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GEOLOGY OF THE TETON-JACKSON HOLE REGION, NORTHWESTERN WYOMING

EOCENE, OLIGOCENE, AND MIOCENE ROCKS AND
VERTEBRATE FOSSILS AT THE EMERALD LAKE LOCALITY,
3 MILES SOUTH OF YELLOWSTONE NATIONAL PARK, WYOMING

By J. D. Love, MaLcoLMm C. McKENNA,! and MARY R. DAwsON?

ABSTRACT

Several small remnants of Oligocene and Miocene rocks, partly chan-
nel deposits, containing diagnostic vertebrate fossils were preserved by
late Cenozoic downfaulting in the Emerald Lake area, 3 miles (4.8
kilometres) south of Yellowstone National Park. Inasmuch as no
Oligocene or Miocene rocks are at present recognized in Yellowstone
National Park, the Emerald Lake locality provides a clue as to sedi-
mentation and environment along the south boundary of the park
during these epochs.

Equally important are newly reported potassium-argon ages that show
the Wiggins Formation, long thought to be of Oligocene age, to be
Eocene. A review of the stratigraphic relations determined that the
Oligocene White River Formation was deposited in channels cut in the
mafic volcanic conglomerates of the Wiggins, rather than being a fine-
grained facies intertonguing laterally with the conglomerates. The
'source of the volcanic debris in the Wiggins was vents in the Absaroka
Range east and northeast of Emerald Lake. More than 1,000 feet (300
metres) of the Wiggins Formation was removed by erosion prior to depo-
sition of the White River Formation.

The White River Formation consists of 100 feet (30 metres) or more of
white tuff and claystone, probably derived from distant sources to the
west, northwest, or southwest. The assemblage of 16 species of mammals
in these strata is of early Oligocene age (Chadronian provincial age) and
1s the same as that found in similar strata on the high plains of Nebraska.
Therefore, despite the adjacent mountainous terrain, the environmental
conditions in the Emerald Lake area are assumed not to have been appre-
ciably different from those on the nonmountainous plains. A potas-
sium-argon age on biotite from the fossiliferous beds is 35.8 million
years.

Unconformably overlying the White River is the Colter Formation,
possibly 900 feet (275 metres) thick in the Emerald Lake area, consisting
of soft gray tuffaceous sandstone that contains vertebrate fossils of early
Miocene age (Arikareean provincial age). Again, these fossils are the
same forms that occur in rocks of similar age in eastern Wyoming and
western Nebraska.

Pyroxene andesite and basalt, with a potassium-argon age of 2.19
million years, and rhyolitic wff, the Huckleberry Ridge Tuff, dated else-
where as 2 million years, are the youngestrocks in the area. They provide
data on timing of the most recent tectonic events.

'The American Museum of Natural History, New York, N.Y.
2Carnegie Museum, Pittsburgh, Pa.

INTRODUCTION

No Oligocene or Miocene rocks are at present rec-
ognized in Yellowstone National Park and, except for the
Emerald Lake locality (Love, 1956b) and other localities to
the south in Jackson Hole, no rocks of unquestioned
Oligocene or Miocene age have been described from the
entire Yellowstone-Absaroka volcanic field (figs. 1, 2).
The Emerald Lake locality includes outcrops of two
formations—one that has yielded Oligocene vertebrate
fossils and the other, Miocene. The locality is named after:
Emerald Lake (fig. 3), which is about 1 mile (1.6 km) south
of the fossil sites, in the southeastern part of the Mount
Hancock 15-minute quadrangle, Teton County. Figures 2
and 3 show the geographic setting, topography, and relief.

The geology of the Emerald Lake locality was first
mapped by Hague (1904, Lake 30-minute quadrangle). He
classified the Tertiary rocks as “late basic breccia” and
considered them to be of Miocene age (the term
“Oligocene” was not used in this region at that time).
Iddings (in Hague and others, 1899, p. 298-300) described
the ““late basic breccia” of this general area as consisting of
a basal sequence, 1,000 feet (300 m) thick, of water-laid
pyroxene andesite debris that contains beds and lenses of
light-colored tuff with biotite and sanidine phenocrysts,
overlain by 1,000 (300 m) feet of “true breccia without
waterlaid layers.”

White tuffaceous badlands in the Emerald Lake locality
were first noted by Love during a reconnaissance in 1945;
in 1948 a search for vertebrate fossils was made, and a small
assemblage was obtained. It was identified as early
Oligocene (Chadronian provincial age) by the late M. J.
Hough (written commun., Jan. 5, 1950; Love, 1952, p. 19).
Additional fossils were collected in 1953 by Love at the
same locality (M. J. Hough, written commun., Dec. 18,
1953; Love, 1956b).

