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Abstract

I detail a scheme for searching an unknown scene for occurrences of an
object. The approach is independent of object size, location, and orientation
and is tolerant of significant changes in object shape and appearance.
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1. Introduction

Solving a difficult automatic target recognition (ATR) problem is beyond
our present technological capability. “Difficult” here excludes from consid-
eration those classes of problems that can be considered “toy” problems—
constrained and artificial constructs of limited military interest. And, while
recognizing the need to deal with difficult imagery, every attempt is usually
made to simplify the problem. For instance, few in the ATR community (if
any) would attempt to duplicate the sophisticated hierarchical understand-
ing of the content of a scene that is natural to the human visual system.
Rather, ATR has come to mean simply detecting the presence of an object
(which may be any one of a diverse class of objects) in a scene and, per-
haps, identifying it and determining its orientation. Achieving error-free
ATR may require a duplication of the human or comparable visual system.
Implied questions like these will not be answered in the near future.

I present an approach to image recognition that was intended to be very
different from that in the current literature. The only related work I am
aware of is that of Yow and Cipolla (1997). In addition to being original,
my work also was intended to demonstrate an approach requiring no im-
age database and therefore no training. Like the human visual system, my
approach seeks not only to identify an object but to create a hierarchical
description of its attributes. While the example I use is the human face, the
approach can be applied to other objects. This report was also intended
to add to the growing base of image recognition techniques that will con-
tribute to the eventual solution of this class of problems.

The first phase of this report develops an algorithm to perform a global
search of a scene to find an optimum match between scene content and
phase one memory. This procedure can be repeated with the same scene
to generate a ranked listing of potential multiple occurrences of a desired
image. This recognition phase is performed without regard to image size,
location, or orientation within the scene and is flexible enough to recognize
noisy, occluded, or significantly distorted images. The first phase locates
image candidates within a scene. The second phase builds upon this infor-
mation by performing a more detailed analysis of the global characteristics
of the image candidate. At each phase, a quantum increase in the informa-
tion is available about a candidate, information that can be used not only to
increase confidence in identifying the object but also to extract information
about its characteristics. In the third phase, the most detailed analysis of
the image candidates is performed. This phase examines individual feature
shapes. Using a concise mathematical model stored in memory, the phase
three algorithm performs the most detailed level of feature and, hence, im-
age analysis and identification.
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As an introduction to the face-based algorithm, I provide a brief critique
of the many approaches to this problem. While face recognition is a highly
specialized area within the field of image recognition, no other area has
seen the same breadth of theory and algorithm development. Face recogni-
tion can be considered image recognition in microcosm. Developments in
the face recognition field evolved from developments in autonomous im-
age recognition (or its military equivalent—target recognition).
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2. Brief Critique of Face-Recognition Literature

Although face recognition is a specialized area, it covers a broad spectrum
of overlapping approaches, thereby lending itself to many different clas-
sification schemes. The classification scheme I have chosen is intended to
allow for an organized, coherent treatment of face recognition.

A critical aspect of face-recognition algorithms is recognition accuracy. Be-
cause of the great variability in the characteristics of the face data sets used
to test these algorithms, a rigorous comparison of recognition performance
would be virtually impossible. Nevertheless, I will present a general dis-
cussion of performance accuracy.

Face-recognition performance (experimental subject study), whether based
on a profile or full-face view, does not vary greatly (Ellis, 1975). Yet different
views present dramatically different problems from a theoretical viewpoint
and are reflected in the published face-recognition algorithms.

Much less literature on face recognition in profile exists than for faces in
frontal view. I will discuss face profiles first.

2.1 Faces in Profile

Algorithms for recognizing faces in profile have the difficulty of dealing
with a potentially dominant and highly variable hairline. This is done by
avoiding all interior detail and operating upon the silhouette of the face
only. This approach poses potential problems, which may explain why it
has received little attention.

2.1.1 Geometric, Feature-Based Matching

Geometric, feature-based matching emerged from the discovery that facial
identification is possible even when facial detail is marginally resolved. It
is assumed that the overall geometric configuration of the face is sufficient
for recognition. Depending on how facial detail is defined (this is often as
simple as eyes, nose, and mouth), a feature vector is associated with this
detail. This feature vector, the components of which define a space in which
all face images can be placed, uniquely defines the face. The purpose of
all feature-based matching is to establish the optimum description of this
feature-vector-defined space.

Harmon (1976) (see also Harmon et al (1978)) is considered the classic
feature-based treatment of faces in profile. Their technique resembles ap-
proaches to be discussed in more detail later. Harmon’s approach to face
recognition used the distances and angles between profile fiducial points
(such as tip of chin and bottom of nose) as features and, using principal-
component analysis, isolated a subset of optimal features. They achieved
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a recognition accuracy approaching 100 percent with a large population of
manually segmented faces. This work proved that with well-defined fea-
tures, an accurate profile face recognizer is possible.

Wu and Huang (1990) use a similar technique except that their entire proc-
ess is automated and applied to significantly different profiles of Asian
rather than European subjects. With a backlit image, cubic B-splines are
used to locate six profile turning points. From these points, a 24-dimension
feature vector is produced. The training set comprises three images of 18
individuals. From these images, a mean and standard deviation are com-
puted for each component of the feature vector. First, the feature vector
components of an unknown face are compared to the stored feature vector
components of the known image. If for any known image, the unknown
image falls within certain prescribed distance criteria based on standard
deviation, then the distance between known and unknown is computed:

d =
24∑
i=1

| Xi − ui | /σi , (1)

where ui and σi are the ith feature vector component mean and standard
deviation and Xi is the unknown feature vector component. The smallest
value of d determines the match. A 100 percent success rate was achieved
for the 18 subjects.

The strengths of this approach are (1) algorithmic simplicity, (2) computa-
tional speed, and (3) apparent accuracy. The weaknesses are (1) the need for
face profiles with no confusing internal detail (e.g., dark image on a uni-
form background), and (2) the questionable algorithm performance with
changes in facial expression.

2.1.2 Holistic Face Recognition

Holistic face recognition avoids the difficulty of locating fiducial points in
a face profile by appropriately processing all profile boundary points. Two
distinct holistic approaches are reviewed.

Kaufman and Breeding (1976) use a set of correlation coefficients that serve
as feature vectors. Their approach uses the circular autocorrelation func-
tion. Properly defined, this function can be made invariant to scaling and
translation with a simple relationship for rotating the face image. The ma-
jor shortcoming of this approach is that it requires a closed-face contour.
This was achieved by taking a face silhouette and shifting a copy horizon-
tally so that the face profile of the copy fell behind that of the original.
The portion of the original silhouette covered by the shifted duplicate was
deleted. Then, by repeating the process of shifting duplicates up and down,
a set of final silhouettes emphasizing the face profile was obtained. Using
a weighted K-nearest neighbor decision rule as a classifier, Kaufman and
Breeding showed that a recognition accuracy of 90 percent for a 10-class
problem could be achieved. They made a performance comparison using
moment invariants rather than the circular autocorrelation function. The
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maximum accuracy for the moment invariants approach was 70 percent,
with the qualification that the results are for a limited and particular face
data set. The strengths of this approach are algorithmic simplicity and com-
putational efficiency. The weakness is as follows: Because of the require-
ment for a closed contour and the potentially large variability of the hair-
line, the result of the above procedure for closed contouring introduces un-
avoidable accuracy-limiting distortions.

This requirement for a closed contour was circumvented in a later paper by
Aibara et al (1991). Subjects were photographed in profile against a uniform
background. A vertical scan was used to locate the tip of the nose, assuming
the nose to be the most forward-projecting part of the face. Then 146 pix-
els corresponding to the boundary of the face silhouette clustered above
and below the nose were selected. This defined a simple open-curve repre-
sentation of the face. The face-evaluating function was the P-type Fourier
descriptor. This function is both translation- and scale-invariant and has a
simple relationship between original and rotated curves. The primary ad-
vantage of this descriptor over the circular autocorrelation function is that
it can operate upon open curves. Another benefit is that it is sensitive to the
low frequencies characteristic of the smooth curve of the human face pro-
file. The Fourier coefficients of the descriptor at the bottom of the frequency
range were used to define the components of the feature vector. Four pho-
tographs each of 90 subjects were used to define the test database. The aver-
age Fourier coefficients of three of the photos for each of the 90 were used
to define the reference image, and the fourth became the unknown input
data. Under the test conditions, a recognition accuracy of about 95 percent
was achieved. The strengths of this approach are (1) it is algorithmically
simple, (2) it is computationally efficient, (3) the elimination of the need
to find fiducial points (always difficult to perform and a source of error)
can enhance overall performance, and (4) eliminating the closed contour
requirement of the previous approach eliminates sources of image distor-
tion. The weaknesses of this approach are (1) the ever-present problem of
separating the face contour from any background, and (2) the effect that
expression changes have on solution accuracy. The latter problem requires
storing many face images to cover variations in expression.

