
PACER—Data Entry, Retrieval, and Update for the National Coal Resources Data System (Phase I)

GEOLOGICAL SURVEY PROFESSIONAL PAPER 978

PACER—Data Entry, Retrieval, and Update for the National Coal Resources Data System (Phase I)

By S. M. CARGILL, A. C. OLSON, A. L. MEDLIN, and M. D. CARTER

GEOLOGICAL SURVEY PROFESSIONAL PAPER 978

A set of programs, written in FORTRAN IV, which extends the capability of GRASP and which has been developed in response to the need for a computer-based National Coal Resources Data System

UNITED STATES DEPARTMENT OF THE INTERIOR

THOMAS S. KLEPPE, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

Library of Congress Cataloging in Publication Data Main entry under title:

PACER.
(Geological Survey professional paper; 978)
Bibliography: p.
Supt. of Docs. SI 19.16:978
1. National Coal Resources Data System. 2. PACER (computer program) I. Cargill, S. M. II. Series: United States. Geological Survey. Professional paper; 978.
Z699.5.C57P3 029.7 75-619422

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02768-2

CONTENTS

	Page
Abstract	1
Introduction	1
Scope and purpose	2
Acknowledgments	2
Definition of terminology	2
System description	3
PACER search and retrieval operation	3
MERIT data file	5
WCOAL data file	5
USALYT data file	11
Entry of new data	12
Use of the update option	14
Update procedure 1	17
Update procedure 2	20
Update procedure 3	21
Update procedure 4	22
Update procedure 5	23
Use of tabular summary option	2 3
Example of interactive session	24
Programmer's reference	24
Modifications to GRASP	24
Update programs of PACER	35
References cited	36
Appendix A. Names used with NCRDS files	38
B. Program listings of modified GRASP routines	52
C. Program listings of PACER subroutines	61

ILLUSTRATIONS

			Pag
FIGURE	1.	MERIT data-entry form	
	2.		
	3.	Coal regions of the conterminous United States	:
	4.	Coal regions of the Alaska coal province	1
	5.	Data-entry format for WCOAL	1
	6.	Data-entry format for USALYT	19
	Ž.	Example of an interactive session using PACER	2
	8.	Tabular summary of coal resources	3
	9.	Tabular summary of coal analyses	3
	10.		3

TABLES

			Page
TABLE	1.	List of PACER commands	4
	2.	List of WCOAL record variables	10
	3.	Geological age names used with WCOAL and ECOAL	11
	4.	List of USALYT record variables	15

Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

PACER—DATA ENTRY, RETRIEVAL, AND UPDATE FOR THE NATIONAL COAL RESOURCES DATA SYSTEM (PHASE I)

By S. M. CARGILL, A. C. OLSON, A. L. MEDLIN, and M. D. CARTER

ABSTRACT

PACER is a set of programs, written in FORTRAN IV, which extends the capability of GRASP and which has been developed in response to the need for a computer-based National Coal Resources Data System (NCRDS). PACER allows the user to enter data into one of three files, to search for and retrieve records using specific data elements, and to modify and update existing data records. All coal resource records west of the Mississippi River are grouped into WCOAL, whereas those east of the river are grouped into ECOAL. Each data record in WCOAL and ECOAL reflects a unique tonnage estimate of coal resource in a predefined category of thickness, overburden, and reliability of estimate. The USALYT file contains published coal analytical data and is structured to be as compatible as possible with the coal-resource tonnage files; however, it is not yet separated into east and west. A detailed description of the files is accompanied by user documentation for the use of the data files. A programmer's reference is also included to facilitate the installation and use of this software system on other computers.

INTRODUCTION

When probability of future energy shortages was recognized during the summer of 1973, considerable thought was directed to finding substitute sources of energy. Particular emphasis was given to studying coal in terms of that resource satisfying the energy needs of the United States during the interim period between the present dominant use of petroleum products and the advent of widespread use of fusion. solar, geothermal, and other forms of energy. The U.S. Geological Survey undertook to develop a computer-based National Coal Resources Data System (NCRDS) so that better estimates and evaluations could rapidly be made of this huge domestic resource. Development of the NCRDS began in July 1974 along two somewhat parallel paths which have become known as Phase I and Phase II.

Phase I includes retrieval and analysis software and three data bases:

- 1. WCOAL, which contains coal-resource tonnage estimates for deposits west of the Mississippi River;
- 2. ECOAL, which contains coal-resource tonnage estimates for deposits east of the Mississippi River;
- 3. USALYT, which contains published coal analytical data.

Information is stored in these files in an aggregated form, readily accessible for providing resource summaries throughout given geographic regions.

Phase I data records are stored in files which are accessed by a modified version of the Geological Retrieval and Synopsis Program (GRASP) (Bowen and Botbol, 1975) known as PACER: this is an acronym for Program to Analyze Coal Energy Resources. As of December 1975, the data files WCOAL and ECOAL contain nearly 25,000 logical records of coal-resource information for deposits east and west of the Mississippi River.

These two data files are from different sources. WCOAL consists of nearly 16,000 records and is a corrected and modified version of the Rocky Mountain Coal Reserve file received from the U.S. Bureau of Mines. ECOAL contains coal-tonnage records for the States east of the Mississippi River and probably will contain about 10,000 records when the file is completed in the spring of 1976.

Phase II data bases will include geologic information taken from point sources, such as core samples, field observations, and other forms of analysis. The software associated with Phase II will be designed to process these data so that they may be reduced to an aggregated or summary form amenable to Phase I applications. PACER provides the user with access to the data in an interactive timesharing mode. The method of access to the master data records, using a remote terminal, is the main purpose of this report. Some new programming has been done to fill the specific requirements of the NCRDS and its principal users. These new programs are additions to GRASP, as it has been published, and, therefore, are included herein.

Examples of data are provided for clarity, and a sample session is included in a later section to help the user understand data relationships in the file. Because the file structures of ECOAL and WCOAL are identical, all references to WCOAL also apply to ECOAL, except where noted.

SCOPE AND PURPOSE

The scope of WCOAL, in terms of data elements, is limited to an estimate of coal tonnage for some defined area (State, county, township/range, and section) and contains specific definition of coal field. district, province, region, formation, coal bed, depth to coal coal (overburden), reliability of data, rank, and thickness of coal. Other incidental information includes the source document name from which the tonnage estimates were taken and its year of publication; topographic quadrangle name; base year of the tonnage estimate; and geologic age by System and Series. The scope of USALYT overlaps, to a large extent, the data in WCOAL. Replacing data such as depth, thickness, reliability, and tonnage estimates, are such data elements as sample identification and type, analysis identification and type, ash, moisture, fixed carbon, oxygen, hydrogen, and nitrogen values.

The purpose of this report is to provide a detailed description of how a user may access, enter, modify, and delete the data in the Phase I file. The design philosophy of PACER, as it pertains to WCOAL and USALYT, is also described in detail for the benefit of the programmer who wishes to modify the system or to install the software on his computer.

The purpose of the project, development of the NCRDS, has been to provide a means whereby estimates of coal resources, by a variety of characteristics, can be made accurately and quickly, and whereby the data may be updated easily with new information.

The PACER system was developed on Computer Science Corporation's INFONET timesharing system on a UNIVAC 1108 under the company's General Programming System (GPS). Development of PACER took approximately 2 man-years.

ACKNOWLEDGMENTS

Development of Phase I of the National Coal Resources Data System has been facilitated by the use of the Rocky Mountain Coal Reserve file from the U.S. Bureau of Mines MERIT (Mines Energy Resources, Information, and Transportation) System. This file of some 5,000 logical records formed the basis of WCOAL, and as such, has been the nucleus for Phase I data development.

The authors wish to express their thanks to Roger W. Bowen, particularly for his invaluable help in converting the original data into GRASP formats and generally for his assistance in understanding the GRASP system. We also wish to thank Joseph Moses Botbol for his continuing encouragement to bring the system into production.

DEFINITION OF TERMINOLOGY

Definitions of some computer terminology are given to clarify its use in this report.

- Interactive. This term implies, in a broad sense, reciprocal activity between user and computer. It also implies a response to a user-initiated transaction to permit appropriate user action based upon timely computer response. The word is closely associated with a sense of immediacy of response time: interactive is a matter of degree; therefore, a system is less interactive the longer it takes to get a response.
- **Timesharing.** This term, in its simplest definition, is a computing technique in which several users may utilize a computer concurrently for input, processing, and output functions.
- Dictionary. The dictionary, or dictionary file, contains the alphanumeric entries which are associated with a data record. The data record contains not the value itself but a "pointer." The pointer is a number that indicates at which sequential position in the dictionary file may be found the correct character string value for that data field.
- Master file. The master file contains the records of the data base. The fields within the record contain integer values (for integer data), floating-point values (for decimal data), and integer pointers (for alphanumeric data). The file is structured slightly differently from a conventional GRASP numeric master file in that multiple-choice-type items are not used, nor is the master file compressed.

- Mask file. The "Mask file contains the item names, item types (integer, real, character string, multiple choice, and qualified real), and pointers to the first entry in the dictionary file for each charactertype item" (Bowen and Botbol, 1975, p. 3).
- **Definitions file.** This file contains the acronyms used for data variable and the meaning (definition) of each acronym. Other record length parameters are also defined in this file; however, the reader is referred to the GRASP report (Bowen and Botbol, 1975) for a detailed description.

Additional data processing definitions may be found in "Computer Dictionary" (Sippl and Sippl, 1974), or in Calkins and others (1973).

SYSTEM DESCRIPTION

A brief description of procedures and commands is provided below for the PACER version of the GRASP system. The reader is referred to the more detailed description of GRASP (Bowen and Botbol, 1975) for further clarification of procedures and commands. A detailed description of the data bases, WCOAL and USALYT, may be found following descriptions of the programs.

PACER SEARCH AND RETRIEVAL OPERATION

After a successful hookup and log-on procedure has been completed, the user requests the program by typing in the word PACER following the system prompt,!. At this point, PACER types a statement informing the user which data files are available for use and giving a brief description of the data contained therein, and requests the user to name the data file to be accessed.

The user may select one of several commands to perform various functions once the system has prompted with, ENTER COMMAND. Table 1 lists these commands and their meanings. The following is a detailed explanation of some of the commands.

COND (condition) requires three entries: acronym/relation/value. The acronym refers to the data variable name (for example, STATE), and value is the desired value of the variable (for example, ALASKA). The relation between these two may be expressed by one of the following seven operators:

EQ _____equal to.

NE _____not equal to.

GT _____greater than.

LT _____less than.

LE _____less than or equal to.

GE _____greater than or equal to. BE _____between or equal to.

Examples: STATE EQ WYOMING COUNTY EQ JOHNSON YEAR BE 1967,1970 RANK LE SUBBIT TONNAGE GT 350.00

Note that all the relational operators may be used for both alphabetic and numeric data. This is valid for alphabetic data only if they are ordered in such a way that their sequence in a list is significant. For example, rank of coal (RANK) may be logically ordered in a list so that anthracite (ANTH) tops the list, followed by semi-anthracite (SEMI ANTH), bituminous (BIT), low-volatile bituminous (LV BIT), medium-volatile bituminous (MV BIT), highvolatile bituminous (HV BIT), and lignite (LIG-NITE). If the condition were set so that RANK EQ LIGNITE, then all lignite records would be retrieved; if RANK GT MV BIT were entered, then only LV BIT, SEMI ANTH, and ANTH records would be retrieved; if RANK BE MV BIT, ANTH were entered, then all records for anthracite, semianthracite, low-volatile bituminous, and mediumvolatile bituminous coal would be retrieved.

Conditions may reflect repeating acronyms and relational operators, and each condition is prefaced by A, B, C, D, ..., Z (up to 26 conditions). Thus, CONDition A might be STATE EQ MONTANA, and CONDition B, perhaps STATE EQ WYOMING. It is up to the user to associate these conditions with the proper logic to effect the desired retrieval, as described below in the command, LOGIC.

PACER will keep printing the next available alphabetic character as it expects another condition. If no more conditions are to be entered, the user strikes carriage return (CR) without any entry.

LOGI (logic) provides the user with a way to associate any two or more conditions specified in the CONDition command. Three Boolean logical operators are used to connect one condition with another:

```
.AND. or *
.OR. or +
.NOT. or -
```

Note that the word operators are bracketed by periods, but that the equivalent symbol operators are not. The structure of a LOGIc command allows the user to string together as many as 26 conditions (A,B,C, \ldots ,Z) with operators as follows:

A.AND.B+C*D

TABLE 1.—List of PACER commands

ENTER COMMAND: HELP

THE COMMANDS WHICH MAY BE ISSUED (AND THEIR MEANING) ARE LISTED BELOW:

- CUND INITIATES THE REQUEST FOR RETRIEVAL CRITERIA TO BE ENTERED IN THE FORM: NAME REL VALUE
- LOGI INITIATES THE REQUEST FOR A LOGICAL EXPRESSION TO BE ENTERED USING LOGICAL OPERATORS.
- SEAR INITIATES THE SEARCH OF A FILE BASED UPON PREVIOUSLY ENTERED CONDITIONS AND LOGIC.
- LIST ALLOWS THE USER TO LIST SELECTED VALUES (VARIABLE NAMES WILL BE ASKED FOR) IN A FILE.
- FILE ALLOWS THE USER TO SELECT OR CHANGE THE DATA BASE TO BE USED.
- QUIT TERMINATES THE SYSTEM. ENTERING IN RESPONSE TO A PROMPT WILL ALSO STUP THE SYSTEM.
- NAME USED TO PRINT ITEM NAMES, THEIR TYPES AND DEFINITIONS IN A SELECTED SET OF GROUPS.
- HELP USED TO OBTAIN THE ABOVE COMMAND DEFINITIONS.
- REVI LISTS THE FILES WHICH HAVE BEEN USED AS WELL AS THE CONDITIONS AND LOGIC ENTERED.
- DUMP PRINTS ALL ITEMS OR SELECTED ITEMS PRESENT FOR EACH RECORD IN A SELECTED FILE. WAITS AFTER EACH N LINES.
- FUNC PROVIDES FOR THE COMPUTATION OF FUNCTIONS ON ITEMS IN A DATA SET (OR FILE).
- MERG COMBINES THE CONTENTS OF SEVERAL SELECTED SUBFILES INTO A SINGLE SUBFILE.
- TABL PERMITS THE SELECTION OF SPECIALLY SORTED AND FORMALTED TABULAR OUTPUT DISPLAYS.
- UPDA PERMITS THE ADDITION, THE DELETION, OR THE MODIFICATION OF RECORDS OR PORTIONS OF RECORDS BELONGING TO THE MASTER FILE.

Parentheses may be used to group specific logical relationships, as in the following example:

(A.AND.B+C)*D

The order in which conditions are satisfied is given by the Boolean operators: .NOT., .AND., and .OR.

If parentheses are used, they take precedence over the order of the operators. In the example above, the expression (A.AND.B+C) is evaluated before it is combined with D.

SEAR (search) is a function that allows the user to actually retrieve the desired data records on the basis of the conditions that were logically connected. The user must define a new file name which will contain the retrieved records. The new data file thus created is a subfile of WCOAL or USALYT and may be saved for future study or may be deleted at the termination of the session using the QUIT command. If the file is to be deleted after conclusion of the session, the deletion is performed external to PACER execution under control of the operating system: in the case of INFONET, this is done with a !DROP "filename" command directive.

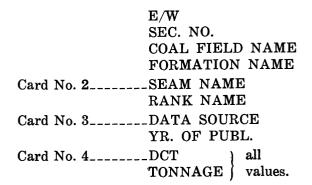
The user may access records in a previously created subfile. He may also combine records residing in two separate subfiles, each of which were retrieved by two separate searches of the main file, into a single subfile through the use of the MERGe command. The user may refine the data contained in a subfile by generating new conditions and logic and by performing a search of the subfile to satisfy those conditions and that logic. A new subfile is then created. Future use of any subfile must be preceded with

4

a reference to one of the available main files after the ENTER DATA BASE NAME command in order that all dictionaries are properly linked with the data.

The UPDA (update) command is described in detail in a later section because it is a new and extensive modification of the original GRASP system.

Other command options available (table 1) are self-explanatory at the time of operation. The user should note that the QUIT command terminates PACER sessions. The computer system will then prompt the user with the names of user files that have been created with a request to specify those files that are to be saved, perform the indicated file maintenance, and followed by a !. The response of OFF breaks the link between the terminal and the computer.


MERIT DATA FILE

The Rocky Mountain Coal Reserve data file of the MERIT System was acquired from the Bureau of Mines when it contained some 5,200 records of coal resources for States west of the Mississippi River. Data records are entered into the MERIT file in an 80-column card image format, and are put out also in an 80-column card image format. Figure 1 shows that the system requires the data to be entered on four different card types, which are identified in column 9 of the form. The first two cards contain data pertinent to location and stratigraphy, and the third card contains bibliographic data. The fourth card contains multiple DCT codes and tonnage estimates. In the DCT code, the D stands for depth to coal, the C stands for class, and the T stands for thickness of the coal seam; these codes are equivalent to Branch of Coal Resources classification nomenclature, ORT (overburden, reliability, and thickness). The four physical records (card types) constitute one logical record.

WCOAL DATA FILE

The WCOAL file is a modified version of the MERIT file in that several Bureau of Mines data elements have been removed and new Geological Survey data elements have been added. The following data fields have been retained from the indicated cards of the MERIT record:

Card No. 1_____P.M. TOWNSHIP NO. RANGE NO.

In addition, three other Bureau of Mines variables have been retained, the names of which do not appear in the data entry form shown in figure 1, but which are a part of the MERIT file. From card No. 3, Quadrangle Name (QUAD) and Base Year (BYEAR) have been retained. The first three variables of each card, FIPS State code, FIPS county code, and a record sequence number, have been lumped together to form a single WCOAL variable called ID.

All other data fields have been deleted from each of the MERIT records because either the data contained in the field are inconsistent, or the data are infrequently, if ever, entered for the variable, or they are anticipated not to be applicable to Phase I of the NCRDS. The remaining data fields and the additional new fields, when strung together, form a single physical and logical record. In the MERIT system, the State code, county code, and sequence number together are repeated from card to card as the logical link between the several physical records.

In WCOAL, however, the emphasis has changed from that of location to the use of ORT codes and the corresponding tonnage values as the basis for a unique record. Only one set of ORT codes and one tonnage value are provided per record. The effect of this change has been to create WCOAL as a file of 15,972 unique tonnage records.

Each record has been expanded from the abbreviated Bureau of Mines record to include eight new variables:

STATE	State name (not FIPS code).
COUNTY	County name (not FIPS code).
AAPGPRV	AAPG province number.
COALPRV	Coal province name.
REGION	Coal region name.
DISTRCT	Local area designator.
SYSTEM	Geologic age: System.
SERIES	Geologic age: Series.

6

WCOAL, therefore, is composed of records from Bureau of Mines and Geological Survey files. Each record is organized into four categories:

Location information. Geologic designations. Bibliographic information. Resource delimiters.

Table 2, list of WCOAL record variables, provides a complete list of the variables, in their proper sequence, that make up one WCOAL record. Within each category is listed the variable name or mnemonic, its data type code, and a description. PACER allows one of the three data type codes to be associated with any variable:

I = whole numbers (integer values) R = decimal numbers (real values) A = alphanumeric strings

The appropriate type code for each item is shown in table 2. Although each variable is briefly described in table 2, some further elaboration of the data elements is useful, especially as to the purpose of some of the items. Therefore, each variable is described below, with specific reference to appendix A, which shows the names each variable can assume as listed in WCOAL dictionaries.

STATE name is used in preference to the FIPS (U.S. Natl. Bur. Standards, 1973) State code because the name is more readily known to the user.

COUNTY name is also used instead of the FIPS county code. A list of all county names and the associated State is available from a U.S. National Bureau of Standards (1973) publication and is not provided.

PMERID is the principal meridian from which a township/range survey was begun, and is given as a numeric code in WCOAL records. Appendix A.1 lists the meridians and baselines of the United States rectangular surveys, as provided by the Bureau of Land Management, as well as the Bureau of Mines code associated with each name.

TWNSHIP is the township number of the township/range survey. Three digits are provided for the town-ship number, allowing values from 001 to 999. However, no provision has been made for half townships.

NS is the township direction, north or south.

RANGE is the range number, and, like TWN-SHIP, three digits are allowed with no provision for half ranges.

EW is the range direction east or west.

SECTION is the section number within a township/range unit. This is a two-digit value usually between 01 and 36.

AAPGPRV is the AAPG (American Association of Petroleum Geologists) province number (Meyer, 1970). The purpose of using this number is to provide a link between the National Coal Resources Data System and other national energy data systems. The associated geologic provinces, districts, basins, and so on, do not necessarily correspond from one resource to another.

COALPRV is the coal-province name. Figure 2 shows the coal provinces of the conterminous United States, Alaska being an additional province.

REGION is the coal-region name and is a subset of coal provinces. Figure 3 shows the coal regions of the conterminous United States, and figure 4 shows the coal regions for the Alaska province. The coal regions for the lower 48 States correspond to those given by Trumbull (1960), but no previous designations have been given to the regions of the Alaska province as shown in figure 4, although the base map from Barnes (1961) has been used. Appendix A.2 provides a list of the region names available for use with WCOAL.

FIELD is the coal-field name. A complete list of coal-field names used in WCOAL may be found in appendix A.3.

DISTRCT is a local area designator applicable mainly to the Alaskan areas. These names are, in many cases, interchangeable with field names, implying no hierarchical difference between district and field. Appendix A.4 lists all names which are used with WCOAL and which are in the coal district dictionary.

FORMATN is the formation name. A complete list of formation names used in WCOAL may be found in appendix A.5.

BED is the coal-bed name. A complete list of coalbed names used in WCOAL is provided in appendix A.6.

Neither FORMATN nor BED contains a complete list of formation or coal-bed names. The list currently in use is predominantly that compiled by Bureau of Mines engineers using Geological Survey publications, and other documents, for the compilation. This list will be modified for use in NCRDS.

SYSTEM is the geological age designation. The following system names are in use with WCOAL: Tertiary, Cretaceous, Jurassic, Triassic, Permian, Pennsylvanian, and Mississippian.

SERIES is the name given to a divided system.

DATE	N NAME IFOC CO. PROP. ACREAGE CODE FACTOR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SULFUR WITA AVE. AVERAGE THICKNESS AVG. HI LO THICKNESS IN ANNOE 314 ANNOE			· · · · · · · · · · · · · · · · · · ·	TONNAGE DCT TONNAGE DCT TONNAGE 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.			Thickness: 1. 14"–28" 5. 5'–10' 2. 28"–42" 6. > 10' 3. > 42" 7. Unclossified 4. 2.5'–5' 8. Classified by zone
CODED BY	LFOC FORMATION NAME		RANK NAME CODE		FINDER CODE	· · · · · · · · · · · · · · · · · · ·	001			 5. Unclossified nd indicated
	COAL FIELD NAME	1 1 1 1 1 1 1 1 1 1	IFOC ARESCO CODE CODE	33-54 10-16	IF OC YR. OF CODE PUBL.		DCT DCT			Closs: I. Measured 2. Indicated 3. Interred 4. Measured and indicated
COUNTY	TOWNSHIP N A MARE E SEC.	H-H I I I I I I I I I I I I I I I I I I	SEAM NAME		DATA SOURCE		TONNAGE DCT TONNAGE			6 6 6. Ø-2ØØØ 6. Ø-3ØØØ 7. Stripadale 8. Unclossified
STATE	STATE COUNTY I.D. CANDON CODE CODE I.D. TANDON TO						DCT 			DCT CODES Depth: 1, Ø-1000 2.1000-3000 3.2000-3000 4. >3000

FIGURE 1.-MERIT data-entry form.

SYSTEM DESCRIPTION

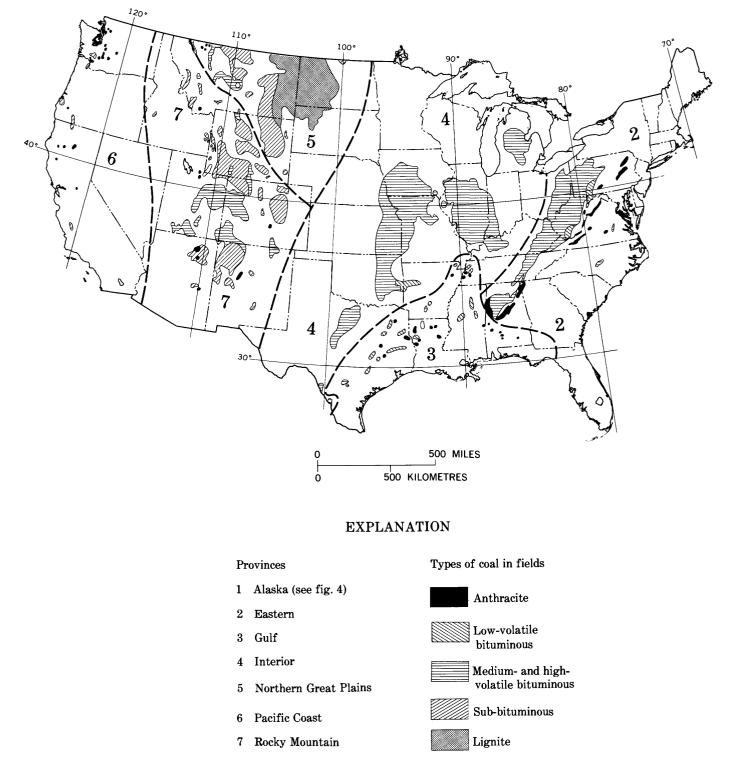
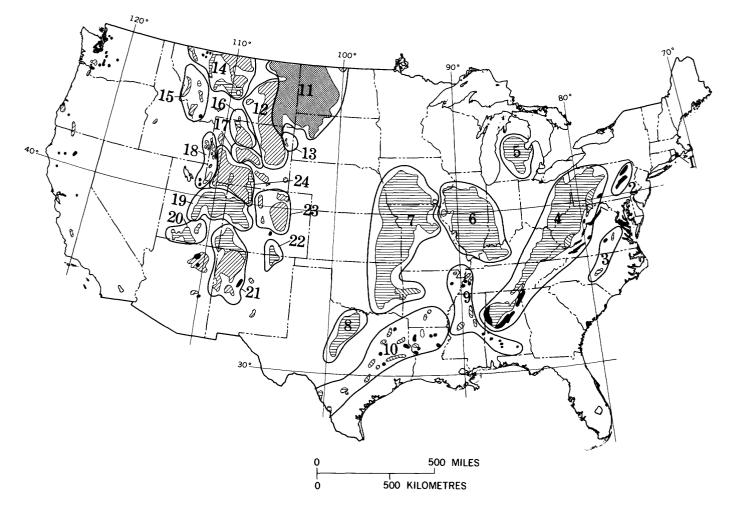



FIGURE 2.—Coal provinces of the conterminous United States. (Modified from Trumbull, 1960.)

EXPLANATION

Regions

- 1 Rhode Island meta-anthracite
- 2 Pennsylvania anthracite
- 3 Atlantic coast
- 4 Appalachian
- 5 Northern
- 6 Eastern
- 7 Western
- 8 Southwestern
- 9 Mississippi
- 10 Texas
- 11 Fort Union
- 12 Powder River

- 13 Black Hills
- 14 North Central
- 15 Tertiary lake beds
- 16 Bighorn Basin
- 17 Wind River
- 18 Hams Fork
- 19 Uinta
- 20 Southwestern Utah
- 21 San Juan River
- 22 Raton Mesa
- 23 Denver
- 24 Green River

See figure 2 for explanation of pattern areas

FIGURE 3.—Coal regions of the conterminous United States. (Modified from Trumbull, 1960.)

TABLE 2.—List of WCOAL variables

LOCATION INFORMATION

	ESIGNATIONS HIC INFORMATION
STATE A COUNTY A PMERID I TWNSHIP I NS A Range I EW A Section I AAPGPRV I	STATE NAME COUNTY NAME PRINCIPAL MERIDIAN TOWNSHIP NUMBER DIRECTION OF TOWNSHIP (N DR S) RANGE NUMBER DIRECTION OF RANGE (E OR W) SECTION NUMBER AAPG PROVINCE NUMBER
COALPRV A REGION A FIELD A DISTRCT A FORMATN A BED A System A Series A	CDAL PROVINCE NAME COAL REGION NAME COAL FIELD NAME LOCAL AREA DESIGNATOR FORMATION NAME COAL BED NAME GEOLOGIC AGE: SYSTEM GEOLOGIC AGE: SERIES
QUAD A BYEAR I Source A YEAR I	TOPOGRAPHIC QUADRANGLE NAME BASE YEAR FOR TONNAGE ESTIMATES 00 MEANS DRIGINAL DATA 51 MEANS DATA TAKEN AS OF 1951 Source Document Publication year of source document
THICKNS I	COAL BED THICKNESS CODE 1 = 14 TO 28 INCHES 2 = 28 TO 42 INCHES 3 = GREATER THAN 42 INCHES 4 = 2.5 TO 5 FEET 5 = 5 TO 10 FEET 6 = GREATER THAN 10 FEET 7 = UNCLASSIFIED 8 = CLASSIFIED BY ZONE
OVRORDN I	0 = CLASSIFIED B7 ZONE OVERBURDEN THICKNESS IN FEET 1 = 0 TO 3000 2 = 0 TO 2000 3 = 0 TO 1000 4 = 1000 TO 2000 5 = 2000 TO 3000 6 = GREATER THAN 3000 7 = STRIPPABLE 8 = UNCLASSIFIED
RELIABL I	RELIABILITY CODE 1 = MEASURED 2 = MEASURED AND INDICATED 3 = INDICATED 4 = INFERRED 5 = UNCLASSIFIED
RANK A	RANK OF COAL ANTH = ANTHRACITE SEMI ANTH = SEMI-ANTHRACITE BIT = BITUMINOUS
TONNAGE I	LV BIT = LOW-VOLATILE BITUMINOUS MV BIT = MEDIUM-VOLATILE BITUMINOUS HV BIT = HIGH-VOLATILE BITUMINOUS HV BIT A = HIGH-VOLATILE BITUMINOUS A HV BIT B = HIGH-VOLATILE BITUMINOUS B HV BIT C = HIGH-VOLATILE BITUMINOUS C SUBBIT = SUB-BITUMINOUS SUBBIT A = SUB-BITUMINOUS B SUBBIT C = SUB-BITUMINOUS C LIGNITE = LIGNITE COAL RESOURCE IN MILLIONS OF SHORT TONS A TONNAGE RECORD EXISTS FOR EVERY UNIQUE COMBINA- TION OF THICKNESS CODE, OVERBURGEN CODE, RELI-
	ABILITY CODE, RANK CODE, AND LOCATION CATEGORY, AS WELL AS CERTAIN STRATIGRAPHIC DESIGNATIONS,

Series names in use with WCOAL are Eocene, Lower, Middle, Miocene, Oligocene, Paleocene, Pliocene, and Upper.

Table 3 shows the ordered relationship between System and Series. Note that the repetition of Series names from one System to another has no effect on their use, because each requires only one dictionary entry.

TABLE 3.—Geological age names used with WCOAL and ECOAL

System	Series
Tertiary	Pliocene Miocene Oligocene Eocene Paleocene
Cretaceous	Upper Lower
Jurassic	Upper Middle Lower
Triassic	Upper Middle Lower
Permian	Upper Lower
Pennsylvanian	Upper Middle Lower
Mississippian	Upper Lower

QUAD is the topographic quadrangle name and refers to the quadrangle for which the resource tonnage was made. Often the quad name is not known or is not unique to the tonnage record. Therefore, the present list of quadrangle names given in appendix A.7 is very brief.

BYEAR is the base year for which estimates were made of the tonnages of coal. As an example, 51 indicates that the estimates are for remaining resources as of 1951; 00 indicates that the tonnage estimate is of original coal resources.

SOURCE is the publication from which the data were taken. Appendix A.8 lists these publications.

YEAR is the publication year of the source document.

THICKNS is the coal thickness code. The name of this variable corresponds to the Bureau of Mines "T" for thickness in the DCT code. The possible values of THICKNS are shown in table 2.

OVRBRDN is the overburden thickness code. The name of this variable corresponds to the Bureau of Mines "D" for depth in the DCT code, but the categories have been renumbered to permit a search over a range of overburden depths. The possible values of OVRBRDN are shown in table 2.

RELIABL is the reliability code given to a tonnage estimate. The name of this variable corresponds to the Bureau of Mines "C" for class in the DCT code. It also has been renumbered to permit a search over a given range. The possible values of RELIABL are shown in table 2.

RANK is the name given for the quality of coal in terms of energy content. Fourteen rank categories are provided in the list; they range from anthracite to lignite. The order of these ranks is such that the user may enter ranges of rank (for example, RANK BE HV BIT, SUBBIT) as a condition.

TONNAGE is the estimated coal resource in millions of short tons to two decimal places. A tonnage value exists for every unique combination of thickness code, overburden code, reliability code, and location.

USALYT DATA FILE

A review of the published coal analytical data revealed that it was not feasible to add this type of data to the existing area/tonnage records of the WCOAL file, as there were few, if any, areas of direct correlation. Therefore, a separate data base of published coal analytical data is maintained as the file USALYT on the PACER system; it is accessed by specifying USALYT for the ENTER DATA BASE NAME command. This file uses the same dictionaries as WCOAL; however, it has separate mask and definitions files for the 46 data items, as shown in table 4.

The two files were structured as closely alike as possible to facilitate retrieval and correlation of data by the user. A comparison of tables 2 and 4 shows that the location, geologic, and bibliographic fields are the same as in WCOAL, with the exception of the item BYEAR (base year). BYEAR is not applicable to the type of data in USALYT. For this reason, the resource delimiter fields also have been deleted, with the exception of RANK. The following is an expansion of the brief definitions given in table 4 of the additional data items for USALYT:

ANIDA is the alphabetic part of the analysis identification number. Some of the reported analyses have alphanumeric identification numbers. Because PACER treats alphanumeric data as dictionary items, the identification number is recorded in two parts. This dictionary contains the 26 letters of the alphabet. ANIDN is the numeric part of the reported analysis identification number.

SAMPTYP is a numeric code to indicate the type of sample on which the analysis was done.

ANLYTYP is a numeric code to represent the condition of the sample when it was analyzed.

VALREP is a numeric code indicating the type of data that the individual values represent, such as an average of several samples or a single sample.

TRACE indicates by Y = yes or N = no whether the analysis included trace-element values. These values are not included in the data file, because their occurrence in the Phase I published analytical data is rare but could be retrieved from the original source.

HGRIND represents the result of a Hardgrove grindability test on the sample.

OTHER indicates by Y = yes or N = no whether other types of tests were reported in the analysis. Results of these tests are not in the data file but could be retrieved from the data source.

BTU is the energy value of the coal reported in British thermal units. If the value is reported in other units it has been converted.

ASH: [DEFORM], [SOFT], [FLUID] indicate the temperature in degrees Fahrenheit at which the ash deforms, softens, or fluidizes. If the reported values were in another form, they have been converted.

The final 12 items are the proximate and ultimate analysis values. All items are reported in percent to one decimal place.

ENTRY OF NEW DATA

Since the creation of the initial WCOAL file from the U.S. Bureau of Mines data tape, data entry has been accomplished using a SYCOR model 340 programmable terminal. The data entry format for WCOAL (fig. 5) is displayed on the terminal CRT, and the data items are entered and checked by programs, as described below. These data-entry controls are indicated by the character or number immediately following the data label, which is enclosed in brackets. The SYCOR programming system reserves symbols W, X, Y, and Z to call userwriter field programs. Therefore, these symbols below may call different programs, according to the data-field name. The data fields have been arranged to allow all data belonging to one record to be displayed on the screen at one time. The data-entry format is programmed to move the cursor to each data field according to groups of related information. Data-entry control characters for the WCOAL format include:

STATE and COUNTY __5] Alphabetic data must be entered.

- PMD _____X] The cursor skips to the APG data item, if a blank or zero (0) is entered, because it is assumed that no township and range information is available if the principal meridian is unknown.
- TWN and RNG _____N] A numeric entry is required.
- NS and EW _____W] The value entered is compared with a table of acceptable values, and an error message is displayed if no match is found.
- PRV, FLD, FMN _____A] The data must be alphabetic.
- RGN, DST, BED _____W] The cursor skips to the next line in order to maintain logical data entry from reporting forms.
- THK, OVB, REL _____W] The cursor skips intervening data fields so that these items may be entered consecutively. Format control then passes to the next entry on the reporting form.
- SYS, SER, RNK _____W] The cursor skips fields on the screen so that these items can be entered consecutively. Each of these items is also compared with a table of acceptable values in order to reduce data-entry errors. QDR _____M] An alphanumeric value may be entered.

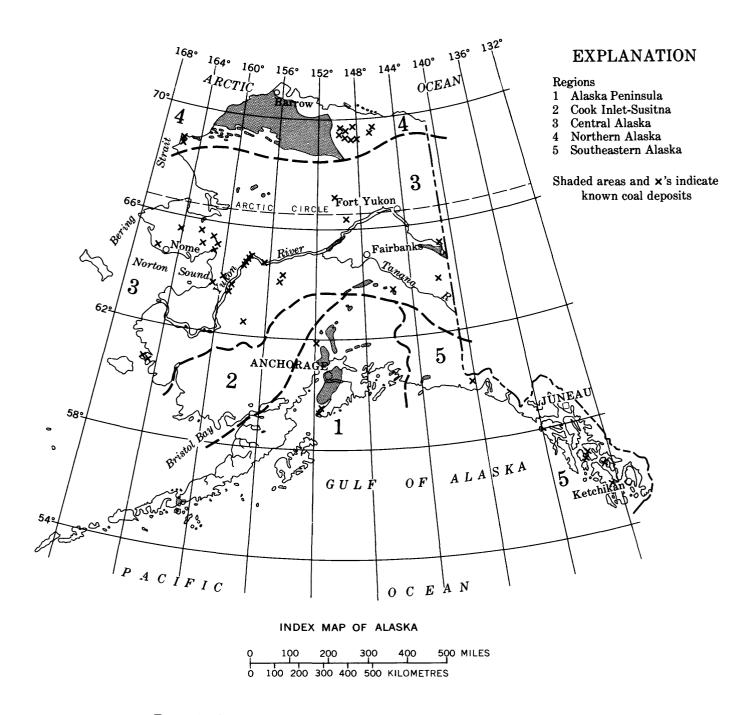


FIGURE 4.—Coal regions of the Alaska coal province. (Modified from Barnes, 1961.)

BYRX] The data value is checked against an ac- ceptable range of val- ues, and an error mes-	ID field, after the user presses the TAB/SKIP
sage is printed if the comparison fails. SRCA] Some alphanumeric data must be entered in this field.	•

- TON _____Z] The data entry will be checked for a value with two decimal places. Any other value range will cause an error message to be printed.
 - [*], [C] These symbols are constant field indicators which contain a line feed character for continuous transmission, because the record exceeds the 256-character buffer available in the SYCOR terminal.

Data entry to file USALYT requires a two-page SYCOR format shown in figure 6. Page 1 has dataentry restrictions similar to the WCOAL format. Page 2 data fields include the following controls:

ANIDA	A] Only alphabetic data entry is acceptable.
ANIDN, S-TYPE	.N] Only numeric data can be entered.
A-TYPE, VAL\REP, HRDGV-AGRIND, TRACE, OTHER.	A] Alphabetic data only.
BTU,ASH (DEF SOF FLD), FREE-SWELL.	N] Numeric data.
MOISTUR, VOL-MAT, FIXEDC, ASH, HYDROGN, CARBON, NITROGN, OXYGEN, SULFUR, SULFATE, SULFPYR, SULFORG.	Z] The format checks for a numeric entry with one decimal place. Any other entry will result in an error message. The $\$ character indicates suc- ceeding data fields with the same "Z" control

USE OF THE UPDATE OPTION

The update software permits the user to edit and update data in the master file while operating in an interactive mode from a remote terminal. The following update procedures are available for the user to:

- 1. Add new records to the master file;
- 2. Delete existing records from the master file;
- 3. Sequentially review and modify records existing in a subfile of the master file and, upon completion of the review, post the subfile onto the master file;
- 4. Select, by a key, a record residing in a subfile of the master file, review the contents, modify

the data, and post the individual record onto the master file;

5. Modify the value of a given data element for all the records existing in a specific subfile and then post the contents of this subfile onto the master file.

To use the update system, the user must first access the host computer from his terminal. After the appropriate identification has been entered, the computer will begin a new line with the character ! which is the prompt for the user to type in the program name, PACER, followed by a carriage return. This command accesses the PACER program and begins execution with the message:

WELCOME TO THE USGS "PACER" VERSION OF THE "GRASP" RETRIEVAL SYSTEM. THE FOLLOWING DATA BASES ARE AVAILABLE:

- ECOAL—USGS EASTERN US COAL RE-SOURCES DATA
- WCOAL—USGS WESTERN US COAL RE-SOURCES DATA
- USALYT—PUBLISHED US COAL ANALYTI-CAL DATA

The user must specify one of the above data bases at the prompt for a data base name, ENTER DATA BASE NAME. A new master file data base may be selected at any time during a user session by entering the word, FILE, following the prompt, ENTER COMMAND.

When the prompt, ENTER COMMAND, is again displayed on the terminal, the user may proceed immediately to update, by entering UPDAte, if he has a new data file or a subfile of the master file available for editing. If not, he may select a subfile of records to be edited by proceeding through the standard search procedure, specifying the sequence of commands CONDitions, LOGIc, and SEARch, each followed by the appropriate information as documented in the GRASP literature.

Assuming that the user either has a new data file or has generated a subfile of records which require updating, he will respond to the next ENTER COMMAND prompt with the entry of UPDAte. The message, PLEASE PRESS CARRIAGE RE-TURN, will then be displayed. If the user is familiar with the procedures and has knowledge of the code for suppressing the output of user instructions (see programmer's reference), he may enter it at this point before pressing the carriage return. If not, he will be presented with instructions for the updating procedure as well as special

```
LOCATION INFORMATION
GEOLOGIC DESIGNATIONS
BIBLIOGRAPHIC INFORMATION
Rank Information
Analysis Information
STATE A STATE NAME
COUNTY A COUNTY NAME
PMERID I PRINCIPAL MERIDIAN
TWNSHIP I TOWNSHIP NUMBER
NS A DIRECTION OF TOWNSHIP (N OR S)
RANBE I RANGE NUMBER
EW A DIRECTION OF RANBE (E OR W)
SECTION I SECTION NUMBER
AAPGPRV I AAPG PROVINCE NUMBER
COALPRV A COAL PROVINCE NAME
REGION A COAL REGION NAME
FIELD A COAL FIELD NAME
DISTRCT A LOCAL AREA DESIGNATOR
FORMATN A FORMATION NAME
BED A COAL BED NAME
SYSTEM A GEOLOGIC AGE: SYSTEM
SERIES A GEOLOGIC AGE: SERIES
  QUAD A TOPOGRAPHIC QUADRANGLE NAME
Source a source document
Year I publication year of source document
                             A RANK OF COAL
                                                     K OF COAL

ANTH = ANTHRACITE

SEMI ANTH = SEMI-ANTHRACITE

BIT = BITUMINOUS

LV BIT = LOW-VOLATILE BITUMINOUS

MV BIT = MEDIUM-VOLATILE BITUMINOUS

MV BIT = HIGH-VOLATILE BITUMINOUS

MV BIT A = HIGH-VOLATILE BITUMINOUS A

HV BIT C = HIGH-VOLATILE BITUMINOUS B

UBBIT = SUB-BITUMINOUS

SUBBIT = SUB-BITUMINOUS

SUBBIT B = SUB-BITUMINOUS A

SUBBIT C = SUB-BITUMINOUS C

LIGNITE = LIGNITE
  RANK
                        A REPORTED ANALYSIS IOENTIFICATION (ALPHABETIC)
I Reported Analysis identification (numeric)
  ANIDA
  ANTON
  SAMPTYP I
                                         SAMPLE TYPE
                                                       1 = CHANNEL
2 = RUN OF MINE
                                                       3 = DRILL CORE
4 = OTHER
  ANLYTYP I ANALYSIS TYPE
                                                     1 = AS RECEIVED
2 = AIR DRIED
3 = MOISTURE FREE
4 = MOISTURE AND ASH FREE
 5 = OTHER
VALREP I VALUES REPRESENT
                                                     DES HEFHESENI

1 = SINGLE SAMPLE

2 = AVERAGE OF MORE THAN ONE SAMPLE

3 = RANGE OF SAMPLE VALUES

4 = OTHER

- THER
                                    A = UTHER
SAMPLE ANALYZED FOR TRACE ELEMENTS(Y=YES N=NO)
HAROGROVE GRINDABILITY INDEX
RESULTS OF OTHER TESTS SHOWN ON ANALYSIS
BTU VALUE
ASH DEFORMATION TEMPERATURE IN FARRENHEIT
HACE A
HGRIND I
Other A
Bth
 BTU
                             I
                                      ASH DEFORMATION TEMPERATURE IN FAHRENMEI
ASM SOFTENING TEMPERATURE IN FAHRENMEIT
ASM FLUID TEMPERATURE IN FAHRENMEIT
FREE-SWELLING INOEX
MOISTURE VALUE IN PERCENT
VOLATILE MATTER VALUE IN PERCENT
FIXED CARBON VALUE IN PERCENT
ASM VALUE IN PERCENT
MYDROBEN VALUE IN PERCENT
CARBON VALUE IN PERCENT
NITROSEN VALUE IN PERCENT
OXYGEN VALUE IN PERCENT
ASHSOF I
ASHFLD I
FRESWEL R
MOISTUR R
 VOLMAT R
FIXEDC R
  ASH
                             R
  HYDROGN R
CARBON R
NITROGN R
                                      NITRUGEN VALUE IN PERCENT
OXYGEN VALUE IN PERCENT
TOTAL SULFUR VALUE IN PERCENT
SULFATE VALUE IN PERCENT
PYRITIC SULFUR IN PERCENT
ORGANIC SULFUR IN PERCENT
 OXYGEN R
Sulfur R
Sulfate R
 SULFPYR R
SULFORG R
```

instructions for any of the five procedures he may select. If the user does not enter the instructionsuppression code, the following message will be displayed:

THIS IS "UPDATE"

IT IS DESIGNED TO PERMIT THE USER TO ADD RECORDS TO OR DELETE RECORDS FROM THE MASTER FILE, OR TO CHANGE RECORDS OR PORTIONS OF RECORDS IN A SUBFILE OF THE MASTER FILE AND TO POST THESE CHANGES ONTO THE MASTER FILE.

