuration files. The use of XML for the application configuration files is
required; it is strongly encouraged for the development of the platform configuration files.

There are at least two options for pre-processing the XML domain profile for the STRS architecture:

1. Generate actual code by the pre-processor to deploy the application onto the specific hardware.
2. Convert the XML domain profile into a static binary format that would be input to an application

deployment routine that loads the application.

The first option has the benefit of deploying the application as fast as possible, since the deployment

code is specific to the application on the specific platform. The disadvantage of this approach would be
that the deployment code would have to be regenerated for all applications that move to a different
platform. The second option provides a more flexible approach, such that the XML files are translated
into a standard binary format used by all applications and platforms. If the platform changes for a group
of applications, only a new deployment routine has to be created for the new platform and nothing has to
be generated for each specific application

The XML format can accommodate a number of required configuration parameter features such as:

1. Range limits of configuration parameters
2. Discrete allowable values of data items
3. Output formatting for each parameter that is specific to a mission
4. Configuration parameter dependency logic
5. Error checking logic

NASA/TM—2010-216809 71

An XML interface tool could be used to create and modify platform and application configuration
files. Commercially available XML interface tools provide an interface for basic editing of the
configuration data files. Additionally, these tools enforce error checking and interdependency checks to
ensure that the entered data is correct and within the hardware and software limits. An XML schema must
be used to describe the XML file format. An XML schema is used by many tools to standardize the XML
data entry and provide basic error checking.

Figure 9.1 illustrates the relationships between an XML file and its corresponding schema, as well as
the representing the optional preprocessing of the XML file in a simplified form by the XSL
transformation.

• XML—XML is a markup language for documents containing structured information that contains

both content and some indication of what role that content plays. XML defines tags containing or
delimiting item contents and showing the relationships between items.

• Schema—The XML Schema is an XML language file which describes the format and constraints
of the associated XML documents.

• Extensible stylesheet language (XSL) transformation (XSLT) (and XPath), implement a
transformation language for transmuting instances of XML into text using any other vocabulary
imaginable. The XSLT language, which itself uses XPath, could be used to specify how the XML
is processed to create the desired output.

The XML should be preprocessed to a platform-specific format to optimize space on the STRS Radio

while keeping the equivalent content.
The development of the application configuration files will involve both the platform developer and

the application developer. It will also involve a third party, the integrator, who installs the application on a
particular platform. The integrator may be the platform or application developer or a third entity. The
configuration file requirements are written assuming that the application and platform developers are
separate entities and that the platform was not known at the time of the development of the application.
Figure 9.2 details the process, provider, and related requirement numbers for the development and
delivery of platform and application configuration files.

Figure 9.1.—XML Transformation and Validation.

Schema

XML XSL

XSLT

S-Expressions

Schema is used to validate
XML. XML follows Schema.

XSL is used to
transform XML.

NASA/TM—2010-216809 72

Figure 9.2.—Configuration File Development Process.

9.2 Platform Configuration Files

The development and delivery of the platform configuration files is a goal of the STRS architecture
but is optional—the platform developer has the option to choose the method to describe and use the
hardware environment for the STRS infrastructure. Developing platform configuration file(s) is the likely
method to be used by an STRS platform developer to identify the existence of the different hardware
modules and their associated configuration files to allow the operating environment to instantiate drivers
and test applications. An STRS platform configuration file may be used when starting the STRS
infrastructure to configure various properties of the STRS platform. Configuring these properties at run-
time allows greater flexibility than configuring them at compile-time. To increase the runtime flexibility
of the STRS platform, the STRS infrastructure is likely to use deployed platform configuration files to
determine the existence and attributes of the files, devices, queues, waveforms, and services contained on
the STRS radio. Attributes of files, devices, and queues could include access (read/write, both, append),
type (text or binary), and other properties. The name of the starting configuration file(s) may be provided
to the STRS infrastructure upon initialization. The pre-deployed platform configuration files should be
written in XML and contain platform configuration information which includes the following
information:

• Hardware module names and types
• Memory types, sizes, and access
• Memory mapping
• Unique names and attributes of files, devices, queues, waveforms, and services

An XML schema should be provided with the pre-deployed platform configuration files to validate

the format and data in the XML configuration file. The XML schema is usually a separate file so that
multiple configuration files can reference the same schema. The XML schema for the platform should

