A Regression Model for Computing Index
Flows Describing the Median Flow for
the Summer Month of Lowest Flow in
Michigan

By David A. Hamilton, Richard C. Sorrell, and David J. Holtschlag

In cooperation with the Michigan Department of Environmental Quality and the
Michigan Department of Natural Resources

Scientific Investigations Report 2008-5096

U.S. Department of the Interior
U.S. Geological Survey



U.S. Department of the Interior
DIRK KEMPTHORNE, Secretary

U.S. Geological Survey
Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For product and ordering information:
World Wide Web: http://www.usgs.gov/pubprod
Telephone: 1-888-ASK-USGS

For more information on the USGS--the Federal source for science about the Earth, its natural and living resources,
natural hazards, and the environment:

World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to
reproduce any copyrighted materials contained within this report.

Suggested citation:

Hamilton, D.A., Sorrell, R.C., and Holtschlag, D.J., 2008, A regression model for computing index flows
describing the median flow for the summer month of lowest flow in Michigan: U.S. Geological Survey Sci-
entific Investigations Report 2008-5096, 43 p.



Contents
ADSTIACT ..ottt R et s bbbt 1
INEFOAUCTION. .ttt 1
PUIPOSE @NA SCOPE vttt sttt ettt ettt b s nesnns 2
Previous INVESTIGatioNS. ...t ses et ssss e s s esse st essessnsnns 2
Description 0f the STUAY AT ...ttt s 2
REgression MOGEIING ......cc.iucuiicieciceec ettt bbbttt 4
Development of a Regression Model for Index Flow EStimation ............ccoocrevenerereneeneeesseneeneneeenees 5
Selection of Streamflow-Gaging StatioNS .......ccccuvcvieeceicsse s 5
Identification of the Hydrologic Response Variable ... 6
INAEX FIOW ...t
Index Water Yield
Compilation of Hydrologic Characteristics for Use as Explanatory Variables .........c.ccccooveeenee. 9
Selection of Hydrologic Characteristics for Use as Explanatory Variables........c.ccccoocvernrnnee. 18
Estimation of the Hydrologic Response Variables ... 18
Spatial Distribution of the Regression-Model Error..........ccennencneneseecssss e 19
Computation of the INAEX FIOW ...t

Index Water Yield and Flow
Comparison of Index Flows
EXample COMPULALION ..ottt st
BT U] 1111 F- V7P
ACKNOWIBAGMENTES ...ttt s bbbt s st s st an e
RETEIENCES CIBM......cecvecteieeecte ettt ettt bbbt

Figures

1-3.  Maps showing:
1. Michigan’s Upper and Lower Peninsulas and surrounding states

L0 N0 (017 Vo= OO RTTRTT 3
2. U.S. Geological Survey streamflow-gaging stations in Michigan's

Upper Peninsula included in the analySes ... 7
3. U.S. Geological Survey streamflow-gaging stations in Michigan's Lower

Peninsula included in the @nalySes ...t 8

4-6. Graphs showing:

4. Relation between estimates of index flow from gaging station records
AT o L TP 1o =R LT TR 9

5. Empirical and fitted normal distributions for median-water-yield data
from the month of lowest flow for selected streamflow-gaging stations
INIMICRIGAN et 10

6. Distribution of estimated aquifer transmissivity classes in Michigan...................... 1
7-11.  Maps showing:

7. Distribution of aquifer transmissivity classes in Michigan

8. Distribution of forest cover in Michigan ...




9. Distribution of hydrologic soil groups in Michigan .......ccceennnrnsineneeeeneeseeenns
10. Distribution of normal annual precipitation in Michigan for 1971-2000...................
11.  Distribution of normal annual snowfall depths in Michigan for 1971-2000.............
12-13. Graphs showing:
12. Relation between RfY5o(the index of water yield estimated by regression)
and RIY, (the index of water yield computed on the basis of the streamflow-
gaging StAtion FECOTAS)....c.eiveireieeeeeeeteetee et een
13. Distribution of explanatory variables selected for the regression model................
14.  Map showing hydrologic subregions used in the analysis of the spatial
distribution of regression-MOdel BITOM ...t eeneen
15-16. Graphs showing:
15.  Regional distribution of regression model errors for estimating median
water yield during the summer month of minimum flow.........ccoeeevveeveccicceieenne,
16. Relation between measured and computed index flows for selected
streamflow gaging stations in Michigan ........ccoevrenrncennnrnesceee e

Tables

1. Lower triangular elements of the diagonally symmetric correlation matrix
among candidate explanatory variables and the square root of median
water yield for the summer month of lowest flow in Michigan .........cccooeovveeveccvescrnnnee.
2. Regression model parameters for estimating the hydrologic response variable ...........
3. Cross-tabulation of land use-land cover areas with hydrologic soil groups for
land areas Within MIChIGan ..o ennen
4. Lower triangular elements of the diagonally symmetric correlation matrix
among parameters of selected explanatory variables and the square root of
median water yield for the summer month of lowest flow in Michigan..........ccccecoeuvnnee.e.
5. The inverse of the X'X matrix needed to compute prediction limits .......ccccocoveeeerrrerenenee
Appendix 1. Tables of streamflow-gaging station attributes, flow characteristics, and
explanatory variables used in the development of the regression equation
for estimating the index flow at ungaged streams in Michigan .........cccooevvnrernneee.
1-1. Flow, yield, and record characteristics for streamflow-gaging stations
used in the regression @NalYSiS.......occcerienieree e
1-2. Values of selected explanatory variables used in the development of the
regression equation for estimating the index flOwW ..........ocooevnrornrnneerreens
1-3. Cross-tabulation of cell counts and percentages for Michigan Resource
Information System (MIRIS) 1978 land use-land cover and hydrologic soil
groups iN MICRIGAN.......cveeeerrree ettt ennes



Conversion Factors and Abbreviations

Multiply By To obtain

Length
inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)

Area
square mile (mi?) 259.0 hectare (ha)
square mile (mi?) 2.590 square kilometer (km2)

Flow rate
cubic foot per second (ft¥/s) 0.02832 cubic meter per second (m?/s)
cubic foot per second per square 0.01093 cubic meter per second per square
mile [(ft3/s)/mi?] kilometer [(m®/s)/km?]

gallon per day (gal/d) 3.785 liters per day (liters per day)
inch per year (in/yr) 2.54 centimeter per year (cm/yr)

Transmissivity*

foot squared per day (ft2/d) 0.09290 meter squared per day (m?/d)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
Altitude, as used in this report, refers to distance above the vertical datum.

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times
foot of aquifer thickness [(ft}/d)/ft?]ft. In this report, the mathematically reduced form, foot
squared per day (ft%d), is used for convenience.
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A Regression Model for Computing Index Flows
Describing the Median Flow for the Summer Month of

Lowest Flow in Michigan

By David A. Hamilton', Richard C. Sorrell', and David J. Holtschlag?

Abstract

In 2006, Michigan enacted laws to prevent new large-
capacity withdrawals from decreasing flows to the extent that
they would functionally impair a stream’s ability to support
characteristic fish populations. The median streamflow for
the summer month of lowest flow was specified by state
decision makers as the index flow on which likely impacts
of withdrawals would be assessed. At sites near long-term
streamflow-gaging stations, analysis of streamflow records
during July, August, and September was used to determine
the index flow. At ungaged sites, an alternate method for
computing the index flow was needed. This report documents
the development of a method for computing index flows at
ungaged stream sites in Michigan. The method is based on a
regression model that computes the index water yield, which
is the index flow divided by the drainage area. To develop the
regression model, index flows were determined on the basis
of daily flows measured during July, August, and September
at 147 streamflow-gaging stations having 10 or more years
of record (considered long-term stations) in Michigan. The
corresponding index water yields were statistically related to
climatic and basin characteristics upstream from the stations
in the regression model. Climatic and basin characteristics
selected as explanatory variables in the regression model
include two aquifer-transmissivity and hydrologic-soil groups,
forest land cover, and normal annual precipitation. Regression-
model estimates of water yield explain about 70.8 percent of
the variability in index water yields indicated by streamflow-
gaging station records. Index flows computed on the basis of
regression-model estimates of water yield and corresponding
drainage areas explain about 94.0 percent of the variability in
index flows indicated by streamflow-gaging station records.
No regional bias was detected in the regression-based esti-
mates of water yield within seven hydrologic subregions span-
ning Michigan. Thus, the single regression model developed
in this report can be used to produce unbiased estimates of

! Michigan Department of Environmental Quality.
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index water yield and flow statewide. In addition, a technique
is presented for computing prediction intervals about the index
flow estimates.

Introduction

The Michigan Legislature (2006) passed Public Act 33 in
2006 (PA33-20006); it and related laws are the first state laws
to regulate water withdrawals. The legislation seeks to prevent
any new or increased large-capacity withdrawal (generally
referring to withdrawals that average more than 100,000 gal-
lons of water per day (0.1547 ft¥/s) in any consecutive 30-day
period) from causing an adverse resource impact. This impact
is defined as decreasing the flow of a stream by part of the
index flow such that the stream’s ability to support character-
istic fish populations is functionally impaired. PA33-2006 fur-
ther defines index flow as the 50 percent exceedance (median)
flow for the lowest flow month of the flow regime (year), as
determined over the period of record or extrapolated from
analyses of the U.S. Geological Survey (USGS) streamflow-
gaging-station records in Michigan.

In this report, the index flow is characterized as the
median flow during the lowest flow in July, August, and
September. The lowest monthly median summer flow was
calculated by ranking the daily average flows at each USGS
streamflow-gaging station (station) for the period of record,
grouped by month. The median exceedance flow for each
month was determined, and the lowest monthly value in the
summer was selected as the index flow for each station. Sum-
mer is the time of greatest stress on the ecosystem from low
flows and high temperatures.