2.2 Faces in Frontal View

There are two types of approaches to face recognition: (1) geometric, feature-
based matching, and (2) template matching. The overlap in the application
of these techniques is so great that no attempt will be made to distinguish
between them in this review, except to list the more significant attributes of
each.

2.2.1 Face Recognition Based on Use of Local Image Primitives

Seitz (1989) explored image primitives as a basis for object recognition. Im-
age primitives are locally defined characteristics of small clusters of pixels.
Seitz used an array of 3 × 3 pixels. He concluded that local orientation
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represents a powerful image primitive (local orientation is derived from
variations in gray scale) more suited to image recognition than are prim-
itives, such as local curvature, corner points, line ends, and crossings, as
proposed by others (Asada and Brody, 1986; Bigun and Granlund, 1987;
Grimson, 1989; Heitger et al, 1989).

In a later paper, Seitz and Bichsel (1991) exploited their approach used
in (Seitz, 1989) to develop a practical face-recognition concept. A face is
stored in memory as a low-resolution (24 × 32 pixels) representation of
its local orientation. The local orientation is an angular measure indicating
the direction of greatest gray-level change. To test for a match between an
unknown image and a stored face representation, a sum of squared orien-
tation differences (pixel by pixel) is used. This requires an accurate geomet-
ric normalization of the unknown face—its location, size, and orientation
must be well defined. To do this, the starting point was an array of mul-
tiresolution representations of the unknown consisting of a power-of-two
pyramid in which each resolution level contains one-fourth the number of
pixels of the previous level. At each resolution level, specific features can be
detected. At the lowest level, only a rough outline of the head is searched
for. At higher levels, more detail is sought by the use of the results from the
lower levels to progressively refine the definition of the face. With proper
normalization of the face, identification can proceed entry by entry as with
template matching. A second identification procedure based on facial ge-
ometry was used: from the results of the previously defined normalization,
a set of human face landmarks (e.g., center of pupil, left and right ear lobe)
can be established. The relationships between these landmarks is used to
define a 62-dimension face feature vector. A test of algorithm performance
with 397 face images of 70 different subjects with template matching, fea-
ture matching, or a combination of both yielded an accuracy comparing
favorably with the previously reported results of others.

The strengths of this approach are as follows: (1) because it deals with in-
tensity gradients rather than absolute gray-scale levels (as with the more
traditional template-matching techniques), it is far less sensitive to illumi-
nation variations, and (2) it is capable of extracting more information be-
cause it operates over the whole face image, unlike the less illumination-
sensitive techniques that use binary or edge-face models and are therefore
restricted to areas of the face that have edges. The weaknesses of this ap-
proach are as follows: (1) because it exploits only a single characteristic of
an image (intensity gradient), the amount of information about that im-
age is severely limited and affects recognition accuracy; (2) like many other
face-recognition procedures, it is sensitive to variations caused by image
rotation, expression change, and hair style or other physical changes; and
(3) it is computationally intensive.

Spacek et al (1994) developed a distinctly different approach with low-level
descriptors. They used an edge finder to convert a face image to a binary
representation. For arrays of 3 × 3 pixels, they described each boundary
point as belonging to 1 of 36 possible types based on local boundary shapes
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(called attributes). These attributes are a measure of local boundary curva-
ture and orientation. The population of each of the 36 attribute types was
summed over the entire face image. The normalized frequency distribution
of the boundary points over these 36 types formed the basis for face recog-
nition. To identify the face, five classifiers were tested: (1) a decision tree,
(2) a Bayesian classifier on the full attribute set, (3) a Bayesian classifier on a
reduced (optimum) set, (4) a learning vector quantizer on the full attribute
set, and (5) a learning vector quantizer on a reduced (optimum) set.

I can draw the following significant conclusions from this work:

• No clear winner emerged from among the five classifiers, although
the decision tree did seem to perform a bit better statistically.

• For discrimination purposes, only those pixels where change occurred
were significant. This means that descriptors comprising straight lines
were relatively unimportant and both right and sharp angles were
more relevant than obtuse angles. Image information appears con-
centrated in regions where the local curvature is greatest—an experi-
mental demonstration of a conclusion that can be arrived at based on
theoretical considerations (for instance, see Resnikoff (1989)).

The strong points of this approach are algorithmic simplicity and compu-
tational speed. The primary weak point is a seeming lower recognition ac-
curacy, which may be due to the limited information set the algorithm is
capable of extracting from the face image.

2.2.2 Face Recognition Based on Three-Dimensional Models

All algorithms for face recognition must cope with the large variability in
the human face. Accounting for variations due to lighting conditions and
angle, not to mention expression, is a challenging task. For methods that
operate off two-dimensional imagery, the solution is to either store and test
a large database of images for each individual or to develop an algorithm
that allows a classifier to be trained to multiple poses, an approach that has
its own special problems.

Three-dimensional face recognition involves efficiently storing a three-
dimensional model of a face and then extracting from it two-dimensional
models for face recognition, as opposed to using a special class of face-
recognition algorithms. This creates an extremely challenging constraint:
because it typically requires a range-finding laser scanner in a labora-
tory environment, three-dimensional face modeling demands cooperative
subjects.

Using concepts in differential geometry, Gordon and Vincent (1992), ex-
plored the use of morphological operators for feature extraction. They fol-
lowed two general procedures:

1. Identify connected part boundaries for convex structures such as the
outline of the nose and eye sockets.
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2. Identify connected ridge lines for structures like the browline and
chin/jaw line.

Two features referred to as ridge and valley lines can be derived from the
principal curvature of a surface. Ridge lines are local maxima in the max-
imum normal curvature at a point along the line of maximum curvature.
Valley lines are local minima in the minimum normal curvature along the
line of minimum curvature. The procedure tends to produce unconnected
line segments for these features. Further processing with dilation, thinning,
and skeletonizing joins the line segments. Finally, a morphological seedfill
algorithm known as geodesic reconstruction is used to extract the feature.
No attempt is made to demonstrate the performance of this model in a face-
recognition algorithm. The appearance of the images produced with this
procedure does little to increase our confidence in its performance when
used with unknown two-dimensional face images. More basically, it is un-
certain how to link the three-dimensional database and the unknown im-
age. Even if this procedure were successful, it may be limited to answering
classes of questions such as: Is this person who she (or he) claims to be?

A second paper by Gordon (1992) applies this technique to a population of
faces. Results appear promising, but additional work is needed.

A second, more practical treatment is that of Akamatsu et al (1991). They
propose to laser scan the face of a cooperative subject, store the three-
dimensional representation, and, using modern computer graphics tech-
niques, produce two-dimensional synthesized images. The advantage here
is that two-dimensional face images can be generated for any lighting con-
dition and angle. This procedure simply provides a compact way of storing
the equivalent of many two-dimensional face images of a subject.

The final paper reviewed in this section is not based on a three-dimensional
face model. Rather it identifies faces based on isodensity maps (Nakamura
et al, 1991), which are families of isodensity lines created by joining con-
tiguous pixels of the same gray level after image quantizing. While iso-
density maps do not define an exact relationship to the underlying three-
dimensional structure of the face, the relief of the face is reflected well in the
consequent binary image. The structure of the face-recognition algorithm is
as follows: the gray-level histogram of all the points of a face image is di-
vided into eight regions (the division points are selected experimentally).
These divisions are weighted to yield more isodensity lines about the cen-
ter of the face because it was observed that this region yielded more stable
matching lines. Stable here means relatively unresponsive to changing im-
age conditions.

Nakamura et al’s face identification procedure is based on applying tem-
plate matching to the consequent binary image. The Sobel operator is used
to extract the contour edges and the success of the method requires a
continuous contour edge. Propagation and shrinking are applied to con-
nect broken parts of the contour lines. Template matching is implemented
for any particular isodensity line level by sliding the unknown isodensity
line pixel by pixel across the registered (stored) image from top to bottom
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and left to right. A pixel match occurs if, in a 5- × 5-pixel window cen-
tered about the candidate-matching pixel, an isodensity line pixel occurs
in the registered image. For similar faces, the matches achieved were long
and contiguous. For dissimilar faces, the matches tended to be associated
with short, fragmented lines. By combining the results of the pixel-by-pixel
match with the finding that best matches are associated with long, contigu-
ous line segments, Nakamura et al derived a relationship defining a best
match.