Al
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FIGURE 1.—Mountains, basins, and major volcanic areas in and adjacent
to northwestern Wyoming. Localities indicated by numbers are
as follows: 1, Emerald Lake locality of Oligocene (White River For-
mation) and Miocene (Colter Formation) rocks; 2, White River For-
mation on Gravelly Range; 3, White River Formation on Pilgrim
Creek; 4, type locality of Colter Formation; 5, Cunningham Hill
fossil locality in Colter Formation; 6, site of principal reference sec-
tion of Wiggins Formation; 7, Carter Mountain locality of Wiggins
Formation.

While trying to check on the anomalous occurrence
reported by Hough in these collections of Teleodus
uintensis (Duchesnean provincial, or late Eocene, age else-
where) and Ischyromys aff. I. pliacus (=I. typus, Orellan
provincial, or middle Oligocene, age -elsewhere),
McKenna discovered in 1964 that only one of the
specimens could be found at the National Museum of
Natural History where they had been studied by Hough. It
was then decided to make still another collection from the
Emerald Lake locality, and this was accomplished in
August 1964. The new collection, and additional ones
made in 1969 and 1971, confirmed the early Oligocene
(Chadronian) age of the Emerald Lake assemblage and
produced no evidence of Teleodus uintensis or Ischyromys
typus.

These Oligocene white tuffaceous rocks were included
in the Wiggins Formation in the geologic map of Teton
County (Love, 1956¢) and for many years were thought to
be a part of that formation. However, potassium-argon
dates from the Wiggins indicated that these rocks were of
Eocene age. (See discussion of the age of the Wiggins
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Formation.) This finding prompted a reexamination, in
1969 and 1971, of the field relations of the vertebrate-
bearing white Oligocene strata to the adjacent Wiggins
Formation.

John F. Sutton, in 1971, discovered a new vertebrate
fossil locality that led to the identification, on the basis of
rock-stratigraphic criteria, of a hitherto unrecognized
remnant of the White River Formation 16 miles (26 km)
southwest of Emerald Lake (fig. 1, loc. 3; Sutton and
Black, 1972).

Volcaniclastic rocks in the type locality of the Colter
Formation, 18-20 miles (29-32 km) southwest of Emerald
Lake (fig. 1, loc. 4) have yielded Miocene vertebrate fossils.
Additional localities of Miocene strata and vertebrate
fossils are known still farther south (fig. 1, loc. 5; Love,
1956a, 1973; Black, 1968b; Sutton and Black, 1972).
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WIGGINS FORMATION (EOCENE)

The Wiggins Formation is described in some detail
because (1) most previous publications call it Oligocene or
Oligocene(?), and (2) until recently it had been thought to
intertongue with Oligocene vertebrate-bearing strata. It
underlies and surrounds on three sides the Oligocene rocks
of the Emerald Lake area (fig. 3), and, in addition, it con-
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oxide contents of the tuffs in the White River Formation
of central Wyoming and at the Emerald Lake locality are
.remarkably similar, the only differences being a slightly
higher iron and titanium content at Emerald Lake and a
slightly higher K,O content in central Wyoming. The
number of analyses is so few, however, that these
differences may not be statistically meaningful.

Figure 10 presents a comparison of semiquantitative
spectrographic analyses of tuffs in the White River Forma-
tion at the Emerald Lake locality with those from similar-
appearing white tuffs in the White River Formation of
central Wyoming, which likewise contain vertebrate
fossils of early Oligocene (Chadronian) age. Comparison
is also made with white tuffs in the basal part of the
Wiggins Formation on and south of Carter Mountain (fig.
1, loc. 7), 55 miles (88 km) east-northeast of Emerald Lake
(Nelson and Pierce, 1968, fig. 1). The geologic setting and
stratigraphic position of the White River samples in
central Wyoming have been described elsewhere (Love,
1970, p. C62-C65 and fig. 35). The Wiggins Formation on
Carter Mountain has recently been determined to be
Eocene in age on the basis of a potassium-argon age of 46.7
m.y. (J. D. Obradovich, written commun., 1972; table 2).
This age was determined from a white tuff overlying pale-
yellow bentonitic tuffs that contain a late Eocene verte-
brate fauna (E. L. Simons, written commun., 1963). An
Oligocene age of 33.9 m.y. for the white tuff was reported
by Houston (1964) but is believed by Obradovich to be in
error because the date was based on partly altered biotite.