Multiple linear regression models (Draper and Smith,
1966) are commonly used to transfer streamflow information
from gaged to ungaged sites. The regression model includes
an equation for estimating or predicting the index water yield,
computed as the index flow divided by the drainage area
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contributing to flow, using basin and climatic characteristics as
explanatory variables. In this report, “estimation” refers to the
process of computing the square root of water yield or the cor-
responding index flow for a gaged site that was used in model
development, whereas “prediction” refers to the process of
computing the square root of water yield or the corresponding
index flow for an ungaged site. Unless ambiguity would result,
the term *“computation” is used when the distinction between
estimation and prediction is unimportant.

In addition to an equation for predicting the hydrologic
response, regression models provide a probability model that
describes the uncertainties of predicted responses. This uncer-
tainty is sometimes expressed as a range of responses with a
specified probability that is likely to contain the true hydro-
logic response at a particular stream site. The lower limit of
this range can be used to help avoid overestimating a response,
such as the index flow.

Purpose and Scope

This report documents the development of a multiple
linear regression model for predicting the expected magnitude
and uncertainty of the index water yield. The index water yield
is the water yield associated with the index flow, which is
the median flow for the month of lowest summer streamflow
in Michigan. For ungaged sites, the predicted index water
yield can be multiplied by the corresponding drainage area
upstream from the site to compute the index flow. In addition
to the expected magnitude of the index flow, the uncertainty
characterized by the regression model provides a basis for
computing a range of flows within which the true index flow is
likely to occur. An example computation is given to illustrate
application of the regression model for predicting water yield
and computing magnitude and uncertainty of the index flow.
The regression model is applicable to Michigan streams where
index flows are not significantly affected by existing water
withdrawals, diversions, or augmentations.

Previous Investigations

Knutilla (1967) and Holtschlag and Croskey (1984)
developed statistical models for predicting a variety of low-,
average-, and peak-flow characteristics for Michigan streams.
Neff and others (2005) developed multiple regression equa-
tions for predicting base flow throughout the Great Lakes.

None of these studies, however, resulted in a method for
estimating the median streamflow during the summer month
of lowest flow in Michigan. Longer periods of record and
additional streamflow-gaging sites, combined with improved
methods for determining basin and climatic characteristics,
created an opportunity to improve estimation of streamflow
characteristics in Michigan and support implementation of the
2006 water-withdrawal legislation.

Description of the Study Area

Michigan is in the eastern north-central part of the United
States and is surrounded by four of the five Great Lakes
(fig. 1). Ontario, Canada lies to the north and east of Michigan.
To the west and south, border states are Wisconsin, Indiana,
and Ohio. Michigan is the 10" largest state in the Union with
a total land area of 58,110 mi?, 38,575 mi? of Great Lakes
waters, and 1,305 mi? of inland waters (Michigan Library,
2006). According to the U.S. Census Bureau (2007), the popu-
lation of Michigan in 2006 was estimated to be 10,095,643.

Michigan has a humid continental climate in which the
average precipitation (rainfall plus water-equivalent snowfall
depths) varies from about 28 to 38 in/yr. December through
March tend to have slightly less precipitation, whereas July
through September tend to have slighter more precipitation,
than is typical for the rest of the year. Greater evapotranspira-
tion during the summer, however, generally causes summer
streamflows to be lower than those at other times of the year.

Michigan consists of two peninsulas separated by the
Straits of Mackinac, a body of water that connects Lake
Michigan with Lake Huron (fig. 1). The straits are spanned
by the Mackinac Bridge, where the northern tip of the Lower
Peninsula is within about 5 mi of the southern coast of the
eastern Upper Peninsula. The Upper Peninsula is heavily for-
ested and somewhat mountainous in the west. Bedrock is at or
near the surface in much of the Upper Peninsula.

The Lower Peninsula is covered by a thick layer of gla-
cial drift. The northern part is characterized by sandy material
and is heavily forested. Trout streams, sustained by plentiful
base flow, are common in that area. Much of the southeast-
ern part of the Lower Peninsula is flat lakebed plains that are
extensively agricultural or urban; base flow is meager. The
southwestern part of the Lower Peninsula has a wide mixture
of landforms, soil types, land uses, and stream types.
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Figure 1. Michigan’s Upper And Lower Peninsulas and surrounding states and province.
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Regression Modeling

A multiple linear regression model was developed to
predict index water yield. The model consists of a linear equa-
tion that is a function of selected hydrologic characteristics
and model parameters estimated from index flow divided by
drainage areas at gaged sites. This equation, plus the probabil-
ity model underlying the error distribution, form the regression
model. The following paragraphs describe the mathematical
procedures used to estimate the model parameters from avail-
able data and assumptions underlying the probability model.
Techniques are described for using the model uncertainty and
site-specific climatic and basin characteristics to bound model
predictions with a specified level of certainty.

The general form of a multiple linear regression equation
is

y=X-f+e ()

where

y is a column vector containing the hydrologic response
variable;

Xis referred to as the “design matrix,” which, in general,
is composed of p columns of basin and climatic
characteristics augmented with a leading column of
1’s that serve as explanatory variables to estimate the
hydrologic response;

f is a column vector of parameters, 5, 8, . . . By
that relate the explanatory variables to the hydrologic
response variable; the ordinary least-square estimator
of gis denoted g . and computed as g = (X LX)t
-X"-y, where the prime symbol implies a matrix
transpose and the —1 power implies a matrix inverse
operation;

€ is a vector of residuals that is assumed to be normally
distributed and independent with mean zero and con-
stant variance ¢%, commonly written €~NI(0,6%). In
addition, it is assumed in the regression model that the
covariance between € and X, Cov(g, X), equals zero.

Along with the predicted value itself, the distributional
characteristics of the regression model error and the hydrologic
characteristics at the site of interest are a basis for assessing
the uncertainty of the predicted value. Let [LPL ,, UPL _ ]
be a prediction interval between the lower prediction limit
LPL_, and the upper prediction limit UPL,_, centered about
the regression estimate that is likely to contain the hydrologic
response, y,, with a probability of 1- a. For example, if o was
specified as 0.2, there would be a 10-percent chance that the
hydrologic response would be less than LPL , and a 10-per-
cent chance that it would be greater than UPL,_,, providing a
total probability of 20 percent that the true hydrologic response
would be outside the prediction interval.

Computationally,

[LPLa/z’UPLya/zJ =X " Bas itn—p—l,l—a/Z\/Sz (1"' X (X X )71 Xo) )

where X, is a row vector of corresponding basin characteristics
at the site of interest augmented by a leading 1, (X" X)) is

a function of the design matrix used to estimate the model
parameters, s’=¢'-&/(n—p—1) and L is the inverse

of Student’s t cumulative distribution function with n—p-1

degrees of freedom at the specified alpha level divided by 2.

The assumption that the regression residuals are normally
distributed is often difficult to satisfy with water yield or flow
values. In particular, the density function of the normal distri-
bution is symmetrical, whereas water yield and flow data tend
to be positively skewed because these variables are bounded
by zero on the left and unbounded on the right side of the
distribution. Logarithmic and square-root transformations are
commonly applied to water yield and flow values to produce
a hydrologic response variable for which model residuals are
likely to be normally distributed. Unlike the logarithmic trans-
formation, the square-root transformation does not eliminate
observations that have zero values.

As a convenience to the interested reader, the fol-
lowing key statistics are defined. The total sum of squares
is SS_=(y-Y)'(y-Y), wherey is the mean of the hydro-
logic response variable, the sum of squared errors is
SS.=(y-)'(y-»)e' ¢, and the model sum of squares is SS, =
SS,—SS,. The mean square total is MS_=SS_/(n-1). Degrees
of freedom for the error is df_=n-p-1, which subtracts the
number of model explanatory variables, p, plus 1 for the
intercept term, to describe the effective number of observa-
tions associated with the model error. The mean square error is
MS_=s?=SS_/df_ and the model mean square is MS, =SS /p.
The root mean square error is the square root of the mean
square error, RMS_= ,/Ms, . In addition, an F statistic, com-
puted by dividing the MS, by the MS_, characterizes the over-
all statistical significance of the model. On the basis of the F
probability distribution, a probability value (p-value) is com-
puted with the F statistic, as well as the degrees of freedom in
the model and error components, to assess the likelihood that
the null hypothesis that all model parameters are zero is true.
A small p-value, commonly (but not necessarily) less than
0.05, is used to reject the null hypothesis, thereby accepting
the alternative hypothesis that, overall, the regression model is
statistically significant.

The Pearson multiple coefficient of determination, here
denoted as Rs, describes the fraction of the variability of
y described by y where R?=1-SS_/SS,.R? is equal to the
squared Pearson’s product moment correlation coefficient
between hydrologic response variables computed on the basis
of streamflow-gaging station records and values estimated by
the regression equation, rp(y,ﬁ), where

i=1 i=1

n(ry)=—= , - @
\/Z(y,-—f) \/ (5.~ 5)
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Indicators of estimation accuracy, such as Rfo and
RMS,, reflect the model fit to the dataset used in develop-
ment of the regression model. These indicators tend to show
model improvement with increasing numbers of explanatory
variables because the model is increasing fit to the specific
characteristics of the available observations. Prediction
accuracy, which is associated with the accuracy of predict-
ing the hydrologic response from a basin not used in model
development, is more difficult to quantify with small datasets.
Prediction accuracy, however, improves with the addition of
explanatory variables only up to a point. Beyond this point,
prediction accuracy may decrease with the further addition
of explanatory variables because a model that too closely fits
the specific characteristics of available observations may not
generalize well.

To lessen the inflation of the model fit sometimes indi-
cated by the R; value, the adjusted coefficient of determina-
tion, R2, =1-(SS./n-p-1)/(SS,/(n-1)), accounts for the
number of parameters in the model. Spearman’s correlation
coefficient is a more robust measure of association than Pear-
son’s correlation coefficient when the data distributions are
skewed. The Spearman’s correlation coefficient is computed
similarly to Pearson’s correlation coefficient except that the
original data are replaced by their ranks, r (y,y)= rp(rank(y),
rank(y)), where the rank of the smallest value in the set is
1 and the rank of the largest value is n. Finally, Spearman’s
coefficient of determination, symbolized as R, is the square of
Spearman’s correlation coefficient.

