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CLASSIFICATION, DELINEATION, AND MEASUREMENT OF NONPARALLEL FOLDS

By JOHN B. MERTIE, JR.

ABSTRACT

Simple folds are divided primarily into two classes, cylindri­ 
cal and noncylindrical. The true nature of the stratigraphic 
surfaces of all folds is unknown, but it is the thesis of this 
paper that they may be described approximately as cylinders 
and quadrics. The traces of the stratigraphic surfaces are 
likewise unknown, but they are represented empirically in 
selected profiles by algebraic curves. Cylindrical and non- 
cylindrical folds are divided into four genera that depend upon 
the character of their stratigraphic traces. These are desig­ 
nated as parallel, similar, cognate, and composite folds.

All cylindrical folds have axial lines. They are subdivided 
into species according to whether the fold has an axial plane 
or a curved axial surface. Cylindrical parallel folds are unique 
in that they necessarily have axial planes. Cylindrical similar 
folds are most simply defined as those whose traces, in a plane 
normal to the axial line, are curves that are reproducible from 
one another by nondistortional enlargement or reduction. Simi­ 
lar traces are illustrated by elliptic arcs of the same eccen­ 
tricity, at the same or different scales. Cylindrical cognate 
folds are defined as those whose traces, in the selected profile, 
are nonparallel nonsimilar curves that are analytically related 
but differ in the values of their assigned parameters. Cognate 
traces are represented by ellipses with different eccentricities. 
Cylindrical composite folds are of three kinds. One has re­ 
lated but mixed stratigraphic traces; a second consists of hybrid 
traces, illustrated by quarter ellipses, either similarly placed or 
rotated 90° to one another, that are joined where their tangents 
are parallel; and a third has analytically unrelated traces.

Noncylindrical folds are defined to include quaquaversal folds, 
elongate or canoe-shaped domes, and the plunging ends of cylin­ 
drical folds. All such structures are characterized by an ab­ 
sence of axial lines, though they have analogous indices that 
are described as apical lines. Canoe-shaped folds have prin­ 
cipal sections that are comparable to the axial planes and 
surfaces of cylindrical folds and to the cross sections normal 
thereto. The apical lines are either plane or space curves; the 
principal sections may be either plane or curved surfaces. 
Plunging folds have some of the characteristics of canoe-shaped 
folds. The stratigraphic surfaces of noncylindrical folds are 
illustrated by spheroids, ellipsoids, and modifications thereof. 
The traces of the stratigraphic surfaces in the principal sections 
are analogous to those in the selected profiles of cylindrical 
folds.

Parallel folds, both cylindrical and noncylindrical, are repre­ 
sented in cross section by higher plane curves that may be 
precisely generated by means of evolutes and involutes. All 
nonparallel folds, however, must be shown approximately in 
cross section by empirical curves. Ellipses were chosen for

this purpose, first, because they are simple curves of the second 
degree; second, because their eccentricities are variable; third, 
because the arcs of an ellipse at the ends of its major and 
minor axes are parallel, and this permits the delineation of 
dips of 90° at the base of a fold; and finally, because this 
parallelism facilitates the construction of hybridized traces. 
The empirical curves thus generated by the use of ellipses are 
extensively modified by variations in the eccentricity, by change 
of scale, and by several types of linear translation, to simulate 
the various kinds of nonparallel folds that are required to fit 
the geological data.

Many ellipses of different eccentricity and scale are needed 
in the empirical representation of nonparallel folds. These 
are generated as glissettes, by application of the trammel of 
Archimedes, the construction and use of which are described. 
As a further aid, 38 prolate and oblate ellipses of different ec­ 
centricity are illustrated.

Stratigraphic thickness, in the selected profiles, is defined as 
the area between two elliptic tracer divided by the length of a 
medial elliptic arc. The area between the elliptic arcs is ob­ 
tained either by graphical integration or by formula. The 
length of an elliptic arc requires an evaluation of Legendre's 
E function, as given in a table of elliptic functions. Graphic 
linear integration may also be used. As an aid in this work, 
the lengths of 99 semiellipses, with major semiaxes of 10, and 
minor semiaxes ranging from 9.9 to 0.1, have been computed 
and tabulated. This table, with a trivial amount of interpola­ 
tion, gives the semiperimeters of all ellipses, regardless of the 
lengths of their semiaxes. An empirical formula for the length 
of an ellipse is also presented.

Methods for the mathematical analysis of the traces of cylin­ 
drical and noncylindrical folds are not treated at length in this 
paper, but the value of such work is stressed. Some elementary 
methods are outlined, and attention is called to the applicability 
of intrinsic equations for the simplification of such work.

INTRODUCTION

The surfaces of folds are not simple geometrical 
figures, but they do correspond approximately, within 
certain limits, to recognizable geometric patterns, such 
that they may be studied, described, and measured in 
simplified geometrical terms, with the understood pro­ 
viso that all results are approximations. Most field 
geologists appreciate these limitations. The terms 
"parallel" and "similar" folds and folding are those 
most commonly used in geologic descriptions; but these 
terms are so loosely applied that it behooves a writer
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92 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY

on such topics to define accurately, or as accurately as 
the facts permit, the meaning of his nomenclature. 
Folds whose stratigraphic surfaces approach paral­ 
lelism are the most amenable to exact delineation and 
measurement. Nonparallel folds, of which similar 
folds will be shown to be merely one genus, are much 
more difficult to analyze and delineate.

Parallel folds have been so systemized and conven­ 
tionalized by the method of evolute and involutes that 
any group of geologists, applying this method to the 
same structural data, will reconstruct identical geo­ 
logic sections. Likewise, different geologists will ob­ 
tain the same values for the stratigraphic thickness, 
depth or distance to a stratum, and other stratigraphic 
dimensions. It would be desirable if such concordant 
results could be obtained for nonparallel folds; but 
this is impossible because, unlike the involutes that 
represent the traces of parallel stratigraphic surfaces, 
the geometrical character of nonparallel traces is un­ 
known. Such traces, however, may be conventional­ 
ized and represented approximately in accordance with 
the structural data in possession of the geologist. For 
reasons later to be stated, this empirical representation 
is attempted by the use of elliptic arcs that are so se­ 
lected as to match approximately the dips in a profile 
and the geologist's interpretation of such dips. Non- 
parallel folds that are Reconstructed in this manner 
should be easier to draw and should be more compar­ 
able with one another; and as the traces are drawn as 
definite curves, it should be easier to compute strati- 
graphic thickness and related measurements. More 
precise analytical methods could also be used advanta­ 
geously in the classification of folds and in studies per­ 
taining to the mechanics of folding, but such work has 
not yet been attempted. A few elementary methods, 
however, are suggested on pages 118-121 of this paper.

The following definitions and inferences are meant 
to apply to simple arches, cylindrical or noncylindrical, 
that may be upright, tilted, recumbent, or reversed, 
with or without axial lines or axial planes. A simple 
arch is defined as a fold whose stratigraphic surfaces 
attain either a maximum or a minimum curvature along 
a line or at a point but have no points or zones at 
which discontinuities, singularities, or inflections oc­ 
cur. The stratigraphic traces of a simple arch, in a 
section selected to show maximum or minimum curva­ 
ture, are continuous curves without discontinuities, 
singularities, or points of the first or higher orders of 
inflection. Stated in this manner, these definitions in­ 
clude tilted and recumbent folds without reference to 
any derived curves and without recourse to any trans­ 
formation of coordinates. A generalization of the def­ 
inition of a simple arch, to include surfaces with zones

of inflection, would permit the inclusion of monoclinal 
folds. By combining numbers of such simple arches, 
more complex folds may be simulated.

PLANE CURVES

The thesis of this paper is that the stratigraphic 
traces of most nonparallel folds, in sections selected 
to show the maximum or minimum curvature, may be 
represented approximately by one or more families of 
curves that are analytically related. The selection of 
a suitable family of curves for a particular class or 
genus of folds is largely a matter of convenience, as 
the true curvature of folds has not been investigated. 
Attention naturally centers on the conic sections, as 
these are simple curves that are easy to construct.

The use of circular arcs is both unrealistic and im­ 
practicable. The parabola is unsuitable for two rea­ 
sons. Its eccentricity is constant, so that it is impos­ 
sible to show two or more conic traces with different 
eccentricities; and second, its limbs approach parallel­ 
ism only at infinity, so that it is impossible to show 
dips of 90° on both flanks of an upright symmetrical 
structure. The hyperbola meets the first objection but 
is vulnerable to the second, as its limbs nowhere ap­ 
proach parallelism. The ellipse, however, meets the 
necessary specifications, as its eccentricity is variable 
and its arcs are parallel at the ends of the major and 
minor axes. These properties lend variability to the 
delineation of stratigraphic traces, permit the desired 
charting of dips of 90° on both flanks of certain folds, 
and also facilitate the hybridization of the traces. The 
ellipse has therefore been selected to illustrate theo­ 
retically the types of folds that may exist and to re­ 
construct empirically the actual folds that occur in 
nature.

The terms "parallel," "similar," "cognate," and 
"composite," applied in this paper to the traces and 
surfaces of folds, must be defined. With the excep­ 
tion of concentric circles, no two conies of the same 
species may be drawn parallel to one another. For 
example, it is impossible to construct two parallel el­ 
lipses, though a series of curves of another family may 
be drawn parallel to an ellipse and to one another, 
according to Leibnitz's definition of parallelism. This 
construction is shown in figure 16J., where 3 curves are 
drawn parallel to a central ellipse with an eccentricity 
of k=0.800. These 3 parallel curves have an alge­ 
braic equation of the eighth degree with 4 constants, 
whereas the central ellipse is a curve of the second de­ 
gree with only 2 essential constants. It is generally 
true that parallel curves, excepting concentric circles, 
have rather involved equations, so that parallel traces 
and parallel surfaces are best treated geometrically.
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For practical purposes, however, certain ellipses may 
be constructed that simulate parallelism, as shown in 
figure 19(7. Strange though it may seem, parallel 
curves may intersect one another, or may actually be 
self-intersecting. Both these conditions are illustrated 
in figure 16Z?, where one curve is drawn parallel to and 
outside an ellipse with an eccentricity of k=0.923; and 
two other intersecting and self-intersecting curves are 
drawn parallel to and inside the same ellipse. Neces­ 
sarily, such intersecting curves are excluded in the con­ 
sideration of parallel stratigraphic traces; and only 
involutes are used, which conform with the intuitive 
concept of parallelism.

Similar curves may be denned either analytically or 
geometrically. In general, similar curves are produced 
if the original curve is subjected to a transformation of 
similitude, as if the plane containing the curve were an 
elastic membrane that was stretched uniformly in all 
directions. Referring to the general equation of the
conic  

=Q

two conies are similar if   

&-4AC

and they are both similar and similarly placed if-

A__B__C_ A'~B'~C'

(i)

(2)

(3)

Moreover, the expressions B2  4AC and A + C are in­ 
variant under a rotation of axes, or under a change in 
origin. Therefore, similarity depends only upon the 
constants of the terms of the second degree. In gen­ 
eral, families of ellipses and families of hyperbolas are 
not similar, but as B2  4AC vanishes for every para­ 
bola, equation 2 likewise vanishes, and it follows that 
all parabolas are similar. The central equations for 
the circle and the equilateral hyperbola, respectively 
a?2 ±2/2 =#2, have one constant that obviously affects 
both variables equally and thus meet the condition of 
similarity. Ellipses and hyperbolas, with central

equations, respectively of ^±|j=l, may be similar

only if their major and minor semiaxes are identical, 
or if their ratio a: b is constant.

The geometric definition of similarity is simpler. 
Two curves are similar and similarly placed if radii 
vectors drawn to the first from some selected point are 
in constant ratio to parallel radii vectors drawn to the 
second from some other point. If two such points ex­ 
ist, an unlimited number of others can be found. More 
simply stated, similar curves may be produced from 
one another by uniform enlargement or reduction; and

congruent or identical curves are a special type of sim­ 
ilar curve, where the enlargement or reduction is unity. 
Therefore the transformation of one curve to a similar 
curve alters the sizes of the figures but preserves their 
shapes.

Circles, parabolas, and equilateral hyperbolas are 
similar conies because they can be transformed by uni­ 
form enlargement or reduction without change of 
shape. Two ellipses or two hyperbolas, however, are 
similar only if they are congruent or if they have the 
same eccentricity. Similar conies are similarly placed 
if they have the same or parallel axes. In general, all 
parallel plane sections of a quadric surface are similar 
conies.

A term is needed to describe two or more dissimilar 
curves that are nonparallel, noncongruent, and non- 
similar, but are analytically related by having the same 
general equation. A set of ellipses with different ec­ 
centricities or a family of parabolic catenaries will il­ 
lustrate the type. For curves of this kind the writer 
proposes and in this paper utilizes the designation cog­ 
nate curves, with special application to ellipses. The 
adjective cognate, thus applied, has no recognized 
mathematical acceptance but is used merely for de­ 
scriptive convenience.