The spectrographic analyses are also compared (fig. 10)
with the elemental composition of the Earth’s crust. Data
on crustal abundance are from Mason (1958, p. 44).

Because tuffaceous Oligocene rocks in Wyoming and
elsewhere have been considered to be possible sources for
some uranium occurrences in the region (Love, 1952,
1954a; Denson and Gill, 1956; Harshman, 1972), twuff,
bone, and water samples from the White River Formation
were analyzed for uranium. Tuff and bone analyses are
given in the description of the measured sections. Water
from a spring (fig. 3) that flows an estimated 2,000 gallons
(7,570 litres) of clear cold water per day from white blocky
siltstone in the middle of the formation contains less than
2 parts per billion uranium (Wayne Mountjoy, analyst,
Oct. 15, 1953). None of the rock samples shows an
abnormally high amount of uranium. The vyellow
fluorescence of some secondary chalcedony, however, and
the amount of uranium in the fossil bones, though small,
indicate that some uranium was probably originally
present in the tuff and was later redistributed and
concentrated.

The stratigraphic relations between the White River
and Wiggins Formations are obscured almost everywhere
by thin deposits of glacial debris or landslide slumps, or
are obscured by faulting. For this reason, in most places
the evidence for the White River Formation being a
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channel-fill deposit, rather than intertonguing with the
Wiggins Formation, is not convincing. However, one site
was found on the steep hillside southeast of measured
section B where nonconglomeratic soft tuffaceous clay-
stones of the White River had been deposited on a 20° slope
cut into conglomerate in the Wiggins. New landslides and
active erosion have partially stripped the slope, and so the
relations can be clearly seen. Our interpretation of the
areal relations of the White River Formation to the
Wiggins is shown in figures 11 and 12.

The early Oligocene (Chadronian) age of the White
River Formation in the Emerald Lake area is based in part
on a potassium-argon age from unit 1 of measured section
C, and in part on vertebrate fossils. The potassium-argon
sample is from a white biotite-rich tuff 2 feet (0.6 m) thick;
it yielded an age of 35.840.8 m.y. (J. D. Obradovich,
written commun., 1972; fig. 6, loc. K-Ar; table 2). This age
is compatible with the early Oligocene (Chadronian) age
as determined by the vertebrate fossils.

The disappearance of the 1948 and most of the 1953
vertebrate fossil collections, fossils from the White River
Formation at the Emerald Lake locality, has been
mentioned. The original records of identification of these
fossil collections are in two memoranda from the late M. J.
Hough. The 1948 collections were identified (Hough,
written commun., Jan. 5, 1950; listed in Love, 1952, p. 19)
as follows: Poebrotherium sp., Teleodus wuintensis,
Ischyromys aff. I. pliacus, and Cylindrodon aff. C. fontis.

These came chiefly from sites P,G,K, C,L,S, T, and E,
with E being the most productive (figs. 13, 14). These
identifications established the age of the enclosing strata
to be Oligocene, although identifications of Teleodus
uintensis (Duchesnean elsewhere) and Ischyromys aff. I.
pliacus (=I. typus, Orellan elsewhere) were anomalous, if
correct.

The 1953 collections from the same sites were identified
(Hough, written commun., Dec. 18, 1953; listed in Love,
1954b) as follows: Cylindrodon cf. C. fontis, Ischyromys cf.
L. parvidens (=1. veterior; Black, 1968a, p. 278), Megalagus
brachyodon, Palaeolagus temnodon, Eutypomys sp.,
?Teleodus cf. T. uintensis, and Poebrotherium sp.

The 1964, 1969, and 1971 collections, made by the
Department of Vertebrate Paleontology of the American
Museum of Natural History, contain the assemblage listed
in table 3; a preliminary review of it was presented by
McKenna (1972, p. 94-96).

We believe that specimens referred to as “Ischyromys,
probably 1. pliacus” by Mrs. Hough were most probably
members of the same species (Ischyromys veterior)
collected in 1964. Ischyromys cf. parvidens listed from the
1953 collections is accepted here as a synonym of I
veterior, following Black (1968a). The anomalous occur-
rence of Teleodus uintensis (Duchesnean elsewhere)
reported by Mrs. Hough in 1950 likewise warrants further
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TABLE 1.—Rock analyses of tuffaceous strata of early Oligocene and Miocene age in the Emerald Lake,