The strong points of this approach to face recognition are (1) it is algorith-
mically simple, (2) it is computationally efficient, (3) because the binary
line image strongly reflects the underlying three-dimensional structure of
the face, the information content of the image is potentially high, (4) be-
cause a binary line image of a face is stored in memory, the amount of
required computer storage is minimal, and (5) the authors claim that this
procedure has high discrimination accuracy even for a face with glasses or
a thin beard (stubble). The weak points are (1) the algorithm cannot cope
with anything but a uniform background around the face (this is a prob-
lem common to most face-recognition algorithms), (2) the algorithm has
been tested for only minimal head tilting or panning and it appears that
its performance could be quite sensitive to these effects, (3) all test images
were obtained only under conditions of controlled lighting with registered
pictures renewed every several months to account for changes in the phys-
ical structure of the face; again it appears that the algorithm is sensitive to
these sources of image variation, and (4) the algorithm has not been fully
developed, compelling the use of experimental procedures to set a number
of important parameters (hence, a potential dependency on the choice of
faces).

2.2.3 Face Recognition Based on Profile Feature Extraction

Profile feature extraction refers not to faces in profile but rather to a unique
approach of Jia and Nixon (1992) to recognizing frontal views of faces based
on an analysis of a narrow vertical band of the center of the face. This verti-
cal pixel intensity array encompasses the center of the forehead, the center
of the nose (avoiding the sides of the nose and nostrils), the central area
of the mouth, and continuing below the chin. To extract this band, it is
assumed that the eyes can be sufficiently resolved in the face image to ac-
curately locate and scale the image. The intensity distribution of the image
so defined can be represented by an intensity projection. The intensity pro-
jection of an image f(x, y) along the direction w on the line z is defined
as

pw(z) =
∫

z
f(x, y)dw. (2)

This projection reflects the peaks and valleys of the intensity along the
length of this vertical band. Although it resembles the face in profile, it
is not the same. An efficient description of the profile is required and Jia
and Nixon tested seven potential feature descriptors: (1) the resampled
projection, (2) the autocorrelation function, (3) the dyadic autocorrelation
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function, (4) the Fourier transform, (5) the Walsh transform, (6) the Fourier
power spectrum, and (7) the Walsh power spectrum.

To minimize the effect of truncation on the autocorrelation function and
Fourier transform, a Hamming window is used. The profile is sampled
along its length at 128 points. To measure the performance of the seven
descriptors, I used two differently defined relative differences:

d1 =
128∑
i=1

| xi − yi | /(| xiyi |)0.5 and (3)

d2 =
128∑
i=1

| (xi − yi)/(xi + yi) |, (4)

where xi and yi are the feature elements of a face image and the relative
match between the images is given by the inverse of the relative differ-
ences. An analysis of the match among 40 subjects demonstrated the Walsh
transform to be the best of the seven descriptors. It is difficult to ascertain
the performance of the algorithm from the data presented by its authors
except to note their statement: “These results have shown . . . sufficient
reliability to discriminate between different persons’ faces and to match
different pictures of the same person.”

The strengths of Jia and Nixon’s approach are (1) algorithmic simplicity, (2)
computational speed, and (3) reasonable accuracy under controlled condi-
tions with a cooperative subject. Weaknesses of the approach are (1) since
the algorithm works with only a limited number of pixels in a narrow band
on the face, the performance can be adversely affected by changes in the
chosen band that might not otherwise affect an algorithm operating over
the entire face, (2) tests indicate that an up-and-down movement (more
than a side-to-side movement) can adversely affect algorithm performance,
and (3) extreme changes in lighting will cause the technique to fail.

2.2.4 Face Recognition—Geometric, Feature-Based Matching, and Template Matching

This classification represents an intermixing of template-matching tech-
niques and matching based on geometric features. The latter class is sub-
divided into feature-based algorithms that exploit discrete facial markers
such as the nose and the eye, and those that take a more holistic approach.
For recent papers on feature-based and template matching not referenced
here, see Brunelli and Poggio (1992a), Robb (1989), Smith (1986), Sutherland
et al (1992), and Wong and Calia (1992).

Holistic, Feature-Based Matching: Turk and Pentland (1991) take an in-
formation theory approach to face recognition that uses principal compo-
nent analysis, more commonly referred to in the literature as the Karhunen-
Loeve expansion. This treatment postdates an earlier set of papers by Kirby
and Sirovich (1990) and Sirovich and Kirby (1987) who use a similar ap-
proach. Other work using the Karhunen-Loeve transform in face recogni-
tion can be found in (Suarez, 1991). This approach can be thought of as
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decomposing face images into a set of characteristic features called eigen-
faces. In mathematical terms, the eigenvectors of the covariance matrix of
the set of face images are determined. These eigenvectors represent a set
of features that characterize the variation between face images. Each im-
age location contributes to some degree to each eigenvector, so that each
eigenvector appears as a ghostly face. These eigenvectors are therefore
called eigenfaces. The eigenfaces can be viewed as a map of the varia-
tions between faces. Each face in the training set is represented as a linear
(weighted) combination of the eigenfaces. This approach leads to a concept
of face recognition that is based on a set of features lacking any correspon-
dence to an intuitive sense of facial components. The idea is to find that set
of eigenfaces that most efficiently account for the distribution of training
face images within a complete image space.

The algorithm training for this approach proceeds as follows:

1. Select a set of face training images. Each individual can be repre-
sented many times under various lighting conditions, head orienta-
tion, and so on.

2. From this training set, calculate the subset of eigenfaces that corre-
spond to the highest eigenvalues; these define the optimized face
space. As new faces are added to the training set, these eigenfaces
can be recalculated.

3. Calculate the weight distribution for each individual for each eigen-
face corresponding to its distribution in the defined face space. These
weights form a vector that describes the contribution of each eigen-
face in representing the face image.

To recognize a new face—

1. By projecting the input image onto each of the eigenfaces, calculate
its weight set.

2. With any standard pattern-recognition classification algorithm, de-
termine whether the image is a face. If the image is a face, determine
whether it is known or unknown.

A test of the algorithm involved a large image database of 16 subjects. The
independent variables for this data set were differences in lighting, size of
the head, orientation of the head, and combinations of these three vari-
ables. The algorithm achieved 96 percent correct classification averaged
over lighting variation, 85 percent correct averaged over orientation varia-
tion, and 64 percent correct averaged over size variation.

The strengths of this approach are (1) it is algorithmically simple, (2) it
works very well within the limitations of the algorithm, (3) it is insensitive
to small changes in face image, or at least in the ability to train to small face
variations, and (4) there is some indication that the procedure can be scaled
to handle a large population without an excessive number of eigenfaces.
The weaknesses of this approach are (1) it is computationally expensive,
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(2) the background (including hair) can significantly affect recognition per-
formance, and (3) the algorithm is particularly sensitive to size variation (it
requires a good geometrical normalization procedure).

The discrete cosine transform is another holistic, feature-based approach
that has been applied to face recognition; this approach is strongly anal-
ogous to that used by Turk and Pentland (1991). A comparison of the
discrete cosine transform with the discrete Fourier transform and the
Karhunen-Loeve transform was made by Goble (1991). That author deter-
mined that the discrete cosine transform results were superior in all tested
cases to those obtained with the discrete Fourier transform and in some
cases were superior to those obtained with the Karhunen-Loeve transform.
The strengths and weaknesses of this approach are similar to those of
the Karhunan-Loeve transform, but the former appears to be somewhat
inferior.

Discrete Feature-Based and Template Matching: The major difficulty in
evaluating the performance of the various face-recognition algorithms is
the differences in the training and test data sets used by each author. Even
a reasonable comparison is difficult, if not impossible. A paper by Brunelli
and Poggio (1993) attempts to address this difficulty, at least with regard to
template matching versus geometric, feature-based matching.

The authors created a database of 188 images of 47 subjects. Photographs of
each individual were taken over a period of weeks. The illumination was
only partially controlled, and the scale in face size was varied by as much
as 30 percent. While only frontal views were used, no effort was made to
ensure perfectly frontal images.