THE FIVE PROCEDURES USED TO UPDATE THE MASTER FILE ARE:

- 1. THE ADDITION OF NEW RECORDS AL-READY WRITTEN INTO A TEMPORARY FILE. UNLIKE THE OTHER UPDATE PRO-CEDURES WHICH OPERATE ON RECORDS IN THE MASTER FILE FORMAT, THIS PROCEDURE OPERATES ON RAW DATA RECORDS AND CONVERTS THESE REC-ORDS TO THE MASTER FILE FORMAT FOR INSERTION INTO THE MASTER FILE.
- 2. THE DELETION, BY KEY, OF RECORDS ALREADY EXISTING IN THE MASTER FILE.
- 3. THE SEQUENTIAL REVISION OF REC-ORDS FROM A SELECTED SUBFILE (I.E. SELECTED THROUGH A LOGICAL SEARCH) FROM THE MASTER FILE. THIS SUBFILE MAY THEN BE POSTED ONTO THE MASTER FILE AFTER THE DESIRED REVISONS ARE COMPLETED.
- 4. THE SELECTION, BY KEY, OF ANY REC-ORD BELONGING TO THE SUBFILE FOR REVISION OF ANY SELECTED DATA ELE-MENT. THE DATA MANAGER HAS THE OPTION OF POSTING THE SELECTED RECORD ONTO THE MASTER FILE OR LEAVING IT, AS REVISED, IN THE SUB-FILE FOR FURTHER REVISION.

5. THE BATCH REVISION OF A GIVEN DATA ELEMENT WHICH WILL BE THE SAME VALUE FOR ALL RECORDS IN THE SE-LECTED SUBFILE.

WHEN REVISION HAS BEEN COMPLETED ON ANY SELECTED SUBFILE, THE USER MAY THEN ELECT TO POST THE REVISED SUBFILE ONTO THE MASTER FILE, OR SAVE THE SUBFILE FOR REVIEW AND POSSIBLE FURTHER REVISION BY ANY OF THE 2-5 UP-DATE PROCEDURES. RECORDS DELETED FROM THE MASTER FILE ARE SAVED IN THE "SAVDEL" (SAVE DELETION) FILE FOR FUTURE RECOVERY IF THERE SHOULD ARISE A NEED TO RECONSTITUTE THESE RECORDS.

An output display of each record reviewed is provided automatically for the deletion procedure, the sequential revision procedure, and the keyed revision procedure. The display of each record for correct data is optional when adding new records, but need not be used because dictionary nonmatches will be displayed to the data manager at the time of record entry. No display is associated with the batch revision because normally this revision will be made to a larger number of records, and such a display would inhibit the speed of the batch revision. If a display is desired following the batch revision, the data manager can choose to omit posting the revised subfile to the master file. He may then select the sequential or the keyed revision procedure to review the record and perhaps further update the subfile before posting it onto the master file.

The output display for the editing of records is formatted so that the data-element positions are similar to those positions in the SYCOR formats for data input, as discussed in the section on entry of new data. The example below is the formatted display which is used for the interactive edit and update procedures of PACER when used to operate on records from the WCOAL file:

		* * * * * * *	* * *	
	WYOMING	· ·	CAMPBELL	
PMERID:	6 TWNSHIP: 58 NS:	N RANGE:	76 EW: W SECTION	N: 0 AAGPRV: 0
COALPRV:	NO DATA ENTERED	REGION:	NO DATA ENTER	ED THICKNS: 4
FIELD:	SPOTTED HORSE	DISTRICT:	NO DATA ENTER	ED OVRBRDN: 3
FORMATN:	FORT UNION	BED:	CANYON	RELIABL: 2
SYSTEM:	NO DATA ENTERED	QUAD:		BYEAR: **
SERIES:	NO DATA ENTERED	SOURCE:	USGS BULL 1050	YEAR: 1957
RANK:	SUBBIT ID: 560050	05KEY:	KEY: 13159	TONNAGE: 11.80
		ماد ماد به ماد ماد ماد	and the state	

The display of records from the USALYT file is shown in the following example:

		* * *	* * * * * *	* *		
STATE: PMERID:	NORTH DAKO 5 TWNSHIP:		COUNTY: A RANGE: 9		ECTION: 10 A	APGPRV: 395
COALPRV: FIELD: FORMATN: SYSTEM: SERIES:	N GREAT PLA NO DATA EN FORT UNION TERTIARY PALEOCENE				ENTERED ENTERED	EAR: 1934
RANK: TRACE:	LIGNITE N	ANID: NO. HGRIND: 0		SAMPTYP: OTHER TES	1 ALYTYP:1 STS:N	VALREP: 1
BTU:	6820 ASH:	(DEFORM)	0 (SOFT)	0 (FLUID)	2280 FRESW	/EL: 0.
MOISTUR 35.6	VOLMAT 29.6	FIXEDC 26.9	ASH 0	HYDROGN 0	CARBON 0	NITROGN 0
OXYGEN 0.	SULFUR 2.7	SULFAT: 0.	E SULF 0).	ULFORG 0.	KEY: 529

Procedure 1 is selected for the addition of new records to the master file. Before this procedure can be used, a file of new data must be entered into the host computer system. Although there are many ways to create a file of new data, the method used predominantly will be to enter the data records onto a tape cassette through the SYCOR terminal and then to use the terminal to transmit these records to the host computer.

The file containing the new data is structured so that each record is an unformatted, but fixed length, string of characters (including blanks). This character string must be translated through a format to obtain the internal machine language values from the numerical data and to determine whether there is a dictionary match for the alphanumeric data. If a match is found, the numerical pointer to that dictionary entry is determined. If there is no dictionary entry match for the given item of alphanumeric data, the user is given the option of adding that data value to the dictionary or of correcting the data input (that is, a spelling error) so that it will match an existing dictionary entry.

After the user has completed the translation phase for the new data, he may elect either to post the translated file directly to the master file or to save it for further editing and revision by means of procedures 3 through 5 before posting it to the master file.

UPDATE PROCEDURE 1

Selection of update procedure 1 will produce the following message on the user terminal:

THE ADD RECORD PROCEDURE IS DE-SIGNED TO READ A RAW DATA INPUT FILE AND CONVERT THE RECORDS TO THE REC-ORD STRUCTURE THAT IS COMPATIBLE WITH THE MASTER FILE OF "PACER," CHECKING FOR CORRECT DICTIONARY ENTRIES, AND PROMPTING THE DATA MANAGER TO RE-QUEST ADDITION OF THE NONMATCHING DICTIONARY ENTRIES TO THE DICTIONARY LIST OR TO CORRECT THE INPUT ENTRY SO THAT IT MATCHES A VALUE ALREADY IN THE DICTIONARY LIST.

IF THE INPUT FILE DOES NOT CONTAIN RAW DATA, THE DATA MANAGER CAN EXIT THIS REVISION PROCEDURE TO SELECT A DIFFERENT PROCEDURE (3-5) BY ENTER-ING "QUIT," WHEN PROMPTED FOR A FILE NAME.

If the appropriate instruction-suppression code has previously been entered, this message will also be suppressed. Next, the user will be prompted with NAME OF RAW DATA INPUT FILE. The response to this prompt must be either the name of the newly created raw-data file or the word QUIT which will terminate execution of the current update procedure and will permit the user to

3							-	
2								
8		1	3	7	Σ			
5	-		-	-	-	5		
8			5					Y
_		9				-	2	-
8	 			2		ĸ		
3	ļ	9	F	0	ď	7	-	
57		•	-		-	0		
8		<						_
\$			-	1				
đ								
53							J	
23							×	
15					-			-
95							K	14
9		~					~	
Ş								7
47 4								0
46 4						\vdash		<u> </u>
45 Å								-
_		97						-
44								
đ		L						
¥		-						
£		3						
\$0								
8		3						
8		W						
37		L				-		
8								17
38	1							
2	5							2
33								-
		_						-
_		[]		-				
25	λ	[N]						X
31 32	۱ ۲ ۷	Z						LXE
30 31 32	NTY	[N SI		1	/]			LXE
29 30 31 32	3	Z	C M	w]	w]			LXE
28 20 30 31 32	20	Z						2 X Z
27 28 29 30 31 32	3	Z		T W]	[M G			LXE
26 27 28 29 30 31 32	20	Z	Ø	ST W]	ED W]	M]	•)	LKE
25 26 27 28 29 30 31 32	20	Z	RGN W]	DST W]	BED W]	M]	•]	
24 25 26 27 28 29 30 31 32	20	Z	Ø	[DST W]	[BED W]	R M J	C +]	
23 24 25 26 27 28 29 30 31 32	20	W] [RN6 N	Ø	[]]	[BED W]	DR N]	RC 4]	
22 23 24 25 26 27 28 29 30 31 32	20	S w] [RN6 N	E RG	[w tsc]	[BED W]	QDR MJ	SRC 4]	
21 27 23 24 25 26 27 78 29 30 31 32	20	S w] [RN6 N	E RG	[w][[BED W]	[ADR M]	[src 4]	x] [[K]
22 23 24 25 26 27 28 29 30 31 32	20	W] [RN6 N	E RG	[W] [DST W]	[BED W]	[ADA M]	1 [S RC 4]	x]
21 27 23 24 25 26 27 28 29 30 31 32	20	S w] [RN6 N	E RG	[M I S I M]	[BED W]	[EDR M]	1 [5 RC 4]	
16 19 20 21 22 23 24 25 26 27 28 29 30 31 32	20	S w] [RN6 N	E RG	Last w1	[BED W]	[ADA N]	ILSRC 4]	ID X]
16 19 20 21 22 23 24 25 26 27 28 29 30 31 32	20	S w] [RN6 N	E RG	LW3 M3	[[BED W]	[[ADA N]	ILSRC 4]	A
16 19 20 21 22 23 24 25 26 27 28 29 30 31 32	20	N SNJ [NNS N]	E RG	[DST W]		[ADR M]	ILSRC 4]	QI
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	20	J [MS M] [RNG N	E RG	[DST W]		I adr. MJ	ILSRC 4]	QI
16 17 18 19 20 21 27 73 24 25 26 27 78 29 30 31 32	20	N SNJ [NNS N]	E RG	LDST W]		[adr m]	ILSRC 4]	QI
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	20	N SNA [N SN] [N	E RG	EDST W]		[ADA M]	1 [SRC 4]	QI
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	20	N SNA [N SN] [N	E RG			[ADR M]	ILSRC 4]	QI
16 17 18 19 20 21 27 73 24 25 26 27 78 29 30 31 32	20	wn n] [ns w] [rng n	E RG			[ADR M]	ESRC 4]	QI
16 17 18 19 20 21 27 73 24 25 26 27 78 29 30 31 32	20	N N N J [M S N] [K N S N	E RG			[ADR M]	ESRC 43	QI
16 17 18 19 20 21 27 73 24 25 26 27 78 29 30 31 32		wn n] [ns w] [rng n	E RG		[BED W]	[adr M]	ESRC 43	QI
16 17 18 19 20 21 27 73 24 25 26 27 78 29 30 31 32		N N N J [M S N] [K N S N	E RG			[[ADR M]	Esec 4]	QI
16 17 18 19 20 21 27 73 24 25 26 27 78 29 30 31 32		N N N J [M S N] [K N S N	E RG					
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32		1 [TWN N] [MS W] [RNG N		2 [DST W]				
6 7 8 8 10 11 12 13 14 15 16 19 20 21 22 24 25 26 27 28 20 31 32		[[TWN N] [NS W] [RNG N		A2 [DST W]				
5 8 7 8 8 10 11 12 13 14 15 18 18 19 50 31 50 31 52 33 34 25 56 57 58 29 30 31 32		X] [[TWN N] [NS W] [RN6 N		<				MJ [I]
5 8 7 8 8 10 11 12 13 14 15 18 18 19 50 31 50 31 52 33 34 25 56 57 58 29 30 31 32		X] [[TWN N] [NS W] [RN6 N		< A		s w]	R WJ	MJ [I]
5 8 7 8 8 10 11 12 13 14 15 18 18 19 50 31 50 31 52 33 34 25 56 57 58 29 30 31 32	TATE 53	X] [[TWN N] [NS W] [RN6 N		LD AJ [[DST W]		s w]		MJ [I]
3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 27 23 24 25 26 27 28 27 28 20 31 32	TATE 53	1 [TWN N] [MS W] [RNG N		< A		s w]	R WJ	MJ [I]
6 7 8 8 10 11 12 13 14 15 16 19 20 21 22 24 25 26 27 28 20 31 32		PMD X1 [TWN N] [MS W] [RNG N		FLD A				

WCOAL.
for
format
5Data-entry
FIGURE

USE OF THE UPDATE OPTION	USE	OF	\mathbf{THE}	UPDATE	OPTION
--------------------------	-----	----	----------------	--------	--------

						_	_	_	-
1 1	Я.								
1 1	\$				-				
1 1	3				*				
2 2 5 1	5					<u> </u>			
2 2 5 7 7 5 7									
1 1		3944	-				L		
2 2 5 7 5 7 3	<u> </u>				_				
2 2 5 7 5 7 3	5		9						
1 1	3								
1 1	*								
1 1	_							_	
1 1				-			<u> </u>	×	
1 1									
1 1	3							¢	
1 1	3							~	
1 1						-		-	
2 2 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7				_	<u> </u>		_		
2 2 5 5 7 5 10 <th>_</th> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_		_						
7 2 6 7 6 7	82		8						
7 3 5 7 5 7 3	817								
7 3 5 7 5 7 3	47		•						
2 2 5 7 5 7 3 8 7 8 8 7 5 7 8 8 7 8 8 7 8 8 7 8	-								\vdash
2 2 5 7 6 7				<u> </u>					
7 2 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7									
7 2 5 6 7 6 7 6 7 8 9 1			-						
7 2 5 6 7 6 7 6 7 8 8 1	\$								
7 2 5 6 7 6 7 6 7 8 7 3 8 8 7 3 8 8 7 3 8 8 7 3 8 8 7 3 8 8 7 3 8 8 7 1	3		-						
2 2 5 6 7 6 7 6 7 6 7 6 7 8 8 8 7 8 8 7 8	_							·i	
7 2 5 6 7 6 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	-								
7 2 5 6 7 6 7 6 7 8 8 1									
7 2 5 6 7 6 7 6 7 8 7 3			3						
7 2 5 6 7 6 7 6 7 8 7 3	8		5						
7 2 5 6 7 6 7 6 7 8 7 3	31							-	
2 2 5 6 7 6 7 8 8 7 3			_						\square
7 2 5 6 7 6 7 8 7 3	-		_		_			_	
2 2 5 7 6 7 8 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-		_						
2 2 5 7 6 7 8 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	×.	5							
2 2 5 7 6 7 8 6 7 8 6 7 8 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 1	2								
2 2 5 7 5 7 5 7 5 7	ŝ	X							
2 2 5 7 8 7	-	-							
2 2 5 7 8 8 7 7 7 8 7 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7									
2 2 5 7 8 8 7 8 8 7 7	-	F							
2 2 5 7 8 10 11 16 16 17 18 16 7 18 16 7 18 16 7 18 16 16 16 16 16 16 16 16 18	9	NT	G		l	3	1	I	
2 2 2 5 7 5 1	9		G			_		4]	
2 2 5 7 8 1	JU 30	2	9 N			_		4]	
2 2 5 7 8 10 11 10 11 10 </td <th>2£ 29 30</th> <td>00</td> <td>9 N</td> <td>A</td> <td></td> <td>M</td> <td></td> <td>c 4]</td> <td></td>	2£ 29 30	00	9 N	A		M		c 4]	
2 2 5 7 8 10 11 10 </td <th>27 25 29 30</th> <td>00</td> <td>9 N</td> <td>N A</td> <td>TA</td> <td>M</td> <td>N N</td> <td>4c 4]</td> <td></td>	27 25 29 30	00	9 N	N A	TA	M	N N	4c 4]	
2 2 5 7 5 7 5 7 5 7	26 27 25 29 30	00	[RNG	6 N A	TA	M	N NA		
2 2 5 7 8 1 15 15 1 15 1 1 15 1 1 15 1 1 15 1 1 1 15 1 1 15 1 1 1 15 1 1 1 15 1 1 1 15 1 <t< td=""><th>25, 26 27 25 29 30</th><td>00</td><td>1 CRNG</td><td>6 N A</td><td>TA</td><td>M</td><td>N NA</td><td></td><td></td></t<>	25, 26 27 25 29 30	00	1 CRNG	6 N A	TA	M	N NA		
2 2 5 7 8 11 12 14 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 </td <th>25, 26 27 25 29 30</th> <td>00</td> <td>1 CRNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td></td> <td></td>	25, 26 27 25 29 30	00	1 CRNG	RGN A	DST A	BED M	N NA		
2 2 5 7 8 11 12 14 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 </td <th>24 25 26 27 25 29 30</th> <td>00</td> <td>W]] [RNG]</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td></td> <td></td>	24 25 26 27 25 29 30	00	W]] [RNG]	RGN A	DST A	BED M	N NA		
	23 24 25, 26 27 25 29 30	00	W]] [RNG]	RGN A	DST A	BED M	N NA		
3 3 <th>22 23 24 25 26 27 26 29 30</th> <td>00</td> <td>W]] [RNG]</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td></td> <td></td>	22 23 24 25 26 27 26 29 30	00	W]] [RNG]	RGN A	DST A	BED M	N NA		
3 3 <th>21 22 23 24 25 26 27 25 29 30</th> <td>00</td> <td>NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	21 22 23 24 25 26 27 25 29 30	00	NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
3 3 <th>70 21 22 23 24 25 26 27 25 29 30</th> <td>00</td> <td>NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	70 21 22 23 24 25 26 27 25 29 30	00	NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
2 2 5 7 9 10 11	70 21 22 23 24 25 26 27 25 29 30	00	NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
2 2 5 7 9 10 11	19 20 21 22 23 24 25 26 27 22 29 30	00	NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
1 1 <th>18 19 70 21 22 23 24 25 20 27 25 29 30</th> <td>00</td> <td>NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	18 19 70 21 22 23 24 25 20 27 25 29 30	00	NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
2 2 5 7 8 7 1 <th>17 18 19 70 21 22 23 24 25 26 27 25 20 30</th> <td>00</td> <td>[NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	17 18 19 70 21 22 23 24 25 26 27 25 20 30	00	[NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
2 2 <th>16 17 18 19 70 21 22 23 24 25 20 27 26 29 20 30</th> <td>00</td> <td>] [[NS W]] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	16 17 18 19 70 21 22 23 24 25 20 27 26 29 20 30	00] [[NS W]] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
2 2 5 7 5 7 5 7 <th>15 16 17 18 19 70 21 22 23 24 25 20 27 22 29 30</th> <td>00</td> <td>] [[NS W]] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	15 16 17 18 19 70 21 22 23 24 25 20 27 22 29 30	00] [[NS W]] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
2 2 5 7 5 7 5 7 <th>14 15 16 17 18 19 20 21 22 23 24 25 20 27 22 29 30</th> <td>00</td> <td>N] [NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	14 15 16 17 18 19 20 21 22 23 24 25 20 27 22 29 30	00	N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
- - <th>14 15 16 17 18 19 20 21 22 23 24 25 20 27 22 29 30</th> <td>00</td> <td>N N] [NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	14 15 16 17 18 19 20 21 22 23 24 25 20 27 22 29 30	00	N N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
3 7 <th>13 14 15 16 17 18 19 70 21 22 23 24 75 26 27 25 29 30</th> <td>00</td> <td>N N] [NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	13 14 15 16 17 18 19 70 21 22 23 24 75 26 27 25 29 30	00	N N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
• • <th>12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 22 29 30</th> <td>00</td> <td>Mu N] [MS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 22 29 30	00	Mu N] [MS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
· Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø · Ø Ø Ø Ø	11 12 13 14 15 16 17 18 19 70 21 22 23 24 75 26 27 28 26 29 30	00	TWN N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 11 12 13 14 15 16 17 18 19 70 21 22 23 24 75 20 27 22 29 30		TWN N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 11 12 13 14 15 16 17 18 19 70 21 22 23 24 75 20 27 22 29 30		TWN N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
• • <th>9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 26 27 22 20 30</th> <td></td> <td>TWN N] [NS W] [RNG</td> <td>RGN A</td> <td>DST A</td> <td>BED M</td> <td>N NA</td> <td>S 7</td> <td>C J</td>	9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 26 27 22 20 30		TWN N] [NS W] [RNG	RGN A	DST A	BED M	N NA	S 7	C J
↓ ↓ </td <th>8 9 10 11 12 13 14 15 16 17 18 19 70 21 22 23 24 25 26 27 22 20 30</th> <td></td> <td>[[TWN N]] [[NS W]] [RNG</td> <td></td> <td></td> <td></td> <td>M R CODE</td> <td></td> <td></td>	8 9 10 11 12 13 14 15 16 17 18 19 70 21 22 23 24 25 26 27 22 20 30		[[TWN N]] [[NS W]] [RNG				M R CODE		
· · · · · · · · · · · · · · · · · · ·	7 8 9 10 11 12 13 14 15 16 17 18 19 70 21 22 23 24 75 26 27 26 20 30] [TWN N] [NS W] [RNG				3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
······································	6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 35 27 22 20 20 30] [TWN N] [NS W] [RNG				3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
······································	5 6 7 8 9 10 11 12 13 14 15 15 17 14 19 20 21 22 23 24 25 26 27 22 28 20 20		X1 [TWN N] [NS W] [RNG	A] [[K6N A			3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
· UQALLO 0 ×	5 6 7 8 9 10 11 12 13 14 15 15 17 14 19 20 21 22 23 24 25 26 27 22 28 20 20		D X] [[TWN N] [[NS W]] [KNG	V A] [[K6N A		N AJ	MJ I I I I I V		
	2 5 7 8 9 10 11 12 13 14 15 16 17 18 19 70 21 22 23 24 25 25 26 26 26 26		D X] [[TWN N] [[NS W]] [KNG	V A] [[K6N A		N AJ	S W] [[[[[[[]]]]]]] []		
	3 2 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 22 28 29 20 20		MD X] [TWN N] [NS W] [RNG	RV A] [[K6N A		MIN A] [BED M	VE W] [[[[[[]]]]]]		
	2 3 2 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20 27 22 29 20 20		MD X] [TWN N] [NS W] [RNG	RV A] [[K6N A		FMN A) [[BED M	SYE W]		LCD L

		_						
3			1			9000	7	
ę 9		-	¢			,000	N	
62	Z	A						-
5					Z			U
36	٩.							J
3	4				06			
56					2			
1		•		1000				
					T.			
\$	L	Ľ			1	-		_
ά, Έ	4	0			Z	-		
5	>			0		9090		
53	L	Y		N		-		
52		2			Z			
15		R		1	NO			_
d.1	Z	2			Ă		-	
49	-			2	R I			
-		¥.		-		-		
88		-		N	4			
47	٩	0		N	J	-000		
46	7	-		•		-		
	-			3		100		
4	•				Z	-	L	-
4	ć			¥	9		2	
3					0		S	
4		1944			R			
4r: 4	_				9	_	6 -	_
							RG	-
ŝ	Z				Y			
8					X	-	0	9008
18	W	-				-		1005
ŝ		ď	F			-		Ann
ы	۲		0			-	L	
7	F	A		-			2	
2	•	Z	-		N		-	
33							-	
					4			
12		ď	1		V			
5		9					Y	
50		1				9949	¢	
22		>		1000		-		-
u		9		186				
2		A			C	ł	£	-
25		R	Se.				F	
24		-	0					
23 2		C						
. 32					X		12	
<u>~</u>	9940							
20				-	5	-	•	-
<u>.</u>	1	1005		-		-		5000
=	R		k			-		909B
=		1	2		4	-		
36		×	A		•		R	
15	A				Z		9	
1 1	10		5	/	-		ľ	
	00				, L	\vdash	-	
61		X	N	-			_	
2	•		S		0	N	2	
Ξ	Q	*	<		2	-	9	
10	Y	0				9446		-
6	-					-		-
	1	٢		-	×	2000		
1	L				0		Z	
\$	γ.				F			
9	Ĺ	5	3	_			9	
÷ 1	-	-			16		76	\vdash
—	<	< >	L L					-
61	Z	×	8	<u> </u>	0		X	
2	<	-			T	0075	0	-
·	J	J	-	-		a de la	L	1000
	_							

FIGURE 6.-Data-entry format for USALYT.

select an alternative procedure or return to the search and retrieval operation. If the name of the raw-data file is properly entered, the user will then be prompted for the NAME OF TRANSLATED FILE. This name is selected at the user's discretion, and care must be taken to ensure that it does not coincide with the name of another file already existing on that user account number.

Next, the user will be asked if he wishes to have the contents of every input record, as corrected for any dictionary mismatch, displayed on the terminal. A response of YES will display every record, and a response of NO will suppress the display. If an entry on the record does not match the existing entries in that dictionary, the message, THERE IS NO DICTIONARY MATCH FOR DATA NAME is displayed, followed by the name of that data element, the message ALPHANUMERIC DATA, and the displayed data value. The user is prompted with DO YOU WISH TO ENTER THIS DATA IN THE DICTIONARY? "YES" OR "NO." A YES will place that data value in its dictionary, and subsequent records containing that data value will obtain a dictionary match. If the response is NO. the user is prompted with the message, ENTER DATA VALUE FOR DATA NAME, in order to correct the data value, followed by the data name and the message, DATA VALUE. The newly entered data value is again tested for a dictionary match, and if found, the record translation procedure continues. If the new data value does not have a dictionary match, the user is again queried to determine whether he intends to enter that data value in the dictionary, or if he wishes to re-enter the data value. This cycle will continue until a dictionary entry exists that will match that data value.

When all the new data records have been translated, the following message will be displayed:

THE INPUT FILE IS NOW READY FOR POST-ING ONTO THE MASTER FILE. IF YOU WISH TO MAKE FURTHER CHANGES, TO THIS FILE BEFORE IT IS POSTED, SELECT THE SE-QUENTIAL, BATCH OR KEYED REVISION PROCEDURE AND SPECIFY THE NAME OF THIS FILE.

FILE "TEST" HAS BEEN REVISED.

DO YOU WISH TO WRITE THIS FILE ONTO THE MASTER FILE? "YES" OR "NO":

where TEST, in this case, is the name of the translated file. If the response is NO, the file is saved, and the prompt, UPDATE PROCEDURE (1-5), is again displayed. If the response is YES, the translated file is added to the master file and the user is queried with, DO YOU WISH TO SAVE THIS FILE? "YES" OR "NO." A YES will save the translated file, where a NO will cause the file to be dropped. Finally, the message:

UPDATE OPERATIONS HAVE BEEN COM-PLETED. IF YOU WISH TO CONTINUE WITH THE UPDATE PROCEDURE, ENTER THE NUMBER (1-5). ENTERING A "0" FOR THE PROCEDURE PROMPT OR "QUIT" FOR THE FILE PROMPT WILL RETURN CONTROL TO THE SEARCH AND RETRIEVAL PORTION OF "PACER."

is displayed followed by the prompt, UPDATE PROCEDURE (1-5), to permit further update operations (1-5), or to return to search and retrieval (0).

UPDATE PROCEDURE 2

Update procedure 2 is the deletion procedure, which is accomplished by specifying the record key of records from the master file. The prompt, DATA FILE TO BE REVISED, will be for a file that has already been selected by a prior logical search for records that are to be deleted from the master file. If the instruction-suppression code has not been set previously, the following message will be displayed on the terminal:

THIS IS THE MASTER FILE RECORD DELE-TION PROCEDURE. WHEN PROMPTED, THE DATA MANAGER WILL SPECIFY THE KEY NUMBER OF THE RECORD TO BE DELETED. THE DELETED RECORD WILL BE WRITTEN, FOR PRESERVATION, ONTO THE "ESAVE," "WSAVE," OR "SAVUSA" FILE. THEN, THE DATA ELEMENTS IN THE MASTER FILE WILL BE BLANKED, AND A NEW IDENTIFI-CATION NUMBER WILL BE WRITTEN ONTO THE MASTER FILE. THIS NUMBER WILL BE ENCODED TO CONTAIN THE DATE OF DE-LETION AND THE IDENTIFICATION NUM-BER OF THE DATA MANAGER RESPONSIBLE FOR EXECUTING THE DELETION. IN ADDI-TION, A DELETION MESSAGE WILL BE SUP-ERIMPOSED OVER SEVERAL OF THE DATA FIELDS TO NOTE TO THE USER THAT THAT KEY NUMBER NO LONGER HAS A VALID RECORD IN THE MASTER FILE.

WHEN THE DATA MANAGER HAS CON-CLUDED THE DELETION PROCEDURE,

ENTRY OF A "-1" AT THE PROMPT FOR "KEY" WILL END THE PROCESS.

It is presumed that the user has determined, by examination of the selected file, which record keys will be in the deletion process. He will enter the key number following the prompt, KEY NUM-BER OF RECORD TO BE DELETED. This will cause the data elements to be blanked out in that record of the master file having the specified key number. A deletion message is inserted in the RE-GION, DISTRCT, and BED data fields along with a coded ID number giving the year, month, and day of deletion as well as the data manager identification, as in the following example:

	* * * * *	* * * *
STATE:	COUNTY	:
PMERID: **	* TWNSHIP: *** NS: RANGE	: *** EW: SECTION: ** AAPGRV: ***
COALPRV:	REGION: ** RECORD	DELETED ** THICKNS : *
FIELD:	DISTRICT: ** SEE "ID"	'FOR DATE ** OVRBRDN : *
FORMATN:	BED: ** AND MA	NAGER CODE. RELIABL : *
SYSTEM:	QUAD:	BYEAR : **
SERIES:	SOURCE:	YEAR: ***
RANK:	ID: 75090299KEY: 131	58 TONNAGE: .00
	* * * * * *	* * * *

For example, the date of deletion is 75 (year), 09 (month), and 02 (date), and 99 is the data manager identification. The corresponding record in the selected subfile is eliminated entirely. This prevents that record from being posted onto the master file again after the subfile has been subsequently subjected to any of the other (3-5) updating procedures. To terminate the deletion procedure, a negative entry, such as -1, following the prompt, KEY NUMBER OF RECORD TO BE DELETED, will permit the data manager either to select another update procedure or to return to the search and retrieval activity of PACER.

UPDATE PROCEDURE 3

Update procedure 3 is designed for the sequential review and revision of records belonging to a subfile selected from the master file. After the sequential revision has been completed, the data manager may elect to post the subfile back onto the master file or to save the subfile for further update operations.

If the user has not previously entered the instruction-suppression code, the first message displayed will be the following instructions:

RECORDS FROM THE DESIGNATED SUBFILE WILL BE PRESENTED SEQUENTIALLY FOR REVIEW AND UPDATE. AFTER ALL REC-ORDS HAVE BEEN EXAMINED BY THE RE-VIEWER, HE MAY THEN ELECT TO POST THE RECORDS IN THIS SUBFILE ONTO THE MASTER FILE.

WHENEVER YOU WISH TO LEAVE A SE-LECTED DATA ELEMENT UNCHANGED, EN- TER AN ASTERISK, *, FOLLOWED BY A CAR-RIAGE RETURN.

IF YOU WISH TO PROCEED TO THE NEXT RECORD IN THE FILE, ENTER THE CHAR-ACTERS "NEXT" FOLLOWING THE PROMPT: "NAME OF DATA ELEMENT TO BE CHANGED." THE "NEXT" COMMAND WILL LEAVE THAT RECORD IN ITS ORIGINAL, UN-REVISED STATE AND THE NEXT RECORD WILL BE DISPLAYED, IN SEQUENCE, FROM THE SUBFILE. IF AT ANY TIME YOU DO NOT WISH TO REVIEW THE REMAINDER OF THE FILE, ENTER "QUIT."

Following this message will be a display of the first record in the subfile, as shown in an earlier example. This display will be followed by the prompt, NAME OF DATA ELEMENT TO BE CHANGED. The data manager may either enter a valid data-element name or specify the command NEXT or QUIT. If a proper data-element name has been entered, the next prompt will be either, ENTER VALUE, if it is a whole number, ENTER DECIMAL VALUE, if it is decimal data, or EN-TER DATA, if the value is an alphanumeric value. At this point, the data value may be left unchanged by entering an asterisk, *, for the alphanumeric data, or an asterisk enclosed by apostrophes, '*', for the integer and decimal data. If the value is alphanumeric, a search is made to determine whether the data entry matches an already existing dictionary entry. If there is a matching dictionary entry, or if the proper type of numerical data has been entered, the data manager will be prompted with,

DO YOU WISH TO CHANGE ANY MORE DATA ELEMENTS BELONGING TO THIS RECORD? ENTER "YES" OR "NO." A response of NO will cause all preceding changes to that record to be posted back onto the subfile. A response of YES will again display the prompt, NAME OF DATA ELEMENT TO BE CHANGED. The user can then select another data element to revise, or he may enter NEXT or QUIT. The NEXT command nullifies all data changes made to that record and proceeds to display the next record from the subfile. The QUIT command presents the user with the option of posting the subfile onto the master file or leaving the subfile available for further activity.

If the alphanumeric input does not match a dictionary entry, the message, THERE IS NO DIC-TIONARY MATCH FOR DATA NAME, is displayed, followed by the name of the data element, and the prompt, DO YOU WISH TO ENTER THIS DATA IN THE DICTIONARY? "YES" OR "NO." An entry of YES will make that alphanumeric value a permanent dictionary entry and then query for further data changes to the record. A NO entry will bring up the prompt, NAME OF DATA ELE-MENT TO BE CHANGED, giving the data manager the opportunity to re-enter the correct alphanumeric value for that data element, or to select a different data-element name for data revision.

After all records in the subfile have been reviewed or after QUIT has been entered in response to the prompt, NAME OF DATA ELEMENT TO BE CHANGED, the prompt, FILE "(subfile name)" HAS BEEN REVISED. DO YOU WISH TO WRITE THIS FILE ONTO THE MASTER FILE? "YES" OR "NO" will appear. A response of NO returns control for selection of another update procedure. A response of YES posts the subfile onto the master file, following with the prompt, DO YOU WISH TO SAVE THIS FILE? "YES" or "NO." If NO, the subfile is dropped; if YES, the subfile is saved for further use. In either case, the message:

UPDATE OPERATIONS HAVE BEEN COM-PLETED.

IF YOU WISH TO CONTINUE WITH THE UP-DATE PROCEDURE ENTER THE NUMBER (1-5). ENTERING A "0" FOR THE PROCED-URE PROMPT OR "QUIT" FOR THE FILE PROMPT WILL RETURN CONTROL TO THE SEARCH AND RETRIEVAL PORTION OF "PACER."

is printed followed by the prompt, UPDATE PRO-CEDURE (1-5), for selection of further update operations.

UPDATE PROCEDURE 4

Update procedure 4 is designed to permit the user to access a given record from a previously selected subfile by means of the record key number. The data contained in that record is displayed in the same format as illustrated earlier. If the instruction-suppression code has not been set, the following instructions will precede the first prompt, KEY.

RECORDS FROM THE DESIGNATED SUBFILE WILL BE PRESENTED, AS SPECIFIED BY KEY NUMBER, FOR REVIEW AND UPDATE. AFTER THE REVIEWER HAS EXAMINED THE CONTENTS OF THE RECORD OF INTEREST, HE MAY ELECT TO POST THAT RECORD ONTO THE MASTER FILE.

REGARDLESS OF WHETHER OR NOT THE RECORD IS POSTED TO THE MASTER FILE, IT WILL REMAIN, AS REVISED, IN THE SUB-FILE.

TO ACCESS THE DESIRED RECORD, RE-SPOND TO THE PROMPT "KEY" BY ENTER-ING THE RECORD'S KEY NUMBER. . . . EN-TERING A "-1" WILL CONCLUDE THE KEYED ACCESS PROCEDURE.

IF YOU WISH TO GO ON TO ANOTHER REC-ORD IN THE FILE, ENTER THE CHAR-ACTERS "NEXT" FOLLOWING THE PROMPT: "NAME OF DATA ELEMENT TO BE CHANGED." THE "NEXT" COMMAND WILL LEAVE THAT RECORD IN ITS ORIGINAL, UN-REVISED STATE AND PROMPT FOR THE NEXT RECORD KEY.

WHENEVER YOU WISH TO LEAVE A SE-LECTED DATA ELEMENT UNCHANGED, EN-TER AN ASTERISK, *.

After the key number has been specified for the KEY prompt, the selected record is then displayed, followed by the prompt, NAME OF DATA ELE-MENT TO BE CHANGED. The data modification procedure for this record is identical with the sequential revision procedure (update procedure number 3). The NEXT and the QUIT commands are also used in the same context as in the sequential revision procedure. The asterisk response again is used to leave the data fields unchanged.

After revision of the record has been completed, the prompt, DO YOU WISH TO POST THIS REC-ORD TO THE MASTER FILE? "YES" OR "NO," is displayed. If the response is YES, it is posted to the master file as well as to the subfile. If the response is NO, it is posted to the subfile only. After the keyed revision is concluded, the data manager can, by means of procedure 3 or 5, make further corrections to the subfile and then post the entire subfile onto the master file.

The next prompt after the one for posting the record onto the master file is, DO YOU WANT TO REVIEW ANY MORE RECORDS? "YES" OR "NO." A response of YES will produce the prompt, KEY, whereas a response of NO concludes the keyed update procedure and returns the prompt, UPDATE PROCEDURE (1-5). Entry of a negative integer value following the KEY prompt will also conclude the keyed update procedure.

UPDATE PROCEDURE 5

Update procedure 5 is the batch revision procedure. It is used to change all subfile records to the same specified data value for a selected data element. If the instruction-suppression code has not been set, the following message will be displayed:

THIS IS THE BATCH UPDATE PROCEDURE. GIVEN A SPECIFIED DATA ELEMENT NAME AND A SPECIFIED DATA ELEMENT VALUE, THIS PROCEDURE CHANGES ALL RECORDS IN THE GIVEN SUBFILE TO THE DATA VALUE SPECIFIED FOR THAT DATA ELE-MENT NAME.

THE BATCH EDIT/REVISION PROCEDURE CAN BE TERMINATED BY ENTERING "QUIT" WHEN A PROMPT FOR THE NAME OF THE DATA ELEMENT IS ENCOUNTERED.

This message will be followed by the prompt, NAME OF DATA ELEMENT TO BE CHANGED. The user will respond to this prompt and the ones that follow for the data values in the same manner as when using update procedures 3 and 4.

Because of the mass record revision capability of this updating procedure, the batch procedure does not produce a display of any of the records changed. If it is desired to review any records in this subfile before posting them onto the master file, the sequential or the keyed revision procedure may be selected after the batch revision process has been concluded. To review records with the sequential revision procedure, enter NEXT following the prompt, NAME OF DATA ELEMENT TO BE CHANGED, and the next record from the subfile will be displayed. Entering QUIT will conclude the review. If the keyed revision procedure is selected for review, enter the record key number following the prompt, KEY. If the key number is unknown, enter the value 1. The keyed read accesses the first record with a key greater than or equal to 1. To access the next record in the subfile enter NEXT following the prompt, NAME OF DATA ELE-MENT TO BE CHANGED, and then a key value exceeding by one the key value of the previous record. This will access the record in the subfile with the next higher key. A continuation of this process will have the same effect as a sequential review. The user can terminate this procedure at any time, by entering a negative key value for the key prompt, or QUIT in place of NEXT for the dataelement name.

After the update and posting of a subfile onto the master file, the data manager can conclude the update process by entering a 0 (zero) when prompted with UPDATE PROCEDURE (1-5). At this point, the prompt, ENTER COMMAND, will be displayed, and the user may respond with any one of the standard PACER commands (see table 1). It is also possible at this point to select another subfile to be used for the editing and correcting of the master file.

If several corrected subfiles have been saved for future posting to the master file, care must be taken to ensure that if any of the subfiles contain overlapping records, they will be posted in proper sequence to avoid negating previously posted **record** corrections.

USE OF TABULAR SUMMARY OPTION

Data may be retrieved from either USALYT or WCOAL in a predefined tabular output form on a wide carriage terminal (135 characters per line, or more) by entering the command TABLE. A data file retrieved from WCOAL will be listed showing tonnage of coal in various thickness categories by rank, coal bed, and overburden. Because the width of paper is a limiting factor and because of the natural break in thickness categories for varying ranks of coal, two summary tables are automatically printed, if required by the data, for thickness categories given in inches or feet.

The user is prompted to enter the data file to be printed and a description of the area searched to be printed as a title. As each data record is read in, it is checked for THICKNS equal to "unclassified" or "classified by zone," or RELIABL equal to "unclassified." If any of these conditions are true, the tonnage is added to the appropriate one of three subtotals, and the record is skipped. The other data records are then written to one of two files, depending upon whether THICKNS is in feet or inches. After all records are read, the inches file is sorted by county, rank, coal bed, overburden, thickness, and reliability. A table is printed in the form shown in figure 8, new lines of subtotals being printed at every change in overburden, bed, rank, or county. A line showing the totals for all thickness columns is printed at the end of the table. If no data are reported in inches, or after the first end of file, the program reads, sorts, and prints the table for THICKNS reported in feet, also shown in figure 8.

Upon reaching an end of file for the second, or for the only data file, a total line is printed for all tables shown. If any input records have been skipped because of THICKNS or RELIABL conditions, a message is printed showing the total tonnage omitted, followed by the tonnage of coal excluded by each THICKNS or RELIABL condition. A final total tonnage for the area under consideration is then printed.

When a file of analytical data has been retrieved from USALYT, entering the command TABLE from a wide carriage terminal (135 characters per line, or more) will produce a tabular output as shown in figure 9. The user is prompted to enter the name of the data file to be printed and to enter a description of the area searched, which is to be printed in the title. The input data file is sorted by county, rank, and coal bed. Data records are read and a subtotal computed until a change in coal bed, rank, or county occurs. A separate counter is kept for each variable because a number of incomplete records are anticipated. The data are then averaged and printed according to the format shown in figure 8.

EXAMPLE OF INTERACTIVE SESSION

The questions and requests in figures 7, 8, and 9 provide examples of actual use of the USGS National Coal Resources Data System. Inputs required and prompts and responses by the PACER system utilized in Phase I studies are illustrated. Questions:

- 1. What is the total tonnage of bituminous and subbituminous coal in T5-6N, R89-90W of the Yampa coal field in Colorado?
- 2. What coal chemical analyses are available in this area, and what are the average sulfur, ash, and Btu values?