Composite curves are also utilized. These are pro­ 
duced by joining arcs of ellipses with the same or dif­ 
ferent eccentricities at points where their tangents are 
parallel. The principal application is in the construc­ 
tion of the so-called hybrid folds and their traces. 
Thus, two quarter ellipses, with the same or different 
eccentricities, may be joined at the ends of their major 
or minor axes or at other points where their tangents 
are parallel. The same operation may also be per­ 
formed after one quarter ellipse has been revolved 90° 
with regard to another. Two such quarter eljlipses, 
after they are joined, constitute a composite curtfe that 
is no longer of the second degree but instead is a $igher 
plane curve of unknown character. These hybrid 
curves cannot be represented exactly by any analytical 
expression but are known as piecewise functions that 
may be characterized within 1 range by 1 equation and 
within another range by a different equation. Two 
joined quarter ellipses are thus represented piece Wise by 
two elliptic equations having different and possibly re­ 
versed constant parameters. They might be described, 
however, as closely as desired, by some empirical equa­ 
tion. Hybrid curves are illustrated in this paper by 
arcs of ellipses, but they may also be constructed from 
other curves. Cassinian ovals, for example, could be 
similarly utilized.

The parallel, similar, cognate, and composite curves 
discussed in this paper are similarly placed, though
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some are afterwards rotated; and initially they are con­ 
structed with collinear major and minor axes, in ver­ 
tical or horizontal positions. Initially they are also 
equally spaced, representing the traces of strata of the 
same thickness, though in actual usage they will be 
unevenly spaced to represent beds of different thick­ 
ness. Linear translation from their original positions, 
parallel to either or both axes, results in the produc­ 
tion of curves that are partly or wholly noncollinear. 
Such translations are used to delineate strata that 
thicken, thin, or disappear entirely, either at the apices 
or along the flanks of folds, and also to illustrate folds 
with inclined axial planes or curved axial surfaces. 
The pinching out, or complete disappearance, of strata, 
either at the apex or along the flanks of a fold, implies 
the tangency of adjacent stratigraphic traces in some 
part or parts of the fold. The types of folds in which 
this structural feature is possible are later described.

All the folds illustrated in the following pages are 
not claimed to exist in nature. Some freakish profiles 
are shown merely to demonstrate the versatility of the 
method of empirical charting by the use of elliptic 
arcs.

CLASSIFICATION OF FOLDS

Simple folds may be divided into two principal 
classes, cylindrical and noncylindrical. The existence 
of flexures that are essentially cylindrical in character 
is so commonplace in regions of geosynclinal orogeny 
as to require no special proof. Noncylindrical folds 
that are essentially cupolas or domes with approxi­ 
mately a circular plan are likewise generally recog­ 
nized under the designation of quaquaversal folds. 
These two classes, however, do not exhaust the field but 
instead may be regarded as the end members of a much 
larger group of structures, to which no suitable name 
can be applied. Quaquaversal folds, for example, 
grade into domes that have a pronounced elongation, 
designated in this paper as canoe-shaped folds or elon­ 
gate domes. Cylindrical folds, on the other hand, be­ 
come noncylindrical as they plunge, provided the 
plunge has not been caused by tilting subsequent to the 
folding. Such plunging folds are intermediate in 
character between cylindrical and canoe-shaped folds 
and have some of the properties of both.

The axial line is the most fundamental of the various 
stratigraphic dimensions, because most of the others

depend directly or indirectly upon it; and any classifi­ 
cation of folds will depend upon the presence or ab­ 
sence of axial lines. An unequivocal definition is there­ 
fore needed. On every stratigraphic surface of a cy­ 
lindrical fold, there exists a right line along which the 
curvature of the surface attains either a maximum or 
a minimum value, depending, respectively, on whether 
the cross section of the fold is a prolate or an oblate 
figure. Many stratigraphic surfaces, however, exist in 
a cylindrical fold, and therefore many axial lines are 
present; but these are parallel and may be regarded 
vectorially as the single axial line of the fold. Thus 
the axial line has the dimensional properties of a linea- 
tion, with a direction and possibly a plunge but with­ 
out spatial position. It should be emphasized that the 
axial line is defined in terms of a cylindrical fold, and 
the inference follows that axial lines are absent in non- 
cylindrical folds. Curved lines that lie along the crests 
of noncylindrical stratigraphic surfaces are analogous 
to axial lines and are here designated as apical lines. 
These may be plane or space curves and may or may 
not be parallel, though ordinarily they are nonparallel.

The axial plane is a property of cylindrical folds 
that must be defined in terms of the axial line. If a 
set of axial lines is parallel and coplanar, they lie in 
and define an axial plane. If they are parallel and non- 
coplanar, they lie in and define a cylindrically curved 
surface, which is here designated as the "axial surface." 
Figures ISA, B, G, F; 20#, C; 21/>; and 24 show the 
traces of axial surfaces of this kind.

Noncylindrical folds include quaquaversal folds, 
canoe-shaped or elongate folds, and the plunging ends 
of cylindrical folds. A quaquaversal fold is approx­ 
imately equidimensional in horizontal outline, with an 
unlimited number of apical lines; hence no unique 
apical line exists. Similarly an unlimited number of 
planes or surfaces normal to the stratigraphic surfaces 
may be constructed to pass through the apex of the- 
dome. Therefore the terms "axial plane" and "axial 
surface" are also inapplicable.

An elongate dome, however, has one set of apical 
lines, either plane or space curves, which follow the 
crests of the successive stratigraphic surfaces in the 
same direction as the elongation of the fold. These 
apical lines are the loci of the minimum or elongate 
curvature of the strata; and the totality of such lines

fi.  Central semlelllpses, congruent hybrid elliptic arcs, and prolate and oblate similar semielllpses exemplifying certain types of structural features. 
A, central semlellipse, bounded by three parallel curves of the eighth degree. Represents the profile of one type of parallel fold. 
B, central semiellipse, with 1 outer and 2 intersecting inner parallel curves of the eighth degree. Illustrates parallel curves with discontinuities that are unsuitable for the

reconstruction of folds.
C, congruent hybrid elliptic arcs illustrating the profile of a congruent similar fold. Diagram comparable to Van Hlse's original drawing of a similar fold. 
D, prolate similar semlellipses Represents the profile of a similar fold, with dips of 90° everywhere along its base. Strata thin proportionately from apex to base of fold. 
E, oblate similar semlelllpses. Represents the profile of a similar fold, with dips of 90° everywhere along its base. Strata thicken proportionately from apex to base of fold. 
F, oblate similar elliptic arcs, with noncoaxial horizontal axes. Represents the profile of a similar fold, in which dips of 90° are absent.

476376 59   2
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defines a surface that is called the major or longitudi­ 
nal section of the fold. A surface that passes through 
the vertices of all the stratigraphic surfaces and inter­ 
sects orthogonally all the elongate apical lines, con­ 
stitutes the minor or transverse section of the fold. 
Collectively these two upright surfaces are called the 
principal sections of a canoe-shaped or elongated dome, 
and obviously either or both may be plane or curved 
surfaces. A third section, not generally a principal 
section, is indicated by the horizontal plan of the fold. 
In conformity with these definitions, a canoe-shaped 
fold is one whose elongate apical lines, lying in the 
major section, are continuously curved and grade no­ 
where into linear segments. If the principal section 
of a canoe-shaped fold is a curved surface, a plane 
surface that passes through the apex of some selected 
stratigraphic surface and is normal to an elongate 
apical line at that point, will show the general char­ 
acter of the fold. Principal plane sections drawn 
parallel and normal to coplanar apical lines are illus­ 
trated in figure 2IE.

The plunging end of a cylindrical fold is generally 
noncylindrical, but the cylindrical and noncylindrical 
sectors are continuous and are threfore difficult to treat 
separately. The length of a cylindrical fold, however, 
is ordinarily much greater than its plunging end. The 
composite structure may best be regarded and described 
as a cylindrical fold over some stated longitudinal in­ 
terval, and a noncylindrical fold over some other speci­ 
fied range. The plunging end of a cylindrical fold has 
the general characteristics of an elongate dome, but 
owing to structural modifications in the ends of such 
folds, the apical lines are commonly neither parallel 
nor coplanar. Yet it is possible for nonparallel but 
coplanar apical lines to lie within and define a plane 
that is an extension of the axial plane of the cylindrical 
fold. With such a structural relationship, the term 
"axial plane" is warranted. Generally, however, the 
terms "axial plane" and "axial surface" are not strictly 
applicable to the plunging ends of cylindrical folds.

Profiles drawn across a plunging fold, where it has 
lost its cylindrical character, do not have the proper­ 
ties of analogous profiles along the principal sections 
of a canoe-shaped fold. Both are normal to the strati- 
graphic surfaces, and generally both are curved sur­ 
faces ; but the transverse section of a canoe-shaped fold 
passes through the apices of all the stratigraphic sur­ 
faces, whereas the analogous section across the plung­ 
ing part of a cylindrical fold passes through some ar­ 
bitrarily selected point on an arbitrarily selected apical 
line, and is normal to the other apical lines at random 
points. A plane profile, however, may be drawn normal

to some apical line and tangent to the curved profile, or 
better still, as a secant plane intersecting the curved 
surface. A profile of this sort will closely approximate 
the true cross section of the plunging fold, and will be 
analogous to the cross section of the cylindrical part 
of the fold.

Cylindrical folds have heretofore been divided into 
"parallel" and "similar" folds, but these two terms are 
commonly undefined and are used differently than in 
this paper. The term "concentric" fold is used by 
some authors as a synonym for "parallel" folds, but 
only circles and spheres are concentric; and it is easy 
to show from a sequence of three or more dips in a 
profile that stratigraphic traces are generally non- 
circular. A fourfold division of cylindrical folds is 
here recognized, based upon the geometry of the strati- 
graphic surfaces and their traces. These four genera 
are designated as parallel, similar, cognate, and com­ 
posite folds, all of which have axial lines. A cylindri­ 
cal parallel fold necessarily has parallel stratigraphic 
surfaces and an axial plane. Cylindrical similar, cog­ 
nate, and composite folds have, respectively, similar, 
cognate, and composite stratigraphic surfaces but may 
have either axial planes or axial surfaces. Cylindrical 
similar and cognate folds are subdivided into species 
according to whether they have axial planes or axial 
surfaces. Cylindrical composite folds, however, are 
subdivided first into subgenera on the basis of their 
stratigraphic traces and thereafter into species as stated 
above. Noncylindrical folds are likewise divided into 
four genera, but further subdivisions into specific types 
appears to be too difficult and involved to be useful.

A classification of folds that accords with the defini­ 
tions already stated is presented herewith:
I. Cylindrical folds 

A. Parallel folds 
B. Similar folds

1. With axial plane
2. With curved axial surface 

C. Cognate folds
1. With axial plane
2. With curved axial surface 

D. Composite folds
1. Mixed but related stratigraphic traces 

a. With axial plane 
b. With curved axial surface

2. Hybrid stratigraphic traces
a. Unrotated

aa. With axial plane
bb. With curved axial surface

b. Rotated 90°
aa. With axial plane
bb. With curved axial surface

3. Unrelated stratigraphic traces 
a. With axial plane 
b. With curved axial surface
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II. Noncylindrieal folds
A. Parallel domed surfaces 
B. Similar domed surfaces 
C. Cognate domed surfaces 
D. Composite domed surfaces

CYLINDRICAL FOLDS

Cylindrical folds have cylindrical stratigraphic sur­ 
faces over some stated or implied longitudinal limit. 
No assumption is made regarding the cross section of 
a cylindrical fold, and therefore no assumption is made 
regarding the character of its stratigraphic traces in a 
section normal to the axial line. These curved traces 
may be any of the myriads of continuous curves, here 
classified as parallel, similar, cognate, and composite.

The term "symmetry," as applied to a cylindrical 
fold, should mean that an axial plane exists which is 
approximately a plane of symmetry, such that the 
same stratigraphic curvature, sequence, and thickness 
of beds appear on both sides of it. Otherwise stated, 
the half of the fold on one side of the axial plane must 
be identical with the half on the other side. Symmetry 
vanishes if a curved axial surface is present. Sym­ 
metrical similar, cognate, and composite cylindrical 
folds should therefore be less common than symmetri­ 
cal parallel folds.

The major and minor axes of the ellipses used in 
this paper to illustrate and simulate cylindrical folds 
are drawn initially as vertical and horizontal lines. 
The traces of cylindrical folds constructed in this man­ 
ner represent upright anticlinal arches that have verti­ 
cal axial planes. But these figures may be rotated 
so as to illustrate inclined, recumbent, or synclinal 
folds, as required by the structural data. All dips will 
be modified numerically by rotation, but generically 
and intrinsically they will remain invariant. Thus 
the comments regarding dips of 90° apply only to up­ 
right folds; and such dips can appear on both flanks 
of an upright fold only where complete semiellipses 
are utilized.

Five variables may be used in the reconstruction of 
nonparallel folds by the application of elliptic arcs. 
These are, first, a choice in the eccentricity of the ellip­ 
tic arcs; second, change of scale, defined geometrically 
as uniform or nondistortional enlargement or reduc­ 
tion; third, linear translation of the stratigraphic 
traces parallel either to the vertical or horizontal axes 
of the ellipses; fourth, a choice between proportional 
and differential linear translation of each trace; and 
fifth, rotation of the elliptic axes and stratigraphic 
traces.

The first two of these variables require no further 
explanation. Linear translation results when one or 
both semiaxes depart from coaxiality without rotation.

Vertical and horizontal translations produce markedly 
different effects. Proportional linear translation 
means a displacement parallel to either or both axes, 
such that the stratigraphic intervals on one or both 
axes are increased or decreased proportionately. Dif­ 
ferential linear translation results in corresponding 
displacements that are nonproportional to the initial 
stratigraphic intervals. These are called differential 
displacements. A rotatory displacement of 90° of the 
elliptic axes is also permissible, but any other rotation 
would cause the stratigraphic traces to intersect.