Like the response estimates, estimated parameters
B, associated with the individual explanatory variables
are uncertain. As the sample size (n) becomes large, esti-
mated parameters are unbiased and normally distributed
about their true values, assuming that ¢~NI(0,62). The
covariance of the parameter estimates, cov(/,,) is equal
to o?(X"- X ), which is commonly written 5, ~N__ , (5,
cov(ﬁms)). Diagonal elements of the covariance matrix
describe the variance of the corresponding estimated param-
eters; off-diagonal elements describe the covariance among
parameters. A large covariance among parameters indicates a
coupling between one or more parameter estimates because
of an approximate linear dependency among explanatory
variables. Such a coupling complicates interpretation of
parameter magnitudes associated with specific explanatory
variables. The magnitude of parameter covariances is
commonly evaluated on the basis of their correlations,
computed as cor(f,,), ; =cov(f,), ./ \/cov(ﬁols )., €OV (Bys )
If the magnitudes of these correlations |cor(ﬁols)i'j| exceed
0.95 (Poeter and others, 2005), the independence of the paired
parameter estimates is uncertain.

At statistic computed from the data can be used to assess
the significance of individual parameters as
t= (B0, Jeov(Bas),, - This t statistic is used to compute the
probability that the null hypothesis, £,=0, is true. If this com-
puted p-value is small, say less than 0.05, the null hypothesis
is commonly rejected, and the alternative hypothesis that

i

B=B,, is effectively accepted. Rejecting the null hypothesis
implies.that the parameter £, and corresponding explanatory
variable are needed in the regression model.

Development of a Regression Model
for Index Flow Estimation

Regression models are a statistical means of transferring
flow information obtained at streamflow-gaging stations to
ungaged sites in the same hydrologic region. The process of
transferring flow information from gaged to ungaged basins is
commonly referred to as “flow regionalization.” The transfer
is facilitated by identifying climatic and basin (hydrologic)
characteristics in the gaged basins that are statistically related
to the flow statistics computed from gaging-station records.
Once this statistical relation is identified and regression param-
eters in the model equation are estimated, only the selected
climatic and basin characteristics upstream from the ungaged
site are needed to estimate the flow statistic for that location
by use of the regression equation.

The regression model includes this equation and a set of
assumptions pertaining to the model errors, which are the dis-
crepancies between estimates of the flow statistics computed
from gaging-station records and estimates computed by use
of the regression model. It is often necessary to transform the
streamflow statistics being estimated to satisfy assumptions
associated with the model error. In regional flow analysis, a
square-root or logarithmic transformation of the streamflow
statistics is commonly applied prior to estimating regression-
model parameters. The inverse transform is commonly applied
to regression estimates to compute the flow statistics of inter-
est. The spatial distribution of model error is investigated to
assess whether any bias occurs among the hydrologic subre-
gions forming the region. If no subregional bias is detected,
the regression model is considered appropriate for estimating
the flow characteristic of interest throughout the region. The
regression model error characteristics also are a basis for com-
puting an interval about the regression estimate in which the
true, but unknown, value of the streamflow statistic is likely to
occur.

Selection of Streamflow-Gaging Stations

Development of the regression model for regional flow
characterization includes selection of streamflow-gaging sta-
tions where (1) no trends occur in the mean and variance of
flow, (2) the period of record is sufficiently long to accurately
characterize flow conditions of interest through statistical
analysis of station records, (3) flow characteristics of interest
are not substantially affected by water withdrawals, diver-
sions, or regulation, and (4) streamflow represents the natural
hydrologic response to climatic conditions and basin charac-
teristics that are typical of the area.
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Streamflow data from the USGS network of continuous-
record streamflow-gaging stations operated in Michigan
through water year 2005 were used for this analysis. A water
year is the 12-month period from October | to September 30
and is identified by the calendar year in which it ends. Stations
were selected for the regression analysis with respect to the
following criteria:

1. A minimum of 10 years of continuous-record data was
required to reduce the temporal sampling variability of the
flow statistic.

2. Estimates of daily flow were not thought to be appreciably
affected by water withdrawal, diversion, or augmentation.

3. Effects of regulation, either from natural storage in lakes
or retention in regulated surface-water bodies, were not
thought to substantially mask the hydrologic response
from precipitation.

From these evaluations, 147 streamflow-gaging stations
were selected for inclusion in the analyses (figs. 2 and 3).
Among selected stations, the average length of record was
40.2 years, and the range was from 11 to 91 years. The first
water year of record used in the analysis was 1901, and 88 sta-
tions included data from water year 2005.

Identification of the Hydrologic Response
Variable

The regression equation described in this report is a
basis for computing an estimate of the index flow, which is
defined as the median streamflow for the summer month of
lowest flow in Michigan. The statistical distribution of index
flows, however, is not consistent with assumptions underly-
ing the regression model. To find a metric of index flow that
is consistent with these assumptions and one in which cli-
matic and basin characteristics physically associated with the
streamflow response are more readily identified, mathematical
transformations of index flow values were investigated. As a
result, the response variable used in the regression equation
was formed as the square root of the quotient of index flow
divided by the drainage area of its associated basin. In this
report, the response variable is referred to as the “hydrologic
response variable.” The inverse transformation is applied to
the regression estimates of the hydrologic response to compute
index flows.

Index Flow

In accordance with PA33-2006, the median flow dur-
ing the lowest summer flow month was the index flow and is
represented symbolically as 1Q, . A statistic was calculated
to estimate 1Q,, by ranking the daily mean flows measured at

each selected gaging station by month for the entire period of
record available and selecting the 50th percentile. The median
flow for each summer month (July, August, and September)
was determined, and the summer month with the lowest
median flow was used to estimate 1Q,; at that gaging station.
To distinguish the true index flow 1Q,; from the value of the
flow response computed by use of the finite period of gaging-
station record, the gaging station statistic is symbolized as
10, The value of /Q_ is assumed to converge to 1Q,, as the
length of gaged record increases. This assumption requires that
there is no trend in the streamflow data (the expected value
of 1Q,, does not vary with time) and that fQ50 is an unbiased
estimator of 1Q, . No trends were detected in streamflow data
at the selected stations.

For the 147 stations selected for the analysis, the low-
est median flow occurred in July at 5 stations, in August at
92 stations, and in September at 50 stations. The index flow
ranged from zero at stations 04157500, Sebewaing River State
Drain near Sebewaing, Mich., and 04158000, Columbia Drain
near Sebewaing, Mich., to 1,850 ft¥/s at station 04101500, St.
Joseph River at Niles, Mich. (Appendix A). The average index
flow at selected stations was 116 ft¥/s, the standard deviation
of these flow was 228 ft¥/s, and the (dimensionless) skewness
was 4.5044.

Index Water Yield

Much of the variability in index flow is related to drain-
age area (fig. 4)°. In development of the predictive equation,
there was concern that the dominant relation between index
flow and drainage area indicated by the power equation
TQSO:ﬁ0 DA% could mask more subtle relations involving
basin and climatic characteristics. Also, the estimated expo-
nent in the power equation, 4 of 1.2301, implies a slightly
nonlinear relation between drainage area and index flow
(fig. 4). A nonlinear relation between index flow and drainage
area is considered physically unlikely because much of the
index flow is thought to be derived from ground-water sources,
which would be approximately linearly related to drainage
area (8,= 1). To help identify the appropriate relations, the
index water yield 1Y, was selected as a preferred metric to the
iNndex flow. 1Y was estimated from station records by dividing
1Q,, by the drainage area upstream from the corresponding
gaged site, and it is symbolized py IY,,.

For the 147 selected sites, 7Y, ranged from zero at the
two stations with zero index flows, to 1.3087 ft¥/s-mi? at sta-
tion 04139000, Houghton Creek near Lupton, Mich. The aver-
age iYSO value was 0.3302 ft3/s-mi?, the standard deviation was
0.2600 ft3/s-mi?, and the skewness was 1.3422. The positive

3 Data for two of the selected streamflow gaging stations could not be
included in this plot because they were zero and could not be represented on a
logarithmic scale.
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Figure 3. U.S. Geological Survey streamflow-gaging stations in Michigan's Lower Peninsula included in the analyses
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drainage area (DA) [R;, the Pearson coefficient of determination].

skewness indicates that index water yield values are spread
out more to the right than to the left of the mean. Drainage
areas range from 1.1 mi? at station 04141000, South Branch
Shepards Creek near Selkirk, Mich., to 3,670 mi? at station
04101500, St. Joseph River at Niles, Mich.

A normal distribution fitted to the empirical iY50 data was
inadequate to approximate the distribution of water-yield val-
ues (fig. 5), because the empirical distribution was frequently
outside of the 95-percent confidence bounds of the fitted nor-
mal distribution. Formally, the Lilliefors test (Conover, 1980)
rejected the null hypothesis that a normal distribution ade-
quately approximated the distribution of fYSO at the 5-percent
level (p<0.001) of significance. Similarly, the Lilliefors test
rejected (p<0.001) the null hypothesis that a normal distribu-
tion adequately approximated the distribution of the common
logarithm transform of the index yield (LiYSO).

A square-root transformation was applied to the elements
of [Y,, to assess the effect on the empirical distribution of the
resulting values. Based on a sample mean of 0.5274 (ft®/s-
mi?)Y2, variance of 0.0525 ft3/s-mi?, and a skewness of 0.1607,
a normal distribution closely approximated the empirical
distribution of square root (Root) transformed values symbol-

ized as RIY,, (fig. 5). A Lilliefors Test did not reject the null
hypothesis that R7Y, values were normally distributed at the
5-percent level of significance (p=0.5). Therefore, the square
root transformation RiY50 was used as the hydrologic-response
variable in the regression model.