Requests:

1. Tabulate the tonnage of coal in this area by county, rank, coal bed, and thickness of coal bed and overburden.

2. Tabulate the chemical analyses of the coal in this area.

PROGRAMMER'S REFERENCE

This section includes two topics:

- 1. Modifications to the GRASP system which are required in order to provide updating and editing capabilities in PACER;
- 2. New programs which constitute the updating and editing capabilities of PACER, called by the UPDATE command.

The user should note that PACER is presently operational on the Computer Science Corp. (INFO-NET) timesharing UNIVAC 1108 system in El Segundo, Calif. Some INFONET-dependent programs have been used with the PACER subroutines, and are, therefore, not transferrable to other computers. Similar or equivalent programs must be available or written for PACER to operate in its present form. The INFONET-dependent programs are noted at the end of discussion for each PACER subroutine in appendix C.

MODIFICATIONS TO GRASP

As discussed earlier, PACER is a modified version of the GRASP search and retrieval program. The modifications to the search and retrieval system are minor and involve the tailoring of GETREC, the input and output subroutine, to obtain greater operating efficiency with the particular file structures of WCOAL, ECOAL, and USALYT.

Because of the needed capability for editing and updating these three master files, they were created as keyed record files. This permits the random access of records for editing and updating. In addition, very few of the data fields in an NCRDS master record contain blank information; instead, they contain integer data or integer pointers for alphanumeric data contained in the dictionaries. Little is to be gained in terms of storage by packing these records. However, a significant proportion of CPU time is saved by storing them in the unpacked mode. Thus, the PACER version of GRASP is structured to handle keyed and unpacked master file records, but all other major features of GRASP are retained. The GRASP documentation, therefore, can be utilized as a user's guide for the search and retrieval operation of PACER.

The principal distinction between PACER and GRASP is the addition of considerable software programming to permit user updating and editing of !PACER
WELCOME TO THE USGS "PACER" VERSION OF THE "GRASP" RETRIEVAL SYSTEM.
THE FOLLOWING DATA BASES ARE AVAILABLE:

ECOAL - USGS EASTERN US COAL RESOURCES DATA

WCOAL - USGS WESTERN US COAL RESOURCES DATA

USALYT - PUBLISHED US COAL ANALYTICAL DATA

THE USER MUST SPECIFY ONE OF THE ABOVE DATA BASES FOLLOWING THE PROMPT.

A CHANGE OF DATA BASES CAN BE MADE AT ANY TIME BY ENTERING THE WORD "FILE" FOLLOWING THE PROMPT TO "ENTER COMMAND."

ENTER DATA BASE NAME: WCOAL

ENTER COMMAND: COND A. STATE EG COLORADO B. FIELD EG YAMPA C. TWNSHIP BE 5.6 D. NS EQ N E. RANGE BE 89,90 F. EW EQ W G.

ENTER COMMAND: LOGIC ENTER LOGIC: A*B*C*D*E*F

ENTER COMMAND: SEARCH ENTER INPUT FILE NAME: WCOAL ENTER OUTPUT FILE NAME: RYAMPA ALL 15972 RECORDS OF WCOAL SEARCHED. 125 RECORDS FOUND WHICH SATISFY THE REQUEST. THEY HAVE BEEN STORED IN RYAMPA SRU'S: 140.6

ENTER COMMAND: FUNC ENTER NAME OF FILE: RYAMPA

FUNCTIONS AVAILABLE AT THIS TIME ARE: MEAN FIT

FIGURE 7.—Example of an interactive session using PACER.

```
ENTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS.
1. MEAN TONNAGE
2.
MEAN STATISTICS FOR TONNAGE WITH 125 ITEM(S).
          •24 MAX= 570•34 MEAN=
MIN=
                                         31.24 ROOT MEAN SQ.=6.40E+03
 SUM=
                        SUM OF SQUARES= 7.996+005
          3904-83
STD. DEV.= 73.923
                         VARIANCE= 5464.6
ENTER COMMAND: COND
A. RANK BE BIT, HV BIT C
   RANK BE SUBBIT, SUBBIT C
8.
C.
ENTER COMMAND: LOGIC
ENTER LOGIC:
                A
ENTER COMMAND: SEARCH
ENTER INPUT FILE NAME:
                         RYAMPA
ENTER OUTPUT FILE NAME: BITYAM
      125 RECORDS OF RYAMPA SEARCHED.
ALL
       77 RECORDS FOUND WHICH SATISFY THE REQUEST.
THEY HAVE BEEN STORED IN BITYAM
SRU15:1.4
ENTER COMMAND: FUNC
ENTER NAME OF FILE: BITYAM
FUNCTIONS AVAILABLE AT THIS TIME ARE:
MEAN FIT
ENTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS.
I. MEAN TONNAGE
   2.
MEAN STATISTICS FOR TONNAGE WITH 77 ITEMS(S).
 MIN=
           .30 MAX=
                       570.34 MEAN= 35.31 ROOT MEAN SQ.= 7.48E+03
          2718.72
                        SUM OF SQUARES= 5.762+005
 SUM=
 STD. DEV.= 79.490
                           VARIANCE= 6318.7
ENTER COMMAND:
                LOGIC
ENTER LOGIC:
                8
```

26

ENTER COMMAND: SEARCH ENTER INPUT FILE NAME: RYAMPA ENTER OUTPUT FILE NAME: SUBYAM 125 RECORDS OF RYAMPA SEARCHED. ALL 48 RECORDS FOUND WHICH SATISFY THE REQUEST. THEY HAVE BEEN STORED IN SUBYAM SRU'S:1.3 ENTER COMMAND: FUNC ENTER NAME OF FILE: SUBYAM FUNCTIONS AVAILABLE AT THIS TIME ARE: FIT MEAN ENTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS. 1. MEAN TONNAGE 2. MEAN STATISTICS FOR TONNAGE WITH 48 ITEM(S). .24 MAX= 448.49 MEAN= 24.71 ROOT MEAN SQ.= 4.65E+03 MIN# SUM OF SQUARES= 2,234+005 SUM= 1186.11 VARIANCE= 4129.0 STD. DEV.= 64.257 SRU'S:7.1 ENTER COMMAND: FILE ENTER DATA BASE NAME: USALYT ENTER COMMAND: COND A. STATE EQ COLORADO 8. FIELD EQ YAMPA С. TWNSHIP BE 5,6 D. NS EQ N E. RANGE BE 89,90 EW EQ W F. G. ENTER COMMAND: LOGIC A*B*C*D*E*F ENTER LOGIC: ENTER COMMAND: SEARCH ENTER INPUT FILE NAME: USALYT ENTER OUTPUT FILE NAME: AYAMPA 666 RECORDS OF USALYT SEARCHED. ALL 62 RECORDS FOUND WHICH SATISFY THE REQUEST. THEY HAVE BEEN STORED IN AYAMPA

```
FIGURE 7.—Exam le of an interactive session usin PA 'ER—' or in
```

SRU'S:7.1

ENTER COMMAND: COND RANK BE BIT, HV BIT C Α. RANK BE SUBBIT, SUBBIT C Β. C. ENTER COMMAND: LOGIC ENTER LOGIC: A ENTER COMMAND: SEARCH ENTER INPUT FILE NAME: AYAMPA ENTER OUTPUT FILE NAME: ABTYAM 62 RECORDS OF AYAMPA SEARCHED. ALL 50 RECORDS FOUND WHICH SATISFY THE REQUEST. THEY HAVE BEEN STORED IN ABTYAM SRU15:1.2 ENTER COMMAND: FUNC ENTER NAME OF FILE: ABTYAM FUNCTIONS AVAILABLE AT THIS TIME ARE: FIT MEAN ENTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS.

2. MEAN STATISTICS FOR SULFUR WITH 50 ITEM(S). MIN= .30 MAX= 3.60 MEAN= .71 ROOT MEAN SQ.= .80 SUM= .35.50 SUM OF SQUARES= .39.9 STD. DEV.= .54782 VARIANCE= .30010

MEAN STATISTICS FOR ASH WITH 50 ITEM(S). MIN= 2.70 MAX= 26.90 MEÂN= 8.11 ROOT MEAN SQ.= 85. SUM= 405.60 SUM OF SQUARES= 4.257+003 STD. DEV.= 4.4410 VARIANCE= 19.722

MEAN STATISTICS FOR BTU WITH 50 ITEM(S). MIN= 8390.00 MAX= 11920.00 MEAN= 11080.20 ROOT MEAN SQ.=1.23E+08 SUM= 554010.00 SUM OF SQUARES= 6.156+009 STD. DEV.= 603.16 VARIANCE= 3.63798E+05

ENTER COMMAND: LOGIC ENTER LOGIC: B

1. MEAN SULFUR, ASH, BTU

28

ENTER COMMAND: SEARCH ENTER INPUT FILE NAME: AYAMPA ENTER OUTPUT FILE NAME: ASBYAM ALL 62 RECORDS OF AYAMPA SEARCHED. 12 RECORDS FOUND WHICH SATISFY THE REQUEST. THEY HAVE BEEN STORED IN ASBYAM SRU15:.7 ENTER COMMAND: FUNC ENTER NAME OF FILE: ASBYAM FUNCTIONS AVAILABLE AT THIS TIME ARE: MEAN FIT ENTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS. 1. MEAN SULFUR, ASH, BTU 2. MEAN STATISTICS FOR SULFUR WITH 12 ITEM(S). .63 ROOT MEAN SQ.= .46 MIN= .30 MAX= 1.20 MEAN= SUM OF SQUARES= SUM= 7.60 5.58 STD. DEV.# .26400 VARIANCE= 6.96970E=02 MEAN STATISTICS FOR ASH WITH 12 ITEM(S). 4.64 ROOT MEAN SQ.= 23. MIN= 3.20 MAX= 7.50 MEAN= SUM= 55.70 273. SUM OF SQUARES= STD. DEV.= 1.1357 VARIANCE= 1.2899 MEAN STATISTICS FOR BTU 12 ITEM(S). WITH MIN= 9730.00 MAX= 11290.00 MEAN= 10564.17 ROOT MEAN SQ.= 1.12E+08 SUM= 126770.00 SUM OF SQUARES= 1.341+009 STD. DEV.= 433.75 VARIANCE= 1.88136E+05

FIGURE 7.-Example of an interactive session using PACER-Continued

ABLE	ENTER UP TO 6 CHARACTEW NAME UF DATA FILE TO BE PHINTED: HESYAM	ENTER NAME OF AREA SEARCHEU (UP TO 28 CHAHACTERS): T5-6N,H89-90M,YAMPA FIELD.CO
TA	CHAR	AREA
ENTER CUMMAND: TABLE	ENTER UP TO 6 (ENTER NAME OF J

SUMMARY OF COAL RESOURCES FOR AREA = T5-6N,R89-9UW,YAMPA FIELD,CO

RANK MEASURED AND INDIC	MEASURE	MEASURED AND INDICA	* -*	TED (INCHES)	INFERMED RESOUNCES (INCHES)) RESOUNCES	CES (INCHES)	IES)	TOTAL	RESOURCES BY	TOTAL RESOURCES, BY CATEGORY	GORY
COAL BED OVERBURDEN	14 = 28	28 - 42	/ER 4	TOTAL	14 - 28 28	4 4	- CC	TOTAL		28 = 42	æ	TOTAL
,以外的外的间接的现在的现在分词分别分别的原则是有效的的原则的原则的原则的	99999999999999999999999999999999999999	94999999999999999999999999999999999999	N } 	MOFFAT	saaccessaac Tolini y							14 14 14 14 14
# = = = = = = = = = = = = = = = = = = =												
119 V												
0-1000	• 00	5.88	• 00	5.88	• 0 0	00-	• 00	• 00	• 0 •	5.88	• 00	5•88
9-1000 -1000	00-	00.	.56	• 56	00	00-	• 00	00	00 -	00-	.56	. 56
BD GROUP	•		•		•	•		•	•	•	•	
0-1000	1.37	4C • 9	25 43	33,14	00.	00.	00.	00.	1.37	6.34	25.43	33 . 14
	•	•	0-1-4	01.4	• 00	• • •	•••	• • •	•••	• 00	4°16	81.4
	3.57	1.79	13.10	18.46	• 00	• 00	• 00	• 00	3.57	1.79	13.10	18.46
1-2000	00.	1.37	17.56	16.93	• 00	• 00	• 00	• 00	• 00	1.37	17.56	18.93
E 0-1000	00•	• 00	8,55	8,55	00.	• 00	• 00	• 00	• 00	00.	8.55	8.55
F ZONE										1		
0-1000	18.05	00.	00.	18.05	• 00	• 00	00.	• 00	18,05	• 0 0	• 00	18.05
1-2000	19.56	• • •	• •	19.56	• 00	• 00	• 00	• 00	19.56	• 00	• 00	19.56
0-1000	4.62	14.04	A0.10	99.46	00	00.	00	00	64.4	14.04	01 08	99 . 60
	OE.	1.50	28.16	29.96	00.	00.	00.		0E.	1.50	28.16	29.96
G ZONE	:				:							1
001-0		1.34	67.84	70.12	00.	• • •	•	00.	46.	1.34	67.84	70.12
H 70NF	95.5	• 00	11.90	21.20	• 00	• 00	• • •	• 00	3.30	• 00	17.90	21.20
0-1000	3.02	6.47	75.41	84.90	• 00	• 00	• 0 0	• 00	3.02	6.47	75.41	84 • 90
	1.62	9.40	90.88	101.90	00.	• 00	00.	• 00	1.62	9.40	90.88	101.90
ر 1000 - 0	ŪŪ	4 70	21.2	90 0	00	00	d d	00	00	01 C	21.2	0
1-2000	000	9 9 9	00	40°0	000	•	• •	•			00	90°40 90°34
LOWER OR		,					I		I		•	
0-1000 VADAF	6.40	9.79	• • •	16.19	•00	• • •	• 0 0	• 00	6.40	6°°6	00•	16.19
	• 00	00.		00.	• 0 0	• • •	17.71	17.71	• 00	• 00	17.71	17.71
COUNTY TOTAL	62.81	70.86		569.50	• • • •	00.	12.77	77.71			513.54	647.21
	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 9 1 1 1 1 1 1 1 1 1 1 1 1	ROUTT	COUNTY	1 1 1 1 1 1 1 1	1 1 2 2 1 1 2 2 1 2 1 2		6 6 9 3 9 9 9	5 9 6 7 9 5 5 6 6	8 8 9 9 9 9 9 8 8 8 8 8	
116-	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 0 1 0	0 8 9 8 8 9 8 9 9 8 9 9 9 9 9	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	 				9 9 9 9 9 9 9 9 9 9	
0-1 0 00	• • •	• 00	4.25	4.25	00.	• 00	• 00	• 00	00"	• 00	4.25	4.25

PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS

30

1.60 2.83 00 00 00 00 1.60 1.60 2.42 2.42 00 00 00 00 00 2.42 14.65 15.40 00 00 00 00 00 2.42 14.65 13.43 00 00 00 00 1.36 12.05 18.17 9.14 00 00 00 00 00 2.74 9.14 9.14 00 00 00 00 00 2.74 9.14 9.14 00 00 00 00 00 2.74 2.74 2.74 00 00 00 00 2.74 2.74 2.74 00 00 00 00 2.74 2.74 2.74 00 00 00 00 2.74 2.75 69.74 00 00 00 00 2.74 2.74 00 12.13 50.09 52.22 7.00 17.97 36.74 49.56 50.09 52.22 7.00 17.97 62.22 36.74 000 12.13 50.09 52.22 7.00 17.97 62.22 36.74 49.56 122.46 50.09 17.96 100 100 21.46 27.25 192.40 00 12.46 22.22 190.46 71.05 39.26 100 100 21.70 21.74 00 100 100 10.35 <th>4</th> <th></th>	4													
2.42 2.42 .00 .00 .00 .00 .00 .00 2.42 14.65 15.44 .00 .00 .00 .00 .00 14.65 12.05 13.43 .00 .00 .00 .00 .00 .00 14.65 18.17 9.14 .00 .00 .00 .00 .00 .00 .00 2.75 18.17 9.14 .00 .00 .00 .00 .00 .00 2.74 2.74 2.74 2.74 00 .00 .00 .00 .00 2.74 36.74 69.74 .00 .00 .00 .00 .00 2.74 36.75 69.74 .00 .00 .00 .00 .00 2.74 52.22 36.75 69.74 .00 .00 .00 .00 .00 .00 2.74 52.22 36.75 192.40 .00 .00 21.01 17.97 62.22 390.44 58.04 193.80 .00 .00			1.23	• 00	1.60	2.83	• 0 0	• 0 •	00*	• • •	1.23	• 0 0	1.60	2.83
			00*	• • •	2442	2,42	• 0 0	• 00	• 0 0	• 00	• 00	• 00	2.42	2•42
18.17 19.00 .00 .00 .00 .00 .00 9.14 9.14 9.14 9.14 .00 .00 .00 .00 .00 9.14 2.74 2.74 .00 .00 .00 .00 .00 2.74 57.55 69.74 .00 .00 .00 .00 .00 2.79 57.55 69.74 .00 .00 .00 .00 .00 .00 2.79 56.75 69.74 .00 .00 .00 .00 .00 .00 2.79 56.03 192.40 .00 .00 .00 251.05 13.96 22.20 158.03 58.04 192.40 .00 .00 .00 21.74 .00 106.30 58.05 183.80 .00 .00 .00 .00 .00 108.45 59.36 192.40 .00 .00 .00 .00 .00 108.45 59.30 100.30 .12.10 .13.40 .00 .00 .00 .00 <t< th=""><td>י נ</td><td>0-1000 1-2000</td><td>.75</td><td>•00 1.36</td><td>14.65 12.05</td><td>15.40 13.43</td><td>00.</td><td>00.</td><td>• 0 0 • 0 0</td><td>00.</td><td>. 75</td><td>•00 1.38</td><td>14.65 12.05</td><td>15•40 13•43</td></t<>	י נ	0-1000 1-2000	.75	•00 1.36	14.65 12.05	15.40 13.43	00.	00.	• 0 0 • 0 0	00.	. 75	•00 1.38	14.65 12.05	15•40 13•43
Z.74 Z.74 .00 .00 .00 .00 Z.74 S7.54 69.74 .00 .74 62.22 7.00 17.97 62.22 36.74 49.58 .00 1Z.13 50.09 62.22 7.00 17.97 62.22 56.74 49.58 .00 .01 .74 62.22 7.00 17.97 62.22 58.04 192.40 .00 .00 251.03 51.00 17.94 62.23 58.04 192.40 .00 .00 251.03 12.16 22.20 158.04 59.36.14 .00 .00 251.05 13.96 30.45 390.44 58.07 183.80 .00 .00 251.05 13.96 30.45 390.44 48.72 170.46 .00 .00 21.30 20.0 100 100.30 100.30 71.05 71.05 71.05 .00 .00 .00 .00 21.30 21.30 21.30 21.30 21.30 21.30 21.30 21.30 21.30 21.30	-	0-1000 1-2000	000 •••	68°	18.17 9.14	19.00 9.14	0 0 0 0 0	00.	000 • •	00.	00	.00	18.17 9.14	19.00 9.14
57.54 69.74 .00 .7.4 4.68 5.42 5.00 7.94 62.22 36.74 49.58 .00 12.13 50.09 62.22 7.00 17.97 66.83 58.04 192.40 .00 .00 21.13 50.09 62.22 7.00 17.97 66.83 58.04 192.40 .00 .00 201 .00 201 196.80 59.30 183.80 .00 .00 251.05 13.96 30.45 390.44 59.30 100.30 .00 .00 201 .00 10.84 108.72 60.30 100.30 .00 .00 .00 .00 .00 100.30 71.05 71.05 71.05 .00 .00 .00 .00 21.30 .00 71.05 .00 .00 .00 .00 21.30 21.30 .00 21.30 71.05 71.05 .00 .00 .00 .00 .00 100.30 70.06 .00 .00 .00 .00 <td>C 70146</td> <td></td> <td>00•</td> <td>00 '</td> <td>2.74</td> <td>2.74</td> <td>• 0 0</td> <td>• • •</td> <td>• 00</td> <td>• 00</td> <td>00*</td> <td>• 0 0</td> <td>2.74</td> <td>2.74</td>	C 70146		00•	00 '	2.74	2.74	• 0 0	• • •	• 00	• 00	00*	• 0 0	2.74	2.74
58.04 192.40 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .44 39.34 183.80 .00 .00 .00 251.05 13.96 30.45 390.44 48.72 170.46 .00 .00 .00 .00 148.72 00.30 100.30 .00 .00 .00 .00 100.30 71.05 71.05 .00 .00 .00 .00 .00 71.05 71.05 71.05 .00 .00 .00 .00 .00 71.05 71.05 71.05 .00 .00 .00 .00 .00 21.30 70 .00 .00 .00 .00 .00 .00 21.30 .00 21.30 76.80 906.54 .00 .00 21.30 .00 .00 21.30 71.05 .00 .00 .00 21.30 .00 .00 21.30 70 .00 .00 .00 .00 .00 .00 <td></td> <td></td> <td>5.00 7.00</td> <td>7.20 5.84</td> <td>57 • 54 36 • 74</td> <td>69.74 49.58</td> <td>00 00</td> <td>•7• 12•13</td> <td>4.68 50.09</td> <td>5.42 62.22</td> <td>5.00 7.00</td> <td>7.94 17.97</td> <td>62,22 86,83</td> <td>75.16 111.80</td>			5.00 7.00	7.20 5.84	57 • 54 36 • 74	69.74 49.58	00 00	•7 • 12•13	4.68 50.09	5.42 62.22	5.00 7.00	7.94 17.97	62,22 86,83	75.16 111.80
48.72 170.46 .00 .00 .00 .00 148.72 .00.30 100.30 .00 .00 .00 .00 100.30 71.05 71.05 .00 .00 .00 .00 .00 .00 100.30 71.05 71.05 .00 .00 .00 .00 .00 .00 21.30 .00 .00 .00 .00 .00 .00 .00 .00 21.30 .00 .00 .00 .00 21.30 .00 .00 21.30 .00 .00 .00 21.30 21.30 .00 .00 21.30 .16.84 906.54 .00 12.87 327.12 339.99 61.84 80.77 1103.92 1 .12.653 1476.04 .00 12.87 404.83 417.70 124.65 1617.46 1			12.16 13 .9 6	22.20 30.45	158.04 139.30	192.40 183.80	00.	00.	.00 251.VJ	.00 251.05	12.16 13.96	22°20 30.45	158.04 390 .4 4	192.40 434.85
71.05 71.05 .00 .00 .00 .00 .00 .00 .00 .00 71.05 .00 .00 .00 .00 21.30 21.30 .00 .00 21.30 76.80 906.54 .00 12.87 327.12 339.99 61.84 80.77 1103.92 12 12.63 1476.04 .00 12.87 404.83 417.70 124.65 151.63 1617.46 18			21.74 .00	00.	148.72 100.30	170.46 100.30	00 • 00	00.	00.	00.	21.74 .00	00 • •	148.72 100.30	170.46 100.30
•00 •00 •00 21.30 •00 21.30 76.80 906.54 •00 12.87 327.12 339.99 61.84 80.77 1103.92 12 12.63 1476.04 •00 12.87 417.70 124.65 151.63 1617.46 18	L MADAF	0-1000	• • •	• • •	71.05	71.05	• • •	• 00	• 0 0	• 00	• • •	• 00	71.05	11.05
76.80 906.54 .00 12.87 327.12 339.99 61.84 80.77 1103.92 12.63 1476.04 .00 12.87 404.83 417.70 124.65 151.63 1617.46			00.		1	00•	• 00	00•	21.30	21.30	• 0 0	• 00	21.30	21.30
:12.63 1476.04 .00 12.87 404.83 417.70 124.65 151.63 1617.46	COUNT		61.84	67.90		906.54	00*	12.87	327.12	339•99	61.84	80.77	1103.92	1246.53
			:=====================================			======================================	• 00 •	12,87 12,87	404°83	417.70	124.65	151.63	1617.46 2555555555555555555555555555555555555	1893.74 1893.74
						(IN WILLIO	NS OF SHU	HT TONS						
	RANK	H H H H H H H H H H H H H H H H H H H	MEASURI	ED AND IN		FEET)			IRCES (FEE		TOTAL H	RESOURCES	BY CATE	sessess Gory
(IN MILLIONS) MEASURED AND INDICATED (FEET)			2,5 + 5 :========	5 - 10 Beerette		TOTAL ssesses moffat	2.5 - 5 EEEEEEE COUNI	5 - 10 :========: Y	0VER 10 :=========	TOTAL	M	5 - 10 ::::::::::	OVER 10 EEEEEEE	TOTAL
MEASURED AND INDIC Coal Bed Overburden 2.5 - 5 5 - 10 Ov	sueert	* * * *	5 0 0 0 0 0 0 0											
MEASURED AND INDIC Coal Bed Overburden 2.5 - 5 5 - 10 Ov Bit	c 1	0-1000	00•	57.07	• 00	57.07	• • •	• 00	• 00	• 00	00*	57.07	• 00	57.07
COAL BED MEASURED AND INDIC OVERBURDEN 2.5 - 5 5 - 10 OV OVERBURDEN 2.5 - 5 5 - 10 OV BIT M 0-1000 .00 57.07	E (0-1000	00.	38.67	• 0 0	38.67	• 00	• 00	• 00	• 00	00.	38.67	00•	38.67
MEASURED AND INDIC COAL BED OVERBURDEN 2.5 - 5 5 - 10 OV OVERBURDEN 2.5 - 5 5 - 10 OV BIT 0-1000 00 57.07 N 0-1000 00 38.67	•	0-1000	35.43	4.85	00	40°28	00	00	00	00-	36.43	A . H5	00	

FIGURE 8.---Example of a tabular summary of coal resources.

31

40.28 9.00 2.72

00000

4.85 .00 2.72

35.43 9.00 ;00

000 00 ••••

00 •

00.00

000

40.28 9.00 2.72

000 00 • • • •

4.85 .00 2.72

35.43 9.00 .00

0-1000 1-2000 0-1000

œ

1296.68	89	VE: 1296-68	JI IED BY ZONE:	T INCLUDEU: = CLASSIFIED	IONNAGE NOT Because: IHICKNESS =	5 9 9 1						
2608.15		683,81	278.40	557,94	416.83	141.11	• 0 0	9.11 2050.21 .00 141.11 416.83 557.94 278.40 683.81 1645.94		542.70	278.40	GRAND TOTAL = 278.40 542.70 122
61 8 67 8 61 8 61 8 61 8 61 8 61 8 61 8 61 8 61												
	28,48	532,18	153,75		######################################	128.24		574.17		**************************************	153.75	x*************************************
512.46	12.00	407.33	93,13	140.24	12.00	128,24	• • •	372.22	00	279.09	93 • 1 3	COUNTY TOTAL =
5.17	00*	5.17	00	00	00	00.	00	5.17	00.	5.17	00.	
84.40	• 0 0	56.19	28,21	• • •	• 00	• • •	• 00	84.40	• 00	56.19	28.21	0-1000
13.42	• • •	•50	12,92	00*	• 00	• • 0	• 00	13.42	00*	•50	12.92	0-1000
1.13	• • 0	• 00	1.13	• 00	• 00	• • •	• 00	1.13	• 00	• 00	1.13	0-1000
19.73	• 00	1.38	18,35	• 00	• 0 0	• 00	• 00	19.73	• 00	1,38	18.35	0-1000
6.28	• 00	8,28	• 00	• 00	• 00	• 00	• 00	8,28	• 00	8,28	• 00	0-1000
32.79	• • •	19.51	13,28	• 00	• • 0	• 00	• 00	32.79	• 00	19.51	13.28	0-1000
67.96 22.22	000.	57,03 22,22	10.93	22.22	00°	22.22	00 • • •	67.96 .00	•••	57.03 .00	10.93	0-1000 1-2000
61 . 36 76.60	000 •••	59.56 76.60	1.80	• 00 76•60	•••	•00 76.60	000 • •	61.36 .00	00	59.56 .00	1.80	0-1000
44.12	• • •	44.12	0Ő*	• • 0	• 0 0	• • •	• 00	44.12	• 00	44.12	00•	0-1000
63.28 12.00	12.00	56.77 .00	6.51 .00	29.42 12.00	.00 12.00	29.42 .00	000	33.86 •00	00.	27.35 .00	6.51 .00	0-1000 1-2000
						>	COUNT	ROUTT				
201.95	16.48	124.85	60.62	00.	00	00	00 •	201.95	16.48	124.85	60.62	COUNTY TOTAL =
5.72	00	5.72	00*	00 •	00	00	00*	5.72	00	5.72	00*	
	10.48	15,82	1.86	• • •	• 00	• 00	• 00	34,16	16.48	15,82	1.86	0-1000
34.16								I				TM GROUP

FIGURE 8.--Example of a tabular summary of coal resources-Continued

PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS

570P Sul•5:20.4

ENTER COMMAND: TABLE Letter up to 6 character name uf data file to be printed: anayam Enter name of area searcheu (up to 28 characters): t5-6N,R89-90W,YAMPA field,CO

AVERAGE ANALYSES OF COAL IN T5-6N.R89-90W.YAMPA FIELD.CO

PROXIMATE ANALYSI	PROXI	PROXIMATE ANALYSI	S I	CENT)	(PERCENT) ULIIMATE ANALYSIS (PERCENT)	ULIIMATE ANALYSIS	SIS (PERCENT)	ENT)		i	•	MAX. NO.
BED	MOISTUR	VOL MAT	XED C	ASH	HYDROGN	1	NITROGN		(PERCENT)	B10	ASH SOF TEMP(F)	AVERAGED
19 19 19 19 19 19 19				MOFFAT								
811 811	***				t]]]]]]]]]]]]]]]]]]]				1 9 8 9 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8			
ABOVE H	9.7	36.3	44.1	6•6	5.7	61.3	1.4	21.2	•5	10770	****	-
	9.7	36.8	45.9	7.6	5.6	62°8	1.2	22.1	•	11130	****	~
F ZONE	10.0	34.9	46.6	8.8	٠	62°U	1.3	20.6	1.7	11033	***	m
H ZONE I DWER GR	10.9	37.2 36.5	0°04	3.7	رب م م	65•6 62•2	1.00 1.00	23.2 19.4	5.	11570	* *	N 10
COUNTY AVERAGE	9.8	36.3	45.5	8.5	5.6	62.1	1.3	20.8	1.1	11126		13
SUBB17 MOORE UNCORREL	12.4	34.1 34.1 33.8	48.0 46.0	5.5 4.6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62.J 62.J	1.3 1.6	24.9 25.3	.5	11110	**** 2218	
COUNTY AVERAGE	15.1	33.9	15	4.7		62.6	1.5	25.1		1 ~	2218	
				ROUTT	COUNTY							
811												
	11.2	35.8	50.3	2.7	5.8	68°¢	1.3	21.5	• 5	11790	***	
	10.3	9 * • 0	£•64	5.6	5.7	66. <u>J</u>	1.5	20.5	.	11580	***	e
	10.0	36.1	0.04	13.9	5°.	57.6	1.2	21.2	0 0	10100	***	-
BELOW H	11.9	37.2	1.14	С. С.	9 °C	65.4	* • •	23.1	س	11400	***	2
U 1	8°6	35.6	50.5	•	5.7	68.4	.	20.05	Ĵ,	02611	* :	-
	6°6	35,3	E•14	1.5	5.8	54.3	•	+ 0 N	•	11370	***	
	9° 6	31.0	42.5	47.0	5.1	56./	1.2	19.5	9	9026	***	~
	10.1	35.5	42.4	0.6	ເມ ເ	62.5		21.3	9	10904	***	16
	11.2	35.9	46.5	٠	5.7	63 . J	•	22.0	Ĵ,	11040	***	•0
LOWER GR	5.9	4*40	•	6•8 	5.6	66.U	1.4	19.6		11555	***	*
COUNTY AVERAGE	10.3	35.3	4	8•0	5.6	63.4	1.3	21.2	9 •	11063	*	37
SUBBIT												
	16.9	32.2	+0. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	4 • •	•	•	•	• • •	•	10360	2480	-
]/.1	32.9	40.0	•••	/*0	0 2 4 0	0 • 1	17°0		10240	2263	
COUNTY AVERAGE	17.1	32.7	45.7	4.4	5.7	62.6	1.6	13 . 8	°.	10270	2317	*

PROGRAMMER'S REFERENCE

SHI-15: 25.H

```
THE FOLLOWING FILES HAVE BEEN CREATED DURING THIS SESSION:
   1
         RYAMPA
   2
         BITYAM
   3
         SUBYAM
   4
         AYAMPA
   5
         ABTYAM
   6
         ASBYAM
DO YOU WISH TO SAVE ANY OF THEM?
(ENTER Y FOR YES OR NO FOR NO)
                                  Y
ENTER A LIST OF NUMBERS CORRESPONDING TO
THOSE FILES YOU WISH TO SAVE (IE. 1-3,5).
1.4
 STOP
SRU15:8.5
10FF
                 ELAPSED TIME: 00:49:54
SRUIS:236.1
GOOD RYE
```

FIGURE 9.-Example of tabular summary of coal analyses-Continued

the WCOAL, ECOAL, and USALYT master files. Although the updating software was designed to be as general as possible, certain peculiarities in each of the NCRDS master files make it necessary to add some unique, file-dependent programming steps. Addition of new master files to the PACER system will necessitate some additional software changes. The parts of the software logic where such changes must be made will be discussed more fully in the section describing the update software.

There are also some minor modifications to several of the GRASP routines used by PACER. These changes were implemented to adapt PACER better to the requirements of the National Coal Resources Data System. Certain of these changes were made for cosmetic purposes in the presentation of the data output. Listing of the modified GRASP subroutines appears in appendix B. These changes include modification of subroutine COLPNT, the data output routine that prints selected data-element values from a selected file in columnar form. The GRASP version permits the variable decimal selection of fixed-point real fields, based on tests for the number of significant digits in the real value. Because the number of significant digits for all real data, currently existing or contemplated in the NCRDS, is suitable for constant field output with two significant decimal digits (F8.2), the column print (COLPNT) logic was modified so that the decimal points for the real data values would be alined vertically in the output.

Subroutine MEAN was modified to ensure agreement between the total tonnages as output from MEAN and the actual total tonnages for a large number of records from a retrieval subfile. Before modification, discrepancies were caused by the summation of these tonnages in a single-precision register. The resultant summation of single-precision "noise" for several thousand records reduced the accuracy of tonnage totals to three or four significant digits. By making the appropriate variables (SUMX and SUMXS) double-precision quantities, this "noise" was removed, and the tonnage totals for a large number of records now have the same degree of precision as the tonnage entries on the individual records.

As previously mentioned, GETREC, the input and output subroutine for reading and writing records in the master-file formats, has been modified to permit the use of keyed master-file records. Keyed master-file records are essential for the development of an efficient editing and updating software package to be appended to the original GRASP system.

A recent modification of GRASP (since publica-

ENTER COMMAND:

QUIT

tion by Bowen and Botbol, 1975), permitting the merging of records from two subfiles having identical record structure, has also been implemented in the PACER version. This subroutine is called MERGE.

A final modification was made to the GRASP main program, DRIVER, to permit the user to specify UPDAte, TABLe, and MERGe as three additional commands now available with PACER. The GRASP subroutines containing these modifications are listed in appendix B. All other GRASP subroutines are used by PACED as they exist in their original form on the host computer system.

UPDATE PROGRAMS OF PACER

Exercise of the UPDAte option of PACER requires programming logic heretofore unavailable with the GRASP program software. This section will outline the overall flow of subroutine activities and summarize the functional logic inherent in each subroutine. Special note will be made of the datadependent as well as the machine-dependent peculiarities in case the user wishes to modify these routines to operate on other data sets or has a need to transfer this software to computer systems other than the UNIVAC 1108-based INFONET system for which these routines were designed.

Figure 10 provides an outline of the flow of subroutine activities throughout the data-editing and updating process. Subroutine REVISE is the controlling subroutine that is called from the main program DRIVER when the UPDAte command is specified. Many of the overall housekeeping tasks are performed through this subroutine: tasks such as selection of the desired update procedure, specification of the subfile to be updated, opening files in the update mode, and posting the updated subfile onto the master file. Any of the five updating subroutines, ADDREC, DELREC, SEQREV, KEYREV, and BATCH may be selected while under the control of REVISE.

Subroutine ADDREC processes the new datainput files, using subroutine MATCH to check the dictionaries for matches to the alphanumeric data entries and prompting the data manager to either correct the data entries for the mismatches or to request that the mismatched data be added as an entry in the appropriate dictionary through subroutine ADDICT. If all data items on the raw data record are satisfactory, the record is rewritten in the master-file record format, integer dictionary pointers replacing the alphanumeric entries. This secondary data file is saved for future posting onto the master file at some other time when control is again returned to REVISE. Two data-dependent subroutines are currently available for reading the new data-input file and for formatting the data to permit the proper assignment of the different data strings to each of the data elements. These subroutines are called REDUSA, to read data for the USALYT file, and REDUSC, to read data for the WCOAL and ECOAL files. There are also two datadependent subroutines which, at the option of the user, can be used to put out corrected data in a format comparable to the input formats used with the SYCOR data-entry device. These subroutines are **OUTUSA** to display USALYT records and OUTUSC to display WCOAL and ECOAL records.

Subroutine DELREC is used to delete records from the master file. It uses one of the data-dependent output routines, OUTUSA or OUTUSC, to produce a hard-copy listing of each record that has been deleted before eliminating that record from the master file.

Subroutine SEQREV selects, in sequence, each record from the update subfile. Subroutine MODIFY displays each record by calling either subroutine OUTUSA or OUTUSC and then selects the required dictionary data values by passing the integer dictionary pointers to subroutine SCANDC which performs the dictionary lookup for the appropriate alphanumeric data string. If the data manager wishes to change an alphanumeric data value, subroutine MATCH is called to compare the new data value with existing dictionary entries. If a match is found, the new dictionary pointer replaces the old pointer in the record. If there is no match, but the data manager wishes to have the alphanumeric data added as a dictionary entry, subroutine ADDICT is then called to perform this task.

Subroutine KEYREV selects records by key number from the update subfile. After the record has been selected, subroutine MODIFY is called, and the data-update process proceeds in the same manner as described for the SEQREV routine.

The BATCH subroutine performs batch datavalue entry for all records in a given subfile. This procedure utilizes subroutine MATCH to locate the dictionary entry, if it exists, which matches the input alphanumeric data value. If there is no dictionary match, the alphanumeric data entry may be added to the dictionary through subroutine ADDICT.

The individual subroutine logic is summarized in

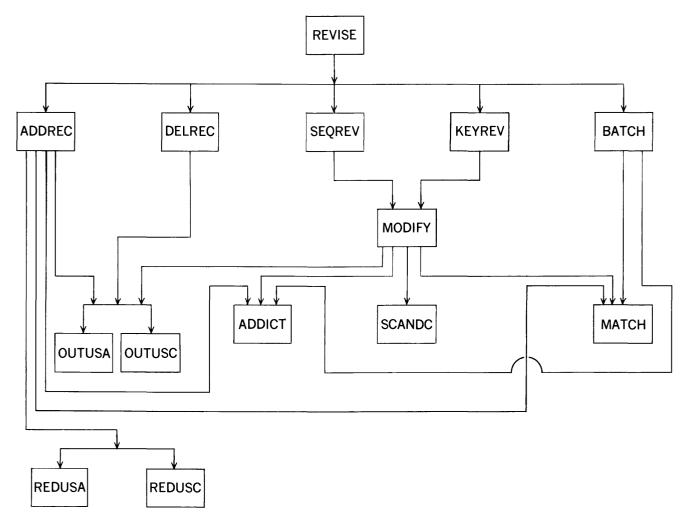


FIGURE 10.—Subroutine activity flow.

appendix C, and particular attention is directed to those peculiarities which (1) make the logic dependent upon a specific record data structure, or (2) make the logic dependent on a specific computer system. The READ parameters END, ERR, KEY, and PROMPT are not discussed in the subroutine descriptions found in appendix C. However, it should be noted that these parameters are nonstandard and not necessarily available on all hardware systems. The program listings that accompany the discussion are commented on, together with a brief description of the subroutine logic and a definition of variables important to that subroutine.

REFERENCES CITED

- Barnes, F. F., 1961, Coal fields of the United States-Sheet 2, Alaska: Washington, D.C., U.S. Geol. Survey, scale 1:5,000,000.
- Bowen, R. W., and Botbol, J. M., 1975, The Geologic Re-

trieval and Synopsis Program (GRASP): U.S. Geol. Survey Prof. Paper 966, 87 p.

- Calkins, J. A., Kays, Olaf, and Keefer, E. K., 1973, CRIB— The Mineral Resources Data Bank of the U.S. Geological Survey: U.S. Geol. Survey Circ. 681, 39 p.
- Meyer, R. F., 1970, Geologic provinces code map for computer use: Am. Assoc. Petroleum Geologists Bull., v. 54, no. 7, p. 1301-1305.
- Sippl, C. J., and Sippl, C. P., 1974, Computer dictionary: Indianapolis, Ind., Howard W. Sams & Co., 488 p.
- Trumbull, J. V. A., 1960, Coal fields of the United States-Sheet 1: Washington, D.C., U.S. Geol. Survey, scale 1:5,000,000.
- U.S. Bureau of Land Management, 1973, Manual of instructions for the survey of the public lands of the United States: U.S. Bur. Land Management Tech. Bull. 6, 382 p.
- U.S. Bureau of the Budget, 1965, Automatic data processing glossary Washington, D.C., U.S. Govt. Printing Office, 62 p.
- U.S. National Bureau of Standards, 1973, Counties and county equivalents of the States of the United States: U.S. Bur. Standards, Federal Inf. Processing Standards (FIPS) Pub. 6-2, 35 p.

APPENDICES

APPENDIX A. NAMES USED WITH NCRDS FILES APPENDIX B. PROGRAM LISTINGS OF MODIFIED GRASP ROUTINES APPENDIX C. PROGRAM LISTINGS OF PACER SUBROUTINES

APPENDIX A, NAMES USED WITH NCRDS FILES

A.1.—List of meridian codes in the PMERID file with names.