NASA/TM—2010-216809 73

contain information to validate the order of the tags, the number of occurrences of each tag, and the
values or attributes. The XML schema for the platform configuration files should ensure that:

• Numeric values are valid numbers and fall within an allowable range
• Alphabetic values are a string of characters and, if appropriate, are chosen from a given set
• Hexadecimal values conform to rules for hexadecimal numbers using “digits” from the set

{0123456789abcdef} and fall within an allowable range

To support the need to upgrade or modify the platform, the STRS platform developer should provide
the following platform configuration file artifacts with the platform:

• Pre-deployed platform configuration file
• XML schema to validate the format and data in the corresponding pre-deployed STRS platform

configuration files, including the order of the tags, the number of occurrences of each tag, and the
values or attributes

• Tools and documentation for transformation of a pre-deployed platform configuration file in
XML into a deployed platform configuration file

• Deployed STRS platform configuration file

9.3 Application Configuration Files

A predeployed STRS application configuration file is created by the platform/application integrator
using platform information and the XML schema provided by the platform developer, and application
information provided by the application developer. The deployed application configuration file is used
when starting the STRS application to configure various properties of the STRS application. Configuring
these properties at run-time allows greater flexibility than configuring them at compile-time. Since a
service is actually an application that has been incorporated into the STRS infrastructure, the format of
the application configuration file should be a subset of the format of the platform configuration file as
specified by the schema.

A pre-deployed STRS application configuration file must be written in XML to describe and save
application configuration information. An XML schema must be provided with the pre-deployed STRS
application configuration files to validate their format and data. The XML schema is usually a separate
file so that multiple STRS application configuration files can reference the same schema. The XML
schema for the STRS application should contain information to validate the order of the tags, the number
of occurrences of each tag, and the values or attributes. The XML schema for the STRS application
configuration files should also ensure that:

• Numeric values are valid numbers and fall within an allowable range
• Alphabetic values are a string of characters and, if appropriate, are chosen from a given set
• Hexadecimal values conform to rules for hexadecimal numbers using “digits” from the set

{0123456789abcdef} and fall within an allowable range

• (STRS-98) The STRS platform developer shall document the necessary platform information

(including a sample file) to develop a pre-deployed application configuration file in XML.
• (STRS-99) The STRS application developer shall document the necessary application

information to develop a pre-deployed application configuration file in XML.
• (STRS-100) The STRS platform integrator shall provide a pre-deployed application configuration

file in XML.
• (STRS-101) The pre-deployed STRS application configuration file shall identify, as a minimum,

the following application attributes and default values:
– Identification

NASA/TM—2010-216809 74

 Unique STRS handle name for the application
 Class name (if applicable)

– State after processing the configuration file
– Required resources
 Memory in bytes
 Number of gates or logic elements

– Configuration parameters containing the STRS handle, names of files, devices, queues,
waveforms and services needed by the STRS application

– Values and constraints for all operationally configurable parameters
– Filename(s) of loadable images for resources

• (STRS-102) The STRS platform developer shall provide an XML schema to validate the format
and data for pre-deployed STRS application configuration files, including the order of the tags,
the number of occurrences of each tag, and the values or attributes.

• (STRS-103) The STRS platform developer shall provide the tools and documentation to
transform pre-deployed application configuration file in XML into a deployed application
configuration file.

• (STRS-104) The STRS platform integrator shall provide deployed STRS application
configuration file for the STRS infrastructure to place the STRS application in the specified state.

NASA/TM—2010-216809 75

Appendix A.—Example Configuration Files
A.1 STRS Platform Configuration File Hardware Example

An example of the portion of an STRS platform configuration file that deals with hardware is shown
below. The XML schema for the STRS platform configuration hardware data may be seen as shown in
Figure A.1.

For any GPP, the memory size and memory location should be specified in bytes. The document,
“Rationale for International Standard—Programming Languages—C”, states:

• “All objects in C must be representable as a contiguous sequence of bytes, each of which is at

least 8 bits wide.”
• “Any object can be treated as an array of characters, the size of which is given by the sizeof

operator with that object’s type as its operand.”
• “It is fundamental to the correct usage of functions such as malloc and fread that sizeof(char) be

exactly one.”

Therefore, for consistency across C and C++ implementations, bytes are required.

Figure A.1.—Example of hardware portion of STRS Platform Configuration File.

NASA/TM—2010-216809 76

MODULE list This is a list of hardware modules having memory able to contain data and executable
software.