Compilation of Hydrologic Characteristics for
Use as Explanatory Variables

Hydrologic characteristics were compiled for the 147
stations used in these analyses. Compiled hydrologic char-
acteristics include basin and climatic characteristics that are
considered physically and statistically related to the 1Y, . All
hydrologic characteristics included as possible explanatory
variables in the regression equation are available as Geo-
graphic Information System (GIS) files to facilitate com-
putation of hydrologic characteristics. Basin characteristics
included categories of aquifer transmissivity, forested area,
and hydrologic soil group; climatic characteristics included
normal (1971-2000) annual precipitation and annual snowfall
amounts. The following paragraphs discuss the hydrologic
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Figure 5. Empirical and fitted normal distributions for median-water-yield data from the month of lowest flow for selected streamflow-

gaging stations in Michigan.

characteristics evaluated as possible explanatory variables in
the regression equation.

Transmissivity is a measure of the capacity of an aquifer
to transmit water. The transmissivity of an aquifer is equal to
its hydraulic conductivity, commonly expressed in units of
feet per day, multiplied by its saturated thickness, in feet. The
Goundwater Mapping Project (http.//gwmap.rsgis.msu.edu/), a
multiagency study in Michigan, created a grid of the estimated
transmissivities for the glacial deposits (Michigan Department
of Information Technology, 2005a). The grid is composed of
1-km (0.621-mi) square elements and is based on an interpola-
tion of transmissivities assigned to 270,000 water wells on the
basis of lithologic information described in well logs prepared
by well drillers. In areas of thin glacial deposits (less than 30

ft thick) the grid element was assigned a code of -1 to indicate
that thin deposits prevented a reliable estimation of transmis-
sivity at that element. Because of the uncertainty associated
with interpolation over the highly heterogeneous aquifer
transmissivity field, grid elements that were more than 2,000
m (6,560 ft) from a well were assigned a code of -2 to indicate
that interpolation uncertainties prevented reliable estimation of
transmissivity at that element. Otherwise, grid elements were
assigned an estimated transmissivity value that ranged from 0
to 30,309 ft¥/d.

The Michigan Glacial Landsystems Coverage (Michigan
Department of Information Technology, 2005b) classified the
surface geologic deposits into 10 land systems. Each appli-
cable land system was assigned to an aquifer transmissivity
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Figure 6. Distribution of estimated aquifer transmissivity within transmissivity classes in Michigan.

class. Bedrock, lacustrine fine, and thin drift over bedrock
land systems were assigned to the low-transmissivity class;
lacustrine coarse, lodgement till or fine supraglacial drift,
and ice-marginal till land systems were classified as medium
transmissivity; and coastal dunes, ice-contact outwash, and
proglacial outwash were assigned to the high-transmissivity
class. Land systems designated as lakes were not assigned a
transmissivity class. About 0.25 percent of the elements were
assigned aquifer transmissivities of zero and could not be
displayed by means of a common logarithm transformation
(log,,). The log,, transformed distribution of aquifer transmis-
sivities that were estimated to be greater than zero are shown
for low, medium, and high classes of transmissivities in fig-
ure 6. Median estimated aquifer transmissivities increased

from 723 ft?/d in areas classified as low transmissivity, to
2,020 ft¥d in areas classified as medium transmissivity, to
3,780 ft?/d for areas classified as high transmissivity. The
spatial distribution of estimated transmissivity classes in the
glacial aquifers in shown in figure 7.

Land-use and land-cover characteristics affect hydro-
logic response primarily by affecting the rate at which water
infiltrates into the soil and subsequently either drains to the
ground-water system or flows overland to a nearby stream.
As indicated by Anderson and others (1976), land use refers
to “man’s activities on the land that are directly related to
the land” (Clawson and Stewart, 1965), whereas land cover
describes “the vegetative and artificial construction covering
the land” (Burley, 1961).

1"
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The State of Michigan uses the spatial data coverages in
the Michigan Resource Information System (MIRIS) (1978)
as the standard for hydrologic studies in Michigan. MIRIS
contains land-use and land-cover data that had been compiled
from county and regional planning commissions. The MIRIS
data represent land-use and land-cover data in a grid that
contains 26,319 rows and 25,247 columns of cells. Each cell
represents a land area of 30 m square. The categories include
Level | features (Anderson and others, 1976), which are coded
in MIRIS as integers and are defined as follows: (1) urban or
built-up land; (2) agricultural land; (3) rangeland; (4) forest
land, which included Level II classification of deciduous, ever-
green, and mixed forest lands; (5) water; (6) wetland; and
(7) barren land. The code —9999 signifies no data or inappli-
cable, which occurs over areas such as the Great Lakes. The
spatial distribution of forest land in the MIRIS coverage is
shown in figure 8.

Four hydrologic soil groups have been defined by the
U.S. Department of Agriculture Natural Resources Conserva-
tion Service (NRCS) (2007):

 Group A soils (basin characteristic variable A_Soils)
have low runoff potential when thoroughly wet. Water
is transmitted freely through the soil. Group A soils
typically have less than 10 percent clay and more than
90 percent sand or gravel and have gravel or sand
textures.

 Group B soils (B_Soils) have moderately low runoff
potential when thoroughly wet. Water transmission
through the soil is unimpeded. Group B soils typically
have between 10 percent and 20 percent clay and
50 percent to 90 percent sand and have loamy sand or
sandy loam textures.

» Group C soils (C_Soils) have moderately high runoff
potential when thoroughly wet. Water transmission
through the soil is somewhat restricted. Group C soils
typically have between 20 percent and 40 percent
clay and less than 50 percent sand and have loam, silt
loam, sandy clay loam, clay loam, and silty clay loam
textures.

 Group D soils (D_Soils) have high runoff potential
when thoroughly wet. Water movement through the
soil is restricted or very restricted. Group D soils typi-
cally have greater than 40 percent clay, less than
50 percent sand, and have clayey textures.

The spatial distribution of hydrologic soil groups in Michigan
is shown on figure 9 based on the MIRIS coverage. MIRIS
represents soil data in a grid that contains 26,319 rows and

25,247 columns of cells. Each cell represents a land area of
30 m square. In MIRIS, hydrologic group A soils are coded as
1, group B soils are coded as 2, group C soils are coded as 3,
group D soils are coded as 4, and no data or inapplicable areas
are coded as -9999. The hydrologic-soil-group grid is geo-
referenced the same as the MIRIS grid for land use and land
cover.

Runoff curve numbers (RCN) were developed by the
U.S. Department of Agriculture National Resources Conserva-
tion Service (2004). Conceptually, RCN describes the direct
runoff component of total flow that includes (1) the channel
component representing precipitation falling directly on the
stream channel, (2) the surface or overland flow component,
which represents flow from precipitation that exceeds the infil-
tration rate on the land surface, and (3) the subsurface com-
ponent, which represents infiltrated water that flows laterally
underground to the stream without intercepting permanently
saturated areas; this subsurface flow component is sometimes
referred to as “interflow.” With reference to RCN, runoff does
not include the base-flow component, which is likely the main
component influencing 1Q, . Large direct-runoff components,
however, are likely to be associated with smaller median or
base-flow components. In general, greater RCN values are
associated with soils with greater peak runoff potential, such
as areas underlain the hydrologic soil group D; within each
soil group, RCN increases with percentages of impervious
areas, land covers that are prone to produce runoff, and basins
that are considered to be in poor hydrologic condition. The
MDEQ has developed GIS processing techniques for com-
puting RCN from land-use and soil GIS coverages. From
a possible range of 0 (no direct runoff) to 100, RCN ranged
from 48 to 85, with an average of 70 for the selected basins.
No statewide coverage is available to display the geographic
variation of RCN, although it is similar to the hydrologic soil
groups and land-use characteristics from which it is derived.

Normal annual precipitation for 1971-2000 ranged from
about 28.5 in/yr in the northeastern part of the Lower Penin-
sula to about 38 in/yr in southeastern part of the Lower Pen-
insula (Michigan Climatological Resources Program, 2004).
Precipitation in the far western part of the Upper Peninsula
approaches 35 in/yr, whereas precipitation in the eastern part
is about 32 in/yr (fig. 10).

Normal annual snowfall depths (fig. 11) for 1971-2000 in
Michigan generally trend from a minimum of 40 in. in south-
eastern Lower Peninsula to a maximum of 220 in. in the north-
western tip of the Upper Peninsula (Michigan Climatological
Resources Program, 2004). Evidence of lake-effect snow is
apparent along the western coast of the Lower Peninsula and
in a trend of increasing snowfall depths from south to north in
the Upper Peninsula.
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Selection of Hydrologic Characteristics for Use
as Explanatory Variables

Explanatory variables used in the regression equation
were selected on the basis of both their statistical and hydro-
logic significance. One of the initial screening devices for
assessing statistical associations was the matrix of correlation
coefficients (table 1). Here, the maximum positive correla-
tion (0.63) was found between RINY50 and forest (Forest); the
maximum negative correlation (-0.72) was found between
R[NY50 and runoff curve numbers (RCN ). Among explanatory
variables, large negative correlations were detected between
RCN and A_Soils (-0.90). A large positive correlation also
was found between Snowfall and Forest (0.83).

Correlations between explanatory variables indicate some
redundancy of information and result in some statistical ambi-
guity in identifying explanatory variables for inclusion in the
regression equation. Percentages of land use classified within
individual categories of both transmissivity and soil groups
generally summed to 100 percent, except in some areas where
soils or glacial drift were absent and the sum therefore was
less than 100 percent. For these two sets of variables, intra-
group categories were negatively correlated. Also, because
the sums of all transmissivity and soil categories generally
were 100 percent, all members of either the transmissivity or
soil categories could not be included in the regression without

special numerical constraints.