- 01 1st Principal
- 39 1st Scioto River
- 02 2d Principal
- 40 2d Scioto River
- 03 3d Principal
- 41 3d Scioto River
- 04 4th Principal
- 05 5th Principal
- 06 6th Principal
- 07 Black Hills
- 08 Boise
- 09 Chickasaw
- 10 Choctaw
- 11 Cimarron
- 12 Copper River
- 42 Ellicott's Line
- 13 Fairbanks
- 14 Gila and Salt River
- 36 Great Miami River
- 15 Humboldt
- 16 Huntsville
- 17 Indian
- 44 Kateel River
- 18 Louisiana
- 19 Michigan
- 20 Montana Principal
- 21 Mount Diablo
- 37 Muskingum River
- 22 Navajo
- 23 New Mexico
- 35 Ohio
- 38 Ohio River
- 26 Salt Lake
- 27 San Bernardino
- 28 Seward
- 24 St. Helena
- 25 St. Stephens
- 29 Tallahassee
- 43 Twelve Mile Square
- 30 Uintah Special
- 45 Umiat
- 31 Ute
- 32 Washington
- 33 Willamette
- 34 Wind River
- 96 Principal meridian and base line unknown
- 99 Various principal meridians and base lines

A.2.-List of names in the REGION dictionary

ALASKA PENINSULA APPALACHIAN ATLANTIC COAST BIGHORN BASIN BLACK HILLS CENTRAL ALASKA COOK INLET-SUSITNA DENVER EASTERN FORT UNION GREEN RIVER HAMS FORK MISSISSIPPI NORTH CENTRAL NORTHERN NORTHERN ALASKA PENNSYLVANIA ANTHRACITE POWDER RIVER RATON MESA RHODE ISLAND META-ANTH SAN JUAN RIVER SOUTHEASTERN ALASKA SOUTHWESTERN SOUTHWESTERN UTAH TEXAS TERTIARY LAKE BEDS UINTA WESTERN WIND RIVER

A.3.—List of names in the FIELD dictionary

ALADDIN ALKALAI BUTTE ALTON ARKANSAS VALLEY BARBER BASIN BAYFIELD BISTI AREA BLACK MESA BOOK CLIFFS BOULDER WELD BP COSTELLO CREEK BRIGGSDALE BROAD PASS BROKEN ARROW D BUFFALO DE SMET BUICK MATHESON C IOWA CAMBRIA CANNONBALL RV CANON CITY CARBONDALE CART JOR DELMUE CAVE HILLS CEDAR MTN CENTER POWDER CENTRAL REGION CENTRALIA CH CERRILLOS CHACO CANYON A CHECOTAH COALVILLE COASTAL PLAIN COLLINSVILLE D COLORADO SPGS COOS BAY CORTEZ CRESTLD BUTTE CROWNPT CANYN A DANFORTH HILLS DATIL MOUNTAIN DEER CREEK URY CHEYENNE DURANGO EAGLE PASS DIST EAST CENTRAL EAST CENTRAL RG EATON EMERY EVANSTON FAIRFAX M FOOTHILLS

FRUITLAND AREA GALLUP GARLAND GEBO GILLETTE GLENROCK GRAND HOGBACK GRAND MESA F GRASS CREEK GREAT DIVIDE B GREEN RIVER D GREYS RIVER HANNA HARMONY HENRY MOUNTAINS HORSESHOE CREEK HOWE WILBURTON HUDSUN ISABELFIRESTEEL JACKSON HOLE JARVIS CREEK KAIPAROWITS KELSO CASTLE R KEMMERER KENAI KINDIT BASIN KOLOB LA VENTANA A LABARGE RIDGE LEHIGH DISTRICT LEXINGTON RG LIGHTNING CREEK LITTLE POWDER R LITTLE SNAKE R LOS PINOS RIVER LOST CREEK LOST SPRINGS LOWER WHITE RIV LTTL MISSOURI R MA CHICKALOUN R MA WISHBONE H MCALESTER DIST MCDOUGAL MEETEETSE MELMONT MENDOTA REGION MORTON MT PLEASANT MUDDY CREEK MUSKOGEE DIST N CENTRAL NA COLVILLE R

NA CRWN BF C BT NA IKPIKPUK R NA KOKOLIK R NA KUGRUA R NA KUK R NA KUKPOWRUK R NA MEADE R NA UTUKOK R NAVAJO AREA NEWCASTLE GR NEWCOME AREA NIBLOCK NN CALIF CREEK NN HEALY CREEK NN LIG CREEK NN REX CREEK NN SAVAGE R NN TATLANIKA NN WOOD R NORTH PARK NORTHEASTERN NORTHEASTERN RG NORTHERN OKLA NORTHWESTERN RG NUCLA NATURITA OKMULGEE DIST OREGON BASIN PAGOSA JUNCTION PAGOSA SPRINGS PILOT BUTTE PINEDALE PORTER DISTRICT POWDER R DIST POWDER RIVER PUMPKIN BUTTE RAMAH FONDIS RATON RENTON ROCK CREEK ROCK SPRINGS ROSLYN S MNT TAYLOR A SALINA CANYON SALLISAW DIST SAN CARLOS DIST SAN JUAN RIVER SAN MATEO AREA SANTO TOMAS SC IOWA SCRANION SE IOWA SEGO

SHERIDAN SIERRA BLANCA SILVER TIP SKAGIT COUNTY SKULL CREEK SLIM BUTTES SOMERSET SOUTH CENTRALRG SOUTH PARK SOUTHEASTERN SOUTHERN OKLA SPIKETON SPOTTED HORSE STANDING RUCK A STAR LAKE AREA STERLING STIGLERDISTRICT STONEVILLE SU BELUGA R SU CAPPS GLAC D SU CHUITNA R SU SW OF TYONEK SU YENTNA R SUMMIT CREEK SUNDANCE SUSSEX SW IOWA TABBY MOUNTAIN TABLE MOUNTAIN TANEUM TAYLOR TIGER MTN TIJEVAS TONGUE MESA TRINIDAD UNA DEL GATO UNCORRELATED VERNAL W IOWA WALES WASATCH PLATEAU WELLINGTON WEST CENTRAL RG WESTERN REGION WHATCOM COUNTY WILKESON YAMPA ZUNI AREA BEULAH ZAP NEW SALEM NOONAN SENTINEL BUTTE

A.4.—List of district names in the DISTRCT dictionary

ANTHRACITE RIDGE BAYFIELD-YELLOW JACKET BELUGA LAKE BRIGGSDALE (AREA) BROAD PASS BUICK-MATHESON (AREA) CALIFORNIA CREEK CAPPS GLACIER CHICKALOON CHUITNA RIVER COLVILLE RIVER CORTEZ (AREA) CORWIN BLUFF-CAPE BEAUFT COSTELLO CREEK EAGLE-CIRCLE EAGLE PASS EAGLE SPRING (AREA) EATON (AREA) FOOTHILLS HEALY CREEK HOMER KENAI KOBUK RIVER KOKOLIK-UTOKOK RIVERS KOOTZNAHOO INLET KOYUKUK RIVER KUK-KUGRUA RIVERS KUKPOWRUK RIVER KUSKOKWIM LIGNITE CREEK LITTLE SUSITNA MEADE-IKPIKPUK RIVERS MESA VERDE (AREA) NORTH CENTRAL PAGOSA JUNCTION RAMAH-FONDIS (AREA) RAMPART RED MESA (AREA) REX CREEK RUBY-ANVIK SAN CARLOS SANTO THOMAS SAVAGE RIVER SCRANTON SEWARD PENINSULA SKWENTNA RIVER TATLANIKA CREEK TERLINGUA TYONEK UNALAKLEET WELLINGTON (AREA) WISHBONE HILL WOOD RIVER YENTNA RIVER

A.5.—List of formation names in the FORMATN dictionary¹

ADAVILLE	
AGUJA	
BANDERA SHALE	
BLACKHAWK	
BOGGY	
CHANULER	
CHEROKEE	
CHICKALOON	
CUALEDO	
COALMONT	
COWLITI	
CHUCKANUT	
DAKOTA	
DAKOTA SS	
DENVER	
DOMENGINE	
DOUGLAS	
EAGLE SS	
EMERY SS	
EVANSTON	
FERRON SS	
FORT UNION	
FRONTER ADAVLLE	
FRONTIER	
FRUITLAND	
FTLD MNE DAKSS	
FTUNION HELLCRK	
FTUNION WASATCH	
GARNER	
GRAFORD	
HARTSHORNE SS	
HELL CREEK	
ILES	
ILES WILLIAMSFK	
ILSWILFKLNCFTUN	
JACKSONGROUP	
KANSAS CITY	
KENAI	
KNIGHT	
LABETTE SHALE	
LAKOTA SS	
LARAMIE	
LNCE FTUN WSTCH	
LONE	
LOWER CHEROKEE	

MARMATON MCALESTER MENEFEE MESA MEET MESA WASATCH MESA MEET FTUN MESA VERDE MESAVERDE MESAVERDE GROUP MESAVERDE HANNA MESVDE FRONTIER MILLSAP LAKE MOUNT SELMAN NORTH HORN OLMOS PALO PINTO PERMIAN AGE PRICE RIVER PRINCE CREEK PUEBLO PUGET GROUP RATON RUSLYN SAVANNA SEVERY SHALE SEMINOLE SENORA SIGMILE CANYON SKOOKUMCHUCK STRAIGHT CLIFFS TEMBLER THRIFTY TOREVÁ TOUTLE TROPIC DAKOTA UNCORRELATED UPPER CHEROKEE VERMEJO VERMEJO RATON WABAUNSEE WASATCH WEPO WILCOG GROUP WILLIAMS FORK LANCE

A.6.—List of names in the BED dictionary¹

Α	BED BELOW UCROSS
A BD	BED D
A RATON	BED E
AB	BED H
ABBOTT	BED J
ABC	BELLINGHAM NUMBER 1
ALFREDA	BELLINGHAM NUMBER 2
ALLEN	BELOW RIACH
ALVEY COAL ZONE	BELOW RIACH DOUBLE
ANCHOR	BERWIND
ANDERSON	BEVIER
ANOBASWF	BEVIER WHEELER
APACHE	BIG
AFACIL	BIG BEN
B	BIG DIRTY
8 BD	BIG ELK
B RATUN	BLACK BEAR
BAGLEY	BLACK CARBON
BALD KNOLL COAL ZONE	BLACKSMITH
BALLARD COAL ZONE	BLEVINS GROUP
BASWF	BLEVING GROUP BLIND CANYON
BD 1	BLUE CANYON
BD 10	BLUE MOUND
BD 2	BOB WRIGHT
BD 3	BOISE
BD 3 BD 4	BONCARBO
BD 5	BRIDGEPORT
80 9	BRIDGEFORT
BD GROUP	BROOKSIDE
BEAR CANYON	BROWN BEAR
BEAR CANYON NO 6	BULL CREEK
BEAR RIVER	BUNKER HILL
BEAVER HILL	BURNT
BECKWITH	C
BED 1	C BD
HED 2	CAMEO
BED 3	CAMERON
BED 4	CAMERON
BED 5	CANYON
	CAPRON
BED A BED ABOVE CAMERON	CARBON
	CARBON BAHNE NO 1
	CARBON BAHNE NO 2
	CARBON BAHNE NO 3
	CARBONADO NUMBER 5
BED BELOW MURRAY	CARBONADO NUMBER 8
BED BELOW SCHUMAN	CAUDONADO NOMDEN O

44

-

A.6.—List of names in the BED dictionary ¹—Continued

CARBONERA
CARBONERO
CASS
CASTLEGATE A
CAVANAL
CAVANAUGH NUMBER 2
CEDAR CREEK NO 1
CEDAR CREEK NO 2
CEDAR CREEK NO 3
CEDAR MTN NO 1
CEDAR MTN NO 2
CHANDLER
CHAFFIN
CHARLESTON
CHERRY CREEK
CHESTERFIELD
CHRISTENSEN ZONE
CIRUELA
CLIFFLAND
COAL NO 1
COAL NO 2
COAL NO 3
COAL NO 4
COAL NO 4 COAL NO 5
COAL NO 6
COAL NO 7
COAL NO B
COKEDALE
COLUMBUS
СОМО
COLBORN
COTTONWOOD
CROCKER
CROWEBURG
D
D AND F
D BD
DALE NUMBER 4 DALE NUMBER 7
DALTON
DAWSON
DE
DELAGUA NO 1
DIETI NO 1
DISCOVERY

.

DOLLY VARDEN DRY CREEK DURHAM NUMBER 2 DUTCH Ε E 80 EIGHT FOOT ELK NUMBER 1 ELK NUMBER 2 ELMO EMERY COAL ZONE EMPIRE ERAM EUREKA F F BD FELIX FERRON COAL ZONE FF 1 FF 10 FF 11 FF 12 FF 13 FF 14 FF 15 FF 16 FF 17 FF 18 FF 19 FF 2 FF 20 FF 21 FF 22 FF 23 FF 24 FF 3 FF 4 FF 5 FF 6 FF 7 FF 8 FF 9 FF GROUP FIRESTEEL FISH CREEK

A.6.—List of names in the BED dictionary 1—Continued

FLEMING	HENDERSON ZUNE
FLORESTA	HENRYETTA
FRANKLIN NUMBER 10	HIAWATHA
FRAZIER	IVIË
FREDERICK	JEFF HILL
FRONTIER BED 1	JOHN HENRY MEMBER
FRONTIER BED 2	JONES
FRONTIER BED 3	K BED
FRONTIER BED 4	KEBLER NO 2
FRONTIER COAL ZONE	KENILWORTH
FULTON NUMBER 12	KEYSTONE
G	KUMMER NUMBER 0
GEM	KUMMER NUMBER 1
GILSON	KUMMER NUMBER 4
GLACIER	L BED
GOFF 1	
GOFF 10	LADD NUMBER 2
GOFF 11	LADD NUMBER 3
GOFF 12	LADD NUMBER 4
	LADDSDALE
GOFF 13	LAKE WHATCOM
GOFF 14	LANDSBURG NO 1
GOFF 15	LAY SECTION
GOFF 16	LEAVELL
GOFF 17	LENNOX
GOFF 18	LENOX
GOFF 19	LEXINGTON
GOFF 2	LION CANYON 1
GOFF 20	LION CANYON 10
GOFF 21	LION CANYON 11
GOFF 22	LION CANYON 12
GOFF 3	LION CANYON 13
GOFF 4	LION CANYON 14
GOFF 5	LION CANYON 15
GOFF 6	LION CANYON 16
GOFF 7	LION CANYON 17
GOFF 8	LION CANYON 18
GOFF 9	LION CANYON 19
GOLDEN GLOW	LION CANYON 2
GREEN NUMBER 7	LION CANYON 20
HARRIS	LION CANYON 21
HARTSHORNE	LION CANYON 22
HASTIE	LION CANYON 23
HASTIE PLUS	LION CANYON 24
HASTINGS	LION CANYON 3
HEALY	LION CANYON 4
HENDERSON COAL ZONE	LION CANYON 5

APPENDIX A

LION CANYON 6 LION CANYON 7 LION CANYON 8 LION CANYON 9 LION CANYON A LION CANYON B LION CANYON C LION CANYON D LITTLE DIRTY LONSDALE LOW CARBONERA LOW GROUP A BED LOW GROUP B BED LOW GROUP C BED LOW GROUP D BED LOW GROUP E BED LOW HOLGATE LOWER LOWER ALAMO LOWER BUNKER HILL LOWER CAMERON LOWER COAL FORD COAL LOWER COAL ZONE LOWER CULVER ZONE LOWER DIRTY LOWER GROUP LOWER HARTSHORNE LOWER LUDLOW LOWER MEMBER LOWER MEMBER RATON LOWER MESAVERDE LOWER MYSTIC LOWER PIEDMONT LOWER ROBINSON LOWER RUGBY LOWER SOPRIS LOWER STARKVILLE LOWER SUNNYSIDE LOWER THOMPSON LOWER WITTEVILLE LOWER ZONE ORD AREA LOWTHIRWF LUCAS CREEK MAJESTIC MAMMOTH

MANBECK MARTINEI MAY CREEK MC ALESTER MCKAY MCNEILL MESAVERDE COAL ZONE MEXICAN CREEK MENDOIA MID CARBONERA MID GROUP F ZONE MID GROUP G ZONE MID GROUP H ZONE MID GROUP J BED MID HOLGATE MIDDLE MIDDLE GROUP MIDDLE MEMBER MIDDLE MEMBER RATON MIDDLE MESAVERDE MIDWF MINERAL MITCHELL MINE MUNAHAN MONTERVILLE MONUMENT PEAK MORGAN NUMBER 7 MORLEY MORRIS MUDDY NO 1 MUDDY NO 2 MUDDY NOS 1 AND 2 MULBERRY MULDOON MULKY MURRAY MUTUAL MYSTIC N BED NEW LAKE HOUNGS NO 2 NEW ROUSE NEWCASTLE NEWENHAM NISQUALLY NO 1

A.6.—List of names in the BED dictionary ¹—Continued

NO 1 BED	PRETTY
NU 2	PRIMERO
NO 2 BED	PROGRESSIVE
NO 3	PRYOR
NO 3 AND 4	Q BED
NO 3 BED	R BED
NAVY NUMBER 4	RADIANT
NAVY NUMBER 6	RAINBOW
NO 4	RAPSON
NO 5	RAVENSDALE NO 3
NO 6	RAVENSDALE NO 4
NO 7	RAVENSDALE NO 5
NODAWAY	RAVENSDALE NO 9
NONAC	RED ASH
NUMBER 1	REES COAL ZONE
NUMBER 2	RIACH
NUMBER 3	RIDER
NUMBER 4	ROCK CANYON
NUMBER 5	ROCKVALE
NUMBER 6	ROLAND
NUMBER 10	RUSLYN NUMBER 5
NUMBER 11	ROWE
NUMBER 12	ROYAL GORGE
NUMBER 2 5	RYAN NUMBER 1
NUMBER 4 5	S BED
NUMBER 7	SAN PEDRO
NUMBER 8	SANTO TOMAS
O BED	SCHUMAN
OCCIDENTAL	SCOTT
OCCIDENTAL NO 1	SECOR
OCCIDENTAL NO 2	SENIOR
OCCIDENTAL NO 3	SHOD FLY
OCCIDENTAL NO 6	SIBLEY
OCCIDENTAL NO 14	SILVER LAKE
OCEAN WAVE	SIX FOOT
	SLIDE HOLLOW
P BED	SMIRL COAL ZONE
PALISADE	SMITH Smoky Hollow Member
PARIS	SNELL
PENITENTIARY PIEDMONT	SOPRIS
PLACITA	SPRINGBROOK
PLACITA PLANT NUMBER 6	STIGLER
PLANT NUMBER 7	STRAIGHT CLIFFS ZONE
POCAHONTAS	SUDDUTH
CANNUMIA	

APPENDIX A

SUMMIT SUNBEAM SUNDAY CREEK SUNNYSIDE SUNSET NUMBER 1 SUNSET NUMBER 2 SUNSET NUMBER 7 TANK TAHLOR MINE **TEBO** THAYER THUMAS THURBER THREE PINES TYSON TIMAR TM GROUP TONO NUMBER 1 TONO NUMBER 2 TOPWF TROPIC DAK INTERVAL UCRUSS ULM NO 2 UNCORRELATED UP CARBONERA UP HOLGATE UPPER UPPER ALAMO UPPER AND LOWER UPPER BEAR CANYON UPPER BUNKER HILL UPPER CAMERON UPPER CULVER ZONE UPPER HARTSHORNE UPPER HIAWATHA UPPER IVIE UPPER LUDLOW UPPER MEMBER UPPER MEMBER RATON UPPER MESAVERDE UPPER PART UPPER ROBINSON

UPPER RUGBY UPPER STARKVILLE UPPER SUNNYSIDE UPPER THOMPSON VICTORY WADGE WALKER WALL WALSEN WALTERS WASATCH WATTIS WEIR PITTSBURG WHEELER. WHITEBREAST WILEY WILKESON NUMBER 1 WILKESON NUMBER 2 WILKESON NUMBER 3 WILKESON NUMBER 4 WILKESON NUMBER 5 WILKESON NUMBER 7 WILLIAMSBURG WINCHESTER WOLF CREEK WRIGHT NUMBER 8 BEULAH ZAP COTEAU DUNN CENTER FRYBURG HANKS HAYNES HARMON MANHAVEN MIDDLE WILLISTON NOONAN SCRANTUN MEDORA T-CROSS UPPER WILLISTON WILLISTON WILTON

A.7.—List of quadrangle names in the QUAD dictionary

ACORD LAKES NE QD ACORD LAKES NW QD ACORD LAKES SE QD ACORD LAKES SW QD ALTON BALD KNOLL BRYCE POINT CAINEVILLE CANAAN CR QD CARCASS CANYON QD CASTLE DALE NE QD CASTLE DALE NW QD CASTLE DALE SW QD CASTLEGATE KHUNE ODS CASTLEGATE MATTS SUMMIT QDS CEDAR MOUNTAIN CLIFF RIDGE QD COAL CR TO ORDERVILLE CANYON CUAL CREEK COALVILLE QD COLLET TOP QD COW FLAT CURRANT CR DAVE CANYON QD DEATH RIDGE QD DONKEY FLAT QD DRY FORK VERNAL NW QDS EAST OF NAVAJO QD EMERY EAST EMERY THREE NE EMERY THREE NW EMERY THREE SE EMERY THREE SW FACTORY BUTTE NW FERRON CANYON QD FLAGSTAFF PEAK QD FLOY CANYON SE SW GRIFFIN POINT QD GUNSIGHT BUTTE NE GUNSIGHT BUTTE NW HENRIEVILLE QD HIAWATHA NE QD HIAWATHA NW QD HIAWATHA SE QD HIAWATHA SW QD KOLOB PK ORDERVILLE CANYON N LAKE MOUNTAIN QD LOST CREEK MESA BUTTE

MOUNT ELLEN NW SW MOUNT PENNELL NW NE MT PLEASANT HUNTINGTON RES NAPLES QD NEEDLE EYE POINT QU NIPPLE BUTTE NE NIPPLE BUTTE SE NOTUM NE SE ORDERVILLE CANYON NE ORDERVILLE CANYON SE ORDERVILLE NE SE ORDERVILLE SW PAGE RANCH STODDARD MOUNTAI PARIA NW PETES COVE QD PINE LAKE QD RAINBOW POINT RASBERRY KNOLL RASMUSSEN HOLLOW QD ROCK CREEK SALINA CANYON SCOFIELD NE QD SCOFIELD NW QD SCOFIELD SE QD SCOFIELD SW QD SEEP FLAT SEGO CANYON SE SEGO CANYON SW SHIP MOUNTAIN POINT QD SKUTUMPAH CREEK PODUNK CREEK SLICK ROCK BENCH-BUTLER VALL SNAKE JOHN REEF QD SOLDIER SUMMIT SE QD STEINAKER RES VERNAL NE QUS STERLING SUNNYSIDE NW QD SUNNYSIDE SE QD SUNNYSIDE SW QD TABBY MTN TABIONA QD TROPIC CANYON QD UPPER VALLEY QD WAGON HOG MESA NE CAVE POINT WALES WELLINGTON MINNIE MAUD W QD WELLNGTN NE MINNIE MAUD CR E WESTWATER CR N WOODSIDE NE QD WOODSIDE SE QD

APPENDIX A

A.8.—List of publications in SOURCE dictionary

÷

ALTON OPEN FILE REPT ARIZONA BOM BULL 182 BOOK CLIFFS OPENFILE BULL 70 SGS KANSAS BVILLE STRIP REPT CUAL RESERVES OF WA COAL RESOURCES IOWA COALVILLE TABBY SEGO EMERY OPEN FILE REPT HENERY MTN COAL FIELD IDAHU MCGEOL PHAM 92 KAIPAROWITS OPENFILE KOLOB HARMONY FIELDS LANDIS OPEN FILE MIN & HOH RES OF ANI MISSUURI GS RI NO48 NMBMMR MEMOIR 25 OKLA GS TBL 40 TO 58 SEVIER GOOSE LOST UF TEX B ECON GEO RI 50 THE CUMPASS SIGGAMEP USGS BULL 1042 J USGS BULL 1042 0 USGS BULL 1050 USGS BULL 1051 USGS BULL 1072 C USGS BULL 1072 G

USGS BULL 1072P USGS BULL 1078 USGS BULL 1242D USGS BULL 9828 USGS BULLETIN 12428 USGS CIRCULAR 159 USGS CIRCULAR 226 USGS CIRCULAR 53 USGS CIRCULAR 81 USGS CIRCULAR 89 USGS MAP C 20 USGS MAP C 26 USGS MAP C 4 USGS MAP OM 109 USGS MAP OM 138 USGS MAP OM 149 UTAH MONO SERIES 1 UTAH MONO SERIES 2 VERNAL OPEN FILE RPT WASATCH OPENFILE RPT NDGS BULL 4 NDU DIV MIN CIRC 2 NDU DIV MIN CIRC 5 NDU DIV MIN CIRC 8 NDU DIV MIN CIRC 11 USBM IECH PAPER 700

APPENDIX B, PROGRAM LISTINGS OF MODIFIED GRASP ROUTINES

```
400
     SUBROUTINE HELP(WORDS)
401
     INTEGER WORDS(13)
402
     REAL#8 TEXT(11,13)
403
     DATA TEXT/%
      *- INITIA*, TES THE *, REQUEST *. FOR RETR*, IEVAL CR*, IIERIA T**
404
405
        , O BE ENT , FRED IN ', THE FORM', ': NAME R', EL VALUE',
406
      - INITIA,, TES THE ,, REQUEST ,, FOR A LO, GICAL EX, PRESSION'S
407
        + TO BE E+, +NTERED+, +USING LO+, +GICAL OP+, +ERATORS. +, %
      1- INITIA,, TES THE 1, SEARCH 01, F A FILE, BASED U, PON PREVIS
408
409
        , 'IOUSLY E', INTERED', 'CONDITIO', INS AND L', OGIC.',%
410
      - ALLOWS', THE USE', R TO LIS', T SELECT', TED VALUE', S (VARIA'%
411
        + BLE NAME + + S WILL + + BE ASKED + + FOR) IN + + A FILE. + + %
      I- ALLOWSI, I THE USEI, IR TO SELI, FECT OR CI, HANGE THI, IE DATA BIS
412
413
      + ASE TO B + + E USED . + + 3* +
                                      1,%
414
      - TERMIN', ATES THE', SYSTEM. , F ENTERIN', G ! IN R', ESPONSE 1%
415
        , TO A PRUI, IMPT WILL , IALSO STOI, P THE SYI, SIEM. , S
416
      I- USED TI, TO PRINTI, TITEM NAMI, TES, THEII, TR TYPES, TAND DEFI, 36
       INITIONS .... A. . SELECTED ... SET OF ... GROUPS. ...
417
418
      I USED TI, IO OBTAINI, THE ABOI, IVE COMMAI, IND DEFINI, ITIONS, I, S
419
        5#1 1,%
      - LISTS + + THE FILE + + S WHICH + + HAVE BEE + + N USED A + + S WELL A + + %
420
421
       'S THE CO', 'NDITIONS', 'AND LOGI', 'C ENTERE', 'D.', *
422
      *- PRINTS!, * ALL ITE!, *MS PRESE!, *NT FOR E!, *ACH RECO!, *RU IN A!**
423
       'SELECTED', FILE.', WAITS AF', TER EACH', N LINES',%
     *- PROVID*, *ES FOR T*, *HE COMPU*, *TATION O', *F FUNCTI*,%
424
425
      TONS ON IT, TEMS INT, A DATAT, SET (ORT, FILE). 1,5
426
      .
               1.%
      - COMBINI, ES THE CI, FONTENTS FFOF SEVERIFIAL SELECIS
427
      TED SUBF +, TILES INT ++ 0 A
                                      +, +SINGLE S+, +UBFILE. +,%
428
429
      .
               1,5
430
      - PERMIT, IS THE SEI, ILECTION I, OF SPECI, ALLY SOR, %
431
      TED AND ', FORMATTE', ED
                                     +, TABULAR +, TOUTPUT D+%
432
      'ISPLAYS. 1/
433
     PRINT 501, (WORDS(J), (TEXT(I,J), I=1,11), J=1,13)
434
     501 FORMAT(+OTHE COMMANDS WHICH MAY BE ISSUED ++%
       *(AND THEIR MEANING) ARE LISTED BELOW: *///%
435
       (101,A4,8A8/7X,3A8))
436
437
          PRINT 1001
438
     1001 FORMAT( UPDA- PERMITS THE ADDITION, THE DELETION, OR THE %
439
          MODIFICATION OF RECORDS!/!
                                              OR PORTIONS OF RECURDS 1%
440
          BELONGING TO THE MASTER FILE.!//)
441
     RETURN
442
     END
```

```
4100
      SUBROUTINE COLPNT(NPAGE, *)
4101
      DOUBLE PRECISION DBLNK, AREA, LINE (20), NAMES, LABEL, %
4102
       VNAMES(20), BUFFER(15,20), FMT(3), FMTS(8), ONAME
4103
      LOGICAL DISK
4104
      COMMON NAMES, ITYPE, PNTS, IDIM
4105
      COMMON /EXPRNS/ POLISH, ICODE, LPS
4106
      INTEGER PNTS(400), BLANK, TANK, USED(20)
4107
      DIMENSION ITYPE (400) BITEM (15,25), ITEMS (20), LASTDX (15,20), %
4108
       IREC(400), REC(400), NAMES(400), TANK(30), LABEL(25), LIST(25), %
4109
       POLISH(15,8), ICODE(15,8), LPS(8), EQUATE(5)
4110
      EQUIVALENCE (REC(1), IREC(1)), (IVAL, VAL), (TANK(1), AREA)
4111
      DATA NDICT, NBIN, NFILE/9,9,11/, BLANK, DBLNK/ ', ',
                                                               11
4112
      DATA FMT, FMTS/+(+,+ +,+)+,+F8.6+,+F8.5+,+F8.4+,%
4113
       *F8.3*,*F8.2*,*F8.1*,*F8.0*,*1PE8.1*/
4114
      DATA EQUATE//EQUA ++ TE 1++ 5++ 2** +/
4115
      INTEGER SPACE (3187)
4116
     COMMON /SCRTCH/ SPACE
4117
      EQUIVALENCE (SPACE(1), BUFFER), (SPACE(601), LASTDX), *
4118
       (SPACE (901), BITEM), (EQUATE (4), ONAME)
4119
      KOUNT=0
4120
      DO 1 K=1.20
4121
      USED(K)=0
      DO 1 I=1,15
4122
4123
     1 LASTDX(I+K)=-9999999
4124
      46 PRINT 50
4125
      50 FORMAT( I ITEMS MAY BE PRESENTED IN A SORTED ORDER. !)
4126
      READ(5,51, PROMPT= + ENTER 1 FOR A SORT, 0 OTHERWISE. + + END=995) *
4127
      ISORT
4128
      51 FORMAT(I1)
4129
      PRINT 53
4130
      55 FORMAT( THIS LIST CAN BE DIRECTED TO 1/%
       VOUR TERMINAL OR TO A SYSTEM DISK. 17%
4131
4132
       I ENTER 1 FOR FORMATTED DISK ONLY, OTHERWISE ENTER 0*)
4133
      READ (5,51,END=995) I
4134
      UISK=I.NE.0
4135
      IF(.NOT.DISK) GO TO 49
4136
     IF (ISORT.NE.1) GO TO 48
4137
      PRINT 47
4138
     47 FORMAT( GRASP IS UNABLE TO SORT OUTPUT 1,%
4139
        'DIRECTED TO A DISK. REENTER YOUR CHOICE.')
4140
      GO TO 46
4141
      48 READ (5,54, PROMPT= "ENTER NAME OF DISK FILE: 1,%
4142
       END=995) ONAME
4143
      54 FORMAT(A6)
4144
      CALL OBEY (EQUATE .5)
4145
      49 CALL VLIST (VNAMES, ITEMS, NUM, &990)
4146
     IF (NUM.EQ.0) GO TO 995
4147
      NUM=MINO(NUM,20)
4148
     CALL OBEY ( USAGE + CUPY + 3)
4149
      IF(ISORT_EQ.0) GO TO 52
4150
      ISORT=1
4151
      CALL RSZ(8*NUM)
4152 CALL KEYC(1,8*NUM,7,1)
```

54

4153 52 IF (DISK) GO TO 900 4154 PRINT 44, (VNAMES(I), I=1, NUM) 44 FORMAT(//1X,20A10) 4155 900 IF(ISORT.LT.2) CALL GETREC(IREC, &999) 4156 4157 IF(ISORT.EQ.1) GO TO 2 4158 IF(DISK) GO TO B 4159 KOUNT=KOUNT+1 IF (KOUNT.LE.NPAGE) GO TO 8 4160 4161 KOUNT=0 CALL PAUSE (&999) 4162 4163 PRINT 44, (VNAMES(I), I=1, NUM) 4164 8 IF(ISORT.NE.2) GO TO 2 4165 CALL SRTRET(LINE,L) 4166 IF(L.EQ.0) GO TO 998 4167 GO TO 801 4168 2 DO 800 JJ=1,NUM 4169 AREA=DBLNK 4170 II=ITEMS(JJ) 4171 IF(II.GT.0) GU TO 9 4172 II=-II VAL=EVAL(IREC,ICODE(1,II),POLISH(1,II),LPS(II),&800) 4173 4174 GO TO 20 4175 9 IVAL=IREC(II) 4176 IF(IVAL.EQ.BLANK) GO TO 800 4177 KIND=ITYPE(II) 4178 IF(KIND.LT.10) GO TO 7 4179 KIND=KIND-10 4180 GO TO 28 4181 7 GO TO (10,20,28,40),KIND 4182 10 ENCODE (AREA, 11) IVAL GO TO 800 4183 4184 20 IF (VAL.EQ.0.) GO TO 22 4185 A=ALOG10(ABS(VAL)) 4186 IF (A.GE.5.) GU TO 23 4187 IF (A.LE.-4.) GO TO 23 4188 22 LK=5 4189 GO TO 24 4190 23 LK=8 4191 24 FMT(2) = FMTS(LK)4192 ENCODE (AREA, FMT) VAL 4193 GO TO 800 28 IF (USED (JJ) .EQ.0) GO TO 30 4194 4195 DO 29 K=1,15 4196 IF(IVAL .EQ. LASTDX(K,JJ)) GO TO 27 4197 29 CONTINUE GO TO 30 4198 27 AREA=BUFFER(K,JJ) 4199 4200 GO TO 800 4201 30 IKEY=10000*KIND+IVAL READ(NDICT+KEY=IKEY) J+(TANK(I)+I=1+J) 4202 USED (JJ) = MOD (USED (JJ) + 15) + 14203 4204 NUSED=USED(JJ) 4205 BUFFER (NUSED, JJ) =AREA 4206 LASTDX (NUSED, JJ) = IVAL

```
4207
      GO TO 800
4208
      40 READ(NBIN+KEY=II) K+M+(LABEL(J)+(BITEM(I+J)+I=1+K)+J=1+M)
4209
      CALL BLIST(LIST, NUMS, IVAL)
4210
      AREA=LABEL(LIST(1))
4211
      800 LINE(JJ)=AREA
4212
      IF(ISORT.NE.1) GO TO 801
4213
     CALL SRTREL(LINE,8*NUM)
4214
      GO TO 900
4215
      801 IF(.NOT.DISK) GO TO 802
4216
      WRITE(15,5) (LINE(JJ),JJ=1,NUM)
4217
      GO TO 900
4218
     802 PRINT 5, (LINE(JJ), JJ=1, NUM)
4219
      GO TO 900
4220
     999 REWIND NDICT
4221
      IF(ISORT.NE.1) GO TO 998
4222
      ISORT=2
4223
      GO TO 900
4224
      998 CALL OBEY('USAGE + CHANGE', 3)
4225
      IF(DISK) REWIND 15
      995 REWIND NFILE
4226
4227
      RETURN
     990 REWIND NFILE
4228
4229
      REWIND NDICT
4230
      RETURN 1
      5 FORMAT(1X,20A10)
4231
4232
     11 FORMAT(18)
4233 END
```

PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS

```
3800
      SUBROUTINE MEAN
3801
      COMMON NAMES, ITYPE, IPTS, IDIM
      COMMON /FTNCUM/ TAGS, IREC, ARGS, NARGS, IFTN, NFTN
3802
      DIMENSION ARGS (6+5) + NARGS (5) + IFTN (5) + ITYPE (400) + IP1S (400) + %
3803
3804
       IREC(400) + NSUM(5) + VMAX(5) + VMIN(5)
      DOUBLE PRECISION NAMES(400), TAGS(5,5), SUMX(5), SUMXS(5)
3805
3806
      INTEGER ARGS
      EQUIVALENCE (IVAL, VAL)
3807
3808
      DATA IBLNK/ 1/
3809
      ЧK.
3810
      ENTRY MEANI(J)
3811
      K=NARGS(J)
3812
      DO 11 I=1.K
3813
      SUMX(I)=0.
3814
      VMAX(I) = -1 \cdot E30
3815
      NSUM(I)=0
3816
      VMIN(I) = 1.E30
3817
      11 SUMXS(I)=0.
3818
      RETURN
3819
      ₩6
3820
      ENTRY MEANB(J)
3821
      K=NARGS(J)
3822
      DO 21 I=1•K
      IVAL=IREC(ARGS(I+1,J))
3823
3824
      IF(IVAL.EQ.IBLNK) GO TO 21
3825
      NSUM(I) = NSUM(I) + 1
      VALUE=IVAL
3826
3827
      IF (ITYPE (ARGS (I+1,J)).EQ.2) VALUE=VAL
3828
      IF (VALUE.LT.VMIN(I)) VMIN(I)=VALUE
3829
      IF (VALUE.GT.VMAX(I)) VMAX(I)=VALUE
3830
      SUMX(I)=SUMX(I)+VALUE
3831
      SUMXS(I)=SUMXS(I)+VALUE*VALUE
3832
      21 CONTINUE
3833
      RETURN
3834
      96
3835
      ENTRY MEANO(J)
3836
      K=NARGS(J)
3837
      UO 40 I=1.K
3838
      IF (NSUM(I) .EQ.0) GO TO 33
3839
      PRINT 31. TAGS(I,J). NSUM(I)
      31 FORMAT(/ MEAN STATISTICS FOR ", A8, WITH , 16, TTEM(S). ")
3840
3841
      AMEAN=SUMX(I)/NSUM(I)
3842
      RMS=SUMXS(I)/NSUM(I)
3843
      IF (ITYPE (ARGS (I+1,J)), EQ.2) GO TO 32
3844
      MIN=VMIN(I)
3845
      MAX=VMAX(I)
      PRINT 35, MIN, MAX, AMEAN, RMS, SUMX (I), SUMXS (I)
3846
3847
      GO TO 34
3848
      33 PRINT 36, TAGS(I,J)
      36 FORMAT(/+ NO VALUES PRESENT FOR ++A8)
3849
3850
      GO TO 40
      32 PRINT 35, VMIN(I), VMAX(I), AMEAN, RMS, SUMX(I), SUMX5(I)
3851
      35 FORMAT (* MIN=++F9-2+* MAX=++F9-2+* MEAN=++F9-2+*
3852
```

56

```
3853
       * ROOT MEAN SQ.=*,1PG9.2/%
3854
       * SUM=*,0PF12.2.*
                                   SUM OF SQUARES= + + 1PG12. - 3)
3855
      34 IF (NSUM(I).LE.1) GO TO 40
3856
      V = (SUMXS(I) - SUMX(I) + SUMX(I) / NSUM(I)) / (NSUM(I) - 1)
3857
      SD=0.
3858
      IF(V.GT.0.) SD=SQRT(V)
3859
      PRINT 37, SD, V
3860
      37 FORMAT(' STD. DEV.='+1PG13.5+' VARIANCE='+G13.5)
3861
      40 CONTINUE
3862
      RETURN
3863 ENU
```

```
1800
      SUBROUTINE START
1801
      COMMON /FILNAM/ MASTER, MASK, DEFTN, DFILE, NUMF, IPACK
1802
      DOUBLE PRECISION MASTER(10), MASK(10), DEFTN(10), DFILE(10)
1803
      COMMON NAMES, ITYPE, IPTS, IDIM, VNAMES
1804
      DOUBLE PRECISION NAMES(400), VNAMES(400), CONTNT(5)
1805
      DIMENSION ITYPE (400) + IPTS (400) + IPACK (10)
1806
      IDIM=400
1807
      CALL OBEY ('EQUATE 8 FILES',4)
1808
      NUMF=1
1809
      PRINT 1
     1 FORMAT( ! WELCOME TO THE USGS "PACER" VERSION OF THE !%
1810
1811
       "GRASP" RETRIEVAL SYSTEM. 1/1 THE FOLLOWING DATA BASES 1%
1812
       * ARE AVAILABLE:*)
      10 READ(8+11+END=20) MASTER(NUMF)+CONTNT+MASK(NUMF)+DEFTN(NUMF)+%
1813
1814
       DFILE (NUMF) , IPACK (NUMF)
1815
      11 FORMAT(A6,1X,5A8,3(1X,A6),14)
1816
      PRINT 12, MASTER (NUMF), CONTNT
1817
      12 FORMAT (/1X+A7++- ++5A8)
1818
      NUMF=NUMF+1
1819
      GO TO 10
1820
      20 NUMF=NUMF-1
1821
      REWIND 8
      PRINT 2
1822
      2 FORMAT(/ THE USER MUST SPECIFY ONE OF THE ABOVE DATA BASES!
1823
                                                                           Ж.
        I FOLLOWING THE PROMPT.I//I A CHANGE OF DATA BASES CAN BE MADE!%
1824
        * AT ANY TIME BY ENTERING THE WORD "FILE" */* FOLLOWING THE*
1825
                                                                          Ж.
        PROMPT TO "ENTER COMMAND."'/)
1826
1827
          CALL FILE($20)
1828
          RETURN
1829
          END
```

58

```
100
     INTEGER WORDS(13), COMAND, NAMEPT(26), RCODE(26), IVAL(26), POLISH(60)
101
     REAL#8 NAMES(400), IFILES(20), OFILES(20), DFAULT, FILEID
102
     COMMON NAMES, ITYPE, IPTS, IDIM
     DIMENSION ITYPE(400), IPTS(400), IMAGE(4)
103
104
     DATA DFAULT/ MASTER 1/ MINE/ UPDA 1/
105
     DATA WORDS//COND+, LOGI++/SEAR+, LIST+, FILE+, QUII+, NAME+, %
      'HELP', 'REVI', 'DUMP', 'FUNC', 'MERG', 'TABL'/
106
107
     NFILES=0
108
     LPS=0
109
     CALL OBEY (*FORM WIDTH:80*+4)
110
     CALL START
111
     2 PRINT 801
112
     801 FORMAT(//)
113
     READ (5,1, END=999, PROMPT='ENTER COMMAND: ') IMAGE
114
     I FORMAT(4A1)
115
     ENCODE (COMAND + 1) IMAGE
116
     DO 6 I = 1 \cdot 11
117
     IF (COMAND.EQ.WORDS(I)) GO TO 7
118
     6 CONTINUE
119
     IF (COMAND.EQ.MINE) GO TO 800
120
     PRINT 3, COMAND
     3 FORMAT(1X+A4+ ILLEGAL COMMAND. ENTER HELP IF YOU WISH TO SEE + , %
121
122
     THE LEGAL COMMANDS.!/)
123
     GO TO 2
124
     7 GO TO (5,10,15,610,400,999,700,500,450,550,300,810,820),1
125
     5 CALL READER (NAMEPT+RCODE, IVAL, NREXP, &999)
126
     GO TO 2
127
     10 CALL PPARSE (POLISH, LPS, NREXP, &999)
     GO TO 2
128
129
     15 CALL RETRVE(IFILES, OFILES, NFILES, POLISH, LPS, NAMEPT, RCODE, IVAL%
130
      >NREXP,&10,&999)
131
     GO TO 2
132
     300 FILEID=DFAULT
133
     IF (NFILES.GT.0) FILEID=OFILES (NFILES)
134
     CALL FINC (FILEID, &999)
135
     GO TO 2
136
     400 CALL FILE(&2)
137
     GO TO 2
138
     450 CALL CONDS(NREXP, LPS)
139
     IF(NFILES.GT.0) GO TO 410
140
     PRINT 409
141
     409 FORMAT ( NO FILES HAVE BEEN USED AT THIS TIME. )
142
     GO TO 2
     410 PRINT 401, (IFILES(I), OFILES(I), I=1, NFILES)
143
     401 FORMAT( ! INPUT: OUTPUT: !/(2X, A8, 2X, A8/))
144
145
     GO TO 2
146
     500 CALL HELP(WORDS)
147
     GO TO 2
148
     550 CALL DUMPIT
149
     GO TO 2
     700 CALL NAME (&999)
150
151
     GO TO 2
152
     610 CALL LIST(&999)
```

153 GO TO 2	
154 800 CALL REVISE(&999)	
155 GU TO 2	
156 810 CALL MERGE	
157 GU TO 2	
158 820 CALL TABLE	
159 GO TO 2	
160 999 CALL QUIT (OFILES, NFIL	ES)
161 STOP	
162 END	

APPENDIX C, PROGRAM LISTINGS OF PACER SUBROUTINES

SUBROUTINE REVISE

Subroutine REVISE is the controlling subroutine for the five available updating procedures, and a listing may be found following this discussion. This subroutine initializes the needed control parameters, calls the updating subroutines, and posts the updated subfile onto the master file upon conclusion of the update procedure.

The unlabeled COMMON statement (line number 153) is used to transmit the data values for ITYPE, VLIST, NELEM, and FILENM (as defined in the listing) from the original GRASP program logic for use by the updating subroutines. The remaining parameters in this unlabeled COMMON are not used by any of the updating subroutines and are, therefore, treated simply as dummy variables.

The labeled COMMON statement, LOG (line 154) is used to transmit data between the updating subroutines. The variables in this statement are defined in the first part of listing except for MONTH, IDAY, and IYEAR which come from the INFONET subroutine MMDDYY (line 208) for obtaining the date of execution from the computer clock.

The DATA statements (lines 155-159) are used to initialize data values for QQ, NO, IYES, DROP, QUIT, K1, and K2. The array QQ is used to store part of the alphanumeric data string for the dynamic assignment of the update subfile to file number 21. The data values for IYES and NO are used for alphanumeric comparisons of user responses to computer prompts. The alphanumeric initialization of DROP is used for the dynamic release of a previously assigned file. The data for QUIT is used for comparison with the alphanumeric guit command. The data for arrays K1 and K2 are used to denote the maximum number of computer words reserved for each of the data elements. Array K1 is substifuted into array KWORD when the WCOAL and ECOAL master files are being used, and array K2 is placed into KWORD for the USALYT master file. If another master file is added to the PACER system, it must have an appropriate array defining the number of computer words reserved for each data element available for substitution into KWORD.

The instruction-suppression code is input (line 160) and tested (line 162), followed by the output of the instructions (lines 163–198), if not suppressed by the code.