To apply geometric, feature-based matching to this data set, one must nor-
malize the faces properly, that is, the features to be extracted from the im-
ages must be independent of position, scale, and rotation of the face in
the image plane. This is achieved by locating the eyes in each image. (See
Stringa (1993) for a description of a more sophisticated eye-detection algo-
rithm.) To do this, a set of five eyes templates were used. The five spanned
a range of sizes reflecting the uncertainty in face image sizes. Brunelli and
Poggio (1993) performed the template matching using a normalized cross-
correlation coefficient. Having located the eyes and, thus, normalized the
geometry of the face, one can approximately locate, size, and orient various
facial features as the nose and mouth by using anthropometric measures.
Integral projection is used to achieve the best possible definition of the var-
ious facial features. Let I(x, y) be the image. The vertical integral projection
is

V (x) =
∑
y

I(x, y). (5)

Similarly, the horizontal integral projection is defined as

H(y) =
∑
x

I(x, y). (6)

These equations are applied to a binary (edge) representation of the face.
By using edge-projection analysis, one can create two maps for each face
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image, one where the horizontal edges dominate (in the natural reference
frame of the face) and the other where the vertical edges dominate. By ap-
plying the integral projections to the edge-dominance maps, one can con-
duct a careful analysis of the resulting profiles and with reasonable accu-
racy locate the facial feature points needed to generate the feature vector.
A feature vector of length 35 was then created. Face recognition is then
performed with a Bayesian classifier. The effectiveness of the selected fea-
tures (components of the feature vector) in describing the images was in-
vestigated with the Karhunen-Loeve expansion. The results of this study
suggested that performance could be improved with more accurate feature
detectors, but, as Brunelli and Poggio (1993) pointed out, it is not clear how
to design them.

A template-matching scheme was implemented with whole-image gray-
level templates. Each subject in the database is represented by a pixel array
of four masks representing eyes, nose, mouth, and face (the region from
the eyebrows downward). The masks are positioned with the results de-
scribed previously. The unknown (unclassified) image is compared with
all the database images in turn, and a vector of matching scores computed
through normalized cross correlation is returned. The unknown subject is
identified as the one giving the highest cumulative score.

Correlation-based recognition is sensitive to illumination gradients. To de-
termine whether some form of image preprocessing could minimize this
problem, I tried four schemes:

1. No preprocessing.

2. Intensity normalization with the ratio of the local value over the av-
erage brightness in a suitable neighborhood.

3. The intensity of the gradient: | ∂xI | + | ∂yI |.
4. The Laplacian of the intensity image: ∂xxI + ∂yyI .

The best results were obtained with gradient information (scheme 3).

The relationship between image resolution and recognition accuracy
was investigated. The results indicate that correlation-based (template-
matching) recognition is possible with window templates as small as 36 ×
36 pixels. At least for the database examined and the matching procedure
used, the feasibility of such small templates tends to negate the common
objection that recognition through template matching is computationally
too expensive.

How effective were the individual windowed templates? The experimental
ranking in order of decreasing performance is (1) eyes, (2) nose, (3) mouth,
and (4) whole face template.

How were the rankings of the individual templates combined? The scores
were simply added together. The results of combining all windowed results
had a beneficial effect on recognition and increased the robustness of the
classification.
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The conclusion drawn from the vector of geometric features versus tem-
plate matching was that template matching is superior in recognition per-
formance. This result must be qualified by adding that it is specific to
the approach and the database used. As feature-detection and template-
matching schemes, these approaches are fairly sophisticated.

The weaknesses of this approach are that (1) the computational complexity
of the scheme is high, and (2) the way in which the eye-detection proce-
dure (part of the normalization scheme) was implemented is relatively un-
sophisticated and can be improved. Overall, this paper represents a com-
petent and thorough treatment of the approaches taken.

Brunelli and Poggio’s paper (1993) used a relatively simple classification
scheme. In a second paper by the same author (1992b) in which they follow
a geometric, feature-based matching scheme, a more sophisticated classi-
fier called a Hyper Basis Function network is used. The paradigm used
with this network is learning from examples, which can be regarded as the
reconstruction of an unknown function from sparse data whenever the in-
put and output can be expressed as numerical vectors.

Among the components of the feature vector used are (1) pupil-to-nose ver-
tical distance, (2) pupil-to-mouth vertical distance, (3) pupil-to-chin verti-
cal distance, (4) nose width, (5) mouth width, (6) zygomatic breadth, (7)
biogonial breadth, (8) chin radius, (9) mouth height, (10) upper lip thick-
ness, (11) lower lip thickness, (12) pupil-to-eyebrow separation, and (13)
eyebrow thickness.

For face recognition, 35 features were used. The above list was expanded
by eliminating the consequences of facial bilateral symmetry and expand-
ing some features. This list is reasonably representative of what is generally
used for facial feature vectors and gives good insight into the kind of infor-
mation needed and, hence, the difficulties in extracting it.

The number of Hyper BF networks necessary for identification is the same
as the number of subjects to be recognized. For proper training, a large
number of facial images for each subject are required. During training,
each network undergoes a competitive learning stage, in which the weights
of the different features and prototypes are changed to maximize the re-
sponse to inputs corresponding to the subject represented. A Hyper BF
network has three significant quantities (1) the unknown coefficients to
be determined and associated with a scaler function to be approximated,
(2) the vector defining the network centers, and (3) the weights assigned to
each input coordinate, which determine the importance of each input. The
Hyper BF network can be considered as a memory representation in which
the distinctive (or discriminating) facial features are exaggerated, creating
a caricature.

The strengths of this classifier are that it (1) is reasonably accurate (a cited
recognition performance of 95 percent), and (2) provides insight into fa-
cial caricatures. The weakness is that it requires a large number of training
images for each individual.
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Kanade (1973) describes a rather interesting approach to face recognition
based on feature matching. The approach applies a flexible analysis scheme
that combines local processing with global recognition. Backup procedures
are included so that if difficulties are encountered during the recognition
process, previous steps can be retried. The approach is claimed to be flexi-
ble and adaptive.

The procedure starts with a binary face representation. A thresholded Lapla-
cian operator is used with local pixel averaging to produce a smooth image.
The Laplacian was superior to either the Robertz operator or a maximum-
of-differences operator for this purpose. No additional operators such as
thinning or elimination of isolated points are used.

Face recognition is a two-stage process. First, the face and its features are lo-
cated. Integral projections of horizontal and vertical slits (or windows) are
used to localize facial features, a procedure described earlier. The contours
of these projections are matched to stored families of contours to identify
features.

The procedure starts by finding the top of the head and then proceeding to
the following facial features in the order listed (1) sides of face at cheeks,
(2) vertical regions of nose, mouth, and chin, (3) chin contour, (4) nose end
points and cheek areas, and (5) eye positions. If in performing the above
sequence of search operations, an error is encountered (i.e., a poor match
is achieved based on criteria intrinsic to the algorithm), we go back one or
more steps and retry the process. A test of the localization procedure for
the following four classes of faces was made (1) full face with no glasses
or beard, (2) full face with glasses, (3) face with turn or tilt, and (4) face
with beard. The first class, the training set for this algorithm, performed
reasonably well, achieving a judged correct performance of approximately
92 percent for 670 faces. The third class also performed reasonably well at
80 percent for 79 faces. The other two classes performed poorly.

After the face is localized, a more detailed examination of the facial features
is made (the second stage). The procedure used is similar to the first stage,
but because facial features are now localized, it is computationally feasible
to perform a much higher resolution and detailed search. The second stage
outputs a set of fiducial points for the face. From these points a set of 16
feature-vector components are generated that comprise ratios of distances,
areas, and angles and represent enough geometric information about a face
to permit some recognition.

A simple measurement of distance between known and unknown face
was used as a test of the identification algorithm. It is difficult to judge
the performance of the model since so little information is given about
the variability among faces. A database in excess of 600 faces was avail-
able, but the number of subjects this represents is unknown. It was noted,
though, that performance improved when ineffective feature vector com-
ponents were omitted, not an uncommon finding. The first stage face-
localization algorithm appears to have worked better than the second stage
face-identification algorithm.
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The strengths of this approach are that it (1) represents a comprehensive
treatment of face localization (or segmentation and geometric normaliza-
tion) that relies not on single facial features like the eyes but on a dis-
tributed set of facial characteristics (potentially a more robust approach),
and that it (2) is an adaptive procedure that uses feedback to improve al-
gorithm performance, a technique not commonly used. The weaknesses of
this approach are (1) algorithmic complexity, (2) computational intensity,
and (3) questionable face-identification capability.