[Samples from each locality are arranged in stratigraphic order with youngest at top. Location abbreviations: SNL, south of north line; WEL, west of east line; NSL, north of south line; EWL, east

using methods similar to those described

Location Analyses (percent)
Formation Area Lab. No.
Fraction Sec. [T.N.|[R. W. Si02 |Al:0s [Fe,O4| FeO
Colter......cceevevcrieernns Emerald Lake........... NW (unsurveyed; Forest Service arbitrary grid, | 33 | 48 | 112 | W173239 |61.8|14.3| 3.5 |0.12
Teton National Forest Map, 1966; 15,400 ft
(4,084 m) SSW. of milepost 29 on south
boundary of Yellowstone National Park).
33 | 48 [112|W173234 140.3] 9.012.5 | .28
33 | 48 [112| W173233 |50.6{10.5| 4.0 | .20
Do, do. i, 15,650 ft (4,770 m) SSW. of milepost 29. 33 | 48 | 112 W173285 [62.2]14.0( 3.4 | .44
33 | 48 [112(W173289 |64.1{18.613.3 | .48
33 | 48 |112{ W173240 (63.7|18.7| 3.4 | .52
33 | 48 | 112| W173236 |63.4|13.8|38.5 | .52
33 | 48 | 112({W173237 [61.5(13.9|3.8 | .48
Do...covovrrireeeeenn, Type section on Pil- | 700 ft (210 m) SNL, 1,200 ft (366 m) WEL. 29 | 46 | 114 143217 169.2112.5{1.5 | .74
grim Creek.
DO Northeast of Two | SW4SE% (unsurveyed; Forest Service arbitrary | 23 | 46 | 114 W173248 |64.5|14.5 (2.7 | .76
Ocean Lake. grid, Teton National Forest Map, 1966).
23 [ 46 | 1141 W173247 |162.8|12.1| 1.9 } .36
23 | 46 | 114[ W173249 [55.5|11.1| 1.5 [ .40
23 | 46 | 114[ W173250 {60.3|13.1 | 4.4 | .48
23 | 46 | 114| W173251 [62.5|18.5|3.5 [ .50
Do..cooverieerennn Cunningham Hill.... | 2,600 ft (792 m) NSL, 1,800 ft (549 m) WEL. 20 | 44 | 114| W173232 |167.2|11.4(3.0 | .68
Split Rock of Love (1970)| Granite Mountains... | 1,600 ft (490 m) EWL, 2,100 ft (640 m) SNL. 25 [ 29 | 89| 143218 [72.0|12.1[1.1 | .90
. ' 1,000 fe (300 m) SNL, 2,500 ft (762 m) WEL. 31199 | so| 164305 |69.4|11.4[1.6 [1.2
White River.................. Emerald Lake........... 16,350 ft (4,983 m) S. of milepost 29 along S. | 33 | 48 | 112| 162632 [56.7|14.5(4.5 | .16
boundary of Yellowstone National Park
(unsurveyed, arbitrary grid, Teton National
Forest Map, 1966).
33 | 48 | 112] 164307 {60.0|14.8|3.8 ] .20
33 | 48 | 112| 164306 |61.4|14.5|3.0 | .18
DO Black Butte, Mont.... | Center of east line ...........ccoceeeevevivrieeceeennrinnnannes 9 |11S.[2w.] 152088 [57.9(13.0/3.6 | .36
Do, Beaver Divide............ 1,300 ft (400 m) EWL, 2,800 ft (700 m) NSL. 4129 96] 161335 [60.2(12.8(1.5 ( .41
SWH ettt ettt 22 | 32 | 89| 143216 [62.8/13.8]2.5 | .42
1,500 fe (457 m) NSL, 700 ft (210 m) WEL.. 3130 | 96| 143215 [62.6{14.2(2.3 | .63
1,250 ft (381 m) WEL, 450 ft (137 m) SNL. 2180 | 96| 143214 |62.3|13.5(2.6 | .44

Reported only as H,0

comment. Inasmuch as no additional specimens were
found in any of the later collections, and because of the
conflicting age assignments, it seems probable that her
identification of this now-missing specimen was in error.

The early Oligocene (Chadronian) age of the Emerald
Lake assemblage from the White River Formation is
confirmed by the presence in the new collection of Palaeo-
lagus temnodon, Paradjidaumo minor, Mesohippus cf.
M. hypostylus, Merycoidodon forsythae, and Cylindro-
don fontis. A similarity to the Main Pocket assemblage at
Pipestone Springs, Mont., is apparent, although the
Emerald Lake assemblage either is impoverished or, more
probably, has been sampled incompletely. The position
within the Chadronian land-mammal age of various
reported assemblages is probably late Chadronian, rather
than early as Mrs. Hough believed. (See Clark and Beer-
bower, in Clark and others, 1967.)