The input master-file name is tested against the available selection of master files (lines 200-202) to select the corresponding value of KDIC. After the value of KDIC is selected, the corresponding array defining the file structure is loaded into KWORD. Again, if new master files are added, the FORTRAN code must be modified to permit the definition of another KDIC value as well as to permit the transfer of the related file-structure word-length array into KWORD. The value of KDIC is also used for a keyed read of the dictionary file (line 207) to obtain the total number of records, MAXREC, residing in the master file.

Subroutine MMDDYY (line 208) is a subroutine in the INFONET library which is used to read the month, day, and year from the computer clock. This is combined with the data manager identification number, IDM (line 210), to construct the log number, ILOG (line 212). This log number is placed into the master-file ID number when a record has been deleted, or when a record has been added to the master file with the ID field left blank.

The user is then prompted to select an update procedure, IREV (line 214), with the test for zero (line 215) to exit from the update procedure and the test for the ADDREC procedure (line 216) to skip unnecessary file management. File management for modification of the subfile with any of update procedures 2 through 5 begins with a prompt for the subfile name (lines 219-220) and a test for the characters QUIT (line 221), which will cause a return from the REVISE subroutine. The remaining lines (lines 222-227) encode the file name with the rest of the alphanumeric string, ALFA, to equate the subfile name to file 21. This equivalence is performed dynamically during execution through the INFONETdependent subroutine, OBEY (line 225). The IN-FONET-dependent subroutine, UPDATE, is called (line 227) to permit keyed records to be written onto file 21 without disturbing the other records residing on that file. The preceding REWIND statement (line 226) is used to ensure that the file is properly closed before it is opened in the update mode.

The OBEY subroutine is called (line 228) to equivalence file 9 with the dictionary file, USCDIC. This dictionary file is used with the three existing master files of the NCRDS. If other dictionary files were to be required with the addition of other master files, the appropriate modifications to the source code would be required.

The OBEY subroutine is also used to equivalence

file 20 with the master-file name selected following the response to the FILE command (lines 229-231). This permits the record changes and additions to be posted to the proper master file. If new master files are added to the data base, a similar statement must be added to this part of the logic. File 20 is then rewound (line 232) so that it can be placed in the update mode without conflict with prior master-file activity. Subroutine UPDATE (line 233) is an IN-FONET-supplied subroutine which permits the writing of records onto file 20 without the destruction of all data previously residing on that file. If the file is not placed in the update mode, the write operation creates a new file having the same name but consisting only of those records written onto the file during program execution. The execution of read operations is also permitted on this file while it is in the update mode.

The selection of an update procedure (lines 234–238) is based on the value of IREV entered for the prompted read (line 214). The \$100 parameter returns execution to statement 100 which initiates the prompt for a new update procedure, while \$200 shifts control to statement 200 which rewinds file 21.

The posting of the revised subfile onto the master file is accomplished by a series of prompt commands and write statements (lines 240-267). Subroutine GETKEY (lines 259 and 264) is used to obtain the record key for the data read from the subfile on file 21 (lines 258 or 263). The tests for MAXREC (lines 260 and 265) are used to update the maximum record key number so that it will be greater than or equal to the largest key valve for all records added to the master file. The next block of statements (lines 268–271) closes the dictionary file, places it in the update mode, writes MAXREC onto the line with the same key value as KDIC, and closes the file once again to the read-only mode. After the subfile has been posted onto the master file, the master file is also closed by rewinding file 20 (line 273).

Of particular importance to the programmer are the modifications to this program which must be made when: (1) the program is to be adapted for other data bases; (2) the program is to be adapted to other computer systems. These changes are noted in this documentation to enable the programmer to modify these subroutines to suit his available computer system and the different data-base structures.

A change in the data bases will require the addition of an array for storing the maximum number of computer words reserved for each raw-data element. This data array should be similar to the arrays K1 and K2 (lines 158-159). The master-file index, KDIC, must be defined in a manner similar to that in lines 200–202. The logic for specifying KWORD may be encoded as shown in lines 203-206. A MAXREC value specifying the maximum record key used in the master file must be saved in some manner. In this listing, it is stored in the KDIC-valued line of the dictionary file, read in (line 207) for test and update, and then rewritten (line 270) over its original position. The master-file name must be equivalenced to device 20; this is achieved by the OBEY subroutine in lines 229-231.

The INFONET system-dependent subroutines used for dynamic file management and requiring reprogramming for other systems are OBEY, UP-DATE, and MMDDYY. The OBEY subroutine (lines 225 and 228-231) is used to equivalence the file names to the input-output device and to drop (line 280) the subfile from the computer system. The system routine, UPDATE, is used to place files in the update mode (lines 227, 233, and 269). The **MMDDYY** subroutine is also INFONET dependent and is used to obtain the month, day, and year value, which are used by the log number. If this software is used with a computer system other than INFO-NET, the system-dependent logic must be reprogrammed to make it compatible with the new computer system.

100	SUBF	ROUTINE REVISE(*)
101	%	THIS IS SUBROUTINE **REVISE.**
102	%	IT IS DESIGNED TO ADD, DELETE, OR CHANGE RECORDS
103	%	OR PORTIONS OF RECORDS BELONGING TO THE MASTER
104	%	FILE.
105	%	
106	%	FILENM= THE NAME OF THE MASTER FILE.
107	%	VLIST = THE ALPHANUMÊRIC LIST OF THE VARIABLES
108	%	AS THEY APPEAR IN THE MASK FILE.
109	%	ITYPE = THE VARIABLE TYPE OR THE DICTIONARY
110	%	POINTER AS LISTED IN THE MASK FILE.
111	%	QQ = DUMMY INPUT FILL FOR PLACING THE FILE
112	%	TO BE UPDATED INTO THE "OBEY" STATEMENT.
113	%	ALFA = REFORMATTED ALPHANUMERIC STRING FOR
114	%	PLACING THE NAME OF THE FILE TO BE
115	96	UPDATED INTO CORRESPONDING +ÕBEY+
116	%	STATEMENT.
117	% 5	NELEM = NUMBER OF DATA ELEMENTS IN ONE
118	%	MASTER RECORD.
119	%	KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF
120	%	COMPUTER WORDS RESERVED FOR EACH RAW DATA
121	%	ELEMENT.
122	%	MAXREC= THE MAXIMUM RECORD KEY VALUE FOR THE MASTER FILE.
123	%	KDIC = INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO
124	%	LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY
125	%	FILE.
126	%	NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.
127	%	KI = DATA TO BE TRANSFERRED INTO THE "KWORD" ARRAY FOR
128	%6	USE WITH MASTER FILES "WCOAL" AND "ECUAL."
129	%	K2 = DATA TO BE TRANSFERRED INTO THE "KWORD" ARRAY FOR
130	%	USE WITH MASTER FILE "USALYT."
131	%	IRITE = THE INSTRUCTION SUPPRESSION CODE. AN INPUT
132	%	VALUE OF 23 WILL SUPPRESS THE INSTRUCTION
133	%	PRINTS FROM SUBROUTINES "REVISE," "ADDREC,"
134	%	"DELREC," "SEQREV," "KEYREV," AND "BAICH."
135	%	IDM = THE DATA MANAGER ID NUMBER (1-99).
136	*5	IREV = THE UPDATE PROCEDURE SELECTION CODE.
137	%	ILOG = THE LOG NUMBER FOR RECORDS ADDED WITHOUT AN
138	%	ID NUMBER AND FOR RECORDS DELETED FROM THE
139	%6	MASTER FILE. THIS NUMBER IS ASSIGNED AS THE
140	%5	NEW ID NUMBER. IT IS A CODED. EIGHT DIGIT
141	Ж	NUMBER WITH THE TWO LEFTMOST DIGITS DESIGNATING
142	%	THE YEAR, THÊ NEXT TWO DIGITS DESIGNALING THE
143	%	MONTH, AND THE NEXT PAIR OF DIGITS DESIGNATING
144	%	THE DAY OF RECORD CHANGE, WITH THE FINAL PAIR
145	*6	OF DIGITS DENOTING THE DATA MANAGER RESPONSIBLE
146	Ж.	FOR THE ADDITION OR THE DELETION OF THOSE
147	%	RECORDS.
148		DIMENSION ALFA(5), QQ(5)
149		DIMENSION ITYPE(400), KWORD(400)
150		DIMENSION DROP(4), IDATA(400)
151		DIMENSION K1 (50) + K2 (50)
152		DOUBLE PRECISION FILENM, VLIST(400)

PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS 64 153 NAMED(800), ITYPE, PAD(401), VLIST, NELEM, FILENM COMMON 154 COMMON /LOG/ MONTH, IDAY, IYEAR, ILOG, MAXREC, KWORD, KDIC, IRITE 155 DATA QQ/'EQUA', 'TE 2', '1 '/, IBLANK/' '/ 156 DATA NO, IYES/ NO, TYEST/ 157 DATA DROP/+DROP++3*+ +/+QUIT/+QUIT+/ 158 DATA K1/4,6,7*1,4,6,1,4,6,1,4,5,1,4,7,1,4,5,1,3,1,1/ 159 DATA K2/4,6,7*1,4,6,4,6,4,5,4,7,3,5,1,3,25*1/ 160 READ(5,1020,PROMPT='PLEASE PRESS CARRIAGE RETURN. ') IRITE 161 1020 FORMAT(12) 162 IF(IRITE .EQ. 23) GO TO 8 163 WRITE(6,1000) 164 1000 FURMAT(/* THIS IS "UPDATE."*/* IT IS DESIGNED TO PERMIT THE** 165 USER TO ADD RECORDS TO OR DELETE RECORDS FROM THE!/ • Ж. 166 MASTER FILE, OR TO CHANGE RECORDS OR PORTIONS OF RECORDS! . 16 IN A SUBFILE OF THE 1/1 MASTER FILE AND TO POST THESE! 167 % . 168 . CHANGES ONTO THE MASTER FILE. 1//1 THE FIVE PROCEDURES! ٧6 Ж 169 I USED TO UPDATE THE MASTER FILE ARE: /// 1. THE ADDITION. OF NEW RECORDS ALREADY WRITTEN INTO A TEMPORARY FILE. 170 . Ж. UNLIKE // THE OTHER UPDATE PROCEDURES WHICH OPERATE! % 171 . 172 . ON RECORDS IN THE MASTER FILE !!! FORMAT, THIS! % % 173 . PROCEDURE OPERATES ON RAW DATA RECORDS AND CONVERTS! 174 . RECORDS TO THE MASTER FILE FORMAT FOR! * THESE!/! 175 ۲ THE DELETION, BY. % 176 KEY, OF RECORDS ALREADY EXISTING IN THE MASTER FILE.) 177 WRITE(6,1003) 1003 FORMAT(178 86 THE SEQUENTIAL REVISION OF RECORDS FROM A SELECTED! 96 179 . 3. 180 . SUBFILE (I.E. SELECTED 1/1 THROUGH A LOGICAL SEARCH) . % THIS SUBFILE MAY THEN BE 1/1 181 86 . FROM THE MASTER FILE. POSTED ONTO THE MASTER FILE AFTER THE DESIRED REVISIONS! . Ж. 182 ¥. 183 . ARE COMPLETED. 1// 4. THE SELECTION, BY KEY, OF! % 184 * ANY RECORD BELONGING TO THE SUBFILE FOR REVISION*/* % 185 . OF ANY SELECTED DATA ELEMENT. THE DATA MANAGER HAS THE . THE SELECTED RECORD ONTO THE . % . OPTION OF POSTING 1/1 186 86 187 . MASTER FILE OR LEAVING IT, AS REVISED, IN THE // . % . THE BATCH REVISION 188 SUBFILE FOR FURTHER REVISION. 1// 5. OF A GIVEN DATA ELEMENT WHICH WILL BE THE SAME VALUE FOR! 189 . 16 . ALL RECORDS IN THE SELECTED SUBFILE. 1// WHEN! Ж 190 191 . REVISION HAS BEEN COMPLETED ON ANY SELECTED SUBFILE, THE! ٧6 • USER MAY THEN 1/1 ELECT TO POST THE REVISED SUBFILE UNTO ! Ж 192 THE MASTER FILE, OR SAVE THE SUBFILE FOR! / REVIEW AND! % 193 . POSSIBLE FURTHER REVISION BY ANY OF THE 2-5 UPDATE! 194 . 8 PROCEDURES. 1/1 RECORDS DELETED FROM THE MASTER FILE ARE! % 195 . * SAVED IN A SPECIAL "SAVE DELETION" // FILE FOR FUTURE" Ж. 196 RECOVERY IF THERE SHOULD ARISE A NEED TO RECONSTITUTE. 96 197 • * THESE!/! RECORDS.!//) 198 199 8 KDIC = 0 200 IF(FILENM .EQ. !WCOAL!) KDIC = 1 201 IF (FILENM .EQ. 'USALYT') KDIC = 2 IF (FILENM .EQ. 'ECOAL') KDIC = 3 202 00 9 I=1, NELEM 203 204 IF (KDIC .EQ. 1) KWORD(I) = KI(I)205 IF(KDIC .EQ. 3) KWORD(I) = K1(I)IF(KDIC .EQ. 2) 206 9 KWURD(I) = K2(I)

```
207
          READ(9,KEY=KDIC) MAXREC
208
          CALL MMDDYY (MONTH, IDAY, IYEAR)
209
     15
          CONTINUE
          READ(5,1010, ERR=15, PROMPT= DATA MANAGER ID NO. (1-99): *) IDM
210
211
     1010 FORMAT(12)
212
          ILOG = 1000000*IYEAR + 10000*MONTH + 100*IDAY + IDM
213
     100
          CONTINUE
214
          READ(5,*,PROMPT=!UPDATE PROCEDURE (1-5); !) IKEV
          IF(IREV .EQ. 0) RETURN
215
          IF(IREV .EQ. 1) GO TO 16
216
217
          DO 10 I=1+2
218
     10
          QQ(I+3)
                   IBLANK
          READ(5,1001, PROMPT= DATA FILE TO BE REVISED: ")*
219
220
          QQ(4) \rightarrow QQ(5)
221
          IF (QQ(4) .EQ. QUIT) RETURN
222
     1001 FORMAT(244)
223
          ENCODE (ALFA, 1002, ERR=998) QQ
224
     1002 FORMAT(244.42.244)
225
          CALL OBEY (ALFA,5)
226
          REWIND 21
227
          CALL UPDATE (21,1)
228
          CALL OBEY ( 'EQUATE 9 USCDIC '+4)
     16
229
          IF(KDIC .EQ. 1) CALL OBEY('EQUATE 20 WCOAL',4)
          IF (KDIC .EQ. 2) CALL OBEY ('EQUATE 20 USALYT',4)
230
231
          IF (KDIC .EQ. 3) CALL OBEY ('EQUATE 20 ECOAL',4)
232
          REWIND 20
233
          CALL UPDATE(20,1)
234
          IF(IREV .EQ. 1) CALL ADDREC($200,$100,NREC,QQ(4),QQ(5))
235
          IF(IREV .EQ. 2) CALL DELREC($100)
236
          IF (IREV .EQ. 3) CALL SEQREV (NREC)
237
          IF(IREV .EQ. 4) CALL KEYREV($100)
238
          IF(IREV .EQ. 5) CALL BATCH($200,NREC)
239
     200
          REWIND 21
          WRITE(6+1004) QQ(4)+QQ(5)
240
241
     1004 FORMAT(/' FILE "',A4,A2,'" HAS BEEN REVISED. 1/%
242
          DO YOU WISH TO WRITE THIS FILE ONTO THE MASTERS
243
      FILE?!)
          READ (5,1005, PROMPT= "YES" OR "NO": ') ITEST
244
     18
245
     1005 FURMAT(A4)
246
          IF((ITEST .NE. IYES) .AND. (ITEST .NE. NO)) GO TO 18
247
          IF (ITEST .EQ. NO) GU TO 100
     %
248
249
     % 'IDATA' IS USED AS A DUMMY VARIABLE FOR READ AND WRITE
250
     % OPERATIONS.
251
          REWIND 21
252
          WRITE(6,1007)
253
     1007 FORMAT(/' DO YOU WANT TO POST THE ENTIRE SUBFILE?')
          READ (5,1005, PROMPT=1"YES" OR "NO": 1) ITEST
254
     19
255
          IF((ITEST .NE. IYES) .AND. (ITEST .NE. NO)) GO TO 19
256
          IF(ITEST .EQ. IYES) GO TO 21
257
          DO 20 I=1, NREC
258
          READ(21) (IDATA(K),K=1,NELEM)
259
          CALL GETKEY (21, NKEY)
260
          IF (NKEY .GT. MAXREC) MAXREC = NKEY
```

```
PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS
66
261
     20
          WRITE(20,KEY=NKEY) (IDATA(K),K=1,NELEM)
262
          GO TO 22
263
     21
          READ(21, END=22) (IDATA(K) + K=1 + NELEM)
264
          CALL GETKEY (21. NKEY)
265
          IF (NKEY .GT. MAXREC) MAXREC = NKEY
266
          WRITE(20,KEY=NKEY) (IDATA(K),K=1,NELEM)
267
          GO TO 21
268
     22
          REWIND 9
          CALL UPDATE(9+1)
269
          WRITE(9,KEY=KDIC) MAXREC
270
271
          REWIND 9
272
          WRITE(6,1009)
273
          REWIND 20
274
     1009 FORMAT(/ DO YOU WISH TO SAVE THIS FILE? )
275
     25
          READ(5,1005, PROMPT=!"YES" OR "NO": !) ITEST
276
          IF ((ITEST .NE. IYES) .AND. (ITEST .NE. NO)) GO TO 25
277
          DROP(3)
                  = QQ(4)
278
          DROP(4)
                   = QQ(5)
279
          REWIND 21
280
          IF(ITEST .EQ. NO) CALL OBEY(DROP+4)
281
          GO TO 500
282
     998
          WRITE(6,1006)
283
     1006 FORMAT(/ NAME OF FILE HAS BEEN IMPROPERLY ENTERED. )
284
          GO TO 100
          WRITE(6,1008)
285
     500
286
     1008 FORMAT(/* UPDATE OPERATIONS HAVE BEEN COMPLETED.*/%
          * IF YOU WISH TO CONTINUE WITH THE UPDATE PROCEDURE,*
287
288
          I ENTER THE NUMBER (1-5).1/1 ENTERING A "0" FOR THE!
          * PROCEDURE PROMPT OR "QUIT" FOR THE FILE PROMPT WILL */
289
290
          RETURN CONTROL TO THE SEARCH AND RETRIEVAL PORTION OF!
                                                                        Ж.
291
          1 "PACER."1/)
292
          GO TO 100
293
          END
```

% Ж. Ж

SUBROUTINE ADDREC

Subroutine ADDREC is designed to read an unkeyed raw-data file, search the dictionaries for matching alphanumeric entries, prompt the user to add the nonmatching terms to the dictionary, convert the alphanumeric data values to master-file dictionary pointers, and write onto a second file a keyed, PACER-compatible record which is suitable for posting onto the master file. A listing of subroutine ADDREC appears at the end of the discussion. The subroutine listing contains a brief description (lines 102-107) followed by a definition list of the major variables (lines 109-167). The unlabeled COMMON and the LOG COMMON (lines 175-176) are the same as in subroutine REVISE. The QQIN array is used to equivalence the raw-data file to file 31 whereas the QQOUT array is used to equivalence file 21 to the translated subfile that will then be posted onto the master file. The alphanumeric data strings, IBLANK, QBLANK, YES, XNO, and QUIT, are used for comparison of prompted user responses at various decision points throughout the logic. The NODATA array is used for entering the alphanumeric string NO DATA ENTERED into those alphanumeric data fields for which no data value exists.

If the value of IRITE was entered as any value other than 23 (line 182), the instruction message will be printed (lines 183-194). Then, the user is prompted to specify the name of his raw-data file (lines 195-196). If the characters QUIT were entered, the record addition procedure will be terminated and after the message (lines 307-312) is printed, file 31 is rewound and control is returned to REVISE (lines 313–314). The user is then prompted to specify the name of the translated file (lines 198-199). This file is transferred back to subroutine REVISE and becomes the subfile, which is then posted onto the master file. The file name is stored in variables QQ1 and QQ2 (lines 201-202) for this purpose. Again, if the characters, QUIT, were entered for the file name (line 200), the record addition procedure is terminated.

The QQIN and QQOUT arrays are then encoded into the ALFIN and ALFOUT arrays (lines 203– 205) for use by the OBEY subroutine to equivalence the file names to the appropriate unit numbers. The key register, KEYR, is then set equal to the maximum record key value, MAXREC, in the master file. The key register is then incremented by 1 for each translated record which is posted onto the master file. Thus, all new record additions will be added to the end of the master file. The total number of computer words per record, KWT, is determined by summing over all the KWORD values for the given number of data elements, NELEM, belonging to that master file (lines 209-211). This value of KWT is transmitted to the formatted output routines (lines 299-304) to provide the length of the total raw-data string.

The user response to the prompting statements (lines 212-215) establishes the alphanumeric value for REVIZ which is tested for a YES value before each individual record is displayed. A test is made to ensure that the only alphanumeric value entered is either a YES or a NO (line 216); otherwise, the user is again prompted for a YES or NO response.

The counter for the number of records reviewed, NREC, is then initialized to zero (line 217), as is the counter for number of computer words required for the first through the I-th data elements, NWORDS (line 218). Program control returns to statement 100 each time a new record is to be read from the raw-data file. The reading of each record from the raw-data file is accomplished by a specially formatted subroutine selected by testing the value of KDIC (lines 219–221). Following the successful reading of the next record from the raw-data file (that is, if the EOF mark has not been encountered by the read operation), the value of NREC is incremented by 1 (line 222).

The logic to translate the raw-data record into a record compatible with a PACER master file is contained in the DO loop extending to statement 99 (lines 223-295). The DO loop index ranges from 1 to the number of data elements, NELEM. The number of computer words required to store the data string for the first "I" data elements is obtained by incrementing NWORDS by the number of words, KWORD, reserved for the data string of the I-th data element (line 224). Next the data type value, ITYPE, is tested (line 225) to determine whether the data element is an integer number, real number, or an alphanumeric string. If the data is integer, a transfer is made to statement 10; if it is real, a transfer is made to statement 20; and if it is alphanumeric, a transfer is made to statement 30.

At statement 10, the integer value of the raw data is simply transferred from the raw-data-array element, NSTRNG, to the I-th position in the masterrecord array, IMAGE (line 229). In the present application, the LOG value is substituted into the ID position of the master-record array, if no value has previously been entered (lines 230-235). Then, transfer is made (line 236) to the end of the DO loop, where the value of I is incremented by 1, and the procedure is repeated for the next data element of the record.

At statement 20, the real value of the data is transferred from the data-array element, STRING, to the I-th position in the master-record array, QIMAGE (line 240), program control then jumping (line 241) to the end of the DO loop. It should be noted at this point that the arrays, IMAGE and QIMAGE, are equivalenced, as are the arrays, NSTRNG and STRING, although in each case one array is typed as integer and the other array is typed as real. The equivalencing of these arrays permits data to be read from or written to a data file through the use of only one of the equivalenced arrays.

Beginning at statement 30, the alphanumeric data string is matched to a dictionary entry, and an integer value, which indexes or "points" to that diction element, is placed in the I-th data position of the IMAGE array. The number of computer words required for the I-th data element is stored in KEND (line 250), the number of computer words required for the preceding I-th data elements is stored in KBEGIN (line 251), and the value of KP1 is defined to be one greater than KBEGIN (line 252). Special logic has been inserted (lines 252-254) to replace blank alphanumeric data in elements 5 and 7 with a dash. Then, all seven words of the NAME array are blanked (lines 255-256), and the first LT nonblank values of the NSTRING array are counted and substituted into the NAME array (lines 257-260). If the number of nonblank words, LT, is greater than zero, the logic jumps to statement 54 (line 261); otherwise, it inserts the alphanumeric. data, NO DATA ENTERED, into the NAME array and also into the NSTRNG array (lines 262–266).

The ITYPE value for alphanumeric data is the dictionary number of the I-th data element plus 10. Therefore, the dictionary number, NDIC, can be found by subtracting 10 from ITYPE. This value, the alphanumeric string in array, NAME, and the length of that string, LT, are each placed into the calling sequence of subroutine MATCH (line 268) which searches for a matching dictionary entry and the record key, MKEY, for that entry. If a new entry made from the terminal contains only blank data, control will be returned to statement 995. If a dictionary match is found, the pointer to this entry is translated into the I-th element of the IMAGE array (line 269), and control is passed (line 270) to the end of the DO loop to recycle and process the next data element.

If there is no dictionary match, control is transferred to statement 994, where a message is displayed on the terminal asking the user if he wants the alphanumeric string entered into the dictionary. Checks are made to ensure that the response is either YES or NO (lines 271–278). If the response is YES, the number of entries, NUM (returned from subroutine MATCH), contained in that dictionary category is increased by 1 (line 279). Then subroutine ADDICT is called (line 280) to write the entry into the dictionary and to update the value of NUM stored at the beginning of that dictionary category.

The value of NUM is also stored in the I-th position of IMAGE as the new dictionary pointer (line 281), and control is again transferred to the end of the DO loop (line 282).

If the user does not wish to have the nonmatching alphanumeric data entered into the dictionary, he is then prompted to re-enter the alphanumeric string (lines 283-288). The alphanumeric string is also transferred into NSTRING (lines 289-290), and control is transferred (line 291) to statement 50, where the matching procedure is executed once more.

If, in subroutine MATCH, it is determined that the data string is blank, a message is written (linea 292 and 293), and control is transferred (line 294) to statement 60 for re-entry of the data (line 283).

Once the DO loop has been completed, the input value of the record key, KEYP, is tested to see if it has been entered (line 296). If it has not, KEYR, which was initialized as the value of MAXREC, is incremented by 1. Next, KEYA is set equal to KEYR (line 297). If KEYP is greater than zero, KEYA is instead set to the value of KEYP (line 298). This is to ensure that, if the records to be added were once a part of the master file and the record key is known, then they would be written into the same keyed location.

If a display of each record has been requested, these records will be output through a specially formatted subroutine which is dependent upon the data structure (lines 299–304).

Finally, the translated record is written onto unit 21 (line 305), and control is transferred (line 306) to statement 100 to continue with the processing of the next record in the raw-data file.

When all records have been processed, a message is displayed stating that the file is ready for posting (lines 307-312). The raw-data file is rewound (line 313), and control is returned to REVISE (line 314).

The ADDREC logic that is data-base dependent appears in: lines 219-222, where a particular input

routine is selected based upon a specific index in the master file; lines 230–235, where the log number is substituted for blank data of the ID number in the given master-file record; lines 253–254, where dashes are substituted for blank entry of the directions for township and range in all master files; and lines 299–304, where the special output display subrou-

tines are dependent upon the data structure of each of the master files.

The INFONET-dependent OBEY subroutine is used twice in ADDREC. The first time (line 206) it is used to equivalence the raw-data file name to unit 31, and the second time (line 207) to equivalence the translated output file to unit 21.