Initial development of the regression equation proceeded
in an automated, stepwise manner. In particular, the variable
most highly correlated with RINY50 was added to the equation
first, followed by the variable that was most highly correlated
given the presence of the first variable in the equation. The
process continued until all the alternative explanatory vari-
ables were evaluated in turn. Introduction of new variables
into the equation sometimes resulted in the elimination of
variables previously included at an apparent significance level
of 0.15.

Final selection of the regression equation was based on
the following criteria:

» The model explained a significant amount of the vari-
ability in RIY, .

« The estimation error of the overall model was low.

» The number of selected explanatory variables was
constrained so that model prediction error—the error
applicable to sites not included in the development of
the equation—would be similar to model estimation
error.

» The signs and magnitudes of parameters associated
with selected explanatory variables were generally
consistent with the expected physical association
between the individual explanatory variables and the
hydrologic response.

* An apparent significance level of about 5 percent for
individual parameters was generally maintained.

Estimation of the Hydrologic Response
Variables

The regression equation for estimating the hydrologic
response variable, R]NY50 , contains six explanatory variables
and an intercept term. Based on the computed RZ, value, the
regression model explains about 70.8 percent of the variability
in RfY50 (fig. 12). The RMS_ was 0.12377, with corresponding
MS_ or s? equal to 0.015320, and overall the p-value associated
with the regression model was less than 0.0001 (p<0.0001).
Based on the results of a Lilliefors test of normality, there was
insufficient evidence to reject the normality of the residual
distribution at the 0.01 level of significance (p=0.015). In this
report, estimates of the indgx water yield, TYSO, were obtained
by squaringNestimatesAof RIY . After sguaring Lndividual
values of R7Y,, and RIY_ to compute /Y, and IY,, values,
respectively, the R2 (RIY,, , RIY,;) decreases from the 0.7080
determined in the regression to an R2 (7Y, , IY,,) of 0.6128
because of the skewed distribution of the squared values. The
coefficient of determination based on the ranks of the squared
values R? (iY50 , TYSO), however, is 0.7498, which is slightly
higher tharJ the Rf) (RjYSO, RTYSO) of the more normally dis-
tributed R/Y,, and RIY,  values. Thus, the correlation between
measured and estimated index water yield is preserved in the
space appropriate to the distribution of the two variables. The
mean and standard deviation of residuals between measured
and estimated water-yield values are 0.0151, and 0.1622,
respectively.

Explanatory variables included in the regression model,
parameter estimates, and associated statistics are listed in
table 2. Only the parameter associated with low transmissivity
(L_Trans) was negatively associated with RiYSO. In apparent
contradiction to the suspected physical relation, the parameter
associated with D_Soils is positively associated with R1~Y50
and is similar in magnitude to the parameter associated with
A_Soils. The anomalous sign associated with D_Soils may be
related to an association between D_Soils and other land-use
and land-cover characteristics.

To investigate this possibility, a cross tabulation between
the 1978 MIRIS land use-land cover areas with hydrologic
soil groups was computed (table 1-3 of Appendix 1). The
results of this tabulation indicate that 89.3 percent of the areas
classified as water also were classified as group D soils and
that 68.7 percent of the areas classified as wetlands also were
classified as group D soils (table 3). Furthermore, 60.4 percent
of the soils classified as group D also were classified as forest
areas. Areas covered by water, wetlands, and forests would be
expected to be associated with higher median flows than areas
not associated with these land use-land cover characteristics.
Thus, the positive sign of the parameter estimate for D_Soils is
not considered physically anomalous.
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Table 1.

Lower triangular elements of the diagonally symmetric correlation matrix among candidate explanatory variables and the

square root of median water yield for the summer month of lowest flow in Michigan.

[H_Trans, M_Trans, and L_Trans indicate the percentage of the land area underlain by high, medium, and low aquifer transmissivity classes,
respectively; Forest indicates forest-covered lands; A _Soils, B_Soils, C_Soils, and D_Soils indicate the percent of land areas classified as
hydrologic soil group A, B, C, and D, respectively; RCN indicates the runoff curve number; Precip indicates the normal annual precipitation for
1971-2000; Snhowfall indicates the snowfall depths (not water equivalent); and RiY50 indicates the square root of the index water yield]

H Trans M Trans L_Trans Forest A_Soils B_Soils C_Soils D Soils RCN Precip  Snowfall RI~Y50
H_Trans 1.00
M_Trans  -0.69 1.00
L Trans -57 -0.20 1.00
Forest A3 -.24 0.09 1.00
A_Soils 57 -.53 -.18 0.53 1.00
B_Soils -17 .29 -.09 -57 -0.74 1.00
C_Soils -.61 41 .36 -25 -.36 -0.19 1.00
D_Soils -.05 -.01 .08 41 -1 -.19 -0.26 1.00
RCN -52 A4 21 -74 -.90 .60 48 0.01 1.00
Precip .16 -.02 -.18 -.18 -23 .38 -14 -.10 0.20 1.00
Snowfall -.09 -17 31 .83 .26 -37 -.08 .32 -.48 0.03 1.00
RI~Y50 .59 -.40 -.35 .63 .63 -43 -47 .20 -72 12 0.43 1.00

Correlations among parameter estimates for explanatory
variables (excluding the intercept term) ranged from -0.6398
to 0.5075 (table 4), indicating no significant linear dependence
among explanatory variables. Some ambiguity between the
intercept term, which is associated with the leading column of
1’s in the design matrix, and the parameter estimate associated
with Precip is indicated by a correlation of —-0.9881.

Values of the selected explanatory variables for all 147
observations used in regression model are in table 1-2 of
Appendix 1. If a unit vector of equal length were appended
before columns 3-8 in table 1-2, the table entries would be
identical to the design matrix X used in the development of the
regression model. Boxplots show the range and approximate
distribution of the selected explanatory variables used in the
regression equation (fig. 13).

Spatial Distribution of the Regression-Model
Error

Taken over all streamflow-gaging stations in the analysis,
the multiple linear regression equation developed in the report
provides an unbiased estimator, RTYSO, of RiYSO. Estimation of
spatially referenced quantities without corresponding spatially
referenced gaging-station coordinates as explanatory variables,
however, can result in spatial patterns in the regression error.
A significant spatial pattern in the distribution of regression
errors would indicate that estimates could be locally biased.

To investigate the potential for local bias in regres-
sion estimates, each selected gaging station was assigned to a

subregion within Michigan (fig. 14). The subregions used in
this report are similar to subregions defined on USGS hydro-
logic unit maps (Seaber and others, 1987). So that similar
numbers of streamflow-gaging stations would be included in
each subregion, however, individual cataloging units shown on
USGS hydrologic unit maps were grouped somewhat differ-
ently in this report than cataloging units grouped by the USGS
to define subregions. In addition, the cataloging units form-
ing the subregions in this report were clipped to the State’s
boundaries.

Notched boxplots show the distribution of model residu-
als by subregion (fig. 15). For each boxplot, the width of the
notch is computed so that boxplots whose notches do not
overlap would have different medians at the 5-percent level
of significance. By examining the intervals spanned by the
notches, however, the boxplots indicate no significant differ-
ence in median residual among hydrologic subregions. Simi-
larly, a Kruskal-Wallis test (Conover, 1980), which compares
the median residuals for each subregion, found no signifi-
cant differences among subregions (p=0.3515). The lack of
geographic bias among subregions implies that the regression
equation is applicable for all hydrologic subreaches, which
together span the State of Michigan. The median residual of
-0.0438 in Michigan hydrologic subregion 7 is slightly less
than zero. A bootstrap analysis of residuals in subregion 7
alone, however, did not indicate that the median residual was
biased at the 5-percent level of significance.
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Figure 12. Relation between RIY, (the index of water yield estimated by regression) and RIY,; (the index
of water yield computed on the basis of the streamflow-gaging station records) [Rjdl,, the adjusted Pearson
coefficient of determination].

Table 2. Regression-model parameters for estimating the hydrologic response variable.

[Intercept refers to a leading column of ones in the design matrix; L_Trans refers to the percentage of the basin classi-

fied as having low ground-water transmissivity; H_Trans refers to the percentage of the basin classified as having high

ground-water transmissivity; Forest refers to the percentage of the basin where land cover is classified as forest; Precip
refers to the normal annual precipitation for the period 1971-2000, in inches; and A_Soilsand D_Soils refer to the per-
centage of the basin classified in the A and D hydrologic soil groups, respectively]

Index i Hydroloqic_ Parameter estimate  Standard error_of the Stud:_ent_’s t p-value
characteristic B parameter estimate statistic
0 Intercept -0.541982 0.1910 -2.838 0.0052
1 L_Trans -.00136258 .0005397 -2.524 0127
2 H_Trans .00204796 .00051078 4.010 <.0001
3 Forest .00402190 .0005452 7.377 <.0001
4 Precip 0236424 .005778 4.092 <.0001
5 A_Soils .00225536 .0007683 2.935 .0039
6 D_Soils .00162107 .001136 1.427 1557

Equation for predicting the hydrologic response variable:
RTY50= p,+ B, L_Trans + f,- H_Trans + f3,- Forest + §,- Precip + .- A_Soils + f5,- D_Soils
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Table 3. Cross-tabulation of land use-land cover areas with hydrologic soil groups for land areas
within Michigan.