Most of the fossils obtained from the Emerald Lake
assemblage were collected on the surface of the exposure
labeled “E” in figure 13. This site, which had already been
sampled in 1948 and in 1953, was examined repeatedly
after periods of light rain and snow during the 1964 visit.
Surface concentrations of small mammal remains were
constantly renewed, partly because of surficial dis-
turbance caused by previous prospecting and partly
because of the effects of moisture on the exposure. Thesite
yielded additional material in 1969 and in 1971. This
exposure should continue to produce fossils sparingly for
some time to come.

No new taxa of vertebrate fossils restricted to the White
River Formation at the Emerald Lake locality were rec-
ognized, and no biological or geochemical evidence was
found that would indicate an environment significantly
different from that of many other stream-side Chadronian



EOCENE, OLIGOCENE, AND MIOCENE ROCKS AND VERTEBRATE FOSSILS, EMERALD LAKE LOCALITY

Al5

Granite Mountains, and Beaver Divide areas, Wyoming, and Black Butte, Montana

of west line, and so forth. Rapid rock analyses are-by Lowell Artis, I. H. Barlow, S. D. Botts, Gillison Chloe, P.L.D. Elmore, J. Glenn, J. Kelsey, M. D. Mack, H. Smith, and K. E. White,

by Shapiro and Brannock (1956)]

Analyses (percent)—Continued
Remarks

MgO | Ca0 {Na;0| K+O | TiO: | P:0; | MnO[H,0-[H,0+{ CO:

2.6 32| 1.7]|1.70.55(0.23(0.08| 6.2 | 3.2 k0.05[Pumice granule bed. This and following seven samples from approximately the same
locality are arranged in stratigraphic order. See fig. 17 for appearance of outcrop of
this and next two samples.

1.0 "22.3 11120} .34| .11| .06/ 2.2 | 2.016.6 [Clay pellet bed, sampled for pollen.

1.5 113.2{ 1.3 | 2.3 .45| .09] .05/ 3.5 | 3.2 | 8.4 |Sandstone, olive-drab; weathers white; fine grained, soft.

24| 341726 56| .08 .04| 4.8| 4.0} .08/Sandstone at top of exposure shown in fig. 16 and several hundred feet stratigraphically
below sample W173%233.

2.113.0(1.5129]| .53 .11| .08 4.2 | 4.0 [ <.05 |Sandstone at horizon of aplodontid rodent jaw (figs. 16, 18).

2.1 | 35121(27].57| .16 .05 3.8 [ 8.3 | .05|Sandstone 50 ft (15 m) below W173239.

1.813.6|1.9(30] .56| .12 .08/ 3.4 | 3.7 .08|Sandstone 20 ft (6 m) above base of exposure shown in fig. 16.

25 |89[1.8]25]| .58 .13] .09| 45| 4.1 | .25[Sandstone at base of exposure shown 1n fig. 16.

70{1.1 1 1.2 6.0] .24| .13 .02 7.7 |<.05|Pumicite in upper middle of 7,000-ft(2,133-m)-thick type section.

1.7 [ 25|21 | 40| 53| .09( .10{ 2.2 | 4.1 | <.05 | White soft massive to well-bedded tuff. This and following four samples are from basal
part of Colter Formation. This sample is from topmost bed of big white escarpment
exposing about 500 ft (150 m) of beds.

1.4 | 45| 1.5146/( .21| .07| .09| 2.9 | 4.7| 2.2 |White vitric tuff, 70 ft (21 m) below top of exposure.

1.4 |105( 1.3 [ 8.8 .18] .04 .08| 2.8 | 4.0| 6.8 |Chalky white tuff, 100 ft (30 m) below W173247.

3.0 4213823 .63 .17| .05| 5.2 | 8.7 .84{Massive white lithic tuff, 20 ft (6 m) below W175249.

241 25{15( 29| .53 .14] .10| 4.7 | 4.4| <.05|Blocky white siltstone near base of exposure.

1.3 ) 1.5(1.1]3.9]| 45| .03] .04| 3.9| 4.7| .05 |White light-weight tuff with iridescent bubble cavities, about 15 ft (5 m) above Cunning-
ham Hill vertebrate fossil bed.

.19) .81) 2.1 1 6.0} 22| .14| .02| 14.9 |<.05{Pumicite 10 ft (3 m) thick in upper part of type locality of the Split Rock Formation
of Love (1970, table 7).