The major types of linear translation are shown 
below.

I. Translation parallel to the vertical axes, thus displacing
the horizontal axes.

A. Translation proportional to the thickness of beds. 
B. Translation nonproportional, or differential.

II. Translation parallel to the horizontal axes, thus displacing
the vertical axes.

A. Translation proportional to the thickness of beds. 
B. Translation nonproportional, or differential. 

III. Translation parallel to and displacing both axes.
A. Translation proportional to the thickness of beds. 
B. Translation nonproportional, or differential. 
C. Translation both proportional and differential.

1. Proportional vertical and horizontal displace­ 
ments.

2. Proportional vertical and differential horizontal 
displacements.

3. Differential vertical and proportional horizontal 
displacements.

4. Differential vertical and horizontal displace­ 
ments.

PARALLEL FOLDS

Parallel folds are defined as folds whose stratigraphic 
surfaces are essentially parallel. The traces of sueh 
surfaces in sections normal to the axial line are invo­ 
lutes, which constitute one class of parallel lines. The 
strata of all folds must be stretched in relation to their 
original lengths; but this is an overall effect that may 
be accompanied locally by stratigraphic thickening as 
well as thinning. Parallel folds are conceived to be 
those in which the strata have not been thickened but 
instead have been uniformly stretched and thinned. 
It is doubtful if all the strata of any fold are uniformly 
stretched, so that truly parallel folds may not exist in 
nature. Yet in actual folding, particularly in open 
folding, many competent beds show so little differen­ 
tial thickening and thinning that for practical pur­ 
poses their thickness may be regarded as constant. The 
terms "parallel folds" and "folding" therefore appear 
to be warranted, and descriptions and measurements 
based upon this interpretation are permissible and 
useful.
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Cylindrical parallel folds may also be defined as 
those whose stratigraphic surfaces, over some limited 
longitudinal range, may be generated by two or more 
parallel coplanar right lines that move parallel to 
themselves, and in such a manner that the plane in 
which they lie remains normal to the surfaces gener­ 
ated. This condition is best visualized in a plane sec­ 
tion normal to the axial line, wherein the traces of the 
stratigraphic surfaces are parallel curves, the traces of 
the generating lines are collinear points, and a right 
line connecting these points is normal to each of the 
stratigraphic traces. No assumption is made regard­ 
ing the cross section of a parallel fold, except that the 
stratigraphic traces must be parallel or approximately 
so. These traces may thus be any continuous curves, 
though it is improbable that they are ever concentric 
circular arcs. The delineation and measurement of 
parallel folds have been treated by the writer (1940, 
1944, 1947, 1948) in four earlier papers. It suffices 
here to emphasize that the traces of parallel folds, in 
sections normal to the axial line, are not represented 
empirically as elliptic or any other kind of preselected 
arcs. Instead they are accurately delineated as invo­ 
lutes derived from an evolute that is generated as the 
envelope of a set of lines drawn normal to the dips 
charted on a geologic profile.

SIMILAR FOLDS

Cylindrical nonparallel folds have axial lines over 
some stated or implied longitudinal limit, but the 
traces of the stratigraphic surfaces, in a plane normal 
to the axial line, are commonly either similar or cog­ 
nate curves, though these traces may also be one of 
several types of composite curves.

The term "similar fold," meaning in reality a sim­ 
ilar cylindrical fold, was introduced by Van Hise 
(1896) and has been used by many geologists to de­ 
scribe all sorts of nonparallel folds. Van Hise's draw­ 
ing of the traces of a similar fold, in a plane normal 
to the axial line, consists of congruent or identical 
curves of unspecified character that are similarly placed 
but are separated from one another by a linear transla­

tion parallel to the trace of the axial plane. An equiv­ 
alent type of folding is shown in figure 16(7, where the 
congruent curves are formed by joining arcs of an 
ellipse having an eccentricity of 0.943. These congru­ 
ent curves are composite and hybrid and are therefore 
higher plane curves. Dips of 90° may be shown for 
such folds along the flanks of the outer stratigraphic 
surface but not elsewhere in the fold. Only moderate 
dips appear in figure 16(7, because complete semiellipses 
are not used. Instead only arcs of the semiellipse were 
chosen and translated.

Congruent similar folds, however, constitute only 
one type of similar folding. If the traces of the strati- 
graphic surfaces, in the specified section, are noncon- 
gruent, nonintersecting, similar curves that are simi­ 
larly placed, the fold is likewise similar. In three 
dimensions, similar surfaces, cylindrical or noncylindri- 
cal, are defined as those having point-to-point corre­ 
spondence, such that the distance between any two 
points of one surface is invariably the same multiple 
of the distance between two corresponding points on 
the other surface. It is doubtful whether many cylin­ 
drical folds have stratigraphic surfaces that meet 
exactly the requirements of similarity. It is permissi­ 
ble, however, to utilize the term for folds that meet 
approximately the required conditions, just as we use 
the term "parallel folds" for those whose traces are only 
approximately parallel.

Similar folds are represented in this discussion by 
elliptic arcs of the same eccentricity. Therefore an 
initial choice exists in the selection of some particular 
semiellipse, but no further choice is permitted. Three 
other variables, however, are commonly utilized in the 
construction of similar traces. These are, first, change 
of scale; second, linear translation of the stratigraphic 
traces parallel either to the vertical or horizontal ellip­ 
tic axes, or to both; and third, a choice between pro­ 
portional and .differential linear translation for each 
trace. It is also possible to have a similar fold rep­ 
resented by hybridized stratigraphic traces, if one such 
trace is repeated at different scales.

FIGTTEE 17. Prolate and oblate similar elliptic arcs and similar semlellipses exemplifying certain types of structural features.
A, prolate similar elliptic arcs, with noncoaxial horizontal axes and an innermost semiellipse. Represents the profile of a similar fold, with dips of 90° only at the inner 

base of the fold. Strata thicken proportionately from apex to base.
B, prolate similar elliptic arcs, with noncoaxial horizontal axes and a semiellipse next to the innermost curve. Represents the profile of a similar fold, in which the thick­ 

ness of the strata changes differentially from the apex to the base.
C, prolate similar elliptic arcs, with noncoaxial horizontal axes and an outermost semiellipse. Represents a similar fold with dips of 90° only at the outer base of the fold. 

Strata thin proportionately from apex to base.
D, prolate similar elliptic arcs, with noncoaxial horizontal axes and outermost and innermost semlellipses. Represents the profile of a similar fold, In which the thickness 

of the strata changes differentially from the apex to the base.
E, oblate similar elliptic arcs, with noncoaxial horizontal axes, an Innermost semiellipse, and all curves tangent to one another at one end of their minor semiaxes. Rep­ 

resents the profile of a similar fold, in which the strata pinch out entirely at the apex. This is the limiting form of a similar supratenuous fold.
F, prolate similar semiellipses, with noncoaxial vertical axes. Represents the profile of a similar fold, with dips of 90° everywhere along its base, and an Inclined axial 

plane. Shows proportional thinning of thejstrata on the right side of the fold and proportional thickening on the left side. Configuration produced by proportional 
horizontal translation.
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The eccentricity of the elliptic traces of a similar 
fold is first selected. Thereafter change of scale is 
necessarily used, in order to illustrate the number and 
thickness of the strata. In most of the accompanying 
diagrams, the successive strata are shown as equal in 
thickness, in order to facilitate comparisons between 
different constructions, though in the reconstruction of 
actual folds, the strata will have different thicknesses. 
If the dips along a profile cannot be made to corre­ 
spond with those indicated by the chosen elliptic arcs, a 
new set of arcs with a different eccentricity must be 
tried. If translation is not used, the construction re­ 
quires coaxial semiellipses, though the complete semi- 
ellipses may not be used; but for either construction 
the resulting fold will be symmetrical to the vertical 
axis.

A construction using only changes in scale is first 
attempted. If the major axes of the semiellipses are 
vertical, such a fold will show strata that are uniformly 
thicker along the trace of the axial plane than at the 
base of the fold; but if they are horizontal, the reverse 
will be true. These conditions are illustrated, respec­ 
tively, in figures 16Z> and E. Under this construction 
the complete disappearance of the strata, either at the 
apex or along the outer flanks of the fold, cannot be 
shown; but dips of 90° may be shown entirely across 
the base of the fold. Dips of 90°, however, are not 
necessarily present, as only parts of the semiellipses 
may be utilized; and where this is done, the dips that 
do appear at the base of the fold will depend partly 
upon the eccentricity of the ellipses and partly upon 
the lengths of the elliptic arcs that are used. This is 
exemplified in figure 16F, where only parts of semi- 
ellipses with an eccentricity of 0.600 are shown. This 
feature is likewise illustrated in the congruent similar 
curves of figure 16(7.

Linear translation introduces the second variable in 
the representation of similar folds. Case I-A is first 
considered. The major axes of a set of similar non- 
congruent ellipses illustrated in figure 16Z> are used 
again in a vertical position in figure 17#; but each of

the three inner curves has been translated vertically 
downward, in proportion to the original stratigraphic 
intervals, leaving the outer curve untranslated. Under 
this construction the thickness of each stratum is pro­ 
portionately increased, but dips of 90° appear only 
along the outer flanks of the fold at its base. If, how­ 
ever, the three outer curves of figure 16Z> are translated 
proportionately downward, leaving the inner curve un­ 
translated, the thickness of each stratum along the ver­ 
tical axis will be proportionately decreased, as shown 
in figure VIA ; or if desired, the strata may be made to 
disappear entirely at the apex of the fold, as shown in 
figure 17#. In figure 17'A and E, dips of 90° may be 
shown only along the inner base of the fold. All con­ 
structions that produce proportional thickening or thin­ 
ning along the vertical axis produce a nonproportional 
thinning of strata along the base of the fold, from the 
center outward to the flanks. Also, under the assump­ 
tion of type I-A, no cross section of a similar fold with 
elliptic traces may show a dip of 90° along its base at 
any point intermediate between the center of the fold 
and its outer flanks.

Figures VIA and C portray opposite effects, and it 
therefore follows that a proper choice of stratigraphic 
intervals along the vertical axis can be made to match 
approximately those along the horizontal axis; this 
produces the traces of a pseudoparallel fold. The ap­ 
proximation to stratigraphic parallelism can be made 
closer by utilizing a slightly nonproportional spacing 
on the vertical axis, so that each stratigraphic interval 
on the vertical axis matches exactly its corresponding 
interval on the horizontal axis; but such a construc­ 
tion would introduce a slight nonuniformity in the 
stratigraphic spacing on both axes. The approxima­ 
tion to parallel folding may be made still closer by the 
use of cognate curves, as shown in figure 19(7. Any of 
these three constructions would be difficult to discrim­ 
inate from parallel folding, except by accurate meas­ 
urement.

The third variable in the construction of similar 
folds is introduced by type I-B, where the linear trans-

FIGUKE 18. Prolate similar semiellipses and elliptic arcs and prolate cognate and oblate cognate semlellipses exemplifying certain types of Btructural features. 
A, prolate similar semiellipses, with noncoaxial vertical axes. Represents the profile of a similar fold with dips of 90° everywhere along its base, and a curved axial surface

Shows differential thickening and thinning of strata at base of fold. Configuration produced by differential horizontal translation. 
B, prolate similar semiellipses with noncoaxlal vertical axes. Represents the profile of a similar fold with dips of 90° everywhere along its base, and a curved axial surface In

reverse of Illustration A. Shows differential thickening and thinning of strata at base of fold. Configuration produced by differential horizontal translation. 
C, prolate similar elliptic arcs with noncoaxial vertical and noncoaxial horizontal axes and an outermost semielllpse. Represents a curved axial surface and the profile of

a similar fold with dips of 90° only at the outer base of the fold. Shows differential thickening and thinning of strata at base of fold. Configuration produced by propor­ 
tional vertical and differential horizontal translation. 

D, prolate cognate semlellipses. Represents the profile of a cognate fold, with dips of 90" everywhere along Its base. Shows proportional thinning of strata from apex to
base of fold. 

E, oblate cognate semiellipses. Represents the profile of a cognate fold, with dips of 90" everywhere along Its base. Shows proportional thinning of strata from apex to
base of fold. } 

F, a semlellipse next to the innermost curve and prolate similar elliptic arcs with noncoaxial vertical and noncoaxial horizontal axes. Represents a strongly curved axial
surface and the profile of a similar fold with limited basal dips of 90". Shows differential thickening and thinning of strata at base of fold. Configuration produced by
differential vertical and differential horizontal translation.
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FIGURE 19. Prolate cognate and oblate cognate semiellipses and prolate cognate elliptic arcs exemplifying certain types of structural features. 
A, prolate cognate semiellipses. Represents the profile of a cognate fold, with dips of 00° everywhere along Its base. Shows proportional thickening of strata from apex to

base of fold. 
B, oblate cognate semiellipses that are tangent to one another at one end of their minor semiaxes. Represents the profile of a cognate fold, in which the strata pinch out

entirely at the apex. This is the limiting form of a cognate supratenuoiis fold. '
C, prolate cognate semiellipses with equal increments of length for the major and minor semiaxis. Represents the profile of a cognate fold that simulates a parallel fold. 
D, prolate cognate semiellipses that are tangent to one another at both ends of their minor semiaxes. Represents the profile of a cognate fold, in which the strata pinch out

entirely at the base on both flanks. 
B, oblate cognate semiellipses. Represents the profile of a cognate fold, with dips of 90° everywhere along its base. Shows proportional thickening of strata from apex to

base of fold. 
F, prolate cognate elliptic arcs with noncoaxial horizontal axes, and a semiellipse next to the innermost curve. Represents the profile of a cognate fold with limited basal

dips of 90°. Shows differential changes in thickness cf strata from apex to base of fold. Configuration produced by differential vertical translation.

lation is nonproportional. Vertical differential trans­ 
lation makes it possible to show dips of 90° along the 
base of a fold, either on the outer or inner stratigraphic 
surfaces, on both the outer and inner surfaces, on one 
or more of the intermediate surfaces, or on none of 
these surfaces. The only limitation is that dips of 90°

may not be shown entirely across the base of a fold. 
In these various delineations the thickness of the strata 
may increase along the vertical axis downward, up­ 
ward, or in some erratic manner that may be required 
to simulate a stratigraphic sequence. Figure 17B il­ 
lustrates a set of stratigraphic traces in which only the
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surface next to the innermost one shows a dip of 90° at 
the base of the fold, and the thickness of the strata in­ 
crease differentially downward. Figure 17Z? illus­ 
trates a fold in which only the outer and inner strati- 
graphic surfaces show dips of 90° at the base of the 
fold, and the stratigraphic intervals decrease nonpro- 
portionately downward.