Land use/ Hydrologic soil group
land cover A B c D No data’ Percent
Percentages of soil group by land use/land cover

Urban 414 42.3 10.8 5.3 0.1 100
Agriculture 16.7 54.5 24.7 4.1 0.0 100
Range land 39.4 317 10.0 18.9 0.0 100
Forest 38.9 24.5 7.7 28.4 0.6 100
Water 3.9 5.1 0.6 89.3 11 100
Wetland 16.8 10.1 3.6 68.7 0.7 100
Barren 48.6 42 4.5 22.7 20.0 100
No data’ 0.0 0.0 0.0 0.1 99.9 100

Percentages of land use/land cover by soil group

Urban 8.5 7.9 54 14 0.0 --
Agriculture 15.9 47.3 57.1 5.2 0.0 --
Range land 10.3 7.5 6.3 6.6 0.0 --
Forest 61.9 354 29.6 60.4 0.1 --
Wiater 0.3 0.3 0.1 8.8 0.0 --
Wetland 2.8 15 15 155 0.0 --
Barren 0.2 0.0 0.0 0.1 0.0 --
No data 0.1 0.0 0.0 1.8 99.9 -
Percent 100 100 100 100 100 --

1 “No data” indicates that a cell in the Michigan Resource Information System coverage was coded as -9999. The no-
data codes typically represented areas outside the land areas in Michigan. Generally, 99.9 percent of the time, a no-data
code for land use-land cover corresponded to a no-data code for hydrologic soil group. Occasionally, no-data codes did
not match between coverages.

Table 4. Lower triangular elements of the diagonally symmetric correlation matrix among
parameters of selected explanatory variables and the square root of median water yield for
the summer month of lowest flow in Michigan.

[Intercept refers to a leading column of 1’s in the design matrix; L_Trans refers to the percentage of the basin classified
as having low ground-water transmissivity; H_Trans refers to the percentage of the basin classified as having high
ground-water transmissivity; Forest refers to the percentage of the basin where land cover is classified as forest;

Precip refers to the normal annual precipitation for the period 1971-2000, in inches; and A_Soilsand D_Soils refer to
the percentage of the basin classified in the A and D hydrologic soil groups, respectively]

Parameter Intercept L _Trans H_Trans Forest Precip A_Soils D_Soils

Intercept 1
L Trans -0.1252 1

H_Trans .2255 0.5075 1

Forest .1065 -.0545 0.2581 1

Precip -.9881 .0432 -.3134 -0.1215 1
A_Soils -.3706 -.0988 -.6260 -.6398 0.3780 1

D_Soils -2477 -.0231 -.2292 -.5779 .1899 0.4752 1

21
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Computation of the Index Flow

The following sections describe computation of the
index flow, TQSO, which involves squaring the hydrologic
response variable (the estimated square root of the index water
yield), symbolized as RIY, =1Y,, , and multiplying by the
corresponding drainage area. Using 1Y, the assumption of
linearity between drainage area and index flow is evaluated.
Then, the match between the index flows determined from the
analysis of streamflow-gaging station records and index flows
computed on the basis of regression estimates are compared.
Finally, an example is provided for computing the index flow,
IQSO, given values for selected explanatory variables, and the
upper and lower prediction limits, UPL , and LPL

Index Water Yield and Flow

In developing a regression equation for estimating
the (square root of) index water yield, a linear relation was
assumed between the index flow and corresponding drainage
area. In particular, the drainage area raised to the first power
was assumed to be proportional to flow.

Two tests were done to evaluate the plausibility of this
assumption. In the first test for unbiasedness, the estimated
index flow was computed as 1Q.,=1Y, - DA and a residual
series as ¢ =10, - 1Q, . Because & was not normally distrib-
uted, the nonparametric two-sided sign test (Conover, 1980)
was applied under the null hypothesis that the median residual
¢, did not differ significantly from zero. The resulting p-value
was 0.4095, providing no statistical evidence to reject 1Q,, as
an unbiased estimator.

Secondly, the unbiasedness of TQ50 and the linear-
ity of relation between drainage area and the index flow were
tested. In this case, the form of the model evaluated was

iQso:ﬁo + TYso - DAL+ 52

where it is assumed that the estimated value of 4, Z)’O was

not significantly different from zero and that the estimated
value of 8, , was not significantly different from 1. Non-
linear estimation of the above equation resulted in parameter
estimates ofﬁ =-2.2913 with an approximate standard error
of § sﬂ =5.8644 and ﬁl 1.0093 with an approximate standard
error of § §; =0.00322. Again, because ¢, was not normally
distributed, the conventional interpretation that rejection of the
null hypothesis at a probability level « required that the inter-
val [,B’()—t];w24]4779-§%’,3’0+t 'éﬁo] not include zero and the
interval [/%—tlfwz_mg-ékl,/)’l+tlfa/2_l4779-§&1] not include 1 could
not be strictly applied. The value of t_ . , indicates the
inverse of the Student’s t cumulative distribution function with
a specified probability level o, commonly 0.05, and degrees
of freedom 147-9, reflecting the total number of observations
used to develop the regression equation and the total number
of parameters used in estimating the square root of the yield
and the relation between the yield and flow. These intervals

1-a/2.147-9
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provide no evidence, however, to indicate that ﬂo is statisti-
cally different from O or that ﬁl differs substantially (more
than 1 percent) from its hypothesized value of 1. The approxi-
mate correlation between 4 and 3 was —-0.4202, which does
not indicate significant ambiguity between the two parameter
estimates. Other nonlinear models investigated, including
105, =y 1Yo, DA+ and 10, =+ B, - 1Y D2+,
resulted in one or more parameters having negative correla-
tions less than —0.997, making the interpretations of individual
parameter estimates unreliable. Therefore, TQSO is considered
an unbiased and physically plausible estimator of 1Q; .

Comparison of Index Flows

Index flows indicated by analysis of gaging-station
records IQ50 and computed on the basis of the statewide
regression equation IQ were compared for 147 streamflow-
gaging stations used in the development of the regression
model. The resulting Spearman (rank) correlation was 0.97,
and the corresponding coefficient of determination R was
0.9351. Although data for the two sites where index flows
determined on the basis of streamflow-gaging station records
equaled zero could not be displayed, a logarithmic plot of the
measured and computed index flows shows a close match
about the line of agreement (fig. 16).

Example Computation

Following is an example computation to illustrate the
procedure for estimating the index flow and computing the
corresponding estimation interval. Station 04035000 is used
to illustrate the computation. From table 1-2 Appendix 1,
the explanatory variables for station 04035000 are L_Trans
=27.0 percent, H_Trans=23.9 percent, Forest=89.0 percent,
Precip= 32.2 in., A_Soils=14.0 percent, and D_Soils=47.0
percent.

As an alternative to the matrix notation x-S, used previ-
ously, the regression equation for predicting the water yield
response can be written as

RTY50 =p,+p,-L_Trans+p,-H_Trans+ g, Forest+, - Precip
+p,-A_Soils+p, - D_Soils

Substituting the ordinary least square parameter estimates
from table 4 for the beta coefficients and values of the explan-
atory variables for station 04035000, the regression equation
can be written

RIY, =-0.54198+(~0.0013626 - 27.0) +(0.0020480 - 23.9) +
(0.0040219-89.0)+ - - - +(0.023642 -32.2) +
(0.0022554 - 14.0) +(0.0016211 - 47.0)

At station 04035000, the drainage area is 273 mi?, so the
estimate of index flow, 1Q. =RIYZ - DA=0.69722.273=
132.7 ft¥/s, in this case compares closely with the measured
value of /0, =134 ft3/s.
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Relation between measured and computed index flows for selected streamflow-

gaging stations in Michigan [R2, the Spearman coefficient of determination].

The interval formed by the range of the lower and upper
prediction limits is a measure of the uncertainty of the hydro-
logic response estimate. In particular, the prediction interval is
likely to contain 1Q,, with probability 1 minus alpha (1 — ).
The interval width will be smaller for a basin whose hydro-
logic characteristics are similar to those used to develop the
regression than for basins whose characteristics are dissimilar.

The computation of a lower estimation limit about RTY50
for . =0.2 will be shown with data from the site 04035000, as
above. With this alpha value, the lower prediction limit will be
less than 1Q,, at a new site about 90 percent of the time. The
lower prediction limit is computed as

N
LPLa/Z =Xo* Bois ~Yao1-02r2 " \/52 (1+ X (X X ) Xo)

wheret ., ,,=1.2876, s>=MS_=0.015320, and (X'X )™

is from the entries in table 5, results in a lower 90-percent
prediction limit of 0.5328. Similar computations resulted in
an upper prediction limit of 0.8615 for RTYsO. The 90-percent

prediction interval about RTY50 corresponds to a 90-percent

prediction interval about TQ50 of [0.52382 - 273.2, 0.8615?
+273.2]. Thus, the probability that 1Q,; is contained within the
estimation interval from [77.5,202.6] ft¥/s is 80 percent, or
Prob[77.5<1Q,, < 202.6]=0.8.

Summary

In 2006, Michigan enacted legislation to prevent
new large-capacity withdrawals from causing an adverse
impact on a stream’s ability to support characteristic fish
populations. The median streamflow for the summer month
of lowest flow was selected as the index flow against which
possible withdrawals would be assessed. This report describes
a method to predict the index flow at ungaged stream sites in
Michigan. This study was conducted by the U.S. Geological
Survey (USGS) in cooperation with the Michigan Department
of Environmental Quality and the Michigan Department of
Natural Resources.

A set of 147 USGS continuous streamflow-gaging
stations were selected from among stations operated in Michi-
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Table 5. The inverse of the X'X matrix needed to compute prediction limits.