14| .75( 2.0 5.4 27| .10| .10f 1.2| 4.9| .08 [Pumicite (Love, 1970, table 7).

3.3 (3.1 (1.0|1.6| .65| .34] .10| 7.7| 6.7 <.05 | Tuff near top of unit 3, section C.

32125 |11)|22] .68] .20| .07| 6.5| 4.3 .16 [Pumicite, unit 7, section D.

3.0 {29 |13]|26/| .62| .30 .11} 5.4 | 4.5| .09[Pumicite, unit 6, section D.

16 {7.0(1.4]2.4]| .64| .19} .14| 7.8 3.9{White tuff about 100 ft (30 m) above base of tuffaceous claystone containing early Oligocene
(Chadronian) vertebrate fossils.

54/8.2 | 2.4{4.5| .24| .10| .08| .84| 3.0| 4.6|Pumicite, split of which has K-Ar age of 32.2 m.y., about 300 ft (90 m) above base of
formation.

19 (24[15]382].36].22| .06] '10.5 .28 [Pumicite. .

1.8 122 15]85](.37].23( .04| '10.4 .12 |Pumicite in upper part of formation; Van Houten (1964); measured section 2.

16 |38 1.7(3.4](.38).22| .06[ ! 89 1.4 |Pumicite 50 ft (15 m) above Beaver Divide Conglomerate Member and 90 ft (27 m) above
base of formation; Van Houten (1964); measured section 6.

assemblages. As now known, the fauna itself does not
suggest deposition at an elevation significantly greater
than the elevations of other representative Oligocene
faunas, though geologic considerations (Love, 1952,
1956b; fig. 2) lead to the conclusion that the elevation at
which Chadronian deposits were laid down increased
steadily westward across Wyoming toward the Absaroka
Range and Yellowstone National Park.

Sutton’s locality of the White River Formation on East
Fork Pilgrim Creek (fig. 1, loc. 3; Sutton and Black, 1972)
had not been identified as Oligocene prior to his discovery
of diagnostic mammals. The rocks are readily distin-
guishable from the adjacent type section of the Colter
Formation in that they are very fine grained, bentonitic,
and light greenish gray to yellowish gray to white, where-
as the Colter is coarse-grained tuff, sandstone, and mafic
volcanic conglomerate, nonbentonitic, and generally

darker green, brown, and gray. Some white tuffs occur in
the Colter, but they are much harder and coarser grained

than those in the White River Formation.
Most outcrops of the White River Formation on East

Fork Pilgrim Creek are contorted and displaced by land-
slides that were facilitated by the bentonitic nature of the
strata. Only one outcrop is nearly in place. It is shown on
the geologic map of the Two Ocean Lake quadrangle
(Love, 1973) and consists of about 30 feet (9 m) of clay-
stone and tuff. It yielded the following lower Oligocene
(Chadronian) vertebrate fossils (Sutton and Black, 1972, p.
77-78):

Parectypodus?

Domnina

Palaeolagus

Cylindrodon

Palacogale
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EXPLANATION

Colter Formation (Miocene) in Jackson Hole

White River Formation (Oligocene) at Emerald Lake locality

——— Split Rock Formation of former usage (Miocene) on Granite Mountains in central Wyo-

ming (from Love, 1970)

1970)

FiGUuRE 10.—Semiquantitative spectrographic analyses of Colter Forma-
tion (six samples) at the Emerald Lake locality and elsewhere in
Jackson Hole, and White River Formation (seven samples) at
Emerald Lake locality, plotted to show similarities and differences
in abundance of selected elements with those previously published
for Miocene and Oligocene rocks in central Wyoming (Love, 1970).

titanothere

hyracodont?

tapir?

artiodactyl indet.

lizard

The new regionwide data that indicate the Wiggins

Formation to be Eocene in age rather than Oligocene are
of far-reaching significance in terms of geologic history
and the source of volcanic sediments. For many years most
workers thought that the Wiggins was a lateral coarse
clastic equivalent of the White River Formation of central
and eastern Wyoming and that the volcanic debris came
largely from vents in the Yellowstone-Absaroka volcanic
area. It now is clear that this interpretation is in error. In

White River Formation (Oligocene) along Beaver Divide, central Wyoming (from Love,

Crustal abundance of selected elements (from Mason, 1958, p. 44)

Elements are arranged, from left to right, in order of decreasing
abundance in the Earth’s crust (Mason, 1958, p. 44). Values are re-
ported in percent to the nearest number in the series 7, 3, 1.5, 0.7,
and so forth; at least 60 percent of results are expected to be in
the correct range.

the White River Formation of the Emerald Lake and
Pilgrim Creek areas, no coarse clastic volcanic debris was
found that could not have been reworked from older
sources.