Proportional horizontal translation, as in type II-A, 
results in additional effects; and these are further 
diversified in type II-B, where the horizontal trans­ 
lation is differential. Proportional horizontal trans­ 
lation is illustrated in figure 177^, which is derived 
from figure 16Z? merely by moving the four semi- 
ellipses laterally by amounts proportional to the origi­ 
nal stratigraphic separations along the horizontal axis. 
This movement produces an inclined axial plane, whose 
trace appears in the figure; but this position of th« 
axial plane, with regard to the stratigraphic traces, 
is different from what would have been produced if 
figure 16Z? had merely been tilted. Stratigraphic 
asymmetry has been introduced; and dips of 90° are 
also preserved everywhere across the base of the fold. 
By still further horizontal translation, all the strata 
can be made to thin uniformly to zero, or in other 
words to disappear completely on one outer flank 
of the fold.

Nonproportional, or differential, horizontal trans­ 
lation of similar ellipses is shown in figure 18J. and B. 
These traces are produced from figure 16Z? by a differ­ 
ential lateral movement of the semiellipses, done in 
such a manner that the strata on the right flank are 
thinned respectively by negative and positive incre­ 
ments. Both figures show the traces of curved axial 
surfaces, but these traces are reversed in their general 
inclinations. The delineation of dips of 90° across 
the base of the fold remains unchanged. Figure 1651, 
where the minor 'axes of the semiellipses are vertically 
placed, could likewise be transformed to show either 
a tilted axial plane or a curved axial surface. Fur­ 
ther variations could be produced by operating in the 
same way on figure 17J.-Z>.

Combinations of vertical 'and horizontal translations 
constitute type III; but as these displacements may be 
proportional, differential, or both, several major com­ 
binations may exist, with numerous minor variations 
depending upon the vertical or horizontal placement 
of the axes of the semiellipses, the preexisting thicken­ 
ing or thinning of stratigraphic intervals, the direc­ 
tions and amounts of the dips, and other factors. The 
principal combinations are tabulated as types III-C-1, 
III-C-2, III-C-3, and III-C-4. Only two illustra­ 
tions are given. Figure 17<7, which shows propor­ 
tional vertical translation, has been transformed by

476376 59   3

differential horizontal translation, to produce the fold 
shown in figure 18<7. Similarly figure 175, which 
shows one type of differential vertical translation, has 
been transformed by differential horizontal transla­ 
tion to produce the fold shown in figure ISF. Folds 
that are represented by figure 17<7, where only parts 
of the semiellipses are used, can likewise be trans­ 
formed by vertical, horizontal, or both vertical and 
horizontal translations, either proportionately, differ­ 
entially, or both proportionately and differentially. 
Thus it appears that with linear translations the num­ 
ber of similar folds that may be constructed is very 
large; and no general statements are therefore war­ 
ranted regarding all the effects that may be produced.

COGNATE FOLDS

Cylindrical cognate folds comprise nonparallel 
stratigraphic surfaces whose traces, in a plane normal 
to the axial line, are cognate curves. Three variables 
may be used in the delineation of cognate folds by the 
use of ellipses; first, a changing eccentricity in each 
of the stratigraphic surfaces; second, linear transla­ 
tion of the traces parallel either to the vertical or the 
horizontal axis, or to both; and third, the choice be­ 
tween proportional and differential linear translation. 
Change of scale and congruency are inadmissible, as 
either of these conditions would produce similar traces 
and folds. Variable eccentricity, however, is so ef­ 
fective in producing a variety of folds that it elimi­ 
nates in large measure the need for translation parallel 
to the vertical axis. Probably more cognate than simi­ 
lar cylindrical folds occur in nature. A simple test, 
regardless of the nature of the curvature, is to deter­ 
mine whether all the traces of the stratigraphic sur­ 
faces, in a specified section, can be made to superpose 
on one another, with or without change of scale, fol­ 
lowed by linear translation. If this is possible, the 
traces are similar; if not, they are probably cognate, 
though the possibility remains that they may be 
composite.

Thickening, thinning, or the complete disappearance 
of strata, either at the apex or along the flanks of a 
symmetrical fold, may readily be shown in cross section 
by the use of cognate curves, whereas the complete dis­ 
appearance of strata cannot be shown along both flanks 
of a symmetrical fold by the use of similar curves. 
Moreover, the degree of thickening or thinning can be 
made to vary between much wider limits than for simi­ 
lar folds. Dips of 90° may be shown concurrently with 
these effects, if desired, entirely across the base of a 
cognate fold. Finally, the eccentricities may be chosen 
to produce stratigraphic traces which resemble parallel 
curves so closely that the difference is determinable only
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FIGTTEE 20. Prolate cognate semiellipses and elliptic arcs and oblate cognate elliptic arcs exemplifying certain types of structural features. 
A, oblate cognate elliptic arcs with noncoaxial horizontal axes, and an outermost semiellipse. Represents the profile of a cognate fold, with dips of 90° only at the outer

base of the fold. Shows differential changes in the thickness of strata from apex to base of fold. Configuration produced by differential vertical translation. 
B, prolate cognate elliptic arcs with noncoaxial vertical and noncoaxial horizontal axes and an innermost semiellipse. Represents the profile of a cognate fold with a strongly

curved axial surface and dips of 90° only at the inner base of the fold. Shows differential thickening and thinning of strata throughout the fold. Configuration produced
by differential vertical and differential horizontal translation. 

C, prolate cognate semiellipses with noncoaxial vertical axes. Represents the profile of a cognate fold with a curved axial surface and dips of 90° everywhere along its base.
Shows differential thickening and thinning of strata along base of fold. Configuration produced by differential horizontal translation. 

D, prolate cognate semiellipses with noncoaxial vertical axes. Represents the profile of a cognate fold with dips of 90° everywhere along its base, and an inclined axial plane.
Shows proportional thinning of strata on right side of fold and proportional thickening on left side. Configuration produced by proportional horizontal translation. 

E, four prolate elliptic arcs bounded by a curve of the eighth degree. The three inner curves are similar; the third and fourth are cognate; and the fourth and fifth are
parallel. Represents the profile of a composite fold of mixed but related stratigraphic surfaces. 

F, one set of prolate similar quarter ellipses joined to a set of prolate cognate elliptic arcs. Represents the profile of a hybrid composite fold, with dips of 90° along the base
of the left half of the fold.

by close measurement. Horizontal translation, or a 
combination of horizontal and vertical translations, 
however, are needed to represent folds with curved

axial surfaces. Only a few of the unlimited types of 
cognate folds will be illustrated. 

Thickening of strata at the apices of cognate folds is
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illustrated in figure 18Z> and E, and thinning at the 
apices, in figure 19^4. and E. The arcs of figure 18Z> 
and 19Z? are identical, but one set is rotated 90° with 
respect to the other. The same is true of figures 18E 
and 19-4. Disappearance of strata at the apex and 
along the outer flanks of a fold are shown, respectively, 
in figures 19B and 19Z>. The simulation of parallel 
folding is accomplished in figure 190 by utilizing equal 
increments of the major and minor semiaxes of the el­ 
lipses. Thus the four curves shown in this figure are 
parallel to one another at the ends of the elliptic axes, 
but not elsewhere, so that the deviation from complete 
parallelism is scarcely noticeable. Figures 18Z>, E, and 
19A-D show dips of 90° across the entire base of the 
folds. This type of folding may be considered unreal­ 
istic; but if not applicable, dips of moderate degree 
may be shown at the base of the fold by utilizing only 
parts of the semiellipses, as shown in figure ITtf, or by 
using vertical linear translation, either proportional or 
differential.

It has been shown that strata may thin or disappear 
completely at the apices of both similar and cognate 
folds that they may be made to disappear along one 
outer flank of a similar fold by horizontal translation, 
and that they may be caused to disappear along both 
outer flanks of a cognate fold without recourse to 
translation. Where the thinning or disappearance oc­ 
curs at the apex of a fold, the term "supratenuous fold" 
has been applied by JSTevin (1942). Hills (1953), how­ 
ever, has pointed out that supratenuous folds may orig­ 
inate from several causes, so that they cannot be re­ 
garded as a distinct genetic type. Such flexures may 
be simulated as similar folds, by the use of linear ver­ 
tical translation; or as cognate folds, by variable ec­ 
centricity, without or with such translation. Supra- 
tenuous folds are therefore not a distinct geometric 
type but instead are merely a subspecies of similar or 
of cognate folds.

Linear translation, vertical, horizontal, or both, and 
either proportional or differential, lead to an unlimited 
number of cognate structures. Added to these variables 
is also the use of partial instead of entire semiellipses. 
Figure 197?, for example, is constructed from figure 
18Z>, by the use of differential vertical translation, ac­ 
companied by the utilization of 1 semiellipse and 3 
partial semiellipses. A dip of 90° is thus depicted only 
for the trace whose eccentricity is 0.821. Figure 2(Li, 
on the other hand, is constructed from figure \§E by the 
same method, but the strata in this figure thicken up­ 
ward instead of downward, and a dip of 90° at the 
flanks is shown only for the outer trace, whose eccentric­ 
ity is 0.843.

Figures 205, 0, and Z> are produced from figure 18Z>. 
Figure 20Z>, by proportional horizontal translation, 
shows proportional thinning on one flank of a fold, 
and proportional thickening on the other. Figure 20(7, 
produced by differential horizontal translation, shows 
differential thinning on one flank of a fold and dif­ 
ferential thickening on the other. Figure 20Z> has an 
axial plane; figure 206^ shows a curved axial surface: 
and both are drawn to show dips of 90° entirely across 
the base of the fold. Figure 205 is produced by a com­ 
bination of differential vertical and differential hori­ 
zontal translation, and the use of partial semielliptic 
arcs, with the development of a sharply curved axial 
surface, and the delineation of a dip of 90° only on the 
inner stratigraphic trace. Innumerable other con­ 
structions may be made.

COMPOSITE FOLDS

Three principal types of composite cylindrical folds 
are recognized, each of which may be modified by the 
application of vertical, horizontal, or combined vertical 
and horizontal translations; and such translation may 
either be proportional or differential. Horizontal 
translation results in tilted axial planes or curved axial 
surfaces. Moreover, the first and third types may be 
modified extensively by the methods utilized to pro­ 
duce the second type. The subject is thus a large one 
that cannot be treated exhaustively; but the permis­ 
sible and practical types will occur to field geologists 
in the investigation of particular folds.

The first type comprises folds in which the traces 
of the stratigraphic surfaces, in a plane normal to the 
axial line, are various combinations of parallel, sim­ 
ilar, and cognate curves. The possible combinations 
may be parallel and similar, parallel and cognate, sim­ 
ilar and cognate, or parallel, similar, and cognate. An 
example of the latter type is shown in figure 20Z?. The 
two lowest traces in this diagram are congruent; the 
second and third, moving upward in the figure, are 
noncongruent but similar; the third and fourth are 
cognate; and the fourth and fifth are parallel, the fifth 
being a curve of the eighth degree parallel to the el­ 
lipse whose eccentricity is 0.843. None of the first four 
curves is a complete semiellipse, and therefore no dips 
of 90° are shown at the base of the fold.

Hybrid stratigraphic traces may produce many types 
of composite folds, all of which will be unsymmetrical. 
Hybridization is produced by joining two quarter el­ 
lipses at the ends of one or the other of their semiaxis 
or at other points where their tangents are parallel. 
This construction may be achieved by either of two 
general methods, of which one does not require rota-
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tion of the quarter ellipses, whereas the other requires 
the rotation of one set of quarter ellipses through an 
angle of 90° with regard to the other set. Numerous 
modifications of each of these two subspecies are pos­ 
sible.

Some of the cross sections of folds that may be pro­ 
duced without rotation are now mentioned. Consider 
the traces of any of the folds heretofore illustrated by 
semiellipses or parts thereof. Bifurcate these traces 
along the vertical or near-vertical axis of the ellipses, 
and by translation parallel to this axis move one set 
of quarter ellipses upward or downward with respect 
to the other, joining the stratigraphic traces as re­ 
quired. Hybrid curves will result that no longer have 
elliptical curvature but instead are higher plane curves. 
Hybrid curves generated in this way are such that the 
quarter-elliptical traces remain parallel, similar, cog­ 
nate, or of whatever type they originally were, so that 
each half of the fold retains its original classification. 
The whole fold, however, belongs to none of these orig­ 
inal types but is instead a hybridized variety of a com­ 
posite fold.