2.2.5 Face Recognition—Neural Networks

Neural networks are used in face-recognition algorithms as feature detec-
tors (including segmentation), classifiers, or both. The first paper I review
uses a three-layered feed-forward neural network as a classifier.

Lim et al (1992) describe an algorithm for feature-vector extraction and clas-
sification. The first step is to transform all images to a binary representation
using the Sobel operator with an experimentally selected threshold. To ge-
ometrically normalize the images, an eye-detection scheme is used that re-
lies on eye blinking. If a large number of frames of an image are grabbed,
a big difference in gray level at the regions of the pupils is detected for
those frames with closed eyes. This procedure assumes reasonable frame-
to-frame face-image registration. Having detected the pupils, the algorithm
can determine the approximate location of various characteristic points of
the face. The authors provide no details on the refined feature-extraction
method, except that a final feature vector of 17 elements resulted.

To train the classifier, Lim et al computed three feature vectors derived from
three images of each individual. The image with the largest Euclidean dis-
tance from the remaining image was discarded and the mean of the remain-
ing two used for training. The neural network consisted of 17 input units,
25 hidden layer units, and 4 output units. A back-propagation algorithm
was used for training. A 100 percent recognition rate was achieved for a
data set of 10 subjects.

The strength of this approach is its algorithmic simplicity, except for the
uncertainty in the feature-extraction procedure. The weaknesses are that
(1) the data set was too small and poorly defined to permit proper evalua-
tion, (2) it is not clear what benefits derive from using this neural network,
and (3) the ability of the neural network classifier to be scaled to handle
large numbers of individuals remains uncertain.

A paper by Soulie et al (1993) describes a neural network model for both
face segmentation and identification. The authors look not just at recogni-
tion performance but also at rejection performance. Rejection performance
is the ability of the neural network to detect and reject unknown faces.
The scenes used to test the face-segmentation model contained a reason-
able amount of background clutter with multiple faces of varying size.
Both the face-segmentation and face-identification modules were of a sim-
ilar neural network design. Both were time-delay neural networks that use
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a multilayer perceptron architecture. The networks were trained with a
gradient back-propagation algorithm (a gradient-descent method). The au-
thors used the stochastic gradient version of the Widrow-Hoff rule. The
main difference in the architecture between the face-segmentation and face-
identification networks was the output layer. The recognition network used
as many units in the output layer as there were subjects to identify. The seg-
mentation network had two outputs—face or no face. As is typical of neural
networks, good performance requires many examples of each subject. With
fewer than 150 images per person, performance was seriously degraded.

Two databases were used to test the network. The first contained face im-
ages for 20 individuals that were centered and normalized to 20 × 24 pixels.
Of those, 14 were known faces and their image sets were divided into train-
ing and test sets. The remaining 6 were unknown faces used to test the net-
work’s ability to detect and reject unknown faces. The second database con-
tained 250 scenes, with various groupings of individuals sitting or standing
in a home-like setting. Searches of these scenes were restricted to persons
looking almost directly at the camera.

A serious problem of the face segmentation module was variation in face
size; this was solved with multiresolution decomposition of the image. This
decomposition gives multiple scene views at different scales, thus ensuring
scale-invariant detection. A postneural network-processing algorithm was
used to statistically select those windows containing faces from among the
many resultant segmentation windows. The system was demonstrated to
be robust to partial face occlusion and proved to be effective in locating
faces of varying sizes in a complex scene, although face segmentation fail-
ures occurred (or could occur) with faces that were too close to the border
of the image.

Test results with the first database showed that the identification error rate
increased with the number of subjects to identify. For the full 14-person set,
the error rate was 1.3 percent. When tested to reject the faces of unknown
subjects, the network performed reasonably well. For instance, 85 percent
of the unknown faces were detected with a 5 percent rejection of known
faces.

The strengths of this approach are (1) robust to variations in face rotation,
expression, lighting, and noise, (2) capable of segmentation with a complex
background scene, and (3) can be made insensitive to face size variations.
The weaknesses are (1) requires many images of an individual for proper
neural network training, (2) scales poorly in training time and related net-
work complexity as the number of individuals to be recognized increases
(as presently configured, the network is restricted to tens of individuals
and cannot cope with hundreds), and (3) multiresolution decomposition is
computationally very expensive.

In another neural network treatment, Runyon (1992) compares a neural net-
work with a nonneural network classifier. Both use the same automated
segmentation and preprocessing algorithms. The nonneural network ver-
sion uses a Karhunen-Loeve transform feature extractor and a K-nearest
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neighbor (KNN) classifier. The neural network version uses the same fea-
ture extractor but with a multilayer perceptron classifier having a back-
propagation learning rule. Runyon’s thesis is significant because it looks
at classes of real-world face-recognition problems that have been down-
played or even ignored in the past, and it does so within the context of this
classifier comparison.

The segmentation processor uses multiple images combined with a motion
detector, with the assumption that the only motion in front of the cam-
era is that of the subject. The relative motion isolates the individual from
the background. A correlation is then performed between a reference im-
age and the unknown input image, which permits centering and scaling
of the unknown image. After normalization, the image is multiplied by a
positioned gaussian window to emphasize the inner region of the face and
deemphasize the outer area, thus reducing the problem with hair and its
variability.

A K-nearest neighbor classifier uses a scoring technique that compares a
feature of the unknown with a known face from memory and assigns a
score of K to its closest match. A score of K-1 is assigned to the next closest
match, and so on. After scoring is completed, the scores are summed and
the known image with the highest value identifies the unknown face. K can
be any value; at its extreme, it can be assigned a value of 1.

The first test was performed with 23 users over two days. Its purpose was
to determine the classification accuracy of competing models for a large
number of subjects when training, and test images were collected on dif-
ferent days. For the K-nearest neighbor classifier, the recognition rate was
29 percent. For the back-proprogation neural network (BPNN) classifier,
the recognition rate was 34 percent. A baseline was generated with same-
day training and testing. The results were KNN = 78 percent and BPNN =
76 percent. An investigation was made to determine the effect of segmenta-
tion inaccuracy on recognition accuracy. With manually segmented images,
the same-day results were KNN = 90 percent and BPNN = 97 percent. In
general, segmentation error contributed roughly 20 percent to the decrease
in recognition accuracy. A final test was made with this data set. For train-
ing, it used images collected on both days, and for testing, it used images
collected on both days. The results were KNN = 62 percent and BPNN =
74 percent.

The second test was with four subjects over seven days. Its purpose was
to study the effects of time on recognition accuracy, albeit for a smaller
set of subjects. Four training and three test images were collected for each
subject each day for a total of seven days (a total of 28 training images and
21 test images per person). The test used an iterative procedure: first, each
system was trained on each person’s four training images from day one and
then tested on all 21 images of each person. The system was then retrained
with the images from the second day in addition to those of the first. The
accuracy of this system was again tested with all 21 test images of each
subject. The system was then trained with three days of training images,
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tested, trained again, and so on, until the training images for all seven days
had been used. For the KNN model, improvement in performance accuracy
was less than monotonic because training spanned one to seven days. The
initial recognition accuracy was 62 percent and the final was 90 percent.
For BPNN, the performance improved monotonically starting at 82 percent
and ending at 100 percent. The overall performance of the neural network
classifier was superior, particularly for the seven-day test.

No particularly good rule appears to exist that would specify the structure
or connectivity of a neural network. Hancock and Smith (1990) apply a
genetic algorithm to specify the structure of a BPNN. The network is feed-
forward and has a single hidden layer with full connectivity to the output
units. When the genetic algorithm was applied to simple face models, the
best score was 57 percent, compared with a score of 44 percent for the fully
connected network and the best score from an initial net random popu-
lation of 41 percent. The results demonstrate that a genetic algorithm can
improve the internal structure of a neural network. The major drawback of
this approach is that it is CPU-intensive. Runs are defined in terms of CPU
days or weeks.

For additional recent neural network treatments of face recognition, see
Allinson and Ellis (1992); Bouattour et al (1992); Frasconi et al (1992); Kerin
and Stonham (1990); Krepp (1992); Sander (1988); Turk and Pentland (1991).