102 % SUBROUTINE "ADDREC" IS DESIGNED TO READ AN UNKEYED, DATA 103 % FILE, SEARCH THE DICTIONARIES TO ENSURE CORRECT ALPHANUMERIC 104 % INPUT, CHANGE THE ALPHANUMERIC DATA VALUES TO DICTIONARY 105 % POINTERS AS USED IN "PACER." AND WRITE A KEYED. "PACER" 106 % COMPATIBLE RECORD SUITABLE FOR POSTING ONTO THE MACER." 107 % FILE. 108 % NULST DATA ELEMENT NAMES AS THEY APPEAR IN THE 110 % VLIST DATA ELEMENT NAMES AS THEY APPEAR IN THE 111 % DEFINITION AND MASK FILES. 112 % ITYPE = TYPE DESIGNATION OF THE DATA ELEMENTS AS 113 % LISTED IN THE MASK FILES. 114 % ITYPE 2REAL TYPE DATA 115 % ITYPE 2REAL TYPE DATA 116 % ITYPE 2REAL TYPE DATA 117 % POINTER TO REFRENCE A LOOKUP IN THE 118 % ITYPE - 10DATA CONSISTS OF A DICTIONARY 119 % NRCC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 % KDIC = INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO 121 % LECART PREPESENTATION OF MASTER DATA 122 % FILE. LEMENTS. 123 MAGE = INTEGER REPRESENTATION OF MASTER DATA <	100 101	SU %	BROUTINE /	ADI	DREC(#+*+NREC+QQ1+QQ2)
 103 % FILE, SEARCH THE DICTIONARIES TO ENSURE CORRECT ALPHANUMERIC 104 % INPUT, CHANGE THE ALPHANUMERIC DATA VALUES TO DICTIONARY 105 % POINTERS AS USED IN "PACER," AND WRITE A KEYED, "PACER" 106 % COMPATIBLE ECOND SUITABLE FOR POSTING ONTO THE MASTER 107 % FILE, 108 % 109 % NELEM = NUMBER OF DATA ELEMENTS IN A MASTER MECORD. 100 % VLIST = DATA ELEMENT NAMES AS THEY APPEAR IN THE 111 % DEFINITION AND MASK FILES. 112 % ITYPE = TYPE DESIGNATION OF THE DATA ELEMENTS AS 113 % LISTED IN THE MASK FILE. 114 % ITYPE = 1INTEGER TYPE DATA 117 % POINTER TO REFERENCE A LOOKUP IN THE 118 % (ITYPE - 10DATA CONSISTS OF A DICTIONARY 119 % NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 % KDIC = INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO 121 % LOCATE THE PROPER MARREC VALUE FROM THE DICTIONARY 122 % FILE. 123 % IMAGE = REAL REPRESENTATION OF MASTER DATA 124 % ELÉMENTS, INCLUDING INTEGER TATA AND 125 % DICTIONARY POINTERS. 126 % QIMAGE = REAL REPRESENTATION OF MASTER DATA 127 % THROUGH EQUIVALENCE WITH 'IMAGE.' 138 STRING FINE THE REPRESENTATION OF THE DATA SIRING FOM 144 % ANSTER REPRESENTATION OF THE DATA SIRING FOM 158 NARME = REAL REPRESENTATION OF THE DATA SIRING FOM 164 Ø MAGE = REAL REPRESENTATION OF THE DATA SIRING FOM 178 DICTIONARY CATEGORY. 184 STRING = REAL REPRESENTATION OF THE DATA SIRING FOM 198 MARE TOR COMPARISON WITH EXISTING 198 NSTRNG = RAL REPRESENTATION OF THE DATA SIRING FOM ALL REAL- 198 NAME = ARRAY (UP TO T COMPUTER WORDS) OF NEW ALPHA- 100 GUTONARY ENTRY DOES NOT EXIST FOR IHE 198 STATEMENT. 199 NAME = ARRAY OPER OR 2) TO DETERMINE THAT A 199 MABE REAL REPRESENTATION OF THE DATA SIRING FOM ALL REAL- 190 MAME POINTER OR 2) TO DETERMINE THAT A			CURPOUTT	15	HADDRECH TE DESTRACT TO READ AN UNKEVED, DATA
104 % INPUT, CHANGE THE ALPHANUMERIC DATA VALUES TO DICTIONARY 105 % POINTERS AS USED IN "PACER," AND WRITE A KEYED, "PACER" 106 % COMPATIBLE RECOND SUITABLE FOR POSTING ONTO THE MASTER 107 % FILE. 108 % NUMBER OF DATA ELEMENTS IN A MASTER MECORD. 109 % NELEM = NUMBER OF DATA ELEMENTS IN A MASTER MECORD. 110 % VLIST = DATA ELEMENT NAMES AS THEY APPEAR IN THE 111 % DEFINITION AND MASK FILE. 112 % ITYPE = DATA ELEMENT NAMES AS THEY APPEAR IN THE 113 % LISTED IN THE MASK FILE. 114 % ITYPE 2.0REAL TYPE DATA 115 % ITYPE 2.0DATA CONSISTS OF A DICTIONARY 116 % ITYPE 2.0DATA CONSISTS OF A DICTIONARY 117 % POINTER TO REFERENCE A LOOKUP IN THE 118 % (ITYPE - 10)TH DICTIONARY. 119 % NHEC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 % NOICTIONARY POINTERS. COMTON THE MASTER THE DATA 121 % MAGE INTEGER REPRESENTATION OF MASTER DATA<					
105 % POINTERS AS USED IN "PACER," AND WRITE A KEYED, "PACER" 106 % COMPATIBLE RECORD SUITABLE FOR POSTING ONTO THE MASTER 107 % FILE. 108 % 109 % NELEM = NUMBER OF DATA ELEMENTS IN A MASTER MECORD. 109 % NELEM = NUMBER OF DATA ELEMENTS IN A MASTER MECORD. 111 % DEFINITION AND MASK FILES. 122 % ITYPE = TYPE DESIGNATION OF THE DATA 111 % DEFINITION AND MASK FILES. 123 % LISTED IN THE MASK FILE. 124 % ITYPE = 1INTEGER TYPE DATA 115 % ITYPE = 1EGER TYPE DATA 116 % ITYPE = 10.TH DICTIONARY. 117 % POINTER TO REFERENCE A LOOKUP IN THE 118 % ITYPE = 10.TH DICTIONARY. 119 NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 % NUC = NUMER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 121 % ITYPE = 10.TH MASKER FILE BEING USED AND TO 122 % FILE. 123 IMAGE = INTEGER REP					
<pre>106 % COMPATIBLE RECORD SUITABLE FOR POSTING ONTO THE MASTER 107 % FILE. 108 % 109 % NELEM = NUMBER OF DATA ELEMENTS IN A MASTER MECORD. 110 % VLIST = DATA ELEMENT NAMES AS THEY APPEAR IN THE 111 % DEFINITION AND MASK FILES. 113 % LISTED IN THE MASK FILE. 114 % ITYPE = 1INTEGEN TYPE DATA 115 % ITYPE = 2REAL TYPE DATA 116 % ITYPE = 2REAL TYPE DATA 116 % ITYPE > 10DATA CONSISTS OF A DICTIONARY 117 % POINTER TO REFERENCE A LOOKUP IN THE 118 % (ITYPE > 10DATA CONSISTS OF A DICTIONARY 119 % NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 % KDIC = INDER TO PERPENDENT ANARCE VALUE FROM THE DICTIONARY 121 % INREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 123 % IMAGE = INTEGER REPRESENTATION OF MASTER DATA 124 % FILE. 125 % DICTIONARY POINTERS. 126 @ QIMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS 127 % THROUGH EQUIVALENCE WITH 'IMAGE.' 128 % NSTRNG = INTEGER REPRESENTATION OF MASTER DATA ELEMENTS 127 % THROUGH EQUIVALENCE WITH 'IMAGE.' 128 % NSTRNG = INTEGER REPRESENTATION OF MASTER DATA ELEMENTS 131 % STRING = REAL REPRESENTATION OF MASTER DATA SIRING FOM 141 % MASTER RECORD. 131 % STRING = REAL REPRESENTATION OF MASTER CALL REAL- 133 % ULD DATA ELEMENTS BELONGING TO A 145 % NAME # ARAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- 146 % DICTIONARY ENTRIES TO 1) DETERMINE MALPHA- 156 % NAME # ARAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- 164 % OTORY ENTRIES TO 1) DETERMINE DICT- 138 % NAME # ARAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- 164 % OTORY ENTRIES TO 1) DETERMINE THAT A 165 % NAME # ARAY SPECIFYING THE ALPHANUMERIC ENTRY IN 143 % WORDS THE ARAY SPECIFYING THE ALPHANUMERIC ONTARY ENTRY DOES NOT EAST THAT A 164 % OCOMPUTER WORDS (LESS THAN OR EQUAL 10 7) 142 % WORDS THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS 148 % WORDS THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS 148 % WORDS THE TOTAL ATA ALEMENTS. 150 % KHEGIN = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS 148 % WORDS = THE TOTAL ATA THE ALPHANUMERIC ENTRY IN 144 % KWORD = AN ARAY SPECIFYING THE ALPHANUMERTOF TO TOTAL 147</pre>					
107 % FILE. 108 % 109 % NELEM = NUMBER OF DATA ELEMENTS IN A MASTER HECORD. 110 % VLIST = DATA ELEMENT NAMES AS THEY APPEAR IN THE 111 % DEFINITION AND MASK FILES. 112 % ITYPE = Type DESIGNATION OF THE DATA ELEMENTS AS 113 % LISTED IN THE MASK FILES. 114 % ITYPE = 1INTEGER TYPE DATA 115 % ITYPE > 10DATA CONSISTS OF A DICTIONARY 116 % ITYPE > 10DATA CONSISTS OF A DICTIONARY 117 % POINTER TO REFERENCE A LOOKUP IN THE 118 % (ITYPE - 10) TH DICTIONARY. 119 NREC NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 % KOIC INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO 121 % IMAGE = INTEGER REPRESENTATION OF MASTER DATA 122 % FILE. INTEGER REPRESENTATION OF MASTER DATA 123 # IMAGE = INTEGER REPRESENTATION OF MASTER DATA 124 % ELEMENTS. INTHE AND 125 <td></td> <td></td> <td></td> <td></td> <td></td>					
109 NELEM = NUMBER OF DATA ELEMENTS IN A MASTER HECORD. 110 % VLIST = DATA ELEMENT NAMES AS THEY APPEAR IN THE 111 % DEFINITION AND MASK FILES. 112 % ITYPE TYPE DESIGNATION OF THE DATA ELEMENTS AS 113 % LISTED IN THE MASK FILE. 114 % ITYPE = 1INTEGER TYPE DATA 115 % ITYPE = 2REAL TYPE DATA 116 % ITYPE = 2REAL TYPE DATA 117 % POINTER TO REFERENCE A LOOKUP IN THE 118 % ITYPE - 10)TH DICTIONARY. 119 % NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 118 % (ITYPE - 10)TH DICTIONARY. IDICTIONARY 120 % KUIC INDMER TO REFERENCE A LOOKUP IN THE 121 % UCCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY 122 % FILE. IDICTIONARY POINTERS 123 !MAGE INTROGER REPRESENTATION OF MASTER DATA 124 * ELEMENTS, INCLUDING INTEGER A ALPHANUMERIC 125 MIMAGE INTROUGH EQUIVALENCE WITH 'IMAGE.* </td <td></td> <td></td> <td></td> <td>- C</td> <td>RECORD SUITABLE FOR POSITING UNTO THE MASTER</td>				- C	RECORD SUITABLE FOR POSITING UNTO THE MASTER
109%NELEM= NUMBER OF DATA ELEMENTS IN A MASTER NECORD.110%VLIST= DATA ELEMENT NAMES AS THEY APPEAR IN THE111%DEFINITION AND MASK FILES.112%ITYPE= TYPE DESIGNATION OF THE DATA ELEMENTS AS113%LISTED IN THE MASK FILES.114%ITYPE = 1INTEGER TYPE DATA115%ITYPE > 10DATA CONSISTS OF A DICTIONARY116%ITYPE > 10DATA CONSISTS OF A DICTIONARY117%POINTER TO REFERENCE A LOOKUP IN THE118%ITYPE > 10DATA CONSISTS OF A DICTIONARY119%NREC= NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120%KDICIDENTIFY THE MASTER FILE BEING USED AND TO121%LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122%FILE.123%IMAGE124%ELEMENTS, INCLUDING INTEGER DATA AND125%DICTIONARY POINTERS.126%QIMAGE127%THROUGH EQUIVALENCE WITH 'IMAGE.'128%NSTRNG129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%STRING131\$TRING132\$TRING133\$TRING134\$MAGE135NAME136\$ALL DATA ELEMENTS BELÔNGING TO A137MASTER RECORD.138\$TRING139\$INTEGER REPRESENTATION OF THE DATA SIRING FOR ALL133 <td></td> <td></td> <td>rice.</td> <td></td> <td></td>			rice.		
110VLISTDATA ELEMENT NAMES AS THEY APPEAR IN THE DEFINITION AND MASK FILE.111DEFINITION AND MASK FILE.112ITYPE113LISTED IN THE MASK FILE.114ITYPE = 1INTEGER TYPE DATA115ITYPE = 1INTEGER TYPE DATA116ITYPE = 1INTEGER TYPE DATA117POINTER TO REFERENCE A LOOKUP IN THE118ITYPE = 10DATA CONSISTS OF A DICTIONARY119NRCC119NRCC119NRCC119NRCC110ITYPE - 10)TH DICTIONARY.119LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY120FILE.121LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122FILE.123IMAGE124RELEMENTS, INCLUDING INTEGER DATA AND125DICTIONARY POINTERS.126QIMAGE127MAGE128NSTRNG129ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)129GELONGING TO A MASTER RECORD.131STRING = REAL REPRESENTATION OF THE DATA STRING FOR ALL132STATEMENT) OF THE DATA STRING FOR ALL133NAME134MASTER RECORD.135NAME136NAME137DICTIONARY ENTRIES TO 1) DETERMINE THAT A138NAME144NUMERIC DATA FOR COMPATER WORDS) OF NEW ALPHA-135NAME136NAME137DICTIONARY ENTRIES TO 1) DETERMINE THAT A138NAME <tr< td=""><td></td><td></td><td>ALC L PA</td><td>_</td><td></td></tr<>			ALC L PA	_	
111 \$ DEFINITION AND MASK FILES. 112 \$ ITYPE TYPE DESIGNATION OF THE DATA ELEMENTS AS 113 \$ LISTED IN THE MASK FILE. 114 \$ ITYPE = 1INTEGER TYPE DATA 115 \$ ITYPE = 1INTEGER TYPE DATA 116 \$ ITYPE > 10DATA CONSISTS OF A DICTIONARY 117 \$ POINTER TO REFERENCE A LOOKUP IN THE 118 \$ ITYPE > 10DATA CONSISTS OF A DICTIONARY 119 \$ NREC NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE. 120 \$ KDIC INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO 121 \$ LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY 122 \$ FILE. 123 IMAGE INTEGER REPRESENTATION OF MASTER DATA 124 \$ INTEGER REPRESENTATION OF THE DATA SIRING FOR 124 \$ INTEGER REPRESENTATION OF THE DATA SIRING FOR 125 \$ DICTIONARY POINTERS. 126 \$ QIMAGE REAL REPRESENTATION OF THE DATA SIRING FOR 127 \$ INTEGER REPRESENTATION OF THE DATA SIRING FOR					
112ITYPETYPEDESIGNATION OF THE DATA ELEMENTS AS113LISTED IN THE MASK FILE.114ITYPE = 1INTEGER TYPE DATA115ITYPE = 2REAL TYPE DATA116ITYPE > 10DATA CONSISTS OF A DICTIONARY117POINTER TO REFERENCE A LOOKUP IN THE118ITYPE > 10DATA CONSISTS OF A DICTIONARY119NRECNUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120KDICINDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO121LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122FILE.123IMAGEINTEGER REPRESENTATION OF MASTER DATA124LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY125DICTIONARY POINTERS.126QIMAGEREAL REPRESENTATION OF MASTER DATA ELEMENTS127THHOUGH EQUIVALENCE WITH 'IMAGE.'128NSTRNGINTEGER REPRESENTATION OF THE DATA SINING FOR129ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130BELONGING TO A MASTER RECORD.131STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132STAIME = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-133NAME144MASTER RECORD.134DICTIONARY ENTRIES TO 1) DETERMINE THAT A135NAME136DICTIONARY ENTRIES TO 1) DETERMINE THAT A137DICTIONARY ENTRY DOES NOT EXIST FOR THE138NEDED TO TORRE RAW DATA FOR THE IST THROUGH144MASTER RECORD.139DICTIONARY ENTRY DOES NOT EXIST FOR THE14			VLISI	-	
113%LISTED IN THE MASK FILE.114%ITYPE = 1INTEGER TYPE DATA115%ITYPE = 2INTEGER TYPE DATA116%ITYPE = 2REAL TYPE DATA117%POINTER TO REFERENCE A LOOKUP IN THE117%POINTER TO REFERENCE A LOOKUP IN THE118%(ITYPE = 10)TH DICTIONARY.119%NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120%KOIC = INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122%FILE.123%IMAGE = ENTGER REPRESENTATION OF MASTER DATA124%DICTIONARY POINTERS.125%DICTIONARY POINTERS.126%QIMAGE = REAL REPRESENTATION OF MASTER DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORO.131%STRING = REAL REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS GINTEGER & ALPHANUMERIC)133%STRING = REAL REPRESENTATION OF THE DATA SIRING FOR 			TTYOC		
114ITYPE = 1INTEGER TYPE DATA115ITYPE = 1INTEGER TYPE DATA116ITYPE > 2REAL TYPE DATA117ITYPE > 10DATA CONSISTS OF A DICTIONARY117POINTER TO REFERENCE A LOOKUP IN THE118(ITYPE - 10)TH DICTIONARY.119NRECNUBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120KOICINDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO121LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122FILE.123IMAGEINTEGER REPRESENTATION OF MASTER DATA124ELÉMENTS, INCLUDING INTEGER DATA AND125DICTIONARY POINTERS.126QIMAGEREAL REPRESENTATION OF MASTER DATA ELEMENTS127THROUGH EQUIVALENCE WITH 'IMAGE.'128NSTRNGINTEGER REPRESENTATION OF THE DATA SIRING FOK129ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130BELONGING TO A MASTER RECORD.131STRINGREAL REPRESENTATION (HROUGH EQUIVALENCE132STATEMENT) OF THE DATA STRING FOR ALL REAL-133YALUED DATA FOR COMPATISON WITH EXISTING134MASTER RECORD.135NAME136DICTIONARY ENTRIES TO 1) DETERMINE UNCT-137DICTIONARY ENTRIES TO 1) DETERMINE UICT-138IONARY POINTER OR 2) TO DETERMINE THAT A139DICTIONARY ENTRIES TO 1) DETERMINE THAT A141LT143NUMERC OF WORDS (LESS THAN OR EQUAL 10 7)144KWORD AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145COMPUTER WORDS			TITPE	æ	
115SITYPE2REALTYPE DATA116ITYPE10DATACONSISTS OF A DICTIONARY117POINTER TO REFERENCE A LOCKUP IN THE118(ITYPE - 10)TH DICTIONARY.119NRECNUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120KOICINDEX TO IDENTIFY THE MASTER FILE BELING USED AND TO121LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122FILE.123IMAGE124DICTIONARY POINTERS.125DICTIONARY POINTERS.126GIMAGE127THROUGH EQUIVALENCE WITH *IMAGE.*128NSTRNG = INTEGER REPRESENTATION OF MASTER DATA SIRING FOR129ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130BELONGING TO A MASTER RECORD.131STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132STATEMENT) OF THE DATA STRING FOR ALL REAL-133VALUED DATA ELEMENTS BELÖNGING TO A134MASTER RECORD.133MASTER RECORD.134STRING = ARAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-135NAME136DICTIONARY ENTRIES TO 1) DETERMINE UICT-137DICTIONARY ENTRIES TO 1) DETERMINE UICT-138ITONARY PORTER OR 2) TO DETERMINE UICT-139DICTIONARY ENTRIES TO 1) DETERMINE UICT-138IONARY POINTER OR 2) TO DETERMINE UICT-139DICTIONARY ENTRIES TO 1) DETERMINE UICT-138IONARY POINTER OR 2) TO DETERMINE UICT-138NUMERIC DATA FOR THE LEST THANUM144K WO					
116ITYPE > 10DATA CONSISTS OF A DICTIONARY117POINTER TO REFERENCE A LOOKUP IN THE118ITYPE > 10DATA CONSISTS OF A DICTIONARY.119NRECNUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120KOICINDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO121LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122FILE.123IMAGEINTEGER REPRESENTATION OF MASTER DATA124ELEMENTS. INCLUDING INTEGER DATA AND125DICTIONARY POINTERS.126QIMAGEREPRESENTATION OF MASTER DATA ELEMENTS127THROUGH EQUIVALENCE WITH 'IMAGE.'128NSTRNGINTEGER REPRESENTATION OF THE DATA SIRING FOR129ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130BELONGING TO A MASTER RECORD.131STRINGREAL REPRESENTATION (THROUGH EQUIVALENCE132STATEMENT) OF THE DATA STRING FOR ALL PEAL-133VALUED DATA ELEMENTS BELÔNGING TO A134MASTER RECORD.135NAME136DICTIONARY ENTRIES TO 1) DETERMINE DICT-137DICTIONARY ENTRY DOES NOT EXIST FOR THE140GIVEN DICTIONARY ENTRY DOES NOT EXIST FOR THE143LT144KWORD143NUMBER OF WORDS (LESS THAN OR EQUAL 10 7)144NEDEDE TO STORE THE ALPHANUMERIC ENTRY IN143NUMBER OF WORDS RESERVED FOR EACH RAW DATA144KWORD145MORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS146NEEDED TO STORE RAW DATA FOR					
117POINTER TO REFERENCE A LOOKUP IN THE (ITYPE - 10)TH DICTIONARY.118IITYE - 10)TH DICTIONARY.119NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120KDIC = INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY FILE.123IMAGE = INTEGER REPRESENTATION OF MASTER DATA ELEMENTS. INCLUDING INTEGER DATA AND DICTIONARY POINTERS.126@ IMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'128NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130% BELONGING TO A MASTER RECORD.131% STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE MALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130% BELONGING TO A MASTER RECORD.131% STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE STATEMENT) OF THE DATA STRING FOR ALL REAL- VALUED DATA ELEMENTS BELÔNGING TO A MASTER RECORD.133% DICTIONARY ENTRIES DO I) DETERMINE UICT- IONARY POINTER OR 2) TO DETERMINE UICT- IONARY POINTER OR 2) TO DETERMINE UICT- IONARY PONTER WORDS NOT EXIST FOR THE MUMERIC DA STORE THE ALPHANUMERIC ENTRY IN NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH THE I-TH DATA ELEMENTS.144% KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF COMPUTER WORDS RESERVED FOR EACH RAW DATA ELEMENT.145 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
118(ITYPE = 10)TH DICTIONARY.119%NREC= NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120%KDIC= INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY123%IMAGE= INTEGER REPRESENTATION OF MASTER DATA ELÉMENTS, INCLUDING INTEGER DATA AND DICTIONARY POINTERS.126%QIMAGEREPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'128%NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE BELONGING TO A MASTER RECORD.133%YALUED DATA ELEMENTS (INTEGER & ALPHANUMERIC)134%MASTER RECORD.135%NAME144%IONARY POINTER OR 2) TO COMPUTER WORDS) OF NEW ALPHA- NUMERIC DATA FOR COMPARISON WITH EXISTING DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%IONARY POINTER OR 2) TO DETERMINE THAT A139%IONARY POINTER OR 2) TO DETERMINE OF COMPUTER WORDS141%ITNUMBER OF WORDS RESERVED FOR EACH RAW D					
119%NREC= NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.120%KDIC= INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY121%FILE.122%FILE.123%IMAGE= INTEGER REPRESENTATION OF MASTER DATA ELÉMENTS. INCLUDING INTEGER DATA AND DICTIONARY POINTERS.126%QIMAGE= REAL REPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'128%NSTRNG= INTEGER REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC) BELONGING TO A MASTER RECORD.131%STRING= REAL REPRESENTATION (THROUGH EQUIVALENCE STATEMENT) OF THE DATA STRING FOR ALL REAL- VALUED DATA ELEMENTS BELÖNGING TO A MASTER RECORD.133%STRING= RRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- NUMERIC DATA FOR COMPARISON WITH EXISTING DICTIONARY ENTRY DOES NOT EXIST FOR THE GIVEN DICTIONARY ENTRY DOES NOT EXIST FOR THE GIVEN DICTIONARY CATEGORY.141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL 10 7) NEEDED TO STORE THE ALPHANUMERIC ENTRY IN "NAME."143%MORDS= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF COMPUTER WORDS RESERVED FOR EACH RAW DATA ELEMENT.144%KWORD= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF COMPUTER WORDS RESERVED FOR EACH RAW DATA ELEMENT.145%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH THE I-TH DATA ELEMENTS.149%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WO					
120%KDIC= INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY FILE.121%FILE.122%FILE.123%IMAGE= INTEGER REPRESENTATION OF MASTER DATA ELÉMENTS, INCLUDING INTEGER DATA AND DICTIONARY POINTERS.126%QIMAGE= REAL REPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'126%QIMAGE= REAL REPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'127%THTEGER REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING= REAL REPRESENTATION (THROUGH EQUIVALENCE STATEMENT) OF THE DATA STRING FOR ALL REAL- VALUED DATA ELEMENTS BELÖNGING TO A MASTER RECORD.133%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE STATEMENT) OF THE DATA STRING FOR ALL REAL- NUMERIC DATA FOR COMPARISON WITH EXISTING DICTIONARY ENTRIES TO 1) DETERMINE UICT- 138138STRING = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- NUMERIC DATA FOR COMPARISON WITH EXISTING DICTIONARY ENTRY DOES NOT EXIST FOR IHE 100ARY POINTER OR 2) TO DETERMINE UICT-138%IONARY POINTER OR 2) TO DETERMINE THAT A DICTIONARY ENTRY DOES NOT EXIST FOR IHE 141141%IONARY POINTER OR 2) TO DETERMINE THAT A DICTIONARY ENTRY DOES NOT EXIST FOR IHE 141143%IONARY POINTER OR 2) TO DETERMINE THAT A DICTIONARY ENTRY DOES NOT EACH RAW DATA ELEMENT.144%KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF <td></td> <td></td> <td>NOTO</td> <td>_</td> <td></td>			NOTO	_	
121%LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY122%FILE.123%IMAGE = INTEGER REPRESENTATION OF MASTER DATA124%ELÉMENTS, INCLUDING INTEGER DATA AND125%DICTIONARY POINTERS.126%QIMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS127%THROUGH EQUIVALENCE WITH 'IMAGE.'128%NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÔNGING TO A134%MASTER RECORD.135%NAME = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%DICTIONARY ENTRIES TO 1) DETERMINE DICT-13810NARY POINTER OR 2) TO DETÉRMINE THAT A139%DICTIONARY CATEGORÝ.141%LT144%141%143%144%145%146%147%148%149%149%149%149%141%142%143%144%145%146%147%148% <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
122 % FILE. 123 % IMAGE INTEGER REPRESENTATION OF MASTER DATA 124 % DICTIONARY POINTERS. 125 ØIMAGE REAL REPRESENTATION OF MASTER DATA ELEMENTS 126 % QIMAGE REAL REPRESENTATION OF MASTER DATA ELEMENTS 127 % THROUGH EQUIVALENCE WITH 'IMAGE.' 128 % NSTRNG INTEGER REPRESENTATION OF THE DATA SIRING FOR 129 ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC) 130 % BELONGING TO A MASTER RECORO. 131 % STRING REAL REPREŠENTATION (THROUGH EQUIVALENCE 132 % STATEMEN) OF THE DATA STRING FOR ALL REAL- 133 % VALUED DATA ELEMENTS BELÔNGING TO A 134 % MASTER RECORO. 135 % NAME ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- 136 % DICTIONARY ENTRIES TO 1) DETERMINE DICT- 138 NAME ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- 139 % DICTIONARY ENTRIES TO 1) DETERMINE DICT- 138 NUMERIC DATA FOR COMPARISON WITH EXISTING 141			KUIC		
123MAGEINTEGER REPRESENTATION OF MASTER DATA124%DICTIONARY POINTERS.125%OICTIONARY POINTERS.126%QIMAGEREAL REPRESENTATION OF MASTER DATA ELEMENTS127%THROUGH EQUIVALENCE WITH 'IMAGE."128%NSTRNGINTEGER REPRESENTATION OF THE DATA SIRING FOR129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRINGREAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%STATEMENT) OF THE DATA STRING FOR ALL REAL-134%MASTER RECORD.135%NAME136%DICTIONARY ENTRIES TO 1) DETERMINE DICT-13810ARY POINTER OR 2) TO DETÉRMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%MUDER OF WORDS (LESS THAN OR EQUAL 10 7)142%NUMBER OF WORDS (LESS THAN OR EQUAL 10 7)143%NUMENT144%KWORD44%MORDS THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS145%EDEDT OS STORE RAW DATA FOR THE 1ST THROUGH </td <td></td> <td></td> <td></td> <td></td> <td></td>					
124*ELEMENTS, INCLUDING INTEGER DATA AND DICTIONARY POINTERS.125*DICTIONARY POINTERS.126*QIMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'128*NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130*BELONGING TO A MASTER RECORD.131*STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE 			THACE	_	
125BDICTIONARY POINTERS.126%QIMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS THROUGH EQUIVALENCE WITH 'IMAGE.'128%NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE STATEMENT) OF THE DATA STRING FOR ALL REAL- VALUED DATA ELEMENIS BELÖNGING TO A133%VALUED DATA ELEMENIS BELÖNGING TO A134%MASTER RECORD.135%NAME = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA- NUMERIC DATA FOR COMPARISON WITH EXISTING DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%DICTIONARY ENTRIES TO 1) DETERMINE DICT-139%DICTIONARY ENTRIES TO 1) DETERMINE DICT-139%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%NUMBER OF WORDS (LESS THAN OR EQUAL 10 7)142%NUMBER OF WORDS (LESS THAN OR EQUAL 10 7)143%"NAME."144%KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF COMPUTER WORDS RESERVED FOR EACH RAW DATA145%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH THE			IMAGE	-	
126%QIMAGE =REAL REPRESENTATION OF MASTER DATA ELEMENTS127%THROUGH EQUIVALENCE WITH *IMAGE.*128%NSTRNG =INTEGER REPRESENTATION OF THE DATA STRING FOR129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING =REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%STATEMENT) OF THE DATA STRING FOR ALL REAL-134%MASTER RECORD.135%NAME =ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LTNUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NAME."143%COMPUTER WORDS RESERVED FOR EACH RAW DATA144%KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%THE I-TH DATA ELEMENTS.150%KHEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%THE I-TH DATA FOR THE 1ST THROUGH THE					
127%THROUGH EQUIVALENCE WITH *IMAGE.*128%NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÖNGING TO A134%MAME135%NAME136%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NUMBER OF WORDS RESERVED FOR EACH RAW DATA144%KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS149%THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO150%KBEGIN = THE TOTAL FOR THE TOR THE TO			OTHACE	_	
128%NSTRNG = INTEGER REPRESENTATION OF THE DATA SIRING FOR129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÖNGING TO A134%MASTER RECORD.135%NAME = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%DICTIONARY ENTRIES TO 1) DETERMINE DICT-13810NARY POINTER OR 2) TO DETERMINE UICT-139%DICTIONARY ENTRIES TO 1) DETERMINE THAT A13910CTIONARY ENTRY DOES NOT EXIST FOR THE141%LT141%141%143%144%145%146%147%147%147%147%149%149%149%150%151%151%151%150%151%150%150%150%151151150151151150150151151151150150150150150			GIMAGE		
129%ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPREŠENTATION (THROUGH EQUIVALENCE)132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÔNGING TO A134%MASTER RECORD.135%NAME136%137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%IONARY POINTER OR 2) TO DETERMINE UICT-138%DICTIONARY ENTRIES TO 1) DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORÝ.141%LT142%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)143%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)144%KWORD145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KHEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO			NETONO	_	
130%BELONGING TO A MASTER RECORD.131%STRING = REAL REPREŠENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÕNGING TO A134%MASTER RECORD.135%NAME= ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%DICTIONARY ENTRIES TO 1) DETERMINE DICT-139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LTNUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORDA NARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE			NOTKING	-	
131%STRING = REAL REPRESENTATION (THROUGH EQUIVALENCE132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÔNGING TO A134%MASTER RECORD.135%NAME= ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%IONARY POINTER OR 2) TO DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LT142%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)143%NAME."144%KWORD145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KHEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
132%STATEMENT) OF THE DATA STRING FOR ALL REAL-133%VALUED DATA ELEMENTS BELÖNGING TO A134%MASTER RECORD.135%NAME= ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE UICT-138%DICTIONARY ENTRIES TO 1) DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LTNUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORDAN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE			STOTAG	_	-
133%VALUED DATA ELEMENTS BELÖNGING TO A134%MASTER RECORD.135%NAME= ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%DICTIONARY ENTRIES TO 1) DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143*********************************			SIKTNO	-	
134%MASTER RECORD.135%NAME= ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%IONARY POINTER OR 2) TO DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LT142%NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KUEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
135%NAME=ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%IONARY POINTER OR 2) TO DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR 1HE140%GIVEN DICTIONARY CATEGORY.141%LT142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
136%NUMERIC DATA FOR COMPARISON WITH EXISTING137%DICTIONARY ENTRIES TO 1) DETERMINE DICT-138%IONARY POINTER OR 2) TO DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LT141%LT142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN151%STORE RAW DATA FOR THE 1ST THROUGH THE			NAME	Ŧ	
137%DICTIONARY ENTRIES TO1) DETERMINE DICT-138%IONARY POINTER OR2) TO DETÉRMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THÉ140%GIVEN DICTIONARY CATEGORÝ.141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE				-	
138%IONARY POINTER OR 2) TO DETERMINE THAT A139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORY.141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORDAN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
139%DICTIONARY ENTRY DOES NOT EXIST FOR THE140%GIVEN DICTIONARY CATEGORÝ.141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
140%GIVEN DICTIONARY CATEGORY.141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL 10 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN= THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
141%LT= NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
142%NEEDED TO STORE THE ALPHANUMERIC ENTRY IN143%"NAME."144%KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE			LT	Ξ	
143%"NAME."144%KWORD = AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE	-				
144%KWORD= AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS= THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN= THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
145%COMPUTER WORDS RESERVED FOR EACH RAW DATA146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE			KWORD	=	-
146%ELEMENT.147%NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
147 %NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS148 %NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149 %THE I-TH DATA ELEMENTS.150 %KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151 %STORE RAW DATA FOR THE 1ST THROUGH THE					
148%NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE			NWORDS	=	
149%THE I-TH DATA ELEMENTS.150%KBEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO151%STORE RAW DATA FOR THE 1ST THROUGH THE					
150 % KEEGIN = THE TOTAL MAXIMUM NUMBER OF WORDS NEEDED TO 151 % STORE RAW DATA FOR THE 1ST THROUGH THE					
151 % STORE RAW DATA FOR THE 1ST THROUGH THE			KBEGIN	=	
	152	56			(I-1)TH DATA ELEMENTS.

10		TROER-DATE ENTRY, RETRIEVAL, AND OPDATE FOR NORDS
•		
153	*5	KEND = THE MAXIMUM NUMBER OF WORDS NEEDED TO STORE
154	%	THE I-TH DATA ELEMENT. THIS UNSUBSCHIPTED
155	%	VARIABLE IS EQUIVALENT TO KWORD(I).
156	%	NDIC = DICTIONARY CATEGORY REFÉRENCE NUMBER.
157	%	NUM = TOTAL NUMBER OF DICTIONARY ENTRIES IN THE
158	%	"NDIC" DICTIONARY CATEGORY.
159	%	MAXREC = MAXIMUM RECORD KEY IN THE MASTER FILE.
160	%5 av	KEYR = KEY NUMBER FOR RECORDS TO BE ADDED FOLLOWING
161	%	THE LAST RECORD ("MAXREC") IN THE MASTER FILE.
162 163	% 	KWT = TOTAL OF ALL "NELEM" "KWORD"S.
164	%	ALFIN = DUMMY ARRAY TO DESIGNATE INPUT FILE NAME.
165	% %	ALFOUT = DUMMY ARRAY TO DESIGNATE NAME OF TRANSLATED
165	70 %0	FILE TO BE POSTED TO THE MASTER FILE.
167	хо Хо	QQIN = DUMMY ARRAY TO BE ÊNCODED INTO "ALFIN." QQOUT = DUMMY ARRAY TO BE ENCODED INTO "ALFOUT."
168	70 %5	WWOOT = DOMMI ARRAT TO BE ENCODED INTO "ALFOUTO"
169	70	
170		DIMENSION IMAGE(400), NSTRNG(400), % ITYPE(400), QIMAGE(400), STRING(400), %
171		KWORD(400), NAME(7), VLIST(400), %
172		ALFIN(5), ALFOUT(5), QQIN(5), %
173		QQOUT(5), NODATA(4)
174		DOUBLE PRECISION VLIST
175		COMMON NAMED(800), ITYPE, PAD(401), VLIST, NELEM
176		COMMON /LOG/ MONTH.IDAY.IYEAR,ILOG.MAXREC.KWOHD.KDIC.IRITE
177		EQUIVALENCE (IMAGE, QIMAGE), (NSTRNG, STRING)
178		DATA IBLANK,QBLANK,YES,XNO/1 1,1 1,1YES1.1NO1/
179		DATA QQIN/ + EQUA + + + + + + + + + + + + + + + + + + +
180		DATA QUIT/+QUIT+/
181		DATA NODATA/ NO DI , ATA I, ENTEI , RED I/
182		IF (IRITE .EQ. 23) GO TO 1
183		WRITE(6,1009)
184	1009	FORMAT(/! THE ADD RECORD PROCEDURE IS DESIGNED TO READ A! %
185		* RAW DATA INPUT FILE AND CONVERT*/* THE RECORDS TO THE* %
186		RECORD STRUCTURE THAT IS COMPATIBLE WITH THE MASTER FILE*/%
187		• OF "PACER," CHECKING FOR CORRECT DICTIONARY ENTRIES, AND * *
188		PROMPTING THE DATA!/ MANAGER TO REQUEST ADDITION OF THE * *
189		• NONMATCHING DICTIONARY ENTRIES TO THE 1/1 DICTIONARY LIST * *
190		• OR TO CORRECT THE INPUT ENTRY SO THAT IT MAICHES A VALUE 1/%
191		ALREADY IN THE DICTIONARY LIST. 1//1 IF THE INPUT FILE DOES!*
192 193		• NOT CONTAIN RAW DATA, THE DATA MANAGER CAN EXIT THIS / %
193		• REVISION PROCEDURE TO SELECT A DIFFERENT PROCEDURE (3-5) * %
195	1	<pre>' BY ENTERING "QUIT,"'/' WHEN PROMPTED FOR A FILE NAME.'//) READ(5,1002,PROMPT='NAME OF RAW DATA INPUT%</pre>
196	-	E: 1) QQIN(4),QQIN(5)
197	L T T	$IF(QQIN(4) \bullet EQ \bullet QUIT) GO TO 999$
198		READ (5,1002, PROMPT= 'NAME OF TRANSLATED FILE%
199	FOR	PUSTING TO MASTER FILE: 1) QQOUT(4),QQOUT(5)
200	1 011	IF (QQOUT(4) .EQ. QUIT) GO TO 999
201		QQ1 = QQ0UT(4)
202		QQ2 = QQ0UT(5)
203	1003	FORMAT (A4,2A3,A4,A2)
204		ENCODE (ALFIN, 1003, ERR=998) QQIN
205		ENCODE (ALFOUT,1003,ERR=998) QQOUT
206		CALL OBEY (ALFIN+4)

PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS

```
207
          CALL OBEY (ALFOUT, 4)
208
          KEYR = MAXREC
209
          KWT =
                  0
210
          DO 2 I=1,NELEM
211
     2
          KWT = KWT + KWORD(I)
212
          WRITE(6,1011)
213
     1011 FURMAT(/' DO YOU WISH TO DISPLAY EACH RECORD IN THE '*
214
          "INPUT FILE ON THE TERMINAL?")
          READ(5,1001, PROMPT= "YES" OR "NO": ') REVIZ
215
     5
216
          IF((REVIZ .NE. YES) .AND. (REVIZ .NE. XNO)) GU TO 5
217
          NREC = 0
218
     100
          NWORDS
                  =
                      0
          IF (KDIC .EQ. 1) CALL REDUSC (NSTRNG, STRING, KEYP, $999)
219
          IF (KDIC .EQ. 2) CALL REDUSA (NSTRNG, STRING, KEYP, $999)
220
          IF (KDIC .EQ. 3) CALL REDUSC (NSTRNG, STRING, KEYP, $999)
221
222
          NREC = NREC + 1
223
          DO 99 I=1+NELEM
224
          NWORDS = NWORDS + KWORD(I)
225
          IF(ITYPE(I) - 2) = 10,20,30
226
     Ж.
227
     %
        LOAD INTEGER DATA INTO THE "PACER" RECORD FORMAT.
228
     96
          IMAGE(I) = NSTRNG(NWORDS)
229
     10
230
          IF (KDIC .NE. 1) GO TO 15
231
          IF(I .EQ. 26 .AND. IMAGE(26) .EQ. 0) IMAGE(26) = ILOG
232
          IF (KDIC .NE. 2) GO TO 16
     15
          IF(I .EQ. 23 .AND. IMAGE(23) .EQ. 0) IMAGE(23) = ILOG
233
234
          IF(KDIC .NE. 3) GO 10 99
     16
235
          IF(I \cdotEQ. 26 \cdotAND. IMAGE(26) \cdotEQ. 0) IMAGE(26) = ILOG
236
          GO TO 99
237
     86
        LOAD REAL DATA INTO THE "PACER" RECORD FORMAT.
238
     Ж.
239
     %
240
     20
          QIMAGE(I) = STRING(NWORDS)
241
          GO TO 99
242
     %
        CHECK ALPHANUMERIC ENTRIES FOR DICTIONARY CONSISTENCY.
243
    *
244
        IF ENTRY DOES NOT APPEAR IN THE DICTIONARY ... CHECK WITH
     %
        THE DATA MANAGER TO DETERMINE IF IT IS INTENDED THAT
245
     Ж,
246
        THE ENTRY BE ADDED TO THE DICTIONARY. THEN, COMPUTE
     %
247
        THE DICTIONARY POINTERS AND LOAD THE DATA INTO THE
     Ж.
248
        "PACER" RECORD FORMAT.
     %
249
     %
250
     30
          KEND = KWORD(I)
251
          KBEGIN =
                      NWORDS - KWORD(I)
          KP1 = KBEGIN + 1
252
253
          IF(I .EQ. 5 .AND. NSTRNG(KP1) .EQ. IBLANK)
                                                        NSTRNG(KP1) = !-!
254
          IF(I .EQ. 7 .AND. NSTRNG(KP1) .EQ. IBLANK)
                                                        NSTRNG(KP1) = !-!
255
     40
          DO 41 K=1.7
256
     41
          NAME (K)
                  = IBLANK
257
     50
          LT = 0
258
          DO 51 K=1,KEND
259
          NAME(K) = NSTRNG(KBEGIN + K)
260
     51
          IF (NAME(K) .NE. IBLANK) LT = LT + 1
```

```
PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS
72
261
          IF (LT .NE. 0) GO TO 54
262
          DO 52 K=1,4
263
     52
          NAME(K) = NODATA(K)
264
          LT = 4
265
          DO 53 K=1,KEND
266
     53
          NSTRNG(KBEGIN+K) = NAME(K)
267
          NDIC = ITYPE(I) - 10
     54
268
          CALL MATCH (NAME, NDIC, LT, MKFY, NUM, $994, $995)
269
          IMAGE(I) = MKEY - NDIC*10000
270
          GO TO 99
271
     994
          WRITE(6,2001) VLIST(I), NAME
272
     2001 FORMAT(/ THERE IS NO DICTIONARY MATCH FOR DATA NAME: 1%
273
          +A7/+ ALPHANUMERIC DATA: +,7A4/%
274
          I DO YOU WISH TO ENTER THIS DATA IN THE DICTIONARY?
275
          READ (5+1001+PROMPT=+"YES" OR "NO": ") TEST
     55
276
     1001 FORMAT(A4)
277
          IF ((TEST .NE. YES) .AND. (TEST .NE. XNO)) GO TO 55
          IF(TEST .NE. YES) GO TO 60
278
279
          NUM = NUM + 1
280
          CALL ADDICT (NAME + LT + NDIC + NUM)
281
          IMAGE(I) = NUM
282
          GO TO 99
283
     60
          WRITE(6,2002) VLIST(I)
284
     2002 FORMAT(/ ENTER DATA VALUE FOR DATA NAME "",A/, "")
285
          DO \ 61 \ L=1.7
286
     61
          NAME(L) = IBLANK
287
          READ(5,1002, PROMPT= DATA VALUE: 1) NAME
288
     1002 FORMAT(7A4)
289
          D0 62 K=1,KEND
290
     62
          NSTRNG(KBEGIN+K) = NAME(K)
291
          GO TO 50
292
     995
          WRITE (6,2003)
293
     2003 FORMAT(/ BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE. !)
294
          GO TO 60
     99
295
          CONTINUE
296
          IF (KEYP _{\text{LT}} 1) KEYR = KEYR + 1
297
          KEYA = KEYR
298
          IF(KEYP GT 0) KEYA = KEYP
299
          IF (REVIZ .EQ. 'YES' .AND. KDIC .EQ. 1)
                                                       %
```

APPENDIX C

300		CALL OUTUSC(NSTRNG,STRING,KEYA,KWT)
301		IF (REVIZ .EQ. 'YES' .AND. KDIC .EQ. 2) %
302		CALL OUTUSA (NSTRNG, STRING, KEYA, KWT)
303		IF(REVIZ .EQ. 'YES' .AND. KDIC .EQ. 3) %
304		CALL OUTUSC(NSTRNG,STRING,KEYA,KWT)
305		WRITE(21,KEY=KEYA) (IMAGE(I),I=1,NELEM)
306		GU TO 100
307	999	WRITE(6+2005)
308	2005	FORMAT(/! THE INPUT FILE IS NOW READY FOR POSIING ONTO!/%
309		THE MASTER FILE. IF YOU WISH TO MAKE FURTHER CHANGES, 1/%
310		I TO THIS FILE BEFORE IT IS POSTED, SELECT THE SEQUEN IAL, 1/%
311		I BATCH, OR KEYED REVISION PROCEDURE AND SPECIFY THE NAME!/%
312		' OF THIS FILE.')
313		REWIND 31
314		RETURN 1
315	998	WRITE(6,1010)
316	1010	FORMAT(' NAME OF FILE HAS BEEN IMPROPERLY ENTERED.)
317		GO TO 1
318		END

,

SUBROUTINE DELREC

This subroutine is used for the deletion of the contents of a record contained in the master file. A listing of subroutine DELREC appears at the end of this discussion. The corresponding record in the reference subfile is deleted in its entirety. The position of the deleted record, however, is maintained in the master file. A deletion message is inserted in 3 of the alphanumeric data fields, and the ID number is replaced by a coded log number, specifying the date and the identification number of the data manager responsible for the deletion.

The COMMON statements contain the same variable names as are contained in the COMMON statements of subroutine REVISE. The DATA statement (line 170) initializes the variable, IBLANK, to be used for the testing of input. The message providing instructions to the user (lines 172–188) is suppressed if IRITE has been previously given the value of 23 (line 171).

The master-file index, KDIC, is tested (lines 108– 194) to determine which master file will be equivalenced to file 30 and which "save" file will be equivalenced to file 33. Then, both file 30 and file 33 are rewound (lines 195–196) to prepare them to be opened in the update mode by subroutine UPDATE (lines 197–198).

The data manager is then prompted to provide the key number for the record to be deleted (lines 199– 200). Key number, KEYR, is tested (line 201) for a negative value which concludes the deletion procedure by transferring execution to statement 999. If the value of KEYR is positive, the record with that key number is read from the master file (line 202), decoded into the raw data form, and displayed on the output device.

The counter for the number of computer words, NWORDS, is set to zero (line 203), and the DO loop (lines 204-224) contains the logic for translating the master record to the raw-data form for display. The DO loop index ranges from 1 to the number of data elements, NELEM, and the ITYPE array is tested to determine the type of each data element.

If the data-element type is an integer, control passes to statement 110 (line 206) where the index, in terms of number of computer words, NWORDS, is computed for the position of that element. Then, the integer data is transferred from the I-th masterfile element of IMAGE into the NWORDS-th computer word of NSTRNG (line 207) with control passing to statement 200, the end of the DO loop.

If the data-element type is a real number, control passes from the ITYPE test (line 205) to statement 120 (line 209) where the NWORDS index is then computed for that element. Then, the real data are transferred from the I-th master file element of QIMAGE into the NWORDS position of STRING (line 210). Control then passes to the end of the DO loop for recycling to the next data-element position.

If the data-element type is alphanumeric, control passes from the test of ITYPE (line 205) to statement number 130, where the dictionary pointer value is tested for nonblank value (line 212). If it is blank, the word length of the alphanumeric string, LT, is set to zero (line 213), and the logic then jumps to statement 145 (line 219). If the string is nonblank, control passes to statement 135 (line 215), where subroutine SCANDC is called to return the value for the alphanumeric string from the dictionary entry referenced by the integer value of IMAGE. The dictionary category number is equal to the value of ITYPE minus 10.

The LT nonblank words of the alphanumeric string, NAME, which was returned from SCANDC, are then transferred into the appropriate positions of the NSTRNG array (lines 216 and 217). If some of the words at the end of the string are blank (that is, if LT is less than the KWORD value for that data element, line 218), then blanks are substituted into the remaining NSTRING positions reserved for that data element (lines 219–222). The computer word counter, NWORDS, is then incremented by the number of computer words reserved for the next data element (line 223), and the end of the DO loop is reached (line 224).

After the DO loop activities have been concluded for all NELEM data elements, the deleted record is displayed in the output format according to the format subroutine determined by the value of the master-file index, KDIC (lines 225–227). The deleted record is also written onto the "save" file on file 33.

All data elements belonging to the master-file record are then blanked out (lines 229-230), and a special deletion message is superimposed onto the master-file record (lines 231-240). Parts of the deletion message are stored in several of the different data-element dictionaries. These data-element positions vary according to the master-file record structure. Therefore, the master-file index, KDIC, must be tested (lines 232-236) to determine the dataelement positions for storage of the deletion message.

The blanked record containing the deletion information is then written over its original position on the master file (line 241), and it is deleted in its entirety from the subfile on file unit 21 (line 242) by means of the INFONET-dependent subroutine DE-LETE. This deletion from the subfile prevents the recreation of the record should the total subfile be posted onto the master file at a later time.

Control is then returned (line 243) to statement 100 for a new key number. If a negative value is entered to conclude the deletion procedure, a message is printed (lines 244-246), files 30 and 33 are rewound (lines 247-248) to remove them from the update mode, and control is returned to subroutine REVISE by the RETURN 1 statement (line 249). If, during the dictionary lookup (subroutine SCANDC), a blank alphanumeric string is encountered, a message is printed (lines 250-254), the master file is closed by a REWIND (line 255), and control is returned to subroutine REVISE (line 256).

As in the other subroutines, INFONET-dependent subroutines are used to place data files in the update mode by first calling subroutine OBEY (lines 189-194) to dynamically equivalence the master file and the subfile to files 30 and 33, respectively, and then, by calling subroutine UPDATE (lines 197-198), to place them in the update mode. The deletion of keyed records from file 21 is accomplished through the use of subroutine DELETE (line 242). Also, certain of the subroutine logic is data dependent and must be modified to accommodate the addition of new master files. This logic occurs in the testing of KDIC for executing the subroutine OBEY calls (lines 189-194), the testing of KDIC for calling the outputdisplay routines (lines 225-227), and the logic for inserting the message onto the master record (lines 229-240) with the associated KDIC tests for the different data positions.

100		BROUTINE	DEI	LREC
101	%			
102	%			BROUTINE "DELREC" (DELETE RECORD).
103	%			GNED TO DELETE INFORMATION FROM THE RECORDS OF
104	Ж	THE MASTI	ER	FILE, LEAVING A CODED IDENTIFICATION NUMBER
105	%	TO SHOW	TH	E DATE OF DELETION AND THE IDENTIFICATION OF
106	%	THE DATA	M	ANAGER RESPONSIBLE FOR EXECUTING THE DELETION.
107	%	A DELETI	ON	MESSAGE IS ALSO SUPERIMPOSED OVER SEVERAL OF
108	*	THE DATA	F	IELDS WITH THE REMAINING DATA FIELDS LEFT BLANK
109	%			IN THE KEYED MASTER FILE.
110	%		•	
111	%	THE RECO	RD	DELETED FROM THE MASTER FILE IS WRITTEN FOR
112	%			ON ONTO A SAVE DELETION ("ESAVE," "WSAVE," OR
113	%			ILE AS WELL AS PRINTED OUT IN HARD COPY ON THE
114	%			JTPUT DEVISE.
115	%			
116	×	NELEM	=	NUMBER OF DATA ELEMENTS IN A MASTER RECORD.
117	%			DATA ELEMENT NAMES AS THEY APPEAR IN THE
118	×	10101	-	DEFINITION AND MASK FILES.
119	%	ITYPE	-	TYPE DESIGNATION OF THE DATA ELEMENTS AS
120	×	THE	-	LISTED IN THE MASK FILE.
121	×			ITYPE = $1_{\bullet\bullet}$ INTEGER TYPE DATA
122	×			ITYPE = 2REAL TYPE DATA
123	ж Ж			
123	ж Ж			ITYPE > 10DATA CONSISTS OF A DICTIONARY
125	70 %5			POINTER TO REFERENCE A LOOKUP IN THE
			_	(ITYPE - 10)TH DICTIONARY.
126	%	NREC		NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.
127	%	KDIC	Ξ	INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO
128	%			LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY
129	%	T		FILE.
130	%	IMAGE		INTEGER REPRESENTATION OF MASTER DATA
131	%			ELÉMENTS, INCLUDING INTEGER DATA AND
132	%			DICTIONARY POINTERS.
133	%	QIMAGE	#	REAL REPRESENTATION OF MASTER DATA ELEMENTS
134	%			THROUGH EQUIVALENCE WITH 'IMAGE.'
135	Ж	NSTRNG	Ħ	INTEGER REPRESENTATION OF THE DATA STRING FOR
136	%			ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)
137	%			BELONGING TO A MASTER RECORD.
138	%	STRING	=	REAL REPRESENTATION (THROUGH EQUIVALENCE
139	*6			STATEMENT) OF THE DATA STRING FOR ALL REAL-
140	%			VALUED DATA ELEMENIS BELONGING TO A
141	%6			MASTER RECORD.
142	Ж	NAME	=	ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-
143	%			NUMERIC DATA FOR COMPARISON WITH EXISTING
144	*6			DICTIONARY ENTRIES TO 1) DETERMINE DICT-
145	%			IONARY POINTER OR 2) TO DETERMINE THAT A
146	%			DICTIONARY ÊNTRY DOES NOT EXIST FOR THE
147	Ж			GIVEN DICTIONARY CALEGORY.
148	Жо	LT	=	NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)
149	%			NEEDED TO STORE THE ALPHANUMERIC ENTRY IN
150	%			"NAME . "
151	%	KWORD	=	AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF
152	%			COMPUTER WORDS RESERVED FOR EACH RAW DATA

APPENDIX C

153	OK.	CL CMC	NIT		
153	%5 %5	ELEME		MBER OF COMPUTER	MAPAS
155	ж Жо			DATA FOR THE 1ST	
156	%		-TH DATA ELEMEN		
157		COMMON	NAMED (800) .	ITYPE,	*5
158			PAD(401),	VLIST,	76 76
159			NELEM		-
160		COMMON /LOG/	MONTH	IDAY,	*5
161			IYEAR.	ILOG,	9 b
162			MAXREC,	KWORD.	ж
163			KDIC,	IRITE	
164		DOUBLE PRECISI	ON	VLIŠT(400)	
165		DIMENSION	ITYPE(400)•	KWORD(400),	%
166			IMAGE(400),		%
167				STRING(400),	%
168			NAME (7)		
169			(IMAGE, QIMAGE),	(NSTRNG,STRING)	
170		DATA IBLANK/			
171		IF (IRITE .EQ.	23) GO TO 50		
172 173	2001	WRITE(6,2001)	TO THE MACTER		TTON ODOCDUDE 1 4
174	2001			FILE RECORD DELE Manager Will SP	
175			E RECORD TO BE I		LETED 1/ %
176				RVATION, ONTO TH	
177				ES. THEN, THE D	
178				BLANKED, AND A N	
179					THE MASTER FILE
180				DDED TO CONTAIN	
181				TION NUMBER OF 1/	
182				CUTING THE DELET	
183		* ADDITION, A*	/ DELETION MES	SAGE WILL BE SUP	ERIMPOSED OVER 1 3
184				TO NOTE 1/1 TO TH	
185					U IN THE MASTER 1/3
186					ED THE DELETION **
187				AT 1/1 THE PROMPT	FOR "KEY" WILL'S
188		I END THE PROC			
189	50	•		UATE 30 WCOAL + + 4	
190 191				UATE 33 WSAVE 1,4	
192				JATE 30 USALYT++ JATE 33 SAVUSA++	
192				UATE 30 ECOALI,4	
194				UATE 33 ESAVE 1,4	
195		REWIND 30		DAIL DO LOATLIT	•
196		REWIND 33			
197		CALL UPDATE (30	•1)		
198		CALL UPDATE (33			
199	100		T= KEY NUMBER O	F RECORD TO BE%	
200		ETED: 1) KEYR			
201	-	IF (KEYR .LT. 0			
202			YR) (ĪMAGE(I)+I	=1,NELEM)	
203		NWORDS = 0			
204		DO 200 I=1,NEL			
205		IF(ITYPE(I) -	· · · · · · · · · · · · · · · · · · ·		
206	110	NWORDS = NWO	RDS + KWORD(I)		

```
NSTRNG(NWORDS) = IMAGE(I)
207
208
          GO TO 200
209
     120
          NWORDS = NWORDS + KWORD(I)
210
          STRING(NWORDS) = QIMAGE(I)
211
          GO TO 200
212
     130
          IF (IMAGE (I) .NE. IBLANK) GO TO 135
213
          LT = 0
214
          GO TO 145
215
     135
          CALL SCANDC(ITYPE(I)=10, IMAGE(I), NAME, LT, $996)
216
          DO 140 J=1.LT
217
     140
          NSTRNG(J+NWORDS) = NAME(J)
218
          IF(LT .GE. KWORD(I)) GO TO 155
219
     145
          LAST = KWORD(I)
          LTP1 = LT + 1
220
221
          DO 150 J=LTP1+LAST
222
     150
          NSTRNG(J+NWORDS) = IBLANK
223
     155
          NWORDS = KWORD(I) + NWORDS
224
     200
          CONTINUE
          IF (KDIC .EQ. 1) CALL OUTUSC (NSTRNG, STRING, KEYR, NWORDS)
225
          IF (KDIC .EQ. 2) CALL OUTUSA (NSTRNG, STRING, KEYR, NWORDS)
226
227
          IF (KDIC .EQ. 3) CALL OUTUSC (NSTRNG, STRING, KEYR, NWORDS)
          WRITE(33,KEY=KEYR) (IMAGE(I),I=1,NELÊM)
228
229
          DO 300 I=1, NELEM
230
    300
          IMAGE(I)
                       IBLANK
                    =
231
          IMAGE(11)
                    = 2
          IF (KDIC .NE. 1 .OR. KDIC .NE. 3) GO TO 305
232
233
                         2
          IMAGE(14) =
234
          IMAGE(17)
                        523
                     =
235
          IMAGE(26) = ILOG
     305
236
          IF (KDIC .NE. 2) GO TO 310
237
          IMAGE(13)
                    =
                        2
238
          IMAGE(15)
                     =
                         523
239
          IMAGE(23) =
                        ILOG
240
     310
          CONTINUE
241
          WRITE(30,KEY=KEYR) (IMAGE(I),I=1,NELEM)
242
          CALL DELETE (21,KEYR,1)
243
          GO TO 100
244
     999
          WRITE(6,1002)
     1002 FORMAT (/ YOU HAVE ENTERED A NEGATIVE KEY VALUE TO TERMINATE **
245
246
          * THE DELETION PROCEDURE.*)
247
          REWIND 30
248
          REWIND 33
249
          RETURN 1
250
     996
          WRITE(6,1010) KEYR
     1010 FORMAT (/ ALPHANUMERIC DATA CONTAINS BLANK ENTRIES FOR !
251
                                                                          16
          * RECORD KEY NUMBER: 1,187 * RECORD HAS EITHER ALREADY BEEN' *
252
253
          I DELETED OR BEEN INCORRECTLY ENTEREDI// SELECT PROCEDURE!
                                                                          ΥЬ.
          • FOUR (KEY REVIEW) TO REVIEW AND CORRECT THIS PROBLEM. •
                                                                          )
254
          REWIND 30
255
256
          RETURN 1
257
          END
```

```
78
```

SUBROUTINE SEQREV

Subroutine SEQREV is designed to perform a sequential review of the records contained in a subfile of the master file. A listing of subroutine SEQREV appears at the end of this discussion. After each record is read in sequence, subroutine MODIFY is called to perform the revision of the data elements in the subfile and to call for display of the record. The option of posting the subfile to the master file cannot be executed until program control is returned to REVISE.

The COMMON statements (lines 122–123) contain the variables as listed in the discussion of REVISE. Because the first 405 words in the COM-MON statement labeled LOG are not used in SEQREV, they have simply been lumped into an array called IDUMMY.