Hybridized composite folds produced without rota­ 
tion may be further generalized. Thus, a set of quar­ 
ter ellipses of one kind may be joined to a similarly 
placed set of quarter ellipses of another kind, along 
their vertical or near-vertical common axis. Such a 
fold is illustrated in figure 20/?, where a set of similar 
quarter ellipses are joined to a set of cognate quarter 
ellipses. The resulting cross section resembles some­ 
what those shown in figures 177^ and 20Z>, but the axis 
is vertical instead of inclined. Figure 2QF however, 
may be further modified, if desired, by vertical trans­ 
lation, either proportional or differential. After the 
composite fold has been constructed, it may be still 
further modified by additional vertical translation, by 
horizontal translation, or by both, in the manner shown 
in figures 1*7F; ISA, B, G, F; and 20B-D.

Rotation of the quarter ellipses adds another vari­ 
able that greatly diversifies the types of hybridized 
composite folds, but in general the effect is to produce 
folds of marked asymmetry. The traces that are 
transformed may be either identical or different, and 
their junction may be made either at the ends of the 
major or minor axes or at other points where their 
tangents are parallel. Consider the similar fold illus­ 
trated in figure 16Z>. If two sets of quarter ellipses are 
suitably revolved, translated, and connected, they can 
be so arranged as to produce the asymmetrical hybrid 
fold illustrated in figure 21A. Figure 21B shows two 
sets of similar quarter ellipses of different eccentricity 
that have been revolved, translated, and joined in the

same way. In this construction, however, the quarter 
ellipses have been translated proportionately, both 
vertically and horizontally, to produce a tilted axial 
plane.

The traces of cognate folds may also be hybridized 
by rotation, with or without translation, to produce 
composite folds. Thus in figure 21 (7,4 traces of eccen­ 
tricities 0.484, 0.533, 0.600, and 0.700 have been com­ 
bined with another set of revolved traces having 
eccentricities of 0.843, 0.835, 0.821, and 0.781. Propor­ 
tional horizontal translation has also been used to pro­ 
duce the inclined axial plane whose trace is shown in 
the figure. Differential horizontal translation of the 
same curves results in a fold with a curved axial sur­ 
face, as illustrated in figure 21Z>. No illustration, ex­ 
cept figure 16 <7, is presented of cognate or similar traces 
that are joined at points other than the ends of the 
major and minor axes, though this procedure is alto­ 
gether feasible.

A third type of composite folds has a different origin. 
Cognate folds have been required by definition to pos­ 
sess the same equation, with parametric variations. 
The different strata in a fold have been deformed by 
the same forces, and it is therefore probable that suc­ 
cessive traces are analytically related. Yet it may be 
possible to have stratigraphic surfaces that are ana­ 
lytically unrelated. Thus the traces of the surfaces 
of a cylindrical fold, in a plane normal to the axial 
line, might conceivably be arcs of an ellipse, a parabolic 
catenary, a cassinian oval, and a sine curve. Such a 
possibility needs to be observed and mapped before 
folds of this type can be listed as proved species. If 
existent, it is obvious that related types can be pro­ 
duced by the different methods of translation.

SUMMARY

Four genera of cylindrical folds have been discussed, 
with species that depend primarily upon whether they 
have axial planes or curved axial surfaces. Parallel 
folds are determined by the test of constant, or sensibly 
constant, stratigraphic thickness of each bed; and until 
this test has been applied, they should be interpreted 
as similar or cognate. From 19(7 illustrates a pseudo- 
parallel fold that is really cognate. Likewise, similar 
folds should be regarded as cognate until the test has 
been applied of reproducibility of the stratigraphic 
traces by nondistortional enlargement or reduction, in­ 
cluding congruency. Composite folds have been clas­ 
sified into three subgenera, which indeed might be fur­ 
ther expanded; and each of these may be divided into 
species, subspecies, and varieties. The term "compos­ 
ite folds," as defined above, is broad enough to include
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all simple cylindrical folds in nature that may not be 
classified as parallel, similar, or cognate, or approxi­ 
mately so. Many geologists will object that adequate 
data are not ordinarily available for utilization of this 
classification. This is true; but the classification may 
stimulate the acquisition of the necessary data.

The traces of nonparallel cylindrical folds, in a 
plane normal to the axial line, are not claimed to have 
elliptical curvatures; but ellipses are the simplest 
figures that can be used to match approximately the 
stratigraphic curvatures and tangents thereto that 
exist in nature. One cannot ordinarily measure the 
curvature of stratigraphic surfaces or traces thereof; 
but strikes and dips can be translated into curvature 
and approximately into elliptic curvature. Strati- 
graphic thickness, or other stratigraphic measurements 
in folded beds are most commonly made indirectly, 
either numerically or graphically, but whatever 
method is used must be based upon some assumption 
regarding stratigraphic curvature. The theory of 
evolute and involutes provides a perfect assumption 
for parallel folds; but the reconstruction of nonparal­ 
lel folds, unfortunately, cannot be based upon such a 
unique theorem. Elliptic arcs, however, will provide 
a satisfactory first approximation to the true curva­ 
ture, and this permits a logical and at the same time 
conventional method for the reconstruction of folds 
and for making consistent stratigraphic measurements. 
Nonparallel folds have not yet been studied from an 
analytical or even a geometrical point of view, and 
such studies must precede a proper understanding of 
the genesis of folding. No genetic interpretations are 
therefore associated with the geometrical classification 
of folds presented in this paper. The mechanics of 
folding awaits an adequate analysis of folds.

NONCYLINDRICAL FOLDS

Noncylindrical folds have been defined to include 
quaquaversal folds, elongate domes or canoe-shaped 
folds, and the plunging ends of cylindrical folds. 
Canoe-shaped folds and plunging folds have been 
shown to have apical lines that are analogous to the 
axial lines of cylindrical folds, but these lines may be 
either plane or space curves. A canoe-shaped fold 
has major and minor sections, known as principal sec­ 
tions, that may be either plane or curved surfaces. 
The minor section of a canoe-shaped fold is analogous 
to the profile of a cylindrical fold, normal to the axial 
line. The terms "axial plane" and "axial surface" are 
not applied to canoe-shaped folds. The medial sur­ 
face of a plunging fold, however, may possibly be 
designated as an axial plane or axial surface, if con­ 
tinuity exists with such surfaces in a cylindrical fold.

Quaquaversal and canoe-shaped folds comprise the 
flexures under present discussion.   The maximum cur­ 
vature of a canoe-shaped fold will generally appear in 
its minor section, and the complimentary minimum 
curvature in its major section. The structure of an 
elongate dome must therefore be determined in two 
principal sections normal to one another, whereas the 
structure of a cylindrical fold can be understood from 
numerous cross sections parallel to one another. Such 
sets of orthogonal profiles render necessary a three- 
dimensional evaluation of canoe-shaoed folds.

A group of surfaces, analogous to cylinders, is 
needed to describe and illustrate empirically the strati- 
graphic surfaces of domed structures. Three of the 
5 fundamental quadric surfaces, together with 3 sur­ 
faces of revolution, are suitable for this purpose. 
These, together with their principal Cartesian sections, 
are given in the following tabulation:

Surfaces Principal sections
1. Ellipsoid of revolution (spheroid)  Circle; unlimited con­ 

gruent ellipses.
2. Paraboloid of revolution_ _ _ Circle; unlimited con­ 

gruent parabolas.
3. Biparted hyperboloid of revolution. Circle; unlimited con­ 

gruent hyperbolas.
4. Ellipsoid (triaxial).     _    Three ellipses.
5. Elliptic paraboloid_____ _   Ellipse; two parabolas.
6. Biparted hyperboloid-         Ellipse; two hyper­ 

bolas.

One principal section for each quadric surface will 
have to lie in a horizontal or nearly horizontal plane; 
and it therefore follows that surfaces 1, 2, and 3, if 
their circular sections were made horizontal, could be 
used advantageously to represent quaquaversal folds. 
It is equally obvious that surfaces 4, 5, and 6, if an 
elliptic section were placed in a horizontal position, 
could be used to represent elongate or canoe-shaped 
folds. Eeasons have been given, however, why elliptic 
sections are preferred in the delineation of the strati- 
graphic traces of cylindrical folds. If this limitation 
is extended to domes, surfaces 1 and 4 appear to be the 
most suitable, the first for quaquaversal folds and the 
fourth for canoe-shaped folds. In the delineation of 
domes it is commonly assumed that the applied force 
acted vertically upward; but if the applied force acted 
obliquely upward, or if its direction of application 
changed during the formation of the dome, or if the 
dome was tilted during or after its formation, the 
principal sections will be either inclined planes or 
curved surfaces.

Domed surfaces with a circular horizontal outline 
may be generated as surfaces of revolution, but canoe- 
shaped surfaces may be produced only by more involved 
modes of graphical or mechanical assembly. All sur-
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FIGURE 21. Oblate similar quarter ellipses, oblate similar and prolate cognate elliptic arcs, sections of a composite elongate dome, and application of trammel of Archimedes 
in construction of ellipses.

A, one set of oblate similar quarter ellipses joined to a set of prolate similar elliptic arcs of the same eccentricity. Represents the profile of a hybrid composite fold with dips 
of 90° along the base of the left half of the fold.

B, one set of oblate similar elliptic arcs joined to a set of prolate similar elliptic arcs. Represents the profile of a hybrid composite fold with an inclined axial plane. Con­ 
figuration produced by proportional horizontal translation.

C, one set of prolate cognate elliptic arcs joined to another set of prolate cognate elliptic arcs. Represents the profile of a hybrid composite fold with an inclined axial plane. 
Configuration produced by proportional horizontal translation.

D, one set of prolate cognate elliptic arcs joined to another set of prolate cognate elliptic arcs. Represents the profile of a hybrid composite fold with a curved axial surface. 
Configuration produced by differential horizontal translation.

E, two principal sections of a composite elongate dome, drawn in perspective. The major section consists of oblate cognate elliptic arcs; the minor section consists of prolate 
similar elliptic arcs.

F, application of the trammel of Archimedes in projecting as a glissette an oblate ellipse with an eccentricity of fc=0.884. The semidiameters are a-30 and 6=14.
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faces of revolution, regardless of whether the generat­ 
ing curves are parallel, similar, cognate, or composite, 
show an unlimited number of plane sections that inter­ 
sect in the axis of revolution. Thus a dome with an 
equidimensional horizontal outline may be represented 
approximately as a set of prolate or oblate surfaces, of 
which at least one may be constructed as a spheroid; 
the shapes of the others will depend upon the nature 
of the stratigraphic traces. If the dome is elongate, 
the best choice for the first stratigraphic surface is an 
ellipsoid, bounded by other surfaces that may or may 
not be ellipsoidal.

The exact configuration of domes is not definitely 
known. If they were thought to have the shapes of 
quadric and related surfaces, noncylindrical folds could 
be divided primarily into subclasses according to the 
preceding tabulation. But quadrics are simpler sur­ 
faces than cylinders, as their sections yield curves of 
the second degree, whereas the sections of cylinders may 
show higher plane curves. True cylindrical folds are 
therefore more likely to occur in nature than are 
quadric folds; and in any classification the concept of 
cylindrical folding will withstand the acquisition of 
new knowledge, whereas the idea of quadric folding 
probably will not. Hence, it seems best, until more in­ 
formation is available, to subdivide noncylindrical folds 
primarily upon the nature of their stratigraphic sur­ 
faces in principal sections and to utilize the concept of 
quadric folding only secondarily for descriptive pur­ 
poses.

The existence of two principal sections in domes in­ 
troduces a complication not present in cylindrical folds. 
Horizontal translation, or combinations of vertical and 
horizontal translations, of the curves that represent 
stratigraphic traces in cylindrical folds have been 
shown to produce inclined axial planes and curved axial 
surfaces. But canoe-shaped folds have two principal or 
orthogonal sections, and quaquaversal folds have an un­ 
limited number. Hence, vertical and horizontal trans­ 
lations of similar, cognate, and composite curves can 
be applied independently along two sections normal to 
each other. The translations, moreover, need not be in 
the same sense, or of the same magnitude; and they may 
thus generate not merely curved but warped or twisted 
sections lying between the principal sections. This ef­ 
fect can apply both to canoe-shaped and to quaqua­ 
versal folds, producing marked asymmetry in such 
structures.

Asymmetry may also be produced in another way. 
Transverse and longitudinal sections of a canoe-shaped 
fold, or two orthogonal sections in a quaquaversal fold, 
are not necessarily related in their general geometric 
configurations. Thus one section may show similar

stratigraphic traces, and the other may show cognate 
or composite traces. By using the three types of com­ 
posite surfaces, it appears that at least 10 such general 
combinations are possible. Twisted as well as simply 
curved profiles may thus result in sections lying be­ 
tween the principal or orthogonal sections. Such 
flexures would really be composite domes, because 
mixed stratigraphic traces are present in orthogonal 
sections. A simple type of canoe-shaped fold with a 
vertical axis, showing similar curvature in one prin­ 
cipal section and cognate curvature in the other, is il­ 
lustrated in figure 21/T.