2.2.6 Face Recognition—Gabor Functions

The approach of Petkov et al (1993) to face recognition was motivated by a
desire to duplicate processes of the primary visual cortex in mammals. (For
a similar approach using the Gabor wavelet transformation, see Manjunath
et al, 1992.) Experimental results indicate that two-dimensional Gabor func-
tions can be made to fit the receptive fields of simple cells in the primary
visual cortex of mammals. The projection (functional inner product) of a
two-dimensional image on a Gabor function is performed. This projection
is then integrated over all pixel locations of the input face image. Discretiza-
tion is used with eight discrete angles (or orientations) and eight basic spa-
tial frequencies. A feature vector of 64 Gabor functions is thus generated.

Tested on a set of 205 face images of 30 subjects, a recognition rate of
94 percent was achieved. Individual images of a person showed differences
in facial expression and orientation, but both size and lighting variations
were limited. The quoted accuracy of this approach must be qualified by
the test conditions since each test image had a set of five to nine images of
the same individual with which to make a match.

The strengths of this approach are (1) the preliminary information it has
provided about biological processes, and (2) the relative accuracy it achieves
under the constrained test conditions. The weaknesses are (1) the compu-
tational intensity, even when constrained to Gabor functions of only eight
orientations and eight scales, and (2) the need for good geometric normal-
ization of the face image.
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2.2.7 Cortical Thought Theory

In 1985, Routh of the Air Force Institute of Technology proposed cortical
thought theory as an attempt at a unified brain theory. The theory was ap-
plied to a sequence of face-recognition systems. It has since fallen out of fa-
vor and is now considered obsolete. (See Lambert, 1987; Russel et al, 1986;
Russel, 1984.)

20



3. Phase One—Algorithm Development

Image recognition can be characterized as an optimization procedure—a
best matching between memory and the contents of a scene. The compu-
tational complexity of the approach to be taken requires that much of the
redundant, low-information content data in the scene be eliminated before
proceeding. This is done by processing the scene to produce a family of
contours. If the original scene is a gray-scale image, this requires a gray
scale to contour transformation. All contours are further processed, creat-
ing a set of contour nodes (or points). (The procedure for doing this will be
the subject of another report.)

If a postprocessed scene composed of a node set can be said to subjectively
represent the preprocessed scene fairly well, then it is reasonable to expect
that the presence of an object can be ascertained. The example image used
throughout this report is the frontal view of a face. Statements made about
this image can be generalized to almost any other class of imagery. A face
is recognizable as a face because it possesses certain attributes that we refer
to here as features. A feature is a small attribute compared to the size of
the overall image. For instance, the contour outlining the image of a face
is not a feature but a small continuous segment (as, for instance, the chin).
The context of the chosen features forms the basis for image recognition.
The image of a canonical or standard face to be stored in memory is ar-
rived at by averaging a large population of faces. Several standard faces
can be stored by dividing the population into subgroups based on facial
characteristics. For demonstration purposes, the shape of the face is chosen
arbitrarily.

Figure 1 is a phase one representation of a canonical face. It is composed of
six features. The choice of features and feature count is somewhat arbitrary.
The center of each line segment is assumed to be the most probable location
of each feature. Line segments indicate the relative orientation of features

Figure 1. Canonical face
stored in memory for
demonstration of phase
one algorithm.
Numbers are feature
designations (location =
center of line).
Orientation of lines
represents relative
orientation of features.

3 4

2

5

1

6
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and have no other significance. Figure 1 barely resembles a face because the
computational demands of phase one require that a scene be searched with-
out a priori knowledge of image size, location, or orientation. This simple
representation can be used as the basis for a more complex search scheme,
one that efficiently scans a scene in a hierarchical fashion searching for any
of a large number of types of images.

The initial stage of the scene-analysis algorithm involves a global search for
an optimum match between a pattern formed from information extracted
from the features of the canonical face and the unknown scene. The overall
image-recognition algorithm is organized hierarchically with progressive
phases that allow an increasingly focused examination of smaller regions of
the scene. The initial data set will be superseded by an increasingly detailed
data set as the search progresses.

Equations (7) through (10) are key to the global image search. The equation
parameters are taken from memory and define the characteristics of the
object being sought for this phase:

QK,N,M
1 = DK,N + DK,M −DN,M , (7)

where

K,N,M = 1, . . . n,

K �= N,K �= M,N �= M ,

K, N , and M are feature numbers,

n is the feature count, and

Di,j is the relative distance between features i and j with the smaller of
DK,N or DK,M always normalized to 1.

Table 1 gives the characteristics of QK,N,M
1 as a function of both the angle

formed by vectors between features K, N , and M with the vertex at K and
the larger of DK,N and DK,M .

QK,N
2 = XKXN + YKYN , (8)

where

K,N = 1, . . . n,

K �= N , and

Xi and Yi are the x, y components of the unit tangent vector defining the
orientation of feature i.
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Table 1. Relationship of
equation (7) in tabular
form, where DK,N ≡ 1.

DK,M

θ∗ 1 2 3 5 10

0 2.00 2.00 2.00 2.00 2.00

15 1.74 1.93 1.95 1.96 1.96

30 1.48 1.76 1.81 1.84 1.85

45 1.23 1.53 1.60 1.65 1.68

60 1.00 1.27 1.35 1.42 1.46

75 0.78 1.01 1.09 1.16 1.21

90 0.59 0.76 0.84 0.90 0.95

105 0.41 0.54 0.60 0.65 0.70

120 0.27 0.35 0.39 0.43 0.46

135 0.15 0.20 0.23 0.25 0.27

150 0.07 0.09 0.10 0.11 0.12

165 0.02 0.02 0.03 0.03 0.03

180 0.00 0.00 0.00 0.00 0.00
∗θ = cos−1 ([D2

K,N + D2
K,M − D2

N,M ]/2ab).

For features without a clear orientation (e.g., a circle), any orientation can
be selected. This equation is nothing more than a vector dot product:

QK,N
3 = DK,N + DK,R −DN,R , (9)

where

DK,R = DK,N , and

R is the location of the projection of the unit tangent vector at feature K
closest to feature N .

Note that equation (9) has the same functional form as equation (7). With
the normalization requirements on the distance terms, equation (9) can also
be written as

QK,N
3 = 2 −DN,R . (10)

Equation (9) is a late addition to this equation set and was included to cure
defects in the performance of the phase one model. It is left to the reader to
determine the class of problems this equation was designed to resolve.

QK,N,M
4 = DK,N/DK,M (11)

if
QK,N,M

4 > 1 : QK,N,M
4 = 1/QK,N,M

4 . (12)

Equation (11) resolves the obvious ambiguity that exists in the previous
equations.

An analogous set of relationships, derived in this case from the set of nodes
constituting the unknown scene, can also be defined and is designated as

qa,b,c
1 , qa,b

2 , qa,b
3 , and qa,b,c

4 . (13)
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There are three feature designations, K,N , and M , and three unknown
scene node designations, a, b, and c. The following pairings between fea-
tures and nodes are used: a ⇒ K, b ⇒ N , and c ⇒ M . The relationships of
the previous equations are combined:

Ea,b,c
1 = 1 − 0.5 | QK,N,M

1 − qa,b,c
1 |, (14)

Ea,b
2 = 1− | QK,N

2 − qa,b
2 |, (15)

Ea,b
3 = 1− | QK,N

3 − qa,b
3 |, and (16)

Ea,b,c
4 = 1 −QK,N,M

4 /qa,b,c
4 . (17)

If Ea,b,c
4 < 0, then

Ea,b,c
4 = 1 − qa,b,c

4 /QK,N,M
4 . (18)

Written as above, all E terms have a range of 0 to 1 and provide a measure
of the correlation between the nodes of the unknown scene and the fea-
tures from memory. The optimization procedure attempts to find that node
corresponding to a (only one per feature) contained within the unknown
scene for which the following function is minimized:

Λa
m = − ξb

mξc
m(Ea,b,c

1 Ea,b,c
4 + Ea,b

2 Ea,c
2 Eb,c

2 + Ea,b
3 Ea,c

3 ), (19)

where m = 1, . . .M
′

with M
′

being the feature count and ξ to be subse-
quently defined. The E-term groupings of equation (19) are somewhat ar-
bitrary. They are based on the anticipated significance of the individual E
terms in image identificaion and backed by computer simulation.