MODULENAME The unique name for each hardware module accessible from the current GPP. The
current GPP is denoted by SELF.

MODULETYPE This is the name of the hardware type. The hardware module types may be GPP, RF,
FPGA, DSP, ASIC, etc. The module for SELF must always appear first.

MEMORY list This is a list of memory areas of various types. See below for further information.
MEMORYTYPE Memory type may be RAM, EEPROM, etc.
MEMORYSIZE The number of memory units.
MEMORYUNITS Memory units may be BYTES, GATES, etc. For any GPP, the size must be in BYTES.
MEMORYACCESS Memory access for the memory. Access may be READ, WRITE, or BOTH.

MEMORYMAP list This list provides the base addresses and memory size of regions of the current GPP
RAM (SELF) that are memory mapped to the module; i.e., memory mapped to an
external device. There may be more than one item in the list when different parts of
memory are either not contiguous or are used for different purposes. See STRS Platform
Configuration Files Section A.2, under DEVICE list, in ATTRIBUTE list, for memory
offsets specific to the device associated with a name.

MEMORYBASENAME A unique identifier for the portion of memory mapped to the module.
MEMORYBASEADDRESS This is the starting byte address reserved for memory mapping.
MEMORYSIZE Number of bytes starting at the base address reserved for memory mapping.
MEMORYACCESS Memory access for the portion of memory mapped to the module. Access may be

READ, WRITE, BOTH. The access defined here may be different from the memory
access defined in the previous section when part of the memory is used for one purpose
and another part is used for a different purpose.

A.2 STRS Platform Configuration File Software Example

An example of the portion of an STRS platform configuration file that deals with software is shown
below. The XML schema for the STRS platform configuration software data may be seen as shown in
Figure A.2.

NASA/TM—2010-216809 77

Figure A.2.—Example of software portion of STRS Platform Configuration File.

FILE list This is the list of files to read, write, both, or append from multiple locations using a
handle ID.

FILEHANDLENAME This is usually a unique shortened form of the file name used in messages and for
obtaining the handle ID.

FILENAME Fully qualified file name.
FILETYPE The file type may be TEXT or BINARY.
FILEACCESS The file access may be READ, WRITE, BOTH, or APPEND. BOTH may be used for

READ then WRITE or WRITE then READ.

NASA/TM—2010-216809 78

DEVICE list This is the list of devices to read or write from multiple locations using a handle ID. A
device in the list is software that acts as a proxy for some hardware connection to an
external device or a software manager for access to multiple or variable devices.

DEVICEHANDLENAME This is usually a unique shortened form of the module name used in messages and for
obtaining the handle ID.

DEVICENAME This is usually a shortened form of the module name for the device. If coded in C++,
this is the class name.

DEVICEACCESS The access to the device may be specified as READ, WRITE, BOTH, or NONE. READ
indicates that the device implements APP_Read(). WRITE indicates that the device
implements APP_Write().

LOADFILE list This is a list of files to be loaded for execution. The first one named should be for the
current GPP (SELF) that can load and configure the device as necessary

LOADFILENAME Fully qualified file name
LOADTARGET This is the module name for the device on which the file is instantiated or loaded.
LOADTHREADTYPE
LOADTHREADTAG

LOADTHREADPRIORITY
ATTRIBUTE list Contains list of properties set as default during initialization.

NAME Name of the attribute
VALUE Value of the attribute
MAPVALUE list Location in memory of the attribute when memory mapped. A location must be unique

to the associated device.
MAPVALUEBASENAME A unique identifier for the portion of memory mapped to the module. This must match a

MEMORYBASENAME value defined in the STRS Platform Configuration Files
Section A.1, under MODULE list in the MEMORYMAP list.

MAPVALUEOFFSET Offset from the address of baseName as defined in the module list's memory map list.
MAPVALUEBITOFFSET Bit offset from the high order position to begin.
MAPVALUESIZE Number of bits in which to store the value.
MAPVALUEACCESS Memory access may be READ, WRITE, or BOTH.

QUEUE list Contains the information necessary to create queues.

QUEUEHANDLENAME The name of the queue that the publisher uses to send data to the subscribers. Used in
messages and for obtaining the handle ID.

QUEUETYPE READ for pull, WRITE for push. In all cases, STRS_Write is used to write to the
queue. READ indicates that STRS_Read is used to obtain data from the queue. WRITE
indicates that the queue calls STRS_Write to send the data to any subscribers.