The closest well-documented Oligocene rocks
northwest of Emerald Lake are 100 miles (160 km) away,
high on the west side of the Gravelly Range in Montana
(fig. 1, loc. 2). This is on the northwest side of the Yellow-
stone-Absaroka volcanic area. The rocks consist of white
blocky claystone, siltstone, and tuff that are reported to
intertongue with volcanic conglomerate of andesitic
composition (Mann, 1954, p. 43). This relationship has
not been reexamined to determine whether the inter-
tonguing is actually reworking of the older debris. The
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TaBLE 2.—Potassium-argon ages on some Oligocene and Eocene rocks in northwestern and central Wyoming

Locality data and reference

Locality (;:g; ) Formation and age
Emerald Lake............... 35.8+ 0.8 White River (Oligocene).........
Beaver Divide 322+ 2.0 ...dO.iiieiee e

(Ellis Ranch).
East Beaver Divide 81.6-85.7 ....dOueceerriiiiicnicee
(Lone Tree Gulch).
Badwater.........ccccooeennee 344+ 1.4 ..doeiiciicieeee
41.2+ 1.4 Tepee trail equivalent
(late Eocene).
Wiggins Peak............... 43.1+ 1.1 Wiggins (Eocene)....................
Castle Rock ........ccueeneee. 44.6% 1.2 ...dOueeevieeeiiecieeee e
46.71 1.5 .eddOuiceicrieieceneeieeeree,
47.11 1.3 .dOueiiiiieeic
Duncan Ranch............. 49.2+ 0.5 Aycross (middle Eocene).........

Sample 71-0-14, white biotite tuff in measured section C, unit 1, associated

with fossil mammals of early Oligocene (Chadronian) age. 16,000 ft:
(4,900 m) due south of milepost 29 along south boundary.of Yellowstone
National Park. Sample collected and analyzed by J. D. Obradovich
(written commun., June 19, 1972).

White biotitic tuff about 300 ft (90 m) above base of formation, 1,300 ft

(400 m) east of west line, 2,300 ft (700 m) north of south line of sec. 4,
T. 29 N., R. 96 W. Sample collected by J. D. Love, analyzed by Geochron
Laboratory (Love, 1970, table 5).

Six samples representing four beds of white tuff within a stratigraphic

interval of about 500 ft (150 m); section contains fossil mammals of
early Oligocene (Chadronian) age (Emry, 1973). SE4 sec. 23 to E% sec.
22, T. 31 N., R. 83 W. (corrected location). Samples collected and analyzed
by Evernden, Savage, Curtis, and James (1964, samples KA895, 897-900,and
1032, p. 185, 190).

Glass from white vitric tuff below vertebrate fossils of late Oligocene age.

Sec. 24, T. 39 N., R. 89 W. Sample collected and reported by Black
(1969).

Greenish-white biotite tuff associated with vertebrate fossils of tate Eocene

age. Sec. 34, T. 39 N., R. 88 W. (corrected location). Sample collected
and reported by Black (1969).

Sample 71-0-12, highest stratigraphic horizon of tuff suitable for age dating

in Wiggins Formation on ridge northwest of Wiggins Peak. About sec.
35, T. 45 N., R. 105 W., unsurveyed (projected grid). Sample collected
and analyzed by J. D. Obradovich (written commun., June 19, 1972).

Sample 70-0-15, vitrophyre within andesite flows forming cliff in upper

part of Castle Rock. Horizon is probably 500-1,000 ft (150-300 m) strati-
graphically below the Wiggins Peak sample. NEY4 sec. 1, T. 43 N, R.
105 W., about 3 miles (5 km) southwest of principal reference section
of Wiggins Formation. Sample collected and analyzed by J. D. Obradovich
(quoted by Smedes and Prostka, 1972, p. C32).

Sample 70-0-18, fine-grained white pumice tuff about 300 ft (90 m) below

sample 70~0-15 at same locality, same collector, same published reference.

Sample 70-0-17, white coarse-grained pumice tuff marker bed 20 ft (6 m)

below sample 70-0-18 at same locality, same collector, same reference.