[Intercept refers to a leading column of ones in the design matrix; L_Trans refers to the percentage of the basin classified as having low ground-water transmis-
sivity; H_Trans refers to the percentage of the basin classified as having high ground-water transmissivity; Forest refers to the percentage of the basin where land
cover is classified as forest; Precip refers to the normal annual precipitation for the period 1971-2000, in inches; and A_Soilsand D_Soils refer to the percentage

of the basin classified in the A and D hydrologic soil groups, respectively]

Explanatory variables in the regression model

Intercept L Trans H _Trans Forest Precip A _Soils D_Soils
2.38035E+00 -8.42611E-04 1.43560E-03 7.23794E-04 -7.11625E-02 -3.54982E-03 -3.50692E-03
-8.42611E-04 1.90162E-05 9.13204E-06 -1.04607E-06 8.79202E-06 -2.67491E-06 -9.25476E-07
1.43560E-03 9.13204E-06 1.70298E-05 4.69128E-06 -6.03695E-05 -1.60371E-05 -8.67801E-06
7.23794E-04 -1.04607E-06 4.69128E-06 1.93996E-05 -2.49764E-05 -1.74926E-05 -2.33578E-05
-7.11625E-02 8.79202E-06 -6.03695E-05 -2.49764E-05 2.17903E-03 1.09528E-04 8.13390E-05
-3.54982E-03 -2.67491E-06 -1.60371E-05 -1.74926E-05 1.09528E-04 3.85354E-05 2.70690E-05
-3.50692E-03 -9.25476E-07 -8.67801E-06 -2.33578E-05 8.13390E-05 2.70690E-05 8.42089E-05

gan for 10 or more years that were thought to represent the
natural response of streamflow to precipitation. In particular,
stations where median low flows were thought to have been
appreciably affected by regulation or water withdrawals, aug-
mentations, or diversions were excluded from the regression
analysis. Of the 147 selected stations, minimum median flows
occurred in July at 5 stations, in August at 92 stations, and in
September at 50 stations. Index flows ranged from 0 to

1,850 ft¥/s. Index water yields, which were computed by divid-
ing index flows by the corresponding drainage areas upstream
from the stream measurement sites, ranged from 0 to 1.309
ft3/s-mi2. A square-root transformation was applied to the
index water yields so that the transformed values were
approximately normally distributed.

A multiple linear regression equation was developed
to predict the square root of the index water yield at ungaged
sites using selected basin and climatic characteristics as
explanatory variables. Selected variables included percentages
of land area underlain by low and high aquifer transmissiv-
ity, percentage of forest cover, normal annual precipitation,
and percentages of land cover associated with hydrologic soil
groups A and D (highly and poorly permeable soils, respec-
tively). The regression model explains about 70.8 percent
of the variability in the hydrologic response variable, which
was the square root of the index water yield. No spatial bias
in the regression estimates was detected among seven hydro-
logic subregions spanning Michigan. Therefore, the single
regression equation developed in this report is appropriate for
statewide application.

Index flows can be predicted at ungaged sites by
squaring the predicted regression response and multiplying
the result by the corresponding drainage area. The predicted
index flow explains about 94.0 percent of the variability in
index flows indicated by streamflow-gaging-station records.
In addition, the report documents the technique and provides
information needed to compute an interval about the predicted
index flow. An example computation is provided.
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http://www.legislature.mi.gov/documents/2005-2006/publicact/pdf/2006-PA-0033.pdf
http://www.legislature.mi.gov/documents/2005-2006/publicact/pdf/2006-PA-0033.pdf
http://www.mcgi.state.mi.us/mgdl/
http://www.mcgi.state.mi.us/mgdl/
http://policy.nrcs.usda.gov/media/pdf/H_210_630_10.pdf
http://policy.nrcs.usda.gov/media/pdf/H_210_630_10.pdf
http://policy.nrcs.usda.gov/media/pdf/H_210_630_7.pdf
http://pubs.usgs.gov/wsp/wsp2294/
http://pubs.usgs.gov/wsp/wsp2294/
http://quickfacts.census.gov/qfd/states/26000.html
http://quickfacts.census.gov/qfd/states/26000.html

Appendix 1. Tables of streamflow-gaging
station attributes, flow characteristics, and
explanatory variables used in the development
of the regression equation for estimating the
index flow at ungaged streams in Michigan
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Appendix 1
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38 Regression Model for Computing Index Flows Describing the Median Flow , Summer Month of Lowest Flow, Michigan

Table 1-2. Values of selected explanatory variables used in the development of the regression equation for estimating
the index flow.

Percent of Normal
u.s. Percent of basin with annual Percent of Percent of

Geological Drainage basin with low high ground- Percentof  precipitation basin with A basin with D

Survey area ground-water water basin with  for 1971-2000  hydrologic hydrologic Michigan

station (square transmissivity  transmissivity  forest cover (inches) soil group soil group hydrologic

number miles) (L_Trans) (H_Trans) (Forest) (Precip) (A_Soils) (D_Soils) subregion
04001000 13.2 98.0 0.0 91.4 31.0 0.0 0.0 1
04031000 200 7.7 6.8 85.5 34.7 .0 9.0 1
04031500 172 .0 9.7 86.6 338 .0 10.0 1
04032000 264 0.8 11.3 90.3 34.2 .0 5.0 1
04033000 162 .0 21.0 86.6 317 1.0 62.0 1
04035000 273 27.0 23.9 89.0 32.2 14.0 47.0 1
04040000 1330 34.1 8.9 84.2 32.6 25.0 29.0 1
04040500 169 32.4 14.1 84.7 33.0 7.0 34.0 1
04041500 343 17.0 20.2 85.1 32.7 9.0 36.0 1
04043050 29.6 36.2 3.6 59.5 314 19.0 13.0 1
04045500 757 55.0 30.9 79.0 31.2 32.0 50.0 1
04046000 88IS 27.7 .0 75.4 30.7 32.0 30.0 1
04049500 420 315 48.9 68.4 305 54.0 14.0 1
04055000 716 46.6 36.4 60.8 30.5 62.0 12.0 1
04056000 326 60.3 29.9 77.9 31.6 72.0 5.0 1
04056500 1,130 53.4 32.1 66.4 30.8 32.0 49.0 1
04057510 184 12.7 85.5 79.8 314 45.0 35.0 1
04057800 457 56.5 243 80.9 33.0 5.0 47.0 1
04058000 128 68.3 20.7 77.1 33.0 6.0 47.0 1
04058400 36.3 66.6 334 78.7 325 53.0 19.0 1
04059000 871 22.4 29.7 81.7 324 30.0 36.0 1
04059500 444 1 5.4 86.1 315 10.0 36.0 1
04060993 378 .0 29.7 72.6 31.2 3.0 13.0 1
04061500 600 1.8 19.7 84.5 315 3.0 78.0 1
04062200 132 97.9 .0 84.9 33.1 1.0 42.0 1
04096015 80.8 15.4 8.3 17.0 37.6 11.0 11.0 2
04096405 201 0 69.6 18.5 353 8.0 14.0 2
04096515 48.7 .0 325 15.4 35.7 11.0 11.0 2
04096600 286 .0 57.2 16.0 36.0 4.0 14.0 2
04096900 162 .0 96.7 24.5 36.1 7.0 21.0 2
04097170 68.2 .0 86.8 19.0 37.0 1.0 15.0 2
04097540 107 .0 80.3 18.5 36.5 10.0 15.0 2
04099000 1,880 .0 76.0 18.2 36.4 9.0 14.0 2
04101500 3,670 .0 71.7 18.3 36.9 9.0 14.0 2
04101800 252 .0 94,5 20.8 37.8 23.0 13.0 2
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Table 1-2. Values of selected explanatory variables used in the development of the regression equation for estimating
the index flow—~Continued.

Percent of Normal
u.s. Percent of basin with annual Percent of Percent of

Geological Drainage basin with low  high ground- Percentof  precipitation basin with A basin with D

Survey area ground-water water basin with  for 1971-2000  hydrologic hydrologic Michigan

station (square transmissivity  transmissivity  forest cover (inches) soil group soil group hydrologic

number miles) (L_Trans) (H_Trans) (Forest) (Precip) (A_Soils) (D_Soils) subregion
04102500 390 1.9 715 25.8 37.7 36.0 16.0 2
04102700 83.5 11 36.1 325 37.7 23.0 26.0 2
04103010 270 .0 54.7 16.0 34.9 6.0 11.0 2
04104945 48.3 .0 55.4 24.9 35.5 12.0 18.0 2
04105000 274 .0 44.7 22.4 34.8 12.0 17.0 2
04105700 36.8 .0 99.1 28.2 36.6 4.0 16.0 2
04108600 65.1 .0 48.4 21.1 36.7 23.0 13.0 2
04108801 66.9 1.7 25.0 8.3 36.4 11.0 5.0 2
04110000 47.3 .0 39.5 19.6 32.7 25.0 18.0 2
04111500 16.3 .0 4.4 15.1 32.6 14.0 13.0 2
04112000 10.4 .0 .0 13.6 325 2.0 8.0 2
04112500 344 .0 13.7 14.2 32.6 11.0 14.0 2
04114498 284 .0 28.9 14.8 324 9.0 18.0 2
04115000 420 29.3 20.1 10.7 324 5.0 15.0 2
04116500 516 .0 79.0 26.7 34.0 45.0 19.0 2
04117000 7.8 .0 30.8 21.9 353 4.0 14.0 2
04117500 410 .0 30.3 18.4 34.9 5.0 12.0 2
04118000 795 .0 313 218 35.2 11.0 11.0 2
04118500 257 .0 46.6 29.8 345 36.0 12.0 2
04121000 352 .0 85.2 63.1 30.7 57.0 16.0 3
04121300 239 3.1 77.2 53.0 32.1 62.0 .0 3
04121900 136 .0 96.0 41.4 334 60.0 15.0 3
04122100 16.7 70.6 25.8 435 34.0 32.0 15.0 3
04122200 404 .0 81.7 57.9 34.0 62.0 15.0 3
04122500 689 .0 91.3 74.7 338 70.0 16.0 3
04123000 115 .0 91.1 79.7 335 64.0 21.0 3
04123500 132 .0 100.0 73.0 32.2 92.0 5.0 3
04124000 865 .0 94.4 76.3 31.9 80.0 12.0 3
04124500 58.9 .0 31.2 40.1 32.6 54.0 18.0 3
04125000 130 .0 545 51.7 32.7 61.0 11.0 3
04125500 254 .0 72.1 61.6 32.9 63.0 9.0 3
04126200 185 .0 99.3 83.3 335 84.0 10.0 3
04127918 202 445 26.6 71.3 32.1 30.0 43.0 1
04127997 181 .0 98.6 69.2 31.4 77.0 13.0 4
04128990 57.7 .0 90.6 64.4 30.9 66.0 22.0 4
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Table 1-2. Values of selected explanatory variables used in the development of the regression equation for estimating
the index flow—~Continued.