QUEUEPRIORITY Priority of queue.

REGISTER list Contains the correspondences between queues and subscribers. This decouples
publishers from subscribers.

PUBLISHER The name of the queue that the publisher uses to send data to the subscribers. Used in
messages and for obtaining the handle ID.

SUBSCRIBER A handle name for a subscriber. Used in messages and for obtaining the handle ID.

APPLICATION list

NASA/TM—2010-216809 79

MONITOREDITEM list This is a list of monitored items that are tested to indicate the health of the system.

ATTRIBUTENAME The name of the property whose value is to be tested in a monitored component.
HANDLENAME The handle name defines the monitored component from which to obtain the value

corresponding to the attributeName.

DELAY A positive value represents the nominal time delay between successive automated tests
of the monitored component. A non-positive value indicates that the test must be
requested.

TESTTYPE The type of test to apply to the property to ascertain whether the value indicates the
monitored component is healthy. Examples include testing for exact values, within
ranges, or by use of operations in Reverse Polish Notation (RPN).

EXACT Monitored value must be one of the values in the value list
EXCLUDE Monitored value must not be in the value list.
BETWEENII Monitored value must be between the pairs of values in the value list including both

end points.
BETWEENIX Monitored value must be between the pairs of values in the value list including the low

end point and excluding the high end point.
BETWEENXI Monitored value must be between the pairs of values in the value list excluding the

low end point and including the high end point.
BETWEENXX Monitored value must be between the pairs of values in the value list excluding both

end points.
RPN (Reverse Polish
Notation)

The attributeName, values to be tested, and operators must appear in the value list
using RPN. RPN uses sequences of one or two arguments followed by an operator.
The result of applying the operator replaces the original sequence used and the process
is repeated until there are no more operators. The attributeName for the monitored
value is replaced, in the RPN formula, by the corresponding property value. For
example, the sequence of data and operators in the VALUE list for testing the property
named D in RPN: 0;D;LT;D;500;LE;AND is equivalent to (0<D && D<500)

 The current set of operators includes:
AND, OR, XOR, NOT, EQ, NE, GT, GE, LT, LE, PLUS, MINUS, MULTIPLY,
DIVIDE, MOD, MIN, MAX,

If floating point is required/allowed, the set of operators could be augmented with:
SIN, COS, TAN, ASIN, ACOS, ATAN1, ATAN2, SINH, COSH, TANH, ABS,
EXP, LOG10, LN, SQRT, FLOOR, CEIL, ROUND, POW,

VALUE list Contains a list of values and possibly operations used corresponding to the value of
TESTTYPE.
• For example, if TESTTYPE is EXACT, the VALUE list would contain

{512,1024,2048,4096} if those were the allowed values.
• If TESTTYPE is EXCLUDE and odd numbers between 1 and 10 were not allowed,

the VALUE list would contain {1,3,5,7,9}.
• If TESTTYPE is BETWEENII and the attribute D were allowed between 0 and

500, inclusive (0 < D < 500), the VALUE list would contain {0,500}.
• If TESTTYPE is BETWEENIX and the attribute D were allowed between 0 and

500 (0 < D < 500), the VALUE list would contain {0,500}.
• If TESTTYPE is BETWEENXI and the attribute D were allowed between 0 and

500 (0 < D < 500), the VALUE list would contain {0,500}.
• If TESTTYPE is BETWEENXX and the attribute D were allowed between 0 and

500, exclusive (0 < D < 500), the VALUE list would contain {0,500}.
• If TESTTYPE is RPN and the attribute D were allowed between 0 and 500 (0 < D

< 500), the VALUE list would contain {0,D,LT,D,500,LE,AND}.

ALLOWEDCOMMAND list Contains valid command list showing restrictions on command usage.

NASA/TM—2010-216809 80

A.3 STRS Application Configuration Files Example

An example of an STRS Application Configuration File in XML is shown in Figure A.3.

Figure A.3.—Example of STRS WF Configuration File.

NASA/TM—2010-216809 81

APPLICATION list

WFHANDLENAME A unique shortened form of the application name used in messages and for obtaining the
handle ID.

WFNAME If coded in C++, this is the application class name.

WFACCESS The access to the application may be specified as READ, WRITE, BOTH, or NONE.
READ indicates that the application implements APP_Read(). WRITE indicates that the
application implements APP_Write().