Domes may thus include many kinds of unsymmetri- 
cal domed surfaces; for if n types of curvature or trans­ 
lation are possible in one principal section and n types 
in another, it follows that n2 types of composite cur­ 
vature may characterize such folds as a whole. No at­ 
tempt is made in this paper to enumerate and describe 
these many species of domes. Instead, related types of 
curvature are utilized in both principal sections; and 
translation, if any, is conceived to be applied equally. 
It is desirable also to avoid complex figures, for which 
reason the principal sections of all domes are inter­ 
preted as plane profiles.

PARALLEL DOMED SURFACES

Parallel domed surfaces may be constructed by either 
of two general methods. Two orthogonal sections of 
a quaquaversal fold or the two principal sections of a 
canoe-shaped fold may be drawn as involutes, generated 
from evolutes derived from the dips along these sec­ 
tions. This is the most realistic method, if the geologi­ 
cal data are available, as it involves no assumption re­ 
garding elliptic or any other curvature for the strati- 
graphic traces.

The second method requires that one stratigraphic 
trace be fitted to an elliptic arc, after which parallel 
traces are drawn. No two ellipses can be parallel, and 
it therefore is impossible to have a domed structure with 
parallel spheroidal or ellipsoidal surfaces. But just as 
it is possible to have an ellipse bordered by a set of 
curves that are parallel to the ellipse and to one 
another, so it is possible to have a spheroid or an el­ 
lipsoid bounded by surfaces that are parallel to the 
given surface and to one another. Surfaces parallel to 
the other conicoids could likewise be constructed; and 
in fact, stratigraphic traces may be drawn parallel to 
any continuous surface that itself meets the strati- 
graphic requirements.

Surfaces parallel to a semispheriod are easily gener- 
rated as surfaces of revolution. Thus if figure WA is 
rotated 180°, either about its vertical or its horizontal 
axis, parallel surfaces will be generated. With the first
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construction, a prolate parallel quaquaversal fold will 
be simulated; but from oblate parallel curves, oblate 
quaquaversal folds may also be produced. Surfaces of 
revolution may likewise be generated parallel to a 
paraboloid of revolution or to a hyperboloid of revolu­ 
tion; and more generally any algebraic or transcen­ 
dental surface of revolution could be used as the 
original stratigraphic surface.

Surfaces parallel to a semiellipsoid cannot be pro­ 
duced as surfaces of revolution but are conceived to be 
generated as follows. If normals to the ellipsoid are 
constructed at many closely adjacent points and are 
extended both inward and outward from the ellipsoidal 
surface, a set of nonparallel lines will result, resembling 
penetrating quills. If fixed distances are laid off 
equally on all these normals, both inside and outside 
the ellipsoid, the resulting points will define the loci of 
a set of surfaces parallel to the ellipsoid. The inner 
surfaces may or may not qualify as stratigraphic sur­ 
faces, as shown in figure 165; but all surfaces of this 
kind generated outside the ellipsoid, and some of those 
inside the ellipsoid, may be used as parallel strati- 
graphic surfaces to illustrate parallel canoe-shaped 
folds. By the same method, surfaces may be con­ 
structed parallel to an elliptic paraboloid, a biparted 
hyperboloid, or any other continuous algebraic or tran­ 
scendental surface.

Parallel domed surfaces, either quaquaversal or ca­ 
noe-shaped, necessarily have plane orthogonal or prin­ 
cipal sections. Such profiles, however, may be inclined 
for either of two reasons. First, the direction of the 
force applied to produce the dome may have been in­ 
clined to the vertical; and second, the dome may have 
been tilted subsequent to its formation. Any variation 
in the direction of the applied force during its period 
of operation, or any differential in the direction of later 
tilting, would probably have destroyed the parallelism 
of the stratigraphic surfaces. Parallel domed surfaces 
therefore have at least a negative significance in the 
mechanics of folding.

SIMILAR DOMED SURFACES

Similar surfaces are defined as those which have a 
point-to-point correspondence such that the distance 
between any two points on one surface is invariably 
the same multiple of the distance between two corre­ 
sponding points on the second surface. Also the areas 
of similar surfaces are to each other as the squares of

the corresponding distances between them. Similar 
spheroids and ellipsoids conform with these general 
requirements.

Three variables were shown to apply in the delinea­ 
tion of cylindrical similar folds; and these apply 
equally well in the construction of quaquaversal and 
canoe-shaped similar folds. The effects are thicken­ 
ing, thinning, or the disappearance of strata at the 
apex of a fold, and a thickening or thinning of strata 
along the outer flanks; differential thickening or thin­ 
ning of strata along the axial plane or at the base of the 
fold; the production of asymmetry, accompanied either 
by proportional or differential thickening or thinning 
of strata in one-half of the fold; and the generation 
of tilted axial planes or curved axial surfaces.

Similar domed surfaces may be constructed as sphe­ 
roidal surfaces of revolution or as assemblies of ellip­ 
soids. Any of the sets of symmetrical similar curves 
shown in figures IQD-F and 11A-D could be revolved 
180° about their vertical axes to produce either prolate 
or oblate quaquaversal structures, depending upon the 
character of the original profiles. They may be ro­ 
tated about their horizontal axes only if dips of 90° 
are shown everywhere across the base of the fold, for 
otherwise the resulting surfaces would show discon­ 
tinuities. But such sets of surfaces would have one 
principal section showing circular stratigraphic traces, 
which are inadmissible. The same geometric difficulty 
applies also to parallel, cognate, and composite curves 
that might otherwise be revolved about their horizontal 
axes. Thus the similar curves shown in.figures 16Z>, 
16#, 17F, ISA, and 185, and the parallel curves of 
figure 16A 9 should not be revolved about their hori­ 
zontal axes to illustrate domal structures. Figures 17F, 
18JL, B, C, and F cannot be revolved about any vertical 
lines.

Similar quaquaversal folds may also comprise sets 
of similar paraboloids of revolution or similar hyper- 
boloids of revolution. And in general, similar qiia-' 
quaversal folds may be produced from sets of any simi­ 
lar algebraic or transcendental surfaces that can be 
generated as surfaces of revolution. All the similar 
surfaces of revolution heretofore mentioned are sym­ 
metrical in 1 or 2 orthogonal sections; but completely 
asymmetrical folds may be produced by various com­ 
binations of vertical and horizontal translations of these 
surfaces.

Elongate similar domes are not constructed as sur­ 
faces of revolution. Similar ellipsoids, for example,
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are ellipsoids whose principal sections are similar 
ellipses; that is, ellipses with the same or propor­ 
tional semiaxes. If the semiaxes are identical, the 
ellipsoids are congruent. But an ellipsoid whose semi- 
axes are 15, 12, and 9 is similar to another ellipsoid 
with semiaxes of 10, 8, and 6. A dome consisting of 
an assembly of ellipsoidal surfaces conforming to this 
restriction illustrates an elongate similar fold; and 
such a fold may be constructed either as a prolate or 
an oblate fold. Commonly the longest and median 
axes of canoe-shaped folds lie approximately in the 
plane of the horizon; but this is not necessarily so, as 
the axes of greatest and least lengths may occupy this 
position.

Elongate similar folds may likewise be constructed 
from similar elliptic paraboloids, similar biparted hy- 
perboloids, or in general from many sets of similar 
surfaces of degree higher than the second. The prin­ 
cipal sections of all these similar canoe-shaped folds 
may be plane or curved, depending upon the deviation 
from coaxiality of the sets of surfaces that are utilized.

COGNATE DOMED SURFACES

Cognate curves have been shown to produce a greater 
variety of cylindrical folds than similar curves, owing 
principally to the permissible variation in the eccen­ 
tricity of each stratigraphic trace. Cognate curves are 
also useful in permitting dips of 90° in many more 
folds than is possible with similar curves; and in addi­ 
tion it is possible to show the complete disappearance 
of strata along both outer flanks of a fold. All these 
effects can likewise be produced in cognate domed 
surfaces.

Cognate quaquaversal domes may be constructed as 
sets of spheroidal surfaces of revolution with cognate 
ellipses as the generating elements. Figures 18Z>, E\ 
19J., C", E, F\ and 20 J., for example, may be rotated 
about their vertical axes to simulate domed surfaces of 
revolution. But in order to avoid circular stratigraphic 
traces, figures 18Z>, E, and 19J., C", E should not be 
revolved about their horizontal axes. Figures 205, C, 
D illustrate unsymmetrical curves that cannot be re­ 
volved about any vertical lines.

Cognate quaquaversal surfaces of revolution may 
also comprise cognate hyperboloids of revolution, but 
not paraboloids of revolution, as the generating ele­ 
ments of the latter are parabolas, which are similar 
curves. Cognate quaquaversal or canoe-shaped folds 
may also comprise sets of algebraic or transcendental 
surfaces, represented by equations that differ only in

the values of their constant parameters. A family of 
catenoids will illustrate this possibility in the genera­ 
tion of a quaquaversal fold. Parenthetically, the cate­ 
noids are the only minimal surfaces of revolution, for 
which reason they may have some structural signifi­ 
cance if they are found to exist in quaquaversal folds.

Elongate cognate domes may be constructed by as­ 
sembling similarly placed cognate ellipsoids, which may 
or may not be coaxial, depending on whether or not 
linear translation is utilized. The simplest construction 
is the assembly of coaxial cognate ellipsoids. Four such 
ellipsoids, for example, might have semiaxes 16,12, and 
8; 13,10, and 7; 10,8, and 6; and 7,6, and 5. The eccen­ 
tricities of the elliptic arcs in all the principal sections of 
such surfaces would be different; and in fact, the same 
would be true of their horizontal sections. The halves 
of these ellipsoids, oriented with the major axes 
either in a vertical or in a horizontal position, will 
constitute two sets of cognate stratigraphic surfaces, 
illustrating respectively a prolate and an oblate canoe- 
shaped cognate fold.

Elongate cognate domes could likewise be repre­ 
sented by an assembly of cognate biparted hyper­ 
boloids; and these might also be constructed from 
numerous sets of related surfaces of higher degree. 
All cognate domes produced with or without rotation, 
in the manner outlined above, could be greatly modified 
by different combinations of vertical and horizontal 
translation, to produce many types of unsymmetrical 
folds. It is clear that the number of quaquaversal 
and canoe-shaped cognate folds that are possible is 
very large.

COMPOSITE DOMED SURFACES

Composite domes, like composite cylindrical folds, 
have at least three types of surfaces, which are classi­ 
fied according to the character of the stratigraphic 
traces. Some of the curves that simulate these traces 
are amenable to rotation, so that the resulting figures 
may be used to illustrate specialized types of domes. 
An example is figure 20#, which can be revolved about 
its vertical axis to produce a prolate composite quaqua­ 
versal dome, though it cannot be revolved about the 
horizontal line at its base. A difference in the original 
profile could have resulted in an oblate composite qua­ 
quaversal dome. Figures 20^ and 2L4-Z>, on the other 
hand, cannot be rotated about any horizontal or verti­ 
cal line without producing discontinuities.

Composite curves may also be assembled without ro­ 
tation to produce a large variety of unsymmetrical
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quaquaversal and elongate domes, with principal sec­ 
tions that are either plane or curved surfaces. These 
sections are not necessarily related in their geometrical 
configurations, so that composite domes will be much 
more numerous and complex than similar or cognate 
cylindrical folds. For all practical purposes, one is 
constrained to study mainly the principal sections, 
which are represented conventionally and approxi­ 
mately as plane profiles.

Quaquaversal and canoe-shaped composite domes are 
thus constructed by all the methods heretofore de­ 
scribed in the production of composite cylindrical 
folds. The number of possible domal structures is too 
large to attempt their enumeration. Figure 2L£r, 
drawn in perspective, illustrates theoretically a simple 
elongate composite dome with two kinds of plane prin­ 
cipal sections. The major section, parallel to the 
elongation of the fold, comprises cognate ellipses, hav­ 
ing eccentricities ranging from 0.775 to 0.947; the 
minor or cross section consists of a set of similar el­ 
lipses at different scales, each with an eccentricity of 
0.745. It should be noted that neither principal sec­ 
tion in this figure comprises composite stratigraphic 
traces; but the fold as a whole is composite because 
these two sections illustrate different species of profiles.

CONSTRUCTION AND APPLICATION OF ELLIPSES

Little is really known of the curvature of strati- 
graphic surfaces, cylindrical or noncylindrical, first 
because complete profiles of folds are rare and second 
because the geometry of actual folds has not been 
studied. The traces of the stratigraphic surfaces of 
some folds, however, are available in natural outcrops, 
either in profiles normal to the axial line or in profiles 
that do not depart materially from this orientation, so 
that they could be transformed with slight error into 
the desired plane. The geometrical measurement and 
analytical classification of such traces should constitute 
a noteworthy step in an understanding of the me­ 
chanics of folding and would also serve as a guide or 
check for some of the experimental work now being 
done on the deformation of rocks. Most folds, how­ 
ever, have to be reconstructed without the aid of such 
complete data, for commonly only a vertical profile is 
available, on which are charted a set of dips, together 
with lithologic data.