Sample 1.72~132, gray biotite tuff, unit 20 in type section of Aycross Forma-

tion, directly overlying bed containing vertebrate fossils of middle Eocene
age (Love, 1939). SW4NW¥% sec. 8, T. 7 N, R. 5 W. Sample analyzed
by J. D. Obradovich (written commun., 1974).

finer grained strata are lithologically very similar to strata
of the White River Formation in the Emerald Lake area,
and several collections of vertebrate fossils likewise
indicate an early Oligocene age. Samples for chemical and
uranium analyses and thin section study were collected by
Love to compare with the Emerald Lake White River
Formation. A rock analysis of the white tuff shows it to
have a common oxide content almost identical to that of
the White River Formation in the Emerald Lake area
(table 1; lab. No. 152088, analysts P. L. D. Elmore, S. D.
Botts, M. D. Mack, Oct. 23, 1957).

The closest known Oligocene rocks east of Emerald
Lake are on the crest of the Bighorn Mountains (McKenna
and Love, 1972), 180 miles (310 km) away, and at Badwater
Creek, 180 miles (310 km) to the southeast at the south end
of the Bighorn Mountains (Black, 1969). There is no way

of determining whether these now-isolated remnants were
parts of a continuous deposit in Oligocene time. The
strata on the Bighorn Mountains are light-colored fine-
grained tuffaceous claystones and siltstones similar to
those in northwestern Wyoming and likewise contain a
sparse Chadronian fauna. The strata at Badwater Creek
are tan siltstones and sandstones with a potassium-argon
age of 34.4+1.4 m.y. (early Oligocene—Chadronian) in the
lower part and vertebrate fossils of late Oligocene aspectin
the upper part (Black, 1969).

The White River Formation of central Wyoming has
been studied in some detail (Van Houten, 1964; Love,
1970; Emry, 1973; Harshman, 1972). Most of the strata are
siltstones and fine-grained sandstones except near local
source areas with high relief; in these areas, coarse clastics
are common.
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FIGURE 11.—Generalized interpretation of relations between volcanic conglomerate of Wiggins Formation and channel-fill deposit of White
River Formation between measured sections A and E.
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FiGURE 12.—Relations of Tertiary and older rocks in Emerald Lake area. Length of diagram 3.2 miles; no vertical exaggeration. About
0.75 mile (1.2 km) south of section A, pyroxene andesite and basalt of Emerald Lake were intruded along normal fault that cuts

Buffalo Fork thrust fault.

Several major igneous intrusive bodies cut the Wiggins
Formation or other Eocene igneous and volcaniclastic
rocks in the Yellowstone-Absaroka volcanic area (Love
and others, 1955; Smedes and Prostka, 1972). Three of
these have been age dated, and all are older than
Oligocene. For example, the Washakie Needles, a dacite
body which cuts through the Wiggins Formation 8 miles
(13 km) east of the principal reference section of the
Wiggins (fig. 1, 8 miles east of loc. 6) has been dated by the
fission-track method on sphene as 38.8+1.6 m.y. (L. L.
Love, 1972). A quartz monzonite dike that intruded the
Wiggins Formation near Kirwin, 8 miles (13 km) north-
east of the type Wiggins, has a potassium-argon age
(biotite) of 40.2+1.4 m.y. (Schassberger, 1972). The Birch

Hills, a dacite intrusion 28 miles (45 km) west of Emerald
Lake, has been dated by the fission-track method on
apatite as 40.5£2.6 m.y. (L. L. Love, 1972).

The available regional data on Oligocene rocks suggest
that the Yellowstone-Absaroka volcanic area was not the
source of major amounts of volcanic debris in Oligocene
time and that the tuffs may have been airborne from
volcanic centers many miles to the west, northwest, or
southwest.

COLTER FORMATION (MIOCENE)

Five small poorly exposed outcrops of generally massive
gray sandstone comprising the Colter formation (fig. 3)
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was deposited, a normal fault system developed along and
near the trace of the Buffalo Fork thrust. The Washakie
Range and the Tertiary strata that partially buried it were
hinged down westward 1,500-2,000 feet (450-600 m), with
the hinge line several miles east of the Emerald Lake area.
Movement along the west margin of the downhinged
block was distributed along several faults. The Wiggins

Formation was downfaulted against the Madison Lime-
stone in some places and against the Harebell in others.
The timing of this normal faulting is not precisely known,
but it is younger than the part of the Colter Formation
exposed near Emerald Lake. Some faulting is younger
than the 2-m.y.-old andesite and basalt and Huckleberry
Ridge Tuff.

This episode of downfaulting is important because it
was responsible for positioning the small soft remnants of
Oligocene and Miocene rocks in such a way that they were
protected from stream erosion and glaciation that
completely removed the remainder of these strata from the
adjacent region.
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