WFSTATE The state at which the application is left after processing the configuration file. The state
may be STRS_APP_INSTANTIATED, STRS_APP_STOPPED, or
STRS_APP_RUNNING.

LOADFILE list A list of files to be loaded for execution

LOADFILENAME Fully qualified file name
LOADTARGET This is the module name for the device on which the file is instantiated. This is usually

the current GPP (SELF).
LOADTHREADTYPE
LOADTHREADTAG
LOADTHREADPRIORITY

ATTRIBUTE list Contains list of properties set as default during initialization.

NAME Name of the attribute
VALUE Value of the attribute

NASA/TM—2010-216809 83

Appendix B.—POSIX API Profile
Appendix B provides the POSIX subset in profiles PSE51, PSE52, and PSE53.

TABLE B.1.—POSIX SUBSET PROFILES PSE51, PSE52, AND PSE53

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_JUMP longjmp(), setjmp() X X X

POSIX_C_LANG_MATH

acos(), acosf(), acosh(), acoshf(), acoshl(), acosl(), asin(),
asinf(), asinh(), asinhf(), asinhl(), asinl(), catan(), atan2(),
atan2f(), atan2l(), atanf(), atanh(), atanhf(), atanhl(), atanl(),
cabs(), cabsf(), cabsl(), cacos(), cacosf(), cacosh(), cacoshf(),
cacoshl(), cacosl(), carg(), cargf(), cargl(), casin(), casinf(),
casinh(), casinhf(), casinhl(), casinl(), catan(), catanf(),
catanh(), catanhf(), catanhl(), catanl(), cbrt(), cbrtf(), cbrtl(),
ccos(), ccosf(), ccosh(), ccoshf(), ccoshl(),

 X X

POSIX_C_LANG_MATH

ccosl(), ceil(), ceilf(), ceill(), cexp(), cexpf(), cexpl(), cimag(),
cimagf(), cimagl(), clog(), clogf(), clogl(), conj(), conjf(),
conjl(), copysign(), copysignf(), copysignl(), cos(), cosf(),
cosh(), coshf(), coshl(), cosl(), cpow(), cpowf(), cpowl(),
cproj(), cprojf(), cprojl(), creal(), crealf(), creall(), csin(),
csinf(), csinh(), csinhf(), csinhl(), csinl(), csqrt(), csqrtf(),
csqrtl(), ctan(), ctanf(), ctanh(), ctanhf(), ctanhl(), ctanl(), erf(),
erfc(), erfcf(), erfcl(), erff(), erfl(), exp(), exp2(), exp2f(),
exp2l(), expf(), expl(), expm1(), expm1f(), expm1l(), fabs(),
fabsf(), fabsl(), fdim(), fdimf(), fdiml(), floor(), floorf(),
floorl(), fma(), fmaf(), fmal(),

 X X

POSIX_C_LANG_MATH

fmax(), fmaxf(), fmaxl(), fmin(), fminf(), fminl(), fmod(),
fmodf(), fmodl(), fpclassify(), frexp(), frexpf(), frexpl(),
hypot(), hypotf(), hypotl(), ilogb(), ilogbf(), ilogbl(), isfinite(),
isgreater(), isgreaterequal(), isinf(), isless(), islessequal(),
islessgreater(), isnan(), isnormal(), isunordered(), ldexp(),
ldexpf(), ldexpl(), lgamma(), lgammaf(), lgammal(), llrint(),
llrintf(), llrintl(), llround(), llroundf(), llroundl(), log(), log10(),
log10f(), log10l(), log1p(), log1pf(), log1pl(), log2(), log2f(),
log2l(), logb(), logbf(), logbl(), logf(), logl(), lrint(), lrintf(),
lrintl(), lround(), lroundf(), lroundl(), modf(), modff(), modfl(),
nan(), nanf(), nanl(), nearbyint(), nearbyintf(), nearbyintl(),
nextafter(), nextafterf(), nextafterl(), nexttoward(),
nexttowardf(), nexttowardl(), pow(), powf(), powl(),
remainder(), remainderf(), remainderl(), remquo(), remquof(),
remquol(), rint(), rintf(), rintl(), round(), roundf(), roundl(),
scalbln(), scalblnf(), scalblnl(), scalbn(), scalbnf(), scalbnl(),
signbit(), sin(), sinf(), sinh(), sinhf(), sinhl(), sinl(), sqrt(),
sqrtf(), sqrtl(), tan(), tanf(), tanh(), tanhf(), tanhl(), tanl(),
tgamma(), tgammaf(), tgammal(), trunc(), truncf(), truncl()