Ellipses have been shown to be particularly suitable 
for the approximate delineation of stratigraphic traces 
in profiles selected to show the maximum or minimum 
apical curvature; and four general types of cylindrical 
and noncylindrical folds have been illustrated, mainly 
by the use of elliptic arcs. A large number of semi- 
ellipses are required in this work. Various methods

are known for drawing ellipses, including the use of 
articulated linkages. The well-known method of 
drawing an ellipse with a string of constant length, 
anchored at the two foci, is impracticable, because it is 
difficult to prepare a string of a stated length and still 
more difficult to avoid stretching the string while 
drawing the ellipse. All ellipses illustrated in this 
paper were drawn by means of the trammel of Archi­ 
medes. This method, though discovered 2,200 years 
ago, remains still the most practical means for point- 
to-point elliptic charting. The ellipse is constructed 
as a glissette, by sliding a bar of length (a+b) be­ 
tween 2 coordinate axes, with the point of projection 
at the junction of the 2 semiaxes. Kectangular coordi­ 
nates are used for simplicity, but an ellipse will still 
be produced if the axes are oblique. The mechanism 
and method are shown in figure 21^. A strip of lucite 
3 centimeters wide and 51 centimeters long is per­ 
forated by 101 holes of size 60, that are 0.5 centimeter 
apart. Holes of this size permit the insertion of a 
sharply pointed hard pencil. It is possible with this 
instrument to construct 2,450 ellipses with eccen­ 
tricities ranging from 0.999 to 0.199; but if the holes 
were drilled 0.2 centimeter apart, 16,500 ellipses could 
be constructed. In figure 21F the major semiaxis, 
with a length of 30 units, is laid off on the strip of 
lucite as OA; the minor semiaxis, with a length of 14 
units, as OB. The resulting ellipse has an eccentricity 
of k =0.884, as determined by the equation  

The points on the ellipse are laid off as closely as seems 
necessary for accurate sketching of its locus.

A limited number of semiellipses have been prepared 
in graphical form for structural reference. These were 
drawn originally with major semiaxes of 20 centimeters 
and minor semiaxes ranging from 1 to 19 centimeters, 
and this provided 19 prolate semiellipses, as shown in 
figure 22. These were also drawn in oblate form, as 
shown in figure 23. But such figures, in order to be 
usable, must also be available at different scales; and 
the semiellipses of figures 22 and 23 were reproduced at 
reduced scales, resulting in 18 additional figures. 
These, however, could not be presented in this paper; 
and therefore those wishing to use these methods will 
have to provide a series of reductions of figures 22 and 
23. The scale of the profile must be adjusted to fit a 
set of such semiellipses, unless the geologist wishes to 
prepare other semiellipses of predetermined eccentricity 
and scale to fit a profile of fixed size.

The utilization of these ellipses and elliptic arcs will 
depend upon the type of fold that is to be reconstructed. 
If the fold is known to have parallel or approximately
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22. Nineteen prolate semiefflpses with eccentricities ranging from fc=0.312 to Jfc=0.099. The major semiaxes have the same length.

parallel surfaces, in whole or in part, these curves will 
not apply; instead the reconstruction will be accom­ 
plished by application of the method of evolute and 
involutes. But if the fold has nonparallel surfaces, one 
must first determine its departure from parallelism, and 
then select the genus of the nonparallel fold. The first 
decision requires an evaluation of the localization and 
degree of the stratigraphic thickening and thinning, as 
revealed by the available geologic data. The second 
decision will have to be made experimentally by fitting

the structural data to the simplest curvilinear traces 
that will serve the required purposes.

Let a vertical profile be given on which are plotted 
a series of dips. If the plane of the profile is oblique 
to the axial plane or surface, another plane profile may 
be drawn that intersects the original and is normal to 
the axial plane or surface. The given dips may be 
transformed in position and magnitude from the first 
to the second plane with little distortion, by well-known 
methods that require no description. The dips are thus
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FIGURE 23. Nineteen oblate semlelllpses with eccentricities ranging from Jfc=0.312 to fc=0.999. The major semlaxes have the same length.

finally assembled on the desired profile, in their proper 
relation to original separation and to relief. These 
dips, however, may not have the optimum spacing to 
yield the best structural interpretation. The best 
structural spacing is generally a uniform one, but un­ 
equal spacing may be required to place the dips at 
contacts between beds, or for other reasons. Any de­ 
sired spacing may be obtained by use of a method given 
by the writer in an earlier publication (1947). Thus a 
profile of suitable character and orientation is now 
ready to be used in the reconstruction of a fold. 

The fold is known or assumed to be nonparallel. If

the nature of the axial plane or surface is not already 
known, this information cannot be deduced from any 
assemblage of dips along a profile. But some idea of 
the dip of the axial plane or the configuration of an 
axial surface may be gained by the following method. 
Any assemblage of dips along a profile may be recon­ 
structed, rightly or wrongly, as a parallel fold, which 
necessarily has an axial plane. One may therefore as­ 
sume as a first approximation that the fold is parallel 
and then construct such a fold by the method of evolute 
and involutes. The approximate tilt of an axial plane 
is thus determined, to serve as a guide in reconstructing
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the nonparallel fold. This axial plane may be usable 
as deduced, but more commonly it will need to be modi­ 
fied materially in fitting elliptic arcs to the given dips 
of a nonparallel fold.

The construction of parallel folds by the method of 
evolute and involutes has been described by the writer 
in earlier publications, (1940, 1944, 1947, 1948), and 
needs no repetition. It should be stated, however, that 
discontinuities in the evolute are to be expected, not 
only where the dips along a profile pass through values 
of 0° and 90° but also at other places where the incre­ 
ment of dip becomes markedly irregular. Thus a set 
of dips that is increasing gradually from west to east 
may suddenly begin to increase more slowly or more 
rapidly, or to decrease. Any of these conditions may 
cause an interruption in the formation of an envelope 
that will result in a discontinuity in the evolute. Such 
discontinuities, however, will not interfere with the 
generation of the involutes.

The nonparallel fold is reconstructed by selecting 
semiellipses or smaller elliptic arcs that will fit the real 
and interpolated dips along a profile and will come 
closest to fitting the dip of the axial plane deduced from 
an analogous parallel fold. A single semiellipse from 
a series of reductions of figures 22 or 23, moved in a 
direction parallel to its vertical axis and repeated at

equal or unequal intervals, as determined by the stratig­ 
raphy, will represent the traces of a congruent similar 
fold, of the type shown originally by Van Hise. But a 
series of semiellipses of the same eccentricity at dif­ 
ferent scales, or arcs thereof, will represent the traces 
of a noncongruent similar fold; and a selection of semi- 
ellipses or elliptic arcs of different eccentricity will lead 
to the construction of the cross section of a cognate 
fold. If all these possibilities fail, a composite fold 
must be constructed. The magnitude and localization 
of the stratigraphic thickening or thinning is further 
controlled by a choice of vertical or horizontal transla­ 
tion, or both, either proportional or differential. Semi- 
ellipses with the eccentricities shown in figures 22 or 23 
may be inadequate for the desired curvature; if they 
are inadequate, other semiellipses or elliptic arcs may 
be drawn by the method above described.

A transverse geologic profile of a cognate fold, con­ 
structed in the manner described above, is illustrated 
in figure 24. Six beds are shown with 12 dips that 
occur either naturally, or have been interpolated, at 
equal intervals along the contacts of the strata. These 
beds are known to be thicker at the trough of the syn- 
cline than along its flanks; and the geologic mapping 
shows that the thicknesses on one flank are greater than 
on the other. More than one solution of these require-

rH-s
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FIGURE 24. Transverse geologic profile of a cognate syncllne with a slightly curved axial surface. Constructed from dips and contacts
plotted on a section normal to the axial line.
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ments may be obtained, but the one illustrated is pro­ 
duced by 6 elliptic arcs, having eccentricities of 0.909, 
0.831, 0.793, 0.703, 0.774, and 0.786. In the preparation 
of this profile, the tilt of a tentative axial plane was 
first determined. Six arcs from a series of semiellipses 
of the type shown in figure 22 were then selected and 
oriented collinearly with their major axes along the 
trace of a tentative axial plane and their minor axes 
parallel at equally spaced intervals. These arcs were 
next translated differentially along the line of their 
major axes to fit stratigraphic intervals assumed to 
exist at the trough of the fold. The traces were then 
translated differentially in a direction parallel to the 
minor axes, in an attempt to fit the given dips and con­ 
tacts. Failing in this, elliptic arcs of different eccen­ 
tricity were used, on a trial and error basis, until the 
dips were finally duplicated as tangents to the elliptic 
arcs. This construction produced a slightly curved 
axial surface, as shown by its trace in figure 24.

The reconstruction of nonparallel folds, by the 
methods described in this paper, is evidently accom­ 
plished by an experimental and empirical technique 
that cannot yield a unique structural solution. These 
methods thus differ fundamentally from the method 
of evolute and involutes that produces one and only 
one reconstruction of a parallel fold. What, then, are 
the stratigraphic advantages ? A geologist may indeed 
prepare a structural section of a nonparallel fold that 
is not made in accord with any established plan; or he 
may try to adjust the structural data to fit conventional 
curves that correspond approximately to the strati- 
graphic traces. The utilization of elliptic arcs yields 
at least a solution that is amenable to measurement and 
checking; and it is the thesis of this paper that a con­ 
ventional though empirical solution of this kind is pref­ 
erable to stratigraphic conjecture. One of the meas­ 
urements that is facilitated by the use of predetermined 
curves is that of stratigraphic thickness, now to be 
described.

STRATIGRAPHIC THICKNESS

Stratigraphic thickness, or other stratigraphic di­ 
mensions, can be measured from a structural profile 
either graphically or by numerical computation. The 
stratigraphic thickness of a nonparallel fold must first 
be defined, however, before it can be measured by either 
method. The utilization of predetermined curves in 
a profile, such as elliptic arcs, facilitates both the defi­ 
nition and the measurements. Assume that the section 
of a stratum within a fold is bounded by two semi- 
ellipses, or by arcs thereof. The stratigraphic thick­ 
ness may then be defined as the area of the section de­

lineated in the profile, divided by the length of another 
elliptic arc that lies midway between the two bound­ 
ing arcs. Such a median arc can be constructed either 
graphically or according to an analytic formula.

A graphic measurement of the stratigraphic thick­ 
ness requires two machines; a line integrator for the 
measurement of the median arc and a polar planimeter 
for measurement of the area between two bounding 
elliptic arcs. If such instruments are available and 
the geologist prefers the graphic method, the resulting 
measurement of thickness will doubtless be within the 
limits of accuracy of the constructed profile. But if 
an analytical measurement is preferred, certain meth­ 
ods need to be described.

The area of an ellipse is given by the simple expres­ 
sion irtib; and as an ellipse is bisymmetrical, the areas 
of the semiellipse and of the quarter ellipse are obvious. 
Many of the illustrations of nonparallel folds, how- 
over, utilize elliptic arcs shorter than a quarter ellipse, 
which may either be coaxial or noncoaxial. If the two 
arcs are coaxial, the area between them is obtained by 
two integrations and a subtraction of the resulting in­ 
tegrals. The general case has to do with an area be­ 
tween two elliptic arcs, one of which has been trans­ 
lated both vertically and horizontally with regard to 
the other. In other words, if both arcs are treated as 
central conies, their origins are different. This condi­ 
tion is illustrated in figure 25.

Let the arc PQ be represented by the equation
fs+fi=l, referred to an origin at 0ij and let the arc

J£2 V2
RT be represented as -&+-#=* *> be referred to an origin 
at 02. Also let $1 be the area between a segment of the 
arc PQ^ the ordinates os=c and x d, and the a? axis; 
and let $2 be the area between a segment of the arc RT, 
the ordinates X=m and X=n, and the X axis. If the 
ordinates of any point in the two systems of coordinates 
are yr and TV, the required area is 

depending upon the relative positions of the two origins. 
Writing the equation of the arc PQ as 

we have &= (*' -(a?-xz)^dx
Jd 0.

Si - x > |_£Larc'sin-| I 
a L « « Q Jd

/S1 =Arc(02_ c2) M_ rf(02_ d2)M+02 (&TC sin--arc sin- 
za L \ a a

The area £2 is similarly found, and from & and $2 
the required area B is readily computed.

No exact formula exists for the perimeter of an 
ellipse. Soreau (1921) has presented an empirical
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0,
25. Diagram showing measurement of the area between two noncoaxial elliptic arcs.

formula that gives a close approximation to the perim­ 
eter, as follows:

CTT   b  77-1 
sin Cw if "a+6

where p is the perimeter, and a and b are respectively 
the semimajor and semiminor axes. A still closer ap­ 
proximation is obtained if 

6 q+0.036 
a' 0.97o + 1.096

The perimeter may also be expressed as an infinite al­ 
gebraic series in the eccentricity (&), but this converges 
so slowly for large values of the eccentricity as to be 
practically useless. The perimeter is most accurately 
determined by an evaluation of the elliptic integral of 
the second kind, called by Legendre the E function.

The derivation of the length of an elliptic arc fol­ 
lows. Elliptic arcs are measured clockwise from the 
minor semiaxis, as shown in figure 26. Let 

s=QP, an elliptic arc 
a=OR=OA, the major semiaxis

b=OQ=OB, the minor semiaxis
(ut   b2\X

&=.;     L-, the eccentricity

^=the eccentric angle
0=the minor eccentric angle
x=a sin <f>
y=b cos 0
0=arc sin k, the modular angle

The length of any plane curve that is parametrically 
defined as ss=ae(u) and y y(u) is given by the inte­ 
gral 

For an ellipse, let  

Then 
x=a sin 0, and y=6~cos <t>

dx -j-=a cos , dy , . and -^=   6 sm

= [a2 cos2
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which, with the limits of integration inserted, may be 
written as  

sin2s=a \ (l  
Jo

The length of a quarter ellipse, within the limits

0=0 is p/4=

FIGURE 26. Diagram showing measurement of the length of an elliptic 
arc. The minor eccentric angle, #, and the modular angle, 9, are the 
arguments used in modern tables of elliptic functions.