I use an iterative procedure to find node a for all features. This proce-
dure is computationally intensive. Any a priori knowledge of image size,
orientation, or location in the unknown scene, however approximate, can
greatly reduce these computational requirements. Under the assumption of
no such knowledge, the procedure, while intensive, is nonetheless straight-
forward: nodes a, b, and c are selected at random from the unknown scene
and Λa

m is computed. This allows the development of a performance history
for each node. This history is given by

ξa
m = (Aξa

′

m+ | Λa
m |)/(A + 1), (20)

where

ξa
m is the new value,

ξa
′

m is the previous value, and

A is a constant.

Initially all nodes are assigned identical values for ξa
m. The choice of A is

somewhat arbitrary. This choice affects the algorithm’s “forgetfulness” and
the solution convergence rate. Too small a value creates the risk of locking
the iterating solution in a local minimum far removed from the optimum
solution. Too large a value can adversely affect the solution convergence
time. Rather than adjusting ξa

m after every random selection of nodes b and
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c, I calculate Λa
m for a large population of selected nodes b and c and use

the best performer out of this population as per equation (19). As a per-
formance history for each node contained within each feature begins to
evolve, this can be used to increasingly bias the initially random choice of
nodes b and c toward the best performers. All such decisions involve this
balancing between rate of solution convergence and the risk of becoming
trapped in a less than optimum local minimum.

3.1 Symmetry Breaking

Many images, including the image in figure 1, have a high degree of bi-
lateral symmetry. All unknown scene nodes that are strong candidates for
feature 1 of the face image, for instance, are equally strong candidates for
feature 2. The same can be said of feature pair 3 and 4. This situation must
be rectified. The most direct procedure is to select the evolving optimum
node candidate for any of the above features early in the optimization pro-
cedure, inhibit all nodes not in its vicinity, and reverse roles for the nodes
of its matched feature pair.

3.2 Node Averaging

To ensure that isolated nodes that were inadvertently optimized to the re-
lationship of equation (19) are not selected, I perform node averaging. If
node a has n

′
nearest neighbors, then

Λa
m = (Λa

m +
n
′∑

n=1

Λa
n)/(n

′
+ 1). (21)

This operation occurs periodically within the optimization procedure and
ensures that any node response is representative of the nodes in its vicin-
ity. Vicinity is defined as both physical proximity based on distance and a
shared contiguous contour.

3.3 Enforced Solution Convergence

Initially, equation (19) places no restriction on the choice of nodes b and
c. For any node a to represent an optimum fit to any feature, the measure
of the goodness of that fit is its relationship to the other optimum feature
nodes (nodes b and c). At the end of the solution procedure, nodes b and
c must correspond to the optimal nodes for their corresponding features.
To a limited extent, the form of equation (19) ensures this correspondence.
To guarantee it, I must progressively enhance the contributions of ξb

m and
ξc
m to equation (19) as the solution proceeds. Any number of approaches

can be taken. An optimum schedule can significantly affect the solution
convergence rate. Under any circumstance, the solution convergence rate
must be slow enough to ensure that the solution does not become trapped
in an unacceptable local state. No attempt has been made to find an opti-
mum schedule. The output of the first phase global search is a single node
associated with each feature from which the absolute size, location, and
orientation of the image candidate can be derived.
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3.4 Global Model Performance

Figure 2 is a scene to be searched for the test image. In this case the test
image is that of figure 1. The phase one algorithm searches the unknown
scene for the globally optimum fit. It should be recalled that the search is
performed without any knowledge of the size, location, or orientation of
any potential face candidate.

Table 2 demonstrates the performance of the model for a number of ran-
domly selected state space trajectories. The table includes the effects of sig-
nificant changes in the shape of the test image in figure 1. This change in
shape tests the ability of the phase one algorithm to find a match when the
best match between memory and the unknown scene is poor. As can be
seen in table 2, the algorithm performance is reasonable.

Figure 2. Phase one test
scene. Letters represent
image node locations
for use with table 2. e

d
k

j

l

b

a

h i
c

g f

Table 2. Performance of
phase one algorithm
with randomly selected
state space trajectories.
Table is an array of
predicted feature nodes
for figure 1 to 2 pairing.
Included is model
performance with a
varying Y-axis scale
factor for memory
image of figure 1.

Feature designation†

Y∗ 1 2 3 4 5 6

1.00 j h e c b f

1.00 h j c e b f

1.00 h j c d a f

1.00 h j c e a f

1.00 j h d c b g

1.00 j h e c b f

1.00 j h e c b f

1.00 j h e c b f

1.00 j i d c b f

0.50 i j c d b f

0.75 j h e c b f

1.25 k h e c b f

1.50 l h d c a f

∗Y-axis scale factor for figure 1.
†Taken from figure 1.
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4. Phase Two—Algorithm Development

Because the global search algorithm uses so little information of necessity,
it is unable to reliably determine if a valid image has been identified. What
has been determined is the size, location, and orientation of a reputed im-
age. What is needed now is a more detailed examination of the image can-
didate. A further search need not be restricted to the features used in phase
one. Features can be redefined to yield more detailed morphological infor-
mation. The scene search for phase two can be restricted to the region about
each feature, which greatly reduces the computational requirements of the
problem. The approach used for the redefined feature search parallels that
used for the phase one global search. Based on the results of phase one, a
shape-preserving affine transformation is performed on the memory im-
age coordinate system. This attempts to optimize the congruence between
the image characteristics in memory and the candidate image in the un-
known scene. The following eight equations are substituted for equations
(7) through (18):

F a,b,c
1 = sa,b

1 sa,c
1 , (22)

where

sa,b
1 = dK,N/ra,b , if sa,b

1 > 1 : sa,b
1 = 1/sa,b

1 ,

sa,c
1 = dK,M/ra,c , if sa,c

1 > 1 : sa,c
1 = 1/sa,c

1 ,

K,N,M = feature designation (K �= N �= M ),

a, b, c = corresponding candidate feature nodes from unknown scene,

d = (phase one) scaled memory image distance, and

r = corresponding unknown scene node-node distance.

F a,b,c
2 = Ea,b,c

1 , (23)

F a,b
3 = Ea,b

2 , (24)

F a,c
4 = Ea,c

2 , (25)

F a,b
5 = Ea,b

3 , (26)

F a,c
6 = Ea,c

3 , and (27)

F a
7 = Da

1/Da
2 , (28)

where

if F a
7 > 1 : F a

7 = 1/F a
7 ,

Da
1 = ((XK − xa)2 + (YK − ya)2)0.5,

Da
2 = (5000Da

′

2 + Da
1)/5001,

Da′
2 = most recently computed value of Da

2 in the phase two iterated solution,
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XK , YK = internal memory coordinates of feature K after phase one scaling,
translation, and rotation, and

xa, ya = coordinates of node a in the unknown scene coordinate system.

F a
8 = (Xt

Kxt
a + Y t

Kyt
a)

2, (29)

where

Xt
K , Y t

K = the components of the unit tangent vector associated with each
feature stored in memory after phase one rotation, and

xt
a, y

t
a = the unit tangent vector components of the contour at node a in the

unknown scene coordinate system.

These equations include concepts based on both relative and absolute rela-
tionships between unknown scene and transformed memory.

For equation (19) I substitute

Λa
m = − ξb

mξc
m(F a,b,c

1 + F a,b,c
2 + F a,b

3 F a,c
4 + F a

7 + F a,b
5 F a,c

6 F a
8 ). (30)

The extended size of the phase two equation set—a direct consequence of
the presence of the phase one results—allows a more sophisticated analy-
sis of the image candidate. The goal is, as for phase one, to find a single
node associated with each feature. This more detailed phase two analysis
is important. In phase one, the tendency is to select features that are well
distributed around the image. In phase two, of necessity features become
more closely spaced, a potential source of performance degradation. The
extended phase two equation set alleviates this somewhat.

The phase one and phase two algorithms are not only capable of gener-
alizing to large variations in image shape but are also capable of a suc-
cessful search even when features are missing. The algorithm is designed
so that deleting features from an image (with the consequent loss of im-
age information) will degrade algorithm performance, but this degrada-
tion should be reasonably graceful. This is an important attribute of any
image-recognition algorithm.

For phase two, the canonical test image is a segment of a face—the region
around the eye (fig. 3). This figure is interpreted identically to figure 1.
Figure 4 is the scene to be searched for an occurrence of the figure 3 im-
age. This image is not taken from figure 2; for demonstration purposes,
something more complicated was desired. Note that the relative shape of
the figure 3 image makes a poor fit to the obvious best (or proper) fit of
figure 4.