 X X

NASA/TM—2010-216809 84

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_SUPPORT

abs(), asctime(), asctime_r(), atof(), atoi(), atol(), atoll(),
bsearch(), calloc(), ctime(), ctime_r(), difftime(), div(),
feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(),
feholdexcept(), feraiseexcept(), fesetenv(), fesetexceptflag(),
fesetround(), fetestexcept(), feupdateenv(), free(), gmtime(),
gmtime_r(), imaxabs(), imaxdiv(), isalnum(), isalpha(),
isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(), labs(), ldiv(), llabs(),
lldiv(), localeconv(), localtime(), localtime_r(), malloc(),
memchr(), memcmp(), memcpy(), memmove(), memset(),
mktime(), qsort(), rand(), rand_r(), realloc(), setlocale(),
snprintf(), sprintf(), srand(), sscanf(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strcspn(), strerror(), strerror_r(),
strftime(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(),
strrchr(), strspn(), strstr(), strtod(), strtof(), strtoimax(),
strtok(), strtok_r(), strtol(), strtold(), strtoll(), strtoul(),
strtoull(), strtoumax(), strxfrm(), time(), tolower(), toupper(),
tzname, tzset(), va_arg(), va_copy(), va_end(), va_start(),
vsnprintf(), vsprintf(),
vsscanf()

X X X

POSIX_DEVICE_IO

clearerr(), close(), fclose(), fdopen(), feof(), ferror(), fflush(),
fgetc(), fgets(), fileno(), fopen(), fprintf(), fputc(), fputs(),
fread(), freopen(), fscanf(), fwrite(), getc(), getchar(), gets(),
open(), perror(), printf(), putc(), putchar(), puts(), read(),
scanf(), setbuf(), setvbuf(), stderr, stdin, stdout, ungetc(),
vfprintf(), vfscanf(), vprintf(), vscanf(), write()

X X X

POSIX_EVENT_MGMT FD_CLR(), FD_ISSET(), FD_SET(), FD_ZERO(), pselect(),
select() X

POSIX_FD_MGMT dup(), dup2(), fcntl(), fgetpos(), fseek(), fseeko(), fsetpos(),
ftell(), ftello(), ftruncate(), lseek(), rewind() X X

POSIX_FILE_LOCKING flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(),
getchar_unlocked(), putc_unlocked(), putchar_unlocked() X X X

POSIX_FILE_SYSTEM

access(), chdir(), closedir(), creat(), fpathconf(), fstat(),
getcwd(), link(), mkdir(), opendir(), pathconf(), readdir(),
readdir_r(), remove(), rename(), rewinddir(), rmdir(), stat(),
tmpfile(), tmpnam(), unlink(), utime()

 X X

POSIX_MULTI_PROCESS
_Exit(), _exit(), assert(), atexit(), clock(), execl(), execle(),
execlp(), execv(), execve(), execvp(), exit(), fork(), getpgrp(),
getpid(), getppid(), setsid(), sleep(), times(), wait(), waitpid()

 X

POSIX_NETWORKING

accept(), bind(), connect(), endhostent(), endnetent(),
endprotoent(), endservent(), freeaddrinfo(), gai_strerror(),
getaddrinfo(), gethostbyaddr(), gethostbyname(), gethostent(),
gethostname(), getnameinfo(), getnetbyaddr(),
getnetbyname(), getnetent(), getpeername(),
getprotobyname(), getprotobynumber(), getprotoent(),
getservbyname(), getservbyport(), getservent(),
getsockname(), getsockopt(), h_errno, htonl(), htons(),
if_freenameindex(), if_indextoname(), if_nameindex(),
if_nametoindex(), inet_addr(), inet_ntoa(), inet_ntop(),
inet_pton(), listen(), ntohl(), ntohs(), recv(), recvfrom(),
recvmsg(), send(), sendmsg(), sendto(), sethostent(),
setnetent(), setprotoent(), setservent(), setsockopt(),
shutdown(), socket(), sockatmark(), socketpair()

 X

POSIX_PIPE pipe() X

NASA/TM—2010-216809 85

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_SIGNALS
abort(), alarm(), kill(), pause(), raise(), sigaction(), sigaddset(),
sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal(),
sigpending(), sigprocmask(), sigsuspend(), sigwait()

