

Renewable Resources for Hydrogen

Ali A. Jalalzadeh-Azar

Presented at the Renewable Hydrogen Workshop, NHA Hydrogen Conference and Expo

> May 3, 2010 Long Beach, CA

NREL/PR-560-48222

Objectives

- Provide an overview of the pathways to hydrogen production from renewables.
- Demonstrate the abundance of renewable resources for hydrogen production via GIS analyses in conjunction with the current U.S. energy consumption.
- ➤ Highlight challenges in providing renewable hydrogen.

Pathways to Hydrogen Production from Renewables

U.S. Renewable Resources

Electrical Power Potentials:

(Source: http://www.nrel.gov/gis/)

Electrical Fewer Feteritaile.								
Resource	Solar PV/CSP)	Wind	Geothermal	Water Power	Biopower			
Theoretical Potential	206,000 GW (PV) 11,100GW (CSP)	8,000 GW (onshore) 2,200 GW (offshore to 50 nm)	39 GW (conventional) 520 GW (EGS) 4 GW (co-produced)	140 GW	78 GW			

Solar Resources—PV and CSP

Southwest region offers greatest solar power density.

PV has the dominant share of solar potential.

The existing total power generation capacity in the U.S.* comprises about 0.54 % of the PV solar theoretical potential.

* Based on EIA data (http://www.eia.doe.gov/).

Resource Solar PV Solar **CSP Theoretical** 206,000 11,100 GW **GW Potential**

⟨Wh/m² /day

kWh/m² /day

Wind and Biomass Resources

- Central region offers greatest wind power potential.
- The existing total power generation capacity in the U.S.* represents about 14 % of the onshore wind theoretical potential.

	Resource Potential	Wind Power Density at 50m W/m ²	Wind Speed ^a at 50 m m/s	Wind Speed ^a at 50 m mph
1 1	Poor	0 - 200	0.0 - 5.6	0.0 - 12.5
2	Marginal	200 - 300	5.6 - 6.4	12.5 - 14.3
3	Fair	300 - 400	6.4 - 7.0	14.3 - 15.7
4	Good	400 - 500	7.0 - 7.5	15.7 - 16.8
5	Excellent	500 - 600	7.5 - 8.0	16.8 - 17.9
6	Outstanding	600 - 800	8.0 - 8.8	17.9 - 19.7
7	Superb	> 800	> 8.8	> 19.7

a Wind speeds are based on a Weibull k value of 2.0

Source: http://www.nrel.gov/gis/

- Biomass resources are spatially more scattered and offer environmental and economic opportunities particularly at local / municipal levels.
- Production of biomethane from biomass can support the regional natural gas grid.

Hydrogen Production Potential from Solar and Wind

Key Assumptions:

- Wind Class of 3 or better
- PV efficiency: 10%
- Land coverage for PV: 3% of available lands (accounting for excluded areas)
- Installation of 5 MW of wind turbine per square km
- Overall electrolysis efficiency: 75% (HHV).

- Hydrogen production potential from PV and wind: 1,110 billion kg (~gallons of gasoline equivalent-gge)
- Gasoline consumption for US transportation in 2005: 128 billion gallons.
- The potential for hydrogen production is more than 8 times the transportation fuel consumption.
- (The remaining potential is sufficient to meet the energy requirements of stationary applications in the U.S.)

Source:

Levene, J. I.; Mann, M. K.; Margolis, R.; and Milbrandt, A. 2005. "An Analysis of Hydrogen Production from Renewable Electricity Sources." ISES 2005 Solar World Congress, Orlando, Florida, August 6-12.

Hydrogen Supply vs. Demand in Spatial Domain

- Hydrogen production potential from key renewable resources—onshore wind, solar PV, and biomass.
 (~ 1 billion metric tons.)
- The Great Plains region offers the greatest potential.

Milbrandt, A.; Mann, M. (2006). Potential for Producing Hydrogen from Key Renewable Resources in the United States. 32 pp.; NREL Report No. TP-640-41134.

 Projected spatial hydrogen demand for transportation based on key attributes of consumers (e.g., education, hybrid vehicle registration)

Melendez, M.; Milbrandt, A. (2006). Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report. 35 pp.; NREL Report No. TP-560-40373.

Hydrogen Potential from Key Renewable Resources

Source: Milbrandt, A.; Mann, M. (2006). Potential for Producing Hydrogen from Key Renewable Resources in the United States. 32 pp.; NREL Report No. TP-640-41134.

Energy Consumption by Source

Total Energy Consumption (2008) = 99.3 quads

Renewable energy plays a small role in spite of its potential.

Renewable Energy Use (2008) = 7.3 quads

Based on EIA data (http://www.eia.doe.gov/)

Solar energy has disproportionately small contribution.

High costs and lack of infrastructure are plausible reasons—policies and incentives can change these.

Example of Untapped Resources for Hydrogen—Landfills

Source: http://rpm.nrel.gov/biopower/biopower/launch

- Underlines significance of stranded biogas potential for onsite power generation and biomethane / hydrogen production.
- Landfills typically offer a greater biogas potential than sewage treatment facilities and dairy farms.

 (In California, biogas potential from landfills is ~ 5 times as much as that of the other two combined.)
- Economy of scale works in favor of landfills, but biogas upgrading requirements can be challenging.

Challenges

- Dependency of hydrogen production cost via electrolysis on electricity price presents an economic challenge for using renewable electricity.
- Economic competition of renewables with conventional sources of energy for hydrogen production without adequate environmental and energy policies/incentive. (Requirements such as RPSs and SB1505 can be effective drivers for renewables.)
- ➤ Because of spatial mismatch between hydrogen demand and production source, infrastructure is required for cost-effective transport.
- ➤ Daily / seasonal variation of energy supply capacity from renewables and temporal mismatch between supply and demand necessitate use of cost-effective energy (electricity, biomethane, hydrogen) storage—a conduit of energy in time.
- Optimum utilization of renewable sources of energy for hydrogen requires complex technoeconomic analyses considering key factors such as availability of renewable energy, energy costs, alignment of energy supply / demand, and infrastructure capabilities.

Conclusions

- Renewable resources for hydrogen are abundant, but their large-scale utilization requires overcoming economic challenges and infrastructural limitations arising from spatial and temporal gaps between the energy source and demand.
- Availability of various pathways to hydrogen production offers opportunities for selection of the best alternatives (integrated as well as stand-alone) at the local/regional levels in conjunction with the respective indigenous renewable energy resources.
- Well orchestrated policies and incentives, along with analyses and R&D, can help overcome these challenges.

Questions / Comments ?

Thank you!