The quadrature of the E function cannot be per­ 
formed in terms of any of the elementary functions; 
but it may be computed numerically to any required 
degree of accuracy; this makes it as available for 
practical work as other tabulated functions. The 
values of E and of the other elliptic functions have 
been computed to 12 decimals by the Spenceleys (1947). 
As two variables, <£ and 0, comprise the arguments, a 
double interpolation is required. The angular values 
of <f> must also be converted to radians. By taking the 
values of E (<£, 6) from these tables, the lengths of 
elliptic arcs are not difficult to obtain, though some 
arithmetical computation is necessary. It is obvious 
from figure 26 that the length of any elliptic arc is 
the distance measured clockwise from the minor semi- 
axis to the farthest terminal point of the arc, minus 
the corresponding distance to its nearest terminal 
point.

The lengths of semiellipses and quarter ellipses, how­ 
ever, may be computed and tabulated. Thus the writer 
has computed the lengths of 99 semiellipses, with major 
semiaxes of 10 and minor semiaxes ranging from 9.9

to 0.1; and for reference the corresponding eccentrici­ 
ties are also given. In the reconstruction of a fold, it 
may be feasible to utilize semiellipses within this range 
of centimeters, inches, or other units of length. If 
possible, the semiperimeters may be read directly from 
the table. If, however, it is necessary to assume other 
lengths for the semiaxes, the corresponding semi- 
perimeters may still be obtained from the table with 
a trivial amount of interpolation, and without the com­ 
putation of eccentricity. Thus the semiperimeter of 
an ellipse with semiaxes of a=17 and 5=13 is 1.7 times

10X13 
that of an ellipse with semiaxes of a 10 and 5=    

17
or 5=7.647. Interpolating in the table between 5=7.6 
and 5=7.7, it is found that the semiperimeter of such 
an ellipse is 27.84. Therefore the semiperimeter of an 
ellipse with semiaxes of &=17 and 5=13 is 27.84 X 
1.7=47.33. The table of semiperimeters follows.

Semiperimeters of ellipses, &=10

b

9.9
9.8
9.7
9.6
9.5
9.4
9.3
9.2
9.1
9.0
8.9
8.8
8.7
8.6
8.5
8.4
8.3
8.2
8.1
8.0
7.9
7.8
7.7
7.6
7.5
7.4
7.3
7.2
7.1
7.0
6.9
6.8
6.7

k

0. 1411
.1990
.2431
.2800
.3122
.3412
.3676
.3919
.4146
.4350
.4560
.4750
.4931
.5103
.5268
.5426
.5578
.5724
.5864
.6000
.6131
.6258
.6380
.6499
.6614
.6726
.6834
.6940
.7042
.7141
.7238
.7332
.7424

p/2

31.26
31.10
30.95
30.79
30.64
30.48
30.33
30.17
30.02
29.87
29.71
29.56
29.41
29.26
29.11
28.9fi
28.81
28.66
28.51
28.36
28.22
28.07
27.92
27.77
27.63
27.48
27.34
27.20
27.05
26.91
26.77
26.63
26.49

b

6.6
6.5
6.4
6.3
6.2
6.1
6.0
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
46
4.5
4.4
4.3
4.2
4.1
4.0
3.9
3.8
3.7
3.6
3.5
3.4

k

0. 7513
.7599
.7684
.7766
.7846
.7924
.8000
.8074
.8146
.8216
.8285
.8352
.8417
.8480
.8542
.8602
.8660
.8717
.8773
.8827
.8879
.8930
.8980
.9028
.9075
.9121
.9165
.9208
.9250
.9290
.9330
.9367
.9404

P/2

26.35
26.21
26.07
25.93
25.80
25.66
25. 53
25.39
25.06
25.13
24.99
2486
2473
2460
2448
24.35
24.22
24.10
23.97
23.85
23.72
23.60
23.48
23.36
23.25
23.13
23.01
22.90
22.79
22.67
22.56
22.45
22.35

b

3.3
3.2
3.1
3.0
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
.9
.8
.7
.6
.5
.4
.3
.2
.1

k

0.9440
.9474
.9507
.9539
.9570
.9600
.9629
.9656
.9682
.9708
.9732
.9755
.9777
.9798
.9818
.9837
.9854
.9871
.9887
.9902
.9915
.9928
.9939
.9950
.9959
.9967
.9975
.9982
.9987
.9992
.9995
.9998
.9999

p/2

22.24
22.14
22.03
21.93
21.83
21.73
21.63
21.54
21.45
21.36
21.27
21.18
21.09
21.01
20.93
20.85
20.78
20.70
20.63
20.56
20.50
20.44
20.38
20.32
20.27
20.22
20.17
20.13
20.10
20.07
20.04
20.02
20.01

ANALYSIS OF FOLDS

The analytical classification and measurement of 
folds can be done only for complete or partial flexures, 
whose stratigraphic traces or parts thereof are visible 
and mappable in satisfactory profiles. Two general al­ 
ternatives exist for approaching this problem. The 
mapped arcs representing stratigraphic traces may be 
fitted empirically to preselected curves, using some sys­ 
tem of coordinates; or these arcs may be represented 
analytically in terms of invariants of such curves, 
without reference to any system of coordinates. As no 
folds are simple geometric structures, the analysis of 
stratigraphic traces by either method will invariably
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result in approximations, but these can be made as ac­ 
curate as the work requires. Such analytical methods 
may be useful in certain practical applications, such as 
subsurface geologic or geophysical prospecting; but 
the principal application will probably be in the classi­ 
fication of folds and in theoretical studies relating to the 
mechanics of folding.

The conies, being relatively simple curves of the sec­ 
ond degree, are first considered in the analytical repre­ 
sentation of stratigraphic traces. Any 5 points, of 
which 3 or more are not collinear, may be fitted to an 
ellipse or to a hyperbola; 4 points to a parabola; and 3 
points to a circle. Mertie (1948) has shown that 5 
points on a stratigraphic trace may be fitted graphically 
to an ellipse by the application of Brianchon's theorem. 
Analytically the procedure is as follows. Assume a 
random origin of rectangular coordinates, and select 5 
points on the mapped stratigraphic trace, preferably 
about equally spaced along the arc. The coordinates 
of these points are then measured in terms of the se­ 
lected origin. The equation of a conic passing through 
these 5 points is expressed as follows:

xy

X?

y\
2/2 

1/4

=0

where (»i, yO, (a?2, y2), (a?8 , y8 ), (a?4 , 2/4), and (a?5 , y5 ) 
are the coordinates of the 5 points. This determinant 
is reducible order by order by either of the 2 methods 
of condensation given by Muir and Metzler (1933). 
It becomes finally the general equation of the conic  

Ax*+Bxy+ Cy*+Dx+ Ey+F =0

in which the 6 constants are numerically determined. 
The discriminant of the general conic is  

If A ?£ 0, the conic is an ellipse, hyperbola, or parabola, 
depending respectively whether BZ  4AC is less, 
greater, or equal to zero. The equation is unlikely to 
represent a parabola, as it is not possible in general to 
pass a parabola through 5 random points. The equa­ 
tion of the ellipse or hyperbola may now be simplified 
to one whose axes coincide with the axes of coordinates.

The coordinates of the central conies are   «= B*" 
and  

2AE-BD

The resulting simplified equation will have the form 
of 

where  

If by any chance the general equation of the conic 
should represent a parabola, a conversion to the stand­ 
ard form yz =2mx may be accomplished by equally 
well-known methods of analytical geometry.

The simplified equation of the ellipse or hyperbola 
may need to be further modified to fit more closely the 
entire stratigraphic trace. To accomplish this objec­ 
tive, measure and record the coordinates of a con­ 
siderable number of equally spaced points, including 
the five original points, in terms of the new origin of 
coordinates. An equal number of residual equations 
are then derived, having the general form of  

and the angle between the old and new systems of co­ 
ordinates is   0=1/2 arc tan A-C

which are linear in A' and B' '. From these, two nor­ 
mal equations will be obtained, which may readily be 
solved for A' and B'. Computation of the residuals 
will determine the closeness of fit.

The fitting of stratigraphic traces to preselected 
curves is a problem that differs from the fitting of ob­ 
served data to empirical curves, as described in many 
textbooks. Observed measurements are automati­ 
cally charted in relation to an origin of coordinates. 
Stratigraphic traces as premapped arcs do not deter­ 
mine or suggest where the origin of coordinates should 
be placed. In the method of fitting traces to conies, 
as outlined above, random origin is assumed, but the 
resulting equation of the conic contains the informa­ 
tion needed for a close placement of the simplest origin 
of coordinates. This method cannot be used advan­ 
tageously for cubics or algebraic curves of higher de­ 
gree. Thus, nine points are required to define >a cubic, 
and the resulting equation would have to be written 
as a determinant of the tenth order. The labor in­ 
volved in clearing such a determinant is prohibitive; 
the analysis that would be required for reducing the 
equation to its simplest form, by the transformation of 
coordinates, is difficult; and the final least square ad­ 
justment of nine coefficients would likewise be imprac­ 
ticable. Neither can the method be applied to tran­ 
scendental curves.

Higher plane curves may be used, however, if a 
random origin of coordinates is used. Many higher 
plane curves are available, some of which simulate 
parabolic, hyperbolic, or elliptic curvature, whereas 
others are exponential, logarithmic, trigonometric, or 
hyperbolic in nature. In particular, the polynomial 
y=a+ &#+<?#+ da?3 4- .... may be adjusted by least
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squares to fit any nonperiodic curve, and further 
diversity may be added by substituting for y any func­ 
tion of y. Such curve fitting, referred to an arbitrary 
origin of coordinates, may be useful in practical work 
such as underground exploration, but is of little value 
for the classification of stratigraphic traces or in other 
theoretical applications, because curves referred to dif­ 
ferent systems of coordinates are not comparable.

The utilization of invariants that are independent 
of any system of coordinates is a much better method 
for the classification of stratigraphic traces. Alge­ 
braic relations between such invariants are called in­ 
trinsic equations. Figure 27 illustrates these invari-

FIGDEB 27. Diagram illustrating angle of contingence (x), length of 
arc (a), and radius of curvature (R), which are used in formulating
intrinsic equations.
instead of the radius of curvature.

The curvature (K), where  £=-«' may be used

ants, which constitute the length of an arc, s PiPz, 
the corresponding angle of contingence, x? and the 
radius of curvature, R=OP2. The curvature K is the 
reciprocal of the radius of curvature. Any two of 
these variables will determine the shape of a curve, 
without locating it in <a plane. Equations in s and \ 
are called Whewell equations; those in s and R (or K) 
are called Cesaro equations; and those in x and R (or 
K) are called Euler equations. It is easier to measure 
lengths of arcs and angles of contingence than to 
measure R or K, for which reason Whewell equations 
are the most practical for the present purpose.

The method consists in measuring the lengths of 
arcs and the corresponding angles of contingence of 
stratigraphic traces in the profile of some actual fold, 
covering if possible the entire fold for each trace. The 
photograph of a section of a fold, transformed if neces­ 
sary into a plane normal to an axial or an apical line, 
will serve as the original data. These measurements 
are then fitted to the intrinsic equation of some as­

sumed curve by the method of least squares. The 
residual equations are first formed, from which the 
normal equations and the values of the constant pa­ 
rameters are determined by well-known methods. 
Computation of the residuals will determine how 
closely the assumed curve can be made to fit the strati- 
graphic traces. If the parameter or parameters of the 
equation are not linear and no algebraic transforma­ 
tion will lead to a linear relation, other least square 
methods are available for determining the values of 
the parameters. Such methods are clearly presented 
by Scarborough (1950).

Cartesian or other coordinates are not used in the 
methods above described, but when it is desired to uti­ 
lize Whewell equations, it generally is necessary to 
derive them from conventional equations. The pro­ 
cedure for obtaining a Whewell equation from an ex­ 
plicit equation in cartesian coordinates is as follows: 
Let the given equation be  

»«=/(*) 
Then-

tan x=/(a;) 
But the differential of the arc of any plane curve is  

Therefore  

and

After this integration is performed, we have  
s=F(x)

Eliminating a? from equations   
tan *=f(x) 

and  
s=F(x) 

we obtain the desired Whewell equation  

Other methods are available for the conversion of im­ 
plicit cartesian, polar, and parametric equations to 
Whewell equations.

Intrinsic equations of the hyperbola and ellipse are 
not well suited to this method, unless one is versed in 
the use of elliptic functions. The Whewell equation 
of the parabola 2/2 =4aa?, however, is  

s=a[sec % tan x+log (sec %+tan x)l

Probably the best application of Whewell equations in 
matching stratigraphic traces is in the use of higher 
plane curves, particularly transcendental curves, with 
arcs that have a general resemblance to the conies. A
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few such equations that might prove of interest, fol­ 
lowed by their Whewell equations, are given below.

Parabolic catenary: y= a cosh (^j 
s=a tan x

Catenary of uniform strength: y= a log sec (-J

s=o log tan (^ 
Semicubical parabola: Say*=2a?

9s = 4o(sec3 x 1)

Cycloid: x=a vers-1 (|) + (2oy- y2)* 

s=4a sin x

Epicycloid: a; = (a+ 6) cos t +b cos |~ (a+6) -^J 

y=(a + b) sin f+6 sin j (a + 6)--^ J

Lo+26' xJ
46(o+b) . 5= -  - sin 

a
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