Table 3 gives the output of the phase two algorithm. It lists several can-
didates for the best mode for each feature. These are listed in order with
the best for each feature first. In addition, table 3 contains a figure of merit
for the best fit node for each of the six features. This number is related to
the output of equation (30). The smaller the number, the better the feature
match. Note that the two nodes that make the poorest subjective match (5
and 6) also have the largest values.
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Figure 3. Canonical
image for use with
demonstration of phase
two algorithm.

6

5

2

3

1

4

Figure 4. Phase two test
scene. Letters represent
image node locations
for use with table 3.

q p

m

n o

d

l

a c

b

j
i

g
hk e f

Table 3. Phase two
results: best
node-feature matches.
Canonical shape in
figure 3 and test scene
in figure 4.

Feature designation∗

1 2 3 4 5 6

a d g j m p

A† b e h k n q

c f i l o m

M‡ 0.46 0.56 0.50 0.47 0.59 0.62
∗See figure 3.
†Best node fits, in order.
‡Phase two figure of merit.
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5. Phase Three—Algorithm Development

Up to this point, all image identification is based on identifying a single
node with a feature. In the final phase of the image-recognition algorithm,
intrinsic feature shape is considered. The approach is tied to the way such
information is stored in memory. This, in turn, is driven by the desire to
store as little information as possible. At this point, what is stored?

• A single point identifying the location of each feature, and

• A unit tangent vector defining the orientation of the feature.

Even a feature without an overall orientation (e.g., a square) can be defined
by associating the feature-identifying node with the appropriate subset of
feature nodes. What is the simplest way of describing a generic shape?
Remember that intrinsic feature shape is an elusive concept. Only infre-
quently can an image stored in memory be expected to be a good match to
the content of a scene. Consider figure 5. Nodes A through F are feature-
defining nodes. Now consider only node A. Store in memory the distances
A to B and A to C. The tangent at A is already stored. Store in memory the
distances B to D and C to E. Assume that curve segments A to D and A
to E can be approximated by the relationship RN . R is the distance from
A along straight line segments A to B or A to C. Distances A to B and A
to C can be conveniently normalized. Store N in memory. Curve E to A
to D can be approximated from this limited information. If desired (and
there are compelling reasons to do so), curve E to F to D can also be as-
sociated with node A and its shape inferred from similar considerations as
given. From the limited information above, an approximation to the shape
of figure 5 can be constructed.

A set of mathematical standards needs to be developed, as was done in
phases one and two, to examine the intrinsic shape of all features. With the
phase one and two efforts, a “best fit” single node is associated with each
image feature. For the phase three effort, an association will be made be-
tween these feature nodes and the underlying feature shapes. An objective
decision can then be made about the presence or absence of each feature.
This is not intended to be template matching. I must assume that the fit be-
tween memory and feature candidate is poor, but subjectively acceptable.
I must also assume that, in the presence of extraneous contours, a subjec-
tive best match can be found. The following equations, similar to what was

Figure 5. Exemplar
configuration.

A B

D

F

E

C
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presented earlier, were found to be adequate:

Gb,c
1 = 0.5 | Q1,N,M

1 − q1,b,c
1 |, and (31)

Gb,c
2 = (D1,Nd1,c)/(D1,Md1,b), (32)

if Gb,c
2 > 1 : Gb,c

2 = 1/Gb,c
2 , and

Gb,c
3 = 1 −Z1ZbZc, (33)

where

Z1 =| Xt
1x

t
1 + Y t

1 y
t
1 |,

Zb =| Xt
Nxt

b + Y t
Nyt

b |, and

Zc =| Xt
Mxt

c + Y t
Myt

c |.

Gb
4 = 0.5 | Q1,N

3 − q1,b
3 |, and (34)

Gb
5 = (| (x1 − xb)(X1 −XN ) |) + (| (y1 − yb)(Y1 − YN ) |)/r1,bd1,N . (35)

See equations (22) and (28) for the definition of terms. The next standard
G6 is different. If node b shares a common contour with node a, then

Gb
6 = 0 ; else Gb

6 = 1. (36)

Gb
7 = d1,N/r1,b (37)

or the inverse, whichever is largest.

One can see that G1 through G7 are essentially either the terms or vari-
ations on the terms presented for phases one and two. The optimization
procedure finds that set of 14 nodes for which the following relationship is
minimized:

Λ1
m = Gb,c

1 + Gb,c
2 + Gb,c

3 + Gb
4 + Gb

5 + Gb
6 + Gb

7, (38)

where m = 1, . . . 14.

The performance of equation (38), applied to figure 4 and the results in ta-
ble 3, is demonstrated with the help of figure 6. A feature extracted from
memory is represented by 14 nodes (an arbitrary choice) distributed along
its contour (or contours). Based on the results of phases one and two, a
scale factor and an orientation for all features are established. From table 3,
a scene-node candidate for node 1 of the memory-generated feature is se-
lected. This memory-generated feature is translated until its node 1 is con-
gruent with the selected node from table 3. In figure 6, this is done for three
features. The solid circles define feature 6 (see fig. 3), and node 1 of this fea-
ture is placed congruent with node 11 of the eye-eyebrow scene (node 11 is
identical to node m of fig. 4 and table 3). Similarly, the open circles define
feature 2 and are placed congruent with scene node 72 (node d of fig. 4 and
table 3). The dots are feature 3 and are placed congruent with scene node 59
(node g of fig. 4 and table 3). All remaining 13 feature nodes are numbered
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Figure 6. Phase three
test configuration for
use with table 4.

31 27

20

71 73

64 57
58

43

40

44

70
52

4847
4

9

7

23

15

sequentially counterclockwise from 1. Equation (38) is applied with a rea-
sonably localized search around the 14 memory-derived feature nodes and
finds its corresponding optimum match from the test scene. A numerical
rating proportional to the result of equation (38) is generated and stored
and provides an absolute scale basis for establishing the confidence in the
node match.

Table 4 presents phase three results for those nodes of table 3 that best sat-
isfy the requirements of equation (38). The phase three algorithm assigns a
best candidate from the scene for all 14 nodes, even when all or part of the
scene feature is missing. Examples of such poor “hits” can be readily dis-
cerned in table 4. While a simple thresholding of the data would eliminate
the poor nodes, this is not the best solution to this problem. As can be seen
from the phase three equation set, the poor data points will degrade the
overall performance of the model. To eliminate poor data requires an iter-
ative approach with these points progressively suppressed from the equa-
tion set.

Nevertheless, the performance of the simple phase three model implemen-
tation is impressive and demonstrates the adequacy of the approach.
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Table 4. Phase three results: best node-feature matches.

Node†/performance‡

B∗ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1-a 52 58 55 57 57 61 62 66 21 7 48 48 49 51

0.66 0.86 0.66 0.49 1.14 1.30 1.18 1.31 1.01 1.04 1.46 0.75 0.68 0.52

2-f 62 67 50 49 49 51 52 53 54 55 57 57 57 57

1.01 1.02 1.58 1.08 0.61 0.78 0.73 0.70 0.75 0.87 0.28 0.91 1.37 1.79

3-g 59 60 62 66 66 67 68 69 70 52 52 53 53 58

0.58 0.66 0.95 1.19 0.84 0.71 0.67 0.67 0.73 0.54 0.91 0.90 0.59 0.68

4-j 69 70 52 53 53 58 59 59 60 61 62 62 66 68

0.54 0.62 0.58 1.01 0.64 0.63 0.64 0.66 0.63 0.66 1.13 0.96 0.64 0.63

5-n 19 17 15 15 15 14 12 11 10 8 7 7 7 21

0.39 0.58 0.66 0.54 0.59 0.68 0.62 0.48 0.64 0.61 0.52 0.47 0.50 0.66

6-m 11 10 8 7 7 7 21 19 17 16 15 15 16 13

0.46 0.61 0.59 0.52 0.46 0.50 0.67 0.44 0.49 0.51 0.64 0.66 0.81 0.49
∗Feature node (see figs. 3 and 4 for definitions).
†See figure 6 for scene node-designation scheme.
‡Phase three figure of merit (proportional to eq (32)).
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6. Conclusion

This report demonstrates the feasibility of performing a sophisticated scene
search for a complex object. The search is intended to both recognize the
occurrence of an object and to create a labeled subset of the search-scene
nodes in preparing to answer the question: What does the object look like?
This report develops the theory for the object search and presents the re-
sults of a series of computer simulations.
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