If the IRITE variable transmitted through COM-

MON has a value of 23, instructions for use of the sequential revision procedure are not displayed (lines 125-139). Then, the number of records reviewed, NREC, is initialized to zero (line 140), and the sequential reading of the subfile begins (line 141). If an end of file is encountered during the read, all of the records in the subfile have been read. and control proceeds to statement 999 (line 144), which returns program control to REVISE. If a record has been read from the subfile, NREC is incremented by 1, and subroutine MODIFY is called. If the characters, QUIT, have not been entered for the prompt, NAME OF DATA ELEMENT TO BE CHANGED, program control is returned from MODIFY to statement 500 of subroutine SEQREV for the next sequential read. If QUIT has been entered, MODIFY makes a standard return to SEQREV, which, in turn, executes a standard return (line 144) to REVISE.

100		DUTINE SEQREV (NREC)
101	%	TO TO OURDAUTINE MACADENIA ACCAUGNITES, DEVICEDON
102		HIS IS SUBROUTINE "SEQREV" (SEQUENTIAL REVISION) .
103		I IS DESIGNED TO READ AND DISPLAY RECORDS, IN
104		EQUENCE, FROM A SUBFILE OF THE MASTER FILE FOR THE
105		EVIEW AND POSSIBLE REVISION OF EACH RECORD. WHEN
106		HE ENTIRE SUBFILE HAS BEEN EXAMINED AND THE NECESSARY
107		EVISIONS COMPLETED, CONTROL WILL BE RETURNED TO
108		JBROUTINE "REVISE" WHERE THE DATA MANAGER MAY EXERCISE
109		HE OPTION OF POSTING THE REVISED FILE ONTO THE MASTER
110		ILE.
111	%	
112	%	NREC = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.
113	%	IMAGE = INTEGER REPRESENTATION OF MASTER DATA
114	%	ELEMENTS, ÍNCLUDÍNG INTEGER DATA AND
115	%	DICTIONARY POINTERS.
116	%	QIMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS
117	%	THROUGH EQUÎVALÊNCE WITH 'IMAGE.'
118		DIMENSION VLIST(400), ITYPE(400), %
119		IMAGĒ(400), QIMAGE(400)
120		EQUIVALENCE (IMAGE,QIMAGE)
121		DOUBLE PRECISION VLIST
122		CUMMON NAMED (800) + ITYPE + PAD (401) + VLIST + NELEM
123		COMMON /LOG/ IDUMMY(405),KDIC, IRITE
124		IF (IRITE .EQ. 23) GO TO 499
125		WRITE(6,1001)
126	1001	FORMAT(// RECORDS FROM THE DESIGNATED SUBFILE WILL BE! %
127		PRESENTED SEQUENTIALLY FOR REVIEW 1/1 AND UPDATE. AFTER 1 %
128		ALL RECORDS HAVE BEEN EXAMINED BY THE REVIEWER, HE MAY! %
129		' THENI/ ELECT TO POST THE RECORDS IN THIS SUBFILE ONTO THE'S
130		" MASTER FILE. 1// WHENEVER YOU WISH TO LEAVE A SELECTED! %
131		1 DATA ELEMENT UNCHANGED, ENTER AN1/1 ASTERISK, *,1 %
132		' FOLLOWED BY A CARRIAGE RETURN. 1//1 IF YOU WISH TO PROCEDE 1%
133		I TO THE NEXT RECORD IN THE FILE, ENTER THE CHARACTERS!/ %
134		" "NEXT" FOLLOWING THE PROMPT: "NAME OF DATA ELEMENT TO BE! %
135		' CHANGED." THE "NEXT" 1/1 COMMAND WILL LEAVE THAT RECORD! %
136		IN ITS ORIGINAL, UNREVISED STATE AND THE NEXT 1/1 RECORD! %
137		* WILL BE DISPLAYED, IN SEQUENCE, FROM THE SUBFILE. IF AT **
138		* ANY TIME // YOU DO NOT WISH TO REVIEW THE REMAINDER OF * %
139		THE FILE, ENTER "QUIT."
140	499	NREC = 0
141	500	READ(21,END=999) (IMAGE(I),I=1,NELEM)
142		NREC = NREC + 1
143		CALL MODIFY (\$500, IMAGE, QIMAGE)
144	999	RETURN
145		END

SUBROUTINE KEYREV

Like SEQREV, most of the record modification is accomplished by a call to subroutine MODIFY. A listing of subroutine KEYREV appears at the end of this discussion. The record selection, however, is accomplished by specifying the key value for a record from the subfile instead of reading the records sequentially.

The variables in the COMMON statements (lines 120-121) are identical with those in the SEQREV discussion. The DATA statement (line 122) initializes IYES and NO for testing against user entries. If the value of IRITE is other than 23 (line 123), the instruction message for the keyed revision procedure will be displayed (lines 124-140).

The number of records reviewed, NREC, is set to zero (line 141), and the user is prompted to enter the value for the record key, IKEY (line 142). Then, IKEY is tested for a negative value (line 143), which will lead to termination of the keyed revision procedure by a transfer to statement 999 for the display of a termination message giving the total number of records reviewed (lines 147-150).

If the IKEY value is positive, NREC is incremented by one (line 144), and the record with that key value is read from the subfile on unit 21 (line 145). Subroutine MODIFY is called (line 146) for the user interactive modification of each record referenced from the subfile. If the QUIT command has not been entered while under the control of MODI-FY, and if modification of the record has been completed, control will be returned to statement 100, where the user is prompted for a YES or NO answer to post the record to the master file (lines 153–156). If the response is other than a YES or a NO, a test for these values (line 157) will recycle to statement 10 until the appropriate input is entered. If the response is YES, the record is posted onto the master file on unit 20 (line 158).

A prompt is made for intent to review more records (lines 159–161). Again, a YES or NO response is required. If the test does not match a YES or a NO value (line 162), control is returned to statement 20 for re-entry of the proper value. A NO value will terminate the keyed revision procedure and return to REVISE (line 163). If the value is YES, control (line 164) is recycled to statement 500 for the entry of the key of the next record to be reviewed.

No INFONET-dependent library software is used in this subroutine, nor is there any logic that is dependent on the structure of the master file.

```
100
     SUBROUTINE KEYREV(*)
101
102
     56
        THIS IS SUBROUTINE "KEYREV" (KEYED REVISION).
103
        IT IS DESIGNED TO READ AND DISPLAY RECORDS, AS SPECIFIED
     15
104
     %
        BY RECORD KEY, FROM A SUBFILE OF THE MASTER FILE FOR THE
105
     *
        REVIEW AND POSSIBLE REVISION OF EACH RECORD.
                                                       WHEN A
106
     %
        RECORD HAS BEEN REVIEWED, THE DATA MANAGER IS GIVEN
        THE OPTION OF POSTING THE RECORD ONTO THE MASTER
107
     %
108
        FILE OR LEAVING IT IN THE SUBFILE FOR FURTHER REVIEW.
     56
109
     %
110
     %
          NREC
                 = NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.
111
     36
          IMAGE
                 = INTEGER REPRESENTATION OF MASTER DATA
112
     %
                   ELEMENTS, INCLUDING INTEGER DATA AND
113
     $
                   DICTIONARY POINTERS.
114
     %
          QIMAGE = REAL REPRESENTATION OF MASTER DATA ELEMENTS
115
                   THROUGH EQUIVALENCE WITH "IMAGE."
     15
116
                          VLIST(400),
                                          ITYPE (400),
                                                           Ж,
          DIMENSION
117
                          IMAGE(400),
                                          QIMAGE (400)
118
          EQUIVALENCE
                         (IMAGE, QIMAGE)
119
          DOUBLE PRECISION
                                          VLIST
120
                    NAMED(800), ITYPE, PAD(401), VLIST, NELEM
          COMMON
121
          COMMON /LOG/ IDUMMY(405),KDIC, IRITE
122
          DATA
               IYES,NO/YES, NO!/
123
          IF (IRITE .EQ. 23) GO TO 499
124
          WRITE(6,1001)
125
     1001 FORMAT(/' RECORDS FROM THE DESIGNATED SUBFILE WILL BE'
                                                                         Ж.
126
          PRESENTED, AS SPECIFIED BY KEY!/! NUMBER, FOR REVIEW AND!
                                                                        56
127
          UPDATE. AFTER THE REVIEWER HAS EXAMINED THE CONTENTS!/
                                                                        96
          • OF THE RECORD OF INTEREST, HE MAY ELECT TO POST THAT!
128
                                                                        %
129
          I RECORD ONTO THE MASTERI/I FILE.I//I REGARDLESS OF WHETHERIS
          ' THE RECORD IS POSTED TO THE MASTER FILE, IT WILL REMAIN, 1/%
130
131
          I AS REVISED, IN THE SUBFILE. 1//1 TO ACCESS THE DESIRED!
                                                                        96
132
          + RECORD, RESPOND TO THE PROMPT "KEY" BY ENTERING THE 7/
                                                                        96
          * RECORD**S KEY NUMBER. ...
133
                                       ENTERING A "-1" WILL CONCLUDE!
                                                                        96
134
          THE KEYED ACCESSI/I PROCEDURE.I//I IF YOU WISH TO GO ONI
                                                                        56
135
          • TO ANUTHER RECORD IN THE FILE, ENTER THE CHARACTERS.
                                                                        16
          I "NEXT" I/I FOLLOWING THE PROMPT: "NAME OF DATA ELEMENT TO!
                                                                        %
136
          " BE CHANGED." THE "NEXT" COMMAND!/! WILL LEAVE THAT!
137
                                                                        96
138
          I RECORD IN ITS ORIGINAL, UNREVISED STATE AND PROMPT FOR!
                                                                        %
139
          THE NEXTIZI RECORD KEY.IZI WHENEVER YOU WISH TO LEAVE A! %
140
          I SELECTED DATA ELEMENT UNCHANGED, ENTERI/I AN ASTERISK, *...)
141
     499
          NREC = 0
142
     500
          READ(5,*,PROMPT='KEY: ') IKEY
143
          IF(IKEY .LT. 0) GO TO 999
144
          NREC =
                   NREC + 1
145
          READ(21,KEY=IKEY) (IMAGE(I),I=1,NELEM)
146
          CALL MODIFY ($800, IMAGE, QIMAGE)
147
     999
          WRITE(6,1002) NREC
148
     1002 FORMAT(/' THE KEYED ACCESS REVISION PROCEDURE HAS BEEN'
                                                                       З.
149
          * TERMINATED.*/* A TOTAL OF*,14,* RECORDS HAVE BEEN*
                                                                       Ж.
150
          * REVIEWED.*)
151
          REWIND 21
152
     998 RETURN 1
```

```
82
```

153	800	WRITE(6,2001)
154	2001	FORMAT(/ DO YOU WISH TO POST THIS RECORD TO THE MASTER \$
155		' FILE?!)
156	10	READ(5,1003, PROMPT= ! "YES" OR "NO": !) ITEST
157		IF((ITEST .NE. IYES) .AND. (ITEST .NE. NO)) GO TO 10
158		IF (ITEST .EQ. IYES) WRITE (20, KEY=IKEY) (IMAGE (I), I=1, NELEM)
159		WRITE(6,2002)
160	2002	FORMAT(/ DO YOU WANT TO REVIEW ANY MORE RECORDS?)
161	20	READ(5,1003, PROMPT= "YES" OR "NO": 1) ITEST
162		IF((ITEST .NE. IYES) .AND. (ITEST .NE. NO)) GO TO 20
163		IF(ITEST .EQ. NO) RETURN 1
164		GO TO 500
165	1003	FORMAT (A4)
166		END

SUBROUTINE BATCH

This subroutine is used to change *all* subfile records to contain a specified data value for a particular data element. A listing of subroutine BATCH appears at the end of this discussion. After the batch revisions have been entered onto the specified subfile, control is returned to subroutine REVISE, where the option is presented for posting the subfile onto the master file.

The COMMON statements (lines 163–164) contain the same variables as already described in the discussion of subroutine REVISE. The EQUIVA-LENCE statement (line 165) is used to permit interchangeability of the integer and the real master-record data arrays, IMAGE and QIMAGE; the integer- and real-data string arrays, NSTRNG and STRING; and the integer and real representations of the asterisk value, ISTAR and STAR, for signaling that the input data value should be left unchanged. The DATA statements (lines 166–167) establish the alphanumeric data values for those quantities. These values are used for the logical testing of user-entered input, or for the blanking of data.

As in all other of the updating subroutines, if the value 23 has been previously entered for IRITE, the test for this value (line 168) will cause the instruction message (lines 169–176) to be skipped.

The user is then prompted for the name of the data element to be changed (lines 177-179). If the value QUIT is entered, the test (line 180) causes the batch revision procedure to be terminated with a transfer to statement 999 for a termination message (lines 277–279) and a normal return to subroutine REVISE. If the value, QUIT, has not been entered, the name of the data element is checked against the list of data-element names to ensure that a legitimate name has been entered (lines 181-184). The user is prompted again (lines 185–187) if the name has been improperly entered. This check for the dataelement name also references the value of ITEM, the position of that data element in the master-file record. The value of ITYPE for the ITEM-th position is checked for the data type assigned to that particular data element (line 188).

If the value of ITYPE is equal to 1, control is transferred to statement 110 (line 193), where the user is prompted for entry of the integer data value. If the user enters an asterisk, the test (line 194) is satisfied, and control moves to statement 997, where a message is displayed telling the user that the data item is not changed (lines 273–275). Otherwise, the input value is transferred to the appropriate position of the IMAGE array (line 195), and control is transferred (line 196) to statement 155 for the posting of this data change onto all the records in the subfile.

If the value of ITYPE is equal to 2, a real-data type, control is transferred to statement 120 (line 201), where the user is prompted for entry of the decimal input. Again, if the user enters an asterisk, the test (line 202) is satisfied, and control is transferred to statement 997. If data other than an asterisk is entered, it is placed in the appropriate position of the QIMAGE array (line 203), and then control is transferred (line 204) to statement 155 for the posting of this real-data change onto all the records in the subfile.

Finally, if the ITYPE value for the ITEM-th data position is greater than 2, the corresponding data consists of an alphanumeric dictionary entry, and control is transferred to statement 130 (line 211). Here the logic is structured (lines 211–215) to find the first position, KSUM, and the last position, KSUMP1, of the raw-data array, NSTRING, for storage of the new alphanumeric data-element entry. The user is then prompted for entry of the data value (lines 216–217). If an asterisk has been entered (line 218), control again passes to statement 997 for a commentary message before recycling to statement 60 (line 178) for selection of another data element to be changed.

The alphanumeric data value in NSTRING is then transferred into the seven-word array, NAME (lines 219-224), for comparison with the list of dictionary entries. The number of the dictionary category, NDIC, is determined by subtracting 10 from the ITYPE value for the ITEM-th data element (line 225). Then, subroutine MATCH is called (line 226) to search for a matching alphanumeric entry in that dictionary category. If a match is found, the pointer is computed from NDIC and the calling sequence variable, MKEY, and is stored in the ITEM-th position of the IMAGE array (line 227).

If there is no dictionary match, control is passed through the calling sequence to statement 995, where a message is written (lines 259–262) stating that there is no dictionary match for the given element name and the data-element value. A YES or NO response (line 263) permits the user to add the dataelement value to the dictionary. The response is tested (line 264) for a YES or NO entry. If any other data were entered, the prompt is displayed once again. A NO response indicates that the data value is unsatisfactory for dictionary entry (line 265), and control is transferred to statement 60 (line 178), prompting again for the name of the data element to be changed.

If a YES response is given, the number of dictionary entries, NUM, is incremented by 1 (line 266). The value of NUM has been previously retrieved through the calling sequence of subroutine MATCH. NUM appears in the calling sequence of subroutine ADDICT (line 267) for computation of the key value pointing to the new dictionary entry. The value of NUM is then incremented by 1 and stored at the beginning of that dictionary category. It is also stored in the ITEM-th position of the IMAGE array (line 268) for posting onto the subfile, and control is transferred (line 269) to statement 155.

After the numeric data have been entered, or after the proper dictionary entry pointer has been determined for the alphanumeric data, the subfile is ready for revision. The counter for number of records is set to zero (line 236). The subfile is rewound (line 237), placed in the update mode (line 238), and read from the beginning, one record at a time (line 239), with the dummy data array, IDATA. The changed data-element value in the IMAGE array is placed into the same position of the IDATA array (line 240). The number of records, NREC, is incremented by 1 (line 241). The INFONET subroutine, GET-KEY, is used (line 242) to obtain the key number associated with the last record read from the subfiles. The changed record is overwritten onto the subfile (line 243) in the same keyed position from which it was read. Control then is transferred (line 244) to statement 160 to read the next record in the file.

When the last record has been read from the subfile, the end of file mark is encountered by the next attempt to read that subfile (line 239), and control is transferred to statement 170, where a message is displayed asking the user if there are any more data elements to be changed. If there are more data elements to be changed, the program cycles back through the same logic. If, however, QUIT is entered for the name of the data element to be changed, control is transferred (line 180) to statement 999, where a termination message is written (lines 277-279), and a standard return (line 280) is made to subroutine REVISE.

Subroutine BATCH does not require any special modification whenever the structure of the master file changes. Two statements in the program, however, are dependent on the INFONET computer system. These are the call to the UPDATE routine (line 238) and the call to the GETKEY routine (line 242). The UPDATE routine permits file 21 to be overwritten without destroying all other data records residing on that file. The GETKEY routine accesses the key value for the last record to be read. This value is required in order to rewrite the record back onto the subfile.

100		BROUTINE	BA'	TCH(*+NREC)
101	%			
102	%	··· + · +		"BATCH" IS DESIGNED FOR MAKING BATCH CHANGES
103	%			ARAMETERS OF A SUBFILE SELECTED FROM THE MASTER
104	%			HANUMERIC ENTRIES ARE CHECKED WITH THE DICTION-
105	%			ACCURACY AND, IF THERE IS NO COMPARABLE ENTRY
106	%			TIONARY, THE DATA MANAGER IS QUERIED WITH
107	%	•		THE VALIDITY OF THAT ALPHANUMERIC ENTRY
108	%	BEFORE A	DD	ING IT TO THE DICTIONARY LIST.
109	%			
110	%			BATCH CHANGES ARE MADE TO THUSE PARAMETERS,
111	%	CONTROL	IS	RETURNED TO SUBROUTINE "REVISE" FOR FURTHER
112	%	REVISION	S	TEPS OR FOR POSTING THE CHANGED SUBFILE ONTO
113	%	THE MASTI	ER	FILE.
114	%6			
115	%	NELEM	=	NUMBER OF DATA ELEMENTS IN A MASTER RECORD.
116	%	VLIST		DATA ELEMENTS NAMES AS THEY APPEAR IN THE
117	%			DEFINITION AND MASK FILES.
118	%	NREC	Ξ	NUMBER OF RECORDS REVIEWED IN THE SELECTED SUBFILE.
119	Ж	KDIC		INDEX TO IDENTIFY THE MASTER FILE BEING USED AND TO
120	%			LOCATE THE PROPER MAXREC VALUE FROM THE DICTIONARY
121	%			FILE.
122	%	ITYPE	=	TYPE DESIGNATION OF THE DATA ELEMENTS AS
123	96	* • • • •		LISTED IN THE MASK FILE.
124	xõ			ITYPE = 1INTEGER TYPE DATA
125	%			ITYPE = 2REAL TYPE DATA
125	ж Ж			ITYPE > 10DATA CONSISTS OF A DICTIONARY
120	70 %0			
128	70 %0			POINTER TO REFERENCE A LOOKUP IN THE
120		THEOD	_	(ITYPE - 10)TH DICTIONARY.
130	%6 %6	IMAGE	-	INTEGER REPRESENTATION OF MASTER DATA
131	70 %			ELEMENTS, INCLUDING INTEGER DATA AND
		0.1		DICTIONARY POINTERS.
132	%	GIMAGE	=	REAL REPRESENTATION OF MASTER DATA ELEMENTS
133	%			THROUGH EQUIVALENCE WITH 'IMAGE.'
134	%	NSTRNG	Ξ	INTEGER REPRESENTATION OF THE DATA SIRING FOR
135	%			ALL DATA ELEMENTS (INTEGER & ALPHANUMERIC)
136	%			BELONGING TO A MASTER RECORD.
137	%	STRING	H	REAL REPRESENTATION (THROUGH EQUIVALENCE
138	%			STATEMENT) OF THE DATA STRING FOR ALL REAL-
139	%			VALUED DATA ELEMENTS BELONGING TO A
140	%			MASTER RECORD.
141	%	ITEM		DATA ELEMENT POSITION INDEX FOR EACH RECORD.
142	%	NAME	Ξ	ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-
143	Ж			NUMERIC DATA FOR COMPARISON WITH EXISTING
144	%			DICTIONARY ENTRIES TO 1) DETERMINE DICT-
145	%			IONARY POINTER OR 2) TO DETERMINE THAT A
146	%			DICTIONARY ENTRY DOES NOT EXIST FOR THE
147	%			GIVEN DICTIONARY CATEGORY.
148	%	LT	Ħ	NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)
149	*5			NEEDED TO STORE THE ALPHANUMERIC ENTRY IN
150	%			"NAME"
151	%	KWORD	2	AN ARRAY SPECIFYING THE MAXIMUM NUMBER OF
152	*6			COMPUTER WORDS RESERVED FOR EACH RAW DATA

APPENDIX C

153 % ELEMENT. 154 NWORDS = THE TOTAL MAXIMUM NUMBER OF COMPUTER WORDS % 155 86 NEEDED TO STORE RAW DATA FOR THE 1ST THROUGH 156 96 THE I-TH DATA ELEMENTS. 157 NSTRNG(400). DIMENSION IMAGE (400) . * 158 ITYPE(400), QIMAGE (400) . STRING(400), ¥h 159 VLIST(400). KWORD (400), NAME(7) 160 DIMENSION IDATA (400) 161 DOUBLE PRECISION VLABEL, 16 162 QNEXT. VLIST. QUIT 163 CUMMÓN NAMED(800), ÎTYPE, PAD(401), VLIST, NELEM 164 COMMON /LOG/ MONTH, IDAY, IYEAR, ILOG, MAXREC, KWORD, KDIC, IRITE EQUIVALENCE (ISTAR, STAR), (IMAGE, QIMAGE), (NSTRNG, STRING) 165 166 DATA IBLANK, QBLANK, YES, XNO, STAR/! !, ! !, YES!, NO!, !*!/ 167 DATA QNEXT, QUIT/INEXT!, QUIT!/ 168 IF(IRITE .EQ. 23) GO TO 60 169 WRITE(6,1001) 170 1001 FORMAT(/ THIS IS THE BATCH UPDATE PROCEDURE. // GIVEN A ¥. 171 * SPECIFIED DATA ELEMENT NAME AND A SPECIFIED DATA ELEMENT ** 172 * VALUE, THIS!/! PROCEDURE CHANGES ALL RECORDS IN THE GIVEN!% 173 I SUBFILE TO THE DATA VALUE SPECIFIED // FOR THAT DATA У. 174 I ELEMENT NAME. /// THE BATCH EDIT/REVISION PROCEDURE CAN. g, 175 * BE TERMINATED BY ENTERING "QUIT" WHEN*/* A PROMPT FOR THE*% 176 I NAME OF THE DATA ELEMENT IS ENCOUNTERED.) 177 1002 FORMAT(A8) 178 60 READ (5,1002, PROMPT= 'NAME OF DATA ELEMENT TO% 179 BE CHANGED: .) VLABEL 180 IF (VLABEL .EQ. QUIT) GO TO 999 181 ITEM = 0182 DO 70 I=1.NELEM 183 ITEM = ITEM + 1184 70 IF (VLABEL .EQ. VLIST(I)) GO TO 80 185 WRITE(6,1003) 1003 FORMAT(/ ITEM NOT IN LIST OF DATA ELEMENTS, REENTER) 186 187 GO TO 60 188 80 IF (ITYPE (ITEM) = 2) 110,120,130 189 36 190 % THE FOLLOWING STATEMENTS PERMIT REPLACEMENT OF THE INTEGER 191 % DATA CONTAINED IN THE TIMAGE! ARRAY. 192 g, 193 READ (5, *, PROMPT="ENTER VALUE: 1) INPT 110 194 IF (INPT .EQ. ISTAR) GO TO 997 195 IMAGE(ITEM) = INPT 196 GO TO 155 197 Ж 198 % THE FOLLOWING STATEMENTS PERMIT REPLACEMENT OF THE REAL 199 * DATA CONTAINED IN THE "IMAGE" ARRAY. 200 % READ (5, *, PROMPT= ! ENTER DECIMAL VALUE: !) QPUT 201 120 202 IF (QPUT .EQ. STAR) GO TO 997 203 GIMAGE(ITEM) = QPUT 204 GO TO 155 205 206 % THE FOLLOWING STATEMENTS PERMIT REPLACEMENT OF ALPHA-

```
207
     % NUMERIC DATA, GENERATE NEW POINTERS, AND UPDATE THE
     % DICTIONARY IF THE SPECIFIED DATA VALUE DOES NOT
208
209
     % ALREADY RESIDE THERE.
210
     96
211
     130
          KSUM = 1
212
          ITEM1 = ITEM - 1
213
          DO 140 I=1.ITEM1
214
     140
          KSUM = KSUM + KWORD(I)
215
          KSUMP1 = KSUM + KWORD(ITEM) - 1
216
     1006 FURMAT(7A4)
217
          READ(5,1006,PROMPT='ENTER VALUE: ') (NSTRNG(I),I=KSUM,KSUMP1)
218
          IF (NSTRNG (KSUM) .EQ. ISTAR) GO TO 997
219
          LAST = KWORD(ITEM)
          KSUMM1 = KSUM - 1
220
221
          DO 145 I=1,7
222
     145
          NAME(I) = IBLANK
223
          DO 150 I= 1.LAST
224
     150
          NAME(I)
                  = NSTRNG(I+KSUMM1)
225
          NDIC = ITYPE(ITEM) - 10
226
          CALL MATCH (NAME, NDIC, LT, MKEY, NUM, $995, $996)
227
          IMAGE(ITEM) = MKEY - NDIC*10000
228
229
        THE FOLLOWING STATEMENTS READ, SEQUENTIALLY, ALL OF THE
     %
230
        RECORDS IN THE SUBFILE AND APPLY THE CHANGE IN DATA
     Ж.
        VALUE FOR THE SPECIFIED DATA PARAMETER TO EACH RECORD.
231
     Ж
232
        AND THEN REWRITE THE RECORD BACK ONTO THE SUBFILE.
     Ϋю.
233
     ۲6
234
     %
        "IDATA" IS USED AS A DUMMY I/O PARAMETER.
235
     Ж.
236
          NREC = 0
     155
237
          REWIND 21
238
          CALL UPDATE (21,1)
239
     160
          READ(21, END=170) (IDATA(I), I=1, NELEM)
          IDATA(ITEM) = IMAGE(ITEM)
240
241
          NREC = NREC + 1
          CALL GETKEY (21, IKEY)
242
          WRITE(21,KEY=IKEY) (IDATA(I), I=1,NELEM)
243
244
          GO TO 160
245
     170
         WRITE(6,1007)
     1007 FORMAT(/ DO YOU WISH TO CHANGE ANY MORE DATA ELEMENTS %
246
247
          BELONGING TO THIS FILE? ENTER *)
          READ (5,1008, PROMPT= "YES" OR "NO" I ) TEST
248
     180
249
     1008 FORMAT(A4)
250
          IF((TEST .NE. YES) .AND. (TEST .NE. XNO)) GO 10 180
251
          IF (TEST .EQ. YES) GO TO 60
252
          RETURN 1
253
          WRITE(6,1010)
     994
     1010 FORMAT(/ DICTIONARY KEY EXCEEDS PERMISSABLE CAPACITY*
254
255
      FOR THE GIVEN 1/1 DATA ELEMENT NAME.1/%
256
      I EXECUTION TERMINATED!!/%
257
          CONTACT PROGRAMMER.")
258
          STOP
259
     995 WRITE(6,2001) VLABEL, NAME
     2001 FORMAT(/ THERE IS NO DICTIONARY MATCH FOR DATA NAME: 1%
260
```

261		#A7/# ALPHANUMERIC DATA: ##7A4/%
262		" DO YOU WISH TO ENTER THIS DATA IN THE DICTIONARY?")
263	190	READ(5,1008, PROMPT=T"YES OR "NO": 1) TEST
264		IF((TEST .NE. YES) .AND. (TEST .NE. XNO)) GO TO 190
265		IF (TEST .EQ. XNO) GO TO 60
266		NUM = NUM+1
267		CALL ADDICT(NAME+LT+NDIC+NUM+\$994)
268		IMAGE(ITEM) = NUM
269		GO TO 155
270	996	WRITE(6,1009)
271	1009	FORMAT(/ BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.)
272		GO TO 170
273	997	WRITE(6,1011) VLABEL
274	1011	FORMAT(/+ YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE **
275		1X,A7, UNCHANGED, 17)
276		GO TO 60
277	999	WRITE(6,1012)
278	1012	FORMAT(/ YOU HAVE ENTERED "QUIT" TO TERMINATE THE BAICH \$
279		<pre>! EDIT/REVISION PROCEDURE.!)</pre>
280		RETURN
281		ËND

SUBROUTINE MODIFY

This subroutine is used to change the data values on a single record. A listing of subroutine MODIFY appears at the end of this discussion. It is called from subroutine SEQREV or from subroutine KEYREV. In either case, the record is accessed from the subfile by reading each record in sequence, as done by SEQREV, or by referencing the record by its key value, as performed in KEYREV. The user may modify as many data values as desired on a selected record. When modification of that record is concluded, control is returned to the calling subroutine for selection of the next record to be modified.

The major variables are identified and defined in the comments at the beginning of the listing. Those variables listed in the COMMON statements (lines 154–155) are identical with the variables discussed in subroutine REVISE. Again, the integer and real representations of (1) the raw-data strings, NSTRNG and STRING, (2) the master-file arrays, IMAGE and QIMAGE, and (3) the asterisk values, ISTAR and STAR, have been equivalenced in each case (line 156). The data fill is initialized (lines 157– 158) for alphanumeric values of YES, XNO, STAR, QNEXT, and QUIT, as well as the variables IBLANK and QBLANK, which are used for inserting blank data fill.

The first action by this subroutine is the decoding of the selected record from its master-file format to the raw-data format (lines 159–199) in order to display the record to the data manager for review. This process begins by initializing to zero (line 159) the counter for the number of computer words, NWORDS, used to store the first "I" data elements in the raw-data string. Then, each of the NELEM data elements is translated into its proper position in the raw-data string, beginning with the DO statement (line 160).

The I-th data element is tested for type by comparing the value in the I-th position of the ITYPE array with the integer 2 (line 161). Thus, if the ITYPE value is 1, the data element is an integer, and control passes to statement 10. If the ITYPE value is 2, the data element is real, and control is transferred to statement 20. If the ITYPE value is greater than or equal to 3 (in fact, ITYPE values will be greater than 10 to include pointer codes for the dictionary categories), the data type is alphanumeric, and control will be transferred to statement 30, where the relevant word string will be accessed from the (ITYPE-10)-th dictionary category.

At statement 10 (line 167), the value of

NWORDS is again incremented by the number of computer words, KWORD, reserved for the I-th data element. Then, the integer data in the I-th word of the master record array, IMAGE, is substituted into the NWORDS position of the raw-data string, NSTRNG (line 168). Next, control is transferred (line 169) to statement 99 for recycling through the DO loop for the next data element.

At statement 20 (line 175), the value of NWORDS is again incremented by the number of computer words, KWORD. The real data in the I-th word of the master record array, QIMAGE, is substituted into the NWORDS-th position of the raw-data string, STRING (line 176), and control is transferred (line 17) to statement 99 to continue through the DO loop, processing the next data element.

Statement 30 begins the logic of translating from the dictionary pointer of the data element to the alphanumeric string referenced by that pointer and contained in the dictionary category associated with that data element though the corresponding value in the ITYPE array. First, the IMAGE value is tested for blank data (line 186). If the value is blank, the length of the alphanumeric string, LT, is set to zero (line 187), and control is transferred (line 188) to statement 45. If the data in IMAGE is nonblank, control is transferred to statement 35, where subroutine SCANDC is used to select the corresponding alphanumeric entry from the dictionary (line 189). The calling sequence provides the dictionary category index, ITYPE minus 10, and the pointer, IMAGE. The array containing the alphanumeric string, NAME, and the value giving the number of computer words required for that string, LT, are returned from SCANDC through the calling sequence. If there is a blank dictionary entry corresponding to a nonblank integer value of the pointer, control is transferred to statement 996, where a message is displayed.

After the contents of the record have been displayed to the data manager, he is then prompted for the entry of the name of the data element to be changed (lines 205–206). If, instead of the data name, the characters, NEXT, or the characters, QUIT, are entered, action on the displayed record will be terminated. The entered value is first tested against the value of QNEXT (line 207), and if there is equality, the logic proceeds to statement 998, where a message is displayed (lines 283–285), and control is returned to the calling routine by a RETURN 1 statement (line 286). If the comparison with QNEXT fails, the variable name is next tested against the value of QUIT (line 208). If equality exists, control is transferred to statement 999, where a message is displayed (lines 287–289), and the record is rewritten onto the subfile (line 290), thus posting all modifications to the record prior to entry of the characters QUIT for the data-element name. A standard return (line 291) is then taken to the calling routine. If the characters, NEXT, have been entered for input of the data-element name, then control is returned to the calling routine without first rewriting the record onto the subfile. Therefore, none of the prior modifications made to that record are posted; instead, the record will remain in the subfile with its original contents unchanged.

If the value of the data-element name, VLABEL, was not entered with the characters NEXT or QUIT, the entry is then tested against all of the data-element names in the VLIST array to ensure that it is a valid data-element name (lines 209–215). If there is a match with one of the data-element names (line 212), control is transferred to statement 80 to begin processing the change in data value for that data element. If there is no match, a message is displayed (lines 213–214), and control is returned (line 215) to statement 60 to re-enter the data-element name.

The value of ITEM has been determined (line 211) when the DO loop is exited by passing the test against the ITEM-th position of VLIST (line 212). This value of ITEM is now used to reference the ITYPE value corresponding to the selected data-element name to test for the data-element type (line 216).

If the ITYPE value is 1, the data type is integer. and control proceeds to statement 110 (line 221), where the data manager may input the replacement data value. If, instead, an asterisk is entered, the test against the value of ISTAR (line 222) is passed. and control transfers first to statement 997, where a message is displayed (lines 279-281), and then to statement 60 (line 282). A prompt is made for a new data-element name without any change to the value of the preceding data element. If a value other than an asterisk has been entered for the integer input, this value is transferred into the position of that data element in the IMAGE array (line 223), and then control is passed to statement 160 for a message query regarding the change of additional data elements for that record (lines 256-258).

If the ITYPE value is 2, the data type is real, and control passes to statement 120 (line 229) to prompt for decimal data entry. If, instead, an asterisk is entered, the test against the value of STAR (line 230) is passed, and control again transfers to statement 997, leaving the value for that data element unchanged. Otherwise, the decimal data value is transferred into the proper data-element position of the QIMAGE array (line 231), and control passes to statement 160 for the message query regarding further modifications.

If the ITYPE value is greater than 10, the data type is alphanumeric, and control passes to statement 130 (line 239), the start of the logic for the entry of alphanumeric data. The value of KSUM, the number of computer words required for the storage of all data elements prior to the ITEM-th plus the first word of the ITEM-th position, is computed (lines 239-242), as is the value of KSUMPl (line 243), the number of computer words reserved to store all data elements through the ITEM-th position. Next, the data manager is prompted for entry of an alphanumeric data string in the KSUM through KSUMPI positions of NSTRNG (lines 244-245). The first word of the string is compared with ISTAR (line 246) and, if equal, control is transferred to statement 997, the data element is left unchanged, and an informational message is printed.

The value of LAST is set equal to the current value from the KWORD array (line 247) for use as a limit for the DO loop index, and the value of KSUMMI is set to the value of KSUM minus one (line 248), for use in computing the NSTRNG index (line 252). After all seven words of the NAME array are blanked out (lines 249–250), the most recent values placed in the NSTRNG array are also transferred into the NAME array (lines 251–252). The dictionary category number, NDIC, is computed by subtracting 10 from the ITEM-th position of the ITYPE array (line 253).

Finally, subroutine MATCH is called (line 254) to search the specified dictionary category for an entry matching the new alphanumeric data input. The alphanumeric data are communicated through the calling sequence by the NAME array, and the dictionary category is communicated by NDIC. If there is a dictionary match, the subroutine returns the number of computer words in the dictionary entry, LT, the key value for the dictionary entry, MKEY, and the number of dictionary entries contained in that category, NUM. If there is no match, control is transferred to statement 995 or, if the data are blank, to statement 996.

If a dictionary match has been found, a standard return is executed from MATCH, and the following statement (line 255) computes the value of the pointer to that dictionary entry for storage in the IMAGE array. The user is then prompted for a YES or NO entry for a change of additional data elements belonging to the current record (lines 256-259). The YES or NO response is tested to ensure that one of the two allowable responses has been entered (line 260), recycling of the YES or NO prompt, if the test fails. If a proper response has been given, the response is then tested for a YES value (line 262), which will cause control to be transferred to statement 60 (line 205), where a new dataelement name will be entered for data-value modification. If the test fails, the IMAGE array containing changed data values will be rewritten onto the subfile over the old data for that record (line 263), and a RETURN 1 exit is taken from subroutine MODI-FY (line 264).

If there was no dictionary match found for the new alphanumeric input, the user is prompted with a message giving the data-element name and the newly entered data and asking if it is to be added to the dictionary (lines 265–269). Again, the YES or NO response is tested to ensure that one of the two allowable values has been correctly entered (line 270), returning to the prompt at statement 170, if the test fails. If the response is NO, the test (line 271) is satisfied, and control is returned to statement 60 for selection of another data-element name for data revision. If the response is YES, the number of entries in the given dictionary category is increased by 1 (line 272), and subroutine ADDICT is called (line 273) to enter that alphanumeric data into the dictionary. The following variables are transferred to ADDICT through the calling sequence: the NAME array, containing the new alphanumeric data; the length, LT, of the array; the dictionary category number, NDIC; and the new number of entries for that category, NUM.

The value of NUM, the dictionary pointer for the new entry, is transferred into the ITEM-th position of the IMAGE array (line 274), and control is transferred (line 275) to statement 160 for a prompted response to continue with data revision for that record or to go on to another record.

If the new data entered consist only of blank data, the return from subroutine MATCH transfers control to statement 996, where a message is displayed stating that blank data are not legitimate (lines 276– 277). The blank data value is *not* substituted for the data element, and control is returned to statement 160 for the user's selection of additional data elements to be revised.

The statements in MODIFY which are master file dependent are the calls to the record display routines (lines 201 and 203) based on the value of the masterfile index, KDIC. One INFONET-dependent subroutine, GETKEY, is called (line 200) to obtain the key value for the last record read from file 21.