Percent of Normal
u.s. Percent of basin with annual Percent of Percent of

Geological Drainage basin with low high ground- Percentof  precipitation basin with A basin with D

Survey area ground-water water basin with  for 1971-2000  hydrologic hydrologic Michigan

station (square transmissivity  transmissivity  forest cover (inches) soil group soil group hydrologic

number miles) (L_Trans) (H_Trans) (Forest) (Precip) (A_Soils) (D_Soils) subregion
04129000 586 1.1 55.4 71.4 28.5 38.0 24.0 4
04133501 1,240 2.8 54.6 67.5 28.4 29.0 27.0 4
04135000 96.6 .0 97.8 69.4 318 88.0 6.0 4
04135500 71.2 .0 100.0 70.9 31.2 85.0 8.0 4
04135600 391 .0 97.8 81.1 30.2 76.0 15.0 4
04135700 1,360 15 94.7 80.1 30.2 81.0 11.0 4
04136500 1,740 2.0 89.5 80.9 29.1 79.0 12.0 4
04137500 89.9 9 214 62.4 29.7 42.0 14.0 4
04138000 151 15.2 4.4 41.1 29.9 18.0 32.0 5
04138500 29.8 .0 48.7 58.1 29.6 54.0 14.0 5
04139000 57.4 .0 535 58.2 29.5 47.0 19.0 5
04139500 21.0 .0 46.7 457 29.8 41.0 15.0 5
04140000 116 .0 534 55.8 29.6 44.0 20.0 5
04140500 11 .0 .0 13.1 29.9 5.0 8.0 5
04141000 65.4 5.0 50.8 50.8 30.0 52.0 13.0 5
04141500 333 3.6 36.2 56.2 30.0 43.0 20.0 5
04142000 81.9 .0 49.8 14.6 315 8.0 18.0 5
04143900 363 .0 34.5 19.4 31.8 7.0 16.0 5
04144000 530 .0 32.0 16.6 317 6.0 14.0 5
04144500 89.9 56.4 .0 11.4 32.3 2.0 6.0 5
04145500 51.1 12.3 15.1 20.5 314 10.0 14.0 5
04146000 211 19.8 26.1 22.0 L3 9.0 15.0 5
04146063 526 14.9 33.0 20.1 313 9.0 17.0 5
04147500 34.8 12.3 28.4 23.9 315 12.0 12.0 5
04147990 99.7 5.6 32.9 19.3 315 11.0 16.0 5
04148140 6.9 67.2 .0 6.5 31.6 2.0 4.0 5
04148160 12.1 .0 52.9 217 315 17.0 26.0 5
04148200 114 6.1 13.1 14.7 31.6 4.0 14.0 5
04148300 54.4 5 26.9 18.1 315 11.0 14.0 5
04148440 960 153 275 17.7 315 9.0 15.0 5
04148500 239 .0 26.6 10.1 31.0 11.0 11.0 5
04150000 363 6.2 31.1 12.4 311 12.0 16.0 5
04150500 842 9.8 25.9 20.7 31.0 14.0 18.0 5
04151500 152 1.3 64.3 42.1 Bilk5 46.0 18.0 5
04152238 145 39.3 4.2 19.6 31.7 6.0 14.0 5
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Table 1-2. Values of selected explanatory variables used in the development of the regression equation for estimating
the index flow—~Continued.

Percent of Normal
u.s. Percent of basin with annual Percent of Percent of

Geological Drainage basin with low  high ground- Percentof  precipitation basin with A basin with D

Survey area ground-water water basin with  for 1971-2000  hydrologic hydrologic Michigan

station (square transmissivity  transmissivity  forest cover (inches) soil group soil group hydrologic

number miles) (L_Trans) (H_Trans) (Forest) (Precip) (A_Soils) (D_Soils) subregion
04153500 409 T 76.7 34.6 325 43.0 16.0 5
04154000 309 7 69.4 24.2 329 36.0 15.0 5
04155000 67.3 77.5 .0 4.2 30.9 2.0 5.0 5
04157500 33.9 89.0 .0 3.4 30.9 3.0 3.0 5
04158000 5888 33.6 1.0 12.2 31.2 5.0 10.0 5
04158500 479 36.3 144 7.0 31.0 10.0 10.0 5
041594920 169 323 25.6 11.9 30.9 9.0 12.0 6
04159900 184 314 235 125 30.9 9.0 12.0 6
04160000 683 35.0 16.4 9.6 31.0 10.0 11.0 6
04160050 16.1 46.5 .0 12.3 31.0 15.0 15.0 6
04160570 151 53.6 .0 11.4 31.0 6.0 13.0 6
04160600 21.0 .0 100.0 18.7 313 34.0 21.0 6
04160800 78.5 .0 95.8 154 313 26.0 15.0 6
04160900 123 .0 81.0 11.9 314 24.0 16.0 6
04161000 17.4 .0 52.3 11.1 313 12.0 30.0 6
04161100 39.8 .0 87.3 145 312 19.0 15.0 6
04161500 71.8 .0 61.9 15.0 31.0 15.0 16.0 6
04161540 238 .0 33.6 22.6 31.2 4.0 17.0 6
04161580 69.1 .0 56.7 20.0 31.2 8.0 15.0 6
04161800 16.6 49.3 2.5 8.6 314 17.0 16.0 6
04163400 238 435 1.7 9.3 314 14.0 18.0 6
04163500 20.8 4.2 354 19.8 311 4.0 14.0 6
04164100 12.8 46.2 .0 8.0 31.1 .0 7.0 6
04164300 198 64.4 6.3 11.4 31.2 2.0 19.0 6
04164500 41.2 53.1 35 11.0 31.2 13.0 13.0 6
04164800 36.7 43 35.2 7.7 314 13.0 20.0 6
04166000 10.2 58.0 .0 3.7 31.6 9.0 9.0 6
04166200 17.6 2 17.2 15.9 316 10.0 15.0 6
04166300 49.9 .0 98.5 225 315 25.0 28.0 6
04169500 139 .0 90.1 18.0 317 25.0 25.0 7
04170000 155 .0 90.6 18.3 317 24.0 25.0 7
04170500 333 .0 76.5 24.6 321 7.0 19.0 7
04171500 320 .0 84.4 19.2 32.0 17.0 21.0 7
04172000 538 .0 79.2 20.6 32.2 16.0 22.0 7
04173000 131 .0 50.3 15.4 33.0 12.0 18.0 7
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Table 1-2. Values of selected explanatory variables used in the development of the regression equation for estimating
the index flow—~Continued.

Percent of Normal
u.s. Percent of basin with annual Percent of Percent of

Geological Drainage basin with low high ground- Percentof  precipitation basin with A basin with D

Survey area ground-water water basin with  for 1971-2000  hydrologic hydrologic Michigan

station (square transmissivity transmissivity  forest cover (inches) soil group soil group hydrologic

number miles) (L_Trans) (H_Trans) (Forest) (Precip) (A_Soils) (D_Soils) subregion
04173500 747 .0 70.8 19.2 32.3 14.0 20.0 7
04174500 817 0 67.9 18.8 32.3 13.0 21.0 7
04174800 128 .0 90.5 20.0 34.1 9.0 17.0 7
04175600 266 1 71.6 17.7 34.0 7.0 15.0 7
04175700 460 .0 53.8 15.9 34.2 6.0 14.0 7
04176000 63.7 54.0 0.0 13.0 335 23.0 7.0 7
04176605 205 14 9.6 14.4 35.0 3.0 9.0 7
04184500 13.2 98.0 .0 91.4 31.0 .0 .0 7
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Table 1-3. Cross-tabulation of cell counts and percentages for Michigan Resource Information System (MIRIS) 1978 land use-land
cover and hydrologic soil groups in Michigan'.

Hydrologic soil group

Outside of Adjusted
Land use-land cover A B C D Michigan? Percent percent®
Urban 4,343,953 4,432,438 1,137,269 555,570 14,563 1.6 6.3
Agriculture 8,163,149 26,685,700 1,2077,467 2,000,247 2,392 7.4 29.3
Range land 5,292,626 4,255,525 1,338,514 2,544,935 5,416 2.0 8.0
Forest 31,740,852 19,970,933 6,257,886 2,3151,323 453,893 12.3 43.8
Water 148,888 193,023 24,015 3,391,954 42,373 0.6 2.3
Wetland 1,457,774 873,403 314,675 5,950,392 59,920 1.3 5.2
Barren 105,535 9,180 9,802 49,231 43,448 0.0 0.1
Outside of Michigan 28,474 7,383 1,510 693,402 496,646,760 74.9 --
Percent 7.7 8.5 3.2 5.8 74.8 100 100
Adjusted percent 30.7 33.7 12.7 22.9 - 100 100

The Michigan Resource Information System represents the 1978 land use-land cover and hydrologic soil groups in Michigan as a rectangular grid of integers
that contain 26,319 rows and 25,247 columns. Each grid is identically referenced geographically. Each cell in the grid represents a land area of 30 meters square
(900 square meters). Numeric codes for the land use-land cover grid are as follows: (1) urban or built-up land, (2) agricultural land, (3) rangeland, (4) forest
land, which included Level II classification of deciduous, evergreen, and mixed forest lands, (5) water, (6) wetland, and (7) barren land. For hydrologic soil
groups numeric codes are as follows: (1) group A soils, (2) group B soils, (3) group C soils, and (4) group D soils. For both coverages, the code -9999 signifies

no data or inapplicable, which occurs over extensive areas of adjacent states, the Province of Ontario, Canada, and the Great Lakes.

2 “Qutside of Michigan” refers to land areas of adjacent states and the Province of Ontario, Canada, and water areas over the Great Lakes, both within and

outside of Michigan.

3 Adjusted percentage accounts only for the land areas within Michigan.
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