X X X

POSIX_SIGNAL_JUMP siglongjmp(), sigsetjmp() X

POSIX_SINGLE_PROCESS confstr(), environ, errno, getenv(), setenv(), sysconf(),
uname(), unsetenv() X X X

POSIX_THREADS_BASE

pthread_atfork(), pthread_attr_destroy(),
pthread_attr_getdetachstate(), pthread_attr_getschedparam(),
pthread_attr_init(), pthread_attr_setdetachstate(),
pthread_attr_setschedparam(), pthread_cancel(),
pthread_cleanup_pop(), pthread_cleanup_push(),
pthread_cond_broadcast(), pthread_cond_destroy(),
pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait(),
pthread_condattr_destroy(), pthread_condattr_init(),
pthread_create(), pthread_detach(), pthread_equal(),
pthread_exit(), pthread_getspecific(), pthread_join(),
pthread_key_create(), pthread_key_delete(), pthread_kill(),
pthread_mutex_destroy(), pthread_mutex_init(),
pthread_mutex_lock(), pthread_mutex_trylock(),
pthread_mutex_unlock(), pthread_mutexattr_destroy(),
pthread_mutexattr_init(), pthread_once(), pthread_self(),
pthread_setcalcelstate(), pthread_setcanceltype(),
pthread_setspecific(),
pthread_sigmask(), pthread_testcancel()

X X X

POSIX_THREAD_
MUTEX_EXT pthread_mutexattr_gettype(), pthread_mutexattr_settype() X X X

XSI_THREADS_EXT
pthread_attr_getguardsize(), pthread_attr_getstack(),
pthread_attr_setguardsize(), pthread_attr_setstack(),
pthread_getconcurrency(), pthread_setconcurrency()

X X X

NASA/TM—2010-216809 87

Appendix C.—Document History Log
Status

(Baseline/
Revision/
Canceled)

Document
Revision

Effective
Date

Description

Baseline 1.0 Apr 06 STRS Architecture Standard – Draft release.

Update 1.01 June 07

Deleted Section 5 – STRS Architecture, renumbered
Added diagrams in Figures 5-3, 5-4, and 5-5, 5-9
Updated Section 5 – Hardware Architecture
Updated Section 7 – Firmware Architecture
Updated Section 9 – Software Architecture
Deleted Safety and Security Section
Figures 9-2, 9-3 to UML
Figure 9-6 on POSIX Conformance
Figure 9 8 STRS Application/Device Structure
Updated Section 9.2.1 STRS Application Control API APIs (STRS
Application Control API, STRS Infrastructure API, STRS Device
API, STRS Messaging API, STRS Data Source, STRS Data Sink,
STRS Main, STRS Predefined Data)
Appendix A - Configuration File Formats (12.1 Platform
Configuration Files, STRS Infrastructure Configuration Files
Updated method names to conform more closely to OMG SWRadio
naming convention.

Update 1.02 September 08

Modified STRS Architecture Standard Table 8-3.
Added file methods.
Added STRS Application State Diagram.
Modified messaging manager methods.
Modified Section 7.1 Specialized Hardware Interfaces and changed
Figure 7-1.
Changed STRS_Configure and APP_Configure to allow changes
while in any state.
Changed prefix “WF_” to “APP_”.
Removed Memory methods (STRS_Clone, STRS_Release, and
STRS_Reserve).
Changed STRS_Log method to remove the variable length calling
sequence.
Removed STRS_UploadRequest and STRS_UploadComplete
methods.
Removed STRS_RemoveApp and used STRS_FileRemove.

Update 1.02.1 November 10 ITAR restrictions removed

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-12-2010

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Space Telecommunications Radio System (STRS) Architecture Standard
Release 1.02.1

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Reinhart, Richard, C.; Kacpura, Thomas, J.; Handler, Louis, M.; Hall, C., Steve; Mortensen,
Dale, J.; Johnson, Sandra, K.; Briones, Janette, C.; Nappier, Jennifer, M.; Downey, Joseph, A.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 439432.04.07.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-17441

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR'S
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2010-216809

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category: 32
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable
commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or
transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through
software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation,
operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract
application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.
15. SUBJECT TERMS
Radio communication; Software defined radio; Architecture (computers); Reconfigurable hardware; Satellite communication

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

103

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