100 SUBROUTINE MODIFY (*, IMAGE,Q	TMAGE)
101 %	
	DESIGNED TO READ A RECORD FROM
	STER FILE, OR A SUBFILE
	D DISPLAY THE DATA SO THAT
	DIFY THE INDIVIDUAL DATA
106 % ELEMENTS AS REQUIRED.	
107 %	
108 % NELEM = NUMBER OF DAT	A ELEMENTS IN A MASTER RECORD.
109 % VLIST = DATA ELEMENTS	NAMES AS THEY APPEAR IN THE
110 % DEFINITION ÂN	D MASK FILES.
	ION OF THE DATA ELEMENTS AS
112 % LISTED IN THE	MASK FILE.
	NTEGER TYPE DATA
114 % ITYPE = 2,R	
	DATA CONSISTS OF A DICTIONARY
	REFERENCE A LOOKUP IN THE
)TH DICTIONARY.
	SENTATION OF MASTER DATA
	LUDÍNG INTEGER DATA AND
120 % DICTIONARY PO	
	TATION OF MASTER DATA ELEMENTS
	ALÊNCE WITH 'ÎMAGE.'
	SENTATION OF THE DATA SIRING FOR
	ENTS (INTEGER & ALPHANUMERIC)
	A MASTER RECORD.
	TATION (THROUGH EQUIVALENCE
	THE DATA STRING FOR ALL REAL-
	LEMENTS BELONGING TO A
129 % MASTER RECORD 130 % ITEM = DATA ELEMENT	-
	POSITION INDEX FOR EACH RECORD. 7 COMPUTER WORDS) OF NEW ALPHA-
	FOR COMPARISON WITH EXISTING
	TRIES TO 1) DETERMINE DICT-
	R OR 2) TO DETERMINE THAT A
	TRY DUES NOT EXIST FOR THE
136 % GIVEN DICTION	
	DS (LESS THAN OR EQUAL TO 7)
	RE THE ALPHANUMERIC ENTRY IN
139 % "NAME."	
	IFYING THE MAXIMUM NUMBER OF
	S RESERVED FOR EACH RAW DATA
142 % ELEMENT.	
	IMUM NUMBER OF COMPUTER WORDS
144 % NEEDED TO STO	RE RAW DATA FOR THE 1ST THROUGH
145 % THE I-TH DATA	ELEMENTS.
	TEGORY REFERENCE NUMBER.
147 % NUM = TOTAL NUMBER	OF DICTIONARY ENTRIES IN THE
	NARY CATEGORY.
149 DOUBLE PRECISION	VLABEL• *
150 VLIST, UNEXT,	
151 DIMENSION IMAGE (4	
152 ITYPE(400), QIMAGE(400), STRING(400), %

```
PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS
94
153
          VLIST(400) •
                          KWORD(400),
                                           NAME(7)
154
          COMMON
                     NAMED(800), ITYPE, PAD(401), VLIST, NELEM
155
          CUMMON /LOG/ MONTH, IDAY, IYEAK, ILOG, MAXREC, KWORD, KDIC, IKITE
156
          EQUIVALENCE (ISTAR, STAR), (IMAGE, QIMAGE), (NSTRNG, STRING)
157
          DATA IBLANK, QBLANK, YES, XNO, STAR/! !, ! !, YES!, !NO!, !# ??
158
          DATA QNEXT, QUIT/ NEXT, QUIT//
159
          NWORDS = 0
160
          DO 100 I=1, NELEM
161
          IF(ITYPE(I) - 2) 10,20,30
162
     8
163
     % THE FOLLOWING STATEMENTS ACCEPT THE DATA ELEMENTS
164
     % WHICH ARE INTEGER WORDS AND ADD THEM TO THE TOTAL
165
     % RECORD STRING.
166
     86
167
     10
          NWORDS = NWORDS + KWORD(I)
168
          NSTRNG(NWORDS) = IMAGE(I)
169
          GO TO 99
170
     5
171
     % THE FOLLOWING STATEMENTS ACCEPT THE DATA ELEMENTS
172
     % WHICH ARE REAL WURDS AND ADD THEM TO THE TOTAL
173
     % RECORD STRING.
174
     Ж.
175
     20
          NWORDS = NWORDS + KWORD(I)
176
          STRING(NWORDS) = QIMAGE(I)
177
          GO TO 99
178
     5
     % THE FOLLOWING STATEMENTS BRING THE ALPHANUMERIC
179
180
     % ELEMENTS (REFERENCED BY THE CODED POINTERS) FROM
181
     % THE APPROPRIATE DICTIONARIES AND ADD THESE
182
     % ELEMENTS TO THE TOTAL RECORD STRING, INCLUDING
     % THOSE PORTIONS OF THE DICTIONARY WORDS WHICH
183
184
     % ARE BLANK.
185
     %
186
     30
          IF(IMAGE(I) .NE. IBLANK) GO TO 35
187
          LT = 0
188
          GO TO 45
189
     35
          CALL SCANDC(ITYPE(I)-10, IMAGE(I), NAME, LT, $996)
190
          DO 40 J=1+LT
191
     40
          NSTRNG (J+NWORDS)
                                NAME (J)
                            =
192
          IF(LT .GE. KWORD(I)) GO TO 55
193
     45
          LAST = KWORD(I)
194
          LTP1
                = LT + 1
195
          DO 50 J=LTP1+LAST
196
     50
          NSTRNG(J+NWORDS) = IBLANK
197
     55
          NWORDS = NWORDS + KWORD(I)
198
     99
          CONTINUE
199
     100
          CONTINUE
200
          CALL GETKEY (21, KEYR)
201
          IF (KDIC .EQ. 1) CALL OUTUSC (NSTRNG, STRING, KEYK, NWORDS)
202
          IF (KDIC .EQ. 2) CALL QUTUSA (NSTRNG, STRING, KEYR, NWORDS)
          IF (KDIC .EQ. 3) CALL OUTUSC (NSTRNG, STRING, KEYR, NWORDS)
203
204
     1002 FORMAT(AB)
205
     60
          READ (5,1002, PROMPT= NAME OF DATA ELEMENT TO%
206
      BE CHANGED: *) VLABEL
```

```
207
          IF (VLABEL .EQ. QNEXT) GO TO 998
208
          IF (VLABEL .EQ. QUIT) GO TO 999
209
          ITEM = 0
210
          DO 70 I=1,NELEM
211
          ITEM = ITEM + 1
212
     70
          IF (VLABEL .EQ. VLIST(I)) GO TO 80
213
          WRITE(6,1003)
214
    1003 FORMAT(// ITEM NOT FOUND IN LIST OF DATA ELEMENTS, REENTER)
215
          GO TO 60
216
    80
          IF (ITYPÉ (ITEM) -2) 110,120,130
217
     56
218
     % THE FOLLOWING STATEMENTS PERMIT REPLACEMENT OF THE INTEGER
219
     * DATA CONTAINED IN THE IMAGE! ARRAY.
220
     *
221
     110
          READ(5,*, PROMPT='ENTER VALUE: ') INPT
222
          IF(INPT .EQ. ISTAR) GO TO 997
223
          IMAGE(ITEM) = INPT
224
          GO TO 160
225
     Ж.
226
     % THE FOLLOWING STATEMENTS PERMIT REPLACEMENT OF THE REAL
227
     % DATA CONTAINED IN THE "IMAGE" ARRAY.
228
     5
229
          READ (5, *, PROMPT='ENTER DECIMAL VALUE: 1) QPUT
    120
230
          IF (QPUT .EQ. STAR) GO TO 997
231
          QIMAGE(ITEM) = QPUT
232
          GO TO 160
233
     96
234
     % THE FOLLOWING STATEMENTS PERMIT REPLACEMENT OF ALPHA-
235
     % NUMERIC DATA, GENERATE NEW POINTERS, AND UPDATE THE
236
     % DICTIONARY IF THE SPECIFIED DATA VALUE DOES NOT
237
     % ALREADY RESIDE THERE.
238
    ₩5
239
     130
          KSUM = 1
240
          ITEM1 = ITEM - 1
241
          DO 140 I=1. ITEM1
242
     140
          KSUM = KSUM + KWORD(I)
243
          KSUMP1 = KSUM + KWORD(ITEM) - 1
244
     1006 FURMAT(7A4)
245
          READ(5,1006,PROMPT='ENTER DATA: ') (NSTRNG(I),I=KSUM,KSUMP1)
          IF (NSTRNG (KSUM) .EQ. ISTAR) GO TO 997
246
247
          LAST = KWORD(ITEM)
          KSUMM1 = KSUM - 1
248
249
          DO 145 I=1,7
250
     145
          NAME(I) = IBLANK
251
          DO 150 I= 1,LAST
252
     150
          NAME(I) = NSTRNG(I+KSUMM1)
          NDIC = ITYPE(ITEM) - 10
253
254
          CALL MATCH (NAME, NDIC, LT, MKEY, NUM, $995, $996)
255
          IMAGE(ITEM)
                       = MKEY - NDIC#10000
256
     160
          WRITE(6,1007)
     1007 FORMAT(/ DO YOU WISH TO CHANGE ANY MORE DATA ELEMENTS 1/8
257
258
          * BELONGING TO THIS RECORD? ENTER *)
259
     165
          READ (5,1008, PROMPT=""YES" OR "NO": ') TEST
260
          IF((TEST .NE. YES) .AND. (TEST .NE. XNO)) GO 10 165
```

<pre>263 WRITE(21*KEY=KETK) (IMAGE(I),I=1*NELEM) 264 RETURN 1 265 995 WRITE(6*2001) VLABEL*NAME 266 2001 FORMAT(/' THERE IS NO DICTIONARY MATCH FOR DATA NAME: '% 267 *A7/' ALPHANUMERIC DATA: *,TA4/% 268 ' DO YOU WISH TO ENIER THIS DATA IN THE DICTIUNARY?') 269 170 READ(5*1008*PROMPT=*"YES" OR "NO": ') TEST 270 IF((TEST *NE*YES) *AND* (TEST *NE*XNO)) GO IO 170 271 IF(TEST *EQ*XNO) GO TO 60 272 NUM = NUM+1 273 CALL ADDICT(NAME*LT*NDIC*NUM) 274 IMAGE(ITEM) = NUM 275 GO TO 160 277 1009 FORMAT(/' BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE*') 278 GO TO 160 279 997 WRITE(6*101) VLABEL 280 1011 FORMAT(/' YOU HAVE ENTERED AN ASTERISK* *, IO LEAVE** 281 1X*A7* UNCHANGED**/) 282 GO TO 60 283 998 WRITE(6*1012) KEYR 284 1012 FORMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 * (KEY =**IB**) UNREVISED**) 286 RETURN 1 287 999 WRITE(6*1013) 288 1013 FORMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 * REVISION PROCEDURE**) 290 WHITE(21*KEY=KEYR) (IMAGE(I)*I=1*NELEM) 291 RETURN 292 END</pre>	261 262	1008	FORMAT(A4) IF(TEST .EQ. YES) GO TO 60
<pre>265 995 WRITE(6,2001) VLABEL;NAME 266 2001 FORMAT(/' THERE IS NO DICTIONARY MATCH FOR DATA NAME: '%</pre>	263		WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM)
<pre>266 2001 FORMAT(/* THERE IS NO DICTIONARY MATCH FOR DATA NAME: *% 267</pre>		995	
<pre>267 ,AT/* ALPHANUMERIC DATA: *,TA4/% 268 * DO YOU WISH TO ENTER THIS DATA IN THE DICTIUNARY?*) 269 170 READ(5.1008.PROMPT=*"YES" OR "NO": *) TEST 270 IF (TEST .NE. YES) .AND. (TEST .NE. XNO)) GO 10 170 271 IF (TEST .EQ. XNO) GO TO 60 272 NUM = NUM*1 273 CALL ADDICT(NAME.LT.NDIC.NUM) 274 IMAGE(ITEM) = NUM 275 GO TO 160 276 996 WRITE(6.1009) 277 1009 FORMAT(/* BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.*) 278 GO TO 160 279 997 WRITE(6.1011) VLABEL 280 1011 FORMAT(/* YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE*,* 281 1X:AT'* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6.1012) KEYR 284 1012 FORMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 * (KEY =*,18,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6.1013) 288 1013 FORMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* * 289 * REVISION PROCEDURE.*) 290 WRITE(21.KEY=KEYR) (IMAGE(I),I=1.NELEM) 291 RETURN</pre>			
268 * DO YOU WISH TO ENIER THIS DATA IN THE DICTIONARY?*) 269 170 READ(5,1008,PROMPT=***YES" OR "NO": *) TEST 270 IF((TEST .NE. YES) .AND. (TEST .NE. XNO)) GO 10 170 271 IF(TEST .EQ. XNO) GO TO 60 272 NUM = NUM+1 273 CALL ADDICT(NAME,LT,NDIC,NUM) 274 IMAGE(ITEM) = NUM 275 GO TO 160 276 996 277 1009 FORMAT(/* BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.*) 275 GO TO 160 276 997 277 1009 FORMAT(/* BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.*) 279 997 279 997 280 1011 FORMAT(/* YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE*,* 281 1X,A7,* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FORMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 ' (KEY =*,IB,*) UNREVISED.*) 286 return 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 ' REVISION P			
<pre>269 170 READ(5,1008,PROMPT=;"YES" OR "NO": ') TEST 270 IF((TEST ,NE, YES) ,AND, (TEST ,NE, XNO)) GO 10 170 271 IF(TEST ,EQ, XNO) GO TO 60 272 NUM = NUM+1 273 CALL ADDICT(NAME,LT,NDIC,NUM) 274 IMAGE(ITEM) = NUM 275 GO TO 160 276 996 WRITE(6,IO09) 277 1009 FORMAT(/' BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.') 278 GO TO 160 279 997 WRITE(6,iO11) VLABEL 280 1011 FORMAT(/' YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE',* 281 1X,A7,* UNCHANGED.'/) 282 GO TO 60 283 998 WRITE(6,IO12) KEYR 284 1012 FORMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD' % 285 ' (KEY =',IB,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6,IO13) 288 1013 FORMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS' % 289 ' REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>	268		
<pre>271 IF (TEST .EQ. XNO) GU TO 60 272 NUM = NUM+1 273 CALL ADDICT(NAME,LT,NDIC,NUM) 274 IMAGE(ITEM) = NUM 275 GO TO 160 276 996 WRITE(6,1009) 277 1009 FURMAT(/' BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.') 278 GO TO 160 279 997 WRITE(6,1011) VLABEL 280 1011 FURMAT(/' YOU HAVE ENTERED AN ASTERISK, *, IO LEAVE',% 281 1X,A7,* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FURMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD' % 285 ' (KEY =',I8,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FURMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 ' REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>	269	170	
<pre>272 NUM = NUM+1 273 CALL ADDICT(NAME+LT+NDIC+NUM) 274 IMAGE(ITEM) = NUM 275 G0 T0 160 276 996 WRITE(6+1009) 277 1009 FURMAT(/* BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.*) 278 G0 T0 160 279 997 WRITE(6+1011) VLABEL 280 1011 FURMAT(/* YOU HAVE ENTERED AN ASTERISK, *, IO LEAVE*,* 281 1X+A7+* UNCHANGED.*/) 282 G0 TO 60 283 998 WRITE(6+1012) KEYR 284 1012 FURMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 * (KEY =*,I8,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6+1013) 288 1013 FURMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 WRITE(21+KEY=KEYR) (IMAGE(I)+I=1+NELEM) 291 RETURN</pre>	270		IF((TEST .NE. YES) .AND. (TEST .NE. XNO)) GO 10 170
273 CALL ADDICT (NAME+LT,NDIC,NUM) 274 IMAGE (ITEM) = NUM 275 GO TO 160 276 996 WRITE (6,1009) 277 1009 FORMAT (/' BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.') 278 GO TO 160 279 997 WRITE (6,1011) VLABEL 280 1011 FORMAT (/' YOU HAVE ENTERED AN ASTERISK, *, IO LEAVE',% 281 IX,A7,* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE (6,1012) KEYR 284 1012 FORMAT (/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD' % * (KEY =',IB,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE (6,1013) 288 1013 FORMAT (/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS! % * REVISION PROCEDURE.*) 290 WRITE (21,KEY=KEYR) (IMAGE (I)+I=1,NELEM) 291 RETURN			IF(TEST .EQ. XNO) GU TO 60
<pre>274 IMAGE(ITEM) = NUM 275 GO TO 160 276 996 WRITE(6+1009) 277 1009 FURMAT(/* BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.*) 278 GO TO 160 279 997 WRITE(6+1011) VLABEL 280 1011 FURMAT(/* YOU HAVE ENTERED AN ASTERISK, *, IO LEAVE*,* 281 1X+AT+* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6+1012) KEYR 284 1012 FURMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % * (KEY =*,IB,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6+1013) 288 1013 FURMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 * REVISION PROCEDURE.*) 290 WRITE(21+KEY=KEYR) (IMAGE(I)+I=1+NELEM) 291 RETURN</pre>			NUM = NUM+1
275 GO TO 160 276 996 WRITE(6,1009) 277 1009 FORMAT(/' BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.') 278 GO TO 160 279 997 WRITE(6,1011) VLABEL 280 1011 FORMAT(/' YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE',% 281 1X,A7,' UNCHANGED.'/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FORMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD' % 285 ' (KEY =',I8,') UNREVISED.') 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS' % 289 ' REVISION PROCEDURE.') 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN			
<pre>276 996 WRITE(6,1009) 277 1009 FURMAT(/' BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.') GO TO 160 279 997 WRITE(6,1011) VLABEL 280 1011 FURMAT(/' YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE',* 281 1X,A7,* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FURMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD! * 285 ' (KEY =',18,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FURMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS! * 289 ' REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>			
<pre>277 1009 FURMAT(/* BLANK DICTIONARY ENTRIES ARE NOT LEGITIMATE.*) GO TO 160 279 997 WRITE(6,1011) VLABEL 280 1011 FURMAT(/* YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE*,% 281 1X;A7;* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FURMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 * (KEY =*,18,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FURMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 * REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>		~ ^ ^	
278GO TO 160279997WRITE(6,1011) VLABEL2801011FORMAT(/* YOU HAVE ENTERED AN ASTERISK, *, IO LEAVE*,%2811X,A7,* UNCHANGED.*/)282GO TO 60283998WRITE(6,1012) KEYR2841012FORMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* %285* (KEY =*,I8,*) UNREVISED.*)286RETURN 1287999WRITE(6,1013)2881013FORMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS*289* REVISION PROCEDURE.*)290WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM)291RETURN			
<pre>279 997 WRITE(6,1011) VLABEL 280 1011 FORMAT(/' YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE',% 281 1X,AT,' UNCHANGED.'/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FORMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD' % 285 ' (KEY =',18,') UNREVISED.') 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS' % 289 ' REVISION PROCEDURE.') 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>		1009	
<pre>280 1011 FORMAT(/' YOU HAVE ENTERED AN ASTERISK, *, TO LEAVE',% 281 1X;A7; UNCHANGED.'/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FORMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD' % 285 ' (KEY =',I8,') UNREVISED.') 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS' % 289 ' REVISION PROCEDURE.') 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>		007	
<pre>281 1X,A7,* UNCHANGED.*/) 282 GO TO 60 283 998 WRITE(6,1012) KEYR 284 1012 FORMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 * (KEY =*,I8,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 * REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>			
282GO TO 602839982841012FORMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* %285* (KEY =*,18,*) UNREVISED.*)286RETURN 12879992881013FORMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS*289* REVISION PROCEDURE.*)290WRITE(21,KEY=KEYR) (IMAGE(I)+I=1,NELEM)291RETURN		TOTT	
<pre>283 998 WRITE(6,1012) KEYR 284 1012 FORMAT(/' YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD! % 285 ' (KEY =',18,') UNREVISED.') 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS! % 289 ' REVISION PROCEDURE.') 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>			
<pre>284 1012 FORMAT(/* YOU HAVE ENTERED "NEXT" WHICH LEAVES THE RECORD* % 285 * (KEY =*,18,*) UNREVISED.*) 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FORMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 * REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>		999	
<pre>285 ' (KEY =',I8,') UNREVISED.') 286 RETURN 1 287 999 WRITE(6,1013) 288 1013 FURMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS' % 289 ' REVISION PROCEDURE.') 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>			
286RETURN 1287999WRITE(6,1013)2881013FURMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS*289* REVISION PROCEDURE.*)290WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM)291RETURN			
<pre>287 999 WRITE(6,1013) 288 1013 FURMAT(/' YOU HAVE ENTERED "QUIT" TO TERMINATE THIS! % 289 ' REVISION PROCEDURE.') 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN</pre>			
288 1013 FURMAT(/* YOU HAVE ENTERED "QUIT" TO TERMINATE THIS* % 289 * REVISION PROCEDURE.*) 290 WRITE(21,KEY=KEYR) (IMAGE(I),I=1,NELEM) 291 RETURN		999	
<pre>289</pre>			
291 RETURN	289		
291 RETURN	290		
292 END	291		
	292		END

SUBROUTINE SCANDC

Subroutine SCANDC is used to locate the value of the alphanumeric data array, NAME, which is referenced by the dictionary category number, NDIC, and the dictionary entry pointer, IPOINT. A listing of subroutine SCANDC appears at the end of this discussion. The subroutine returns the data value from the dictionary and the number of computer words, LT, required by the data string.

The DATA statement (line 112) is used to initialize the value of IBLANK as blank data. Then, all seven words of the NAME array are set to blank values (lines 113–114). The key value, LKEY, is computed (line 115) and used to read the number of dictionary entries, NUM, contained in the NDIC category (line 116) as well as K, which, although not used in this subroutine, has the same value as NDIC. The key value for the dictionary entry, NKEY, is calculated from LKEY and the dictionary pointer, IPOINT (line 117). If LKEY is too large for the number of entries in that dictionary category (line 118), control is transferred to statement 100, where an error message is dispalyed (lines 121–127), and a nonstandard return is made (line 128) to the calling subroutine.

If the value of NKEY is acceptable, the number of computer words, LT, and the dictionary entry, NAME, are read from the dictionary on file 9.

All statements in subroutine SCANDC are written in standard FORTRAN, no statement being IN-FONET-dependent. No statement appearing in this subroutine exists to accommodate a specific data base.

```
100
     SUBROUTINE SCANDC (NDIC, IPOINT, NAME, LT, *)
101
     Ж
     % THIS IS SUBROUTINE 'SCANDC.'
102
     % GIVEN THE DICTIONARY CATEGORY NUMBER, *NDIC, * AND THE
103
     % CATEGORY ELEMENT POINTER, 'IPOINT,' THIS SUBROUTINE
104
     % READS THE DICTIONARY ELEMENT NAME, 'NAME, AND THE
105
     % LENGTH OF THE NAME IN WORDS, 'LT,' AND RETURNS THESE
106
     % VALUES TO THE CALLING ROUTINE FOR DISPLAY TO THE USER
107
     % FOR THE PURPOSE OF IDENTIFICATION, DATA REVIEW, AND
108
      POSSIBLE REVISION.
109
     %6
110
     Ж
          DIMENSION
                         NAME(7)
111
          DATA IBLANK/
                        1/
112
113
          DO 10 I=1,7
          NAME(I)
114
     10
                   *
                      IBLANK
115
          LKEY
                   NDIC#10000
                Ξ
          READ(9,KEY=LKEY) NUM,K
116
                   LKEY + IPOINT
117
          NKEY
               =
          IF (NKEY .GT. LKEY + NUM)
                                     GO TO 100
118
          READ(9,KEY=NKEY) LT, (NAME(I),I=1,LT)
119
120
          RETURN
          WRITE(6,1001) IPOINT, NUM, NDIC
121
     100
     1001 FORMAT(/ DICTIONARY POINTER (+,18,%
122
          *) EXCEEDS NUMBER OF ENTRIES (*,18,*)*/%
123
124
          EITHER THE DICTIONARY POINTER IS IN ERROR, UR 1/%
125
          ۹.
            DICTIONARY LIST EXCEEDS 10000 ENTRIES.
                                                     CONTACT 1/%
126
          •
127
          PROGRAMMER.!)
128
          RETURN 1
129
     END
```

SUBROUTINE ADDICT

This subroutine is used to add new dictionary entries to the specified dictionary category. A listing of subroutine ADDICT appears at the end of this discussion. The alphanumeric data for the entry are contained in the NAME array, the number of computer words needed for the data is contained in LT, the dictionary category number is contained in NDIC, and the number of entries in the dictionary category is contained in NUM, all of which enter the subroutine through the calling sequence.

The value of NUM is tested (line 120) to ensure that it does not exceed the number of entries reserved for each dictionary category. If the test fails, control is transferred to statement 994, where a diagnostic message is written (lines 129–133), and execution is stopped (line 134). If the test of NUM is passed, file 9 is rewound (line 121) so that it can be placed in the update mode (line 122). The keys for the number of entries, NUM, in a dictionary category and for the new dictionary entry are computed (lines 123–124). Then, the number of dictionary entries, NUM, and the corresponding dictionary category number, NDIC, are written on the IKEY-th line, and the length, LT, and the nonblank words in data array NAME are written on the NKEY-th line of the dictionary file (lines 125–126). The dictionary file is then closed with a rewind (line 127), and control is returned to the calling routine with a standard return (line 128).

There is only one nonstandard FORTRAN statement in subroutine ADDICT. This is the call to UP-DATE (line 122), which opens the dictionary file in the update mode so that records can be written onto the file without destroying the other data residing in that file.

```
100
     SUBROUTINE ADDICT (NAME+LT+NDIC+NUM)
101
     86
102
     % THIS IS SUBROUTINE 'ADDICT.'
103
     % IT IS DESIGNED TO ADD SPECIFIED ALPHANUMERIC DATA
104
     % ELEMENTS TO THE DICTIONARY LIST FOR EACH REVISED
105
     % DICTIONARY CATEGORY. IF A CATEGORY LIST EXCEEDS
106
     % 10000 ENTRIES, AN ERROR RETURN MESSAGE TO CONTACT
107
     % THE PROGRAMMER WILL BE DISPLAYED AND EXECUTION
108
     Ж
      WILL BE TERMINATED.
109
     Ж
110
                  = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-
     %
          NAME
111
     Ж
                    NUMERIC DATA FOR ENTRY INTO THE APPROPRIATE
112
     %
                    DICTIONARY CATEGORY.
                  = NUMBER OF WORDS (LESS THAN OR EQUAL TO 7)
113
     Ж
          LT
                    NEEDED TO STORE THE ALPHANUMERIC ENTRY IN
114
     Ж
115
     Ж
                    "NAME."
                  = DICTIONARY CATEGORY REFERENCE NUMBER.
116
     Ж,
          NDIC
117
     Ж
          NUM
                  = TOTAL NUMBER OF DICTIONARY ENTRIES IN THE
                    "NDIC" DICTIONARY CATEGORY.
118
     %6
119
          DIMENSION
                          NAME (7)
120
          IF(NUM .GE. 9999) GO TO 994
121
          REWIND 9
          CALL UPDATE (9+1)
122
123
                    NDIC#10000
          IKEY
                =
124
                    IKEY + NUM
          NKEY
                =
125
          WRITE(9,KEY=IKEY) NUM,NDIC
126
          WRITE(9,KEY=NKEY) LT,(NAME(1),I=1,LT)
127
          REWIND 9
128
          RETURN
          WRITE(6,1010)
129
     994
     1010 FORMAT(/ DICTIONARY KEY EXCEEDS PERMISSABLE CAPACITY*
130
131
      FOR THE GIVEN 1/1 DATA ELEMENT NAME.1/%
132
      I EXECUTION TERMINATED!!/%
133
          CONTACT PROGRAMMER.")
134
     STOP
135
     END
```

SUBROUTINE MATCH

This subroutine searches all dictionary entries in a given dictionary category until either it finds a matching entry for new alphanumeric data input or it determines that no dictionary entry matches the new data input. A listing of subroutine MATCH appears at the end of this discussion. The inputs that are transmitted to subroutine MATCH through the calling sequence are the alphanumeric data string of the array, NAME, and the number of the dictionary category, NDIC. The subroutine returns the following values: LN, the number of computer words used by the data string; NKEY, the value of the key of the matching dictionary entry; NUM, the number of dictionary entries in the dictionary category. It also may execute two nonstandard returns.

The DATA statement (line 125) is used to initialize the contents of IBLANK as blank data. The value of IKEY identifies the line number where the value of NUM is stored for the dictionary category number, NDIC. The value of IKEY is computed (line 126) and used to read the values of NUM and K (line 127). (The value of K exists on the file, but it is not used in this subroutine). The number of nonblank words, LN, is computed for the input data string, NAME, with a RETURN 2 exit taken if LN is equal to zero (lines 136-140).

The actual dictionary search for a matching entry takes place in the DO loop (lines 150–158) with the

DO loop index, I, going from one to NUM, the number of dictionary entries. The seven-word array. ITANK, is used to read in each dictionary entry. First, all words in the array are set to blanks (lines 151-152). Then, the length of data string in computer words, LT, and the same number of computer words from the dictionary entry are read into the ITANK array. If the input array and the dictionary array do not contain the same number of computer words of data (that is, if $LN \neq LT$), control then passes (line 154) to the end of the DO loop. Each word of the NAME array is checked against each word of the ITANK array, and, if for any word of the string there is a mismatch (line 156), control again proceeds to the end of the DO loop at statement 50.

If the test (line 156) fails for all LN nonblank words, then there is a data match with that dictionary entry. Control transfers (lines 157) to statement 90, where subroutine GETKEY is called (line 160) to obtain the line key for the matching dictionary entry. A standard return (line 161) is taken to end the search for a matching dictionary entry.

No special logic is required in this routine to accommodate differences in the record structure for each master file. However, one INFONET-dependent subroutine, GETKEY, is used to obtain the line key value, NKEY, for the matching dictionary entry (line 160).

100 100 SUBROUTINE MATCH (NAME, NDIC, LN, NKEY, NUM, *, *) 101 % THIS IS SUBROUTINE **MATCH. ** 102 % IT IS DESIGNED TO READ THE KEYED DICTIONARY FILE. 103 % SEARCH FOR THE DICTIONARY ELEMENT REQUESTED, AND 104 % RETURN THE KEY ASSOCIATED WITH THAT ELEMENT 105 % ALONG WITH THE ELEMENT NAME, IF THERE IS A MATCH. 106 Ж 107 % = ARRAY (UP TO 7 COMPUTER WORDS) OF NEW ALPHA-NAME 108 Ж. NUMERIC DATA FOR COMPARISON WITH EXISTING 109 Ж DICTIONARY ENTRIES TO 1) DETERMINE DICT-110 % IONARY POINTER OR 2) TO DETERMINE THAT A 111 DICTIONARY ENTRY DOES NOT EXIST FOR THE Ж 112 Ж. GIVEN DICTIONARY CATEGORY. 113 Ж LN = NUMBER OF WORDS (LESS THAN OR EQUAL TO 7) 114 % NEEDED TO STORE THE ALPHANUMERIC ENTRY IN 115 % "NAME." 116 = DICTIONARY CATEGORY REFERENCE NUMBER. Ж. NUIC 117 = TOTAL NUMBER OF DICTIONARY ENTRIES IN THE Жό NUM 118 % "NDIC" DICTIONARY CATEGORY. 119 % ITANK = ALPHANUMERIC DICTIONARY ENTRY (AN ARKAY OF UP 120 % TO 7 COMPUTER WORDS) 121 % LT = NUMBER OF WORDS (LESS THAN OR EQUAL [0 7) 122 NEEDED TO STORE THE ALPHANUMERIC ENTRY IN 16 123 % "ITANK." 124 DIMENSION NAME (7) , ITANK (7) 125 DATA IBLANK/ 1/ 126 IKEY = NDIC#10000 127 READ(9,KEY=IKEY) NUM,K 128 36 129 %6 NOTE: VK' IS THE NUMBER OF THE DICTIONARY CATEGORY AND 130 % INUMI IS THE NUMBER OF ELEMENTS IN THAT CATEGORY. 131 Ж. 132 %≾ 133 THE FOLLOWING SET OF STATEMENTS FIND THE NUMBER. ILN, Ж. 134 Ж. OF NON-BLANK WORDS IN THE ELEMENT TO BE LOCATED. 135 15 136 LN =0 137 DO 25 I=1,7 138 IF (NAME(I) .EQ. IBLANK) GO TO 30 139 25 LN = I140 30 IF(LN .EQ. 0) RETURN 2 141 16 142 **%** THESE STATEMENTS SEARCH THROUGH THE NUMBER OF DICTIONARY 143 % ELEMENTS, INUM, IN THE SPECIFIED DICTIONARY CATEGORY 144 % TO LUCATE A DATA ELEMENT MATCH. IF THERE IS NO MATCH. % A 'RETURN 1' EXIT RETURNS EXECUTION TO THE CALLING SUB-145 146 % ROUTINE WHERE THE USER WILL BE QUERIED AS TO WHETHER 147 % OR NOT HE WISHES TO HAVE HIS UNMATCHED ALPHANUMERIC 148 % DATA ADDED TO THE DICTIONARY LISTING. 149 Ж 00 50 I=1.NUM 150 151 DO 35 L=1.7 152 35 ITANK(L) = IBLANK

PACER-DATA ENTRY, RETRIEVAL, AND UPDATE FOR NCRDS

153		READ(9) LT+(ITANK(K)+K=1+LT)
154		IF(LN .NE. LT) GO TO 50
155		DO 40 K=1.LN
156	40	IF (NAME(K) .NE. ITANK(K)) GO TO 50
157		GU TO 90
158	50	CONTINUE
159		RETURN 1
160	90	CALL GETKEY (9, NKEY)
161		RETURN
162	END	

SUBROUTINE OUTUSC

Subroutine OUTUSC is a special subroutine written to provide a formatted display of the raw data of the WCOAL and ECOAL files for review and update. A listing of subroutine OUTUSC appears at the end of this discussion. The subroutine is totally dependent on the data-element names and the record structure of these files. The raw data from NSTRNG and STRING are transferred into the arrays NST and XST (lines 109–111). This is done because NST has been dimensioned to the exact number of computer words needed for the integer and alphanumeric data, so that the output operation occurs as a block write (line 112) rather than as an implied DO write. The block form of input/output is considerably more efficient on the INFONET system. After the record has been written according to the accompanying format, control returns to the calling routine for further operation.

```
SUBROUTINE OUTUSC(NSTRNG,STRING,KEYR,KWT)
100
101
     %
        THIS IS AN OUTPUT SUBROUTINE THAT HAS BEEN FORMATTED
102
     Ж,
        FOR TERMINAL OUTPUT OF THE "USCOAL" RECORD WITH THE
103
     Ж
        DATA ELEMENTS DISPLAYED IN THE SAME FORM AS THEY HAVE
104
     Ж.
105
     %
        BEEN ENTERED INTO THE RECORD.
106
     %6
                                             STRING(400),
                                                             NST (75)
107
                          NSTRNG(400) •
          DIMENSION
108
          EQUIVALENCE
                           (NSTRNG, STRING)
          DO 10 I=1,75
109
110
     10
          NST(I)
                   =
                      NSTRNG(I)
                   STRING(76)
111
          XST
                -
          WRITE(6,1001) NST,KEYR,XST
112
     1001 FORMAT (/30X ** * * * * * * *
                                                                     Ж
                                         # #1//
113
                                                                     %
               STATE: 1,444,8X, COUNTY: 1,644/
114
                                                                     Ж
              PMERID: 1,12,2X, TWNSHIP: 1,13, NS: 1,A1,3X,
115
                                                                     %
116
           *RANGE: *,13,* EW: *,A1,*
                                       SECTION: +,I2,4X,
                                                                     %
           *AAPGPRV: *+I3//
117
                                                                     %
            COALPRV: 1,4A4,3X, 1REGION: 1,6A4,7X, 1THICKNS: 1,11/
118
                                                                     Ж
               FIELD: ',4A4,2X, 'DISTRCT: ',6A4,7X,'OVRBRUN: ',11/
119
                                                                     %
            FORMATN: +,444,6X, BED: +,544,11X, RELIABL: +,11//
           ŧ
120
              SYSTEM: 1,444,5X,1QUAD: 1,744,6X,1BYEAR: 1,12/
                                                                     ź
121
                                                                     *
              SERIES: ',4A4,3X, 'SOURCE: ',5A4,2X, 'YEAR: ', I4//
122
           .
                RANK: 1,2A4,A1,6X,1D: 1,18,1 ... KEY: 1,18,9X,
                                                                     Ж
123
                                                                    )
124
           "TONNAGE: ",F8.2/30X "* * * * * * *
                                                 * * * !//
          RETURN
125
126
          END
```

APPENDIX C

Subroutine OUTUSA is a special subroutine written to provide a formatted display of the raw data of the USALYT file for review and update. A listing of subroutine OUTUSA appears at the end of this discussion. The subroutine is totally dependent on the data-element names and the record structure of this file. The raw data from NSTRNG and STRING are transferred into the arrays NST and XST (lines 110-113). This is done because NST has been dimensioned to the exact number of computer words needed for the integer and alphanumeric data, and XST has been dimensioned to the exact number of computer words needed for the real data so that the output operation occurs as a block write (line 114) rather than as an implied DO write. The block form of input/output is considerably more efficient on the INFONET system. After the record has been written according to the accompanying format, control returns to the calling routine.

```
100
           SUBROUTINE OUTUSA (NSTRNG, STRING, KEYR, KWT)
101
     %
102
     %5
        THIS IS AN OUTPUT SUBROUTINE THAT HAS BEEN FORMATTED
103
     %5
        FOR TERMINAL OUTPUT OF THE "USALYT" RECORD WITH THE
        DATA ELEMENTS DISPLAYED IN THE SAME FORM AS THEY HAVE
104
     %
105
     %
        BEEN ENTERED INTO THE RECORD.
106
     %
107
           DIMENSION
                           NSTRNG(400),
                                            STRING(400),
                                                            Ж.
108
                           NST(81),
                                            XST(13)
109
           EQUIVALENCE
                           (NSTRNG, STRING)
110
           DO 10 I=1,81
111
     10
           NST(I) =
                      NSTRNG(I)
112
           DO 20 I=1,13
113
     20
           XST(I)
                   =
                      STRING(I+81)
114
           WRITE(6,1001) NST,XST,KEYR
115
     1001 FORMAT(/30X** * * * * * * * * * * * * * * //
                                                                       Ж
116
               STATE: 1,4A4,8X, COUNTY: 1,6A4/
                                                                       %
117
              PMERID: 1,12,2X,11WNSHIP: 1,13,1 NS: 1,41,3X,
                                                                       Ж
118
           *RANGE: *,13,* EW: *,A1,*
                                        SECTION: +,12,4X,
                                                                       *
119
           *AAPGPRV: *+I3//
                                                                       %
120
     1
       COALPRV: 1,4A4,3X, REGION: 1,6A4/
                                                                       %
121
     .
         FIELD: 1,4A4,2X, DISTRCT: 1,6A4/
                                                                       Ж.
122
     .
                                                                       Ж.
       FORMATN: 1,444,6X,18ED: 1,544/
123
        SYSTEM: 1,4A4,5X, QUAD: 1,7A4/
                                                                       Ж
              SERIES: 1,3A4,7X, SOURCE: 1,5A4,2X, YEAR: 1,14//
124
                                                                       Ж.
125
     1
           RANK: ++2A4+A1+4X++ANID: ++A4+I8+4X++S-TYP: ++I1+3X++A-%
126
     TYP: ',I1,3X, 'VAL/REP: ',I1/
                                                                       86
127
         TRACE: ++A1+12X++HGRIND: ++I3+16X++OTHER TESTS: ++A1//
                                                                       Ж.
            BTU: +,15,4X, +ASH: (DEFORM) +,14,2X, + (SOFT) +,14,2X, + (F%
128
129
     LUID) ',I4,3X,'FRE-SWEL: ',F3.1//
                                                                       Ж.
130
                                                                       Ж.
            MOISTUR
                      VOL-MAT
                               FIXED-C
                                         ASH-PRX
                                                   CARBON
                                                             HYDROGN
131
     OXYGEN (PERCENT) 1/7X + F4 - 1 + 6 (5X + F4 - 1) //
                                                                       *
132
            NITROGN
                     SULFUR
                               UKG-SUL
                                         PYR-SUL
                                                   SULFATE (PERCENT)
                                                                       Ŷ.
133
              KEY: 1/7X,F4.1,4(5X,F4.1),16X,18//30X1+ + + +
                                                                       #%
134
      + + + 1 / / )
     RETURN
135
136
     END
```

SUBROUTINE REDUSC

This subroutine is designed to read a raw-data record placed in a separate system file for the purpose of processing the record and adding it to either the WCOAL or the ECOAL files. A listing of subroutine REDUSC appears at the end of this discussion. For maximum efficiency of the input/output routine on the INFONET system, this subroutine performs the read and decode operations as block operations rather than as implied DO operations.

Use of the SYCOR system for data input requires that, for transmission, a raw-data record must be broken up into separate blocks, each containing 256 or fewer characters (or 64, 4-byte words). For the purpose of executing these read operations, IBLOKI has been dimensioned to 64 and IBLOCK2 dimensioned to 8. These two block read operations are executed in lines 126 and 131. For purposes of decoding, the INFONET system restricts a formatted input/ output operation to 144 characters or less. Therefore, IBLOCKI has been broken into two separate strings for decoding through NSTI (line 127) and NST2 (line 130). Before the second decoding operation takes place, the last 30 words of IBLOKI are transferred into the first 30 positions of IBLOCKI (lines 128–129). The string IBLOK2 is decoded into the block, NST3, KKK (the record key number), and XST (the real value associated with the last word of the data string).

```
100
     SUBROUTINE REDUSC(NSTRNG, STRING, KKK, *)
101
     *
102
        THIS SUBROUTINE IS DESIGNED TO READ THE RAW DATA FILE
     %6
        WHICH HAS BEEN TRANSMITTED VIA THE "SYCOR" TERMINAL TO
103
     %
104
     36
        THE "INFONET" HOST COMPUTER FOR ENTRY INTO THE "WCOAL"
105
        AND "ECOAL" MASTER FILES.
     Ж.
106
     Ж.
107
     %
        THIS ROUTINE IS, BY NECESSITY, PECULIAR IN TWO RESPECTS:
                THE "ITS" SOFTWARE USED BY THE "SYCOR" TERMINAL
108
     %
            1)
109
     *6
                CAN ONLY TRANSMIT RECORDS OF 256 OR FEWER CHAR-
                          THIS MEANS THAT THE RAW DATA FILE RECORD
110
     %6
                ACTERS.
111
                HAS BEEN BROKEN UP INTO TWO CHARACTER STRINGS,
     Ж
                ONE WITH A LENGTH OF 64 WORDS AND THE SECOND WITH
112
     Ж
                A LENGTH OF 8 WORDS, FOR TRANSMISSION AND, HENCE,
113
     %
114
     96
                READING PURPOSES.
115
     %
            2)
                THE "INFONET"
                               "READ"/"DECODE" ROUTINES WILL
                ACCEPT ONLY STRINGS OF 144 CHARACTERS OR LESS IN
116
     Ж
117
                THE FORMATTED DATA MODES.
                                           THIS INCLUDES THOSE
     %
                PORTIONS OF THE DATA STRING WHICH ARE SKIPPED VIA
118
     %
119
     %
                THE X-FIELDS IN THE FORMAT.
                                              THIS MEANS THAT THE
120
                RECORDS MUST BE BROKEN DOWN FURTHER INTO BLOCKS
     %
121
     Ж
                OF 144 CHARACTERS OR LESS.
122
     %
123
          DIMENSION
                                         STRING(400) .
                                                         IBLOK1(64) •
                          NSTRNG(400),
124
                          NST1(38),
                                         NST2(32),
          IBLOK2(8),
                                                         NST3(4)
125
          EQUIVALENCE
                         (STRING • NSTRNG)
          READ(31, END=999) IBLOK1
126
127
          DECODE(IBLOK1,1001,ERR=997) NST1
128
          DO 10 I=1,30
          IBLOK1(I)
129
     10
                    = IBLOK1(I+34)
130
          DECODE(IBLOK1,1004,ERR=997) NST2
131
          READ(31, END=999) IBLOK2
132
          DECODE(IBLOK2,1005,ERR=997) NST3,KKK,XST
133
     1001 FURMAT(10A4,12,13,A1,13,A1,12,13,10A4,11,10A4)
134
     1004 FORMAT(11,9A4,11,3A4,A1,7A4,12,8A4,14)
135
     1005 FORMAT(2A4,A1,18,17,F8.2)
136
          DO 110 I=1.38
137
     110
          NSTRNG(I) = NST1(I)
138
          DO 120 I=1,26
139
     120
          NSTRNG(I+38)
                            NST2(I)
                         =
140
          NSTRNG(65) = 1
                               .
141
          00 130 I=1.6
142
     130
          NSTRNG(I+65)
                        =
                            NST2(I+26)
143
          DO 140 I=1,4
144
     140
          NSTRNG(I+71) = NST3(I)
145
          STRING(76) = XST
146
          RETURN
147
     997
          WRITE(6,1003)
148
     1003 FORMAT(/* DATA ERROR. CHECK DATA INPUT FILE.*/)
149
          STOP
150
     999
          RETURN 1
151
     END
```

SUBROUTINE REDUSA

This subroutine is designed to read a raw-data record placed in a separate system file for the purpose of processing the record and adding it to the USALYT file. A listing of subroutine REDUSA appears at the end of this discussion. For maximum efficiency of the input/output routine on the INFO-NET system, this subroutine performs the read and decode operations as block operations rather than as implied DO operations.

Use of the SYCOR system for data input requires that, for transmission, a raw-data record must be broken up into separate blocks, each containing 256 or fewer characters (or 64, 4-byte words). For the purposes of executing these read operations, IBLOKI has been dimensioned to 34, IBLOK2 dimensioned to 32, and IBLOK3 dimensioned to 28. These three block read operations are executed in lines 127, 129, and 131. They are then decoded, IBLOKI being translated according to format into NSTI (line 128), IBLOK2 translated into NST2 (line 130), and IBLOK3 translated into NST3, XSTI, and KKK (line 132), where NSTI, NST2, NST3 are blocks of integer and alphanumeric data, XSTI is a block of real data, and KKK is the record key value. These block values are then transferred into the proper positions of the NSTRNG and STRING arrays (lines 136 and 143), and a standard return is made to the calling subroutine. A STOP is reached following an error message if input difficulties have been encountered (lines 145-147).

APPENDIX C

```
100
     SUBROUTINE REDUSA (NSTRNG, STRING, KKK, *)
101
     96
102
        THIS SUBROUTINE IS DESIGNED TO READ THE RAW DATA FILE
     Ж.
103
     96
        WHICH HAS BEEN TRANSMITTED VIA THE "SYCOR" TERMINAL TO
104
     %
        THE "INFONET" HOST COMPUTER FOR ENTRY INTO THE "USALYT"
105
     %
        MASTER FILE.
106
     36
107
     %
        THIS ROUTINE IS, BY NECESSITY, PECULIAR IN TWO RESPECTS:
                 THE "ITS" SOFTWARE USED BY THE "SYCOR" TERMINAL
108
     %
            1)
109
     86
                 CAN ONLY TRANSMIT RECORDS OF 256 OR FEWER CHAR-
                          THIS MEANS THAT THE RAW DATA FILE RECORD
110
     %
                 ACTERS.
111
     %
                HAS BEEN BROKEN UP INTO TWO CHARACTER STRINGS,
112
     Ж
                 ONE WITH A LENGTH OF 34 WORDS, THE SECOND WITH A
                LENGTH OF 32 WORDS, AND THE THIRD WITH A LENGTH OF
113
     %
                28 WORDS FOR THE PURPOSE OF TRANSMISSION.
114
     16
115
     %
            2)
                THE "INFONET" "READ"/"DECODE" ROUTINES WILL
116
     Ж
                 ACCEPT ONLY STRINGS OF 144 CHARACTERS OR LESS IN
117
                 THE FORMATTED DATA MODES. THIS INCLUDES THOSE
     %
                 PORTIONS OF THE DATA STRING WHICH ARE SKIPPED VIA
118
     %
119
     %
                 THE X-FIELDS IN THE FORMAT.
                                              THIS MEANS THAT THE
                 RECORDS MUST BE BROKEN DOWN FURTHER INTO BLOCKS
120
     Ж
121
                 OF 144 CHARACTERS OR LESS.
     Ж
122
     96
123
          DIMENSION
                          NSTRNG(400),
                                          STRING(400),
                                                          XST1(13),
                                                                           Ж.
124
          NST1(37).
                          NST2(32).
                                          NST3(12).
                                                          1BLOK1(34),
                                                                           Ж.
125
          IBLOK2(32).
                          IBLOK3(28)
126
          EQUIVALENCE
                         (STRING + NSTRNG)
     100
          READ(31, END=999) IBLOK1
127
128
          DECODE(IBLOK1,1001,ERR=99) NST1
129
          READ(31, END=999) IBLOK2
130
          DECODE(IBLOK2,1002,ERR=99) NST2
131
          READ(31, END=999) IBLOK3
132
          DECODE (IBLOK3, 1003, ERR=99) NST3, XST1, KKK
133
     1001 FURMAT (4A4,6A4,12,13,A1,13,A1,12,13,4A4,6A4,4A4,6A4)
134
     1002 FORMAT (4A4,5A4,3A4,A1,7A4,3A4,5A4,14,3A4)
135
     1003 FORMAT(A4, 18, 311, A1, 13, A1, 1X, 15, 3(1X, 14), F3, 1, 12(1X, F4, 1), 18)
136
          DO 110 I=1,37
137
     110
          NSTRNG(I) = NST1(I)
138
          DO 120 I=1,32
139
     120
          NSTRNG(I+37)
                            NST2(I)
                         =
140
          DO 130 I=1,12
141
     130
          NSTRNG(I+69)
                            NST3(I)
                         =
142
          DO 140 I=1,13
143
     140
          STRING(I+81) =
                            XST1(I)
144
          RETURN
145
     99 WRITE(6+1004)
146
     1004 FORMAT(/* DATA ERROR. CHECK DATA INPUT FILE. */)
     STOP
147
     999 RETURN 1
148
149
     END
```